* doc/invoke.texi: Add cpu_type power6.
[official-gcc.git] / gcc / ifcvt.c
blob4787a246b0558ef55fdcb1507e6049d3751f895f
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
27 #include "rtl.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "except.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "expr.h"
37 #include "real.h"
38 #include "output.h"
39 #include "optabs.h"
40 #include "toplev.h"
41 #include "tm_p.h"
42 #include "cfgloop.h"
43 #include "target.h"
44 #include "timevar.h"
45 #include "tree-pass.h"
48 #ifndef HAVE_conditional_execution
49 #define HAVE_conditional_execution 0
50 #endif
51 #ifndef HAVE_conditional_move
52 #define HAVE_conditional_move 0
53 #endif
54 #ifndef HAVE_incscc
55 #define HAVE_incscc 0
56 #endif
57 #ifndef HAVE_decscc
58 #define HAVE_decscc 0
59 #endif
60 #ifndef HAVE_trap
61 #define HAVE_trap 0
62 #endif
63 #ifndef HAVE_conditional_trap
64 #define HAVE_conditional_trap 0
65 #endif
67 #ifndef MAX_CONDITIONAL_EXECUTE
68 #define MAX_CONDITIONAL_EXECUTE (BRANCH_COST + 1)
69 #endif
71 #define NULL_BLOCK ((basic_block) NULL)
73 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
74 static int num_possible_if_blocks;
76 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
77 execution. */
78 static int num_updated_if_blocks;
80 /* # of changes made which require life information to be updated. */
81 static int num_true_changes;
83 /* Whether conditional execution changes were made. */
84 static int cond_exec_changed_p;
86 /* True if life data ok at present. */
87 static bool life_data_ok;
89 /* Forward references. */
90 static int count_bb_insns (basic_block);
91 static bool cheap_bb_rtx_cost_p (basic_block, int);
92 static rtx first_active_insn (basic_block);
93 static rtx last_active_insn (basic_block, int);
94 static basic_block block_fallthru (basic_block);
95 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
96 static rtx cond_exec_get_condition (rtx);
97 static int cond_exec_process_if_block (ce_if_block_t *, int);
98 static rtx noce_get_condition (rtx, rtx *);
99 static int noce_operand_ok (rtx);
100 static int noce_process_if_block (ce_if_block_t *);
101 static int process_if_block (ce_if_block_t *);
102 static void merge_if_block (ce_if_block_t *);
103 static int find_cond_trap (basic_block, edge, edge);
104 static basic_block find_if_header (basic_block, int);
105 static int block_jumps_and_fallthru_p (basic_block, basic_block);
106 static int find_if_block (ce_if_block_t *);
107 static int find_if_case_1 (basic_block, edge, edge);
108 static int find_if_case_2 (basic_block, edge, edge);
109 static int find_memory (rtx *, void *);
110 static int dead_or_predicable (basic_block, basic_block, basic_block,
111 basic_block, int);
112 static void noce_emit_move_insn (rtx, rtx);
113 static rtx block_has_only_trap (basic_block);
115 /* Count the number of non-jump active insns in BB. */
117 static int
118 count_bb_insns (basic_block bb)
120 int count = 0;
121 rtx insn = BB_HEAD (bb);
123 while (1)
125 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
126 count++;
128 if (insn == BB_END (bb))
129 break;
130 insn = NEXT_INSN (insn);
133 return count;
136 /* Determine whether the total insn_rtx_cost on non-jump insns in
137 basic block BB is less than MAX_COST. This function returns
138 false if the cost of any instruction could not be estimated. */
140 static bool
141 cheap_bb_rtx_cost_p (basic_block bb, int max_cost)
143 int count = 0;
144 rtx insn = BB_HEAD (bb);
146 while (1)
148 if (NONJUMP_INSN_P (insn))
150 int cost = insn_rtx_cost (PATTERN (insn));
151 if (cost == 0)
152 return false;
154 /* If this instruction is the load or set of a "stack" register,
155 such as a floating point register on x87, then the cost of
156 speculatively executing this instruction needs to include
157 the additional cost of popping this register off of the
158 register stack. */
159 #ifdef STACK_REGS
161 rtx set = single_set (insn);
162 if (set && STACK_REG_P (SET_DEST (set)))
163 cost += COSTS_N_INSNS (1);
165 #endif
167 count += cost;
168 if (count >= max_cost)
169 return false;
171 else if (CALL_P (insn))
172 return false;
174 if (insn == BB_END (bb))
175 break;
176 insn = NEXT_INSN (insn);
179 return true;
182 /* Return the first non-jump active insn in the basic block. */
184 static rtx
185 first_active_insn (basic_block bb)
187 rtx insn = BB_HEAD (bb);
189 if (LABEL_P (insn))
191 if (insn == BB_END (bb))
192 return NULL_RTX;
193 insn = NEXT_INSN (insn);
196 while (NOTE_P (insn))
198 if (insn == BB_END (bb))
199 return NULL_RTX;
200 insn = NEXT_INSN (insn);
203 if (JUMP_P (insn))
204 return NULL_RTX;
206 return insn;
209 /* Return the last non-jump active (non-jump) insn in the basic block. */
211 static rtx
212 last_active_insn (basic_block bb, int skip_use_p)
214 rtx insn = BB_END (bb);
215 rtx head = BB_HEAD (bb);
217 while (NOTE_P (insn)
218 || JUMP_P (insn)
219 || (skip_use_p
220 && NONJUMP_INSN_P (insn)
221 && GET_CODE (PATTERN (insn)) == USE))
223 if (insn == head)
224 return NULL_RTX;
225 insn = PREV_INSN (insn);
228 if (LABEL_P (insn))
229 return NULL_RTX;
231 return insn;
234 /* Return the basic block reached by falling though the basic block BB. */
236 static basic_block
237 block_fallthru (basic_block bb)
239 edge e;
240 edge_iterator ei;
242 FOR_EACH_EDGE (e, ei, bb->succs)
243 if (e->flags & EDGE_FALLTHRU)
244 break;
246 return (e) ? e->dest : NULL_BLOCK;
249 /* Go through a bunch of insns, converting them to conditional
250 execution format if possible. Return TRUE if all of the non-note
251 insns were processed. */
253 static int
254 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
255 /* if block information */rtx start,
256 /* first insn to look at */rtx end,
257 /* last insn to look at */rtx test,
258 /* conditional execution test */rtx prob_val,
259 /* probability of branch taken. */int mod_ok)
261 int must_be_last = FALSE;
262 rtx insn;
263 rtx xtest;
264 rtx pattern;
266 if (!start || !end)
267 return FALSE;
269 for (insn = start; ; insn = NEXT_INSN (insn))
271 if (NOTE_P (insn))
272 goto insn_done;
274 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
276 /* Remove USE insns that get in the way. */
277 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
279 /* ??? Ug. Actually unlinking the thing is problematic,
280 given what we'd have to coordinate with our callers. */
281 SET_INSN_DELETED (insn);
282 goto insn_done;
285 /* Last insn wasn't last? */
286 if (must_be_last)
287 return FALSE;
289 if (modified_in_p (test, insn))
291 if (!mod_ok)
292 return FALSE;
293 must_be_last = TRUE;
296 /* Now build the conditional form of the instruction. */
297 pattern = PATTERN (insn);
298 xtest = copy_rtx (test);
300 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
301 two conditions. */
302 if (GET_CODE (pattern) == COND_EXEC)
304 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
305 return FALSE;
307 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
308 COND_EXEC_TEST (pattern));
309 pattern = COND_EXEC_CODE (pattern);
312 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
314 /* If the machine needs to modify the insn being conditionally executed,
315 say for example to force a constant integer operand into a temp
316 register, do so here. */
317 #ifdef IFCVT_MODIFY_INSN
318 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
319 if (! pattern)
320 return FALSE;
321 #endif
323 validate_change (insn, &PATTERN (insn), pattern, 1);
325 if (CALL_P (insn) && prob_val)
326 validate_change (insn, &REG_NOTES (insn),
327 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
328 REG_NOTES (insn)), 1);
330 insn_done:
331 if (insn == end)
332 break;
335 return TRUE;
338 /* Return the condition for a jump. Do not do any special processing. */
340 static rtx
341 cond_exec_get_condition (rtx jump)
343 rtx test_if, cond;
345 if (any_condjump_p (jump))
346 test_if = SET_SRC (pc_set (jump));
347 else
348 return NULL_RTX;
349 cond = XEXP (test_if, 0);
351 /* If this branches to JUMP_LABEL when the condition is false,
352 reverse the condition. */
353 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
354 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
356 enum rtx_code rev = reversed_comparison_code (cond, jump);
357 if (rev == UNKNOWN)
358 return NULL_RTX;
360 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
361 XEXP (cond, 1));
364 return cond;
367 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
368 to conditional execution. Return TRUE if we were successful at
369 converting the block. */
371 static int
372 cond_exec_process_if_block (ce_if_block_t * ce_info,
373 /* if block information */int do_multiple_p)
375 basic_block test_bb = ce_info->test_bb; /* last test block */
376 basic_block then_bb = ce_info->then_bb; /* THEN */
377 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
378 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
379 rtx then_start; /* first insn in THEN block */
380 rtx then_end; /* last insn + 1 in THEN block */
381 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
382 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
383 int max; /* max # of insns to convert. */
384 int then_mod_ok; /* whether conditional mods are ok in THEN */
385 rtx true_expr; /* test for else block insns */
386 rtx false_expr; /* test for then block insns */
387 rtx true_prob_val; /* probability of else block */
388 rtx false_prob_val; /* probability of then block */
389 int n_insns;
390 enum rtx_code false_code;
392 /* If test is comprised of && or || elements, and we've failed at handling
393 all of them together, just use the last test if it is the special case of
394 && elements without an ELSE block. */
395 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
397 if (else_bb || ! ce_info->and_and_p)
398 return FALSE;
400 ce_info->test_bb = test_bb = ce_info->last_test_bb;
401 ce_info->num_multiple_test_blocks = 0;
402 ce_info->num_and_and_blocks = 0;
403 ce_info->num_or_or_blocks = 0;
406 /* Find the conditional jump to the ELSE or JOIN part, and isolate
407 the test. */
408 test_expr = cond_exec_get_condition (BB_END (test_bb));
409 if (! test_expr)
410 return FALSE;
412 /* If the conditional jump is more than just a conditional jump,
413 then we can not do conditional execution conversion on this block. */
414 if (! onlyjump_p (BB_END (test_bb)))
415 return FALSE;
417 /* Collect the bounds of where we're to search, skipping any labels, jumps
418 and notes at the beginning and end of the block. Then count the total
419 number of insns and see if it is small enough to convert. */
420 then_start = first_active_insn (then_bb);
421 then_end = last_active_insn (then_bb, TRUE);
422 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
423 max = MAX_CONDITIONAL_EXECUTE;
425 if (else_bb)
427 max *= 2;
428 else_start = first_active_insn (else_bb);
429 else_end = last_active_insn (else_bb, TRUE);
430 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
433 if (n_insns > max)
434 return FALSE;
436 /* Map test_expr/test_jump into the appropriate MD tests to use on
437 the conditionally executed code. */
439 true_expr = test_expr;
441 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
442 if (false_code != UNKNOWN)
443 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
444 XEXP (true_expr, 0), XEXP (true_expr, 1));
445 else
446 false_expr = NULL_RTX;
448 #ifdef IFCVT_MODIFY_TESTS
449 /* If the machine description needs to modify the tests, such as setting a
450 conditional execution register from a comparison, it can do so here. */
451 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
453 /* See if the conversion failed. */
454 if (!true_expr || !false_expr)
455 goto fail;
456 #endif
458 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
459 if (true_prob_val)
461 true_prob_val = XEXP (true_prob_val, 0);
462 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
464 else
465 false_prob_val = NULL_RTX;
467 /* If we have && or || tests, do them here. These tests are in the adjacent
468 blocks after the first block containing the test. */
469 if (ce_info->num_multiple_test_blocks > 0)
471 basic_block bb = test_bb;
472 basic_block last_test_bb = ce_info->last_test_bb;
474 if (! false_expr)
475 goto fail;
479 rtx start, end;
480 rtx t, f;
481 enum rtx_code f_code;
483 bb = block_fallthru (bb);
484 start = first_active_insn (bb);
485 end = last_active_insn (bb, TRUE);
486 if (start
487 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
488 false_prob_val, FALSE))
489 goto fail;
491 /* If the conditional jump is more than just a conditional jump, then
492 we can not do conditional execution conversion on this block. */
493 if (! onlyjump_p (BB_END (bb)))
494 goto fail;
496 /* Find the conditional jump and isolate the test. */
497 t = cond_exec_get_condition (BB_END (bb));
498 if (! t)
499 goto fail;
501 f_code = reversed_comparison_code (t, BB_END (bb));
502 if (f_code == UNKNOWN)
503 goto fail;
505 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
506 if (ce_info->and_and_p)
508 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
509 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
511 else
513 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
514 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
517 /* If the machine description needs to modify the tests, such as
518 setting a conditional execution register from a comparison, it can
519 do so here. */
520 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
521 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
523 /* See if the conversion failed. */
524 if (!t || !f)
525 goto fail;
526 #endif
528 true_expr = t;
529 false_expr = f;
531 while (bb != last_test_bb);
534 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
535 on then THEN block. */
536 then_mod_ok = (else_bb == NULL_BLOCK);
538 /* Go through the THEN and ELSE blocks converting the insns if possible
539 to conditional execution. */
541 if (then_end
542 && (! false_expr
543 || ! cond_exec_process_insns (ce_info, then_start, then_end,
544 false_expr, false_prob_val,
545 then_mod_ok)))
546 goto fail;
548 if (else_bb && else_end
549 && ! cond_exec_process_insns (ce_info, else_start, else_end,
550 true_expr, true_prob_val, TRUE))
551 goto fail;
553 /* If we cannot apply the changes, fail. Do not go through the normal fail
554 processing, since apply_change_group will call cancel_changes. */
555 if (! apply_change_group ())
557 #ifdef IFCVT_MODIFY_CANCEL
558 /* Cancel any machine dependent changes. */
559 IFCVT_MODIFY_CANCEL (ce_info);
560 #endif
561 return FALSE;
564 #ifdef IFCVT_MODIFY_FINAL
565 /* Do any machine dependent final modifications. */
566 IFCVT_MODIFY_FINAL (ce_info);
567 #endif
569 /* Conversion succeeded. */
570 if (dump_file)
571 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
572 n_insns, (n_insns == 1) ? " was" : "s were");
574 /* Merge the blocks! */
575 merge_if_block (ce_info);
576 cond_exec_changed_p = TRUE;
577 return TRUE;
579 fail:
580 #ifdef IFCVT_MODIFY_CANCEL
581 /* Cancel any machine dependent changes. */
582 IFCVT_MODIFY_CANCEL (ce_info);
583 #endif
585 cancel_changes (0);
586 return FALSE;
589 /* Used by noce_process_if_block to communicate with its subroutines.
591 The subroutines know that A and B may be evaluated freely. They
592 know that X is a register. They should insert new instructions
593 before cond_earliest. */
595 struct noce_if_info
597 basic_block test_bb;
598 rtx insn_a, insn_b;
599 rtx x, a, b;
600 rtx jump, cond, cond_earliest;
601 /* True if "b" was originally evaluated unconditionally. */
602 bool b_unconditional;
605 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
606 static int noce_try_move (struct noce_if_info *);
607 static int noce_try_store_flag (struct noce_if_info *);
608 static int noce_try_addcc (struct noce_if_info *);
609 static int noce_try_store_flag_constants (struct noce_if_info *);
610 static int noce_try_store_flag_mask (struct noce_if_info *);
611 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
612 rtx, rtx, rtx);
613 static int noce_try_cmove (struct noce_if_info *);
614 static int noce_try_cmove_arith (struct noce_if_info *);
615 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
616 static int noce_try_minmax (struct noce_if_info *);
617 static int noce_try_abs (struct noce_if_info *);
618 static int noce_try_sign_mask (struct noce_if_info *);
620 /* Helper function for noce_try_store_flag*. */
622 static rtx
623 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
624 int normalize)
626 rtx cond = if_info->cond;
627 int cond_complex;
628 enum rtx_code code;
630 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
631 || ! general_operand (XEXP (cond, 1), VOIDmode));
633 /* If earliest == jump, or when the condition is complex, try to
634 build the store_flag insn directly. */
636 if (cond_complex)
637 cond = XEXP (SET_SRC (pc_set (if_info->jump)), 0);
639 if (reversep)
640 code = reversed_comparison_code (cond, if_info->jump);
641 else
642 code = GET_CODE (cond);
644 if ((if_info->cond_earliest == if_info->jump || cond_complex)
645 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
647 rtx tmp;
649 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
650 XEXP (cond, 1));
651 tmp = gen_rtx_SET (VOIDmode, x, tmp);
653 start_sequence ();
654 tmp = emit_insn (tmp);
656 if (recog_memoized (tmp) >= 0)
658 tmp = get_insns ();
659 end_sequence ();
660 emit_insn (tmp);
662 if_info->cond_earliest = if_info->jump;
664 return x;
667 end_sequence ();
670 /* Don't even try if the comparison operands or the mode of X are weird. */
671 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
672 return NULL_RTX;
674 return emit_store_flag (x, code, XEXP (cond, 0),
675 XEXP (cond, 1), VOIDmode,
676 (code == LTU || code == LEU
677 || code == GEU || code == GTU), normalize);
680 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
681 X is the destination/target and Y is the value to copy. */
683 static void
684 noce_emit_move_insn (rtx x, rtx y)
686 enum machine_mode outmode;
687 rtx outer, inner;
688 int bitpos;
690 if (GET_CODE (x) != STRICT_LOW_PART)
692 rtx seq, insn, target;
693 optab ot;
695 start_sequence ();
696 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
697 otherwise construct a suitable SET pattern ourselves. */
698 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
699 ? emit_move_insn (x, y)
700 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
701 seq = get_insns ();
702 end_sequence();
704 if (recog_memoized (insn) <= 0)
706 if (GET_CODE (x) == ZERO_EXTRACT)
708 rtx op = XEXP (x, 0);
709 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
710 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
712 /* store_bit_field expects START to be relative to
713 BYTES_BIG_ENDIAN and adjusts this value for machines with
714 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
715 invoke store_bit_field again it is necessary to have the START
716 value from the first call. */
717 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
719 if (MEM_P (op))
720 start = BITS_PER_UNIT - start - size;
721 else
723 gcc_assert (REG_P (op));
724 start = BITS_PER_WORD - start - size;
728 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
729 store_bit_field (op, size, start, GET_MODE (x), y);
730 return;
733 switch (GET_RTX_CLASS (GET_CODE (y)))
735 case RTX_UNARY:
736 ot = code_to_optab[GET_CODE (y)];
737 if (ot)
739 start_sequence ();
740 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
741 if (target != NULL_RTX)
743 if (target != x)
744 emit_move_insn (x, target);
745 seq = get_insns ();
747 end_sequence ();
749 break;
751 case RTX_BIN_ARITH:
752 case RTX_COMM_ARITH:
753 ot = code_to_optab[GET_CODE (y)];
754 if (ot)
756 start_sequence ();
757 target = expand_binop (GET_MODE (y), ot,
758 XEXP (y, 0), XEXP (y, 1),
759 x, 0, OPTAB_DIRECT);
760 if (target != NULL_RTX)
762 if (target != x)
763 emit_move_insn (x, target);
764 seq = get_insns ();
766 end_sequence ();
768 break;
770 default:
771 break;
775 emit_insn (seq);
776 return;
779 outer = XEXP (x, 0);
780 inner = XEXP (outer, 0);
781 outmode = GET_MODE (outer);
782 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
783 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
786 /* Return sequence of instructions generated by if conversion. This
787 function calls end_sequence() to end the current stream, ensures
788 that are instructions are unshared, recognizable non-jump insns.
789 On failure, this function returns a NULL_RTX. */
791 static rtx
792 end_ifcvt_sequence (struct noce_if_info *if_info)
794 rtx insn;
795 rtx seq = get_insns ();
797 set_used_flags (if_info->x);
798 set_used_flags (if_info->cond);
799 unshare_all_rtl_in_chain (seq);
800 end_sequence ();
802 /* Make sure that all of the instructions emitted are recognizable,
803 and that we haven't introduced a new jump instruction.
804 As an exercise for the reader, build a general mechanism that
805 allows proper placement of required clobbers. */
806 for (insn = seq; insn; insn = NEXT_INSN (insn))
807 if (JUMP_P (insn)
808 || recog_memoized (insn) == -1)
809 return NULL_RTX;
811 return seq;
814 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
815 "if (a == b) x = a; else x = b" into "x = b". */
817 static int
818 noce_try_move (struct noce_if_info *if_info)
820 rtx cond = if_info->cond;
821 enum rtx_code code = GET_CODE (cond);
822 rtx y, seq;
824 if (code != NE && code != EQ)
825 return FALSE;
827 /* This optimization isn't valid if either A or B could be a NaN
828 or a signed zero. */
829 if (HONOR_NANS (GET_MODE (if_info->x))
830 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
831 return FALSE;
833 /* Check whether the operands of the comparison are A and in
834 either order. */
835 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
836 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
837 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
838 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
840 y = (code == EQ) ? if_info->a : if_info->b;
842 /* Avoid generating the move if the source is the destination. */
843 if (! rtx_equal_p (if_info->x, y))
845 start_sequence ();
846 noce_emit_move_insn (if_info->x, y);
847 seq = end_ifcvt_sequence (if_info);
848 if (!seq)
849 return FALSE;
851 emit_insn_before_setloc (seq, if_info->jump,
852 INSN_LOCATOR (if_info->insn_a));
854 return TRUE;
856 return FALSE;
859 /* Convert "if (test) x = 1; else x = 0".
861 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
862 tried in noce_try_store_flag_constants after noce_try_cmove has had
863 a go at the conversion. */
865 static int
866 noce_try_store_flag (struct noce_if_info *if_info)
868 int reversep;
869 rtx target, seq;
871 if (GET_CODE (if_info->b) == CONST_INT
872 && INTVAL (if_info->b) == STORE_FLAG_VALUE
873 && if_info->a == const0_rtx)
874 reversep = 0;
875 else if (if_info->b == const0_rtx
876 && GET_CODE (if_info->a) == CONST_INT
877 && INTVAL (if_info->a) == STORE_FLAG_VALUE
878 && (reversed_comparison_code (if_info->cond, if_info->jump)
879 != UNKNOWN))
880 reversep = 1;
881 else
882 return FALSE;
884 start_sequence ();
886 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
887 if (target)
889 if (target != if_info->x)
890 noce_emit_move_insn (if_info->x, target);
892 seq = end_ifcvt_sequence (if_info);
893 if (! seq)
894 return FALSE;
896 emit_insn_before_setloc (seq, if_info->jump,
897 INSN_LOCATOR (if_info->insn_a));
898 return TRUE;
900 else
902 end_sequence ();
903 return FALSE;
907 /* Convert "if (test) x = a; else x = b", for A and B constant. */
909 static int
910 noce_try_store_flag_constants (struct noce_if_info *if_info)
912 rtx target, seq;
913 int reversep;
914 HOST_WIDE_INT itrue, ifalse, diff, tmp;
915 int normalize, can_reverse;
916 enum machine_mode mode;
918 if (! no_new_pseudos
919 && GET_CODE (if_info->a) == CONST_INT
920 && GET_CODE (if_info->b) == CONST_INT)
922 mode = GET_MODE (if_info->x);
923 ifalse = INTVAL (if_info->a);
924 itrue = INTVAL (if_info->b);
926 /* Make sure we can represent the difference between the two values. */
927 if ((itrue - ifalse > 0)
928 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
929 return FALSE;
931 diff = trunc_int_for_mode (itrue - ifalse, mode);
933 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
934 != UNKNOWN);
936 reversep = 0;
937 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
938 normalize = 0;
939 else if (ifalse == 0 && exact_log2 (itrue) >= 0
940 && (STORE_FLAG_VALUE == 1
941 || BRANCH_COST >= 2))
942 normalize = 1;
943 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
944 && (STORE_FLAG_VALUE == 1 || BRANCH_COST >= 2))
945 normalize = 1, reversep = 1;
946 else if (itrue == -1
947 && (STORE_FLAG_VALUE == -1
948 || BRANCH_COST >= 2))
949 normalize = -1;
950 else if (ifalse == -1 && can_reverse
951 && (STORE_FLAG_VALUE == -1 || BRANCH_COST >= 2))
952 normalize = -1, reversep = 1;
953 else if ((BRANCH_COST >= 2 && STORE_FLAG_VALUE == -1)
954 || BRANCH_COST >= 3)
955 normalize = -1;
956 else
957 return FALSE;
959 if (reversep)
961 tmp = itrue; itrue = ifalse; ifalse = tmp;
962 diff = trunc_int_for_mode (-diff, mode);
965 start_sequence ();
966 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
967 if (! target)
969 end_sequence ();
970 return FALSE;
973 /* if (test) x = 3; else x = 4;
974 => x = 3 + (test == 0); */
975 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
977 target = expand_simple_binop (mode,
978 (diff == STORE_FLAG_VALUE
979 ? PLUS : MINUS),
980 GEN_INT (ifalse), target, if_info->x, 0,
981 OPTAB_WIDEN);
984 /* if (test) x = 8; else x = 0;
985 => x = (test != 0) << 3; */
986 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
988 target = expand_simple_binop (mode, ASHIFT,
989 target, GEN_INT (tmp), if_info->x, 0,
990 OPTAB_WIDEN);
993 /* if (test) x = -1; else x = b;
994 => x = -(test != 0) | b; */
995 else if (itrue == -1)
997 target = expand_simple_binop (mode, IOR,
998 target, GEN_INT (ifalse), if_info->x, 0,
999 OPTAB_WIDEN);
1002 /* if (test) x = a; else x = b;
1003 => x = (-(test != 0) & (b - a)) + a; */
1004 else
1006 target = expand_simple_binop (mode, AND,
1007 target, GEN_INT (diff), if_info->x, 0,
1008 OPTAB_WIDEN);
1009 if (target)
1010 target = expand_simple_binop (mode, PLUS,
1011 target, GEN_INT (ifalse),
1012 if_info->x, 0, OPTAB_WIDEN);
1015 if (! target)
1017 end_sequence ();
1018 return FALSE;
1021 if (target != if_info->x)
1022 noce_emit_move_insn (if_info->x, target);
1024 seq = end_ifcvt_sequence (if_info);
1025 if (!seq)
1026 return FALSE;
1028 emit_insn_before_setloc (seq, if_info->jump,
1029 INSN_LOCATOR (if_info->insn_a));
1030 return TRUE;
1033 return FALSE;
1036 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1037 similarly for "foo--". */
1039 static int
1040 noce_try_addcc (struct noce_if_info *if_info)
1042 rtx target, seq;
1043 int subtract, normalize;
1045 if (! no_new_pseudos
1046 && GET_CODE (if_info->a) == PLUS
1047 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1048 && (reversed_comparison_code (if_info->cond, if_info->jump)
1049 != UNKNOWN))
1051 rtx cond = if_info->cond;
1052 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1054 /* First try to use addcc pattern. */
1055 if (general_operand (XEXP (cond, 0), VOIDmode)
1056 && general_operand (XEXP (cond, 1), VOIDmode))
1058 start_sequence ();
1059 target = emit_conditional_add (if_info->x, code,
1060 XEXP (cond, 0),
1061 XEXP (cond, 1),
1062 VOIDmode,
1063 if_info->b,
1064 XEXP (if_info->a, 1),
1065 GET_MODE (if_info->x),
1066 (code == LTU || code == GEU
1067 || code == LEU || code == GTU));
1068 if (target)
1070 if (target != if_info->x)
1071 noce_emit_move_insn (if_info->x, target);
1073 seq = end_ifcvt_sequence (if_info);
1074 if (!seq)
1075 return FALSE;
1077 emit_insn_before_setloc (seq, if_info->jump,
1078 INSN_LOCATOR (if_info->insn_a));
1079 return TRUE;
1081 end_sequence ();
1084 /* If that fails, construct conditional increment or decrement using
1085 setcc. */
1086 if (BRANCH_COST >= 2
1087 && (XEXP (if_info->a, 1) == const1_rtx
1088 || XEXP (if_info->a, 1) == constm1_rtx))
1090 start_sequence ();
1091 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1092 subtract = 0, normalize = 0;
1093 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1094 subtract = 1, normalize = 0;
1095 else
1096 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1099 target = noce_emit_store_flag (if_info,
1100 gen_reg_rtx (GET_MODE (if_info->x)),
1101 1, normalize);
1103 if (target)
1104 target = expand_simple_binop (GET_MODE (if_info->x),
1105 subtract ? MINUS : PLUS,
1106 if_info->b, target, if_info->x,
1107 0, OPTAB_WIDEN);
1108 if (target)
1110 if (target != if_info->x)
1111 noce_emit_move_insn (if_info->x, target);
1113 seq = end_ifcvt_sequence (if_info);
1114 if (!seq)
1115 return FALSE;
1117 emit_insn_before_setloc (seq, if_info->jump,
1118 INSN_LOCATOR (if_info->insn_a));
1119 return TRUE;
1121 end_sequence ();
1125 return FALSE;
1128 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1130 static int
1131 noce_try_store_flag_mask (struct noce_if_info *if_info)
1133 rtx target, seq;
1134 int reversep;
1136 reversep = 0;
1137 if (! no_new_pseudos
1138 && (BRANCH_COST >= 2
1139 || STORE_FLAG_VALUE == -1)
1140 && ((if_info->a == const0_rtx
1141 && rtx_equal_p (if_info->b, if_info->x))
1142 || ((reversep = (reversed_comparison_code (if_info->cond,
1143 if_info->jump)
1144 != UNKNOWN))
1145 && if_info->b == const0_rtx
1146 && rtx_equal_p (if_info->a, if_info->x))))
1148 start_sequence ();
1149 target = noce_emit_store_flag (if_info,
1150 gen_reg_rtx (GET_MODE (if_info->x)),
1151 reversep, -1);
1152 if (target)
1153 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1154 if_info->x,
1155 target, if_info->x, 0,
1156 OPTAB_WIDEN);
1158 if (target)
1160 if (target != if_info->x)
1161 noce_emit_move_insn (if_info->x, target);
1163 seq = end_ifcvt_sequence (if_info);
1164 if (!seq)
1165 return FALSE;
1167 emit_insn_before_setloc (seq, if_info->jump,
1168 INSN_LOCATOR (if_info->insn_a));
1169 return TRUE;
1172 end_sequence ();
1175 return FALSE;
1178 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1180 static rtx
1181 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1182 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1184 /* If earliest == jump, try to build the cmove insn directly.
1185 This is helpful when combine has created some complex condition
1186 (like for alpha's cmovlbs) that we can't hope to regenerate
1187 through the normal interface. */
1189 if (if_info->cond_earliest == if_info->jump)
1191 rtx tmp;
1193 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1194 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1195 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1197 start_sequence ();
1198 tmp = emit_insn (tmp);
1200 if (recog_memoized (tmp) >= 0)
1202 tmp = get_insns ();
1203 end_sequence ();
1204 emit_insn (tmp);
1206 return x;
1209 end_sequence ();
1212 /* Don't even try if the comparison operands are weird. */
1213 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1214 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1215 return NULL_RTX;
1217 #if HAVE_conditional_move
1218 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1219 vtrue, vfalse, GET_MODE (x),
1220 (code == LTU || code == GEU
1221 || code == LEU || code == GTU));
1222 #else
1223 /* We'll never get here, as noce_process_if_block doesn't call the
1224 functions involved. Ifdef code, however, should be discouraged
1225 because it leads to typos in the code not selected. However,
1226 emit_conditional_move won't exist either. */
1227 return NULL_RTX;
1228 #endif
1231 /* Try only simple constants and registers here. More complex cases
1232 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1233 has had a go at it. */
1235 static int
1236 noce_try_cmove (struct noce_if_info *if_info)
1238 enum rtx_code code;
1239 rtx target, seq;
1241 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1242 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1244 start_sequence ();
1246 code = GET_CODE (if_info->cond);
1247 target = noce_emit_cmove (if_info, if_info->x, code,
1248 XEXP (if_info->cond, 0),
1249 XEXP (if_info->cond, 1),
1250 if_info->a, if_info->b);
1252 if (target)
1254 if (target != if_info->x)
1255 noce_emit_move_insn (if_info->x, target);
1257 seq = end_ifcvt_sequence (if_info);
1258 if (!seq)
1259 return FALSE;
1261 emit_insn_before_setloc (seq, if_info->jump,
1262 INSN_LOCATOR (if_info->insn_a));
1263 return TRUE;
1265 else
1267 end_sequence ();
1268 return FALSE;
1272 return FALSE;
1275 /* Try more complex cases involving conditional_move. */
1277 static int
1278 noce_try_cmove_arith (struct noce_if_info *if_info)
1280 rtx a = if_info->a;
1281 rtx b = if_info->b;
1282 rtx x = if_info->x;
1283 rtx orig_a, orig_b;
1284 rtx insn_a, insn_b;
1285 rtx tmp, target;
1286 int is_mem = 0;
1287 int insn_cost;
1288 enum rtx_code code;
1290 /* A conditional move from two memory sources is equivalent to a
1291 conditional on their addresses followed by a load. Don't do this
1292 early because it'll screw alias analysis. Note that we've
1293 already checked for no side effects. */
1294 if (! no_new_pseudos && cse_not_expected
1295 && MEM_P (a) && MEM_P (b)
1296 && BRANCH_COST >= 5)
1298 a = XEXP (a, 0);
1299 b = XEXP (b, 0);
1300 x = gen_reg_rtx (Pmode);
1301 is_mem = 1;
1304 /* ??? We could handle this if we knew that a load from A or B could
1305 not fault. This is also true if we've already loaded
1306 from the address along the path from ENTRY. */
1307 else if (may_trap_p (a) || may_trap_p (b))
1308 return FALSE;
1310 /* if (test) x = a + b; else x = c - d;
1311 => y = a + b;
1312 x = c - d;
1313 if (test)
1314 x = y;
1317 code = GET_CODE (if_info->cond);
1318 insn_a = if_info->insn_a;
1319 insn_b = if_info->insn_b;
1321 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1322 if insn_rtx_cost can't be estimated. */
1323 if (insn_a)
1325 insn_cost = insn_rtx_cost (PATTERN (insn_a));
1326 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1327 return FALSE;
1329 else
1331 insn_cost = 0;
1334 if (insn_b) {
1335 insn_cost += insn_rtx_cost (PATTERN (insn_b));
1336 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (BRANCH_COST))
1337 return FALSE;
1340 /* Possibly rearrange operands to make things come out more natural. */
1341 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1343 int reversep = 0;
1344 if (rtx_equal_p (b, x))
1345 reversep = 1;
1346 else if (general_operand (b, GET_MODE (b)))
1347 reversep = 1;
1349 if (reversep)
1351 code = reversed_comparison_code (if_info->cond, if_info->jump);
1352 tmp = a, a = b, b = tmp;
1353 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1357 start_sequence ();
1359 orig_a = a;
1360 orig_b = b;
1362 /* If either operand is complex, load it into a register first.
1363 The best way to do this is to copy the original insn. In this
1364 way we preserve any clobbers etc that the insn may have had.
1365 This is of course not possible in the IS_MEM case. */
1366 if (! general_operand (a, GET_MODE (a)))
1368 rtx set;
1370 if (no_new_pseudos)
1371 goto end_seq_and_fail;
1373 if (is_mem)
1375 tmp = gen_reg_rtx (GET_MODE (a));
1376 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1378 else if (! insn_a)
1379 goto end_seq_and_fail;
1380 else
1382 a = gen_reg_rtx (GET_MODE (a));
1383 tmp = copy_rtx (insn_a);
1384 set = single_set (tmp);
1385 SET_DEST (set) = a;
1386 tmp = emit_insn (PATTERN (tmp));
1388 if (recog_memoized (tmp) < 0)
1389 goto end_seq_and_fail;
1391 if (! general_operand (b, GET_MODE (b)))
1393 rtx set, last;
1395 if (no_new_pseudos)
1396 goto end_seq_and_fail;
1398 if (is_mem)
1400 tmp = gen_reg_rtx (GET_MODE (b));
1401 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1403 else if (! insn_b)
1404 goto end_seq_and_fail;
1405 else
1407 b = gen_reg_rtx (GET_MODE (b));
1408 tmp = copy_rtx (insn_b);
1409 set = single_set (tmp);
1410 SET_DEST (set) = b;
1411 tmp = PATTERN (tmp);
1414 /* If insn to set up A clobbers any registers B depends on, try to
1415 swap insn that sets up A with the one that sets up B. If even
1416 that doesn't help, punt. */
1417 last = get_last_insn ();
1418 if (last && modified_in_p (orig_b, last))
1420 tmp = emit_insn_before (tmp, get_insns ());
1421 if (modified_in_p (orig_a, tmp))
1422 goto end_seq_and_fail;
1424 else
1425 tmp = emit_insn (tmp);
1427 if (recog_memoized (tmp) < 0)
1428 goto end_seq_and_fail;
1431 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1432 XEXP (if_info->cond, 1), a, b);
1434 if (! target)
1435 goto end_seq_and_fail;
1437 /* If we're handling a memory for above, emit the load now. */
1438 if (is_mem)
1440 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1442 /* Copy over flags as appropriate. */
1443 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1444 MEM_VOLATILE_P (tmp) = 1;
1445 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1446 MEM_IN_STRUCT_P (tmp) = 1;
1447 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1448 MEM_SCALAR_P (tmp) = 1;
1449 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1450 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1451 set_mem_align (tmp,
1452 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1454 noce_emit_move_insn (if_info->x, tmp);
1456 else if (target != x)
1457 noce_emit_move_insn (x, target);
1459 tmp = end_ifcvt_sequence (if_info);
1460 if (!tmp)
1461 return FALSE;
1463 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1464 return TRUE;
1466 end_seq_and_fail:
1467 end_sequence ();
1468 return FALSE;
1471 /* For most cases, the simplified condition we found is the best
1472 choice, but this is not the case for the min/max/abs transforms.
1473 For these we wish to know that it is A or B in the condition. */
1475 static rtx
1476 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1477 rtx *earliest)
1479 rtx cond, set, insn;
1480 int reverse;
1482 /* If target is already mentioned in the known condition, return it. */
1483 if (reg_mentioned_p (target, if_info->cond))
1485 *earliest = if_info->cond_earliest;
1486 return if_info->cond;
1489 set = pc_set (if_info->jump);
1490 cond = XEXP (SET_SRC (set), 0);
1491 reverse
1492 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1493 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1495 /* If we're looking for a constant, try to make the conditional
1496 have that constant in it. There are two reasons why it may
1497 not have the constant we want:
1499 1. GCC may have needed to put the constant in a register, because
1500 the target can't compare directly against that constant. For
1501 this case, we look for a SET immediately before the comparison
1502 that puts a constant in that register.
1504 2. GCC may have canonicalized the conditional, for example
1505 replacing "if x < 4" with "if x <= 3". We can undo that (or
1506 make equivalent types of changes) to get the constants we need
1507 if they're off by one in the right direction. */
1509 if (GET_CODE (target) == CONST_INT)
1511 enum rtx_code code = GET_CODE (if_info->cond);
1512 rtx op_a = XEXP (if_info->cond, 0);
1513 rtx op_b = XEXP (if_info->cond, 1);
1514 rtx prev_insn;
1516 /* First, look to see if we put a constant in a register. */
1517 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1518 if (prev_insn
1519 && INSN_P (prev_insn)
1520 && GET_CODE (PATTERN (prev_insn)) == SET)
1522 rtx src = find_reg_equal_equiv_note (prev_insn);
1523 if (!src)
1524 src = SET_SRC (PATTERN (prev_insn));
1525 if (GET_CODE (src) == CONST_INT)
1527 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1528 op_a = src;
1529 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1530 op_b = src;
1532 if (GET_CODE (op_a) == CONST_INT)
1534 rtx tmp = op_a;
1535 op_a = op_b;
1536 op_b = tmp;
1537 code = swap_condition (code);
1542 /* Now, look to see if we can get the right constant by
1543 adjusting the conditional. */
1544 if (GET_CODE (op_b) == CONST_INT)
1546 HOST_WIDE_INT desired_val = INTVAL (target);
1547 HOST_WIDE_INT actual_val = INTVAL (op_b);
1549 switch (code)
1551 case LT:
1552 if (actual_val == desired_val + 1)
1554 code = LE;
1555 op_b = GEN_INT (desired_val);
1557 break;
1558 case LE:
1559 if (actual_val == desired_val - 1)
1561 code = LT;
1562 op_b = GEN_INT (desired_val);
1564 break;
1565 case GT:
1566 if (actual_val == desired_val - 1)
1568 code = GE;
1569 op_b = GEN_INT (desired_val);
1571 break;
1572 case GE:
1573 if (actual_val == desired_val + 1)
1575 code = GT;
1576 op_b = GEN_INT (desired_val);
1578 break;
1579 default:
1580 break;
1584 /* If we made any changes, generate a new conditional that is
1585 equivalent to what we started with, but has the right
1586 constants in it. */
1587 if (code != GET_CODE (if_info->cond)
1588 || op_a != XEXP (if_info->cond, 0)
1589 || op_b != XEXP (if_info->cond, 1))
1591 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1592 *earliest = if_info->cond_earliest;
1593 return cond;
1597 cond = canonicalize_condition (if_info->jump, cond, reverse,
1598 earliest, target, false, true);
1599 if (! cond || ! reg_mentioned_p (target, cond))
1600 return NULL;
1602 /* We almost certainly searched back to a different place.
1603 Need to re-verify correct lifetimes. */
1605 /* X may not be mentioned in the range (cond_earliest, jump]. */
1606 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1607 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1608 return NULL;
1610 /* A and B may not be modified in the range [cond_earliest, jump). */
1611 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1612 if (INSN_P (insn)
1613 && (modified_in_p (if_info->a, insn)
1614 || modified_in_p (if_info->b, insn)))
1615 return NULL;
1617 return cond;
1620 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1622 static int
1623 noce_try_minmax (struct noce_if_info *if_info)
1625 rtx cond, earliest, target, seq;
1626 enum rtx_code code, op;
1627 int unsignedp;
1629 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1630 if (no_new_pseudos)
1631 return FALSE;
1633 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1634 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1635 to get the target to tell us... */
1636 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1637 || HONOR_NANS (GET_MODE (if_info->x)))
1638 return FALSE;
1640 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1641 if (!cond)
1642 return FALSE;
1644 /* Verify the condition is of the form we expect, and canonicalize
1645 the comparison code. */
1646 code = GET_CODE (cond);
1647 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1649 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1650 return FALSE;
1652 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1654 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1655 return FALSE;
1656 code = swap_condition (code);
1658 else
1659 return FALSE;
1661 /* Determine what sort of operation this is. Note that the code is for
1662 a taken branch, so the code->operation mapping appears backwards. */
1663 switch (code)
1665 case LT:
1666 case LE:
1667 case UNLT:
1668 case UNLE:
1669 op = SMAX;
1670 unsignedp = 0;
1671 break;
1672 case GT:
1673 case GE:
1674 case UNGT:
1675 case UNGE:
1676 op = SMIN;
1677 unsignedp = 0;
1678 break;
1679 case LTU:
1680 case LEU:
1681 op = UMAX;
1682 unsignedp = 1;
1683 break;
1684 case GTU:
1685 case GEU:
1686 op = UMIN;
1687 unsignedp = 1;
1688 break;
1689 default:
1690 return FALSE;
1693 start_sequence ();
1695 target = expand_simple_binop (GET_MODE (if_info->x), op,
1696 if_info->a, if_info->b,
1697 if_info->x, unsignedp, OPTAB_WIDEN);
1698 if (! target)
1700 end_sequence ();
1701 return FALSE;
1703 if (target != if_info->x)
1704 noce_emit_move_insn (if_info->x, target);
1706 seq = end_ifcvt_sequence (if_info);
1707 if (!seq)
1708 return FALSE;
1710 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1711 if_info->cond = cond;
1712 if_info->cond_earliest = earliest;
1714 return TRUE;
1717 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1719 static int
1720 noce_try_abs (struct noce_if_info *if_info)
1722 rtx cond, earliest, target, seq, a, b, c;
1723 int negate;
1725 /* ??? Can't guarantee that expand_binop won't create pseudos. */
1726 if (no_new_pseudos)
1727 return FALSE;
1729 /* Recognize A and B as constituting an ABS or NABS. The canonical
1730 form is a branch around the negation, taken when the object is the
1731 first operand of a comparison against 0 that evaluates to true. */
1732 a = if_info->a;
1733 b = if_info->b;
1734 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1735 negate = 0;
1736 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1738 c = a; a = b; b = c;
1739 negate = 1;
1741 else
1742 return FALSE;
1744 cond = noce_get_alt_condition (if_info, b, &earliest);
1745 if (!cond)
1746 return FALSE;
1748 /* Verify the condition is of the form we expect. */
1749 if (rtx_equal_p (XEXP (cond, 0), b))
1750 c = XEXP (cond, 1);
1751 else if (rtx_equal_p (XEXP (cond, 1), b))
1753 c = XEXP (cond, 0);
1754 negate = !negate;
1756 else
1757 return FALSE;
1759 /* Verify that C is zero. Search one step backward for a
1760 REG_EQUAL note or a simple source if necessary. */
1761 if (REG_P (c))
1763 rtx set, insn = prev_nonnote_insn (earliest);
1764 if (insn
1765 && (set = single_set (insn))
1766 && rtx_equal_p (SET_DEST (set), c))
1768 rtx note = find_reg_equal_equiv_note (insn);
1769 if (note)
1770 c = XEXP (note, 0);
1771 else
1772 c = SET_SRC (set);
1774 else
1775 return FALSE;
1777 if (MEM_P (c)
1778 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1779 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1780 c = get_pool_constant (XEXP (c, 0));
1782 /* Work around funny ideas get_condition has wrt canonicalization.
1783 Note that these rtx constants are known to be CONST_INT, and
1784 therefore imply integer comparisons. */
1785 if (c == constm1_rtx && GET_CODE (cond) == GT)
1787 else if (c == const1_rtx && GET_CODE (cond) == LT)
1789 else if (c != CONST0_RTX (GET_MODE (b)))
1790 return FALSE;
1792 /* Determine what sort of operation this is. */
1793 switch (GET_CODE (cond))
1795 case LT:
1796 case LE:
1797 case UNLT:
1798 case UNLE:
1799 negate = !negate;
1800 break;
1801 case GT:
1802 case GE:
1803 case UNGT:
1804 case UNGE:
1805 break;
1806 default:
1807 return FALSE;
1810 start_sequence ();
1812 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1814 /* ??? It's a quandary whether cmove would be better here, especially
1815 for integers. Perhaps combine will clean things up. */
1816 if (target && negate)
1817 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1819 if (! target)
1821 end_sequence ();
1822 return FALSE;
1825 if (target != if_info->x)
1826 noce_emit_move_insn (if_info->x, target);
1828 seq = end_ifcvt_sequence (if_info);
1829 if (!seq)
1830 return FALSE;
1832 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1833 if_info->cond = cond;
1834 if_info->cond_earliest = earliest;
1836 return TRUE;
1839 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1841 static int
1842 noce_try_sign_mask (struct noce_if_info *if_info)
1844 rtx cond, t, m, c, seq;
1845 enum machine_mode mode;
1846 enum rtx_code code;
1848 if (no_new_pseudos)
1849 return FALSE;
1851 cond = if_info->cond;
1852 code = GET_CODE (cond);
1853 m = XEXP (cond, 0);
1854 c = XEXP (cond, 1);
1856 t = NULL_RTX;
1857 if (if_info->a == const0_rtx)
1859 if ((code == LT && c == const0_rtx)
1860 || (code == LE && c == constm1_rtx))
1861 t = if_info->b;
1863 else if (if_info->b == const0_rtx)
1865 if ((code == GE && c == const0_rtx)
1866 || (code == GT && c == constm1_rtx))
1867 t = if_info->a;
1870 if (! t || side_effects_p (t))
1871 return FALSE;
1873 /* We currently don't handle different modes. */
1874 mode = GET_MODE (t);
1875 if (GET_MODE (m) != mode)
1876 return FALSE;
1878 /* This is only profitable if T is cheap, or T is unconditionally
1879 executed/evaluated in the original insn sequence. */
1880 if (rtx_cost (t, SET) >= COSTS_N_INSNS (2)
1881 && (!if_info->b_unconditional
1882 || t != if_info->b))
1883 return FALSE;
1885 start_sequence ();
1886 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1887 "(signed) m >> 31" directly. This benefits targets with specialized
1888 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1889 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1890 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1891 : NULL_RTX;
1893 if (!t)
1895 end_sequence ();
1896 return FALSE;
1899 noce_emit_move_insn (if_info->x, t);
1901 seq = end_ifcvt_sequence (if_info);
1902 if (!seq)
1903 return FALSE;
1905 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1906 return TRUE;
1910 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1911 transformations. */
1913 static int
1914 noce_try_bitop (struct noce_if_info *if_info)
1916 rtx cond, x, a, result, seq;
1917 enum machine_mode mode;
1918 enum rtx_code code;
1919 int bitnum;
1921 x = if_info->x;
1922 cond = if_info->cond;
1923 code = GET_CODE (cond);
1925 /* Check for no else condition. */
1926 if (! rtx_equal_p (x, if_info->b))
1927 return FALSE;
1929 /* Check for a suitable condition. */
1930 if (code != NE && code != EQ)
1931 return FALSE;
1932 if (XEXP (cond, 1) != const0_rtx)
1933 return FALSE;
1934 cond = XEXP (cond, 0);
1936 /* ??? We could also handle AND here. */
1937 if (GET_CODE (cond) == ZERO_EXTRACT)
1939 if (XEXP (cond, 1) != const1_rtx
1940 || GET_CODE (XEXP (cond, 2)) != CONST_INT
1941 || ! rtx_equal_p (x, XEXP (cond, 0)))
1942 return FALSE;
1943 bitnum = INTVAL (XEXP (cond, 2));
1944 mode = GET_MODE (x);
1945 if (bitnum >= HOST_BITS_PER_WIDE_INT)
1946 return FALSE;
1948 else
1949 return FALSE;
1951 a = if_info->a;
1952 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
1954 /* Check for "if (X & C) x = x op C". */
1955 if (! rtx_equal_p (x, XEXP (a, 0))
1956 || GET_CODE (XEXP (a, 1)) != CONST_INT
1957 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1958 != (unsigned HOST_WIDE_INT) 1 << bitnum)
1959 return FALSE;
1961 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
1962 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
1963 if (GET_CODE (a) == IOR)
1964 result = (code == NE) ? a : NULL_RTX;
1965 else if (code == NE)
1967 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
1968 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
1969 result = simplify_gen_binary (IOR, mode, x, result);
1971 else
1973 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
1974 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
1975 result = simplify_gen_binary (AND, mode, x, result);
1978 else if (GET_CODE (a) == AND)
1980 /* Check for "if (X & C) x &= ~C". */
1981 if (! rtx_equal_p (x, XEXP (a, 0))
1982 || GET_CODE (XEXP (a, 1)) != CONST_INT
1983 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1984 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
1985 return FALSE;
1987 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
1988 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
1989 result = (code == EQ) ? a : NULL_RTX;
1991 else
1992 return FALSE;
1994 if (result)
1996 start_sequence ();
1997 noce_emit_move_insn (x, result);
1998 seq = end_ifcvt_sequence (if_info);
1999 if (!seq)
2000 return FALSE;
2002 emit_insn_before_setloc (seq, if_info->jump,
2003 INSN_LOCATOR (if_info->insn_a));
2005 return TRUE;
2009 /* Similar to get_condition, only the resulting condition must be
2010 valid at JUMP, instead of at EARLIEST. */
2012 static rtx
2013 noce_get_condition (rtx jump, rtx *earliest)
2015 rtx cond, set, tmp;
2016 bool reverse;
2018 if (! any_condjump_p (jump))
2019 return NULL_RTX;
2021 set = pc_set (jump);
2023 /* If this branches to JUMP_LABEL when the condition is false,
2024 reverse the condition. */
2025 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2026 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2028 /* If the condition variable is a register and is MODE_INT, accept it. */
2030 cond = XEXP (SET_SRC (set), 0);
2031 tmp = XEXP (cond, 0);
2032 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2034 *earliest = jump;
2036 if (reverse)
2037 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2038 GET_MODE (cond), tmp, XEXP (cond, 1));
2039 return cond;
2042 /* Otherwise, fall back on canonicalize_condition to do the dirty
2043 work of manipulating MODE_CC values and COMPARE rtx codes. */
2044 return canonicalize_condition (jump, cond, reverse, earliest,
2045 NULL_RTX, false, true);
2048 /* Initialize for a simple IF-THEN or IF-THEN-ELSE block. We will not
2049 be using conditional execution. Set some fields of IF_INFO based
2050 on CE_INFO: test_bb, cond, jump, cond_earliest. Return TRUE if
2051 things look OK. */
2053 static int
2054 noce_init_if_info (struct ce_if_block *ce_info, struct noce_if_info *if_info)
2056 basic_block test_bb = ce_info->test_bb;
2057 rtx cond, jump;
2059 /* If test is comprised of && or || elements, don't handle it unless
2060 it is the special case of && elements without an ELSE block. */
2061 if (ce_info->num_multiple_test_blocks)
2063 if (ce_info->else_bb || !ce_info->and_and_p)
2064 return FALSE;
2066 ce_info->test_bb = test_bb = ce_info->last_test_bb;
2067 ce_info->num_multiple_test_blocks = 0;
2068 ce_info->num_and_and_blocks = 0;
2069 ce_info->num_or_or_blocks = 0;
2072 /* If this is not a standard conditional jump, we can't parse it. */
2073 jump = BB_END (test_bb);
2074 cond = noce_get_condition (jump, &if_info->cond_earliest);
2075 if (!cond)
2076 return FALSE;
2078 /* If the conditional jump is more than just a conditional
2079 jump, then we can not do if-conversion on this block. */
2080 if (! onlyjump_p (jump))
2081 return FALSE;
2083 /* We must be comparing objects whose modes imply the size. */
2084 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2085 return FALSE;
2087 if_info->test_bb = test_bb;
2088 if_info->cond = cond;
2089 if_info->jump = jump;
2091 return TRUE;
2094 /* Return true if OP is ok for if-then-else processing. */
2096 static int
2097 noce_operand_ok (rtx op)
2099 /* We special-case memories, so handle any of them with
2100 no address side effects. */
2101 if (MEM_P (op))
2102 return ! side_effects_p (XEXP (op, 0));
2104 if (side_effects_p (op))
2105 return FALSE;
2107 return ! may_trap_p (op);
2110 /* Return true if a write into MEM may trap or fault. */
2112 static bool
2113 noce_mem_write_may_trap_or_fault_p (rtx mem)
2115 rtx addr;
2117 if (MEM_READONLY_P (mem))
2118 return true;
2120 if (may_trap_or_fault_p (mem))
2121 return true;
2123 addr = XEXP (mem, 0);
2125 /* Call target hook to avoid the effects of -fpic etc.... */
2126 addr = targetm.delegitimize_address (addr);
2128 while (addr)
2129 switch (GET_CODE (addr))
2131 case CONST:
2132 case PRE_DEC:
2133 case PRE_INC:
2134 case POST_DEC:
2135 case POST_INC:
2136 case POST_MODIFY:
2137 addr = XEXP (addr, 0);
2138 break;
2139 case LO_SUM:
2140 case PRE_MODIFY:
2141 addr = XEXP (addr, 1);
2142 break;
2143 case PLUS:
2144 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2145 addr = XEXP (addr, 0);
2146 else
2147 return false;
2148 break;
2149 case LABEL_REF:
2150 return true;
2151 case SYMBOL_REF:
2152 if (SYMBOL_REF_DECL (addr)
2153 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2154 return true;
2155 return false;
2156 default:
2157 return false;
2160 return false;
2163 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2164 without using conditional execution. Return TRUE if we were
2165 successful at converting the block. */
2167 static int
2168 noce_process_if_block (struct ce_if_block * ce_info)
2170 basic_block test_bb = ce_info->test_bb; /* test block */
2171 basic_block then_bb = ce_info->then_bb; /* THEN */
2172 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2173 struct noce_if_info if_info;
2174 rtx insn_a, insn_b;
2175 rtx set_a, set_b;
2176 rtx orig_x, x, a, b;
2177 rtx jump, cond;
2179 /* We're looking for patterns of the form
2181 (1) if (...) x = a; else x = b;
2182 (2) x = b; if (...) x = a;
2183 (3) if (...) x = a; // as if with an initial x = x.
2185 The later patterns require jumps to be more expensive.
2187 ??? For future expansion, look for multiple X in such patterns. */
2189 if (!noce_init_if_info (ce_info, &if_info))
2190 return FALSE;
2192 cond = if_info.cond;
2193 jump = if_info.jump;
2195 /* Look for one of the potential sets. */
2196 insn_a = first_active_insn (then_bb);
2197 if (! insn_a
2198 || insn_a != last_active_insn (then_bb, FALSE)
2199 || (set_a = single_set (insn_a)) == NULL_RTX)
2200 return FALSE;
2202 x = SET_DEST (set_a);
2203 a = SET_SRC (set_a);
2205 /* Look for the other potential set. Make sure we've got equivalent
2206 destinations. */
2207 /* ??? This is overconservative. Storing to two different mems is
2208 as easy as conditionally computing the address. Storing to a
2209 single mem merely requires a scratch memory to use as one of the
2210 destination addresses; often the memory immediately below the
2211 stack pointer is available for this. */
2212 set_b = NULL_RTX;
2213 if (else_bb)
2215 insn_b = first_active_insn (else_bb);
2216 if (! insn_b
2217 || insn_b != last_active_insn (else_bb, FALSE)
2218 || (set_b = single_set (insn_b)) == NULL_RTX
2219 || ! rtx_equal_p (x, SET_DEST (set_b)))
2220 return FALSE;
2222 else
2224 insn_b = prev_nonnote_insn (if_info.cond_earliest);
2225 /* We're going to be moving the evaluation of B down from above
2226 COND_EARLIEST to JUMP. Make sure the relevant data is still
2227 intact. */
2228 if (! insn_b
2229 || !NONJUMP_INSN_P (insn_b)
2230 || (set_b = single_set (insn_b)) == NULL_RTX
2231 || ! rtx_equal_p (x, SET_DEST (set_b))
2232 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2233 || modified_between_p (SET_SRC (set_b),
2234 PREV_INSN (if_info.cond_earliest), jump)
2235 /* Likewise with X. In particular this can happen when
2236 noce_get_condition looks farther back in the instruction
2237 stream than one might expect. */
2238 || reg_overlap_mentioned_p (x, cond)
2239 || reg_overlap_mentioned_p (x, a)
2240 || modified_between_p (x, PREV_INSN (if_info.cond_earliest), jump))
2241 insn_b = set_b = NULL_RTX;
2244 /* If x has side effects then only the if-then-else form is safe to
2245 convert. But even in that case we would need to restore any notes
2246 (such as REG_INC) at then end. That can be tricky if
2247 noce_emit_move_insn expands to more than one insn, so disable the
2248 optimization entirely for now if there are side effects. */
2249 if (side_effects_p (x))
2250 return FALSE;
2252 b = (set_b ? SET_SRC (set_b) : x);
2254 /* Only operate on register destinations, and even then avoid extending
2255 the lifetime of hard registers on small register class machines. */
2256 orig_x = x;
2257 if (!REG_P (x)
2258 || (SMALL_REGISTER_CLASSES
2259 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2261 if (no_new_pseudos || GET_MODE (x) == BLKmode)
2262 return FALSE;
2264 if (GET_MODE (x) == ZERO_EXTRACT
2265 && (GET_CODE (XEXP (x, 1)) != CONST_INT
2266 || GET_CODE (XEXP (x, 2)) != CONST_INT))
2267 return FALSE;
2269 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2270 ? XEXP (x, 0) : x));
2273 /* Don't operate on sources that may trap or are volatile. */
2274 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2275 return FALSE;
2277 /* Set up the info block for our subroutines. */
2278 if_info.insn_a = insn_a;
2279 if_info.insn_b = insn_b;
2280 if_info.x = x;
2281 if_info.a = a;
2282 if_info.b = b;
2283 if_info.b_unconditional = else_bb == 0;
2285 /* Try optimizations in some approximation of a useful order. */
2286 /* ??? Should first look to see if X is live incoming at all. If it
2287 isn't, we don't need anything but an unconditional set. */
2289 /* Look and see if A and B are really the same. Avoid creating silly
2290 cmove constructs that no one will fix up later. */
2291 if (rtx_equal_p (a, b))
2293 /* If we have an INSN_B, we don't have to create any new rtl. Just
2294 move the instruction that we already have. If we don't have an
2295 INSN_B, that means that A == X, and we've got a noop move. In
2296 that case don't do anything and let the code below delete INSN_A. */
2297 if (insn_b && else_bb)
2299 rtx note;
2301 if (else_bb && insn_b == BB_END (else_bb))
2302 BB_END (else_bb) = PREV_INSN (insn_b);
2303 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2305 /* If there was a REG_EQUAL note, delete it since it may have been
2306 true due to this insn being after a jump. */
2307 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2308 remove_note (insn_b, note);
2310 insn_b = NULL_RTX;
2312 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2313 x must be executed twice. */
2314 else if (insn_b && side_effects_p (orig_x))
2315 return FALSE;
2317 x = orig_x;
2318 goto success;
2321 /* Disallow the "if (...) x = a;" form (with an implicit "else x = x;")
2322 for optimizations if writing to x may trap or fault, i.e. it's a memory
2323 other than a static var or a stack slot, is misaligned on strict
2324 aligned machines or is read-only.
2325 If x is a read-only memory, then the program is valid only if we
2326 avoid the store into it. If there are stores on both the THEN and
2327 ELSE arms, then we can go ahead with the conversion; either the
2328 program is broken, or the condition is always false such that the
2329 other memory is selected. */
2330 if (!set_b && MEM_P (orig_x) && noce_mem_write_may_trap_or_fault_p (orig_x))
2331 return FALSE;
2333 if (noce_try_move (&if_info))
2334 goto success;
2335 if (noce_try_store_flag (&if_info))
2336 goto success;
2337 if (noce_try_bitop (&if_info))
2338 goto success;
2339 if (noce_try_minmax (&if_info))
2340 goto success;
2341 if (noce_try_abs (&if_info))
2342 goto success;
2343 if (HAVE_conditional_move
2344 && noce_try_cmove (&if_info))
2345 goto success;
2346 if (! HAVE_conditional_execution)
2348 if (noce_try_store_flag_constants (&if_info))
2349 goto success;
2350 if (noce_try_addcc (&if_info))
2351 goto success;
2352 if (noce_try_store_flag_mask (&if_info))
2353 goto success;
2354 if (HAVE_conditional_move
2355 && noce_try_cmove_arith (&if_info))
2356 goto success;
2357 if (noce_try_sign_mask (&if_info))
2358 goto success;
2361 return FALSE;
2363 success:
2364 /* The original sets may now be killed. */
2365 delete_insn (insn_a);
2367 /* Several special cases here: First, we may have reused insn_b above,
2368 in which case insn_b is now NULL. Second, we want to delete insn_b
2369 if it came from the ELSE block, because follows the now correct
2370 write that appears in the TEST block. However, if we got insn_b from
2371 the TEST block, it may in fact be loading data needed for the comparison.
2372 We'll let life_analysis remove the insn if it's really dead. */
2373 if (insn_b && else_bb)
2374 delete_insn (insn_b);
2376 /* The new insns will have been inserted immediately before the jump. We
2377 should be able to remove the jump with impunity, but the condition itself
2378 may have been modified by gcse to be shared across basic blocks. */
2379 delete_insn (jump);
2381 /* If we used a temporary, fix it up now. */
2382 if (orig_x != x)
2384 start_sequence ();
2385 noce_emit_move_insn (orig_x, x);
2386 insn_b = get_insns ();
2387 set_used_flags (orig_x);
2388 unshare_all_rtl_in_chain (insn_b);
2389 end_sequence ();
2391 emit_insn_after_setloc (insn_b, BB_END (test_bb), INSN_LOCATOR (insn_a));
2394 /* Merge the blocks! */
2395 merge_if_block (ce_info);
2397 return TRUE;
2400 /* Check whether a block is suitable for conditional move conversion.
2401 Every insn must be a simple set of a register to a constant or a
2402 register. For each assignment, store the value in the array VALS,
2403 indexed by register number. COND is the condition we will
2404 test. */
2406 static int
2407 check_cond_move_block (basic_block bb, rtx *vals, rtx cond)
2409 rtx insn;
2411 FOR_BB_INSNS (bb, insn)
2413 rtx set, dest, src;
2415 if (!INSN_P (insn) || JUMP_P (insn))
2416 continue;
2417 set = single_set (insn);
2418 if (!set)
2419 return FALSE;
2421 dest = SET_DEST (set);
2422 src = SET_SRC (set);
2423 if (!REG_P (dest)
2424 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2425 return false;
2427 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2428 return FALSE;
2430 if (side_effects_p (src) || side_effects_p (dest))
2431 return FALSE;
2433 if (may_trap_p (src) || may_trap_p (dest))
2434 return FALSE;
2436 /* Don't try to handle this if the destination register was
2437 modified earlier in the block. */
2438 if (vals[REGNO (dest)] != NULL)
2439 return FALSE;
2441 /* Don't try to handle this if the condition uses the
2442 destination register. */
2443 if (reg_overlap_mentioned_p (dest, cond))
2444 return FALSE;
2446 vals[REGNO (dest)] = src;
2448 /* Don't try to handle this if the source register is modified
2449 later in the block. */
2450 if (!CONSTANT_P (src)
2451 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2452 return FALSE;
2455 return TRUE;
2458 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
2459 using only conditional moves. Return TRUE if we were successful at
2460 converting the block. */
2462 static int
2463 cond_move_process_if_block (struct ce_if_block *ce_info)
2465 basic_block then_bb = ce_info->then_bb;
2466 basic_block else_bb = ce_info->else_bb;
2467 struct noce_if_info if_info;
2468 rtx jump, cond, insn, seq, cond_arg0, cond_arg1, loc_insn;
2469 int max_reg, size, c, i;
2470 rtx *then_vals;
2471 rtx *else_vals;
2472 enum rtx_code code;
2474 if (!HAVE_conditional_move || no_new_pseudos)
2475 return FALSE;
2477 memset (&if_info, 0, sizeof if_info);
2479 if (!noce_init_if_info (ce_info, &if_info))
2480 return FALSE;
2482 cond = if_info.cond;
2483 jump = if_info.jump;
2485 /* Build a mapping for each block to the value used for each
2486 register. */
2487 max_reg = max_reg_num ();
2488 size = (max_reg + 1) * sizeof (rtx);
2489 then_vals = (rtx *) alloca (size);
2490 else_vals = (rtx *) alloca (size);
2491 memset (then_vals, 0, size);
2492 memset (else_vals, 0, size);
2494 /* Make sure the blocks are suitable. */
2495 if (!check_cond_move_block (then_bb, then_vals, cond)
2496 || (else_bb && !check_cond_move_block (else_bb, else_vals, cond)))
2497 return FALSE;
2499 /* Make sure the blocks can be used together. If the same register
2500 is set in both blocks, and is not set to a constant in both
2501 cases, then both blocks must set it to the same register. We
2502 have already verified that if it is set to a register, that the
2503 source register does not change after the assignment. Also count
2504 the number of registers set in only one of the blocks. */
2505 c = 0;
2506 for (i = 0; i <= max_reg; ++i)
2508 if (!then_vals[i] && !else_vals[i])
2509 continue;
2511 if (!then_vals[i] || !else_vals[i])
2512 ++c;
2513 else
2515 if (!CONSTANT_P (then_vals[i])
2516 && !CONSTANT_P (else_vals[i])
2517 && !rtx_equal_p (then_vals[i], else_vals[i]))
2518 return FALSE;
2522 /* Make sure it is reasonable to convert this block. What matters
2523 is the number of assignments currently made in only one of the
2524 branches, since if we convert we are going to always execute
2525 them. */
2526 if (c > MAX_CONDITIONAL_EXECUTE)
2527 return FALSE;
2529 /* Emit the conditional moves. First do the then block, then do
2530 anything left in the else blocks. */
2532 code = GET_CODE (cond);
2533 cond_arg0 = XEXP (cond, 0);
2534 cond_arg1 = XEXP (cond, 1);
2536 start_sequence ();
2538 FOR_BB_INSNS (then_bb, insn)
2540 rtx set, target, dest, t, e;
2541 unsigned int regno;
2543 if (!INSN_P (insn) || JUMP_P (insn))
2544 continue;
2545 set = single_set (insn);
2546 gcc_assert (set && REG_P (SET_DEST (set)));
2548 dest = SET_DEST (set);
2549 regno = REGNO (dest);
2550 t = then_vals[regno];
2551 e = else_vals[regno];
2552 gcc_assert (t);
2553 if (!e)
2554 e = dest;
2555 target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
2556 t, e);
2557 if (!target)
2559 end_sequence ();
2560 return FALSE;
2563 if (target != dest)
2564 noce_emit_move_insn (dest, target);
2567 if (else_bb)
2569 FOR_BB_INSNS (else_bb, insn)
2571 rtx set, target, dest;
2572 unsigned int regno;
2574 if (!INSN_P (insn) || JUMP_P (insn))
2575 continue;
2576 set = single_set (insn);
2577 gcc_assert (set && REG_P (SET_DEST (set)));
2579 dest = SET_DEST (set);
2580 regno = REGNO (dest);
2582 /* If this register was set in the then block, we already
2583 handled this case above. */
2584 if (then_vals[regno])
2585 continue;
2586 gcc_assert (else_vals[regno]);
2588 target = noce_emit_cmove (&if_info, dest, code, cond_arg0, cond_arg1,
2589 dest, else_vals[regno]);
2590 if (!target)
2592 end_sequence ();
2593 return FALSE;
2596 if (target != dest)
2597 noce_emit_move_insn (dest, target);
2601 seq = end_ifcvt_sequence (&if_info);
2602 if (!seq)
2603 return FALSE;
2605 loc_insn = first_active_insn (then_bb);
2606 if (!loc_insn)
2608 loc_insn = first_active_insn (else_bb);
2609 gcc_assert (loc_insn);
2611 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2613 FOR_BB_INSNS (then_bb, insn)
2614 if (INSN_P (insn) && !JUMP_P (insn))
2615 delete_insn (insn);
2616 if (else_bb)
2618 FOR_BB_INSNS (else_bb, insn)
2619 if (INSN_P (insn) && !JUMP_P (insn))
2620 delete_insn (insn);
2622 delete_insn (jump);
2624 merge_if_block (ce_info);
2626 return TRUE;
2629 /* Attempt to convert an IF-THEN or IF-THEN-ELSE block into
2630 straight line code. Return true if successful. */
2632 static int
2633 process_if_block (struct ce_if_block * ce_info)
2635 if (! reload_completed
2636 && noce_process_if_block (ce_info))
2637 return TRUE;
2639 if (HAVE_conditional_move
2640 && cond_move_process_if_block (ce_info))
2641 return TRUE;
2643 if (HAVE_conditional_execution && reload_completed)
2645 /* If we have && and || tests, try to first handle combining the && and
2646 || tests into the conditional code, and if that fails, go back and
2647 handle it without the && and ||, which at present handles the && case
2648 if there was no ELSE block. */
2649 if (cond_exec_process_if_block (ce_info, TRUE))
2650 return TRUE;
2652 if (ce_info->num_multiple_test_blocks)
2654 cancel_changes (0);
2656 if (cond_exec_process_if_block (ce_info, FALSE))
2657 return TRUE;
2661 return FALSE;
2664 /* Merge the blocks and mark for local life update. */
2666 static void
2667 merge_if_block (struct ce_if_block * ce_info)
2669 basic_block test_bb = ce_info->test_bb; /* last test block */
2670 basic_block then_bb = ce_info->then_bb; /* THEN */
2671 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2672 basic_block join_bb = ce_info->join_bb; /* join block */
2673 basic_block combo_bb;
2675 /* All block merging is done into the lower block numbers. */
2677 combo_bb = test_bb;
2679 /* Merge any basic blocks to handle && and || subtests. Each of
2680 the blocks are on the fallthru path from the predecessor block. */
2681 if (ce_info->num_multiple_test_blocks > 0)
2683 basic_block bb = test_bb;
2684 basic_block last_test_bb = ce_info->last_test_bb;
2685 basic_block fallthru = block_fallthru (bb);
2689 bb = fallthru;
2690 fallthru = block_fallthru (bb);
2691 merge_blocks (combo_bb, bb);
2692 num_true_changes++;
2694 while (bb != last_test_bb);
2697 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2698 label, but it might if there were || tests. That label's count should be
2699 zero, and it normally should be removed. */
2701 if (then_bb)
2703 if (combo_bb->il.rtl->global_live_at_end)
2704 COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2705 then_bb->il.rtl->global_live_at_end);
2706 merge_blocks (combo_bb, then_bb);
2707 num_true_changes++;
2710 /* The ELSE block, if it existed, had a label. That label count
2711 will almost always be zero, but odd things can happen when labels
2712 get their addresses taken. */
2713 if (else_bb)
2715 merge_blocks (combo_bb, else_bb);
2716 num_true_changes++;
2719 /* If there was no join block reported, that means it was not adjacent
2720 to the others, and so we cannot merge them. */
2722 if (! join_bb)
2724 rtx last = BB_END (combo_bb);
2726 /* The outgoing edge for the current COMBO block should already
2727 be correct. Verify this. */
2728 if (EDGE_COUNT (combo_bb->succs) == 0)
2729 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2730 || (NONJUMP_INSN_P (last)
2731 && GET_CODE (PATTERN (last)) == TRAP_IF
2732 && (TRAP_CONDITION (PATTERN (last))
2733 == const_true_rtx)));
2735 else
2736 /* There should still be something at the end of the THEN or ELSE
2737 blocks taking us to our final destination. */
2738 gcc_assert (JUMP_P (last)
2739 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2740 && CALL_P (last)
2741 && SIBLING_CALL_P (last))
2742 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2743 && can_throw_internal (last)));
2746 /* The JOIN block may have had quite a number of other predecessors too.
2747 Since we've already merged the TEST, THEN and ELSE blocks, we should
2748 have only one remaining edge from our if-then-else diamond. If there
2749 is more than one remaining edge, it must come from elsewhere. There
2750 may be zero incoming edges if the THEN block didn't actually join
2751 back up (as with a call to a non-return function). */
2752 else if (EDGE_COUNT (join_bb->preds) < 2
2753 && join_bb != EXIT_BLOCK_PTR)
2755 /* We can merge the JOIN. */
2756 if (combo_bb->il.rtl->global_live_at_end)
2757 COPY_REG_SET (combo_bb->il.rtl->global_live_at_end,
2758 join_bb->il.rtl->global_live_at_end);
2760 merge_blocks (combo_bb, join_bb);
2761 num_true_changes++;
2763 else
2765 /* We cannot merge the JOIN. */
2767 /* The outgoing edge for the current COMBO block should already
2768 be correct. Verify this. */
2769 gcc_assert (single_succ_p (combo_bb)
2770 && single_succ (combo_bb) == join_bb);
2772 /* Remove the jump and cruft from the end of the COMBO block. */
2773 if (join_bb != EXIT_BLOCK_PTR)
2774 tidy_fallthru_edge (single_succ_edge (combo_bb));
2777 num_updated_if_blocks++;
2780 /* Find a block ending in a simple IF condition and try to transform it
2781 in some way. When converting a multi-block condition, put the new code
2782 in the first such block and delete the rest. Return a pointer to this
2783 first block if some transformation was done. Return NULL otherwise. */
2785 static basic_block
2786 find_if_header (basic_block test_bb, int pass)
2788 ce_if_block_t ce_info;
2789 edge then_edge;
2790 edge else_edge;
2792 /* The kind of block we're looking for has exactly two successors. */
2793 if (EDGE_COUNT (test_bb->succs) != 2)
2794 return NULL;
2796 then_edge = EDGE_SUCC (test_bb, 0);
2797 else_edge = EDGE_SUCC (test_bb, 1);
2799 /* Neither edge should be abnormal. */
2800 if ((then_edge->flags & EDGE_COMPLEX)
2801 || (else_edge->flags & EDGE_COMPLEX))
2802 return NULL;
2804 /* Nor exit the loop. */
2805 if ((then_edge->flags & EDGE_LOOP_EXIT)
2806 || (else_edge->flags & EDGE_LOOP_EXIT))
2807 return NULL;
2809 /* The THEN edge is canonically the one that falls through. */
2810 if (then_edge->flags & EDGE_FALLTHRU)
2812 else if (else_edge->flags & EDGE_FALLTHRU)
2814 edge e = else_edge;
2815 else_edge = then_edge;
2816 then_edge = e;
2818 else
2819 /* Otherwise this must be a multiway branch of some sort. */
2820 return NULL;
2822 memset (&ce_info, '\0', sizeof (ce_info));
2823 ce_info.test_bb = test_bb;
2824 ce_info.then_bb = then_edge->dest;
2825 ce_info.else_bb = else_edge->dest;
2826 ce_info.pass = pass;
2828 #ifdef IFCVT_INIT_EXTRA_FIELDS
2829 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
2830 #endif
2832 if (find_if_block (&ce_info))
2833 goto success;
2835 if (HAVE_trap && HAVE_conditional_trap
2836 && find_cond_trap (test_bb, then_edge, else_edge))
2837 goto success;
2839 if (dom_computed[CDI_POST_DOMINATORS] >= DOM_NO_FAST_QUERY
2840 && (! HAVE_conditional_execution || reload_completed))
2842 if (find_if_case_1 (test_bb, then_edge, else_edge))
2843 goto success;
2844 if (find_if_case_2 (test_bb, then_edge, else_edge))
2845 goto success;
2848 return NULL;
2850 success:
2851 if (dump_file)
2852 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
2853 return ce_info.test_bb;
2856 /* Return true if a block has two edges, one of which falls through to the next
2857 block, and the other jumps to a specific block, so that we can tell if the
2858 block is part of an && test or an || test. Returns either -1 or the number
2859 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
2861 static int
2862 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
2864 edge cur_edge;
2865 int fallthru_p = FALSE;
2866 int jump_p = FALSE;
2867 rtx insn;
2868 rtx end;
2869 int n_insns = 0;
2870 edge_iterator ei;
2872 if (!cur_bb || !target_bb)
2873 return -1;
2875 /* If no edges, obviously it doesn't jump or fallthru. */
2876 if (EDGE_COUNT (cur_bb->succs) == 0)
2877 return FALSE;
2879 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
2881 if (cur_edge->flags & EDGE_COMPLEX)
2882 /* Anything complex isn't what we want. */
2883 return -1;
2885 else if (cur_edge->flags & EDGE_FALLTHRU)
2886 fallthru_p = TRUE;
2888 else if (cur_edge->dest == target_bb)
2889 jump_p = TRUE;
2891 else
2892 return -1;
2895 if ((jump_p & fallthru_p) == 0)
2896 return -1;
2898 /* Don't allow calls in the block, since this is used to group && and ||
2899 together for conditional execution support. ??? we should support
2900 conditional execution support across calls for IA-64 some day, but
2901 for now it makes the code simpler. */
2902 end = BB_END (cur_bb);
2903 insn = BB_HEAD (cur_bb);
2905 while (insn != NULL_RTX)
2907 if (CALL_P (insn))
2908 return -1;
2910 if (INSN_P (insn)
2911 && !JUMP_P (insn)
2912 && GET_CODE (PATTERN (insn)) != USE
2913 && GET_CODE (PATTERN (insn)) != CLOBBER)
2914 n_insns++;
2916 if (insn == end)
2917 break;
2919 insn = NEXT_INSN (insn);
2922 return n_insns;
2925 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
2926 block. If so, we'll try to convert the insns to not require the branch.
2927 Return TRUE if we were successful at converting the block. */
2929 static int
2930 find_if_block (struct ce_if_block * ce_info)
2932 basic_block test_bb = ce_info->test_bb;
2933 basic_block then_bb = ce_info->then_bb;
2934 basic_block else_bb = ce_info->else_bb;
2935 basic_block join_bb = NULL_BLOCK;
2936 edge cur_edge;
2937 basic_block next;
2938 edge_iterator ei;
2940 ce_info->last_test_bb = test_bb;
2942 /* Discover if any fall through predecessors of the current test basic block
2943 were && tests (which jump to the else block) or || tests (which jump to
2944 the then block). */
2945 if (HAVE_conditional_execution && reload_completed
2946 && single_pred_p (test_bb)
2947 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
2949 basic_block bb = single_pred (test_bb);
2950 basic_block target_bb;
2951 int max_insns = MAX_CONDITIONAL_EXECUTE;
2952 int n_insns;
2954 /* Determine if the preceding block is an && or || block. */
2955 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
2957 ce_info->and_and_p = TRUE;
2958 target_bb = else_bb;
2960 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
2962 ce_info->and_and_p = FALSE;
2963 target_bb = then_bb;
2965 else
2966 target_bb = NULL_BLOCK;
2968 if (target_bb && n_insns <= max_insns)
2970 int total_insns = 0;
2971 int blocks = 0;
2973 ce_info->last_test_bb = test_bb;
2975 /* Found at least one && or || block, look for more. */
2978 ce_info->test_bb = test_bb = bb;
2979 total_insns += n_insns;
2980 blocks++;
2982 if (!single_pred_p (bb))
2983 break;
2985 bb = single_pred (bb);
2986 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
2988 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
2990 ce_info->num_multiple_test_blocks = blocks;
2991 ce_info->num_multiple_test_insns = total_insns;
2993 if (ce_info->and_and_p)
2994 ce_info->num_and_and_blocks = blocks;
2995 else
2996 ce_info->num_or_or_blocks = blocks;
3000 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3001 other than any || blocks which jump to the THEN block. */
3002 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3003 return FALSE;
3005 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3006 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3008 if (cur_edge->flags & EDGE_COMPLEX)
3009 return FALSE;
3012 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3014 if (cur_edge->flags & EDGE_COMPLEX)
3015 return FALSE;
3018 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3019 if (EDGE_COUNT (then_bb->succs) > 0
3020 && (!single_succ_p (then_bb)
3021 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3022 || (flow2_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3023 return FALSE;
3025 /* If the THEN block has no successors, conditional execution can still
3026 make a conditional call. Don't do this unless the ELSE block has
3027 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3028 Check for the last insn of the THEN block being an indirect jump, which
3029 is listed as not having any successors, but confuses the rest of the CE
3030 code processing. ??? we should fix this in the future. */
3031 if (EDGE_COUNT (then_bb->succs) == 0)
3033 if (single_pred_p (else_bb))
3035 rtx last_insn = BB_END (then_bb);
3037 while (last_insn
3038 && NOTE_P (last_insn)
3039 && last_insn != BB_HEAD (then_bb))
3040 last_insn = PREV_INSN (last_insn);
3042 if (last_insn
3043 && JUMP_P (last_insn)
3044 && ! simplejump_p (last_insn))
3045 return FALSE;
3047 join_bb = else_bb;
3048 else_bb = NULL_BLOCK;
3050 else
3051 return FALSE;
3054 /* If the THEN block's successor is the other edge out of the TEST block,
3055 then we have an IF-THEN combo without an ELSE. */
3056 else if (single_succ (then_bb) == else_bb)
3058 join_bb = else_bb;
3059 else_bb = NULL_BLOCK;
3062 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3063 has exactly one predecessor and one successor, and the outgoing edge
3064 is not complex, then we have an IF-THEN-ELSE combo. */
3065 else if (single_succ_p (else_bb)
3066 && single_succ (then_bb) == single_succ (else_bb)
3067 && single_pred_p (else_bb)
3068 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3069 && ! (flow2_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3070 join_bb = single_succ (else_bb);
3072 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3073 else
3074 return FALSE;
3076 num_possible_if_blocks++;
3078 if (dump_file)
3080 fprintf (dump_file,
3081 "\nIF-THEN%s block found, pass %d, start block %d "
3082 "[insn %d], then %d [%d]",
3083 (else_bb) ? "-ELSE" : "",
3084 ce_info->pass,
3085 test_bb->index,
3086 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3087 then_bb->index,
3088 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3090 if (else_bb)
3091 fprintf (dump_file, ", else %d [%d]",
3092 else_bb->index,
3093 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3095 fprintf (dump_file, ", join %d [%d]",
3096 join_bb->index,
3097 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3099 if (ce_info->num_multiple_test_blocks > 0)
3100 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3101 ce_info->num_multiple_test_blocks,
3102 (ce_info->and_and_p) ? "&&" : "||",
3103 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3104 ce_info->last_test_bb->index,
3105 ((BB_HEAD (ce_info->last_test_bb))
3106 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3107 : -1));
3109 fputc ('\n', dump_file);
3112 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3113 first condition for free, since we've already asserted that there's a
3114 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3115 we checked the FALLTHRU flag, those are already adjacent to the last IF
3116 block. */
3117 /* ??? As an enhancement, move the ELSE block. Have to deal with
3118 BLOCK notes, if by no other means than backing out the merge if they
3119 exist. Sticky enough I don't want to think about it now. */
3120 next = then_bb;
3121 if (else_bb && (next = next->next_bb) != else_bb)
3122 return FALSE;
3123 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3125 if (else_bb)
3126 join_bb = NULL;
3127 else
3128 return FALSE;
3131 /* Do the real work. */
3132 ce_info->else_bb = else_bb;
3133 ce_info->join_bb = join_bb;
3135 return process_if_block (ce_info);
3138 /* Convert a branch over a trap, or a branch
3139 to a trap, into a conditional trap. */
3141 static int
3142 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3144 basic_block then_bb = then_edge->dest;
3145 basic_block else_bb = else_edge->dest;
3146 basic_block other_bb, trap_bb;
3147 rtx trap, jump, cond, cond_earliest, seq;
3148 enum rtx_code code;
3150 /* Locate the block with the trap instruction. */
3151 /* ??? While we look for no successors, we really ought to allow
3152 EH successors. Need to fix merge_if_block for that to work. */
3153 if ((trap = block_has_only_trap (then_bb)) != NULL)
3154 trap_bb = then_bb, other_bb = else_bb;
3155 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3156 trap_bb = else_bb, other_bb = then_bb;
3157 else
3158 return FALSE;
3160 if (dump_file)
3162 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3163 test_bb->index, trap_bb->index);
3166 /* If this is not a standard conditional jump, we can't parse it. */
3167 jump = BB_END (test_bb);
3168 cond = noce_get_condition (jump, &cond_earliest);
3169 if (! cond)
3170 return FALSE;
3172 /* If the conditional jump is more than just a conditional jump, then
3173 we can not do if-conversion on this block. */
3174 if (! onlyjump_p (jump))
3175 return FALSE;
3177 /* We must be comparing objects whose modes imply the size. */
3178 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3179 return FALSE;
3181 /* Reverse the comparison code, if necessary. */
3182 code = GET_CODE (cond);
3183 if (then_bb == trap_bb)
3185 code = reversed_comparison_code (cond, jump);
3186 if (code == UNKNOWN)
3187 return FALSE;
3190 /* Attempt to generate the conditional trap. */
3191 seq = gen_cond_trap (code, XEXP (cond, 0),
3192 XEXP (cond, 1),
3193 TRAP_CODE (PATTERN (trap)));
3194 if (seq == NULL)
3195 return FALSE;
3197 num_true_changes++;
3199 /* Emit the new insns before cond_earliest. */
3200 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3202 /* Delete the trap block if possible. */
3203 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3204 if (EDGE_COUNT (trap_bb->preds) == 0)
3205 delete_basic_block (trap_bb);
3207 /* If the non-trap block and the test are now adjacent, merge them.
3208 Otherwise we must insert a direct branch. */
3209 if (test_bb->next_bb == other_bb)
3211 struct ce_if_block new_ce_info;
3212 delete_insn (jump);
3213 memset (&new_ce_info, '\0', sizeof (new_ce_info));
3214 new_ce_info.test_bb = test_bb;
3215 new_ce_info.then_bb = NULL;
3216 new_ce_info.else_bb = NULL;
3217 new_ce_info.join_bb = other_bb;
3218 merge_if_block (&new_ce_info);
3220 else
3222 rtx lab, newjump;
3224 lab = JUMP_LABEL (jump);
3225 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3226 LABEL_NUSES (lab) += 1;
3227 JUMP_LABEL (newjump) = lab;
3228 emit_barrier_after (newjump);
3230 delete_insn (jump);
3233 return TRUE;
3236 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3237 return it. */
3239 static rtx
3240 block_has_only_trap (basic_block bb)
3242 rtx trap;
3244 /* We're not the exit block. */
3245 if (bb == EXIT_BLOCK_PTR)
3246 return NULL_RTX;
3248 /* The block must have no successors. */
3249 if (EDGE_COUNT (bb->succs) > 0)
3250 return NULL_RTX;
3252 /* The only instruction in the THEN block must be the trap. */
3253 trap = first_active_insn (bb);
3254 if (! (trap == BB_END (bb)
3255 && GET_CODE (PATTERN (trap)) == TRAP_IF
3256 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3257 return NULL_RTX;
3259 return trap;
3262 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3263 transformable, but not necessarily the other. There need be no
3264 JOIN block.
3266 Return TRUE if we were successful at converting the block.
3268 Cases we'd like to look at:
3271 if (test) goto over; // x not live
3272 x = a;
3273 goto label;
3274 over:
3276 becomes
3278 x = a;
3279 if (! test) goto label;
3282 if (test) goto E; // x not live
3283 x = big();
3284 goto L;
3286 x = b;
3287 goto M;
3289 becomes
3291 x = b;
3292 if (test) goto M;
3293 x = big();
3294 goto L;
3296 (3) // This one's really only interesting for targets that can do
3297 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3298 // it results in multiple branches on a cache line, which often
3299 // does not sit well with predictors.
3301 if (test1) goto E; // predicted not taken
3302 x = a;
3303 if (test2) goto F;
3306 x = b;
3309 becomes
3311 x = a;
3312 if (test1) goto E;
3313 if (test2) goto F;
3315 Notes:
3317 (A) Don't do (2) if the branch is predicted against the block we're
3318 eliminating. Do it anyway if we can eliminate a branch; this requires
3319 that the sole successor of the eliminated block postdominate the other
3320 side of the if.
3322 (B) With CE, on (3) we can steal from both sides of the if, creating
3324 if (test1) x = a;
3325 if (!test1) x = b;
3326 if (test1) goto J;
3327 if (test2) goto F;
3331 Again, this is most useful if J postdominates.
3333 (C) CE substitutes for helpful life information.
3335 (D) These heuristics need a lot of work. */
3337 /* Tests for case 1 above. */
3339 static int
3340 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3342 basic_block then_bb = then_edge->dest;
3343 basic_block else_bb = else_edge->dest, new_bb;
3344 int then_bb_index;
3346 /* If we are partitioning hot/cold basic blocks, we don't want to
3347 mess up unconditional or indirect jumps that cross between hot
3348 and cold sections.
3350 Basic block partitioning may result in some jumps that appear to
3351 be optimizable (or blocks that appear to be mergeable), but which really
3352 must be left untouched (they are required to make it safely across
3353 partition boundaries). See the comments at the top of
3354 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3356 if ((BB_END (then_bb)
3357 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3358 || (BB_END (test_bb)
3359 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3360 || (BB_END (else_bb)
3361 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3362 NULL_RTX)))
3363 return FALSE;
3365 /* THEN has one successor. */
3366 if (!single_succ_p (then_bb))
3367 return FALSE;
3369 /* THEN does not fall through, but is not strange either. */
3370 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3371 return FALSE;
3373 /* THEN has one predecessor. */
3374 if (!single_pred_p (then_bb))
3375 return FALSE;
3377 /* THEN must do something. */
3378 if (forwarder_block_p (then_bb))
3379 return FALSE;
3381 num_possible_if_blocks++;
3382 if (dump_file)
3383 fprintf (dump_file,
3384 "\nIF-CASE-1 found, start %d, then %d\n",
3385 test_bb->index, then_bb->index);
3387 /* THEN is small. */
3388 if (! cheap_bb_rtx_cost_p (then_bb, COSTS_N_INSNS (BRANCH_COST)))
3389 return FALSE;
3391 /* Registers set are dead, or are predicable. */
3392 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3393 single_succ (then_bb), 1))
3394 return FALSE;
3396 /* Conversion went ok, including moving the insns and fixing up the
3397 jump. Adjust the CFG to match. */
3399 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3400 else_bb->il.rtl->global_live_at_start,
3401 then_bb->il.rtl->global_live_at_end);
3404 /* We can avoid creating a new basic block if then_bb is immediately
3405 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3406 thru to else_bb. */
3408 if (then_bb->next_bb == else_bb
3409 && then_bb->prev_bb == test_bb
3410 && else_bb != EXIT_BLOCK_PTR)
3412 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3413 new_bb = 0;
3415 else
3416 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3417 else_bb);
3419 then_bb_index = then_bb->index;
3420 delete_basic_block (then_bb);
3422 /* Make rest of code believe that the newly created block is the THEN_BB
3423 block we removed. */
3424 if (new_bb)
3426 new_bb->index = then_bb_index;
3427 SET_BASIC_BLOCK (then_bb_index, new_bb);
3428 /* Since the fallthru edge was redirected from test_bb to new_bb,
3429 we need to ensure that new_bb is in the same partition as
3430 test bb (you can not fall through across section boundaries). */
3431 BB_COPY_PARTITION (new_bb, test_bb);
3433 /* We've possibly created jump to next insn, cleanup_cfg will solve that
3434 later. */
3436 num_true_changes++;
3437 num_updated_if_blocks++;
3439 return TRUE;
3442 /* Test for case 2 above. */
3444 static int
3445 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3447 basic_block then_bb = then_edge->dest;
3448 basic_block else_bb = else_edge->dest;
3449 edge else_succ;
3450 rtx note;
3452 /* If we are partitioning hot/cold basic blocks, we don't want to
3453 mess up unconditional or indirect jumps that cross between hot
3454 and cold sections.
3456 Basic block partitioning may result in some jumps that appear to
3457 be optimizable (or blocks that appear to be mergeable), but which really
3458 must be left untouched (they are required to make it safely across
3459 partition boundaries). See the comments at the top of
3460 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3462 if ((BB_END (then_bb)
3463 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3464 || (BB_END (test_bb)
3465 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3466 || (BB_END (else_bb)
3467 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3468 NULL_RTX)))
3469 return FALSE;
3471 /* ELSE has one successor. */
3472 if (!single_succ_p (else_bb))
3473 return FALSE;
3474 else
3475 else_succ = single_succ_edge (else_bb);
3477 /* ELSE outgoing edge is not complex. */
3478 if (else_succ->flags & EDGE_COMPLEX)
3479 return FALSE;
3481 /* ELSE has one predecessor. */
3482 if (!single_pred_p (else_bb))
3483 return FALSE;
3485 /* THEN is not EXIT. */
3486 if (then_bb->index < NUM_FIXED_BLOCKS)
3487 return FALSE;
3489 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3490 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3491 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3493 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3494 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3495 else_succ->dest))
3497 else
3498 return FALSE;
3500 num_possible_if_blocks++;
3501 if (dump_file)
3502 fprintf (dump_file,
3503 "\nIF-CASE-2 found, start %d, else %d\n",
3504 test_bb->index, else_bb->index);
3506 /* ELSE is small. */
3507 if (! cheap_bb_rtx_cost_p (else_bb, COSTS_N_INSNS (BRANCH_COST)))
3508 return FALSE;
3510 /* Registers set are dead, or are predicable. */
3511 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3512 return FALSE;
3514 /* Conversion went ok, including moving the insns and fixing up the
3515 jump. Adjust the CFG to match. */
3517 bitmap_ior (test_bb->il.rtl->global_live_at_end,
3518 then_bb->il.rtl->global_live_at_start,
3519 else_bb->il.rtl->global_live_at_end);
3521 delete_basic_block (else_bb);
3523 num_true_changes++;
3524 num_updated_if_blocks++;
3526 /* ??? We may now fallthru from one of THEN's successors into a join
3527 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3529 return TRUE;
3532 /* A subroutine of dead_or_predicable called through for_each_rtx.
3533 Return 1 if a memory is found. */
3535 static int
3536 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3538 return MEM_P (*px);
3541 /* Used by the code above to perform the actual rtl transformations.
3542 Return TRUE if successful.
3544 TEST_BB is the block containing the conditional branch. MERGE_BB
3545 is the block containing the code to manipulate. NEW_DEST is the
3546 label TEST_BB should be branching to after the conversion.
3547 REVERSEP is true if the sense of the branch should be reversed. */
3549 static int
3550 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3551 basic_block other_bb, basic_block new_dest, int reversep)
3553 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3555 jump = BB_END (test_bb);
3557 /* Find the extent of the real code in the merge block. */
3558 head = BB_HEAD (merge_bb);
3559 end = BB_END (merge_bb);
3561 if (LABEL_P (head))
3562 head = NEXT_INSN (head);
3563 if (NOTE_P (head))
3565 if (head == end)
3567 head = end = NULL_RTX;
3568 goto no_body;
3570 head = NEXT_INSN (head);
3573 if (JUMP_P (end))
3575 if (head == end)
3577 head = end = NULL_RTX;
3578 goto no_body;
3580 end = PREV_INSN (end);
3583 /* Disable handling dead code by conditional execution if the machine needs
3584 to do anything funny with the tests, etc. */
3585 #ifndef IFCVT_MODIFY_TESTS
3586 if (HAVE_conditional_execution)
3588 /* In the conditional execution case, we have things easy. We know
3589 the condition is reversible. We don't have to check life info
3590 because we're going to conditionally execute the code anyway.
3591 All that's left is making sure the insns involved can actually
3592 be predicated. */
3594 rtx cond, prob_val;
3596 cond = cond_exec_get_condition (jump);
3597 if (! cond)
3598 return FALSE;
3600 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3601 if (prob_val)
3602 prob_val = XEXP (prob_val, 0);
3604 if (reversep)
3606 enum rtx_code rev = reversed_comparison_code (cond, jump);
3607 if (rev == UNKNOWN)
3608 return FALSE;
3609 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3610 XEXP (cond, 1));
3611 if (prob_val)
3612 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3615 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3616 prob_val, 0))
3617 goto cancel;
3619 earliest = jump;
3621 else
3622 #endif
3624 /* In the non-conditional execution case, we have to verify that there
3625 are no trapping operations, no calls, no references to memory, and
3626 that any registers modified are dead at the branch site. */
3628 rtx insn, cond, prev;
3629 regset merge_set, tmp, test_live, test_set;
3630 struct propagate_block_info *pbi;
3631 unsigned i, fail = 0;
3632 bitmap_iterator bi;
3634 /* Check for no calls or trapping operations. */
3635 for (insn = head; ; insn = NEXT_INSN (insn))
3637 if (CALL_P (insn))
3638 return FALSE;
3639 if (INSN_P (insn))
3641 if (may_trap_p (PATTERN (insn)))
3642 return FALSE;
3644 /* ??? Even non-trapping memories such as stack frame
3645 references must be avoided. For stores, we collect
3646 no lifetime info; for reads, we'd have to assert
3647 true_dependence false against every store in the
3648 TEST range. */
3649 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3650 return FALSE;
3652 if (insn == end)
3653 break;
3656 if (! any_condjump_p (jump))
3657 return FALSE;
3659 /* Find the extent of the conditional. */
3660 cond = noce_get_condition (jump, &earliest);
3661 if (! cond)
3662 return FALSE;
3664 /* Collect:
3665 MERGE_SET = set of registers set in MERGE_BB
3666 TEST_LIVE = set of registers live at EARLIEST
3667 TEST_SET = set of registers set between EARLIEST and the
3668 end of the block. */
3670 tmp = ALLOC_REG_SET (&reg_obstack);
3671 merge_set = ALLOC_REG_SET (&reg_obstack);
3672 test_live = ALLOC_REG_SET (&reg_obstack);
3673 test_set = ALLOC_REG_SET (&reg_obstack);
3675 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3676 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3677 since we've already asserted that MERGE_BB is small. */
3678 /* If we allocated new pseudos (e.g. in the conditional move
3679 expander called from noce_emit_cmove), we must resize the
3680 array first. */
3681 if (max_regno < max_reg_num ())
3683 max_regno = max_reg_num ();
3684 allocate_reg_info (max_regno, FALSE, FALSE);
3686 propagate_block (merge_bb, tmp, merge_set, merge_set, 0);
3688 /* For small register class machines, don't lengthen lifetimes of
3689 hard registers before reload. */
3690 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3692 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3694 if (i < FIRST_PSEUDO_REGISTER
3695 && ! fixed_regs[i]
3696 && ! global_regs[i])
3697 fail = 1;
3701 /* For TEST, we're interested in a range of insns, not a whole block.
3702 Moreover, we're interested in the insns live from OTHER_BB. */
3704 COPY_REG_SET (test_live, other_bb->il.rtl->global_live_at_start);
3705 pbi = init_propagate_block_info (test_bb, test_live, test_set, test_set,
3708 for (insn = jump; ; insn = prev)
3710 prev = propagate_one_insn (pbi, insn);
3711 if (insn == earliest)
3712 break;
3715 free_propagate_block_info (pbi);
3717 /* We can perform the transformation if
3718 MERGE_SET & (TEST_SET | TEST_LIVE)
3720 TEST_SET & merge_bb->il.rtl->global_live_at_start
3721 are empty. */
3723 if (bitmap_intersect_p (test_set, merge_set)
3724 || bitmap_intersect_p (test_live, merge_set)
3725 || bitmap_intersect_p (test_set,
3726 merge_bb->il.rtl->global_live_at_start))
3727 fail = 1;
3729 FREE_REG_SET (tmp);
3730 FREE_REG_SET (merge_set);
3731 FREE_REG_SET (test_live);
3732 FREE_REG_SET (test_set);
3734 if (fail)
3735 return FALSE;
3738 no_body:
3739 /* We don't want to use normal invert_jump or redirect_jump because
3740 we don't want to delete_insn called. Also, we want to do our own
3741 change group management. */
3743 old_dest = JUMP_LABEL (jump);
3744 if (other_bb != new_dest)
3746 new_label = block_label (new_dest);
3747 if (reversep
3748 ? ! invert_jump_1 (jump, new_label)
3749 : ! redirect_jump_1 (jump, new_label))
3750 goto cancel;
3753 if (! apply_change_group ())
3754 return FALSE;
3756 if (other_bb != new_dest)
3758 redirect_jump_2 (jump, old_dest, new_label, -1, reversep);
3760 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
3761 if (reversep)
3763 gcov_type count, probability;
3764 count = BRANCH_EDGE (test_bb)->count;
3765 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
3766 FALLTHRU_EDGE (test_bb)->count = count;
3767 probability = BRANCH_EDGE (test_bb)->probability;
3768 BRANCH_EDGE (test_bb)->probability
3769 = FALLTHRU_EDGE (test_bb)->probability;
3770 FALLTHRU_EDGE (test_bb)->probability = probability;
3771 update_br_prob_note (test_bb);
3775 /* Move the insns out of MERGE_BB to before the branch. */
3776 if (head != NULL)
3778 rtx insn;
3780 if (end == BB_END (merge_bb))
3781 BB_END (merge_bb) = PREV_INSN (head);
3783 if (squeeze_notes (&head, &end))
3784 return TRUE;
3786 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
3787 notes might become invalid. */
3788 insn = head;
3791 rtx note, set;
3793 if (! INSN_P (insn))
3794 continue;
3795 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3796 if (! note)
3797 continue;
3798 set = single_set (insn);
3799 if (!set || !function_invariant_p (SET_SRC (set)))
3800 remove_note (insn, note);
3801 } while (insn != end && (insn = NEXT_INSN (insn)));
3803 reorder_insns (head, end, PREV_INSN (earliest));
3806 /* Remove the jump and edge if we can. */
3807 if (other_bb == new_dest)
3809 delete_insn (jump);
3810 remove_edge (BRANCH_EDGE (test_bb));
3811 /* ??? Can't merge blocks here, as then_bb is still in use.
3812 At minimum, the merge will get done just before bb-reorder. */
3815 return TRUE;
3817 cancel:
3818 cancel_changes (0);
3819 return FALSE;
3822 /* Main entry point for all if-conversion. */
3824 static void
3825 if_convert (int x_life_data_ok)
3827 basic_block bb;
3828 int pass;
3830 num_possible_if_blocks = 0;
3831 num_updated_if_blocks = 0;
3832 num_true_changes = 0;
3833 life_data_ok = (x_life_data_ok != 0);
3835 if ((! targetm.cannot_modify_jumps_p ())
3836 && (!flag_reorder_blocks_and_partition || !no_new_pseudos
3837 || !targetm.have_named_sections))
3839 struct loops loops;
3841 flow_loops_find (&loops);
3842 mark_loop_exit_edges (&loops);
3843 flow_loops_free (&loops);
3844 free_dominance_info (CDI_DOMINATORS);
3847 /* Compute postdominators if we think we'll use them. */
3848 if (HAVE_conditional_execution || life_data_ok)
3849 calculate_dominance_info (CDI_POST_DOMINATORS);
3851 if (life_data_ok)
3852 clear_bb_flags ();
3854 /* Go through each of the basic blocks looking for things to convert. If we
3855 have conditional execution, we make multiple passes to allow us to handle
3856 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
3857 pass = 0;
3860 cond_exec_changed_p = FALSE;
3861 pass++;
3863 #ifdef IFCVT_MULTIPLE_DUMPS
3864 if (dump_file && pass > 1)
3865 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
3866 #endif
3868 FOR_EACH_BB (bb)
3870 basic_block new_bb;
3871 while ((new_bb = find_if_header (bb, pass)))
3872 bb = new_bb;
3875 #ifdef IFCVT_MULTIPLE_DUMPS
3876 if (dump_file && cond_exec_changed_p)
3877 print_rtl_with_bb (dump_file, get_insns ());
3878 #endif
3880 while (cond_exec_changed_p);
3882 #ifdef IFCVT_MULTIPLE_DUMPS
3883 if (dump_file)
3884 fprintf (dump_file, "\n\n========== no more changes\n");
3885 #endif
3887 free_dominance_info (CDI_POST_DOMINATORS);
3889 if (dump_file)
3890 fflush (dump_file);
3892 clear_aux_for_blocks ();
3894 /* Rebuild life info for basic blocks that require it. */
3895 if (num_true_changes && life_data_ok)
3897 /* If we allocated new pseudos, we must resize the array for sched1. */
3898 if (max_regno < max_reg_num ())
3900 max_regno = max_reg_num ();
3901 allocate_reg_info (max_regno, FALSE, FALSE);
3903 update_life_info_in_dirty_blocks (UPDATE_LIFE_GLOBAL_RM_NOTES,
3904 PROP_DEATH_NOTES | PROP_SCAN_DEAD_CODE
3905 | PROP_KILL_DEAD_CODE);
3908 /* Write the final stats. */
3909 if (dump_file && num_possible_if_blocks > 0)
3911 fprintf (dump_file,
3912 "\n%d possible IF blocks searched.\n",
3913 num_possible_if_blocks);
3914 fprintf (dump_file,
3915 "%d IF blocks converted.\n",
3916 num_updated_if_blocks);
3917 fprintf (dump_file,
3918 "%d true changes made.\n\n\n",
3919 num_true_changes);
3922 #ifdef ENABLE_CHECKING
3923 verify_flow_info ();
3924 #endif
3927 static bool
3928 gate_handle_if_conversion (void)
3930 return (optimize > 0);
3933 /* If-conversion and CFG cleanup. */
3934 static unsigned int
3935 rest_of_handle_if_conversion (void)
3937 if (flag_if_conversion)
3939 if (dump_file)
3940 dump_flow_info (dump_file, dump_flags);
3941 cleanup_cfg (CLEANUP_EXPENSIVE);
3942 reg_scan (get_insns (), max_reg_num ());
3943 if_convert (0);
3946 timevar_push (TV_JUMP);
3947 cleanup_cfg (CLEANUP_EXPENSIVE);
3948 reg_scan (get_insns (), max_reg_num ());
3949 timevar_pop (TV_JUMP);
3950 return 0;
3953 struct tree_opt_pass pass_rtl_ifcvt =
3955 "ce1", /* name */
3956 gate_handle_if_conversion, /* gate */
3957 rest_of_handle_if_conversion, /* execute */
3958 NULL, /* sub */
3959 NULL, /* next */
3960 0, /* static_pass_number */
3961 TV_IFCVT, /* tv_id */
3962 0, /* properties_required */
3963 0, /* properties_provided */
3964 0, /* properties_destroyed */
3965 0, /* todo_flags_start */
3966 TODO_dump_func, /* todo_flags_finish */
3967 'C' /* letter */
3970 static bool
3971 gate_handle_if_after_combine (void)
3973 return (optimize > 0 && flag_if_conversion);
3977 /* Rerun if-conversion, as combine may have simplified things enough
3978 to now meet sequence length restrictions. */
3979 static unsigned int
3980 rest_of_handle_if_after_combine (void)
3982 no_new_pseudos = 0;
3983 if_convert (1);
3984 no_new_pseudos = 1;
3985 return 0;
3988 struct tree_opt_pass pass_if_after_combine =
3990 "ce2", /* name */
3991 gate_handle_if_after_combine, /* gate */
3992 rest_of_handle_if_after_combine, /* execute */
3993 NULL, /* sub */
3994 NULL, /* next */
3995 0, /* static_pass_number */
3996 TV_IFCVT, /* tv_id */
3997 0, /* properties_required */
3998 0, /* properties_provided */
3999 0, /* properties_destroyed */
4000 0, /* todo_flags_start */
4001 TODO_dump_func |
4002 TODO_ggc_collect, /* todo_flags_finish */
4003 'C' /* letter */
4007 static bool
4008 gate_handle_if_after_reload (void)
4010 return (optimize > 0);
4013 static unsigned int
4014 rest_of_handle_if_after_reload (void)
4016 /* Last attempt to optimize CFG, as scheduling, peepholing and insn
4017 splitting possibly introduced more crossjumping opportunities. */
4018 cleanup_cfg (CLEANUP_EXPENSIVE
4019 | CLEANUP_UPDATE_LIFE
4020 | (flag_crossjumping ? CLEANUP_CROSSJUMP : 0));
4021 if (flag_if_conversion2)
4022 if_convert (1);
4023 return 0;
4027 struct tree_opt_pass pass_if_after_reload =
4029 "ce3", /* name */
4030 gate_handle_if_after_reload, /* gate */
4031 rest_of_handle_if_after_reload, /* execute */
4032 NULL, /* sub */
4033 NULL, /* next */
4034 0, /* static_pass_number */
4035 TV_IFCVT2, /* tv_id */
4036 0, /* properties_required */
4037 0, /* properties_provided */
4038 0, /* properties_destroyed */
4039 0, /* todo_flags_start */
4040 TODO_dump_func |
4041 TODO_ggc_collect, /* todo_flags_finish */
4042 'E' /* letter */