* doc/invoke.texi: Add cpu_type power6.
[official-gcc.git] / gcc / reload.c
blobdd15e0a2e1f57d4a538af2d20a31d287e614a877
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 /* This file contains subroutines used only from the file reload1.c.
24 It knows how to scan one insn for operands and values
25 that need to be copied into registers to make valid code.
26 It also finds other operands and values which are valid
27 but for which equivalent values in registers exist and
28 ought to be used instead.
30 Before processing the first insn of the function, call `init_reload'.
31 init_reload actually has to be called earlier anyway.
33 To scan an insn, call `find_reloads'. This does two things:
34 1. sets up tables describing which values must be reloaded
35 for this insn, and what kind of hard regs they must be reloaded into;
36 2. optionally record the locations where those values appear in
37 the data, so they can be replaced properly later.
38 This is done only if the second arg to `find_reloads' is nonzero.
40 The third arg to `find_reloads' specifies the number of levels
41 of indirect addressing supported by the machine. If it is zero,
42 indirect addressing is not valid. If it is one, (MEM (REG n))
43 is valid even if (REG n) did not get a hard register; if it is two,
44 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
45 hard register, and similarly for higher values.
47 Then you must choose the hard regs to reload those pseudo regs into,
48 and generate appropriate load insns before this insn and perhaps
49 also store insns after this insn. Set up the array `reload_reg_rtx'
50 to contain the REG rtx's for the registers you used. In some
51 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
52 for certain reloads. Then that tells you which register to use,
53 so you do not need to allocate one. But you still do need to add extra
54 instructions to copy the value into and out of that register.
56 Finally you must call `subst_reloads' to substitute the reload reg rtx's
57 into the locations already recorded.
59 NOTE SIDE EFFECTS:
61 find_reloads can alter the operands of the instruction it is called on.
63 1. Two operands of any sort may be interchanged, if they are in a
64 commutative instruction.
65 This happens only if find_reloads thinks the instruction will compile
66 better that way.
68 2. Pseudo-registers that are equivalent to constants are replaced
69 with those constants if they are not in hard registers.
71 1 happens every time find_reloads is called.
72 2 happens only when REPLACE is 1, which is only when
73 actually doing the reloads, not when just counting them.
75 Using a reload register for several reloads in one insn:
77 When an insn has reloads, it is considered as having three parts:
78 the input reloads, the insn itself after reloading, and the output reloads.
79 Reloads of values used in memory addresses are often needed for only one part.
81 When this is so, reload_when_needed records which part needs the reload.
82 Two reloads for different parts of the insn can share the same reload
83 register.
85 When a reload is used for addresses in multiple parts, or when it is
86 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
87 a register with any other reload. */
89 #define REG_OK_STRICT
91 #include "config.h"
92 #include "system.h"
93 #include "coretypes.h"
94 #include "tm.h"
95 #include "rtl.h"
96 #include "tm_p.h"
97 #include "insn-config.h"
98 #include "expr.h"
99 #include "optabs.h"
100 #include "recog.h"
101 #include "reload.h"
102 #include "regs.h"
103 #include "addresses.h"
104 #include "hard-reg-set.h"
105 #include "flags.h"
106 #include "real.h"
107 #include "output.h"
108 #include "function.h"
109 #include "toplev.h"
110 #include "params.h"
111 #include "target.h"
113 /* True if X is a constant that can be forced into the constant pool. */
114 #define CONST_POOL_OK_P(X) \
115 (CONSTANT_P (X) \
116 && GET_CODE (X) != HIGH \
117 && !targetm.cannot_force_const_mem (X))
119 /* True if C is a non-empty register class that has too few registers
120 to be safely used as a reload target class. */
121 #define SMALL_REGISTER_CLASS_P(C) \
122 (reg_class_size [(C)] == 1 \
123 || (reg_class_size [(C)] >= 1 && CLASS_LIKELY_SPILLED_P (C)))
126 /* All reloads of the current insn are recorded here. See reload.h for
127 comments. */
128 int n_reloads;
129 struct reload rld[MAX_RELOADS];
131 /* All the "earlyclobber" operands of the current insn
132 are recorded here. */
133 int n_earlyclobbers;
134 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
136 int reload_n_operands;
138 /* Replacing reloads.
140 If `replace_reloads' is nonzero, then as each reload is recorded
141 an entry is made for it in the table `replacements'.
142 Then later `subst_reloads' can look through that table and
143 perform all the replacements needed. */
145 /* Nonzero means record the places to replace. */
146 static int replace_reloads;
148 /* Each replacement is recorded with a structure like this. */
149 struct replacement
151 rtx *where; /* Location to store in */
152 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
153 a SUBREG; 0 otherwise. */
154 int what; /* which reload this is for */
155 enum machine_mode mode; /* mode it must have */
158 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
160 /* Number of replacements currently recorded. */
161 static int n_replacements;
163 /* Used to track what is modified by an operand. */
164 struct decomposition
166 int reg_flag; /* Nonzero if referencing a register. */
167 int safe; /* Nonzero if this can't conflict with anything. */
168 rtx base; /* Base address for MEM. */
169 HOST_WIDE_INT start; /* Starting offset or register number. */
170 HOST_WIDE_INT end; /* Ending offset or register number. */
173 #ifdef SECONDARY_MEMORY_NEEDED
175 /* Save MEMs needed to copy from one class of registers to another. One MEM
176 is used per mode, but normally only one or two modes are ever used.
178 We keep two versions, before and after register elimination. The one
179 after register elimination is record separately for each operand. This
180 is done in case the address is not valid to be sure that we separately
181 reload each. */
183 static rtx secondary_memlocs[NUM_MACHINE_MODES];
184 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
185 static int secondary_memlocs_elim_used = 0;
186 #endif
188 /* The instruction we are doing reloads for;
189 so we can test whether a register dies in it. */
190 static rtx this_insn;
192 /* Nonzero if this instruction is a user-specified asm with operands. */
193 static int this_insn_is_asm;
195 /* If hard_regs_live_known is nonzero,
196 we can tell which hard regs are currently live,
197 at least enough to succeed in choosing dummy reloads. */
198 static int hard_regs_live_known;
200 /* Indexed by hard reg number,
201 element is nonnegative if hard reg has been spilled.
202 This vector is passed to `find_reloads' as an argument
203 and is not changed here. */
204 static short *static_reload_reg_p;
206 /* Set to 1 in subst_reg_equivs if it changes anything. */
207 static int subst_reg_equivs_changed;
209 /* On return from push_reload, holds the reload-number for the OUT
210 operand, which can be different for that from the input operand. */
211 static int output_reloadnum;
213 /* Compare two RTX's. */
214 #define MATCHES(x, y) \
215 (x == y || (x != 0 && (REG_P (x) \
216 ? REG_P (y) && REGNO (x) == REGNO (y) \
217 : rtx_equal_p (x, y) && ! side_effects_p (x))))
219 /* Indicates if two reloads purposes are for similar enough things that we
220 can merge their reloads. */
221 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
222 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
223 || ((when1) == (when2) && (op1) == (op2)) \
224 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
225 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
226 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
227 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
228 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
230 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
231 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
232 ((when1) != (when2) \
233 || ! ((op1) == (op2) \
234 || (when1) == RELOAD_FOR_INPUT \
235 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
236 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
238 /* If we are going to reload an address, compute the reload type to
239 use. */
240 #define ADDR_TYPE(type) \
241 ((type) == RELOAD_FOR_INPUT_ADDRESS \
242 ? RELOAD_FOR_INPADDR_ADDRESS \
243 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
244 ? RELOAD_FOR_OUTADDR_ADDRESS \
245 : (type)))
247 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
248 enum machine_mode, enum reload_type,
249 enum insn_code *, secondary_reload_info *);
250 static enum reg_class find_valid_class (enum machine_mode, enum machine_mode,
251 int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int,
274 enum rtx_code, enum rtx_code, rtx *,
275 int, enum reload_type,int, rtx);
276 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
277 enum machine_mode, int,
278 enum reload_type, int);
279 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
280 int, rtx);
281 static void copy_replacements_1 (rtx *, rtx *, int);
282 static int find_inc_amount (rtx, rtx);
283 static int refers_to_mem_for_reload_p (rtx);
284 static int refers_to_regno_for_reload_p (unsigned int, unsigned int,
285 rtx, rtx *);
287 /* Determine if any secondary reloads are needed for loading (if IN_P is
288 nonzero) or storing (if IN_P is zero) X to or from a reload register of
289 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
290 are needed, push them.
292 Return the reload number of the secondary reload we made, or -1 if
293 we didn't need one. *PICODE is set to the insn_code to use if we do
294 need a secondary reload. */
296 static int
297 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
298 enum reg_class reload_class,
299 enum machine_mode reload_mode, enum reload_type type,
300 enum insn_code *picode, secondary_reload_info *prev_sri)
302 enum reg_class class = NO_REGS;
303 enum reg_class scratch_class;
304 enum machine_mode mode = reload_mode;
305 enum insn_code icode = CODE_FOR_nothing;
306 enum insn_code t_icode = CODE_FOR_nothing;
307 enum reload_type secondary_type;
308 int s_reload, t_reload = -1;
309 const char *scratch_constraint;
310 char letter;
311 secondary_reload_info sri;
313 if (type == RELOAD_FOR_INPUT_ADDRESS
314 || type == RELOAD_FOR_OUTPUT_ADDRESS
315 || type == RELOAD_FOR_INPADDR_ADDRESS
316 || type == RELOAD_FOR_OUTADDR_ADDRESS)
317 secondary_type = type;
318 else
319 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
321 *picode = CODE_FOR_nothing;
323 /* If X is a paradoxical SUBREG, use the inner value to determine both the
324 mode and object being reloaded. */
325 if (GET_CODE (x) == SUBREG
326 && (GET_MODE_SIZE (GET_MODE (x))
327 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
329 x = SUBREG_REG (x);
330 reload_mode = GET_MODE (x);
333 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
334 is still a pseudo-register by now, it *must* have an equivalent MEM
335 but we don't want to assume that), use that equivalent when seeing if
336 a secondary reload is needed since whether or not a reload is needed
337 might be sensitive to the form of the MEM. */
339 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
340 && reg_equiv_mem[REGNO (x)] != 0)
341 x = reg_equiv_mem[REGNO (x)];
343 sri.icode = CODE_FOR_nothing;
344 sri.prev_sri = prev_sri;
345 class = targetm.secondary_reload (in_p, x, reload_class, reload_mode, &sri);
346 icode = sri.icode;
348 /* If we don't need any secondary registers, done. */
349 if (class == NO_REGS && icode == CODE_FOR_nothing)
350 return -1;
352 if (class != NO_REGS)
353 t_reload = push_secondary_reload (in_p, x, opnum, optional, class,
354 reload_mode, type, &t_icode, &sri);
356 /* If we will be using an insn, the secondary reload is for a
357 scratch register. */
359 if (icode != CODE_FOR_nothing)
361 /* If IN_P is nonzero, the reload register will be the output in
362 operand 0. If IN_P is zero, the reload register will be the input
363 in operand 1. Outputs should have an initial "=", which we must
364 skip. */
366 /* ??? It would be useful to be able to handle only two, or more than
367 three, operands, but for now we can only handle the case of having
368 exactly three: output, input and one temp/scratch. */
369 gcc_assert (insn_data[(int) icode].n_operands == 3);
371 /* ??? We currently have no way to represent a reload that needs
372 an icode to reload from an intermediate tertiary reload register.
373 We should probably have a new field in struct reload to tag a
374 chain of scratch operand reloads onto. */
375 gcc_assert (class == NO_REGS);
377 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
378 gcc_assert (*scratch_constraint == '=');
379 scratch_constraint++;
380 if (*scratch_constraint == '&')
381 scratch_constraint++;
382 letter = *scratch_constraint;
383 scratch_class = (letter == 'r' ? GENERAL_REGS
384 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) letter,
385 scratch_constraint));
387 class = scratch_class;
388 mode = insn_data[(int) icode].operand[2].mode;
391 /* This case isn't valid, so fail. Reload is allowed to use the same
392 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
393 in the case of a secondary register, we actually need two different
394 registers for correct code. We fail here to prevent the possibility of
395 silently generating incorrect code later.
397 The convention is that secondary input reloads are valid only if the
398 secondary_class is different from class. If you have such a case, you
399 can not use secondary reloads, you must work around the problem some
400 other way.
402 Allow this when a reload_in/out pattern is being used. I.e. assume
403 that the generated code handles this case. */
405 gcc_assert (!in_p || class != reload_class || icode != CODE_FOR_nothing
406 || t_icode != CODE_FOR_nothing);
408 /* See if we can reuse an existing secondary reload. */
409 for (s_reload = 0; s_reload < n_reloads; s_reload++)
410 if (rld[s_reload].secondary_p
411 && (reg_class_subset_p (class, rld[s_reload].class)
412 || reg_class_subset_p (rld[s_reload].class, class))
413 && ((in_p && rld[s_reload].inmode == mode)
414 || (! in_p && rld[s_reload].outmode == mode))
415 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
416 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
417 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
418 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
419 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
420 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
421 opnum, rld[s_reload].opnum))
423 if (in_p)
424 rld[s_reload].inmode = mode;
425 if (! in_p)
426 rld[s_reload].outmode = mode;
428 if (reg_class_subset_p (class, rld[s_reload].class))
429 rld[s_reload].class = class;
431 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
432 rld[s_reload].optional &= optional;
433 rld[s_reload].secondary_p = 1;
434 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
435 opnum, rld[s_reload].opnum))
436 rld[s_reload].when_needed = RELOAD_OTHER;
439 if (s_reload == n_reloads)
441 #ifdef SECONDARY_MEMORY_NEEDED
442 /* If we need a memory location to copy between the two reload regs,
443 set it up now. Note that we do the input case before making
444 the reload and the output case after. This is due to the
445 way reloads are output. */
447 if (in_p && icode == CODE_FOR_nothing
448 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
450 get_secondary_mem (x, reload_mode, opnum, type);
452 /* We may have just added new reloads. Make sure we add
453 the new reload at the end. */
454 s_reload = n_reloads;
456 #endif
458 /* We need to make a new secondary reload for this register class. */
459 rld[s_reload].in = rld[s_reload].out = 0;
460 rld[s_reload].class = class;
462 rld[s_reload].inmode = in_p ? mode : VOIDmode;
463 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
464 rld[s_reload].reg_rtx = 0;
465 rld[s_reload].optional = optional;
466 rld[s_reload].inc = 0;
467 /* Maybe we could combine these, but it seems too tricky. */
468 rld[s_reload].nocombine = 1;
469 rld[s_reload].in_reg = 0;
470 rld[s_reload].out_reg = 0;
471 rld[s_reload].opnum = opnum;
472 rld[s_reload].when_needed = secondary_type;
473 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
474 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
475 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
476 rld[s_reload].secondary_out_icode
477 = ! in_p ? t_icode : CODE_FOR_nothing;
478 rld[s_reload].secondary_p = 1;
480 n_reloads++;
482 #ifdef SECONDARY_MEMORY_NEEDED
483 if (! in_p && icode == CODE_FOR_nothing
484 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
485 get_secondary_mem (x, mode, opnum, type);
486 #endif
489 *picode = icode;
490 return s_reload;
493 /* If a secondary reload is needed, return its class. If both an intermediate
494 register and a scratch register is needed, we return the class of the
495 intermediate register. */
496 enum reg_class
497 secondary_reload_class (bool in_p, enum reg_class class,
498 enum machine_mode mode, rtx x)
500 enum insn_code icode;
501 secondary_reload_info sri;
503 sri.icode = CODE_FOR_nothing;
504 sri.prev_sri = NULL;
505 class = targetm.secondary_reload (in_p, x, class, mode, &sri);
506 icode = sri.icode;
508 /* If there are no secondary reloads at all, we return NO_REGS.
509 If an intermediate register is needed, we return its class. */
510 if (icode == CODE_FOR_nothing || class != NO_REGS)
511 return class;
513 /* No intermediate register is needed, but we have a special reload
514 pattern, which we assume for now needs a scratch register. */
515 return scratch_reload_class (icode);
518 /* ICODE is the insn_code of a reload pattern. Check that it has exactly
519 three operands, verify that operand 2 is an output operand, and return
520 its register class.
521 ??? We'd like to be able to handle any pattern with at least 2 operands,
522 for zero or more scratch registers, but that needs more infrastructure. */
523 enum reg_class
524 scratch_reload_class (enum insn_code icode)
526 const char *scratch_constraint;
527 char scratch_letter;
528 enum reg_class class;
530 gcc_assert (insn_data[(int) icode].n_operands == 3);
531 scratch_constraint = insn_data[(int) icode].operand[2].constraint;
532 gcc_assert (*scratch_constraint == '=');
533 scratch_constraint++;
534 if (*scratch_constraint == '&')
535 scratch_constraint++;
536 scratch_letter = *scratch_constraint;
537 if (scratch_letter == 'r')
538 return GENERAL_REGS;
539 class = REG_CLASS_FROM_CONSTRAINT ((unsigned char) scratch_letter,
540 scratch_constraint);
541 gcc_assert (class != NO_REGS);
542 return class;
545 #ifdef SECONDARY_MEMORY_NEEDED
547 /* Return a memory location that will be used to copy X in mode MODE.
548 If we haven't already made a location for this mode in this insn,
549 call find_reloads_address on the location being returned. */
552 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
553 int opnum, enum reload_type type)
555 rtx loc;
556 int mem_valid;
558 /* By default, if MODE is narrower than a word, widen it to a word.
559 This is required because most machines that require these memory
560 locations do not support short load and stores from all registers
561 (e.g., FP registers). */
563 #ifdef SECONDARY_MEMORY_NEEDED_MODE
564 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
565 #else
566 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
567 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
568 #endif
570 /* If we already have made a MEM for this operand in MODE, return it. */
571 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
572 return secondary_memlocs_elim[(int) mode][opnum];
574 /* If this is the first time we've tried to get a MEM for this mode,
575 allocate a new one. `something_changed' in reload will get set
576 by noticing that the frame size has changed. */
578 if (secondary_memlocs[(int) mode] == 0)
580 #ifdef SECONDARY_MEMORY_NEEDED_RTX
581 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
582 #else
583 secondary_memlocs[(int) mode]
584 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
585 #endif
588 /* Get a version of the address doing any eliminations needed. If that
589 didn't give us a new MEM, make a new one if it isn't valid. */
591 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
592 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
594 if (! mem_valid && loc == secondary_memlocs[(int) mode])
595 loc = copy_rtx (loc);
597 /* The only time the call below will do anything is if the stack
598 offset is too large. In that case IND_LEVELS doesn't matter, so we
599 can just pass a zero. Adjust the type to be the address of the
600 corresponding object. If the address was valid, save the eliminated
601 address. If it wasn't valid, we need to make a reload each time, so
602 don't save it. */
604 if (! mem_valid)
606 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
607 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
608 : RELOAD_OTHER);
610 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
611 opnum, type, 0, 0);
614 secondary_memlocs_elim[(int) mode][opnum] = loc;
615 if (secondary_memlocs_elim_used <= (int)mode)
616 secondary_memlocs_elim_used = (int)mode + 1;
617 return loc;
620 /* Clear any secondary memory locations we've made. */
622 void
623 clear_secondary_mem (void)
625 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
627 #endif /* SECONDARY_MEMORY_NEEDED */
630 /* Find the largest class which has at least one register valid in
631 mode INNER, and which for every such register, that register number
632 plus N is also valid in OUTER (if in range) and is cheap to move
633 into REGNO. Such a class must exist. */
635 static enum reg_class
636 find_valid_class (enum machine_mode outer ATTRIBUTE_UNUSED,
637 enum machine_mode inner ATTRIBUTE_UNUSED, int n,
638 unsigned int dest_regno ATTRIBUTE_UNUSED)
640 int best_cost = -1;
641 int class;
642 int regno;
643 enum reg_class best_class = NO_REGS;
644 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
645 unsigned int best_size = 0;
646 int cost;
648 for (class = 1; class < N_REG_CLASSES; class++)
650 int bad = 0;
651 int good = 0;
652 for (regno = 0; regno < FIRST_PSEUDO_REGISTER - n && ! bad; regno++)
653 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno))
655 if (HARD_REGNO_MODE_OK (regno, inner))
657 good = 1;
658 if (! TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
659 || ! HARD_REGNO_MODE_OK (regno + n, outer))
660 bad = 1;
664 if (bad || !good)
665 continue;
666 cost = REGISTER_MOVE_COST (outer, class, dest_class);
668 if ((reg_class_size[class] > best_size
669 && (best_cost < 0 || best_cost >= cost))
670 || best_cost > cost)
672 best_class = class;
673 best_size = reg_class_size[class];
674 best_cost = REGISTER_MOVE_COST (outer, class, dest_class);
678 gcc_assert (best_size != 0);
680 return best_class;
683 /* Return the number of a previously made reload that can be combined with
684 a new one, or n_reloads if none of the existing reloads can be used.
685 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
686 push_reload, they determine the kind of the new reload that we try to
687 combine. P_IN points to the corresponding value of IN, which can be
688 modified by this function.
689 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
691 static int
692 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
693 enum reload_type type, int opnum, int dont_share)
695 rtx in = *p_in;
696 int i;
697 /* We can't merge two reloads if the output of either one is
698 earlyclobbered. */
700 if (earlyclobber_operand_p (out))
701 return n_reloads;
703 /* We can use an existing reload if the class is right
704 and at least one of IN and OUT is a match
705 and the other is at worst neutral.
706 (A zero compared against anything is neutral.)
708 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
709 for the same thing since that can cause us to need more reload registers
710 than we otherwise would. */
712 for (i = 0; i < n_reloads; i++)
713 if ((reg_class_subset_p (class, rld[i].class)
714 || reg_class_subset_p (rld[i].class, class))
715 /* If the existing reload has a register, it must fit our class. */
716 && (rld[i].reg_rtx == 0
717 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
718 true_regnum (rld[i].reg_rtx)))
719 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
720 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
721 || (out != 0 && MATCHES (rld[i].out, out)
722 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
723 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
724 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
725 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
726 return i;
728 /* Reloading a plain reg for input can match a reload to postincrement
729 that reg, since the postincrement's value is the right value.
730 Likewise, it can match a preincrement reload, since we regard
731 the preincrementation as happening before any ref in this insn
732 to that register. */
733 for (i = 0; i < n_reloads; i++)
734 if ((reg_class_subset_p (class, rld[i].class)
735 || reg_class_subset_p (rld[i].class, class))
736 /* If the existing reload has a register, it must fit our
737 class. */
738 && (rld[i].reg_rtx == 0
739 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
740 true_regnum (rld[i].reg_rtx)))
741 && out == 0 && rld[i].out == 0 && rld[i].in != 0
742 && ((REG_P (in)
743 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
744 && MATCHES (XEXP (rld[i].in, 0), in))
745 || (REG_P (rld[i].in)
746 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
747 && MATCHES (XEXP (in, 0), rld[i].in)))
748 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
749 && (SMALL_REGISTER_CLASS_P (class) || SMALL_REGISTER_CLASSES)
750 && MERGABLE_RELOADS (type, rld[i].when_needed,
751 opnum, rld[i].opnum))
753 /* Make sure reload_in ultimately has the increment,
754 not the plain register. */
755 if (REG_P (in))
756 *p_in = rld[i].in;
757 return i;
759 return n_reloads;
762 /* Return nonzero if X is a SUBREG which will require reloading of its
763 SUBREG_REG expression. */
765 static int
766 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
768 rtx inner;
770 /* Only SUBREGs are problematical. */
771 if (GET_CODE (x) != SUBREG)
772 return 0;
774 inner = SUBREG_REG (x);
776 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
777 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
778 return 1;
780 /* If INNER is not a hard register, then INNER will not need to
781 be reloaded. */
782 if (!REG_P (inner)
783 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
784 return 0;
786 /* If INNER is not ok for MODE, then INNER will need reloading. */
787 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
788 return 1;
790 /* If the outer part is a word or smaller, INNER larger than a
791 word and the number of regs for INNER is not the same as the
792 number of words in INNER, then INNER will need reloading. */
793 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
794 && output
795 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
796 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
797 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
800 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
801 requiring an extra reload register. The caller has already found that
802 IN contains some reference to REGNO, so check that we can produce the
803 new value in a single step. E.g. if we have
804 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
805 instruction that adds one to a register, this should succeed.
806 However, if we have something like
807 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
808 needs to be loaded into a register first, we need a separate reload
809 register.
810 Such PLUS reloads are generated by find_reload_address_part.
811 The out-of-range PLUS expressions are usually introduced in the instruction
812 patterns by register elimination and substituting pseudos without a home
813 by their function-invariant equivalences. */
814 static int
815 can_reload_into (rtx in, int regno, enum machine_mode mode)
817 rtx dst, test_insn;
818 int r = 0;
819 struct recog_data save_recog_data;
821 /* For matching constraints, we often get notional input reloads where
822 we want to use the original register as the reload register. I.e.
823 technically this is a non-optional input-output reload, but IN is
824 already a valid register, and has been chosen as the reload register.
825 Speed this up, since it trivially works. */
826 if (REG_P (in))
827 return 1;
829 /* To test MEMs properly, we'd have to take into account all the reloads
830 that are already scheduled, which can become quite complicated.
831 And since we've already handled address reloads for this MEM, it
832 should always succeed anyway. */
833 if (MEM_P (in))
834 return 1;
836 /* If we can make a simple SET insn that does the job, everything should
837 be fine. */
838 dst = gen_rtx_REG (mode, regno);
839 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
840 save_recog_data = recog_data;
841 if (recog_memoized (test_insn) >= 0)
843 extract_insn (test_insn);
844 r = constrain_operands (1);
846 recog_data = save_recog_data;
847 return r;
850 /* Record one reload that needs to be performed.
851 IN is an rtx saying where the data are to be found before this instruction.
852 OUT says where they must be stored after the instruction.
853 (IN is zero for data not read, and OUT is zero for data not written.)
854 INLOC and OUTLOC point to the places in the instructions where
855 IN and OUT were found.
856 If IN and OUT are both nonzero, it means the same register must be used
857 to reload both IN and OUT.
859 CLASS is a register class required for the reloaded data.
860 INMODE is the machine mode that the instruction requires
861 for the reg that replaces IN and OUTMODE is likewise for OUT.
863 If IN is zero, then OUT's location and mode should be passed as
864 INLOC and INMODE.
866 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
868 OPTIONAL nonzero means this reload does not need to be performed:
869 it can be discarded if that is more convenient.
871 OPNUM and TYPE say what the purpose of this reload is.
873 The return value is the reload-number for this reload.
875 If both IN and OUT are nonzero, in some rare cases we might
876 want to make two separate reloads. (Actually we never do this now.)
877 Therefore, the reload-number for OUT is stored in
878 output_reloadnum when we return; the return value applies to IN.
879 Usually (presently always), when IN and OUT are nonzero,
880 the two reload-numbers are equal, but the caller should be careful to
881 distinguish them. */
884 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
885 enum reg_class class, enum machine_mode inmode,
886 enum machine_mode outmode, int strict_low, int optional,
887 int opnum, enum reload_type type)
889 int i;
890 int dont_share = 0;
891 int dont_remove_subreg = 0;
892 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
893 int secondary_in_reload = -1, secondary_out_reload = -1;
894 enum insn_code secondary_in_icode = CODE_FOR_nothing;
895 enum insn_code secondary_out_icode = CODE_FOR_nothing;
897 /* INMODE and/or OUTMODE could be VOIDmode if no mode
898 has been specified for the operand. In that case,
899 use the operand's mode as the mode to reload. */
900 if (inmode == VOIDmode && in != 0)
901 inmode = GET_MODE (in);
902 if (outmode == VOIDmode && out != 0)
903 outmode = GET_MODE (out);
905 /* If IN is a pseudo register everywhere-equivalent to a constant, and
906 it is not in a hard register, reload straight from the constant,
907 since we want to get rid of such pseudo registers.
908 Often this is done earlier, but not always in find_reloads_address. */
909 if (in != 0 && REG_P (in))
911 int regno = REGNO (in);
913 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
914 && reg_equiv_constant[regno] != 0)
915 in = reg_equiv_constant[regno];
918 /* Likewise for OUT. Of course, OUT will never be equivalent to
919 an actual constant, but it might be equivalent to a memory location
920 (in the case of a parameter). */
921 if (out != 0 && REG_P (out))
923 int regno = REGNO (out);
925 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
926 && reg_equiv_constant[regno] != 0)
927 out = reg_equiv_constant[regno];
930 /* If we have a read-write operand with an address side-effect,
931 change either IN or OUT so the side-effect happens only once. */
932 if (in != 0 && out != 0 && MEM_P (in) && rtx_equal_p (in, out))
933 switch (GET_CODE (XEXP (in, 0)))
935 case POST_INC: case POST_DEC: case POST_MODIFY:
936 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
937 break;
939 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
940 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
941 break;
943 default:
944 break;
947 /* If we are reloading a (SUBREG constant ...), really reload just the
948 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
949 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
950 a pseudo and hence will become a MEM) with M1 wider than M2 and the
951 register is a pseudo, also reload the inside expression.
952 For machines that extend byte loads, do this for any SUBREG of a pseudo
953 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
954 M2 is an integral mode that gets extended when loaded.
955 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
956 either M1 is not valid for R or M2 is wider than a word but we only
957 need one word to store an M2-sized quantity in R.
958 (However, if OUT is nonzero, we need to reload the reg *and*
959 the subreg, so do nothing here, and let following statement handle it.)
961 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
962 we can't handle it here because CONST_INT does not indicate a mode.
964 Similarly, we must reload the inside expression if we have a
965 STRICT_LOW_PART (presumably, in == out in the cas).
967 Also reload the inner expression if it does not require a secondary
968 reload but the SUBREG does.
970 Finally, reload the inner expression if it is a register that is in
971 the class whose registers cannot be referenced in a different size
972 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
973 cannot reload just the inside since we might end up with the wrong
974 register class. But if it is inside a STRICT_LOW_PART, we have
975 no choice, so we hope we do get the right register class there. */
977 if (in != 0 && GET_CODE (in) == SUBREG
978 && (subreg_lowpart_p (in) || strict_low)
979 #ifdef CANNOT_CHANGE_MODE_CLASS
980 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
981 #endif
982 && (CONSTANT_P (SUBREG_REG (in))
983 || GET_CODE (SUBREG_REG (in)) == PLUS
984 || strict_low
985 || (((REG_P (SUBREG_REG (in))
986 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
987 || MEM_P (SUBREG_REG (in)))
988 && ((GET_MODE_SIZE (inmode)
989 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
990 #ifdef LOAD_EXTEND_OP
991 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
992 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
993 <= UNITS_PER_WORD)
994 && (GET_MODE_SIZE (inmode)
995 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
996 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
997 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != UNKNOWN)
998 #endif
999 #ifdef WORD_REGISTER_OPERATIONS
1000 || ((GET_MODE_SIZE (inmode)
1001 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1002 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1003 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1004 / UNITS_PER_WORD)))
1005 #endif
1007 || (REG_P (SUBREG_REG (in))
1008 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1009 /* The case where out is nonzero
1010 is handled differently in the following statement. */
1011 && (out == 0 || subreg_lowpart_p (in))
1012 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1013 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1014 > UNITS_PER_WORD)
1015 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1016 / UNITS_PER_WORD)
1017 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1018 [GET_MODE (SUBREG_REG (in))]))
1019 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1020 || (secondary_reload_class (1, class, inmode, in) != NO_REGS
1021 && (secondary_reload_class (1, class, GET_MODE (SUBREG_REG (in)),
1022 SUBREG_REG (in))
1023 == NO_REGS))
1024 #ifdef CANNOT_CHANGE_MODE_CLASS
1025 || (REG_P (SUBREG_REG (in))
1026 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1027 && REG_CANNOT_CHANGE_MODE_P
1028 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1029 #endif
1032 in_subreg_loc = inloc;
1033 inloc = &SUBREG_REG (in);
1034 in = *inloc;
1035 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1036 if (MEM_P (in))
1037 /* This is supposed to happen only for paradoxical subregs made by
1038 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1039 gcc_assert (GET_MODE_SIZE (GET_MODE (in)) <= GET_MODE_SIZE (inmode));
1040 #endif
1041 inmode = GET_MODE (in);
1044 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1045 either M1 is not valid for R or M2 is wider than a word but we only
1046 need one word to store an M2-sized quantity in R.
1048 However, we must reload the inner reg *as well as* the subreg in
1049 that case. */
1051 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1052 code above. This can happen if SUBREG_BYTE != 0. */
1054 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1056 enum reg_class in_class = class;
1058 if (REG_P (SUBREG_REG (in)))
1059 in_class
1060 = find_valid_class (inmode, GET_MODE (SUBREG_REG (in)),
1061 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1062 GET_MODE (SUBREG_REG (in)),
1063 SUBREG_BYTE (in),
1064 GET_MODE (in)),
1065 REGNO (SUBREG_REG (in)));
1067 /* This relies on the fact that emit_reload_insns outputs the
1068 instructions for input reloads of type RELOAD_OTHER in the same
1069 order as the reloads. Thus if the outer reload is also of type
1070 RELOAD_OTHER, we are guaranteed that this inner reload will be
1071 output before the outer reload. */
1072 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1073 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1074 dont_remove_subreg = 1;
1077 /* Similarly for paradoxical and problematical SUBREGs on the output.
1078 Note that there is no reason we need worry about the previous value
1079 of SUBREG_REG (out); even if wider than out,
1080 storing in a subreg is entitled to clobber it all
1081 (except in the case of STRICT_LOW_PART,
1082 and in that case the constraint should label it input-output.) */
1083 if (out != 0 && GET_CODE (out) == SUBREG
1084 && (subreg_lowpart_p (out) || strict_low)
1085 #ifdef CANNOT_CHANGE_MODE_CLASS
1086 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1087 #endif
1088 && (CONSTANT_P (SUBREG_REG (out))
1089 || strict_low
1090 || (((REG_P (SUBREG_REG (out))
1091 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1092 || MEM_P (SUBREG_REG (out)))
1093 && ((GET_MODE_SIZE (outmode)
1094 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1095 #ifdef WORD_REGISTER_OPERATIONS
1096 || ((GET_MODE_SIZE (outmode)
1097 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1098 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1099 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1100 / UNITS_PER_WORD)))
1101 #endif
1103 || (REG_P (SUBREG_REG (out))
1104 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1105 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1106 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1107 > UNITS_PER_WORD)
1108 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1109 / UNITS_PER_WORD)
1110 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1111 [GET_MODE (SUBREG_REG (out))]))
1112 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1113 || (secondary_reload_class (0, class, outmode, out) != NO_REGS
1114 && (secondary_reload_class (0, class, GET_MODE (SUBREG_REG (out)),
1115 SUBREG_REG (out))
1116 == NO_REGS))
1117 #ifdef CANNOT_CHANGE_MODE_CLASS
1118 || (REG_P (SUBREG_REG (out))
1119 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1120 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1121 GET_MODE (SUBREG_REG (out)),
1122 outmode))
1123 #endif
1126 out_subreg_loc = outloc;
1127 outloc = &SUBREG_REG (out);
1128 out = *outloc;
1129 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1130 gcc_assert (!MEM_P (out)
1131 || GET_MODE_SIZE (GET_MODE (out))
1132 <= GET_MODE_SIZE (outmode));
1133 #endif
1134 outmode = GET_MODE (out);
1137 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1138 either M1 is not valid for R or M2 is wider than a word but we only
1139 need one word to store an M2-sized quantity in R.
1141 However, we must reload the inner reg *as well as* the subreg in
1142 that case. In this case, the inner reg is an in-out reload. */
1144 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1146 /* This relies on the fact that emit_reload_insns outputs the
1147 instructions for output reloads of type RELOAD_OTHER in reverse
1148 order of the reloads. Thus if the outer reload is also of type
1149 RELOAD_OTHER, we are guaranteed that this inner reload will be
1150 output after the outer reload. */
1151 dont_remove_subreg = 1;
1152 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1153 &SUBREG_REG (out),
1154 find_valid_class (outmode, GET_MODE (SUBREG_REG (out)),
1155 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1156 GET_MODE (SUBREG_REG (out)),
1157 SUBREG_BYTE (out),
1158 GET_MODE (out)),
1159 REGNO (SUBREG_REG (out))),
1160 VOIDmode, VOIDmode, 0, 0,
1161 opnum, RELOAD_OTHER);
1164 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1165 if (in != 0 && out != 0 && MEM_P (out)
1166 && (REG_P (in) || MEM_P (in))
1167 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1168 dont_share = 1;
1170 /* If IN is a SUBREG of a hard register, make a new REG. This
1171 simplifies some of the cases below. */
1173 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1174 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1175 && ! dont_remove_subreg)
1176 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1178 /* Similarly for OUT. */
1179 if (out != 0 && GET_CODE (out) == SUBREG
1180 && REG_P (SUBREG_REG (out))
1181 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1182 && ! dont_remove_subreg)
1183 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1185 /* Narrow down the class of register wanted if that is
1186 desirable on this machine for efficiency. */
1188 enum reg_class preferred_class = class;
1190 if (in != 0)
1191 preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1193 /* Output reloads may need analogous treatment, different in detail. */
1194 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1195 if (out != 0)
1196 preferred_class = PREFERRED_OUTPUT_RELOAD_CLASS (out, preferred_class);
1197 #endif
1199 /* Discard what the target said if we cannot do it. */
1200 if (preferred_class != NO_REGS
1201 || (optional && type == RELOAD_FOR_OUTPUT))
1202 class = preferred_class;
1205 /* Make sure we use a class that can handle the actual pseudo
1206 inside any subreg. For example, on the 386, QImode regs
1207 can appear within SImode subregs. Although GENERAL_REGS
1208 can handle SImode, QImode needs a smaller class. */
1209 #ifdef LIMIT_RELOAD_CLASS
1210 if (in_subreg_loc)
1211 class = LIMIT_RELOAD_CLASS (inmode, class);
1212 else if (in != 0 && GET_CODE (in) == SUBREG)
1213 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1215 if (out_subreg_loc)
1216 class = LIMIT_RELOAD_CLASS (outmode, class);
1217 if (out != 0 && GET_CODE (out) == SUBREG)
1218 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1219 #endif
1221 /* Verify that this class is at least possible for the mode that
1222 is specified. */
1223 if (this_insn_is_asm)
1225 enum machine_mode mode;
1226 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1227 mode = inmode;
1228 else
1229 mode = outmode;
1230 if (mode == VOIDmode)
1232 error_for_asm (this_insn, "cannot reload integer constant "
1233 "operand in %<asm%>");
1234 mode = word_mode;
1235 if (in != 0)
1236 inmode = word_mode;
1237 if (out != 0)
1238 outmode = word_mode;
1240 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1241 if (HARD_REGNO_MODE_OK (i, mode)
1242 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1244 int nregs = hard_regno_nregs[i][mode];
1246 int j;
1247 for (j = 1; j < nregs; j++)
1248 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1249 break;
1250 if (j == nregs)
1251 break;
1253 if (i == FIRST_PSEUDO_REGISTER)
1255 error_for_asm (this_insn, "impossible register constraint "
1256 "in %<asm%>");
1257 class = ALL_REGS;
1261 /* Optional output reloads are always OK even if we have no register class,
1262 since the function of these reloads is only to have spill_reg_store etc.
1263 set, so that the storing insn can be deleted later. */
1264 gcc_assert (class != NO_REGS
1265 || (optional != 0 && type == RELOAD_FOR_OUTPUT));
1267 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1269 if (i == n_reloads)
1271 /* See if we need a secondary reload register to move between CLASS
1272 and IN or CLASS and OUT. Get the icode and push any required reloads
1273 needed for each of them if so. */
1275 if (in != 0)
1276 secondary_in_reload
1277 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1278 &secondary_in_icode, NULL);
1279 if (out != 0 && GET_CODE (out) != SCRATCH)
1280 secondary_out_reload
1281 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1282 type, &secondary_out_icode, NULL);
1284 /* We found no existing reload suitable for re-use.
1285 So add an additional reload. */
1287 #ifdef SECONDARY_MEMORY_NEEDED
1288 /* If a memory location is needed for the copy, make one. */
1289 if (in != 0
1290 && (REG_P (in)
1291 || (GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))))
1292 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1293 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1294 class, inmode))
1295 get_secondary_mem (in, inmode, opnum, type);
1296 #endif
1298 i = n_reloads;
1299 rld[i].in = in;
1300 rld[i].out = out;
1301 rld[i].class = class;
1302 rld[i].inmode = inmode;
1303 rld[i].outmode = outmode;
1304 rld[i].reg_rtx = 0;
1305 rld[i].optional = optional;
1306 rld[i].inc = 0;
1307 rld[i].nocombine = 0;
1308 rld[i].in_reg = inloc ? *inloc : 0;
1309 rld[i].out_reg = outloc ? *outloc : 0;
1310 rld[i].opnum = opnum;
1311 rld[i].when_needed = type;
1312 rld[i].secondary_in_reload = secondary_in_reload;
1313 rld[i].secondary_out_reload = secondary_out_reload;
1314 rld[i].secondary_in_icode = secondary_in_icode;
1315 rld[i].secondary_out_icode = secondary_out_icode;
1316 rld[i].secondary_p = 0;
1318 n_reloads++;
1320 #ifdef SECONDARY_MEMORY_NEEDED
1321 if (out != 0
1322 && (REG_P (out)
1323 || (GET_CODE (out) == SUBREG && REG_P (SUBREG_REG (out))))
1324 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1325 && SECONDARY_MEMORY_NEEDED (class,
1326 REGNO_REG_CLASS (reg_or_subregno (out)),
1327 outmode))
1328 get_secondary_mem (out, outmode, opnum, type);
1329 #endif
1331 else
1333 /* We are reusing an existing reload,
1334 but we may have additional information for it.
1335 For example, we may now have both IN and OUT
1336 while the old one may have just one of them. */
1338 /* The modes can be different. If they are, we want to reload in
1339 the larger mode, so that the value is valid for both modes. */
1340 if (inmode != VOIDmode
1341 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1342 rld[i].inmode = inmode;
1343 if (outmode != VOIDmode
1344 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1345 rld[i].outmode = outmode;
1346 if (in != 0)
1348 rtx in_reg = inloc ? *inloc : 0;
1349 /* If we merge reloads for two distinct rtl expressions that
1350 are identical in content, there might be duplicate address
1351 reloads. Remove the extra set now, so that if we later find
1352 that we can inherit this reload, we can get rid of the
1353 address reloads altogether.
1355 Do not do this if both reloads are optional since the result
1356 would be an optional reload which could potentially leave
1357 unresolved address replacements.
1359 It is not sufficient to call transfer_replacements since
1360 choose_reload_regs will remove the replacements for address
1361 reloads of inherited reloads which results in the same
1362 problem. */
1363 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1364 && ! (rld[i].optional && optional))
1366 /* We must keep the address reload with the lower operand
1367 number alive. */
1368 if (opnum > rld[i].opnum)
1370 remove_address_replacements (in);
1371 in = rld[i].in;
1372 in_reg = rld[i].in_reg;
1374 else
1375 remove_address_replacements (rld[i].in);
1377 rld[i].in = in;
1378 rld[i].in_reg = in_reg;
1380 if (out != 0)
1382 rld[i].out = out;
1383 rld[i].out_reg = outloc ? *outloc : 0;
1385 if (reg_class_subset_p (class, rld[i].class))
1386 rld[i].class = class;
1387 rld[i].optional &= optional;
1388 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1389 opnum, rld[i].opnum))
1390 rld[i].when_needed = RELOAD_OTHER;
1391 rld[i].opnum = MIN (rld[i].opnum, opnum);
1394 /* If the ostensible rtx being reloaded differs from the rtx found
1395 in the location to substitute, this reload is not safe to combine
1396 because we cannot reliably tell whether it appears in the insn. */
1398 if (in != 0 && in != *inloc)
1399 rld[i].nocombine = 1;
1401 #if 0
1402 /* This was replaced by changes in find_reloads_address_1 and the new
1403 function inc_for_reload, which go with a new meaning of reload_inc. */
1405 /* If this is an IN/OUT reload in an insn that sets the CC,
1406 it must be for an autoincrement. It doesn't work to store
1407 the incremented value after the insn because that would clobber the CC.
1408 So we must do the increment of the value reloaded from,
1409 increment it, store it back, then decrement again. */
1410 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1412 out = 0;
1413 rld[i].out = 0;
1414 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1415 /* If we did not find a nonzero amount-to-increment-by,
1416 that contradicts the belief that IN is being incremented
1417 in an address in this insn. */
1418 gcc_assert (rld[i].inc != 0);
1420 #endif
1422 /* If we will replace IN and OUT with the reload-reg,
1423 record where they are located so that substitution need
1424 not do a tree walk. */
1426 if (replace_reloads)
1428 if (inloc != 0)
1430 struct replacement *r = &replacements[n_replacements++];
1431 r->what = i;
1432 r->subreg_loc = in_subreg_loc;
1433 r->where = inloc;
1434 r->mode = inmode;
1436 if (outloc != 0 && outloc != inloc)
1438 struct replacement *r = &replacements[n_replacements++];
1439 r->what = i;
1440 r->where = outloc;
1441 r->subreg_loc = out_subreg_loc;
1442 r->mode = outmode;
1446 /* If this reload is just being introduced and it has both
1447 an incoming quantity and an outgoing quantity that are
1448 supposed to be made to match, see if either one of the two
1449 can serve as the place to reload into.
1451 If one of them is acceptable, set rld[i].reg_rtx
1452 to that one. */
1454 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1456 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1457 inmode, outmode,
1458 rld[i].class, i,
1459 earlyclobber_operand_p (out));
1461 /* If the outgoing register already contains the same value
1462 as the incoming one, we can dispense with loading it.
1463 The easiest way to tell the caller that is to give a phony
1464 value for the incoming operand (same as outgoing one). */
1465 if (rld[i].reg_rtx == out
1466 && (REG_P (in) || CONSTANT_P (in))
1467 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1468 static_reload_reg_p, i, inmode))
1469 rld[i].in = out;
1472 /* If this is an input reload and the operand contains a register that
1473 dies in this insn and is used nowhere else, see if it is the right class
1474 to be used for this reload. Use it if so. (This occurs most commonly
1475 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1476 this if it is also an output reload that mentions the register unless
1477 the output is a SUBREG that clobbers an entire register.
1479 Note that the operand might be one of the spill regs, if it is a
1480 pseudo reg and we are in a block where spilling has not taken place.
1481 But if there is no spilling in this block, that is OK.
1482 An explicitly used hard reg cannot be a spill reg. */
1484 if (rld[i].reg_rtx == 0 && in != 0 && hard_regs_live_known)
1486 rtx note;
1487 int regno;
1488 enum machine_mode rel_mode = inmode;
1490 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1491 rel_mode = outmode;
1493 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1494 if (REG_NOTE_KIND (note) == REG_DEAD
1495 && REG_P (XEXP (note, 0))
1496 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1497 && reg_mentioned_p (XEXP (note, 0), in)
1498 /* Check that we don't use a hardreg for an uninitialized
1499 pseudo. See also find_dummy_reload(). */
1500 && (ORIGINAL_REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1501 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1502 ORIGINAL_REGNO (XEXP (note, 0))))
1503 && ! refers_to_regno_for_reload_p (regno,
1504 (regno
1505 + hard_regno_nregs[regno]
1506 [rel_mode]),
1507 PATTERN (this_insn), inloc)
1508 /* If this is also an output reload, IN cannot be used as
1509 the reload register if it is set in this insn unless IN
1510 is also OUT. */
1511 && (out == 0 || in == out
1512 || ! hard_reg_set_here_p (regno,
1513 (regno
1514 + hard_regno_nregs[regno]
1515 [rel_mode]),
1516 PATTERN (this_insn)))
1517 /* ??? Why is this code so different from the previous?
1518 Is there any simple coherent way to describe the two together?
1519 What's going on here. */
1520 && (in != out
1521 || (GET_CODE (in) == SUBREG
1522 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1523 / UNITS_PER_WORD)
1524 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1525 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1526 /* Make sure the operand fits in the reg that dies. */
1527 && (GET_MODE_SIZE (rel_mode)
1528 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1529 && HARD_REGNO_MODE_OK (regno, inmode)
1530 && HARD_REGNO_MODE_OK (regno, outmode))
1532 unsigned int offs;
1533 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1534 hard_regno_nregs[regno][outmode]);
1536 for (offs = 0; offs < nregs; offs++)
1537 if (fixed_regs[regno + offs]
1538 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1539 regno + offs))
1540 break;
1542 if (offs == nregs
1543 && (! (refers_to_regno_for_reload_p
1544 (regno, (regno + hard_regno_nregs[regno][inmode]),
1545 in, (rtx *)0))
1546 || can_reload_into (in, regno, inmode)))
1548 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1549 break;
1554 if (out)
1555 output_reloadnum = i;
1557 return i;
1560 /* Record an additional place we must replace a value
1561 for which we have already recorded a reload.
1562 RELOADNUM is the value returned by push_reload
1563 when the reload was recorded.
1564 This is used in insn patterns that use match_dup. */
1566 static void
1567 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1569 if (replace_reloads)
1571 struct replacement *r = &replacements[n_replacements++];
1572 r->what = reloadnum;
1573 r->where = loc;
1574 r->subreg_loc = 0;
1575 r->mode = mode;
1579 /* Duplicate any replacement we have recorded to apply at
1580 location ORIG_LOC to also be performed at DUP_LOC.
1581 This is used in insn patterns that use match_dup. */
1583 static void
1584 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1586 int i, n = n_replacements;
1588 for (i = 0; i < n; i++)
1590 struct replacement *r = &replacements[i];
1591 if (r->where == orig_loc)
1592 push_replacement (dup_loc, r->what, r->mode);
1596 /* Transfer all replacements that used to be in reload FROM to be in
1597 reload TO. */
1599 void
1600 transfer_replacements (int to, int from)
1602 int i;
1604 for (i = 0; i < n_replacements; i++)
1605 if (replacements[i].what == from)
1606 replacements[i].what = to;
1609 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1610 or a subpart of it. If we have any replacements registered for IN_RTX,
1611 cancel the reloads that were supposed to load them.
1612 Return nonzero if we canceled any reloads. */
1614 remove_address_replacements (rtx in_rtx)
1616 int i, j;
1617 char reload_flags[MAX_RELOADS];
1618 int something_changed = 0;
1620 memset (reload_flags, 0, sizeof reload_flags);
1621 for (i = 0, j = 0; i < n_replacements; i++)
1623 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1624 reload_flags[replacements[i].what] |= 1;
1625 else
1627 replacements[j++] = replacements[i];
1628 reload_flags[replacements[i].what] |= 2;
1631 /* Note that the following store must be done before the recursive calls. */
1632 n_replacements = j;
1634 for (i = n_reloads - 1; i >= 0; i--)
1636 if (reload_flags[i] == 1)
1638 deallocate_reload_reg (i);
1639 remove_address_replacements (rld[i].in);
1640 rld[i].in = 0;
1641 something_changed = 1;
1644 return something_changed;
1647 /* If there is only one output reload, and it is not for an earlyclobber
1648 operand, try to combine it with a (logically unrelated) input reload
1649 to reduce the number of reload registers needed.
1651 This is safe if the input reload does not appear in
1652 the value being output-reloaded, because this implies
1653 it is not needed any more once the original insn completes.
1655 If that doesn't work, see we can use any of the registers that
1656 die in this insn as a reload register. We can if it is of the right
1657 class and does not appear in the value being output-reloaded. */
1659 static void
1660 combine_reloads (void)
1662 int i;
1663 int output_reload = -1;
1664 int secondary_out = -1;
1665 rtx note;
1667 /* Find the output reload; return unless there is exactly one
1668 and that one is mandatory. */
1670 for (i = 0; i < n_reloads; i++)
1671 if (rld[i].out != 0)
1673 if (output_reload >= 0)
1674 return;
1675 output_reload = i;
1678 if (output_reload < 0 || rld[output_reload].optional)
1679 return;
1681 /* An input-output reload isn't combinable. */
1683 if (rld[output_reload].in != 0)
1684 return;
1686 /* If this reload is for an earlyclobber operand, we can't do anything. */
1687 if (earlyclobber_operand_p (rld[output_reload].out))
1688 return;
1690 /* If there is a reload for part of the address of this operand, we would
1691 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1692 its life to the point where doing this combine would not lower the
1693 number of spill registers needed. */
1694 for (i = 0; i < n_reloads; i++)
1695 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1696 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1697 && rld[i].opnum == rld[output_reload].opnum)
1698 return;
1700 /* Check each input reload; can we combine it? */
1702 for (i = 0; i < n_reloads; i++)
1703 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1704 /* Life span of this reload must not extend past main insn. */
1705 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1706 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1707 && rld[i].when_needed != RELOAD_OTHER
1708 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1709 == CLASS_MAX_NREGS (rld[output_reload].class,
1710 rld[output_reload].outmode))
1711 && rld[i].inc == 0
1712 && rld[i].reg_rtx == 0
1713 #ifdef SECONDARY_MEMORY_NEEDED
1714 /* Don't combine two reloads with different secondary
1715 memory locations. */
1716 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1717 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1718 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1719 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1720 #endif
1721 && (SMALL_REGISTER_CLASSES
1722 ? (rld[i].class == rld[output_reload].class)
1723 : (reg_class_subset_p (rld[i].class,
1724 rld[output_reload].class)
1725 || reg_class_subset_p (rld[output_reload].class,
1726 rld[i].class)))
1727 && (MATCHES (rld[i].in, rld[output_reload].out)
1728 /* Args reversed because the first arg seems to be
1729 the one that we imagine being modified
1730 while the second is the one that might be affected. */
1731 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1732 rld[i].in)
1733 /* However, if the input is a register that appears inside
1734 the output, then we also can't share.
1735 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1736 If the same reload reg is used for both reg 69 and the
1737 result to be stored in memory, then that result
1738 will clobber the address of the memory ref. */
1739 && ! (REG_P (rld[i].in)
1740 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1741 rld[output_reload].out))))
1742 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1743 rld[i].when_needed != RELOAD_FOR_INPUT)
1744 && (reg_class_size[(int) rld[i].class]
1745 || SMALL_REGISTER_CLASSES)
1746 /* We will allow making things slightly worse by combining an
1747 input and an output, but no worse than that. */
1748 && (rld[i].when_needed == RELOAD_FOR_INPUT
1749 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1751 int j;
1753 /* We have found a reload to combine with! */
1754 rld[i].out = rld[output_reload].out;
1755 rld[i].out_reg = rld[output_reload].out_reg;
1756 rld[i].outmode = rld[output_reload].outmode;
1757 /* Mark the old output reload as inoperative. */
1758 rld[output_reload].out = 0;
1759 /* The combined reload is needed for the entire insn. */
1760 rld[i].when_needed = RELOAD_OTHER;
1761 /* If the output reload had a secondary reload, copy it. */
1762 if (rld[output_reload].secondary_out_reload != -1)
1764 rld[i].secondary_out_reload
1765 = rld[output_reload].secondary_out_reload;
1766 rld[i].secondary_out_icode
1767 = rld[output_reload].secondary_out_icode;
1770 #ifdef SECONDARY_MEMORY_NEEDED
1771 /* Copy any secondary MEM. */
1772 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1773 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1774 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1775 #endif
1776 /* If required, minimize the register class. */
1777 if (reg_class_subset_p (rld[output_reload].class,
1778 rld[i].class))
1779 rld[i].class = rld[output_reload].class;
1781 /* Transfer all replacements from the old reload to the combined. */
1782 for (j = 0; j < n_replacements; j++)
1783 if (replacements[j].what == output_reload)
1784 replacements[j].what = i;
1786 return;
1789 /* If this insn has only one operand that is modified or written (assumed
1790 to be the first), it must be the one corresponding to this reload. It
1791 is safe to use anything that dies in this insn for that output provided
1792 that it does not occur in the output (we already know it isn't an
1793 earlyclobber. If this is an asm insn, give up. */
1795 if (INSN_CODE (this_insn) == -1)
1796 return;
1798 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1799 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1800 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1801 return;
1803 /* See if some hard register that dies in this insn and is not used in
1804 the output is the right class. Only works if the register we pick
1805 up can fully hold our output reload. */
1806 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1807 if (REG_NOTE_KIND (note) == REG_DEAD
1808 && REG_P (XEXP (note, 0))
1809 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1810 rld[output_reload].out)
1811 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1812 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1813 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1814 REGNO (XEXP (note, 0)))
1815 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1816 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1817 /* Ensure that a secondary or tertiary reload for this output
1818 won't want this register. */
1819 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1820 || (! (TEST_HARD_REG_BIT
1821 (reg_class_contents[(int) rld[secondary_out].class],
1822 REGNO (XEXP (note, 0))))
1823 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1824 || ! (TEST_HARD_REG_BIT
1825 (reg_class_contents[(int) rld[secondary_out].class],
1826 REGNO (XEXP (note, 0)))))))
1827 && ! fixed_regs[REGNO (XEXP (note, 0))])
1829 rld[output_reload].reg_rtx
1830 = gen_rtx_REG (rld[output_reload].outmode,
1831 REGNO (XEXP (note, 0)));
1832 return;
1836 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1837 See if one of IN and OUT is a register that may be used;
1838 this is desirable since a spill-register won't be needed.
1839 If so, return the register rtx that proves acceptable.
1841 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1842 CLASS is the register class required for the reload.
1844 If FOR_REAL is >= 0, it is the number of the reload,
1845 and in some cases when it can be discovered that OUT doesn't need
1846 to be computed, clear out rld[FOR_REAL].out.
1848 If FOR_REAL is -1, this should not be done, because this call
1849 is just to see if a register can be found, not to find and install it.
1851 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1852 puts an additional constraint on being able to use IN for OUT since
1853 IN must not appear elsewhere in the insn (it is assumed that IN itself
1854 is safe from the earlyclobber). */
1856 static rtx
1857 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1858 enum machine_mode inmode, enum machine_mode outmode,
1859 enum reg_class class, int for_real, int earlyclobber)
1861 rtx in = real_in;
1862 rtx out = real_out;
1863 int in_offset = 0;
1864 int out_offset = 0;
1865 rtx value = 0;
1867 /* If operands exceed a word, we can't use either of them
1868 unless they have the same size. */
1869 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1870 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1871 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1872 return 0;
1874 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1875 respectively refers to a hard register. */
1877 /* Find the inside of any subregs. */
1878 while (GET_CODE (out) == SUBREG)
1880 if (REG_P (SUBREG_REG (out))
1881 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1882 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1883 GET_MODE (SUBREG_REG (out)),
1884 SUBREG_BYTE (out),
1885 GET_MODE (out));
1886 out = SUBREG_REG (out);
1888 while (GET_CODE (in) == SUBREG)
1890 if (REG_P (SUBREG_REG (in))
1891 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1892 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1893 GET_MODE (SUBREG_REG (in)),
1894 SUBREG_BYTE (in),
1895 GET_MODE (in));
1896 in = SUBREG_REG (in);
1899 /* Narrow down the reg class, the same way push_reload will;
1900 otherwise we might find a dummy now, but push_reload won't. */
1902 enum reg_class preferred_class = PREFERRED_RELOAD_CLASS (in, class);
1903 if (preferred_class != NO_REGS)
1904 class = preferred_class;
1907 /* See if OUT will do. */
1908 if (REG_P (out)
1909 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1911 unsigned int regno = REGNO (out) + out_offset;
1912 unsigned int nwords = hard_regno_nregs[regno][outmode];
1913 rtx saved_rtx;
1915 /* When we consider whether the insn uses OUT,
1916 ignore references within IN. They don't prevent us
1917 from copying IN into OUT, because those refs would
1918 move into the insn that reloads IN.
1920 However, we only ignore IN in its role as this reload.
1921 If the insn uses IN elsewhere and it contains OUT,
1922 that counts. We can't be sure it's the "same" operand
1923 so it might not go through this reload. */
1924 saved_rtx = *inloc;
1925 *inloc = const0_rtx;
1927 if (regno < FIRST_PSEUDO_REGISTER
1928 && HARD_REGNO_MODE_OK (regno, outmode)
1929 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1930 PATTERN (this_insn), outloc))
1932 unsigned int i;
1934 for (i = 0; i < nwords; i++)
1935 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1936 regno + i))
1937 break;
1939 if (i == nwords)
1941 if (REG_P (real_out))
1942 value = real_out;
1943 else
1944 value = gen_rtx_REG (outmode, regno);
1948 *inloc = saved_rtx;
1951 /* Consider using IN if OUT was not acceptable
1952 or if OUT dies in this insn (like the quotient in a divmod insn).
1953 We can't use IN unless it is dies in this insn,
1954 which means we must know accurately which hard regs are live.
1955 Also, the result can't go in IN if IN is used within OUT,
1956 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1957 if (hard_regs_live_known
1958 && REG_P (in)
1959 && REGNO (in) < FIRST_PSEUDO_REGISTER
1960 && (value == 0
1961 || find_reg_note (this_insn, REG_UNUSED, real_out))
1962 && find_reg_note (this_insn, REG_DEAD, real_in)
1963 && !fixed_regs[REGNO (in)]
1964 && HARD_REGNO_MODE_OK (REGNO (in),
1965 /* The only case where out and real_out might
1966 have different modes is where real_out
1967 is a subreg, and in that case, out
1968 has a real mode. */
1969 (GET_MODE (out) != VOIDmode
1970 ? GET_MODE (out) : outmode))
1971 /* But only do all this if we can be sure, that this input
1972 operand doesn't correspond with an uninitialized pseudoreg.
1973 global can assign some hardreg to it, which is the same as
1974 a different pseudo also currently live (as it can ignore the
1975 conflict). So we never must introduce writes to such hardregs,
1976 as they would clobber the other live pseudo using the same.
1977 See also PR20973. */
1978 && (ORIGINAL_REGNO (in) < FIRST_PSEUDO_REGISTER
1979 || ! bitmap_bit_p (ENTRY_BLOCK_PTR->il.rtl->global_live_at_end,
1980 ORIGINAL_REGNO (in))))
1982 unsigned int regno = REGNO (in) + in_offset;
1983 unsigned int nwords = hard_regno_nregs[regno][inmode];
1985 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1986 && ! hard_reg_set_here_p (regno, regno + nwords,
1987 PATTERN (this_insn))
1988 && (! earlyclobber
1989 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
1990 PATTERN (this_insn), inloc)))
1992 unsigned int i;
1994 for (i = 0; i < nwords; i++)
1995 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1996 regno + i))
1997 break;
1999 if (i == nwords)
2001 /* If we were going to use OUT as the reload reg
2002 and changed our mind, it means OUT is a dummy that
2003 dies here. So don't bother copying value to it. */
2004 if (for_real >= 0 && value == real_out)
2005 rld[for_real].out = 0;
2006 if (REG_P (real_in))
2007 value = real_in;
2008 else
2009 value = gen_rtx_REG (inmode, regno);
2014 return value;
2017 /* This page contains subroutines used mainly for determining
2018 whether the IN or an OUT of a reload can serve as the
2019 reload register. */
2021 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2024 earlyclobber_operand_p (rtx x)
2026 int i;
2028 for (i = 0; i < n_earlyclobbers; i++)
2029 if (reload_earlyclobbers[i] == x)
2030 return 1;
2032 return 0;
2035 /* Return 1 if expression X alters a hard reg in the range
2036 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2037 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2038 X should be the body of an instruction. */
2040 static int
2041 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2043 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2045 rtx op0 = SET_DEST (x);
2047 while (GET_CODE (op0) == SUBREG)
2048 op0 = SUBREG_REG (op0);
2049 if (REG_P (op0))
2051 unsigned int r = REGNO (op0);
2053 /* See if this reg overlaps range under consideration. */
2054 if (r < end_regno
2055 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2056 return 1;
2059 else if (GET_CODE (x) == PARALLEL)
2061 int i = XVECLEN (x, 0) - 1;
2063 for (; i >= 0; i--)
2064 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2065 return 1;
2068 return 0;
2071 /* Return 1 if ADDR is a valid memory address for mode MODE,
2072 and check that each pseudo reg has the proper kind of
2073 hard reg. */
2076 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2078 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2079 return 0;
2081 win:
2082 return 1;
2085 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2086 if they are the same hard reg, and has special hacks for
2087 autoincrement and autodecrement.
2088 This is specifically intended for find_reloads to use
2089 in determining whether two operands match.
2090 X is the operand whose number is the lower of the two.
2092 The value is 2 if Y contains a pre-increment that matches
2093 a non-incrementing address in X. */
2095 /* ??? To be completely correct, we should arrange to pass
2096 for X the output operand and for Y the input operand.
2097 For now, we assume that the output operand has the lower number
2098 because that is natural in (SET output (... input ...)). */
2101 operands_match_p (rtx x, rtx y)
2103 int i;
2104 RTX_CODE code = GET_CODE (x);
2105 const char *fmt;
2106 int success_2;
2108 if (x == y)
2109 return 1;
2110 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2111 && (REG_P (y) || (GET_CODE (y) == SUBREG
2112 && REG_P (SUBREG_REG (y)))))
2114 int j;
2116 if (code == SUBREG)
2118 i = REGNO (SUBREG_REG (x));
2119 if (i >= FIRST_PSEUDO_REGISTER)
2120 goto slow;
2121 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2122 GET_MODE (SUBREG_REG (x)),
2123 SUBREG_BYTE (x),
2124 GET_MODE (x));
2126 else
2127 i = REGNO (x);
2129 if (GET_CODE (y) == SUBREG)
2131 j = REGNO (SUBREG_REG (y));
2132 if (j >= FIRST_PSEUDO_REGISTER)
2133 goto slow;
2134 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2135 GET_MODE (SUBREG_REG (y)),
2136 SUBREG_BYTE (y),
2137 GET_MODE (y));
2139 else
2140 j = REGNO (y);
2142 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2143 multiple hard register group of scalar integer registers, so that
2144 for example (reg:DI 0) and (reg:SI 1) will be considered the same
2145 register. */
2146 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2147 && SCALAR_INT_MODE_P (GET_MODE (x))
2148 && i < FIRST_PSEUDO_REGISTER)
2149 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2150 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2151 && SCALAR_INT_MODE_P (GET_MODE (y))
2152 && j < FIRST_PSEUDO_REGISTER)
2153 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2155 return i == j;
2157 /* If two operands must match, because they are really a single
2158 operand of an assembler insn, then two postincrements are invalid
2159 because the assembler insn would increment only once.
2160 On the other hand, a postincrement matches ordinary indexing
2161 if the postincrement is the output operand. */
2162 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2163 return operands_match_p (XEXP (x, 0), y);
2164 /* Two preincrements are invalid
2165 because the assembler insn would increment only once.
2166 On the other hand, a preincrement matches ordinary indexing
2167 if the preincrement is the input operand.
2168 In this case, return 2, since some callers need to do special
2169 things when this happens. */
2170 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2171 || GET_CODE (y) == PRE_MODIFY)
2172 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2174 slow:
2176 /* Now we have disposed of all the cases in which different rtx codes
2177 can match. */
2178 if (code != GET_CODE (y))
2179 return 0;
2181 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2182 if (GET_MODE (x) != GET_MODE (y))
2183 return 0;
2185 switch (code)
2187 case CONST_INT:
2188 case CONST_DOUBLE:
2189 return 0;
2191 case LABEL_REF:
2192 return XEXP (x, 0) == XEXP (y, 0);
2193 case SYMBOL_REF:
2194 return XSTR (x, 0) == XSTR (y, 0);
2196 default:
2197 break;
2200 /* Compare the elements. If any pair of corresponding elements
2201 fail to match, return 0 for the whole things. */
2203 success_2 = 0;
2204 fmt = GET_RTX_FORMAT (code);
2205 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2207 int val, j;
2208 switch (fmt[i])
2210 case 'w':
2211 if (XWINT (x, i) != XWINT (y, i))
2212 return 0;
2213 break;
2215 case 'i':
2216 if (XINT (x, i) != XINT (y, i))
2217 return 0;
2218 break;
2220 case 'e':
2221 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2222 if (val == 0)
2223 return 0;
2224 /* If any subexpression returns 2,
2225 we should return 2 if we are successful. */
2226 if (val == 2)
2227 success_2 = 1;
2228 break;
2230 case '0':
2231 break;
2233 case 'E':
2234 if (XVECLEN (x, i) != XVECLEN (y, i))
2235 return 0;
2236 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2238 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2239 if (val == 0)
2240 return 0;
2241 if (val == 2)
2242 success_2 = 1;
2244 break;
2246 /* It is believed that rtx's at this level will never
2247 contain anything but integers and other rtx's,
2248 except for within LABEL_REFs and SYMBOL_REFs. */
2249 default:
2250 gcc_unreachable ();
2253 return 1 + success_2;
2256 /* Describe the range of registers or memory referenced by X.
2257 If X is a register, set REG_FLAG and put the first register
2258 number into START and the last plus one into END.
2259 If X is a memory reference, put a base address into BASE
2260 and a range of integer offsets into START and END.
2261 If X is pushing on the stack, we can assume it causes no trouble,
2262 so we set the SAFE field. */
2264 static struct decomposition
2265 decompose (rtx x)
2267 struct decomposition val;
2268 int all_const = 0;
2270 memset (&val, 0, sizeof (val));
2272 switch (GET_CODE (x))
2274 case MEM:
2276 rtx base = NULL_RTX, offset = 0;
2277 rtx addr = XEXP (x, 0);
2279 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2280 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2282 val.base = XEXP (addr, 0);
2283 val.start = -GET_MODE_SIZE (GET_MODE (x));
2284 val.end = GET_MODE_SIZE (GET_MODE (x));
2285 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2286 return val;
2289 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2291 if (GET_CODE (XEXP (addr, 1)) == PLUS
2292 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2293 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2295 val.base = XEXP (addr, 0);
2296 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2297 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2298 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2299 return val;
2303 if (GET_CODE (addr) == CONST)
2305 addr = XEXP (addr, 0);
2306 all_const = 1;
2308 if (GET_CODE (addr) == PLUS)
2310 if (CONSTANT_P (XEXP (addr, 0)))
2312 base = XEXP (addr, 1);
2313 offset = XEXP (addr, 0);
2315 else if (CONSTANT_P (XEXP (addr, 1)))
2317 base = XEXP (addr, 0);
2318 offset = XEXP (addr, 1);
2322 if (offset == 0)
2324 base = addr;
2325 offset = const0_rtx;
2327 if (GET_CODE (offset) == CONST)
2328 offset = XEXP (offset, 0);
2329 if (GET_CODE (offset) == PLUS)
2331 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2333 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2334 offset = XEXP (offset, 0);
2336 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2338 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2339 offset = XEXP (offset, 1);
2341 else
2343 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2344 offset = const0_rtx;
2347 else if (GET_CODE (offset) != CONST_INT)
2349 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2350 offset = const0_rtx;
2353 if (all_const && GET_CODE (base) == PLUS)
2354 base = gen_rtx_CONST (GET_MODE (base), base);
2356 gcc_assert (GET_CODE (offset) == CONST_INT);
2358 val.start = INTVAL (offset);
2359 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2360 val.base = base;
2362 break;
2364 case REG:
2365 val.reg_flag = 1;
2366 val.start = true_regnum (x);
2367 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2369 /* A pseudo with no hard reg. */
2370 val.start = REGNO (x);
2371 val.end = val.start + 1;
2373 else
2374 /* A hard reg. */
2375 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2376 break;
2378 case SUBREG:
2379 if (!REG_P (SUBREG_REG (x)))
2380 /* This could be more precise, but it's good enough. */
2381 return decompose (SUBREG_REG (x));
2382 val.reg_flag = 1;
2383 val.start = true_regnum (x);
2384 if (val.start < 0 || val.start >= FIRST_PSEUDO_REGISTER)
2385 return decompose (SUBREG_REG (x));
2386 else
2387 /* A hard reg. */
2388 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2389 break;
2391 case SCRATCH:
2392 /* This hasn't been assigned yet, so it can't conflict yet. */
2393 val.safe = 1;
2394 break;
2396 default:
2397 gcc_assert (CONSTANT_P (x));
2398 val.safe = 1;
2399 break;
2401 return val;
2404 /* Return 1 if altering Y will not modify the value of X.
2405 Y is also described by YDATA, which should be decompose (Y). */
2407 static int
2408 immune_p (rtx x, rtx y, struct decomposition ydata)
2410 struct decomposition xdata;
2412 if (ydata.reg_flag)
2413 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2414 if (ydata.safe)
2415 return 1;
2417 gcc_assert (MEM_P (y));
2418 /* If Y is memory and X is not, Y can't affect X. */
2419 if (!MEM_P (x))
2420 return 1;
2422 xdata = decompose (x);
2424 if (! rtx_equal_p (xdata.base, ydata.base))
2426 /* If bases are distinct symbolic constants, there is no overlap. */
2427 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2428 return 1;
2429 /* Constants and stack slots never overlap. */
2430 if (CONSTANT_P (xdata.base)
2431 && (ydata.base == frame_pointer_rtx
2432 || ydata.base == hard_frame_pointer_rtx
2433 || ydata.base == stack_pointer_rtx))
2434 return 1;
2435 if (CONSTANT_P (ydata.base)
2436 && (xdata.base == frame_pointer_rtx
2437 || xdata.base == hard_frame_pointer_rtx
2438 || xdata.base == stack_pointer_rtx))
2439 return 1;
2440 /* If either base is variable, we don't know anything. */
2441 return 0;
2444 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2447 /* Similar, but calls decompose. */
2450 safe_from_earlyclobber (rtx op, rtx clobber)
2452 struct decomposition early_data;
2454 early_data = decompose (clobber);
2455 return immune_p (op, clobber, early_data);
2458 /* Main entry point of this file: search the body of INSN
2459 for values that need reloading and record them with push_reload.
2460 REPLACE nonzero means record also where the values occur
2461 so that subst_reloads can be used.
2463 IND_LEVELS says how many levels of indirection are supported by this
2464 machine; a value of zero means that a memory reference is not a valid
2465 memory address.
2467 LIVE_KNOWN says we have valid information about which hard
2468 regs are live at each point in the program; this is true when
2469 we are called from global_alloc but false when stupid register
2470 allocation has been done.
2472 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2473 which is nonnegative if the reg has been commandeered for reloading into.
2474 It is copied into STATIC_RELOAD_REG_P and referenced from there
2475 by various subroutines.
2477 Return TRUE if some operands need to be changed, because of swapping
2478 commutative operands, reg_equiv_address substitution, or whatever. */
2481 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2482 short *reload_reg_p)
2484 int insn_code_number;
2485 int i, j;
2486 int noperands;
2487 /* These start out as the constraints for the insn
2488 and they are chewed up as we consider alternatives. */
2489 char *constraints[MAX_RECOG_OPERANDS];
2490 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2491 a register. */
2492 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2493 char pref_or_nothing[MAX_RECOG_OPERANDS];
2494 /* Nonzero for a MEM operand whose entire address needs a reload.
2495 May be -1 to indicate the entire address may or may not need a reload. */
2496 int address_reloaded[MAX_RECOG_OPERANDS];
2497 /* Nonzero for an address operand that needs to be completely reloaded.
2498 May be -1 to indicate the entire operand may or may not need a reload. */
2499 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2500 /* Value of enum reload_type to use for operand. */
2501 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2502 /* Value of enum reload_type to use within address of operand. */
2503 enum reload_type address_type[MAX_RECOG_OPERANDS];
2504 /* Save the usage of each operand. */
2505 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2506 int no_input_reloads = 0, no_output_reloads = 0;
2507 int n_alternatives;
2508 int this_alternative[MAX_RECOG_OPERANDS];
2509 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2510 char this_alternative_win[MAX_RECOG_OPERANDS];
2511 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2512 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2513 int this_alternative_matches[MAX_RECOG_OPERANDS];
2514 int swapped;
2515 int goal_alternative[MAX_RECOG_OPERANDS];
2516 int this_alternative_number;
2517 int goal_alternative_number = 0;
2518 int operand_reloadnum[MAX_RECOG_OPERANDS];
2519 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2520 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2521 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2522 char goal_alternative_win[MAX_RECOG_OPERANDS];
2523 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2524 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2525 int goal_alternative_swapped;
2526 int best;
2527 int commutative;
2528 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2529 rtx substed_operand[MAX_RECOG_OPERANDS];
2530 rtx body = PATTERN (insn);
2531 rtx set = single_set (insn);
2532 int goal_earlyclobber = 0, this_earlyclobber;
2533 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2534 int retval = 0;
2536 this_insn = insn;
2537 n_reloads = 0;
2538 n_replacements = 0;
2539 n_earlyclobbers = 0;
2540 replace_reloads = replace;
2541 hard_regs_live_known = live_known;
2542 static_reload_reg_p = reload_reg_p;
2544 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2545 neither are insns that SET cc0. Insns that use CC0 are not allowed
2546 to have any input reloads. */
2547 if (JUMP_P (insn) || CALL_P (insn))
2548 no_output_reloads = 1;
2550 #ifdef HAVE_cc0
2551 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2552 no_input_reloads = 1;
2553 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2554 no_output_reloads = 1;
2555 #endif
2557 #ifdef SECONDARY_MEMORY_NEEDED
2558 /* The eliminated forms of any secondary memory locations are per-insn, so
2559 clear them out here. */
2561 if (secondary_memlocs_elim_used)
2563 memset (secondary_memlocs_elim, 0,
2564 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2565 secondary_memlocs_elim_used = 0;
2567 #endif
2569 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2570 is cheap to move between them. If it is not, there may not be an insn
2571 to do the copy, so we may need a reload. */
2572 if (GET_CODE (body) == SET
2573 && REG_P (SET_DEST (body))
2574 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2575 && REG_P (SET_SRC (body))
2576 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2577 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2578 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2579 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2580 return 0;
2582 extract_insn (insn);
2584 noperands = reload_n_operands = recog_data.n_operands;
2585 n_alternatives = recog_data.n_alternatives;
2587 /* Just return "no reloads" if insn has no operands with constraints. */
2588 if (noperands == 0 || n_alternatives == 0)
2589 return 0;
2591 insn_code_number = INSN_CODE (insn);
2592 this_insn_is_asm = insn_code_number < 0;
2594 memcpy (operand_mode, recog_data.operand_mode,
2595 noperands * sizeof (enum machine_mode));
2596 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2598 commutative = -1;
2600 /* If we will need to know, later, whether some pair of operands
2601 are the same, we must compare them now and save the result.
2602 Reloading the base and index registers will clobber them
2603 and afterward they will fail to match. */
2605 for (i = 0; i < noperands; i++)
2607 char *p;
2608 int c;
2610 substed_operand[i] = recog_data.operand[i];
2611 p = constraints[i];
2613 modified[i] = RELOAD_READ;
2615 /* Scan this operand's constraint to see if it is an output operand,
2616 an in-out operand, is commutative, or should match another. */
2618 while ((c = *p))
2620 p += CONSTRAINT_LEN (c, p);
2621 switch (c)
2623 case '=':
2624 modified[i] = RELOAD_WRITE;
2625 break;
2626 case '+':
2627 modified[i] = RELOAD_READ_WRITE;
2628 break;
2629 case '%':
2631 /* The last operand should not be marked commutative. */
2632 gcc_assert (i != noperands - 1);
2634 /* We currently only support one commutative pair of
2635 operands. Some existing asm code currently uses more
2636 than one pair. Previously, that would usually work,
2637 but sometimes it would crash the compiler. We
2638 continue supporting that case as well as we can by
2639 silently ignoring all but the first pair. In the
2640 future we may handle it correctly. */
2641 if (commutative < 0)
2642 commutative = i;
2643 else
2644 gcc_assert (this_insn_is_asm);
2646 break;
2647 /* Use of ISDIGIT is tempting here, but it may get expensive because
2648 of locale support we don't want. */
2649 case '0': case '1': case '2': case '3': case '4':
2650 case '5': case '6': case '7': case '8': case '9':
2652 c = strtoul (p - 1, &p, 10);
2654 operands_match[c][i]
2655 = operands_match_p (recog_data.operand[c],
2656 recog_data.operand[i]);
2658 /* An operand may not match itself. */
2659 gcc_assert (c != i);
2661 /* If C can be commuted with C+1, and C might need to match I,
2662 then C+1 might also need to match I. */
2663 if (commutative >= 0)
2665 if (c == commutative || c == commutative + 1)
2667 int other = c + (c == commutative ? 1 : -1);
2668 operands_match[other][i]
2669 = operands_match_p (recog_data.operand[other],
2670 recog_data.operand[i]);
2672 if (i == commutative || i == commutative + 1)
2674 int other = i + (i == commutative ? 1 : -1);
2675 operands_match[c][other]
2676 = operands_match_p (recog_data.operand[c],
2677 recog_data.operand[other]);
2679 /* Note that C is supposed to be less than I.
2680 No need to consider altering both C and I because in
2681 that case we would alter one into the other. */
2688 /* Examine each operand that is a memory reference or memory address
2689 and reload parts of the addresses into index registers.
2690 Also here any references to pseudo regs that didn't get hard regs
2691 but are equivalent to constants get replaced in the insn itself
2692 with those constants. Nobody will ever see them again.
2694 Finally, set up the preferred classes of each operand. */
2696 for (i = 0; i < noperands; i++)
2698 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2700 address_reloaded[i] = 0;
2701 address_operand_reloaded[i] = 0;
2702 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2703 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2704 : RELOAD_OTHER);
2705 address_type[i]
2706 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2707 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2708 : RELOAD_OTHER);
2710 if (*constraints[i] == 0)
2711 /* Ignore things like match_operator operands. */
2713 else if (constraints[i][0] == 'p'
2714 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2716 address_operand_reloaded[i]
2717 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2718 recog_data.operand[i],
2719 recog_data.operand_loc[i],
2720 i, operand_type[i], ind_levels, insn);
2722 /* If we now have a simple operand where we used to have a
2723 PLUS or MULT, re-recognize and try again. */
2724 if ((OBJECT_P (*recog_data.operand_loc[i])
2725 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2726 && (GET_CODE (recog_data.operand[i]) == MULT
2727 || GET_CODE (recog_data.operand[i]) == PLUS))
2729 INSN_CODE (insn) = -1;
2730 retval = find_reloads (insn, replace, ind_levels, live_known,
2731 reload_reg_p);
2732 return retval;
2735 recog_data.operand[i] = *recog_data.operand_loc[i];
2736 substed_operand[i] = recog_data.operand[i];
2738 /* Address operands are reloaded in their existing mode,
2739 no matter what is specified in the machine description. */
2740 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2742 else if (code == MEM)
2744 address_reloaded[i]
2745 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2746 recog_data.operand_loc[i],
2747 XEXP (recog_data.operand[i], 0),
2748 &XEXP (recog_data.operand[i], 0),
2749 i, address_type[i], ind_levels, insn);
2750 recog_data.operand[i] = *recog_data.operand_loc[i];
2751 substed_operand[i] = recog_data.operand[i];
2753 else if (code == SUBREG)
2755 rtx reg = SUBREG_REG (recog_data.operand[i]);
2756 rtx op
2757 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2758 ind_levels,
2759 set != 0
2760 && &SET_DEST (set) == recog_data.operand_loc[i],
2761 insn,
2762 &address_reloaded[i]);
2764 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2765 that didn't get a hard register, emit a USE with a REG_EQUAL
2766 note in front so that we might inherit a previous, possibly
2767 wider reload. */
2769 if (replace
2770 && MEM_P (op)
2771 && REG_P (reg)
2772 && (GET_MODE_SIZE (GET_MODE (reg))
2773 >= GET_MODE_SIZE (GET_MODE (op))))
2774 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2775 insn),
2776 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2778 substed_operand[i] = recog_data.operand[i] = op;
2780 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2781 /* We can get a PLUS as an "operand" as a result of register
2782 elimination. See eliminate_regs and gen_reload. We handle
2783 a unary operator by reloading the operand. */
2784 substed_operand[i] = recog_data.operand[i]
2785 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2786 ind_levels, 0, insn,
2787 &address_reloaded[i]);
2788 else if (code == REG)
2790 /* This is equivalent to calling find_reloads_toplev.
2791 The code is duplicated for speed.
2792 When we find a pseudo always equivalent to a constant,
2793 we replace it by the constant. We must be sure, however,
2794 that we don't try to replace it in the insn in which it
2795 is being set. */
2796 int regno = REGNO (recog_data.operand[i]);
2797 if (reg_equiv_constant[regno] != 0
2798 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2800 /* Record the existing mode so that the check if constants are
2801 allowed will work when operand_mode isn't specified. */
2803 if (operand_mode[i] == VOIDmode)
2804 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2806 substed_operand[i] = recog_data.operand[i]
2807 = reg_equiv_constant[regno];
2809 if (reg_equiv_memory_loc[regno] != 0
2810 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2811 /* We need not give a valid is_set_dest argument since the case
2812 of a constant equivalence was checked above. */
2813 substed_operand[i] = recog_data.operand[i]
2814 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2815 ind_levels, 0, insn,
2816 &address_reloaded[i]);
2818 /* If the operand is still a register (we didn't replace it with an
2819 equivalent), get the preferred class to reload it into. */
2820 code = GET_CODE (recog_data.operand[i]);
2821 preferred_class[i]
2822 = ((code == REG && REGNO (recog_data.operand[i])
2823 >= FIRST_PSEUDO_REGISTER)
2824 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2825 : NO_REGS);
2826 pref_or_nothing[i]
2827 = (code == REG
2828 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2829 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2832 /* If this is simply a copy from operand 1 to operand 0, merge the
2833 preferred classes for the operands. */
2834 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2835 && recog_data.operand[1] == SET_SRC (set))
2837 preferred_class[0] = preferred_class[1]
2838 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2839 pref_or_nothing[0] |= pref_or_nothing[1];
2840 pref_or_nothing[1] |= pref_or_nothing[0];
2843 /* Now see what we need for pseudo-regs that didn't get hard regs
2844 or got the wrong kind of hard reg. For this, we must consider
2845 all the operands together against the register constraints. */
2847 best = MAX_RECOG_OPERANDS * 2 + 600;
2849 swapped = 0;
2850 goal_alternative_swapped = 0;
2851 try_swapped:
2853 /* The constraints are made of several alternatives.
2854 Each operand's constraint looks like foo,bar,... with commas
2855 separating the alternatives. The first alternatives for all
2856 operands go together, the second alternatives go together, etc.
2858 First loop over alternatives. */
2860 for (this_alternative_number = 0;
2861 this_alternative_number < n_alternatives;
2862 this_alternative_number++)
2864 /* Loop over operands for one constraint alternative. */
2865 /* LOSERS counts those that don't fit this alternative
2866 and would require loading. */
2867 int losers = 0;
2868 /* BAD is set to 1 if it some operand can't fit this alternative
2869 even after reloading. */
2870 int bad = 0;
2871 /* REJECT is a count of how undesirable this alternative says it is
2872 if any reloading is required. If the alternative matches exactly
2873 then REJECT is ignored, but otherwise it gets this much
2874 counted against it in addition to the reloading needed. Each
2875 ? counts three times here since we want the disparaging caused by
2876 a bad register class to only count 1/3 as much. */
2877 int reject = 0;
2879 this_earlyclobber = 0;
2881 for (i = 0; i < noperands; i++)
2883 char *p = constraints[i];
2884 char *end;
2885 int len;
2886 int win = 0;
2887 int did_match = 0;
2888 /* 0 => this operand can be reloaded somehow for this alternative. */
2889 int badop = 1;
2890 /* 0 => this operand can be reloaded if the alternative allows regs. */
2891 int winreg = 0;
2892 int c;
2893 int m;
2894 rtx operand = recog_data.operand[i];
2895 int offset = 0;
2896 /* Nonzero means this is a MEM that must be reloaded into a reg
2897 regardless of what the constraint says. */
2898 int force_reload = 0;
2899 int offmemok = 0;
2900 /* Nonzero if a constant forced into memory would be OK for this
2901 operand. */
2902 int constmemok = 0;
2903 int earlyclobber = 0;
2905 /* If the predicate accepts a unary operator, it means that
2906 we need to reload the operand, but do not do this for
2907 match_operator and friends. */
2908 if (UNARY_P (operand) && *p != 0)
2909 operand = XEXP (operand, 0);
2911 /* If the operand is a SUBREG, extract
2912 the REG or MEM (or maybe even a constant) within.
2913 (Constants can occur as a result of reg_equiv_constant.) */
2915 while (GET_CODE (operand) == SUBREG)
2917 /* Offset only matters when operand is a REG and
2918 it is a hard reg. This is because it is passed
2919 to reg_fits_class_p if it is a REG and all pseudos
2920 return 0 from that function. */
2921 if (REG_P (SUBREG_REG (operand))
2922 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2924 if (!subreg_offset_representable_p
2925 (REGNO (SUBREG_REG (operand)),
2926 GET_MODE (SUBREG_REG (operand)),
2927 SUBREG_BYTE (operand),
2928 GET_MODE (operand)))
2929 force_reload = 1;
2930 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2931 GET_MODE (SUBREG_REG (operand)),
2932 SUBREG_BYTE (operand),
2933 GET_MODE (operand));
2935 operand = SUBREG_REG (operand);
2936 /* Force reload if this is a constant or PLUS or if there may
2937 be a problem accessing OPERAND in the outer mode. */
2938 if (CONSTANT_P (operand)
2939 || GET_CODE (operand) == PLUS
2940 /* We must force a reload of paradoxical SUBREGs
2941 of a MEM because the alignment of the inner value
2942 may not be enough to do the outer reference. On
2943 big-endian machines, it may also reference outside
2944 the object.
2946 On machines that extend byte operations and we have a
2947 SUBREG where both the inner and outer modes are no wider
2948 than a word and the inner mode is narrower, is integral,
2949 and gets extended when loaded from memory, combine.c has
2950 made assumptions about the behavior of the machine in such
2951 register access. If the data is, in fact, in memory we
2952 must always load using the size assumed to be in the
2953 register and let the insn do the different-sized
2954 accesses.
2956 This is doubly true if WORD_REGISTER_OPERATIONS. In
2957 this case eliminate_regs has left non-paradoxical
2958 subregs for push_reload to see. Make sure it does
2959 by forcing the reload.
2961 ??? When is it right at this stage to have a subreg
2962 of a mem that is _not_ to be handled specially? IMO
2963 those should have been reduced to just a mem. */
2964 || ((MEM_P (operand)
2965 || (REG_P (operand)
2966 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2967 #ifndef WORD_REGISTER_OPERATIONS
2968 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2969 < BIGGEST_ALIGNMENT)
2970 && (GET_MODE_SIZE (operand_mode[i])
2971 > GET_MODE_SIZE (GET_MODE (operand))))
2972 || BYTES_BIG_ENDIAN
2973 #ifdef LOAD_EXTEND_OP
2974 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2975 && (GET_MODE_SIZE (GET_MODE (operand))
2976 <= UNITS_PER_WORD)
2977 && (GET_MODE_SIZE (operand_mode[i])
2978 > GET_MODE_SIZE (GET_MODE (operand)))
2979 && INTEGRAL_MODE_P (GET_MODE (operand))
2980 && LOAD_EXTEND_OP (GET_MODE (operand)) != UNKNOWN)
2981 #endif
2983 #endif
2986 force_reload = 1;
2989 this_alternative[i] = (int) NO_REGS;
2990 this_alternative_win[i] = 0;
2991 this_alternative_match_win[i] = 0;
2992 this_alternative_offmemok[i] = 0;
2993 this_alternative_earlyclobber[i] = 0;
2994 this_alternative_matches[i] = -1;
2996 /* An empty constraint or empty alternative
2997 allows anything which matched the pattern. */
2998 if (*p == 0 || *p == ',')
2999 win = 1, badop = 0;
3001 /* Scan this alternative's specs for this operand;
3002 set WIN if the operand fits any letter in this alternative.
3003 Otherwise, clear BADOP if this operand could
3004 fit some letter after reloads,
3005 or set WINREG if this operand could fit after reloads
3006 provided the constraint allows some registers. */
3009 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3011 case '\0':
3012 len = 0;
3013 break;
3014 case ',':
3015 c = '\0';
3016 break;
3018 case '=': case '+': case '*':
3019 break;
3021 case '%':
3022 /* We only support one commutative marker, the first
3023 one. We already set commutative above. */
3024 break;
3026 case '?':
3027 reject += 6;
3028 break;
3030 case '!':
3031 reject = 600;
3032 break;
3034 case '#':
3035 /* Ignore rest of this alternative as far as
3036 reloading is concerned. */
3038 p++;
3039 while (*p && *p != ',');
3040 len = 0;
3041 break;
3043 case '0': case '1': case '2': case '3': case '4':
3044 case '5': case '6': case '7': case '8': case '9':
3045 m = strtoul (p, &end, 10);
3046 p = end;
3047 len = 0;
3049 this_alternative_matches[i] = m;
3050 /* We are supposed to match a previous operand.
3051 If we do, we win if that one did.
3052 If we do not, count both of the operands as losers.
3053 (This is too conservative, since most of the time
3054 only a single reload insn will be needed to make
3055 the two operands win. As a result, this alternative
3056 may be rejected when it is actually desirable.) */
3057 if ((swapped && (m != commutative || i != commutative + 1))
3058 /* If we are matching as if two operands were swapped,
3059 also pretend that operands_match had been computed
3060 with swapped.
3061 But if I is the second of those and C is the first,
3062 don't exchange them, because operands_match is valid
3063 only on one side of its diagonal. */
3064 ? (operands_match
3065 [(m == commutative || m == commutative + 1)
3066 ? 2 * commutative + 1 - m : m]
3067 [(i == commutative || i == commutative + 1)
3068 ? 2 * commutative + 1 - i : i])
3069 : operands_match[m][i])
3071 /* If we are matching a non-offsettable address where an
3072 offsettable address was expected, then we must reject
3073 this combination, because we can't reload it. */
3074 if (this_alternative_offmemok[m]
3075 && MEM_P (recog_data.operand[m])
3076 && this_alternative[m] == (int) NO_REGS
3077 && ! this_alternative_win[m])
3078 bad = 1;
3080 did_match = this_alternative_win[m];
3082 else
3084 /* Operands don't match. */
3085 rtx value;
3086 int loc1, loc2;
3087 /* Retroactively mark the operand we had to match
3088 as a loser, if it wasn't already. */
3089 if (this_alternative_win[m])
3090 losers++;
3091 this_alternative_win[m] = 0;
3092 if (this_alternative[m] == (int) NO_REGS)
3093 bad = 1;
3094 /* But count the pair only once in the total badness of
3095 this alternative, if the pair can be a dummy reload.
3096 The pointers in operand_loc are not swapped; swap
3097 them by hand if necessary. */
3098 if (swapped && i == commutative)
3099 loc1 = commutative + 1;
3100 else if (swapped && i == commutative + 1)
3101 loc1 = commutative;
3102 else
3103 loc1 = i;
3104 if (swapped && m == commutative)
3105 loc2 = commutative + 1;
3106 else if (swapped && m == commutative + 1)
3107 loc2 = commutative;
3108 else
3109 loc2 = m;
3110 value
3111 = find_dummy_reload (recog_data.operand[i],
3112 recog_data.operand[m],
3113 recog_data.operand_loc[loc1],
3114 recog_data.operand_loc[loc2],
3115 operand_mode[i], operand_mode[m],
3116 this_alternative[m], -1,
3117 this_alternative_earlyclobber[m]);
3119 if (value != 0)
3120 losers--;
3122 /* This can be fixed with reloads if the operand
3123 we are supposed to match can be fixed with reloads. */
3124 badop = 0;
3125 this_alternative[i] = this_alternative[m];
3127 /* If we have to reload this operand and some previous
3128 operand also had to match the same thing as this
3129 operand, we don't know how to do that. So reject this
3130 alternative. */
3131 if (! did_match || force_reload)
3132 for (j = 0; j < i; j++)
3133 if (this_alternative_matches[j]
3134 == this_alternative_matches[i])
3135 badop = 1;
3136 break;
3138 case 'p':
3139 /* All necessary reloads for an address_operand
3140 were handled in find_reloads_address. */
3141 this_alternative[i]
3142 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3143 win = 1;
3144 badop = 0;
3145 break;
3147 case 'm':
3148 if (force_reload)
3149 break;
3150 if (MEM_P (operand)
3151 || (REG_P (operand)
3152 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3153 && reg_renumber[REGNO (operand)] < 0))
3154 win = 1;
3155 if (CONST_POOL_OK_P (operand))
3156 badop = 0;
3157 constmemok = 1;
3158 break;
3160 case '<':
3161 if (MEM_P (operand)
3162 && ! address_reloaded[i]
3163 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3164 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3165 win = 1;
3166 break;
3168 case '>':
3169 if (MEM_P (operand)
3170 && ! address_reloaded[i]
3171 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3172 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3173 win = 1;
3174 break;
3176 /* Memory operand whose address is not offsettable. */
3177 case 'V':
3178 if (force_reload)
3179 break;
3180 if (MEM_P (operand)
3181 && ! (ind_levels ? offsettable_memref_p (operand)
3182 : offsettable_nonstrict_memref_p (operand))
3183 /* Certain mem addresses will become offsettable
3184 after they themselves are reloaded. This is important;
3185 we don't want our own handling of unoffsettables
3186 to override the handling of reg_equiv_address. */
3187 && !(REG_P (XEXP (operand, 0))
3188 && (ind_levels == 0
3189 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3190 win = 1;
3191 break;
3193 /* Memory operand whose address is offsettable. */
3194 case 'o':
3195 if (force_reload)
3196 break;
3197 if ((MEM_P (operand)
3198 /* If IND_LEVELS, find_reloads_address won't reload a
3199 pseudo that didn't get a hard reg, so we have to
3200 reject that case. */
3201 && ((ind_levels ? offsettable_memref_p (operand)
3202 : offsettable_nonstrict_memref_p (operand))
3203 /* A reloaded address is offsettable because it is now
3204 just a simple register indirect. */
3205 || address_reloaded[i] == 1))
3206 || (REG_P (operand)
3207 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3208 && reg_renumber[REGNO (operand)] < 0
3209 /* If reg_equiv_address is nonzero, we will be
3210 loading it into a register; hence it will be
3211 offsettable, but we cannot say that reg_equiv_mem
3212 is offsettable without checking. */
3213 && ((reg_equiv_mem[REGNO (operand)] != 0
3214 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3215 || (reg_equiv_address[REGNO (operand)] != 0))))
3216 win = 1;
3217 if (CONST_POOL_OK_P (operand)
3218 || MEM_P (operand))
3219 badop = 0;
3220 constmemok = 1;
3221 offmemok = 1;
3222 break;
3224 case '&':
3225 /* Output operand that is stored before the need for the
3226 input operands (and their index registers) is over. */
3227 earlyclobber = 1, this_earlyclobber = 1;
3228 break;
3230 case 'E':
3231 case 'F':
3232 if (GET_CODE (operand) == CONST_DOUBLE
3233 || (GET_CODE (operand) == CONST_VECTOR
3234 && (GET_MODE_CLASS (GET_MODE (operand))
3235 == MODE_VECTOR_FLOAT)))
3236 win = 1;
3237 break;
3239 case 'G':
3240 case 'H':
3241 if (GET_CODE (operand) == CONST_DOUBLE
3242 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3243 win = 1;
3244 break;
3246 case 's':
3247 if (GET_CODE (operand) == CONST_INT
3248 || (GET_CODE (operand) == CONST_DOUBLE
3249 && GET_MODE (operand) == VOIDmode))
3250 break;
3251 case 'i':
3252 if (CONSTANT_P (operand)
3253 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand)))
3254 win = 1;
3255 break;
3257 case 'n':
3258 if (GET_CODE (operand) == CONST_INT
3259 || (GET_CODE (operand) == CONST_DOUBLE
3260 && GET_MODE (operand) == VOIDmode))
3261 win = 1;
3262 break;
3264 case 'I':
3265 case 'J':
3266 case 'K':
3267 case 'L':
3268 case 'M':
3269 case 'N':
3270 case 'O':
3271 case 'P':
3272 if (GET_CODE (operand) == CONST_INT
3273 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3274 win = 1;
3275 break;
3277 case 'X':
3278 win = 1;
3279 break;
3281 case 'g':
3282 if (! force_reload
3283 /* A PLUS is never a valid operand, but reload can make
3284 it from a register when eliminating registers. */
3285 && GET_CODE (operand) != PLUS
3286 /* A SCRATCH is not a valid operand. */
3287 && GET_CODE (operand) != SCRATCH
3288 && (! CONSTANT_P (operand)
3289 || ! flag_pic
3290 || LEGITIMATE_PIC_OPERAND_P (operand))
3291 && (GENERAL_REGS == ALL_REGS
3292 || !REG_P (operand)
3293 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3294 && reg_renumber[REGNO (operand)] < 0)))
3295 win = 1;
3296 /* Drop through into 'r' case. */
3298 case 'r':
3299 this_alternative[i]
3300 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3301 goto reg;
3303 default:
3304 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3306 #ifdef EXTRA_CONSTRAINT_STR
3307 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3309 if (force_reload)
3310 break;
3311 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3312 win = 1;
3313 /* If the address was already reloaded,
3314 we win as well. */
3315 else if (MEM_P (operand)
3316 && address_reloaded[i] == 1)
3317 win = 1;
3318 /* Likewise if the address will be reloaded because
3319 reg_equiv_address is nonzero. For reg_equiv_mem
3320 we have to check. */
3321 else if (REG_P (operand)
3322 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3323 && reg_renumber[REGNO (operand)] < 0
3324 && ((reg_equiv_mem[REGNO (operand)] != 0
3325 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3326 || (reg_equiv_address[REGNO (operand)] != 0)))
3327 win = 1;
3329 /* If we didn't already win, we can reload
3330 constants via force_const_mem, and other
3331 MEMs by reloading the address like for 'o'. */
3332 if (CONST_POOL_OK_P (operand)
3333 || MEM_P (operand))
3334 badop = 0;
3335 constmemok = 1;
3336 offmemok = 1;
3337 break;
3339 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3341 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3342 win = 1;
3344 /* If we didn't already win, we can reload
3345 the address into a base register. */
3346 this_alternative[i]
3347 = (int) base_reg_class (VOIDmode, ADDRESS, SCRATCH);
3348 badop = 0;
3349 break;
3352 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3353 win = 1;
3354 #endif
3355 break;
3358 this_alternative[i]
3359 = (int) (reg_class_subunion
3360 [this_alternative[i]]
3361 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3362 reg:
3363 if (GET_MODE (operand) == BLKmode)
3364 break;
3365 winreg = 1;
3366 if (REG_P (operand)
3367 && reg_fits_class_p (operand, this_alternative[i],
3368 offset, GET_MODE (recog_data.operand[i])))
3369 win = 1;
3370 break;
3372 while ((p += len), c);
3374 constraints[i] = p;
3376 /* If this operand could be handled with a reg,
3377 and some reg is allowed, then this operand can be handled. */
3378 if (winreg && this_alternative[i] != (int) NO_REGS)
3379 badop = 0;
3381 /* Record which operands fit this alternative. */
3382 this_alternative_earlyclobber[i] = earlyclobber;
3383 if (win && ! force_reload)
3384 this_alternative_win[i] = 1;
3385 else if (did_match && ! force_reload)
3386 this_alternative_match_win[i] = 1;
3387 else
3389 int const_to_mem = 0;
3391 this_alternative_offmemok[i] = offmemok;
3392 losers++;
3393 if (badop)
3394 bad = 1;
3395 /* Alternative loses if it has no regs for a reg operand. */
3396 if (REG_P (operand)
3397 && this_alternative[i] == (int) NO_REGS
3398 && this_alternative_matches[i] < 0)
3399 bad = 1;
3401 /* If this is a constant that is reloaded into the desired
3402 class by copying it to memory first, count that as another
3403 reload. This is consistent with other code and is
3404 required to avoid choosing another alternative when
3405 the constant is moved into memory by this function on
3406 an early reload pass. Note that the test here is
3407 precisely the same as in the code below that calls
3408 force_const_mem. */
3409 if (CONST_POOL_OK_P (operand)
3410 && ((PREFERRED_RELOAD_CLASS (operand,
3411 (enum reg_class) this_alternative[i])
3412 == NO_REGS)
3413 || no_input_reloads)
3414 && operand_mode[i] != VOIDmode)
3416 const_to_mem = 1;
3417 if (this_alternative[i] != (int) NO_REGS)
3418 losers++;
3421 /* Alternative loses if it requires a type of reload not
3422 permitted for this insn. We can always reload SCRATCH
3423 and objects with a REG_UNUSED note. */
3424 if (GET_CODE (operand) != SCRATCH
3425 && modified[i] != RELOAD_READ && no_output_reloads
3426 && ! find_reg_note (insn, REG_UNUSED, operand))
3427 bad = 1;
3428 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3429 && ! const_to_mem)
3430 bad = 1;
3432 /* If we can't reload this value at all, reject this
3433 alternative. Note that we could also lose due to
3434 LIMIT_RELOAD_CLASS, but we don't check that
3435 here. */
3437 if (! CONSTANT_P (operand)
3438 && (enum reg_class) this_alternative[i] != NO_REGS)
3440 if (PREFERRED_RELOAD_CLASS
3441 (operand, (enum reg_class) this_alternative[i])
3442 == NO_REGS)
3443 reject = 600;
3445 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
3446 if (operand_type[i] == RELOAD_FOR_OUTPUT
3447 && PREFERRED_OUTPUT_RELOAD_CLASS
3448 (operand, (enum reg_class) this_alternative[i])
3449 == NO_REGS)
3450 reject = 600;
3451 #endif
3454 /* We prefer to reload pseudos over reloading other things,
3455 since such reloads may be able to be eliminated later.
3456 If we are reloading a SCRATCH, we won't be generating any
3457 insns, just using a register, so it is also preferred.
3458 So bump REJECT in other cases. Don't do this in the
3459 case where we are forcing a constant into memory and
3460 it will then win since we don't want to have a different
3461 alternative match then. */
3462 if (! (REG_P (operand)
3463 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3464 && GET_CODE (operand) != SCRATCH
3465 && ! (const_to_mem && constmemok))
3466 reject += 2;
3468 /* Input reloads can be inherited more often than output
3469 reloads can be removed, so penalize output reloads. */
3470 if (operand_type[i] != RELOAD_FOR_INPUT
3471 && GET_CODE (operand) != SCRATCH)
3472 reject++;
3475 /* If this operand is a pseudo register that didn't get a hard
3476 reg and this alternative accepts some register, see if the
3477 class that we want is a subset of the preferred class for this
3478 register. If not, but it intersects that class, use the
3479 preferred class instead. If it does not intersect the preferred
3480 class, show that usage of this alternative should be discouraged;
3481 it will be discouraged more still if the register is `preferred
3482 or nothing'. We do this because it increases the chance of
3483 reusing our spill register in a later insn and avoiding a pair
3484 of memory stores and loads.
3486 Don't bother with this if this alternative will accept this
3487 operand.
3489 Don't do this for a multiword operand, since it is only a
3490 small win and has the risk of requiring more spill registers,
3491 which could cause a large loss.
3493 Don't do this if the preferred class has only one register
3494 because we might otherwise exhaust the class. */
3496 if (! win && ! did_match
3497 && this_alternative[i] != (int) NO_REGS
3498 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3499 && reg_class_size [(int) preferred_class[i]] > 0
3500 && ! SMALL_REGISTER_CLASS_P (preferred_class[i]))
3502 if (! reg_class_subset_p (this_alternative[i],
3503 preferred_class[i]))
3505 /* Since we don't have a way of forming the intersection,
3506 we just do something special if the preferred class
3507 is a subset of the class we have; that's the most
3508 common case anyway. */
3509 if (reg_class_subset_p (preferred_class[i],
3510 this_alternative[i]))
3511 this_alternative[i] = (int) preferred_class[i];
3512 else
3513 reject += (2 + 2 * pref_or_nothing[i]);
3518 /* Now see if any output operands that are marked "earlyclobber"
3519 in this alternative conflict with any input operands
3520 or any memory addresses. */
3522 for (i = 0; i < noperands; i++)
3523 if (this_alternative_earlyclobber[i]
3524 && (this_alternative_win[i] || this_alternative_match_win[i]))
3526 struct decomposition early_data;
3528 early_data = decompose (recog_data.operand[i]);
3530 gcc_assert (modified[i] != RELOAD_READ);
3532 if (this_alternative[i] == NO_REGS)
3534 this_alternative_earlyclobber[i] = 0;
3535 gcc_assert (this_insn_is_asm);
3536 error_for_asm (this_insn,
3537 "%<&%> constraint used with no register class");
3540 for (j = 0; j < noperands; j++)
3541 /* Is this an input operand or a memory ref? */
3542 if ((MEM_P (recog_data.operand[j])
3543 || modified[j] != RELOAD_WRITE)
3544 && j != i
3545 /* Ignore things like match_operator operands. */
3546 && *recog_data.constraints[j] != 0
3547 /* Don't count an input operand that is constrained to match
3548 the early clobber operand. */
3549 && ! (this_alternative_matches[j] == i
3550 && rtx_equal_p (recog_data.operand[i],
3551 recog_data.operand[j]))
3552 /* Is it altered by storing the earlyclobber operand? */
3553 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3554 early_data))
3556 /* If the output is in a non-empty few-regs class,
3557 it's costly to reload it, so reload the input instead. */
3558 if (SMALL_REGISTER_CLASS_P (this_alternative[i])
3559 && (REG_P (recog_data.operand[j])
3560 || GET_CODE (recog_data.operand[j]) == SUBREG))
3562 losers++;
3563 this_alternative_win[j] = 0;
3564 this_alternative_match_win[j] = 0;
3566 else
3567 break;
3569 /* If an earlyclobber operand conflicts with something,
3570 it must be reloaded, so request this and count the cost. */
3571 if (j != noperands)
3573 losers++;
3574 this_alternative_win[i] = 0;
3575 this_alternative_match_win[j] = 0;
3576 for (j = 0; j < noperands; j++)
3577 if (this_alternative_matches[j] == i
3578 && this_alternative_match_win[j])
3580 this_alternative_win[j] = 0;
3581 this_alternative_match_win[j] = 0;
3582 losers++;
3587 /* If one alternative accepts all the operands, no reload required,
3588 choose that alternative; don't consider the remaining ones. */
3589 if (losers == 0)
3591 /* Unswap these so that they are never swapped at `finish'. */
3592 if (commutative >= 0)
3594 recog_data.operand[commutative] = substed_operand[commutative];
3595 recog_data.operand[commutative + 1]
3596 = substed_operand[commutative + 1];
3598 for (i = 0; i < noperands; i++)
3600 goal_alternative_win[i] = this_alternative_win[i];
3601 goal_alternative_match_win[i] = this_alternative_match_win[i];
3602 goal_alternative[i] = this_alternative[i];
3603 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3604 goal_alternative_matches[i] = this_alternative_matches[i];
3605 goal_alternative_earlyclobber[i]
3606 = this_alternative_earlyclobber[i];
3608 goal_alternative_number = this_alternative_number;
3609 goal_alternative_swapped = swapped;
3610 goal_earlyclobber = this_earlyclobber;
3611 goto finish;
3614 /* REJECT, set by the ! and ? constraint characters and when a register
3615 would be reloaded into a non-preferred class, discourages the use of
3616 this alternative for a reload goal. REJECT is incremented by six
3617 for each ? and two for each non-preferred class. */
3618 losers = losers * 6 + reject;
3620 /* If this alternative can be made to work by reloading,
3621 and it needs less reloading than the others checked so far,
3622 record it as the chosen goal for reloading. */
3623 if (! bad && best > losers)
3625 for (i = 0; i < noperands; i++)
3627 goal_alternative[i] = this_alternative[i];
3628 goal_alternative_win[i] = this_alternative_win[i];
3629 goal_alternative_match_win[i] = this_alternative_match_win[i];
3630 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3631 goal_alternative_matches[i] = this_alternative_matches[i];
3632 goal_alternative_earlyclobber[i]
3633 = this_alternative_earlyclobber[i];
3635 goal_alternative_swapped = swapped;
3636 best = losers;
3637 goal_alternative_number = this_alternative_number;
3638 goal_earlyclobber = this_earlyclobber;
3642 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3643 then we need to try each alternative twice,
3644 the second time matching those two operands
3645 as if we had exchanged them.
3646 To do this, really exchange them in operands.
3648 If we have just tried the alternatives the second time,
3649 return operands to normal and drop through. */
3651 if (commutative >= 0)
3653 swapped = !swapped;
3654 if (swapped)
3656 enum reg_class tclass;
3657 int t;
3659 recog_data.operand[commutative] = substed_operand[commutative + 1];
3660 recog_data.operand[commutative + 1] = substed_operand[commutative];
3661 /* Swap the duplicates too. */
3662 for (i = 0; i < recog_data.n_dups; i++)
3663 if (recog_data.dup_num[i] == commutative
3664 || recog_data.dup_num[i] == commutative + 1)
3665 *recog_data.dup_loc[i]
3666 = recog_data.operand[(int) recog_data.dup_num[i]];
3668 tclass = preferred_class[commutative];
3669 preferred_class[commutative] = preferred_class[commutative + 1];
3670 preferred_class[commutative + 1] = tclass;
3672 t = pref_or_nothing[commutative];
3673 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3674 pref_or_nothing[commutative + 1] = t;
3676 t = address_reloaded[commutative];
3677 address_reloaded[commutative] = address_reloaded[commutative + 1];
3678 address_reloaded[commutative + 1] = t;
3680 memcpy (constraints, recog_data.constraints,
3681 noperands * sizeof (char *));
3682 goto try_swapped;
3684 else
3686 recog_data.operand[commutative] = substed_operand[commutative];
3687 recog_data.operand[commutative + 1]
3688 = substed_operand[commutative + 1];
3689 /* Unswap the duplicates too. */
3690 for (i = 0; i < recog_data.n_dups; i++)
3691 if (recog_data.dup_num[i] == commutative
3692 || recog_data.dup_num[i] == commutative + 1)
3693 *recog_data.dup_loc[i]
3694 = recog_data.operand[(int) recog_data.dup_num[i]];
3698 /* The operands don't meet the constraints.
3699 goal_alternative describes the alternative
3700 that we could reach by reloading the fewest operands.
3701 Reload so as to fit it. */
3703 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3705 /* No alternative works with reloads?? */
3706 if (insn_code_number >= 0)
3707 fatal_insn ("unable to generate reloads for:", insn);
3708 error_for_asm (insn, "inconsistent operand constraints in an %<asm%>");
3709 /* Avoid further trouble with this insn. */
3710 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3711 n_reloads = 0;
3712 return 0;
3715 /* Jump to `finish' from above if all operands are valid already.
3716 In that case, goal_alternative_win is all 1. */
3717 finish:
3719 /* Right now, for any pair of operands I and J that are required to match,
3720 with I < J,
3721 goal_alternative_matches[J] is I.
3722 Set up goal_alternative_matched as the inverse function:
3723 goal_alternative_matched[I] = J. */
3725 for (i = 0; i < noperands; i++)
3726 goal_alternative_matched[i] = -1;
3728 for (i = 0; i < noperands; i++)
3729 if (! goal_alternative_win[i]
3730 && goal_alternative_matches[i] >= 0)
3731 goal_alternative_matched[goal_alternative_matches[i]] = i;
3733 for (i = 0; i < noperands; i++)
3734 goal_alternative_win[i] |= goal_alternative_match_win[i];
3736 /* If the best alternative is with operands 1 and 2 swapped,
3737 consider them swapped before reporting the reloads. Update the
3738 operand numbers of any reloads already pushed. */
3740 if (goal_alternative_swapped)
3742 rtx tem;
3744 tem = substed_operand[commutative];
3745 substed_operand[commutative] = substed_operand[commutative + 1];
3746 substed_operand[commutative + 1] = tem;
3747 tem = recog_data.operand[commutative];
3748 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3749 recog_data.operand[commutative + 1] = tem;
3750 tem = *recog_data.operand_loc[commutative];
3751 *recog_data.operand_loc[commutative]
3752 = *recog_data.operand_loc[commutative + 1];
3753 *recog_data.operand_loc[commutative + 1] = tem;
3755 for (i = 0; i < n_reloads; i++)
3757 if (rld[i].opnum == commutative)
3758 rld[i].opnum = commutative + 1;
3759 else if (rld[i].opnum == commutative + 1)
3760 rld[i].opnum = commutative;
3764 for (i = 0; i < noperands; i++)
3766 operand_reloadnum[i] = -1;
3768 /* If this is an earlyclobber operand, we need to widen the scope.
3769 The reload must remain valid from the start of the insn being
3770 reloaded until after the operand is stored into its destination.
3771 We approximate this with RELOAD_OTHER even though we know that we
3772 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3774 One special case that is worth checking is when we have an
3775 output that is earlyclobber but isn't used past the insn (typically
3776 a SCRATCH). In this case, we only need have the reload live
3777 through the insn itself, but not for any of our input or output
3778 reloads.
3779 But we must not accidentally narrow the scope of an existing
3780 RELOAD_OTHER reload - leave these alone.
3782 In any case, anything needed to address this operand can remain
3783 however they were previously categorized. */
3785 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3786 operand_type[i]
3787 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3788 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3791 /* Any constants that aren't allowed and can't be reloaded
3792 into registers are here changed into memory references. */
3793 for (i = 0; i < noperands; i++)
3794 if (! goal_alternative_win[i]
3795 && CONST_POOL_OK_P (recog_data.operand[i])
3796 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3797 (enum reg_class) goal_alternative[i])
3798 == NO_REGS)
3799 || no_input_reloads)
3800 && operand_mode[i] != VOIDmode)
3802 substed_operand[i] = recog_data.operand[i]
3803 = find_reloads_toplev (force_const_mem (operand_mode[i],
3804 recog_data.operand[i]),
3805 i, address_type[i], ind_levels, 0, insn,
3806 NULL);
3807 if (alternative_allows_memconst (recog_data.constraints[i],
3808 goal_alternative_number))
3809 goal_alternative_win[i] = 1;
3812 /* Likewise any invalid constants appearing as operand of a PLUS
3813 that is to be reloaded. */
3814 for (i = 0; i < noperands; i++)
3815 if (! goal_alternative_win[i]
3816 && GET_CODE (recog_data.operand[i]) == PLUS
3817 && CONST_POOL_OK_P (XEXP (recog_data.operand[i], 1))
3818 && (PREFERRED_RELOAD_CLASS (XEXP (recog_data.operand[i], 1),
3819 (enum reg_class) goal_alternative[i])
3820 == NO_REGS)
3821 && operand_mode[i] != VOIDmode)
3823 rtx tem = force_const_mem (operand_mode[i],
3824 XEXP (recog_data.operand[i], 1));
3825 tem = gen_rtx_PLUS (operand_mode[i],
3826 XEXP (recog_data.operand[i], 0), tem);
3828 substed_operand[i] = recog_data.operand[i]
3829 = find_reloads_toplev (tem, i, address_type[i],
3830 ind_levels, 0, insn, NULL);
3833 /* Record the values of the earlyclobber operands for the caller. */
3834 if (goal_earlyclobber)
3835 for (i = 0; i < noperands; i++)
3836 if (goal_alternative_earlyclobber[i])
3837 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3839 /* Now record reloads for all the operands that need them. */
3840 for (i = 0; i < noperands; i++)
3841 if (! goal_alternative_win[i])
3843 /* Operands that match previous ones have already been handled. */
3844 if (goal_alternative_matches[i] >= 0)
3846 /* Handle an operand with a nonoffsettable address
3847 appearing where an offsettable address will do
3848 by reloading the address into a base register.
3850 ??? We can also do this when the operand is a register and
3851 reg_equiv_mem is not offsettable, but this is a bit tricky,
3852 so we don't bother with it. It may not be worth doing. */
3853 else if (goal_alternative_matched[i] == -1
3854 && goal_alternative_offmemok[i]
3855 && MEM_P (recog_data.operand[i]))
3857 /* If the address to be reloaded is a VOIDmode constant,
3858 use Pmode as mode of the reload register, as would have
3859 been done by find_reloads_address. */
3860 enum machine_mode address_mode;
3861 address_mode = GET_MODE (XEXP (recog_data.operand[i], 0));
3862 if (address_mode == VOIDmode)
3863 address_mode = Pmode;
3865 operand_reloadnum[i]
3866 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3867 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3868 base_reg_class (VOIDmode, MEM, SCRATCH),
3869 address_mode,
3870 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3871 rld[operand_reloadnum[i]].inc
3872 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3874 /* If this operand is an output, we will have made any
3875 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3876 now we are treating part of the operand as an input, so
3877 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3879 if (modified[i] == RELOAD_WRITE)
3881 for (j = 0; j < n_reloads; j++)
3883 if (rld[j].opnum == i)
3885 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3886 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3887 else if (rld[j].when_needed
3888 == RELOAD_FOR_OUTADDR_ADDRESS)
3889 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3894 else if (goal_alternative_matched[i] == -1)
3896 operand_reloadnum[i]
3897 = push_reload ((modified[i] != RELOAD_WRITE
3898 ? recog_data.operand[i] : 0),
3899 (modified[i] != RELOAD_READ
3900 ? recog_data.operand[i] : 0),
3901 (modified[i] != RELOAD_WRITE
3902 ? recog_data.operand_loc[i] : 0),
3903 (modified[i] != RELOAD_READ
3904 ? recog_data.operand_loc[i] : 0),
3905 (enum reg_class) goal_alternative[i],
3906 (modified[i] == RELOAD_WRITE
3907 ? VOIDmode : operand_mode[i]),
3908 (modified[i] == RELOAD_READ
3909 ? VOIDmode : operand_mode[i]),
3910 (insn_code_number < 0 ? 0
3911 : insn_data[insn_code_number].operand[i].strict_low),
3912 0, i, operand_type[i]);
3914 /* In a matching pair of operands, one must be input only
3915 and the other must be output only.
3916 Pass the input operand as IN and the other as OUT. */
3917 else if (modified[i] == RELOAD_READ
3918 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3920 operand_reloadnum[i]
3921 = push_reload (recog_data.operand[i],
3922 recog_data.operand[goal_alternative_matched[i]],
3923 recog_data.operand_loc[i],
3924 recog_data.operand_loc[goal_alternative_matched[i]],
3925 (enum reg_class) goal_alternative[i],
3926 operand_mode[i],
3927 operand_mode[goal_alternative_matched[i]],
3928 0, 0, i, RELOAD_OTHER);
3929 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3931 else if (modified[i] == RELOAD_WRITE
3932 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3934 operand_reloadnum[goal_alternative_matched[i]]
3935 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3936 recog_data.operand[i],
3937 recog_data.operand_loc[goal_alternative_matched[i]],
3938 recog_data.operand_loc[i],
3939 (enum reg_class) goal_alternative[i],
3940 operand_mode[goal_alternative_matched[i]],
3941 operand_mode[i],
3942 0, 0, i, RELOAD_OTHER);
3943 operand_reloadnum[i] = output_reloadnum;
3945 else
3947 gcc_assert (insn_code_number < 0);
3948 error_for_asm (insn, "inconsistent operand constraints "
3949 "in an %<asm%>");
3950 /* Avoid further trouble with this insn. */
3951 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3952 n_reloads = 0;
3953 return 0;
3956 else if (goal_alternative_matched[i] < 0
3957 && goal_alternative_matches[i] < 0
3958 && address_operand_reloaded[i] != 1
3959 && optimize)
3961 /* For each non-matching operand that's a MEM or a pseudo-register
3962 that didn't get a hard register, make an optional reload.
3963 This may get done even if the insn needs no reloads otherwise. */
3965 rtx operand = recog_data.operand[i];
3967 while (GET_CODE (operand) == SUBREG)
3968 operand = SUBREG_REG (operand);
3969 if ((MEM_P (operand)
3970 || (REG_P (operand)
3971 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3972 /* If this is only for an output, the optional reload would not
3973 actually cause us to use a register now, just note that
3974 something is stored here. */
3975 && ((enum reg_class) goal_alternative[i] != NO_REGS
3976 || modified[i] == RELOAD_WRITE)
3977 && ! no_input_reloads
3978 /* An optional output reload might allow to delete INSN later.
3979 We mustn't make in-out reloads on insns that are not permitted
3980 output reloads.
3981 If this is an asm, we can't delete it; we must not even call
3982 push_reload for an optional output reload in this case,
3983 because we can't be sure that the constraint allows a register,
3984 and push_reload verifies the constraints for asms. */
3985 && (modified[i] == RELOAD_READ
3986 || (! no_output_reloads && ! this_insn_is_asm)))
3987 operand_reloadnum[i]
3988 = push_reload ((modified[i] != RELOAD_WRITE
3989 ? recog_data.operand[i] : 0),
3990 (modified[i] != RELOAD_READ
3991 ? recog_data.operand[i] : 0),
3992 (modified[i] != RELOAD_WRITE
3993 ? recog_data.operand_loc[i] : 0),
3994 (modified[i] != RELOAD_READ
3995 ? recog_data.operand_loc[i] : 0),
3996 (enum reg_class) goal_alternative[i],
3997 (modified[i] == RELOAD_WRITE
3998 ? VOIDmode : operand_mode[i]),
3999 (modified[i] == RELOAD_READ
4000 ? VOIDmode : operand_mode[i]),
4001 (insn_code_number < 0 ? 0
4002 : insn_data[insn_code_number].operand[i].strict_low),
4003 1, i, operand_type[i]);
4004 /* If a memory reference remains (either as a MEM or a pseudo that
4005 did not get a hard register), yet we can't make an optional
4006 reload, check if this is actually a pseudo register reference;
4007 we then need to emit a USE and/or a CLOBBER so that reload
4008 inheritance will do the right thing. */
4009 else if (replace
4010 && (MEM_P (operand)
4011 || (REG_P (operand)
4012 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
4013 && reg_renumber [REGNO (operand)] < 0)))
4015 operand = *recog_data.operand_loc[i];
4017 while (GET_CODE (operand) == SUBREG)
4018 operand = SUBREG_REG (operand);
4019 if (REG_P (operand))
4021 if (modified[i] != RELOAD_WRITE)
4022 /* We mark the USE with QImode so that we recognize
4023 it as one that can be safely deleted at the end
4024 of reload. */
4025 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
4026 insn), QImode);
4027 if (modified[i] != RELOAD_READ)
4028 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
4032 else if (goal_alternative_matches[i] >= 0
4033 && goal_alternative_win[goal_alternative_matches[i]]
4034 && modified[i] == RELOAD_READ
4035 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
4036 && ! no_input_reloads && ! no_output_reloads
4037 && optimize)
4039 /* Similarly, make an optional reload for a pair of matching
4040 objects that are in MEM or a pseudo that didn't get a hard reg. */
4042 rtx operand = recog_data.operand[i];
4044 while (GET_CODE (operand) == SUBREG)
4045 operand = SUBREG_REG (operand);
4046 if ((MEM_P (operand)
4047 || (REG_P (operand)
4048 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
4049 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
4050 != NO_REGS))
4051 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
4052 = push_reload (recog_data.operand[goal_alternative_matches[i]],
4053 recog_data.operand[i],
4054 recog_data.operand_loc[goal_alternative_matches[i]],
4055 recog_data.operand_loc[i],
4056 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
4057 operand_mode[goal_alternative_matches[i]],
4058 operand_mode[i],
4059 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4062 /* Perform whatever substitutions on the operands we are supposed
4063 to make due to commutativity or replacement of registers
4064 with equivalent constants or memory slots. */
4066 for (i = 0; i < noperands; i++)
4068 /* We only do this on the last pass through reload, because it is
4069 possible for some data (like reg_equiv_address) to be changed during
4070 later passes. Moreover, we lose the opportunity to get a useful
4071 reload_{in,out}_reg when we do these replacements. */
4073 if (replace)
4075 rtx substitution = substed_operand[i];
4077 *recog_data.operand_loc[i] = substitution;
4079 /* If we're replacing an operand with a LABEL_REF, we need
4080 to make sure that there's a REG_LABEL note attached to
4081 this instruction. */
4082 if (!JUMP_P (insn)
4083 && GET_CODE (substitution) == LABEL_REF
4084 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4085 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4086 XEXP (substitution, 0),
4087 REG_NOTES (insn));
4089 else
4090 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4093 /* If this insn pattern contains any MATCH_DUP's, make sure that
4094 they will be substituted if the operands they match are substituted.
4095 Also do now any substitutions we already did on the operands.
4097 Don't do this if we aren't making replacements because we might be
4098 propagating things allocated by frame pointer elimination into places
4099 it doesn't expect. */
4101 if (insn_code_number >= 0 && replace)
4102 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4104 int opno = recog_data.dup_num[i];
4105 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4106 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4109 #if 0
4110 /* This loses because reloading of prior insns can invalidate the equivalence
4111 (or at least find_equiv_reg isn't smart enough to find it any more),
4112 causing this insn to need more reload regs than it needed before.
4113 It may be too late to make the reload regs available.
4114 Now this optimization is done safely in choose_reload_regs. */
4116 /* For each reload of a reg into some other class of reg,
4117 search for an existing equivalent reg (same value now) in the right class.
4118 We can use it as long as we don't need to change its contents. */
4119 for (i = 0; i < n_reloads; i++)
4120 if (rld[i].reg_rtx == 0
4121 && rld[i].in != 0
4122 && REG_P (rld[i].in)
4123 && rld[i].out == 0)
4125 rld[i].reg_rtx
4126 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4127 static_reload_reg_p, 0, rld[i].inmode);
4128 /* Prevent generation of insn to load the value
4129 because the one we found already has the value. */
4130 if (rld[i].reg_rtx)
4131 rld[i].in = rld[i].reg_rtx;
4133 #endif
4135 /* Perhaps an output reload can be combined with another
4136 to reduce needs by one. */
4137 if (!goal_earlyclobber)
4138 combine_reloads ();
4140 /* If we have a pair of reloads for parts of an address, they are reloading
4141 the same object, the operands themselves were not reloaded, and they
4142 are for two operands that are supposed to match, merge the reloads and
4143 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4145 for (i = 0; i < n_reloads; i++)
4147 int k;
4149 for (j = i + 1; j < n_reloads; j++)
4150 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4151 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4152 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4153 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4154 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4155 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4156 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4157 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4158 && rtx_equal_p (rld[i].in, rld[j].in)
4159 && (operand_reloadnum[rld[i].opnum] < 0
4160 || rld[operand_reloadnum[rld[i].opnum]].optional)
4161 && (operand_reloadnum[rld[j].opnum] < 0
4162 || rld[operand_reloadnum[rld[j].opnum]].optional)
4163 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4164 || (goal_alternative_matches[rld[j].opnum]
4165 == rld[i].opnum)))
4167 for (k = 0; k < n_replacements; k++)
4168 if (replacements[k].what == j)
4169 replacements[k].what = i;
4171 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4172 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4173 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4174 else
4175 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4176 rld[j].in = 0;
4180 /* Scan all the reloads and update their type.
4181 If a reload is for the address of an operand and we didn't reload
4182 that operand, change the type. Similarly, change the operand number
4183 of a reload when two operands match. If a reload is optional, treat it
4184 as though the operand isn't reloaded.
4186 ??? This latter case is somewhat odd because if we do the optional
4187 reload, it means the object is hanging around. Thus we need only
4188 do the address reload if the optional reload was NOT done.
4190 Change secondary reloads to be the address type of their operand, not
4191 the normal type.
4193 If an operand's reload is now RELOAD_OTHER, change any
4194 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4195 RELOAD_FOR_OTHER_ADDRESS. */
4197 for (i = 0; i < n_reloads; i++)
4199 if (rld[i].secondary_p
4200 && rld[i].when_needed == operand_type[rld[i].opnum])
4201 rld[i].when_needed = address_type[rld[i].opnum];
4203 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4204 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4205 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4206 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4207 && (operand_reloadnum[rld[i].opnum] < 0
4208 || rld[operand_reloadnum[rld[i].opnum]].optional))
4210 /* If we have a secondary reload to go along with this reload,
4211 change its type to RELOAD_FOR_OPADDR_ADDR. */
4213 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4214 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4215 && rld[i].secondary_in_reload != -1)
4217 int secondary_in_reload = rld[i].secondary_in_reload;
4219 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4221 /* If there's a tertiary reload we have to change it also. */
4222 if (secondary_in_reload > 0
4223 && rld[secondary_in_reload].secondary_in_reload != -1)
4224 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4225 = RELOAD_FOR_OPADDR_ADDR;
4228 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4229 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4230 && rld[i].secondary_out_reload != -1)
4232 int secondary_out_reload = rld[i].secondary_out_reload;
4234 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4236 /* If there's a tertiary reload we have to change it also. */
4237 if (secondary_out_reload
4238 && rld[secondary_out_reload].secondary_out_reload != -1)
4239 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4240 = RELOAD_FOR_OPADDR_ADDR;
4243 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4244 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4245 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4246 else
4247 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4250 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4251 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4252 && operand_reloadnum[rld[i].opnum] >= 0
4253 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4254 == RELOAD_OTHER))
4255 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4257 if (goal_alternative_matches[rld[i].opnum] >= 0)
4258 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4261 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4262 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4263 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4265 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4266 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4267 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4268 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4269 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4270 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4271 This is complicated by the fact that a single operand can have more
4272 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4273 choose_reload_regs without affecting code quality, and cases that
4274 actually fail are extremely rare, so it turns out to be better to fix
4275 the problem here by not generating cases that choose_reload_regs will
4276 fail for. */
4277 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4278 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4279 a single operand.
4280 We can reduce the register pressure by exploiting that a
4281 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4282 does not conflict with any of them, if it is only used for the first of
4283 the RELOAD_FOR_X_ADDRESS reloads. */
4285 int first_op_addr_num = -2;
4286 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4287 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4288 int need_change = 0;
4289 /* We use last_op_addr_reload and the contents of the above arrays
4290 first as flags - -2 means no instance encountered, -1 means exactly
4291 one instance encountered.
4292 If more than one instance has been encountered, we store the reload
4293 number of the first reload of the kind in question; reload numbers
4294 are known to be non-negative. */
4295 for (i = 0; i < noperands; i++)
4296 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4297 for (i = n_reloads - 1; i >= 0; i--)
4299 switch (rld[i].when_needed)
4301 case RELOAD_FOR_OPERAND_ADDRESS:
4302 if (++first_op_addr_num >= 0)
4304 first_op_addr_num = i;
4305 need_change = 1;
4307 break;
4308 case RELOAD_FOR_INPUT_ADDRESS:
4309 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4311 first_inpaddr_num[rld[i].opnum] = i;
4312 need_change = 1;
4314 break;
4315 case RELOAD_FOR_OUTPUT_ADDRESS:
4316 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4318 first_outpaddr_num[rld[i].opnum] = i;
4319 need_change = 1;
4321 break;
4322 default:
4323 break;
4327 if (need_change)
4329 for (i = 0; i < n_reloads; i++)
4331 int first_num;
4332 enum reload_type type;
4334 switch (rld[i].when_needed)
4336 case RELOAD_FOR_OPADDR_ADDR:
4337 first_num = first_op_addr_num;
4338 type = RELOAD_FOR_OPERAND_ADDRESS;
4339 break;
4340 case RELOAD_FOR_INPADDR_ADDRESS:
4341 first_num = first_inpaddr_num[rld[i].opnum];
4342 type = RELOAD_FOR_INPUT_ADDRESS;
4343 break;
4344 case RELOAD_FOR_OUTADDR_ADDRESS:
4345 first_num = first_outpaddr_num[rld[i].opnum];
4346 type = RELOAD_FOR_OUTPUT_ADDRESS;
4347 break;
4348 default:
4349 continue;
4351 if (first_num < 0)
4352 continue;
4353 else if (i > first_num)
4354 rld[i].when_needed = type;
4355 else
4357 /* Check if the only TYPE reload that uses reload I is
4358 reload FIRST_NUM. */
4359 for (j = n_reloads - 1; j > first_num; j--)
4361 if (rld[j].when_needed == type
4362 && (rld[i].secondary_p
4363 ? rld[j].secondary_in_reload == i
4364 : reg_mentioned_p (rld[i].in, rld[j].in)))
4366 rld[i].when_needed = type;
4367 break;
4375 /* See if we have any reloads that are now allowed to be merged
4376 because we've changed when the reload is needed to
4377 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4378 check for the most common cases. */
4380 for (i = 0; i < n_reloads; i++)
4381 if (rld[i].in != 0 && rld[i].out == 0
4382 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4383 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4384 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4385 for (j = 0; j < n_reloads; j++)
4386 if (i != j && rld[j].in != 0 && rld[j].out == 0
4387 && rld[j].when_needed == rld[i].when_needed
4388 && MATCHES (rld[i].in, rld[j].in)
4389 && rld[i].class == rld[j].class
4390 && !rld[i].nocombine && !rld[j].nocombine
4391 && rld[i].reg_rtx == rld[j].reg_rtx)
4393 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4394 transfer_replacements (i, j);
4395 rld[j].in = 0;
4398 #ifdef HAVE_cc0
4399 /* If we made any reloads for addresses, see if they violate a
4400 "no input reloads" requirement for this insn. But loads that we
4401 do after the insn (such as for output addresses) are fine. */
4402 if (no_input_reloads)
4403 for (i = 0; i < n_reloads; i++)
4404 gcc_assert (rld[i].in == 0
4405 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS
4406 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS);
4407 #endif
4409 /* Compute reload_mode and reload_nregs. */
4410 for (i = 0; i < n_reloads; i++)
4412 rld[i].mode
4413 = (rld[i].inmode == VOIDmode
4414 || (GET_MODE_SIZE (rld[i].outmode)
4415 > GET_MODE_SIZE (rld[i].inmode)))
4416 ? rld[i].outmode : rld[i].inmode;
4418 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4421 /* Special case a simple move with an input reload and a
4422 destination of a hard reg, if the hard reg is ok, use it. */
4423 for (i = 0; i < n_reloads; i++)
4424 if (rld[i].when_needed == RELOAD_FOR_INPUT
4425 && GET_CODE (PATTERN (insn)) == SET
4426 && REG_P (SET_DEST (PATTERN (insn)))
4427 && SET_SRC (PATTERN (insn)) == rld[i].in)
4429 rtx dest = SET_DEST (PATTERN (insn));
4430 unsigned int regno = REGNO (dest);
4432 if (regno < FIRST_PSEUDO_REGISTER
4433 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4434 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4436 int nr = hard_regno_nregs[regno][rld[i].mode];
4437 int ok = 1, nri;
4439 for (nri = 1; nri < nr; nri ++)
4440 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4441 ok = 0;
4443 if (ok)
4444 rld[i].reg_rtx = dest;
4448 return retval;
4451 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4452 accepts a memory operand with constant address. */
4454 static int
4455 alternative_allows_memconst (const char *constraint, int altnum)
4457 int c;
4458 /* Skip alternatives before the one requested. */
4459 while (altnum > 0)
4461 while (*constraint++ != ',');
4462 altnum--;
4464 /* Scan the requested alternative for 'm' or 'o'.
4465 If one of them is present, this alternative accepts memory constants. */
4466 for (; (c = *constraint) && c != ',' && c != '#';
4467 constraint += CONSTRAINT_LEN (c, constraint))
4468 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4469 return 1;
4470 return 0;
4473 /* Scan X for memory references and scan the addresses for reloading.
4474 Also checks for references to "constant" regs that we want to eliminate
4475 and replaces them with the values they stand for.
4476 We may alter X destructively if it contains a reference to such.
4477 If X is just a constant reg, we return the equivalent value
4478 instead of X.
4480 IND_LEVELS says how many levels of indirect addressing this machine
4481 supports.
4483 OPNUM and TYPE identify the purpose of the reload.
4485 IS_SET_DEST is true if X is the destination of a SET, which is not
4486 appropriate to be replaced by a constant.
4488 INSN, if nonzero, is the insn in which we do the reload. It is used
4489 to determine if we may generate output reloads, and where to put USEs
4490 for pseudos that we have to replace with stack slots.
4492 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4493 result of find_reloads_address. */
4495 static rtx
4496 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4497 int ind_levels, int is_set_dest, rtx insn,
4498 int *address_reloaded)
4500 RTX_CODE code = GET_CODE (x);
4502 const char *fmt = GET_RTX_FORMAT (code);
4503 int i;
4504 int copied;
4506 if (code == REG)
4508 /* This code is duplicated for speed in find_reloads. */
4509 int regno = REGNO (x);
4510 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4511 x = reg_equiv_constant[regno];
4512 #if 0
4513 /* This creates (subreg (mem...)) which would cause an unnecessary
4514 reload of the mem. */
4515 else if (reg_equiv_mem[regno] != 0)
4516 x = reg_equiv_mem[regno];
4517 #endif
4518 else if (reg_equiv_memory_loc[regno]
4519 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4521 rtx mem = make_memloc (x, regno);
4522 if (reg_equiv_address[regno]
4523 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4525 /* If this is not a toplevel operand, find_reloads doesn't see
4526 this substitution. We have to emit a USE of the pseudo so
4527 that delete_output_reload can see it. */
4528 if (replace_reloads && recog_data.operand[opnum] != x)
4529 /* We mark the USE with QImode so that we recognize it
4530 as one that can be safely deleted at the end of
4531 reload. */
4532 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4533 QImode);
4534 x = mem;
4535 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4536 opnum, type, ind_levels, insn);
4537 if (address_reloaded)
4538 *address_reloaded = i;
4541 return x;
4543 if (code == MEM)
4545 rtx tem = x;
4547 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4548 opnum, type, ind_levels, insn);
4549 if (address_reloaded)
4550 *address_reloaded = i;
4552 return tem;
4555 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4557 /* Check for SUBREG containing a REG that's equivalent to a
4558 constant. If the constant has a known value, truncate it
4559 right now. Similarly if we are extracting a single-word of a
4560 multi-word constant. If the constant is symbolic, allow it
4561 to be substituted normally. push_reload will strip the
4562 subreg later. The constant must not be VOIDmode, because we
4563 will lose the mode of the register (this should never happen
4564 because one of the cases above should handle it). */
4566 int regno = REGNO (SUBREG_REG (x));
4567 rtx tem;
4569 if (subreg_lowpart_p (x)
4570 && regno >= FIRST_PSEUDO_REGISTER
4571 && reg_renumber[regno] < 0
4572 && reg_equiv_constant[regno] != 0
4573 && (tem = gen_lowpart_common (GET_MODE (x),
4574 reg_equiv_constant[regno])) != 0
4575 && LEGITIMATE_CONSTANT_P (tem))
4576 return tem;
4578 if (regno >= FIRST_PSEUDO_REGISTER
4579 && reg_renumber[regno] < 0
4580 && reg_equiv_constant[regno] != 0)
4582 tem =
4583 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4584 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4585 gcc_assert (tem);
4586 if (LEGITIMATE_CONSTANT_P (tem))
4587 return tem;
4590 /* If the subreg contains a reg that will be converted to a mem,
4591 convert the subreg to a narrower memref now.
4592 Otherwise, we would get (subreg (mem ...) ...),
4593 which would force reload of the mem.
4595 We also need to do this if there is an equivalent MEM that is
4596 not offsettable. In that case, alter_subreg would produce an
4597 invalid address on big-endian machines.
4599 For machines that extend byte loads, we must not reload using
4600 a wider mode if we have a paradoxical SUBREG. find_reloads will
4601 force a reload in that case. So we should not do anything here. */
4603 if (regno >= FIRST_PSEUDO_REGISTER
4604 #ifdef LOAD_EXTEND_OP
4605 && (GET_MODE_SIZE (GET_MODE (x))
4606 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4607 #endif
4608 && (reg_equiv_address[regno] != 0
4609 || (reg_equiv_mem[regno] != 0
4610 && (! strict_memory_address_p (GET_MODE (x),
4611 XEXP (reg_equiv_mem[regno], 0))
4612 || ! offsettable_memref_p (reg_equiv_mem[regno])
4613 || num_not_at_initial_offset))))
4614 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4615 insn);
4618 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4620 if (fmt[i] == 'e')
4622 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4623 ind_levels, is_set_dest, insn,
4624 address_reloaded);
4625 /* If we have replaced a reg with it's equivalent memory loc -
4626 that can still be handled here e.g. if it's in a paradoxical
4627 subreg - we must make the change in a copy, rather than using
4628 a destructive change. This way, find_reloads can still elect
4629 not to do the change. */
4630 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4632 x = shallow_copy_rtx (x);
4633 copied = 1;
4635 XEXP (x, i) = new_part;
4638 return x;
4641 /* Return a mem ref for the memory equivalent of reg REGNO.
4642 This mem ref is not shared with anything. */
4644 static rtx
4645 make_memloc (rtx ad, int regno)
4647 /* We must rerun eliminate_regs, in case the elimination
4648 offsets have changed. */
4649 rtx tem
4650 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4652 /* If TEM might contain a pseudo, we must copy it to avoid
4653 modifying it when we do the substitution for the reload. */
4654 if (rtx_varies_p (tem, 0))
4655 tem = copy_rtx (tem);
4657 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4658 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4660 /* Copy the result if it's still the same as the equivalence, to avoid
4661 modifying it when we do the substitution for the reload. */
4662 if (tem == reg_equiv_memory_loc[regno])
4663 tem = copy_rtx (tem);
4664 return tem;
4667 /* Returns true if AD could be turned into a valid memory reference
4668 to mode MODE by reloading the part pointed to by PART into a
4669 register. */
4671 static int
4672 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4674 int retv;
4675 rtx tem = *part;
4676 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4678 *part = reg;
4679 retv = memory_address_p (mode, ad);
4680 *part = tem;
4682 return retv;
4685 /* Record all reloads needed for handling memory address AD
4686 which appears in *LOC in a memory reference to mode MODE
4687 which itself is found in location *MEMREFLOC.
4688 Note that we take shortcuts assuming that no multi-reg machine mode
4689 occurs as part of an address.
4691 OPNUM and TYPE specify the purpose of this reload.
4693 IND_LEVELS says how many levels of indirect addressing this machine
4694 supports.
4696 INSN, if nonzero, is the insn in which we do the reload. It is used
4697 to determine if we may generate output reloads, and where to put USEs
4698 for pseudos that we have to replace with stack slots.
4700 Value is one if this address is reloaded or replaced as a whole; it is
4701 zero if the top level of this address was not reloaded or replaced, and
4702 it is -1 if it may or may not have been reloaded or replaced.
4704 Note that there is no verification that the address will be valid after
4705 this routine does its work. Instead, we rely on the fact that the address
4706 was valid when reload started. So we need only undo things that reload
4707 could have broken. These are wrong register types, pseudos not allocated
4708 to a hard register, and frame pointer elimination. */
4710 static int
4711 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4712 rtx *loc, int opnum, enum reload_type type,
4713 int ind_levels, rtx insn)
4715 int regno;
4716 int removed_and = 0;
4717 int op_index;
4718 rtx tem;
4720 /* If the address is a register, see if it is a legitimate address and
4721 reload if not. We first handle the cases where we need not reload
4722 or where we must reload in a non-standard way. */
4724 if (REG_P (ad))
4726 regno = REGNO (ad);
4728 /* If the register is equivalent to an invariant expression, substitute
4729 the invariant, and eliminate any eliminable register references. */
4730 tem = reg_equiv_constant[regno];
4731 if (tem != 0
4732 && (tem = eliminate_regs (tem, mode, insn))
4733 && strict_memory_address_p (mode, tem))
4735 *loc = ad = tem;
4736 return 0;
4739 tem = reg_equiv_memory_loc[regno];
4740 if (tem != 0)
4742 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4744 tem = make_memloc (ad, regno);
4745 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4747 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4748 &XEXP (tem, 0), opnum,
4749 ADDR_TYPE (type), ind_levels, insn);
4751 /* We can avoid a reload if the register's equivalent memory
4752 expression is valid as an indirect memory address.
4753 But not all addresses are valid in a mem used as an indirect
4754 address: only reg or reg+constant. */
4756 if (ind_levels > 0
4757 && strict_memory_address_p (mode, tem)
4758 && (REG_P (XEXP (tem, 0))
4759 || (GET_CODE (XEXP (tem, 0)) == PLUS
4760 && REG_P (XEXP (XEXP (tem, 0), 0))
4761 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4763 /* TEM is not the same as what we'll be replacing the
4764 pseudo with after reload, put a USE in front of INSN
4765 in the final reload pass. */
4766 if (replace_reloads
4767 && num_not_at_initial_offset
4768 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4770 *loc = tem;
4771 /* We mark the USE with QImode so that we
4772 recognize it as one that can be safely
4773 deleted at the end of reload. */
4774 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4775 insn), QImode);
4777 /* This doesn't really count as replacing the address
4778 as a whole, since it is still a memory access. */
4780 return 0;
4782 ad = tem;
4786 /* The only remaining case where we can avoid a reload is if this is a
4787 hard register that is valid as a base register and which is not the
4788 subject of a CLOBBER in this insn. */
4790 else if (regno < FIRST_PSEUDO_REGISTER
4791 && regno_ok_for_base_p (regno, mode, MEM, SCRATCH)
4792 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4793 return 0;
4795 /* If we do not have one of the cases above, we must do the reload. */
4796 push_reload (ad, NULL_RTX, loc, (rtx*) 0, base_reg_class (mode, MEM, SCRATCH),
4797 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4798 return 1;
4801 if (strict_memory_address_p (mode, ad))
4803 /* The address appears valid, so reloads are not needed.
4804 But the address may contain an eliminable register.
4805 This can happen because a machine with indirect addressing
4806 may consider a pseudo register by itself a valid address even when
4807 it has failed to get a hard reg.
4808 So do a tree-walk to find and eliminate all such regs. */
4810 /* But first quickly dispose of a common case. */
4811 if (GET_CODE (ad) == PLUS
4812 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4813 && REG_P (XEXP (ad, 0))
4814 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4815 return 0;
4817 subst_reg_equivs_changed = 0;
4818 *loc = subst_reg_equivs (ad, insn);
4820 if (! subst_reg_equivs_changed)
4821 return 0;
4823 /* Check result for validity after substitution. */
4824 if (strict_memory_address_p (mode, ad))
4825 return 0;
4828 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4831 if (memrefloc)
4833 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4834 ind_levels, win);
4836 break;
4837 win:
4838 *memrefloc = copy_rtx (*memrefloc);
4839 XEXP (*memrefloc, 0) = ad;
4840 move_replacements (&ad, &XEXP (*memrefloc, 0));
4841 return -1;
4843 while (0);
4844 #endif
4846 /* The address is not valid. We have to figure out why. First see if
4847 we have an outer AND and remove it if so. Then analyze what's inside. */
4849 if (GET_CODE (ad) == AND)
4851 removed_and = 1;
4852 loc = &XEXP (ad, 0);
4853 ad = *loc;
4856 /* One possibility for why the address is invalid is that it is itself
4857 a MEM. This can happen when the frame pointer is being eliminated, a
4858 pseudo is not allocated to a hard register, and the offset between the
4859 frame and stack pointers is not its initial value. In that case the
4860 pseudo will have been replaced by a MEM referring to the
4861 stack pointer. */
4862 if (MEM_P (ad))
4864 /* First ensure that the address in this MEM is valid. Then, unless
4865 indirect addresses are valid, reload the MEM into a register. */
4866 tem = ad;
4867 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4868 opnum, ADDR_TYPE (type),
4869 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4871 /* If tem was changed, then we must create a new memory reference to
4872 hold it and store it back into memrefloc. */
4873 if (tem != ad && memrefloc)
4875 *memrefloc = copy_rtx (*memrefloc);
4876 copy_replacements (tem, XEXP (*memrefloc, 0));
4877 loc = &XEXP (*memrefloc, 0);
4878 if (removed_and)
4879 loc = &XEXP (*loc, 0);
4882 /* Check similar cases as for indirect addresses as above except
4883 that we can allow pseudos and a MEM since they should have been
4884 taken care of above. */
4886 if (ind_levels == 0
4887 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4888 || MEM_P (XEXP (tem, 0))
4889 || ! (REG_P (XEXP (tem, 0))
4890 || (GET_CODE (XEXP (tem, 0)) == PLUS
4891 && REG_P (XEXP (XEXP (tem, 0), 0))
4892 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4894 /* Must use TEM here, not AD, since it is the one that will
4895 have any subexpressions reloaded, if needed. */
4896 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4897 base_reg_class (mode, MEM, SCRATCH), GET_MODE (tem),
4898 VOIDmode, 0,
4899 0, opnum, type);
4900 return ! removed_and;
4902 else
4903 return 0;
4906 /* If we have address of a stack slot but it's not valid because the
4907 displacement is too large, compute the sum in a register.
4908 Handle all base registers here, not just fp/ap/sp, because on some
4909 targets (namely SH) we can also get too large displacements from
4910 big-endian corrections. */
4911 else if (GET_CODE (ad) == PLUS
4912 && REG_P (XEXP (ad, 0))
4913 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4914 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4915 && regno_ok_for_base_p (REGNO (XEXP (ad, 0)), mode, PLUS,
4916 CONST_INT))
4919 /* Unshare the MEM rtx so we can safely alter it. */
4920 if (memrefloc)
4922 *memrefloc = copy_rtx (*memrefloc);
4923 loc = &XEXP (*memrefloc, 0);
4924 if (removed_and)
4925 loc = &XEXP (*loc, 0);
4928 if (double_reg_address_ok)
4930 /* Unshare the sum as well. */
4931 *loc = ad = copy_rtx (ad);
4933 /* Reload the displacement into an index reg.
4934 We assume the frame pointer or arg pointer is a base reg. */
4935 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4936 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4937 type, ind_levels);
4938 return 0;
4940 else
4942 /* If the sum of two regs is not necessarily valid,
4943 reload the sum into a base reg.
4944 That will at least work. */
4945 find_reloads_address_part (ad, loc,
4946 base_reg_class (mode, MEM, SCRATCH),
4947 Pmode, opnum, type, ind_levels);
4949 return ! removed_and;
4952 /* If we have an indexed stack slot, there are three possible reasons why
4953 it might be invalid: The index might need to be reloaded, the address
4954 might have been made by frame pointer elimination and hence have a
4955 constant out of range, or both reasons might apply.
4957 We can easily check for an index needing reload, but even if that is the
4958 case, we might also have an invalid constant. To avoid making the
4959 conservative assumption and requiring two reloads, we see if this address
4960 is valid when not interpreted strictly. If it is, the only problem is
4961 that the index needs a reload and find_reloads_address_1 will take care
4962 of it.
4964 Handle all base registers here, not just fp/ap/sp, because on some
4965 targets (namely SPARC) we can also get invalid addresses from preventive
4966 subreg big-endian corrections made by find_reloads_toplev. We
4967 can also get expressions involving LO_SUM (rather than PLUS) from
4968 find_reloads_subreg_address.
4970 If we decide to do something, it must be that `double_reg_address_ok'
4971 is true. We generate a reload of the base register + constant and
4972 rework the sum so that the reload register will be added to the index.
4973 This is safe because we know the address isn't shared.
4975 We check for the base register as both the first and second operand of
4976 the innermost PLUS and/or LO_SUM. */
4978 for (op_index = 0; op_index < 2; ++op_index)
4980 rtx operand, addend;
4981 enum rtx_code inner_code;
4983 if (GET_CODE (ad) != PLUS)
4984 continue;
4986 inner_code = GET_CODE (XEXP (ad, 0));
4987 if (!(GET_CODE (ad) == PLUS
4988 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4989 && (inner_code == PLUS || inner_code == LO_SUM)))
4990 continue;
4992 operand = XEXP (XEXP (ad, 0), op_index);
4993 if (!REG_P (operand) || REGNO (operand) >= FIRST_PSEUDO_REGISTER)
4994 continue;
4996 addend = XEXP (XEXP (ad, 0), 1 - op_index);
4998 if ((regno_ok_for_base_p (REGNO (operand), mode, inner_code,
4999 GET_CODE (addend))
5000 || operand == frame_pointer_rtx
5001 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
5002 || operand == hard_frame_pointer_rtx
5003 #endif
5004 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
5005 || operand == arg_pointer_rtx
5006 #endif
5007 || operand == stack_pointer_rtx)
5008 && ! maybe_memory_address_p (mode, ad,
5009 &XEXP (XEXP (ad, 0), 1 - op_index)))
5011 rtx offset_reg;
5012 enum reg_class cls;
5014 offset_reg = plus_constant (operand, INTVAL (XEXP (ad, 1)));
5016 /* Form the adjusted address. */
5017 if (GET_CODE (XEXP (ad, 0)) == PLUS)
5018 ad = gen_rtx_PLUS (GET_MODE (ad),
5019 op_index == 0 ? offset_reg : addend,
5020 op_index == 0 ? addend : offset_reg);
5021 else
5022 ad = gen_rtx_LO_SUM (GET_MODE (ad),
5023 op_index == 0 ? offset_reg : addend,
5024 op_index == 0 ? addend : offset_reg);
5025 *loc = ad;
5027 cls = base_reg_class (mode, MEM, GET_CODE (addend));
5028 find_reloads_address_part (XEXP (ad, op_index),
5029 &XEXP (ad, op_index), cls,
5030 GET_MODE (ad), opnum, type, ind_levels);
5031 find_reloads_address_1 (mode,
5032 XEXP (ad, 1 - op_index), 1, GET_CODE (ad),
5033 GET_CODE (XEXP (ad, op_index)),
5034 &XEXP (ad, 1 - op_index), opnum,
5035 type, 0, insn);
5037 return 0;
5041 /* See if address becomes valid when an eliminable register
5042 in a sum is replaced. */
5044 tem = ad;
5045 if (GET_CODE (ad) == PLUS)
5046 tem = subst_indexed_address (ad);
5047 if (tem != ad && strict_memory_address_p (mode, tem))
5049 /* Ok, we win that way. Replace any additional eliminable
5050 registers. */
5052 subst_reg_equivs_changed = 0;
5053 tem = subst_reg_equivs (tem, insn);
5055 /* Make sure that didn't make the address invalid again. */
5057 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
5059 *loc = tem;
5060 return 0;
5064 /* If constants aren't valid addresses, reload the constant address
5065 into a register. */
5066 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
5068 /* If AD is an address in the constant pool, the MEM rtx may be shared.
5069 Unshare it so we can safely alter it. */
5070 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
5071 && CONSTANT_POOL_ADDRESS_P (ad))
5073 *memrefloc = copy_rtx (*memrefloc);
5074 loc = &XEXP (*memrefloc, 0);
5075 if (removed_and)
5076 loc = &XEXP (*loc, 0);
5079 find_reloads_address_part (ad, loc, base_reg_class (mode, MEM, SCRATCH),
5080 Pmode, opnum, type, ind_levels);
5081 return ! removed_and;
5084 return find_reloads_address_1 (mode, ad, 0, MEM, SCRATCH, loc, opnum, type,
5085 ind_levels, insn);
5088 /* Find all pseudo regs appearing in AD
5089 that are eliminable in favor of equivalent values
5090 and do not have hard regs; replace them by their equivalents.
5091 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5092 front of it for pseudos that we have to replace with stack slots. */
5094 static rtx
5095 subst_reg_equivs (rtx ad, rtx insn)
5097 RTX_CODE code = GET_CODE (ad);
5098 int i;
5099 const char *fmt;
5101 switch (code)
5103 case HIGH:
5104 case CONST_INT:
5105 case CONST:
5106 case CONST_DOUBLE:
5107 case CONST_VECTOR:
5108 case SYMBOL_REF:
5109 case LABEL_REF:
5110 case PC:
5111 case CC0:
5112 return ad;
5114 case REG:
5116 int regno = REGNO (ad);
5118 if (reg_equiv_constant[regno] != 0)
5120 subst_reg_equivs_changed = 1;
5121 return reg_equiv_constant[regno];
5123 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5125 rtx mem = make_memloc (ad, regno);
5126 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5128 subst_reg_equivs_changed = 1;
5129 /* We mark the USE with QImode so that we recognize it
5130 as one that can be safely deleted at the end of
5131 reload. */
5132 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5133 QImode);
5134 return mem;
5138 return ad;
5140 case PLUS:
5141 /* Quickly dispose of a common case. */
5142 if (XEXP (ad, 0) == frame_pointer_rtx
5143 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5144 return ad;
5145 break;
5147 default:
5148 break;
5151 fmt = GET_RTX_FORMAT (code);
5152 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5153 if (fmt[i] == 'e')
5154 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5155 return ad;
5158 /* Compute the sum of X and Y, making canonicalizations assumed in an
5159 address, namely: sum constant integers, surround the sum of two
5160 constants with a CONST, put the constant as the second operand, and
5161 group the constant on the outermost sum.
5163 This routine assumes both inputs are already in canonical form. */
5166 form_sum (rtx x, rtx y)
5168 rtx tem;
5169 enum machine_mode mode = GET_MODE (x);
5171 if (mode == VOIDmode)
5172 mode = GET_MODE (y);
5174 if (mode == VOIDmode)
5175 mode = Pmode;
5177 if (GET_CODE (x) == CONST_INT)
5178 return plus_constant (y, INTVAL (x));
5179 else if (GET_CODE (y) == CONST_INT)
5180 return plus_constant (x, INTVAL (y));
5181 else if (CONSTANT_P (x))
5182 tem = x, x = y, y = tem;
5184 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5185 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5187 /* Note that if the operands of Y are specified in the opposite
5188 order in the recursive calls below, infinite recursion will occur. */
5189 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5190 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5192 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5193 constant will have been placed second. */
5194 if (CONSTANT_P (x) && CONSTANT_P (y))
5196 if (GET_CODE (x) == CONST)
5197 x = XEXP (x, 0);
5198 if (GET_CODE (y) == CONST)
5199 y = XEXP (y, 0);
5201 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5204 return gen_rtx_PLUS (mode, x, y);
5207 /* If ADDR is a sum containing a pseudo register that should be
5208 replaced with a constant (from reg_equiv_constant),
5209 return the result of doing so, and also apply the associative
5210 law so that the result is more likely to be a valid address.
5211 (But it is not guaranteed to be one.)
5213 Note that at most one register is replaced, even if more are
5214 replaceable. Also, we try to put the result into a canonical form
5215 so it is more likely to be a valid address.
5217 In all other cases, return ADDR. */
5219 static rtx
5220 subst_indexed_address (rtx addr)
5222 rtx op0 = 0, op1 = 0, op2 = 0;
5223 rtx tem;
5224 int regno;
5226 if (GET_CODE (addr) == PLUS)
5228 /* Try to find a register to replace. */
5229 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5230 if (REG_P (op0)
5231 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5232 && reg_renumber[regno] < 0
5233 && reg_equiv_constant[regno] != 0)
5234 op0 = reg_equiv_constant[regno];
5235 else if (REG_P (op1)
5236 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5237 && reg_renumber[regno] < 0
5238 && reg_equiv_constant[regno] != 0)
5239 op1 = reg_equiv_constant[regno];
5240 else if (GET_CODE (op0) == PLUS
5241 && (tem = subst_indexed_address (op0)) != op0)
5242 op0 = tem;
5243 else if (GET_CODE (op1) == PLUS
5244 && (tem = subst_indexed_address (op1)) != op1)
5245 op1 = tem;
5246 else
5247 return addr;
5249 /* Pick out up to three things to add. */
5250 if (GET_CODE (op1) == PLUS)
5251 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5252 else if (GET_CODE (op0) == PLUS)
5253 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5255 /* Compute the sum. */
5256 if (op2 != 0)
5257 op1 = form_sum (op1, op2);
5258 if (op1 != 0)
5259 op0 = form_sum (op0, op1);
5261 return op0;
5263 return addr;
5266 /* Update the REG_INC notes for an insn. It updates all REG_INC
5267 notes for the instruction which refer to REGNO the to refer
5268 to the reload number.
5270 INSN is the insn for which any REG_INC notes need updating.
5272 REGNO is the register number which has been reloaded.
5274 RELOADNUM is the reload number. */
5276 static void
5277 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5278 int reloadnum ATTRIBUTE_UNUSED)
5280 #ifdef AUTO_INC_DEC
5281 rtx link;
5283 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5284 if (REG_NOTE_KIND (link) == REG_INC
5285 && (int) REGNO (XEXP (link, 0)) == regno)
5286 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5287 #endif
5290 /* Record the pseudo registers we must reload into hard registers in a
5291 subexpression of a would-be memory address, X referring to a value
5292 in mode MODE. (This function is not called if the address we find
5293 is strictly valid.)
5295 CONTEXT = 1 means we are considering regs as index regs,
5296 = 0 means we are considering them as base regs.
5297 OUTER_CODE is the code of the enclosing RTX, typically a MEM, a PLUS,
5298 or an autoinc code.
5299 If CONTEXT == 0 and OUTER_CODE is a PLUS or LO_SUM, then INDEX_CODE
5300 is the code of the index part of the address. Otherwise, pass SCRATCH
5301 for this argument.
5302 OPNUM and TYPE specify the purpose of any reloads made.
5304 IND_LEVELS says how many levels of indirect addressing are
5305 supported at this point in the address.
5307 INSN, if nonzero, is the insn in which we do the reload. It is used
5308 to determine if we may generate output reloads.
5310 We return nonzero if X, as a whole, is reloaded or replaced. */
5312 /* Note that we take shortcuts assuming that no multi-reg machine mode
5313 occurs as part of an address.
5314 Also, this is not fully machine-customizable; it works for machines
5315 such as VAXen and 68000's and 32000's, but other possible machines
5316 could have addressing modes that this does not handle right.
5317 If you add push_reload calls here, you need to make sure gen_reload
5318 handles those cases gracefully. */
5320 static int
5321 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5322 enum rtx_code outer_code, enum rtx_code index_code,
5323 rtx *loc, int opnum, enum reload_type type,
5324 int ind_levels, rtx insn)
5326 #define REG_OK_FOR_CONTEXT(CONTEXT, REGNO, MODE, OUTER, INDEX) \
5327 ((CONTEXT) == 0 \
5328 ? regno_ok_for_base_p (REGNO, MODE, OUTER, INDEX) \
5329 : REGNO_OK_FOR_INDEX_P (REGNO))
5331 enum reg_class context_reg_class;
5332 RTX_CODE code = GET_CODE (x);
5334 if (context == 1)
5335 context_reg_class = INDEX_REG_CLASS;
5336 else
5337 context_reg_class = base_reg_class (mode, outer_code, index_code);
5339 switch (code)
5341 case PLUS:
5343 rtx orig_op0 = XEXP (x, 0);
5344 rtx orig_op1 = XEXP (x, 1);
5345 RTX_CODE code0 = GET_CODE (orig_op0);
5346 RTX_CODE code1 = GET_CODE (orig_op1);
5347 rtx op0 = orig_op0;
5348 rtx op1 = orig_op1;
5350 if (GET_CODE (op0) == SUBREG)
5352 op0 = SUBREG_REG (op0);
5353 code0 = GET_CODE (op0);
5354 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5355 op0 = gen_rtx_REG (word_mode,
5356 (REGNO (op0) +
5357 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5358 GET_MODE (SUBREG_REG (orig_op0)),
5359 SUBREG_BYTE (orig_op0),
5360 GET_MODE (orig_op0))));
5363 if (GET_CODE (op1) == SUBREG)
5365 op1 = SUBREG_REG (op1);
5366 code1 = GET_CODE (op1);
5367 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5368 /* ??? Why is this given op1's mode and above for
5369 ??? op0 SUBREGs we use word_mode? */
5370 op1 = gen_rtx_REG (GET_MODE (op1),
5371 (REGNO (op1) +
5372 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5373 GET_MODE (SUBREG_REG (orig_op1)),
5374 SUBREG_BYTE (orig_op1),
5375 GET_MODE (orig_op1))));
5377 /* Plus in the index register may be created only as a result of
5378 register rematerialization for expression like &localvar*4. Reload it.
5379 It may be possible to combine the displacement on the outer level,
5380 but it is probably not worthwhile to do so. */
5381 if (context == 1)
5383 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5384 opnum, ADDR_TYPE (type), ind_levels, insn);
5385 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5386 context_reg_class,
5387 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5388 return 1;
5391 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5392 || code0 == ZERO_EXTEND || code1 == MEM)
5394 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5395 &XEXP (x, 0), opnum, type, ind_levels,
5396 insn);
5397 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5398 &XEXP (x, 1), opnum, type, ind_levels,
5399 insn);
5402 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5403 || code1 == ZERO_EXTEND || code0 == MEM)
5405 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5406 &XEXP (x, 0), opnum, type, ind_levels,
5407 insn);
5408 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5409 &XEXP (x, 1), opnum, type, ind_levels,
5410 insn);
5413 else if (code0 == CONST_INT || code0 == CONST
5414 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5415 find_reloads_address_1 (mode, orig_op1, 0, PLUS, code0,
5416 &XEXP (x, 1), opnum, type, ind_levels,
5417 insn);
5419 else if (code1 == CONST_INT || code1 == CONST
5420 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5421 find_reloads_address_1 (mode, orig_op0, 0, PLUS, code1,
5422 &XEXP (x, 0), opnum, type, ind_levels,
5423 insn);
5425 else if (code0 == REG && code1 == REG)
5427 if (REGNO_OK_FOR_INDEX_P (REGNO (op0))
5428 && regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5429 return 0;
5430 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1))
5431 && regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5432 return 0;
5433 else if (regno_ok_for_base_p (REGNO (op1), mode, PLUS, REG))
5434 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5435 &XEXP (x, 0), opnum, type, ind_levels,
5436 insn);
5437 else if (regno_ok_for_base_p (REGNO (op0), mode, PLUS, REG))
5438 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5439 &XEXP (x, 1), opnum, type, ind_levels,
5440 insn);
5441 else if (REGNO_OK_FOR_INDEX_P (REGNO (op1)))
5442 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5443 &XEXP (x, 0), opnum, type, ind_levels,
5444 insn);
5445 else if (REGNO_OK_FOR_INDEX_P (REGNO (op0)))
5446 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5447 &XEXP (x, 1), opnum, type, ind_levels,
5448 insn);
5449 else
5451 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5452 &XEXP (x, 0), opnum, type, ind_levels,
5453 insn);
5454 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5455 &XEXP (x, 1), opnum, type, ind_levels,
5456 insn);
5460 else if (code0 == REG)
5462 find_reloads_address_1 (mode, orig_op0, 1, PLUS, SCRATCH,
5463 &XEXP (x, 0), opnum, type, ind_levels,
5464 insn);
5465 find_reloads_address_1 (mode, orig_op1, 0, PLUS, REG,
5466 &XEXP (x, 1), opnum, type, ind_levels,
5467 insn);
5470 else if (code1 == REG)
5472 find_reloads_address_1 (mode, orig_op1, 1, PLUS, SCRATCH,
5473 &XEXP (x, 1), opnum, type, ind_levels,
5474 insn);
5475 find_reloads_address_1 (mode, orig_op0, 0, PLUS, REG,
5476 &XEXP (x, 0), opnum, type, ind_levels,
5477 insn);
5481 return 0;
5483 case POST_MODIFY:
5484 case PRE_MODIFY:
5486 rtx op0 = XEXP (x, 0);
5487 rtx op1 = XEXP (x, 1);
5488 enum rtx_code index_code;
5489 int regno;
5490 int reloadnum;
5492 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5493 return 0;
5495 /* Currently, we only support {PRE,POST}_MODIFY constructs
5496 where a base register is {inc,dec}remented by the contents
5497 of another register or by a constant value. Thus, these
5498 operands must match. */
5499 gcc_assert (op0 == XEXP (op1, 0));
5501 /* Require index register (or constant). Let's just handle the
5502 register case in the meantime... If the target allows
5503 auto-modify by a constant then we could try replacing a pseudo
5504 register with its equivalent constant where applicable. */
5505 if (REG_P (XEXP (op1, 1)))
5506 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5507 find_reloads_address_1 (mode, XEXP (op1, 1), 1, code, SCRATCH,
5508 &XEXP (op1, 1), opnum, type, ind_levels,
5509 insn);
5511 gcc_assert (REG_P (XEXP (op1, 0)));
5513 regno = REGNO (XEXP (op1, 0));
5514 index_code = GET_CODE (XEXP (op1, 1));
5516 /* A register that is incremented cannot be constant! */
5517 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5518 || reg_equiv_constant[regno] == 0);
5520 /* Handle a register that is equivalent to a memory location
5521 which cannot be addressed directly. */
5522 if (reg_equiv_memory_loc[regno] != 0
5523 && (reg_equiv_address[regno] != 0
5524 || num_not_at_initial_offset))
5526 rtx tem = make_memloc (XEXP (x, 0), regno);
5528 if (reg_equiv_address[regno]
5529 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5531 /* First reload the memory location's address.
5532 We can't use ADDR_TYPE (type) here, because we need to
5533 write back the value after reading it, hence we actually
5534 need two registers. */
5535 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5536 &XEXP (tem, 0), opnum,
5537 RELOAD_OTHER,
5538 ind_levels, insn);
5540 /* Then reload the memory location into a base
5541 register. */
5542 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5543 &XEXP (op1, 0),
5544 base_reg_class (mode, code,
5545 index_code),
5546 GET_MODE (x), GET_MODE (x), 0,
5547 0, opnum, RELOAD_OTHER);
5549 update_auto_inc_notes (this_insn, regno, reloadnum);
5550 return 0;
5554 if (reg_renumber[regno] >= 0)
5555 regno = reg_renumber[regno];
5557 /* We require a base register here... */
5558 if (!regno_ok_for_base_p (regno, GET_MODE (x), code, index_code))
5560 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5561 &XEXP (op1, 0), &XEXP (x, 0),
5562 base_reg_class (mode, code, index_code),
5563 GET_MODE (x), GET_MODE (x), 0, 0,
5564 opnum, RELOAD_OTHER);
5566 update_auto_inc_notes (this_insn, regno, reloadnum);
5567 return 0;
5570 return 0;
5572 case POST_INC:
5573 case POST_DEC:
5574 case PRE_INC:
5575 case PRE_DEC:
5576 if (REG_P (XEXP (x, 0)))
5578 int regno = REGNO (XEXP (x, 0));
5579 int value = 0;
5580 rtx x_orig = x;
5582 /* A register that is incremented cannot be constant! */
5583 gcc_assert (regno < FIRST_PSEUDO_REGISTER
5584 || reg_equiv_constant[regno] == 0);
5586 /* Handle a register that is equivalent to a memory location
5587 which cannot be addressed directly. */
5588 if (reg_equiv_memory_loc[regno] != 0
5589 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5591 rtx tem = make_memloc (XEXP (x, 0), regno);
5592 if (reg_equiv_address[regno]
5593 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5595 /* First reload the memory location's address.
5596 We can't use ADDR_TYPE (type) here, because we need to
5597 write back the value after reading it, hence we actually
5598 need two registers. */
5599 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5600 &XEXP (tem, 0), opnum, type,
5601 ind_levels, insn);
5602 /* Put this inside a new increment-expression. */
5603 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5604 /* Proceed to reload that, as if it contained a register. */
5608 /* If we have a hard register that is ok as an index,
5609 don't make a reload. If an autoincrement of a nice register
5610 isn't "valid", it must be that no autoincrement is "valid".
5611 If that is true and something made an autoincrement anyway,
5612 this must be a special context where one is allowed.
5613 (For example, a "push" instruction.)
5614 We can't improve this address, so leave it alone. */
5616 /* Otherwise, reload the autoincrement into a suitable hard reg
5617 and record how much to increment by. */
5619 if (reg_renumber[regno] >= 0)
5620 regno = reg_renumber[regno];
5621 if (regno >= FIRST_PSEUDO_REGISTER
5622 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5623 index_code))
5625 int reloadnum;
5627 /* If we can output the register afterwards, do so, this
5628 saves the extra update.
5629 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5630 CALL_INSN - and it does not set CC0.
5631 But don't do this if we cannot directly address the
5632 memory location, since this will make it harder to
5633 reuse address reloads, and increases register pressure.
5634 Also don't do this if we can probably update x directly. */
5635 rtx equiv = (MEM_P (XEXP (x, 0))
5636 ? XEXP (x, 0)
5637 : reg_equiv_mem[regno]);
5638 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5639 if (insn && NONJUMP_INSN_P (insn) && equiv
5640 && memory_operand (equiv, GET_MODE (equiv))
5641 #ifdef HAVE_cc0
5642 && ! sets_cc0_p (PATTERN (insn))
5643 #endif
5644 && ! (icode != CODE_FOR_nothing
5645 && ((*insn_data[icode].operand[0].predicate)
5646 (equiv, Pmode))
5647 && ((*insn_data[icode].operand[1].predicate)
5648 (equiv, Pmode))))
5650 /* We use the original pseudo for loc, so that
5651 emit_reload_insns() knows which pseudo this
5652 reload refers to and updates the pseudo rtx, not
5653 its equivalent memory location, as well as the
5654 corresponding entry in reg_last_reload_reg. */
5655 loc = &XEXP (x_orig, 0);
5656 x = XEXP (x, 0);
5657 reloadnum
5658 = push_reload (x, x, loc, loc,
5659 context_reg_class,
5660 GET_MODE (x), GET_MODE (x), 0, 0,
5661 opnum, RELOAD_OTHER);
5663 else
5665 reloadnum
5666 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5667 context_reg_class,
5668 GET_MODE (x), GET_MODE (x), 0, 0,
5669 opnum, type);
5670 rld[reloadnum].inc
5671 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5673 value = 1;
5676 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5677 reloadnum);
5679 return value;
5682 else if (MEM_P (XEXP (x, 0)))
5684 /* This is probably the result of a substitution, by eliminate_regs,
5685 of an equivalent address for a pseudo that was not allocated to a
5686 hard register. Verify that the specified address is valid and
5687 reload it into a register. */
5688 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5689 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5690 rtx link;
5691 int reloadnum;
5693 /* Since we know we are going to reload this item, don't decrement
5694 for the indirection level.
5696 Note that this is actually conservative: it would be slightly
5697 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5698 reload1.c here. */
5699 /* We can't use ADDR_TYPE (type) here, because we need to
5700 write back the value after reading it, hence we actually
5701 need two registers. */
5702 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5703 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5704 opnum, type, ind_levels, insn);
5706 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5707 context_reg_class,
5708 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5709 rld[reloadnum].inc
5710 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5712 link = FIND_REG_INC_NOTE (this_insn, tem);
5713 if (link != 0)
5714 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5716 return 1;
5718 return 0;
5720 case TRUNCATE:
5721 case SIGN_EXTEND:
5722 case ZERO_EXTEND:
5723 /* Look for parts to reload in the inner expression and reload them
5724 too, in addition to this operation. Reloading all inner parts in
5725 addition to this one shouldn't be necessary, but at this point,
5726 we don't know if we can possibly omit any part that *can* be
5727 reloaded. Targets that are better off reloading just either part
5728 (or perhaps even a different part of an outer expression), should
5729 define LEGITIMIZE_RELOAD_ADDRESS. */
5730 find_reloads_address_1 (GET_MODE (XEXP (x, 0)), XEXP (x, 0),
5731 context, code, SCRATCH, &XEXP (x, 0), opnum,
5732 type, ind_levels, insn);
5733 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5734 context_reg_class,
5735 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5736 return 1;
5738 case MEM:
5739 /* This is probably the result of a substitution, by eliminate_regs, of
5740 an equivalent address for a pseudo that was not allocated to a hard
5741 register. Verify that the specified address is valid and reload it
5742 into a register.
5744 Since we know we are going to reload this item, don't decrement for
5745 the indirection level.
5747 Note that this is actually conservative: it would be slightly more
5748 efficient to use the value of SPILL_INDIRECT_LEVELS from
5749 reload1.c here. */
5751 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5752 opnum, ADDR_TYPE (type), ind_levels, insn);
5753 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5754 context_reg_class,
5755 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5756 return 1;
5758 case REG:
5760 int regno = REGNO (x);
5762 if (reg_equiv_constant[regno] != 0)
5764 find_reloads_address_part (reg_equiv_constant[regno], loc,
5765 context_reg_class,
5766 GET_MODE (x), opnum, type, ind_levels);
5767 return 1;
5770 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5771 that feeds this insn. */
5772 if (reg_equiv_mem[regno] != 0)
5774 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5775 context_reg_class,
5776 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5777 return 1;
5779 #endif
5781 if (reg_equiv_memory_loc[regno]
5782 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5784 rtx tem = make_memloc (x, regno);
5785 if (reg_equiv_address[regno] != 0
5786 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5788 x = tem;
5789 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5790 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5791 ind_levels, insn);
5795 if (reg_renumber[regno] >= 0)
5796 regno = reg_renumber[regno];
5798 if (regno >= FIRST_PSEUDO_REGISTER
5799 || !REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5800 index_code))
5802 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5803 context_reg_class,
5804 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5805 return 1;
5808 /* If a register appearing in an address is the subject of a CLOBBER
5809 in this insn, reload it into some other register to be safe.
5810 The CLOBBER is supposed to make the register unavailable
5811 from before this insn to after it. */
5812 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5814 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5815 context_reg_class,
5816 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5817 return 1;
5820 return 0;
5822 case SUBREG:
5823 if (REG_P (SUBREG_REG (x)))
5825 /* If this is a SUBREG of a hard register and the resulting register
5826 is of the wrong class, reload the whole SUBREG. This avoids
5827 needless copies if SUBREG_REG is multi-word. */
5828 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5830 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5832 if (!REG_OK_FOR_CONTEXT (context, regno, mode, outer_code,
5833 index_code))
5835 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5836 context_reg_class,
5837 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5838 return 1;
5841 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5842 is larger than the class size, then reload the whole SUBREG. */
5843 else
5845 enum reg_class class = context_reg_class;
5846 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5847 > reg_class_size[class])
5849 x = find_reloads_subreg_address (x, 0, opnum,
5850 ADDR_TYPE (type),
5851 ind_levels, insn);
5852 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5853 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5854 return 1;
5858 break;
5860 default:
5861 break;
5865 const char *fmt = GET_RTX_FORMAT (code);
5866 int i;
5868 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5870 if (fmt[i] == 'e')
5871 /* Pass SCRATCH for INDEX_CODE, since CODE can never be a PLUS once
5872 we get here. */
5873 find_reloads_address_1 (mode, XEXP (x, i), context, code, SCRATCH,
5874 &XEXP (x, i), opnum, type, ind_levels, insn);
5878 #undef REG_OK_FOR_CONTEXT
5879 return 0;
5882 /* X, which is found at *LOC, is a part of an address that needs to be
5883 reloaded into a register of class CLASS. If X is a constant, or if
5884 X is a PLUS that contains a constant, check that the constant is a
5885 legitimate operand and that we are supposed to be able to load
5886 it into the register.
5888 If not, force the constant into memory and reload the MEM instead.
5890 MODE is the mode to use, in case X is an integer constant.
5892 OPNUM and TYPE describe the purpose of any reloads made.
5894 IND_LEVELS says how many levels of indirect addressing this machine
5895 supports. */
5897 static void
5898 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5899 enum machine_mode mode, int opnum,
5900 enum reload_type type, int ind_levels)
5902 if (CONSTANT_P (x)
5903 && (! LEGITIMATE_CONSTANT_P (x)
5904 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5906 rtx tem;
5908 tem = x = force_const_mem (mode, x);
5909 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5910 opnum, type, ind_levels, 0);
5913 else if (GET_CODE (x) == PLUS
5914 && CONSTANT_P (XEXP (x, 1))
5915 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5916 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5918 rtx tem;
5920 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5921 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5922 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5923 opnum, type, ind_levels, 0);
5926 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5927 mode, VOIDmode, 0, 0, opnum, type);
5930 /* X, a subreg of a pseudo, is a part of an address that needs to be
5931 reloaded.
5933 If the pseudo is equivalent to a memory location that cannot be directly
5934 addressed, make the necessary address reloads.
5936 If address reloads have been necessary, or if the address is changed
5937 by register elimination, return the rtx of the memory location;
5938 otherwise, return X.
5940 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5941 memory location.
5943 OPNUM and TYPE identify the purpose of the reload.
5945 IND_LEVELS says how many levels of indirect addressing are
5946 supported at this point in the address.
5948 INSN, if nonzero, is the insn in which we do the reload. It is used
5949 to determine where to put USEs for pseudos that we have to replace with
5950 stack slots. */
5952 static rtx
5953 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5954 enum reload_type type, int ind_levels, rtx insn)
5956 int regno = REGNO (SUBREG_REG (x));
5958 if (reg_equiv_memory_loc[regno])
5960 /* If the address is not directly addressable, or if the address is not
5961 offsettable, then it must be replaced. */
5962 if (! force_replace
5963 && (reg_equiv_address[regno]
5964 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5965 force_replace = 1;
5967 if (force_replace || num_not_at_initial_offset)
5969 rtx tem = make_memloc (SUBREG_REG (x), regno);
5971 /* If the address changes because of register elimination, then
5972 it must be replaced. */
5973 if (force_replace
5974 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5976 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5977 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5978 int offset;
5980 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5981 hold the correct (negative) byte offset. */
5982 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5983 offset = inner_size - outer_size;
5984 else
5985 offset = SUBREG_BYTE (x);
5987 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5988 PUT_MODE (tem, GET_MODE (x));
5990 /* If this was a paradoxical subreg that we replaced, the
5991 resulting memory must be sufficiently aligned to allow
5992 us to widen the mode of the memory. */
5993 if (outer_size > inner_size)
5995 rtx base;
5997 base = XEXP (tem, 0);
5998 if (GET_CODE (base) == PLUS)
6000 if (GET_CODE (XEXP (base, 1)) == CONST_INT
6001 && INTVAL (XEXP (base, 1)) % outer_size != 0)
6002 return x;
6003 base = XEXP (base, 0);
6005 if (!REG_P (base)
6006 || (REGNO_POINTER_ALIGN (REGNO (base))
6007 < outer_size * BITS_PER_UNIT))
6008 return x;
6011 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
6012 &XEXP (tem, 0), opnum, type,
6013 ind_levels, insn);
6015 /* If this is not a toplevel operand, find_reloads doesn't see
6016 this substitution. We have to emit a USE of the pseudo so
6017 that delete_output_reload can see it. */
6018 if (replace_reloads && recog_data.operand[opnum] != x)
6019 /* We mark the USE with QImode so that we recognize it
6020 as one that can be safely deleted at the end of
6021 reload. */
6022 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
6023 SUBREG_REG (x)),
6024 insn), QImode);
6025 x = tem;
6029 return x;
6032 /* Substitute into the current INSN the registers into which we have reloaded
6033 the things that need reloading. The array `replacements'
6034 contains the locations of all pointers that must be changed
6035 and says what to replace them with.
6037 Return the rtx that X translates into; usually X, but modified. */
6039 void
6040 subst_reloads (rtx insn)
6042 int i;
6044 for (i = 0; i < n_replacements; i++)
6046 struct replacement *r = &replacements[i];
6047 rtx reloadreg = rld[r->what].reg_rtx;
6048 if (reloadreg)
6050 #ifdef ENABLE_CHECKING
6051 /* Internal consistency test. Check that we don't modify
6052 anything in the equivalence arrays. Whenever something from
6053 those arrays needs to be reloaded, it must be unshared before
6054 being substituted into; the equivalence must not be modified.
6055 Otherwise, if the equivalence is used after that, it will
6056 have been modified, and the thing substituted (probably a
6057 register) is likely overwritten and not a usable equivalence. */
6058 int check_regno;
6060 for (check_regno = 0; check_regno < max_regno; check_regno++)
6062 #define CHECK_MODF(ARRAY) \
6063 gcc_assert (!ARRAY[check_regno] \
6064 || !loc_mentioned_in_p (r->where, \
6065 ARRAY[check_regno]))
6067 CHECK_MODF (reg_equiv_constant);
6068 CHECK_MODF (reg_equiv_memory_loc);
6069 CHECK_MODF (reg_equiv_address);
6070 CHECK_MODF (reg_equiv_mem);
6071 #undef CHECK_MODF
6073 #endif /* ENABLE_CHECKING */
6075 /* If we're replacing a LABEL_REF with a register, add a
6076 REG_LABEL note to indicate to flow which label this
6077 register refers to. */
6078 if (GET_CODE (*r->where) == LABEL_REF
6079 && JUMP_P (insn))
6081 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
6082 XEXP (*r->where, 0),
6083 REG_NOTES (insn));
6084 JUMP_LABEL (insn) = XEXP (*r->where, 0);
6087 /* Encapsulate RELOADREG so its machine mode matches what
6088 used to be there. Note that gen_lowpart_common will
6089 do the wrong thing if RELOADREG is multi-word. RELOADREG
6090 will always be a REG here. */
6091 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
6092 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
6094 /* If we are putting this into a SUBREG and RELOADREG is a
6095 SUBREG, we would be making nested SUBREGs, so we have to fix
6096 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
6098 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
6100 if (GET_MODE (*r->subreg_loc)
6101 == GET_MODE (SUBREG_REG (reloadreg)))
6102 *r->subreg_loc = SUBREG_REG (reloadreg);
6103 else
6105 int final_offset =
6106 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
6108 /* When working with SUBREGs the rule is that the byte
6109 offset must be a multiple of the SUBREG's mode. */
6110 final_offset = (final_offset /
6111 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6112 final_offset = (final_offset *
6113 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
6115 *r->where = SUBREG_REG (reloadreg);
6116 SUBREG_BYTE (*r->subreg_loc) = final_offset;
6119 else
6120 *r->where = reloadreg;
6122 /* If reload got no reg and isn't optional, something's wrong. */
6123 else
6124 gcc_assert (rld[r->what].optional);
6128 /* Make a copy of any replacements being done into X and move those
6129 copies to locations in Y, a copy of X. */
6131 void
6132 copy_replacements (rtx x, rtx y)
6134 /* We can't support X being a SUBREG because we might then need to know its
6135 location if something inside it was replaced. */
6136 gcc_assert (GET_CODE (x) != SUBREG);
6138 copy_replacements_1 (&x, &y, n_replacements);
6141 static void
6142 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6144 int i, j;
6145 rtx x, y;
6146 struct replacement *r;
6147 enum rtx_code code;
6148 const char *fmt;
6150 for (j = 0; j < orig_replacements; j++)
6152 if (replacements[j].subreg_loc == px)
6154 r = &replacements[n_replacements++];
6155 r->where = replacements[j].where;
6156 r->subreg_loc = py;
6157 r->what = replacements[j].what;
6158 r->mode = replacements[j].mode;
6160 else if (replacements[j].where == px)
6162 r = &replacements[n_replacements++];
6163 r->where = py;
6164 r->subreg_loc = 0;
6165 r->what = replacements[j].what;
6166 r->mode = replacements[j].mode;
6170 x = *px;
6171 y = *py;
6172 code = GET_CODE (x);
6173 fmt = GET_RTX_FORMAT (code);
6175 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6177 if (fmt[i] == 'e')
6178 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6179 else if (fmt[i] == 'E')
6180 for (j = XVECLEN (x, i); --j >= 0; )
6181 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6182 orig_replacements);
6186 /* Change any replacements being done to *X to be done to *Y. */
6188 void
6189 move_replacements (rtx *x, rtx *y)
6191 int i;
6193 for (i = 0; i < n_replacements; i++)
6194 if (replacements[i].subreg_loc == x)
6195 replacements[i].subreg_loc = y;
6196 else if (replacements[i].where == x)
6198 replacements[i].where = y;
6199 replacements[i].subreg_loc = 0;
6203 /* If LOC was scheduled to be replaced by something, return the replacement.
6204 Otherwise, return *LOC. */
6207 find_replacement (rtx *loc)
6209 struct replacement *r;
6211 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6213 rtx reloadreg = rld[r->what].reg_rtx;
6215 if (reloadreg && r->where == loc)
6217 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6218 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6220 return reloadreg;
6222 else if (reloadreg && r->subreg_loc == loc)
6224 /* RELOADREG must be either a REG or a SUBREG.
6226 ??? Is it actually still ever a SUBREG? If so, why? */
6228 if (REG_P (reloadreg))
6229 return gen_rtx_REG (GET_MODE (*loc),
6230 (REGNO (reloadreg) +
6231 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6232 GET_MODE (SUBREG_REG (*loc)),
6233 SUBREG_BYTE (*loc),
6234 GET_MODE (*loc))));
6235 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6236 return reloadreg;
6237 else
6239 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6241 /* When working with SUBREGs the rule is that the byte
6242 offset must be a multiple of the SUBREG's mode. */
6243 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6244 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6245 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6246 final_offset);
6251 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6252 what's inside and make a new rtl if so. */
6253 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6254 || GET_CODE (*loc) == MULT)
6256 rtx x = find_replacement (&XEXP (*loc, 0));
6257 rtx y = find_replacement (&XEXP (*loc, 1));
6259 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6260 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6263 return *loc;
6266 /* Return nonzero if register in range [REGNO, ENDREGNO)
6267 appears either explicitly or implicitly in X
6268 other than being stored into (except for earlyclobber operands).
6270 References contained within the substructure at LOC do not count.
6271 LOC may be zero, meaning don't ignore anything.
6273 This is similar to refers_to_regno_p in rtlanal.c except that we
6274 look at equivalences for pseudos that didn't get hard registers. */
6276 static int
6277 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6278 rtx x, rtx *loc)
6280 int i;
6281 unsigned int r;
6282 RTX_CODE code;
6283 const char *fmt;
6285 if (x == 0)
6286 return 0;
6288 repeat:
6289 code = GET_CODE (x);
6291 switch (code)
6293 case REG:
6294 r = REGNO (x);
6296 /* If this is a pseudo, a hard register must not have been allocated.
6297 X must therefore either be a constant or be in memory. */
6298 if (r >= FIRST_PSEUDO_REGISTER)
6300 if (reg_equiv_memory_loc[r])
6301 return refers_to_regno_for_reload_p (regno, endregno,
6302 reg_equiv_memory_loc[r],
6303 (rtx*) 0);
6305 gcc_assert (reg_equiv_constant[r] || reg_equiv_invariant[r]);
6306 return 0;
6309 return (endregno > r
6310 && regno < r + (r < FIRST_PSEUDO_REGISTER
6311 ? hard_regno_nregs[r][GET_MODE (x)]
6312 : 1));
6314 case SUBREG:
6315 /* If this is a SUBREG of a hard reg, we can see exactly which
6316 registers are being modified. Otherwise, handle normally. */
6317 if (REG_P (SUBREG_REG (x))
6318 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6320 unsigned int inner_regno = subreg_regno (x);
6321 unsigned int inner_endregno
6322 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6323 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6325 return endregno > inner_regno && regno < inner_endregno;
6327 break;
6329 case CLOBBER:
6330 case SET:
6331 if (&SET_DEST (x) != loc
6332 /* Note setting a SUBREG counts as referring to the REG it is in for
6333 a pseudo but not for hard registers since we can
6334 treat each word individually. */
6335 && ((GET_CODE (SET_DEST (x)) == SUBREG
6336 && loc != &SUBREG_REG (SET_DEST (x))
6337 && REG_P (SUBREG_REG (SET_DEST (x)))
6338 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6339 && refers_to_regno_for_reload_p (regno, endregno,
6340 SUBREG_REG (SET_DEST (x)),
6341 loc))
6342 /* If the output is an earlyclobber operand, this is
6343 a conflict. */
6344 || ((!REG_P (SET_DEST (x))
6345 || earlyclobber_operand_p (SET_DEST (x)))
6346 && refers_to_regno_for_reload_p (regno, endregno,
6347 SET_DEST (x), loc))))
6348 return 1;
6350 if (code == CLOBBER || loc == &SET_SRC (x))
6351 return 0;
6352 x = SET_SRC (x);
6353 goto repeat;
6355 default:
6356 break;
6359 /* X does not match, so try its subexpressions. */
6361 fmt = GET_RTX_FORMAT (code);
6362 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6364 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6366 if (i == 0)
6368 x = XEXP (x, 0);
6369 goto repeat;
6371 else
6372 if (refers_to_regno_for_reload_p (regno, endregno,
6373 XEXP (x, i), loc))
6374 return 1;
6376 else if (fmt[i] == 'E')
6378 int j;
6379 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6380 if (loc != &XVECEXP (x, i, j)
6381 && refers_to_regno_for_reload_p (regno, endregno,
6382 XVECEXP (x, i, j), loc))
6383 return 1;
6386 return 0;
6389 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6390 we check if any register number in X conflicts with the relevant register
6391 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6392 contains a MEM (we don't bother checking for memory addresses that can't
6393 conflict because we expect this to be a rare case.
6395 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6396 that we look at equivalences for pseudos that didn't get hard registers. */
6399 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6401 int regno, endregno;
6403 /* Overly conservative. */
6404 if (GET_CODE (x) == STRICT_LOW_PART
6405 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6406 x = XEXP (x, 0);
6408 /* If either argument is a constant, then modifying X can not affect IN. */
6409 if (CONSTANT_P (x) || CONSTANT_P (in))
6410 return 0;
6411 else if (GET_CODE (x) == SUBREG && GET_CODE (SUBREG_REG (x)) == MEM)
6412 return refers_to_mem_for_reload_p (in);
6413 else if (GET_CODE (x) == SUBREG)
6415 regno = REGNO (SUBREG_REG (x));
6416 if (regno < FIRST_PSEUDO_REGISTER)
6417 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6418 GET_MODE (SUBREG_REG (x)),
6419 SUBREG_BYTE (x),
6420 GET_MODE (x));
6422 else if (REG_P (x))
6424 regno = REGNO (x);
6426 /* If this is a pseudo, it must not have been assigned a hard register.
6427 Therefore, it must either be in memory or be a constant. */
6429 if (regno >= FIRST_PSEUDO_REGISTER)
6431 if (reg_equiv_memory_loc[regno])
6432 return refers_to_mem_for_reload_p (in);
6433 gcc_assert (reg_equiv_constant[regno]);
6434 return 0;
6437 else if (MEM_P (x))
6438 return refers_to_mem_for_reload_p (in);
6439 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6440 || GET_CODE (x) == CC0)
6441 return reg_mentioned_p (x, in);
6442 else
6444 gcc_assert (GET_CODE (x) == PLUS);
6446 /* We actually want to know if X is mentioned somewhere inside IN.
6447 We must not say that (plus (sp) (const_int 124)) is in
6448 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6449 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6450 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6451 while (MEM_P (in))
6452 in = XEXP (in, 0);
6453 if (REG_P (in))
6454 return 0;
6455 else if (GET_CODE (in) == PLUS)
6456 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6457 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6458 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6459 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6462 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6463 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6465 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6468 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6469 registers. */
6471 static int
6472 refers_to_mem_for_reload_p (rtx x)
6474 const char *fmt;
6475 int i;
6477 if (MEM_P (x))
6478 return 1;
6480 if (REG_P (x))
6481 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6482 && reg_equiv_memory_loc[REGNO (x)]);
6484 fmt = GET_RTX_FORMAT (GET_CODE (x));
6485 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6486 if (fmt[i] == 'e'
6487 && (MEM_P (XEXP (x, i))
6488 || refers_to_mem_for_reload_p (XEXP (x, i))))
6489 return 1;
6491 return 0;
6494 /* Check the insns before INSN to see if there is a suitable register
6495 containing the same value as GOAL.
6496 If OTHER is -1, look for a register in class CLASS.
6497 Otherwise, just see if register number OTHER shares GOAL's value.
6499 Return an rtx for the register found, or zero if none is found.
6501 If RELOAD_REG_P is (short *)1,
6502 we reject any hard reg that appears in reload_reg_rtx
6503 because such a hard reg is also needed coming into this insn.
6505 If RELOAD_REG_P is any other nonzero value,
6506 it is a vector indexed by hard reg number
6507 and we reject any hard reg whose element in the vector is nonnegative
6508 as well as any that appears in reload_reg_rtx.
6510 If GOAL is zero, then GOALREG is a register number; we look
6511 for an equivalent for that register.
6513 MODE is the machine mode of the value we want an equivalence for.
6514 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6516 This function is used by jump.c as well as in the reload pass.
6518 If GOAL is the sum of the stack pointer and a constant, we treat it
6519 as if it were a constant except that sp is required to be unchanging. */
6522 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6523 short *reload_reg_p, int goalreg, enum machine_mode mode)
6525 rtx p = insn;
6526 rtx goaltry, valtry, value, where;
6527 rtx pat;
6528 int regno = -1;
6529 int valueno;
6530 int goal_mem = 0;
6531 int goal_const = 0;
6532 int goal_mem_addr_varies = 0;
6533 int need_stable_sp = 0;
6534 int nregs;
6535 int valuenregs;
6536 int num = 0;
6538 if (goal == 0)
6539 regno = goalreg;
6540 else if (REG_P (goal))
6541 regno = REGNO (goal);
6542 else if (MEM_P (goal))
6544 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6545 if (MEM_VOLATILE_P (goal))
6546 return 0;
6547 if (flag_float_store && SCALAR_FLOAT_MODE_P (GET_MODE (goal)))
6548 return 0;
6549 /* An address with side effects must be reexecuted. */
6550 switch (code)
6552 case POST_INC:
6553 case PRE_INC:
6554 case POST_DEC:
6555 case PRE_DEC:
6556 case POST_MODIFY:
6557 case PRE_MODIFY:
6558 return 0;
6559 default:
6560 break;
6562 goal_mem = 1;
6564 else if (CONSTANT_P (goal))
6565 goal_const = 1;
6566 else if (GET_CODE (goal) == PLUS
6567 && XEXP (goal, 0) == stack_pointer_rtx
6568 && CONSTANT_P (XEXP (goal, 1)))
6569 goal_const = need_stable_sp = 1;
6570 else if (GET_CODE (goal) == PLUS
6571 && XEXP (goal, 0) == frame_pointer_rtx
6572 && CONSTANT_P (XEXP (goal, 1)))
6573 goal_const = 1;
6574 else
6575 return 0;
6577 num = 0;
6578 /* Scan insns back from INSN, looking for one that copies
6579 a value into or out of GOAL.
6580 Stop and give up if we reach a label. */
6582 while (1)
6584 p = PREV_INSN (p);
6585 num++;
6586 if (p == 0 || LABEL_P (p)
6587 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6588 return 0;
6590 if (NONJUMP_INSN_P (p)
6591 /* If we don't want spill regs ... */
6592 && (! (reload_reg_p != 0
6593 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6594 /* ... then ignore insns introduced by reload; they aren't
6595 useful and can cause results in reload_as_needed to be
6596 different from what they were when calculating the need for
6597 spills. If we notice an input-reload insn here, we will
6598 reject it below, but it might hide a usable equivalent.
6599 That makes bad code. It may even fail: perhaps no reg was
6600 spilled for this insn because it was assumed we would find
6601 that equivalent. */
6602 || INSN_UID (p) < reload_first_uid))
6604 rtx tem;
6605 pat = single_set (p);
6607 /* First check for something that sets some reg equal to GOAL. */
6608 if (pat != 0
6609 && ((regno >= 0
6610 && true_regnum (SET_SRC (pat)) == regno
6611 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6613 (regno >= 0
6614 && true_regnum (SET_DEST (pat)) == regno
6615 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6617 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6618 /* When looking for stack pointer + const,
6619 make sure we don't use a stack adjust. */
6620 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6621 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6622 || (goal_mem
6623 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6624 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6625 || (goal_mem
6626 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6627 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6628 /* If we are looking for a constant,
6629 and something equivalent to that constant was copied
6630 into a reg, we can use that reg. */
6631 || (goal_const && REG_NOTES (p) != 0
6632 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6633 && ((rtx_equal_p (XEXP (tem, 0), goal)
6634 && (valueno
6635 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6636 || (REG_P (SET_DEST (pat))
6637 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6638 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6639 && GET_CODE (goal) == CONST_INT
6640 && 0 != (goaltry
6641 = operand_subword (XEXP (tem, 0), 0, 0,
6642 VOIDmode))
6643 && rtx_equal_p (goal, goaltry)
6644 && (valtry
6645 = operand_subword (SET_DEST (pat), 0, 0,
6646 VOIDmode))
6647 && (valueno = true_regnum (valtry)) >= 0)))
6648 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6649 NULL_RTX))
6650 && REG_P (SET_DEST (pat))
6651 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6652 && SCALAR_FLOAT_MODE_P (GET_MODE (XEXP (tem, 0)))
6653 && GET_CODE (goal) == CONST_INT
6654 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6655 VOIDmode))
6656 && rtx_equal_p (goal, goaltry)
6657 && (valtry
6658 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6659 && (valueno = true_regnum (valtry)) >= 0)))
6661 if (other >= 0)
6663 if (valueno != other)
6664 continue;
6666 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6667 continue;
6668 else
6670 int i;
6672 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6673 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6674 valueno + i))
6675 break;
6676 if (i >= 0)
6677 continue;
6679 value = valtry;
6680 where = p;
6681 break;
6686 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6687 (or copying VALUE into GOAL, if GOAL is also a register).
6688 Now verify that VALUE is really valid. */
6690 /* VALUENO is the register number of VALUE; a hard register. */
6692 /* Don't try to re-use something that is killed in this insn. We want
6693 to be able to trust REG_UNUSED notes. */
6694 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6695 return 0;
6697 /* If we propose to get the value from the stack pointer or if GOAL is
6698 a MEM based on the stack pointer, we need a stable SP. */
6699 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6700 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6701 goal)))
6702 need_stable_sp = 1;
6704 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6705 if (GET_MODE (value) != mode)
6706 return 0;
6708 /* Reject VALUE if it was loaded from GOAL
6709 and is also a register that appears in the address of GOAL. */
6711 if (goal_mem && value == SET_DEST (single_set (where))
6712 && refers_to_regno_for_reload_p (valueno,
6713 (valueno
6714 + hard_regno_nregs[valueno][mode]),
6715 goal, (rtx*) 0))
6716 return 0;
6718 /* Reject registers that overlap GOAL. */
6720 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6721 nregs = hard_regno_nregs[regno][mode];
6722 else
6723 nregs = 1;
6724 valuenregs = hard_regno_nregs[valueno][mode];
6726 if (!goal_mem && !goal_const
6727 && regno + nregs > valueno && regno < valueno + valuenregs)
6728 return 0;
6730 /* Reject VALUE if it is one of the regs reserved for reloads.
6731 Reload1 knows how to reuse them anyway, and it would get
6732 confused if we allocated one without its knowledge.
6733 (Now that insns introduced by reload are ignored above,
6734 this case shouldn't happen, but I'm not positive.) */
6736 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6738 int i;
6739 for (i = 0; i < valuenregs; ++i)
6740 if (reload_reg_p[valueno + i] >= 0)
6741 return 0;
6744 /* Reject VALUE if it is a register being used for an input reload
6745 even if it is not one of those reserved. */
6747 if (reload_reg_p != 0)
6749 int i;
6750 for (i = 0; i < n_reloads; i++)
6751 if (rld[i].reg_rtx != 0 && rld[i].in)
6753 int regno1 = REGNO (rld[i].reg_rtx);
6754 int nregs1 = hard_regno_nregs[regno1]
6755 [GET_MODE (rld[i].reg_rtx)];
6756 if (regno1 < valueno + valuenregs
6757 && regno1 + nregs1 > valueno)
6758 return 0;
6762 if (goal_mem)
6763 /* We must treat frame pointer as varying here,
6764 since it can vary--in a nonlocal goto as generated by expand_goto. */
6765 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6767 /* Now verify that the values of GOAL and VALUE remain unaltered
6768 until INSN is reached. */
6770 p = insn;
6771 while (1)
6773 p = PREV_INSN (p);
6774 if (p == where)
6775 return value;
6777 /* Don't trust the conversion past a function call
6778 if either of the two is in a call-clobbered register, or memory. */
6779 if (CALL_P (p))
6781 int i;
6783 if (goal_mem || need_stable_sp)
6784 return 0;
6786 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6787 for (i = 0; i < nregs; ++i)
6788 if (call_used_regs[regno + i]
6789 || HARD_REGNO_CALL_PART_CLOBBERED (regno + i, mode))
6790 return 0;
6792 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6793 for (i = 0; i < valuenregs; ++i)
6794 if (call_used_regs[valueno + i]
6795 || HARD_REGNO_CALL_PART_CLOBBERED (valueno + i, mode))
6796 return 0;
6799 if (INSN_P (p))
6801 pat = PATTERN (p);
6803 /* Watch out for unspec_volatile, and volatile asms. */
6804 if (volatile_insn_p (pat))
6805 return 0;
6807 /* If this insn P stores in either GOAL or VALUE, return 0.
6808 If GOAL is a memory ref and this insn writes memory, return 0.
6809 If GOAL is a memory ref and its address is not constant,
6810 and this insn P changes a register used in GOAL, return 0. */
6812 if (GET_CODE (pat) == COND_EXEC)
6813 pat = COND_EXEC_CODE (pat);
6814 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6816 rtx dest = SET_DEST (pat);
6817 while (GET_CODE (dest) == SUBREG
6818 || GET_CODE (dest) == ZERO_EXTRACT
6819 || GET_CODE (dest) == STRICT_LOW_PART)
6820 dest = XEXP (dest, 0);
6821 if (REG_P (dest))
6823 int xregno = REGNO (dest);
6824 int xnregs;
6825 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6826 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6827 else
6828 xnregs = 1;
6829 if (xregno < regno + nregs && xregno + xnregs > regno)
6830 return 0;
6831 if (xregno < valueno + valuenregs
6832 && xregno + xnregs > valueno)
6833 return 0;
6834 if (goal_mem_addr_varies
6835 && reg_overlap_mentioned_for_reload_p (dest, goal))
6836 return 0;
6837 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6838 return 0;
6840 else if (goal_mem && MEM_P (dest)
6841 && ! push_operand (dest, GET_MODE (dest)))
6842 return 0;
6843 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6844 && reg_equiv_memory_loc[regno] != 0)
6845 return 0;
6846 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6847 return 0;
6849 else if (GET_CODE (pat) == PARALLEL)
6851 int i;
6852 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6854 rtx v1 = XVECEXP (pat, 0, i);
6855 if (GET_CODE (v1) == COND_EXEC)
6856 v1 = COND_EXEC_CODE (v1);
6857 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6859 rtx dest = SET_DEST (v1);
6860 while (GET_CODE (dest) == SUBREG
6861 || GET_CODE (dest) == ZERO_EXTRACT
6862 || GET_CODE (dest) == STRICT_LOW_PART)
6863 dest = XEXP (dest, 0);
6864 if (REG_P (dest))
6866 int xregno = REGNO (dest);
6867 int xnregs;
6868 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6869 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6870 else
6871 xnregs = 1;
6872 if (xregno < regno + nregs
6873 && xregno + xnregs > regno)
6874 return 0;
6875 if (xregno < valueno + valuenregs
6876 && xregno + xnregs > valueno)
6877 return 0;
6878 if (goal_mem_addr_varies
6879 && reg_overlap_mentioned_for_reload_p (dest,
6880 goal))
6881 return 0;
6882 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6883 return 0;
6885 else if (goal_mem && MEM_P (dest)
6886 && ! push_operand (dest, GET_MODE (dest)))
6887 return 0;
6888 else if (MEM_P (dest) && regno >= FIRST_PSEUDO_REGISTER
6889 && reg_equiv_memory_loc[regno] != 0)
6890 return 0;
6891 else if (need_stable_sp
6892 && push_operand (dest, GET_MODE (dest)))
6893 return 0;
6898 if (CALL_P (p) && CALL_INSN_FUNCTION_USAGE (p))
6900 rtx link;
6902 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6903 link = XEXP (link, 1))
6905 pat = XEXP (link, 0);
6906 if (GET_CODE (pat) == CLOBBER)
6908 rtx dest = SET_DEST (pat);
6910 if (REG_P (dest))
6912 int xregno = REGNO (dest);
6913 int xnregs
6914 = hard_regno_nregs[xregno][GET_MODE (dest)];
6916 if (xregno < regno + nregs
6917 && xregno + xnregs > regno)
6918 return 0;
6919 else if (xregno < valueno + valuenregs
6920 && xregno + xnregs > valueno)
6921 return 0;
6922 else if (goal_mem_addr_varies
6923 && reg_overlap_mentioned_for_reload_p (dest,
6924 goal))
6925 return 0;
6928 else if (goal_mem && MEM_P (dest)
6929 && ! push_operand (dest, GET_MODE (dest)))
6930 return 0;
6931 else if (need_stable_sp
6932 && push_operand (dest, GET_MODE (dest)))
6933 return 0;
6938 #ifdef AUTO_INC_DEC
6939 /* If this insn auto-increments or auto-decrements
6940 either regno or valueno, return 0 now.
6941 If GOAL is a memory ref and its address is not constant,
6942 and this insn P increments a register used in GOAL, return 0. */
6944 rtx link;
6946 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6947 if (REG_NOTE_KIND (link) == REG_INC
6948 && REG_P (XEXP (link, 0)))
6950 int incno = REGNO (XEXP (link, 0));
6951 if (incno < regno + nregs && incno >= regno)
6952 return 0;
6953 if (incno < valueno + valuenregs && incno >= valueno)
6954 return 0;
6955 if (goal_mem_addr_varies
6956 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6957 goal))
6958 return 0;
6961 #endif
6966 /* Find a place where INCED appears in an increment or decrement operator
6967 within X, and return the amount INCED is incremented or decremented by.
6968 The value is always positive. */
6970 static int
6971 find_inc_amount (rtx x, rtx inced)
6973 enum rtx_code code = GET_CODE (x);
6974 const char *fmt;
6975 int i;
6977 if (code == MEM)
6979 rtx addr = XEXP (x, 0);
6980 if ((GET_CODE (addr) == PRE_DEC
6981 || GET_CODE (addr) == POST_DEC
6982 || GET_CODE (addr) == PRE_INC
6983 || GET_CODE (addr) == POST_INC)
6984 && XEXP (addr, 0) == inced)
6985 return GET_MODE_SIZE (GET_MODE (x));
6986 else if ((GET_CODE (addr) == PRE_MODIFY
6987 || GET_CODE (addr) == POST_MODIFY)
6988 && GET_CODE (XEXP (addr, 1)) == PLUS
6989 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6990 && XEXP (addr, 0) == inced
6991 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6993 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6994 return i < 0 ? -i : i;
6998 fmt = GET_RTX_FORMAT (code);
6999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7001 if (fmt[i] == 'e')
7003 int tem = find_inc_amount (XEXP (x, i), inced);
7004 if (tem != 0)
7005 return tem;
7007 if (fmt[i] == 'E')
7009 int j;
7010 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7012 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
7013 if (tem != 0)
7014 return tem;
7019 return 0;
7022 /* Return 1 if registers from REGNO to ENDREGNO are the subjects of a
7023 REG_INC note in insn INSN. REGNO must refer to a hard register. */
7025 #ifdef AUTO_INC_DEC
7026 static int
7027 reg_inc_found_and_valid_p (unsigned int regno, unsigned int endregno,
7028 rtx insn)
7030 rtx link;
7032 gcc_assert (insn);
7034 if (! INSN_P (insn))
7035 return 0;
7037 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
7038 if (REG_NOTE_KIND (link) == REG_INC)
7040 unsigned int test = (int) REGNO (XEXP (link, 0));
7041 if (test >= regno && test < endregno)
7042 return 1;
7044 return 0;
7046 #else
7048 #define reg_inc_found_and_valid_p(regno,endregno,insn) 0
7050 #endif
7052 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
7053 If SETS is 1, also consider SETs. If SETS is 2, enable checking
7054 REG_INC. REGNO must refer to a hard register. */
7057 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
7058 int sets)
7060 unsigned int nregs, endregno;
7062 /* regno must be a hard register. */
7063 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
7065 nregs = hard_regno_nregs[regno][mode];
7066 endregno = regno + nregs;
7068 if ((GET_CODE (PATTERN (insn)) == CLOBBER
7069 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7070 && REG_P (XEXP (PATTERN (insn), 0)))
7072 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
7074 return test >= regno && test < endregno;
7077 if (sets == 2 && reg_inc_found_and_valid_p (regno, endregno, insn))
7078 return 1;
7080 if (GET_CODE (PATTERN (insn)) == PARALLEL)
7082 int i = XVECLEN (PATTERN (insn), 0) - 1;
7084 for (; i >= 0; i--)
7086 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7087 if ((GET_CODE (elt) == CLOBBER
7088 || (sets == 1 && GET_CODE (PATTERN (insn)) == SET))
7089 && REG_P (XEXP (elt, 0)))
7091 unsigned int test = REGNO (XEXP (elt, 0));
7093 if (test >= regno && test < endregno)
7094 return 1;
7096 if (sets == 2
7097 && reg_inc_found_and_valid_p (regno, endregno, elt))
7098 return 1;
7102 return 0;
7105 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
7107 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
7109 int regno;
7111 if (GET_MODE (reloadreg) == mode)
7112 return reloadreg;
7114 regno = REGNO (reloadreg);
7116 if (WORDS_BIG_ENDIAN)
7117 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
7118 - (int) hard_regno_nregs[regno][mode];
7120 return gen_rtx_REG (mode, regno);
7123 static const char *const reload_when_needed_name[] =
7125 "RELOAD_FOR_INPUT",
7126 "RELOAD_FOR_OUTPUT",
7127 "RELOAD_FOR_INSN",
7128 "RELOAD_FOR_INPUT_ADDRESS",
7129 "RELOAD_FOR_INPADDR_ADDRESS",
7130 "RELOAD_FOR_OUTPUT_ADDRESS",
7131 "RELOAD_FOR_OUTADDR_ADDRESS",
7132 "RELOAD_FOR_OPERAND_ADDRESS",
7133 "RELOAD_FOR_OPADDR_ADDR",
7134 "RELOAD_OTHER",
7135 "RELOAD_FOR_OTHER_ADDRESS"
7138 /* These functions are used to print the variables set by 'find_reloads' */
7140 void
7141 debug_reload_to_stream (FILE *f)
7143 int r;
7144 const char *prefix;
7146 if (! f)
7147 f = stderr;
7148 for (r = 0; r < n_reloads; r++)
7150 fprintf (f, "Reload %d: ", r);
7152 if (rld[r].in != 0)
7154 fprintf (f, "reload_in (%s) = ",
7155 GET_MODE_NAME (rld[r].inmode));
7156 print_inline_rtx (f, rld[r].in, 24);
7157 fprintf (f, "\n\t");
7160 if (rld[r].out != 0)
7162 fprintf (f, "reload_out (%s) = ",
7163 GET_MODE_NAME (rld[r].outmode));
7164 print_inline_rtx (f, rld[r].out, 24);
7165 fprintf (f, "\n\t");
7168 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7170 fprintf (f, "%s (opnum = %d)",
7171 reload_when_needed_name[(int) rld[r].when_needed],
7172 rld[r].opnum);
7174 if (rld[r].optional)
7175 fprintf (f, ", optional");
7177 if (rld[r].nongroup)
7178 fprintf (f, ", nongroup");
7180 if (rld[r].inc != 0)
7181 fprintf (f, ", inc by %d", rld[r].inc);
7183 if (rld[r].nocombine)
7184 fprintf (f, ", can't combine");
7186 if (rld[r].secondary_p)
7187 fprintf (f, ", secondary_reload_p");
7189 if (rld[r].in_reg != 0)
7191 fprintf (f, "\n\treload_in_reg: ");
7192 print_inline_rtx (f, rld[r].in_reg, 24);
7195 if (rld[r].out_reg != 0)
7197 fprintf (f, "\n\treload_out_reg: ");
7198 print_inline_rtx (f, rld[r].out_reg, 24);
7201 if (rld[r].reg_rtx != 0)
7203 fprintf (f, "\n\treload_reg_rtx: ");
7204 print_inline_rtx (f, rld[r].reg_rtx, 24);
7207 prefix = "\n\t";
7208 if (rld[r].secondary_in_reload != -1)
7210 fprintf (f, "%ssecondary_in_reload = %d",
7211 prefix, rld[r].secondary_in_reload);
7212 prefix = ", ";
7215 if (rld[r].secondary_out_reload != -1)
7216 fprintf (f, "%ssecondary_out_reload = %d\n",
7217 prefix, rld[r].secondary_out_reload);
7219 prefix = "\n\t";
7220 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7222 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7223 insn_data[rld[r].secondary_in_icode].name);
7224 prefix = ", ";
7227 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7228 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7229 insn_data[rld[r].secondary_out_icode].name);
7231 fprintf (f, "\n");
7235 void
7236 debug_reload (void)
7238 debug_reload_to_stream (stderr);