* doc/invoke.texi: Add cpu_type power6.
[official-gcc.git] / gcc / expr.c
blob94e8586dc35e68ca34c93bf0fe4afbc148c102ff
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation,
4 Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "machmode.h"
28 #include "real.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "flags.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "except.h"
35 #include "function.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
39 #include "expr.h"
40 #include "optabs.h"
41 #include "libfuncs.h"
42 #include "recog.h"
43 #include "reload.h"
44 #include "output.h"
45 #include "typeclass.h"
46 #include "toplev.h"
47 #include "ggc.h"
48 #include "langhooks.h"
49 #include "intl.h"
50 #include "tm_p.h"
51 #include "tree-iterator.h"
52 #include "tree-pass.h"
53 #include "tree-flow.h"
54 #include "target.h"
55 #include "timevar.h"
57 /* Decide whether a function's arguments should be processed
58 from first to last or from last to first.
60 They should if the stack and args grow in opposite directions, but
61 only if we have push insns. */
63 #ifdef PUSH_ROUNDING
65 #ifndef PUSH_ARGS_REVERSED
66 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
67 #define PUSH_ARGS_REVERSED /* If it's last to first. */
68 #endif
69 #endif
71 #endif
73 #ifndef STACK_PUSH_CODE
74 #ifdef STACK_GROWS_DOWNWARD
75 #define STACK_PUSH_CODE PRE_DEC
76 #else
77 #define STACK_PUSH_CODE PRE_INC
78 #endif
79 #endif
82 /* If this is nonzero, we do not bother generating VOLATILE
83 around volatile memory references, and we are willing to
84 output indirect addresses. If cse is to follow, we reject
85 indirect addresses so a useful potential cse is generated;
86 if it is used only once, instruction combination will produce
87 the same indirect address eventually. */
88 int cse_not_expected;
90 /* This structure is used by move_by_pieces to describe the move to
91 be performed. */
92 struct move_by_pieces
94 rtx to;
95 rtx to_addr;
96 int autinc_to;
97 int explicit_inc_to;
98 rtx from;
99 rtx from_addr;
100 int autinc_from;
101 int explicit_inc_from;
102 unsigned HOST_WIDE_INT len;
103 HOST_WIDE_INT offset;
104 int reverse;
107 /* This structure is used by store_by_pieces to describe the clear to
108 be performed. */
110 struct store_by_pieces
112 rtx to;
113 rtx to_addr;
114 int autinc_to;
115 int explicit_inc_to;
116 unsigned HOST_WIDE_INT len;
117 HOST_WIDE_INT offset;
118 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
119 void *constfundata;
120 int reverse;
123 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
124 unsigned int,
125 unsigned int);
126 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
127 struct move_by_pieces *);
128 static bool block_move_libcall_safe_for_call_parm (void);
129 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned);
130 static rtx emit_block_move_via_libcall (rtx, rtx, rtx, bool);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces *);
138 static rtx clear_storage_via_libcall (rtx, rtx, bool);
139 static tree clear_storage_libcall_fn (int);
140 static rtx compress_float_constant (rtx, rtx);
141 static rtx get_subtarget (rtx);
142 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
143 HOST_WIDE_INT, enum machine_mode,
144 tree, tree, int, int);
145 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
146 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
147 tree, tree, int);
149 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (tree, tree);
151 static int is_aligning_offset (tree, tree);
152 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
153 enum expand_modifier);
154 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
155 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
156 #ifdef PUSH_ROUNDING
157 static void emit_single_push_insn (enum machine_mode, rtx, tree);
158 #endif
159 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
160 static rtx const_vector_from_tree (tree);
161 static void write_complex_part (rtx, rtx, bool);
163 /* Record for each mode whether we can move a register directly to or
164 from an object of that mode in memory. If we can't, we won't try
165 to use that mode directly when accessing a field of that mode. */
167 static char direct_load[NUM_MACHINE_MODES];
168 static char direct_store[NUM_MACHINE_MODES];
170 /* Record for each mode whether we can float-extend from memory. */
172 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
174 /* This macro is used to determine whether move_by_pieces should be called
175 to perform a structure copy. */
176 #ifndef MOVE_BY_PIECES_P
177 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
178 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
179 < (unsigned int) MOVE_RATIO)
180 #endif
182 /* This macro is used to determine whether clear_by_pieces should be
183 called to clear storage. */
184 #ifndef CLEAR_BY_PIECES_P
185 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
186 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
187 < (unsigned int) CLEAR_RATIO)
188 #endif
190 /* This macro is used to determine whether store_by_pieces should be
191 called to "memset" storage with byte values other than zero, or
192 to "memcpy" storage when the source is a constant string. */
193 #ifndef STORE_BY_PIECES_P
194 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
195 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
196 < (unsigned int) MOVE_RATIO)
197 #endif
199 /* This array records the insn_code of insns to perform block moves. */
200 enum insn_code movmem_optab[NUM_MACHINE_MODES];
202 /* This array records the insn_code of insns to perform block sets. */
203 enum insn_code setmem_optab[NUM_MACHINE_MODES];
205 /* These arrays record the insn_code of three different kinds of insns
206 to perform block compares. */
207 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
208 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
209 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
211 /* Synchronization primitives. */
212 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
213 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
214 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
215 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
216 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
217 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
218 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
231 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
232 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
233 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
235 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
237 #ifndef SLOW_UNALIGNED_ACCESS
238 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
239 #endif
241 /* This is run once per compilation to set up which modes can be used
242 directly in memory and to initialize the block move optab. */
244 void
245 init_expr_once (void)
247 rtx insn, pat;
248 enum machine_mode mode;
249 int num_clobbers;
250 rtx mem, mem1;
251 rtx reg;
253 /* Try indexing by frame ptr and try by stack ptr.
254 It is known that on the Convex the stack ptr isn't a valid index.
255 With luck, one or the other is valid on any machine. */
256 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
257 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
259 /* A scratch register we can modify in-place below to avoid
260 useless RTL allocations. */
261 reg = gen_rtx_REG (VOIDmode, -1);
263 insn = rtx_alloc (INSN);
264 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
265 PATTERN (insn) = pat;
267 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
268 mode = (enum machine_mode) ((int) mode + 1))
270 int regno;
272 direct_load[(int) mode] = direct_store[(int) mode] = 0;
273 PUT_MODE (mem, mode);
274 PUT_MODE (mem1, mode);
275 PUT_MODE (reg, mode);
277 /* See if there is some register that can be used in this mode and
278 directly loaded or stored from memory. */
280 if (mode != VOIDmode && mode != BLKmode)
281 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
282 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
283 regno++)
285 if (! HARD_REGNO_MODE_OK (regno, mode))
286 continue;
288 REGNO (reg) = regno;
290 SET_SRC (pat) = mem;
291 SET_DEST (pat) = reg;
292 if (recog (pat, insn, &num_clobbers) >= 0)
293 direct_load[(int) mode] = 1;
295 SET_SRC (pat) = mem1;
296 SET_DEST (pat) = reg;
297 if (recog (pat, insn, &num_clobbers) >= 0)
298 direct_load[(int) mode] = 1;
300 SET_SRC (pat) = reg;
301 SET_DEST (pat) = mem;
302 if (recog (pat, insn, &num_clobbers) >= 0)
303 direct_store[(int) mode] = 1;
305 SET_SRC (pat) = reg;
306 SET_DEST (pat) = mem1;
307 if (recog (pat, insn, &num_clobbers) >= 0)
308 direct_store[(int) mode] = 1;
312 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
314 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
315 mode = GET_MODE_WIDER_MODE (mode))
317 enum machine_mode srcmode;
318 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
319 srcmode = GET_MODE_WIDER_MODE (srcmode))
321 enum insn_code ic;
323 ic = can_extend_p (mode, srcmode, 0);
324 if (ic == CODE_FOR_nothing)
325 continue;
327 PUT_MODE (mem, srcmode);
329 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
330 float_extend_from_mem[mode][srcmode] = true;
335 /* This is run at the start of compiling a function. */
337 void
338 init_expr (void)
340 cfun->expr = ggc_alloc_cleared (sizeof (struct expr_status));
343 /* Copy data from FROM to TO, where the machine modes are not the same.
344 Both modes may be integer, or both may be floating.
345 UNSIGNEDP should be nonzero if FROM is an unsigned type.
346 This causes zero-extension instead of sign-extension. */
348 void
349 convert_move (rtx to, rtx from, int unsignedp)
351 enum machine_mode to_mode = GET_MODE (to);
352 enum machine_mode from_mode = GET_MODE (from);
353 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
354 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
355 enum insn_code code;
356 rtx libcall;
358 /* rtx code for making an equivalent value. */
359 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
360 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
363 gcc_assert (to_real == from_real);
365 /* If the source and destination are already the same, then there's
366 nothing to do. */
367 if (to == from)
368 return;
370 /* If FROM is a SUBREG that indicates that we have already done at least
371 the required extension, strip it. We don't handle such SUBREGs as
372 TO here. */
374 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
375 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
376 >= GET_MODE_SIZE (to_mode))
377 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
378 from = gen_lowpart (to_mode, from), from_mode = to_mode;
380 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
382 if (to_mode == from_mode
383 || (from_mode == VOIDmode && CONSTANT_P (from)))
385 emit_move_insn (to, from);
386 return;
389 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
391 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
393 if (VECTOR_MODE_P (to_mode))
394 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
395 else
396 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
398 emit_move_insn (to, from);
399 return;
402 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
404 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
405 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
406 return;
409 if (to_real)
411 rtx value, insns;
412 convert_optab tab;
414 gcc_assert ((GET_MODE_PRECISION (from_mode)
415 != GET_MODE_PRECISION (to_mode))
416 || (DECIMAL_FLOAT_MODE_P (from_mode)
417 != DECIMAL_FLOAT_MODE_P (to_mode)));
419 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
420 /* Conversion between decimal float and binary float, same size. */
421 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
422 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
423 tab = sext_optab;
424 else
425 tab = trunc_optab;
427 /* Try converting directly if the insn is supported. */
429 code = tab->handlers[to_mode][from_mode].insn_code;
430 if (code != CODE_FOR_nothing)
432 emit_unop_insn (code, to, from,
433 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
434 return;
437 /* Otherwise use a libcall. */
438 libcall = tab->handlers[to_mode][from_mode].libfunc;
440 /* Is this conversion implemented yet? */
441 gcc_assert (libcall);
443 start_sequence ();
444 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
445 1, from, from_mode);
446 insns = get_insns ();
447 end_sequence ();
448 emit_libcall_block (insns, to, value,
449 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
450 from)
451 : gen_rtx_FLOAT_EXTEND (to_mode, from));
452 return;
455 /* Handle pointer conversion. */ /* SPEE 900220. */
456 /* Targets are expected to provide conversion insns between PxImode and
457 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
458 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
460 enum machine_mode full_mode
461 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
463 gcc_assert (trunc_optab->handlers[to_mode][full_mode].insn_code
464 != CODE_FOR_nothing);
466 if (full_mode != from_mode)
467 from = convert_to_mode (full_mode, from, unsignedp);
468 emit_unop_insn (trunc_optab->handlers[to_mode][full_mode].insn_code,
469 to, from, UNKNOWN);
470 return;
472 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
474 rtx new_from;
475 enum machine_mode full_mode
476 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
478 gcc_assert (sext_optab->handlers[full_mode][from_mode].insn_code
479 != CODE_FOR_nothing);
481 if (to_mode == full_mode)
483 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
484 to, from, UNKNOWN);
485 return;
488 new_from = gen_reg_rtx (full_mode);
489 emit_unop_insn (sext_optab->handlers[full_mode][from_mode].insn_code,
490 new_from, from, UNKNOWN);
492 /* else proceed to integer conversions below. */
493 from_mode = full_mode;
494 from = new_from;
497 /* Now both modes are integers. */
499 /* Handle expanding beyond a word. */
500 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
501 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
503 rtx insns;
504 rtx lowpart;
505 rtx fill_value;
506 rtx lowfrom;
507 int i;
508 enum machine_mode lowpart_mode;
509 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
511 /* Try converting directly if the insn is supported. */
512 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
513 != CODE_FOR_nothing)
515 /* If FROM is a SUBREG, put it into a register. Do this
516 so that we always generate the same set of insns for
517 better cse'ing; if an intermediate assignment occurred,
518 we won't be doing the operation directly on the SUBREG. */
519 if (optimize > 0 && GET_CODE (from) == SUBREG)
520 from = force_reg (from_mode, from);
521 emit_unop_insn (code, to, from, equiv_code);
522 return;
524 /* Next, try converting via full word. */
525 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
526 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
527 != CODE_FOR_nothing))
529 if (REG_P (to))
531 if (reg_overlap_mentioned_p (to, from))
532 from = force_reg (from_mode, from);
533 emit_insn (gen_rtx_CLOBBER (VOIDmode, to));
535 convert_move (gen_lowpart (word_mode, to), from, unsignedp);
536 emit_unop_insn (code, to,
537 gen_lowpart (word_mode, to), equiv_code);
538 return;
541 /* No special multiword conversion insn; do it by hand. */
542 start_sequence ();
544 /* Since we will turn this into a no conflict block, we must ensure
545 that the source does not overlap the target. */
547 if (reg_overlap_mentioned_p (to, from))
548 from = force_reg (from_mode, from);
550 /* Get a copy of FROM widened to a word, if necessary. */
551 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
552 lowpart_mode = word_mode;
553 else
554 lowpart_mode = from_mode;
556 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
558 lowpart = gen_lowpart (lowpart_mode, to);
559 emit_move_insn (lowpart, lowfrom);
561 /* Compute the value to put in each remaining word. */
562 if (unsignedp)
563 fill_value = const0_rtx;
564 else
566 #ifdef HAVE_slt
567 if (HAVE_slt
568 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
569 && STORE_FLAG_VALUE == -1)
571 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
572 lowpart_mode, 0);
573 fill_value = gen_reg_rtx (word_mode);
574 emit_insn (gen_slt (fill_value));
576 else
577 #endif
579 fill_value
580 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
581 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
582 NULL_RTX, 0);
583 fill_value = convert_to_mode (word_mode, fill_value, 1);
587 /* Fill the remaining words. */
588 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
590 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
591 rtx subword = operand_subword (to, index, 1, to_mode);
593 gcc_assert (subword);
595 if (fill_value != subword)
596 emit_move_insn (subword, fill_value);
599 insns = get_insns ();
600 end_sequence ();
602 emit_no_conflict_block (insns, to, from, NULL_RTX,
603 gen_rtx_fmt_e (equiv_code, to_mode, copy_rtx (from)));
604 return;
607 /* Truncating multi-word to a word or less. */
608 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
609 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
611 if (!((MEM_P (from)
612 && ! MEM_VOLATILE_P (from)
613 && direct_load[(int) to_mode]
614 && ! mode_dependent_address_p (XEXP (from, 0)))
615 || REG_P (from)
616 || GET_CODE (from) == SUBREG))
617 from = force_reg (from_mode, from);
618 convert_move (to, gen_lowpart (word_mode, from), 0);
619 return;
622 /* Now follow all the conversions between integers
623 no more than a word long. */
625 /* For truncation, usually we can just refer to FROM in a narrower mode. */
626 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
627 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
628 GET_MODE_BITSIZE (from_mode)))
630 if (!((MEM_P (from)
631 && ! MEM_VOLATILE_P (from)
632 && direct_load[(int) to_mode]
633 && ! mode_dependent_address_p (XEXP (from, 0)))
634 || REG_P (from)
635 || GET_CODE (from) == SUBREG))
636 from = force_reg (from_mode, from);
637 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
638 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
639 from = copy_to_reg (from);
640 emit_move_insn (to, gen_lowpart (to_mode, from));
641 return;
644 /* Handle extension. */
645 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
647 /* Convert directly if that works. */
648 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
649 != CODE_FOR_nothing)
651 emit_unop_insn (code, to, from, equiv_code);
652 return;
654 else
656 enum machine_mode intermediate;
657 rtx tmp;
658 tree shift_amount;
660 /* Search for a mode to convert via. */
661 for (intermediate = from_mode; intermediate != VOIDmode;
662 intermediate = GET_MODE_WIDER_MODE (intermediate))
663 if (((can_extend_p (to_mode, intermediate, unsignedp)
664 != CODE_FOR_nothing)
665 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
666 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
667 GET_MODE_BITSIZE (intermediate))))
668 && (can_extend_p (intermediate, from_mode, unsignedp)
669 != CODE_FOR_nothing))
671 convert_move (to, convert_to_mode (intermediate, from,
672 unsignedp), unsignedp);
673 return;
676 /* No suitable intermediate mode.
677 Generate what we need with shifts. */
678 shift_amount = build_int_cst (NULL_TREE,
679 GET_MODE_BITSIZE (to_mode)
680 - GET_MODE_BITSIZE (from_mode));
681 from = gen_lowpart (to_mode, force_reg (from_mode, from));
682 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
683 to, unsignedp);
684 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
685 to, unsignedp);
686 if (tmp != to)
687 emit_move_insn (to, tmp);
688 return;
692 /* Support special truncate insns for certain modes. */
693 if (trunc_optab->handlers[to_mode][from_mode].insn_code != CODE_FOR_nothing)
695 emit_unop_insn (trunc_optab->handlers[to_mode][from_mode].insn_code,
696 to, from, UNKNOWN);
697 return;
700 /* Handle truncation of volatile memrefs, and so on;
701 the things that couldn't be truncated directly,
702 and for which there was no special instruction.
704 ??? Code above formerly short-circuited this, for most integer
705 mode pairs, with a force_reg in from_mode followed by a recursive
706 call to this routine. Appears always to have been wrong. */
707 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
709 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
710 emit_move_insn (to, temp);
711 return;
714 /* Mode combination is not recognized. */
715 gcc_unreachable ();
718 /* Return an rtx for a value that would result
719 from converting X to mode MODE.
720 Both X and MODE may be floating, or both integer.
721 UNSIGNEDP is nonzero if X is an unsigned value.
722 This can be done by referring to a part of X in place
723 or by copying to a new temporary with conversion. */
726 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
728 return convert_modes (mode, VOIDmode, x, unsignedp);
731 /* Return an rtx for a value that would result
732 from converting X from mode OLDMODE to mode MODE.
733 Both modes may be floating, or both integer.
734 UNSIGNEDP is nonzero if X is an unsigned value.
736 This can be done by referring to a part of X in place
737 or by copying to a new temporary with conversion.
739 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
742 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
744 rtx temp;
746 /* If FROM is a SUBREG that indicates that we have already done at least
747 the required extension, strip it. */
749 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
750 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
751 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
752 x = gen_lowpart (mode, x);
754 if (GET_MODE (x) != VOIDmode)
755 oldmode = GET_MODE (x);
757 if (mode == oldmode)
758 return x;
760 /* There is one case that we must handle specially: If we are converting
761 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
762 we are to interpret the constant as unsigned, gen_lowpart will do
763 the wrong if the constant appears negative. What we want to do is
764 make the high-order word of the constant zero, not all ones. */
766 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
767 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
768 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
770 HOST_WIDE_INT val = INTVAL (x);
772 if (oldmode != VOIDmode
773 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
775 int width = GET_MODE_BITSIZE (oldmode);
777 /* We need to zero extend VAL. */
778 val &= ((HOST_WIDE_INT) 1 << width) - 1;
781 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
784 /* We can do this with a gen_lowpart if both desired and current modes
785 are integer, and this is either a constant integer, a register, or a
786 non-volatile MEM. Except for the constant case where MODE is no
787 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
789 if ((GET_CODE (x) == CONST_INT
790 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
791 || (GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_CLASS (oldmode) == MODE_INT
793 && (GET_CODE (x) == CONST_DOUBLE
794 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
795 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
796 && direct_load[(int) mode])
797 || (REG_P (x)
798 && (! HARD_REGISTER_P (x)
799 || HARD_REGNO_MODE_OK (REGNO (x), mode))
800 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
801 GET_MODE_BITSIZE (GET_MODE (x)))))))))
803 /* ?? If we don't know OLDMODE, we have to assume here that
804 X does not need sign- or zero-extension. This may not be
805 the case, but it's the best we can do. */
806 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
807 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
809 HOST_WIDE_INT val = INTVAL (x);
810 int width = GET_MODE_BITSIZE (oldmode);
812 /* We must sign or zero-extend in this case. Start by
813 zero-extending, then sign extend if we need to. */
814 val &= ((HOST_WIDE_INT) 1 << width) - 1;
815 if (! unsignedp
816 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
817 val |= (HOST_WIDE_INT) (-1) << width;
819 return gen_int_mode (val, mode);
822 return gen_lowpart (mode, x);
825 /* Converting from integer constant into mode is always equivalent to an
826 subreg operation. */
827 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
829 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
830 return simplify_gen_subreg (mode, x, oldmode, 0);
833 temp = gen_reg_rtx (mode);
834 convert_move (temp, x, unsignedp);
835 return temp;
838 /* STORE_MAX_PIECES is the number of bytes at a time that we can
839 store efficiently. Due to internal GCC limitations, this is
840 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
841 for an immediate constant. */
843 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
845 /* Determine whether the LEN bytes can be moved by using several move
846 instructions. Return nonzero if a call to move_by_pieces should
847 succeed. */
850 can_move_by_pieces (unsigned HOST_WIDE_INT len,
851 unsigned int align ATTRIBUTE_UNUSED)
853 return MOVE_BY_PIECES_P (len, align);
856 /* Generate several move instructions to copy LEN bytes from block FROM to
857 block TO. (These are MEM rtx's with BLKmode).
859 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
860 used to push FROM to the stack.
862 ALIGN is maximum stack alignment we can assume.
864 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
865 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
866 stpcpy. */
869 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
870 unsigned int align, int endp)
872 struct move_by_pieces data;
873 rtx to_addr, from_addr = XEXP (from, 0);
874 unsigned int max_size = MOVE_MAX_PIECES + 1;
875 enum machine_mode mode = VOIDmode, tmode;
876 enum insn_code icode;
878 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
880 data.offset = 0;
881 data.from_addr = from_addr;
882 if (to)
884 to_addr = XEXP (to, 0);
885 data.to = to;
886 data.autinc_to
887 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
888 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
889 data.reverse
890 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
892 else
894 to_addr = NULL_RTX;
895 data.to = NULL_RTX;
896 data.autinc_to = 1;
897 #ifdef STACK_GROWS_DOWNWARD
898 data.reverse = 1;
899 #else
900 data.reverse = 0;
901 #endif
903 data.to_addr = to_addr;
904 data.from = from;
905 data.autinc_from
906 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
907 || GET_CODE (from_addr) == POST_INC
908 || GET_CODE (from_addr) == POST_DEC);
910 data.explicit_inc_from = 0;
911 data.explicit_inc_to = 0;
912 if (data.reverse) data.offset = len;
913 data.len = len;
915 /* If copying requires more than two move insns,
916 copy addresses to registers (to make displacements shorter)
917 and use post-increment if available. */
918 if (!(data.autinc_from && data.autinc_to)
919 && move_by_pieces_ninsns (len, align, max_size) > 2)
921 /* Find the mode of the largest move... */
922 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
923 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
924 if (GET_MODE_SIZE (tmode) < max_size)
925 mode = tmode;
927 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
929 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
930 data.autinc_from = 1;
931 data.explicit_inc_from = -1;
933 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
935 data.from_addr = copy_addr_to_reg (from_addr);
936 data.autinc_from = 1;
937 data.explicit_inc_from = 1;
939 if (!data.autinc_from && CONSTANT_P (from_addr))
940 data.from_addr = copy_addr_to_reg (from_addr);
941 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
943 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
944 data.autinc_to = 1;
945 data.explicit_inc_to = -1;
947 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
949 data.to_addr = copy_addr_to_reg (to_addr);
950 data.autinc_to = 1;
951 data.explicit_inc_to = 1;
953 if (!data.autinc_to && CONSTANT_P (to_addr))
954 data.to_addr = copy_addr_to_reg (to_addr);
957 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
958 if (align >= GET_MODE_ALIGNMENT (tmode))
959 align = GET_MODE_ALIGNMENT (tmode);
960 else
962 enum machine_mode xmode;
964 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
965 tmode != VOIDmode;
966 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
967 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
968 || SLOW_UNALIGNED_ACCESS (tmode, align))
969 break;
971 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
974 /* First move what we can in the largest integer mode, then go to
975 successively smaller modes. */
977 while (max_size > 1)
979 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
980 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
981 if (GET_MODE_SIZE (tmode) < max_size)
982 mode = tmode;
984 if (mode == VOIDmode)
985 break;
987 icode = mov_optab->handlers[(int) mode].insn_code;
988 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
989 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
991 max_size = GET_MODE_SIZE (mode);
994 /* The code above should have handled everything. */
995 gcc_assert (!data.len);
997 if (endp)
999 rtx to1;
1001 gcc_assert (!data.reverse);
1002 if (data.autinc_to)
1004 if (endp == 2)
1006 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1007 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1008 else
1009 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1010 -1));
1012 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1013 data.offset);
1015 else
1017 if (endp == 2)
1018 --data.offset;
1019 to1 = adjust_address (data.to, QImode, data.offset);
1021 return to1;
1023 else
1024 return data.to;
1027 /* Return number of insns required to move L bytes by pieces.
1028 ALIGN (in bits) is maximum alignment we can assume. */
1030 static unsigned HOST_WIDE_INT
1031 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1032 unsigned int max_size)
1034 unsigned HOST_WIDE_INT n_insns = 0;
1035 enum machine_mode tmode;
1037 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1038 if (align >= GET_MODE_ALIGNMENT (tmode))
1039 align = GET_MODE_ALIGNMENT (tmode);
1040 else
1042 enum machine_mode tmode, xmode;
1044 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1045 tmode != VOIDmode;
1046 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1047 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1048 || SLOW_UNALIGNED_ACCESS (tmode, align))
1049 break;
1051 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1054 while (max_size > 1)
1056 enum machine_mode mode = VOIDmode;
1057 enum insn_code icode;
1059 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1060 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1061 if (GET_MODE_SIZE (tmode) < max_size)
1062 mode = tmode;
1064 if (mode == VOIDmode)
1065 break;
1067 icode = mov_optab->handlers[(int) mode].insn_code;
1068 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1069 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1071 max_size = GET_MODE_SIZE (mode);
1074 gcc_assert (!l);
1075 return n_insns;
1078 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1079 with move instructions for mode MODE. GENFUN is the gen_... function
1080 to make a move insn for that mode. DATA has all the other info. */
1082 static void
1083 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1084 struct move_by_pieces *data)
1086 unsigned int size = GET_MODE_SIZE (mode);
1087 rtx to1 = NULL_RTX, from1;
1089 while (data->len >= size)
1091 if (data->reverse)
1092 data->offset -= size;
1094 if (data->to)
1096 if (data->autinc_to)
1097 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1098 data->offset);
1099 else
1100 to1 = adjust_address (data->to, mode, data->offset);
1103 if (data->autinc_from)
1104 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1105 data->offset);
1106 else
1107 from1 = adjust_address (data->from, mode, data->offset);
1109 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1110 emit_insn (gen_add2_insn (data->to_addr,
1111 GEN_INT (-(HOST_WIDE_INT)size)));
1112 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1113 emit_insn (gen_add2_insn (data->from_addr,
1114 GEN_INT (-(HOST_WIDE_INT)size)));
1116 if (data->to)
1117 emit_insn ((*genfun) (to1, from1));
1118 else
1120 #ifdef PUSH_ROUNDING
1121 emit_single_push_insn (mode, from1, NULL);
1122 #else
1123 gcc_unreachable ();
1124 #endif
1127 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1128 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1129 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1130 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1132 if (! data->reverse)
1133 data->offset += size;
1135 data->len -= size;
1139 /* Emit code to move a block Y to a block X. This may be done with
1140 string-move instructions, with multiple scalar move instructions,
1141 or with a library call.
1143 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1144 SIZE is an rtx that says how long they are.
1145 ALIGN is the maximum alignment we can assume they have.
1146 METHOD describes what kind of copy this is, and what mechanisms may be used.
1148 Return the address of the new block, if memcpy is called and returns it,
1149 0 otherwise. */
1152 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1154 bool may_use_call;
1155 rtx retval = 0;
1156 unsigned int align;
1158 switch (method)
1160 case BLOCK_OP_NORMAL:
1161 case BLOCK_OP_TAILCALL:
1162 may_use_call = true;
1163 break;
1165 case BLOCK_OP_CALL_PARM:
1166 may_use_call = block_move_libcall_safe_for_call_parm ();
1168 /* Make inhibit_defer_pop nonzero around the library call
1169 to force it to pop the arguments right away. */
1170 NO_DEFER_POP;
1171 break;
1173 case BLOCK_OP_NO_LIBCALL:
1174 may_use_call = false;
1175 break;
1177 default:
1178 gcc_unreachable ();
1181 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1183 gcc_assert (MEM_P (x));
1184 gcc_assert (MEM_P (y));
1185 gcc_assert (size);
1187 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1188 block copy is more efficient for other large modes, e.g. DCmode. */
1189 x = adjust_address (x, BLKmode, 0);
1190 y = adjust_address (y, BLKmode, 0);
1192 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1193 can be incorrect is coming from __builtin_memcpy. */
1194 if (GET_CODE (size) == CONST_INT)
1196 if (INTVAL (size) == 0)
1197 return 0;
1199 x = shallow_copy_rtx (x);
1200 y = shallow_copy_rtx (y);
1201 set_mem_size (x, size);
1202 set_mem_size (y, size);
1205 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1206 move_by_pieces (x, y, INTVAL (size), align, 0);
1207 else if (emit_block_move_via_movmem (x, y, size, align))
1209 else if (may_use_call)
1210 retval = emit_block_move_via_libcall (x, y, size,
1211 method == BLOCK_OP_TAILCALL);
1212 else
1213 emit_block_move_via_loop (x, y, size, align);
1215 if (method == BLOCK_OP_CALL_PARM)
1216 OK_DEFER_POP;
1218 return retval;
1221 /* A subroutine of emit_block_move. Returns true if calling the
1222 block move libcall will not clobber any parameters which may have
1223 already been placed on the stack. */
1225 static bool
1226 block_move_libcall_safe_for_call_parm (void)
1228 /* If arguments are pushed on the stack, then they're safe. */
1229 if (PUSH_ARGS)
1230 return true;
1232 /* If registers go on the stack anyway, any argument is sure to clobber
1233 an outgoing argument. */
1234 #if defined (REG_PARM_STACK_SPACE) && defined (OUTGOING_REG_PARM_STACK_SPACE)
1236 tree fn = emit_block_move_libcall_fn (false);
1237 (void) fn;
1238 if (REG_PARM_STACK_SPACE (fn) != 0)
1239 return false;
1241 #endif
1243 /* If any argument goes in memory, then it might clobber an outgoing
1244 argument. */
1246 CUMULATIVE_ARGS args_so_far;
1247 tree fn, arg;
1249 fn = emit_block_move_libcall_fn (false);
1250 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1252 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1253 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1255 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1256 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1257 if (!tmp || !REG_P (tmp))
1258 return false;
1259 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1260 return false;
1261 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1264 return true;
1267 /* A subroutine of emit_block_move. Expand a movmem pattern;
1268 return true if successful. */
1270 static bool
1271 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align)
1273 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1274 int save_volatile_ok = volatile_ok;
1275 enum machine_mode mode;
1277 /* Since this is a move insn, we don't care about volatility. */
1278 volatile_ok = 1;
1280 /* Try the most limited insn first, because there's no point
1281 including more than one in the machine description unless
1282 the more limited one has some advantage. */
1284 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1285 mode = GET_MODE_WIDER_MODE (mode))
1287 enum insn_code code = movmem_optab[(int) mode];
1288 insn_operand_predicate_fn pred;
1290 if (code != CODE_FOR_nothing
1291 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1292 here because if SIZE is less than the mode mask, as it is
1293 returned by the macro, it will definitely be less than the
1294 actual mode mask. */
1295 && ((GET_CODE (size) == CONST_INT
1296 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1297 <= (GET_MODE_MASK (mode) >> 1)))
1298 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1299 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1300 || (*pred) (x, BLKmode))
1301 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1302 || (*pred) (y, BLKmode))
1303 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1304 || (*pred) (opalign, VOIDmode)))
1306 rtx op2;
1307 rtx last = get_last_insn ();
1308 rtx pat;
1310 op2 = convert_to_mode (mode, size, 1);
1311 pred = insn_data[(int) code].operand[2].predicate;
1312 if (pred != 0 && ! (*pred) (op2, mode))
1313 op2 = copy_to_mode_reg (mode, op2);
1315 /* ??? When called via emit_block_move_for_call, it'd be
1316 nice if there were some way to inform the backend, so
1317 that it doesn't fail the expansion because it thinks
1318 emitting the libcall would be more efficient. */
1320 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1321 if (pat)
1323 emit_insn (pat);
1324 volatile_ok = save_volatile_ok;
1325 return true;
1327 else
1328 delete_insns_since (last);
1332 volatile_ok = save_volatile_ok;
1333 return false;
1336 /* A subroutine of emit_block_move. Expand a call to memcpy.
1337 Return the return value from memcpy, 0 otherwise. */
1339 static rtx
1340 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1342 rtx dst_addr, src_addr;
1343 tree call_expr, arg_list, fn, src_tree, dst_tree, size_tree;
1344 enum machine_mode size_mode;
1345 rtx retval;
1347 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1348 pseudos. We can then place those new pseudos into a VAR_DECL and
1349 use them later. */
1351 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1352 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1354 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1355 src_addr = convert_memory_address (ptr_mode, src_addr);
1357 dst_tree = make_tree (ptr_type_node, dst_addr);
1358 src_tree = make_tree (ptr_type_node, src_addr);
1360 size_mode = TYPE_MODE (sizetype);
1362 size = convert_to_mode (size_mode, size, 1);
1363 size = copy_to_mode_reg (size_mode, size);
1365 /* It is incorrect to use the libcall calling conventions to call
1366 memcpy in this context. This could be a user call to memcpy and
1367 the user may wish to examine the return value from memcpy. For
1368 targets where libcalls and normal calls have different conventions
1369 for returning pointers, we could end up generating incorrect code. */
1371 size_tree = make_tree (sizetype, size);
1373 fn = emit_block_move_libcall_fn (true);
1374 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
1375 arg_list = tree_cons (NULL_TREE, src_tree, arg_list);
1376 arg_list = tree_cons (NULL_TREE, dst_tree, arg_list);
1378 /* Now we have to build up the CALL_EXPR itself. */
1379 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
1380 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
1381 call_expr, arg_list, NULL_TREE);
1382 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1384 retval = expand_normal (call_expr);
1386 return retval;
1389 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1390 for the function we use for block copies. The first time FOR_CALL
1391 is true, we call assemble_external. */
1393 static GTY(()) tree block_move_fn;
1395 void
1396 init_block_move_fn (const char *asmspec)
1398 if (!block_move_fn)
1400 tree args, fn;
1402 fn = get_identifier ("memcpy");
1403 args = build_function_type_list (ptr_type_node, ptr_type_node,
1404 const_ptr_type_node, sizetype,
1405 NULL_TREE);
1407 fn = build_decl (FUNCTION_DECL, fn, args);
1408 DECL_EXTERNAL (fn) = 1;
1409 TREE_PUBLIC (fn) = 1;
1410 DECL_ARTIFICIAL (fn) = 1;
1411 TREE_NOTHROW (fn) = 1;
1412 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1413 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1415 block_move_fn = fn;
1418 if (asmspec)
1419 set_user_assembler_name (block_move_fn, asmspec);
1422 static tree
1423 emit_block_move_libcall_fn (int for_call)
1425 static bool emitted_extern;
1427 if (!block_move_fn)
1428 init_block_move_fn (NULL);
1430 if (for_call && !emitted_extern)
1432 emitted_extern = true;
1433 make_decl_rtl (block_move_fn);
1434 assemble_external (block_move_fn);
1437 return block_move_fn;
1440 /* A subroutine of emit_block_move. Copy the data via an explicit
1441 loop. This is used only when libcalls are forbidden. */
1442 /* ??? It'd be nice to copy in hunks larger than QImode. */
1444 static void
1445 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1446 unsigned int align ATTRIBUTE_UNUSED)
1448 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1449 enum machine_mode iter_mode;
1451 iter_mode = GET_MODE (size);
1452 if (iter_mode == VOIDmode)
1453 iter_mode = word_mode;
1455 top_label = gen_label_rtx ();
1456 cmp_label = gen_label_rtx ();
1457 iter = gen_reg_rtx (iter_mode);
1459 emit_move_insn (iter, const0_rtx);
1461 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1462 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1463 do_pending_stack_adjust ();
1465 emit_jump (cmp_label);
1466 emit_label (top_label);
1468 tmp = convert_modes (Pmode, iter_mode, iter, true);
1469 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1470 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1471 x = change_address (x, QImode, x_addr);
1472 y = change_address (y, QImode, y_addr);
1474 emit_move_insn (x, y);
1476 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1477 true, OPTAB_LIB_WIDEN);
1478 if (tmp != iter)
1479 emit_move_insn (iter, tmp);
1481 emit_label (cmp_label);
1483 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1484 true, top_label);
1487 /* Copy all or part of a value X into registers starting at REGNO.
1488 The number of registers to be filled is NREGS. */
1490 void
1491 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1493 int i;
1494 #ifdef HAVE_load_multiple
1495 rtx pat;
1496 rtx last;
1497 #endif
1499 if (nregs == 0)
1500 return;
1502 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1503 x = validize_mem (force_const_mem (mode, x));
1505 /* See if the machine can do this with a load multiple insn. */
1506 #ifdef HAVE_load_multiple
1507 if (HAVE_load_multiple)
1509 last = get_last_insn ();
1510 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1511 GEN_INT (nregs));
1512 if (pat)
1514 emit_insn (pat);
1515 return;
1517 else
1518 delete_insns_since (last);
1520 #endif
1522 for (i = 0; i < nregs; i++)
1523 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1524 operand_subword_force (x, i, mode));
1527 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1528 The number of registers to be filled is NREGS. */
1530 void
1531 move_block_from_reg (int regno, rtx x, int nregs)
1533 int i;
1535 if (nregs == 0)
1536 return;
1538 /* See if the machine can do this with a store multiple insn. */
1539 #ifdef HAVE_store_multiple
1540 if (HAVE_store_multiple)
1542 rtx last = get_last_insn ();
1543 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1544 GEN_INT (nregs));
1545 if (pat)
1547 emit_insn (pat);
1548 return;
1550 else
1551 delete_insns_since (last);
1553 #endif
1555 for (i = 0; i < nregs; i++)
1557 rtx tem = operand_subword (x, i, 1, BLKmode);
1559 gcc_assert (tem);
1561 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1565 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1566 ORIG, where ORIG is a non-consecutive group of registers represented by
1567 a PARALLEL. The clone is identical to the original except in that the
1568 original set of registers is replaced by a new set of pseudo registers.
1569 The new set has the same modes as the original set. */
1572 gen_group_rtx (rtx orig)
1574 int i, length;
1575 rtx *tmps;
1577 gcc_assert (GET_CODE (orig) == PARALLEL);
1579 length = XVECLEN (orig, 0);
1580 tmps = alloca (sizeof (rtx) * length);
1582 /* Skip a NULL entry in first slot. */
1583 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1585 if (i)
1586 tmps[0] = 0;
1588 for (; i < length; i++)
1590 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1591 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1593 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1596 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1599 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1600 except that values are placed in TMPS[i], and must later be moved
1601 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1603 static void
1604 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1606 rtx src;
1607 int start, i;
1608 enum machine_mode m = GET_MODE (orig_src);
1610 gcc_assert (GET_CODE (dst) == PARALLEL);
1612 if (m != VOIDmode
1613 && !SCALAR_INT_MODE_P (m)
1614 && !MEM_P (orig_src)
1615 && GET_CODE (orig_src) != CONCAT)
1617 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1618 if (imode == BLKmode)
1619 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1620 else
1621 src = gen_reg_rtx (imode);
1622 if (imode != BLKmode)
1623 src = gen_lowpart (GET_MODE (orig_src), src);
1624 emit_move_insn (src, orig_src);
1625 /* ...and back again. */
1626 if (imode != BLKmode)
1627 src = gen_lowpart (imode, src);
1628 emit_group_load_1 (tmps, dst, src, type, ssize);
1629 return;
1632 /* Check for a NULL entry, used to indicate that the parameter goes
1633 both on the stack and in registers. */
1634 if (XEXP (XVECEXP (dst, 0, 0), 0))
1635 start = 0;
1636 else
1637 start = 1;
1639 /* Process the pieces. */
1640 for (i = start; i < XVECLEN (dst, 0); i++)
1642 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1643 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1644 unsigned int bytelen = GET_MODE_SIZE (mode);
1645 int shift = 0;
1647 /* Handle trailing fragments that run over the size of the struct. */
1648 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1650 /* Arrange to shift the fragment to where it belongs.
1651 extract_bit_field loads to the lsb of the reg. */
1652 if (
1653 #ifdef BLOCK_REG_PADDING
1654 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1655 == (BYTES_BIG_ENDIAN ? upward : downward)
1656 #else
1657 BYTES_BIG_ENDIAN
1658 #endif
1660 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1661 bytelen = ssize - bytepos;
1662 gcc_assert (bytelen > 0);
1665 /* If we won't be loading directly from memory, protect the real source
1666 from strange tricks we might play; but make sure that the source can
1667 be loaded directly into the destination. */
1668 src = orig_src;
1669 if (!MEM_P (orig_src)
1670 && (!CONSTANT_P (orig_src)
1671 || (GET_MODE (orig_src) != mode
1672 && GET_MODE (orig_src) != VOIDmode)))
1674 if (GET_MODE (orig_src) == VOIDmode)
1675 src = gen_reg_rtx (mode);
1676 else
1677 src = gen_reg_rtx (GET_MODE (orig_src));
1679 emit_move_insn (src, orig_src);
1682 /* Optimize the access just a bit. */
1683 if (MEM_P (src)
1684 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1685 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1686 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1687 && bytelen == GET_MODE_SIZE (mode))
1689 tmps[i] = gen_reg_rtx (mode);
1690 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1692 else if (COMPLEX_MODE_P (mode)
1693 && GET_MODE (src) == mode
1694 && bytelen == GET_MODE_SIZE (mode))
1695 /* Let emit_move_complex do the bulk of the work. */
1696 tmps[i] = src;
1697 else if (GET_CODE (src) == CONCAT)
1699 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1700 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1702 if ((bytepos == 0 && bytelen == slen0)
1703 || (bytepos != 0 && bytepos + bytelen <= slen))
1705 /* The following assumes that the concatenated objects all
1706 have the same size. In this case, a simple calculation
1707 can be used to determine the object and the bit field
1708 to be extracted. */
1709 tmps[i] = XEXP (src, bytepos / slen0);
1710 if (! CONSTANT_P (tmps[i])
1711 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1712 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1713 (bytepos % slen0) * BITS_PER_UNIT,
1714 1, NULL_RTX, mode, mode);
1716 else
1718 rtx mem;
1720 gcc_assert (!bytepos);
1721 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1722 emit_move_insn (mem, src);
1723 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1724 0, 1, NULL_RTX, mode, mode);
1727 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1728 SIMD register, which is currently broken. While we get GCC
1729 to emit proper RTL for these cases, let's dump to memory. */
1730 else if (VECTOR_MODE_P (GET_MODE (dst))
1731 && REG_P (src))
1733 int slen = GET_MODE_SIZE (GET_MODE (src));
1734 rtx mem;
1736 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1737 emit_move_insn (mem, src);
1738 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1740 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1741 && XVECLEN (dst, 0) > 1)
1742 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1743 else if (CONSTANT_P (src)
1744 || (REG_P (src) && GET_MODE (src) == mode))
1745 tmps[i] = src;
1746 else
1747 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1748 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1749 mode, mode);
1751 if (shift)
1752 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1753 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1757 /* Emit code to move a block SRC of type TYPE to a block DST,
1758 where DST is non-consecutive registers represented by a PARALLEL.
1759 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1760 if not known. */
1762 void
1763 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1765 rtx *tmps;
1766 int i;
1768 tmps = alloca (sizeof (rtx) * XVECLEN (dst, 0));
1769 emit_group_load_1 (tmps, dst, src, type, ssize);
1771 /* Copy the extracted pieces into the proper (probable) hard regs. */
1772 for (i = 0; i < XVECLEN (dst, 0); i++)
1774 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1775 if (d == NULL)
1776 continue;
1777 emit_move_insn (d, tmps[i]);
1781 /* Similar, but load SRC into new pseudos in a format that looks like
1782 PARALLEL. This can later be fed to emit_group_move to get things
1783 in the right place. */
1786 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1788 rtvec vec;
1789 int i;
1791 vec = rtvec_alloc (XVECLEN (parallel, 0));
1792 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1794 /* Convert the vector to look just like the original PARALLEL, except
1795 with the computed values. */
1796 for (i = 0; i < XVECLEN (parallel, 0); i++)
1798 rtx e = XVECEXP (parallel, 0, i);
1799 rtx d = XEXP (e, 0);
1801 if (d)
1803 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1804 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1806 RTVEC_ELT (vec, i) = e;
1809 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1812 /* Emit code to move a block SRC to block DST, where SRC and DST are
1813 non-consecutive groups of registers, each represented by a PARALLEL. */
1815 void
1816 emit_group_move (rtx dst, rtx src)
1818 int i;
1820 gcc_assert (GET_CODE (src) == PARALLEL
1821 && GET_CODE (dst) == PARALLEL
1822 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1824 /* Skip first entry if NULL. */
1825 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1826 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1827 XEXP (XVECEXP (src, 0, i), 0));
1830 /* Move a group of registers represented by a PARALLEL into pseudos. */
1833 emit_group_move_into_temps (rtx src)
1835 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1836 int i;
1838 for (i = 0; i < XVECLEN (src, 0); i++)
1840 rtx e = XVECEXP (src, 0, i);
1841 rtx d = XEXP (e, 0);
1843 if (d)
1844 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1845 RTVEC_ELT (vec, i) = e;
1848 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1851 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1852 where SRC is non-consecutive registers represented by a PARALLEL.
1853 SSIZE represents the total size of block ORIG_DST, or -1 if not
1854 known. */
1856 void
1857 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1859 rtx *tmps, dst;
1860 int start, finish, i;
1861 enum machine_mode m = GET_MODE (orig_dst);
1863 gcc_assert (GET_CODE (src) == PARALLEL);
1865 if (!SCALAR_INT_MODE_P (m)
1866 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1868 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1869 if (imode == BLKmode)
1870 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1871 else
1872 dst = gen_reg_rtx (imode);
1873 emit_group_store (dst, src, type, ssize);
1874 if (imode != BLKmode)
1875 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1876 emit_move_insn (orig_dst, dst);
1877 return;
1880 /* Check for a NULL entry, used to indicate that the parameter goes
1881 both on the stack and in registers. */
1882 if (XEXP (XVECEXP (src, 0, 0), 0))
1883 start = 0;
1884 else
1885 start = 1;
1886 finish = XVECLEN (src, 0);
1888 tmps = alloca (sizeof (rtx) * finish);
1890 /* Copy the (probable) hard regs into pseudos. */
1891 for (i = start; i < finish; i++)
1893 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1894 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1896 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1897 emit_move_insn (tmps[i], reg);
1899 else
1900 tmps[i] = reg;
1903 /* If we won't be storing directly into memory, protect the real destination
1904 from strange tricks we might play. */
1905 dst = orig_dst;
1906 if (GET_CODE (dst) == PARALLEL)
1908 rtx temp;
1910 /* We can get a PARALLEL dst if there is a conditional expression in
1911 a return statement. In that case, the dst and src are the same,
1912 so no action is necessary. */
1913 if (rtx_equal_p (dst, src))
1914 return;
1916 /* It is unclear if we can ever reach here, but we may as well handle
1917 it. Allocate a temporary, and split this into a store/load to/from
1918 the temporary. */
1920 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1921 emit_group_store (temp, src, type, ssize);
1922 emit_group_load (dst, temp, type, ssize);
1923 return;
1925 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1927 enum machine_mode outer = GET_MODE (dst);
1928 enum machine_mode inner;
1929 HOST_WIDE_INT bytepos;
1930 bool done = false;
1931 rtx temp;
1933 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1934 dst = gen_reg_rtx (outer);
1936 /* Make life a bit easier for combine. */
1937 /* If the first element of the vector is the low part
1938 of the destination mode, use a paradoxical subreg to
1939 initialize the destination. */
1940 if (start < finish)
1942 inner = GET_MODE (tmps[start]);
1943 bytepos = subreg_lowpart_offset (inner, outer);
1944 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
1946 temp = simplify_gen_subreg (outer, tmps[start],
1947 inner, 0);
1948 if (temp)
1950 emit_move_insn (dst, temp);
1951 done = true;
1952 start++;
1957 /* If the first element wasn't the low part, try the last. */
1958 if (!done
1959 && start < finish - 1)
1961 inner = GET_MODE (tmps[finish - 1]);
1962 bytepos = subreg_lowpart_offset (inner, outer);
1963 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
1965 temp = simplify_gen_subreg (outer, tmps[finish - 1],
1966 inner, 0);
1967 if (temp)
1969 emit_move_insn (dst, temp);
1970 done = true;
1971 finish--;
1976 /* Otherwise, simply initialize the result to zero. */
1977 if (!done)
1978 emit_move_insn (dst, CONST0_RTX (outer));
1981 /* Process the pieces. */
1982 for (i = start; i < finish; i++)
1984 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
1985 enum machine_mode mode = GET_MODE (tmps[i]);
1986 unsigned int bytelen = GET_MODE_SIZE (mode);
1987 rtx dest = dst;
1989 /* Handle trailing fragments that run over the size of the struct. */
1990 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1992 /* store_bit_field always takes its value from the lsb.
1993 Move the fragment to the lsb if it's not already there. */
1994 if (
1995 #ifdef BLOCK_REG_PADDING
1996 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
1997 == (BYTES_BIG_ENDIAN ? upward : downward)
1998 #else
1999 BYTES_BIG_ENDIAN
2000 #endif
2003 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2004 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2005 build_int_cst (NULL_TREE, shift),
2006 tmps[i], 0);
2008 bytelen = ssize - bytepos;
2011 if (GET_CODE (dst) == CONCAT)
2013 if (bytepos + bytelen <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2014 dest = XEXP (dst, 0);
2015 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2017 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2018 dest = XEXP (dst, 1);
2020 else
2022 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2023 dest = assign_stack_temp (GET_MODE (dest),
2024 GET_MODE_SIZE (GET_MODE (dest)), 0);
2025 emit_move_insn (adjust_address (dest, GET_MODE (tmps[i]), bytepos),
2026 tmps[i]);
2027 dst = dest;
2028 break;
2032 /* Optimize the access just a bit. */
2033 if (MEM_P (dest)
2034 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2035 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2036 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2037 && bytelen == GET_MODE_SIZE (mode))
2038 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2039 else
2040 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2041 mode, tmps[i]);
2044 /* Copy from the pseudo into the (probable) hard reg. */
2045 if (orig_dst != dst)
2046 emit_move_insn (orig_dst, dst);
2049 /* Generate code to copy a BLKmode object of TYPE out of a
2050 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2051 is null, a stack temporary is created. TGTBLK is returned.
2053 The purpose of this routine is to handle functions that return
2054 BLKmode structures in registers. Some machines (the PA for example)
2055 want to return all small structures in registers regardless of the
2056 structure's alignment. */
2059 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2061 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2062 rtx src = NULL, dst = NULL;
2063 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2064 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2066 if (tgtblk == 0)
2068 tgtblk = assign_temp (build_qualified_type (type,
2069 (TYPE_QUALS (type)
2070 | TYPE_QUAL_CONST)),
2071 0, 1, 1);
2072 preserve_temp_slots (tgtblk);
2075 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2076 into a new pseudo which is a full word. */
2078 if (GET_MODE (srcreg) != BLKmode
2079 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2080 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2082 /* If the structure doesn't take up a whole number of words, see whether
2083 SRCREG is padded on the left or on the right. If it's on the left,
2084 set PADDING_CORRECTION to the number of bits to skip.
2086 In most ABIs, the structure will be returned at the least end of
2087 the register, which translates to right padding on little-endian
2088 targets and left padding on big-endian targets. The opposite
2089 holds if the structure is returned at the most significant
2090 end of the register. */
2091 if (bytes % UNITS_PER_WORD != 0
2092 && (targetm.calls.return_in_msb (type)
2093 ? !BYTES_BIG_ENDIAN
2094 : BYTES_BIG_ENDIAN))
2095 padding_correction
2096 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2098 /* Copy the structure BITSIZE bites at a time.
2100 We could probably emit more efficient code for machines which do not use
2101 strict alignment, but it doesn't seem worth the effort at the current
2102 time. */
2103 for (bitpos = 0, xbitpos = padding_correction;
2104 bitpos < bytes * BITS_PER_UNIT;
2105 bitpos += bitsize, xbitpos += bitsize)
2107 /* We need a new source operand each time xbitpos is on a
2108 word boundary and when xbitpos == padding_correction
2109 (the first time through). */
2110 if (xbitpos % BITS_PER_WORD == 0
2111 || xbitpos == padding_correction)
2112 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2113 GET_MODE (srcreg));
2115 /* We need a new destination operand each time bitpos is on
2116 a word boundary. */
2117 if (bitpos % BITS_PER_WORD == 0)
2118 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2120 /* Use xbitpos for the source extraction (right justified) and
2121 xbitpos for the destination store (left justified). */
2122 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, word_mode,
2123 extract_bit_field (src, bitsize,
2124 xbitpos % BITS_PER_WORD, 1,
2125 NULL_RTX, word_mode, word_mode));
2128 return tgtblk;
2131 /* Add a USE expression for REG to the (possibly empty) list pointed
2132 to by CALL_FUSAGE. REG must denote a hard register. */
2134 void
2135 use_reg (rtx *call_fusage, rtx reg)
2137 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2139 *call_fusage
2140 = gen_rtx_EXPR_LIST (VOIDmode,
2141 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2144 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2145 starting at REGNO. All of these registers must be hard registers. */
2147 void
2148 use_regs (rtx *call_fusage, int regno, int nregs)
2150 int i;
2152 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2154 for (i = 0; i < nregs; i++)
2155 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2158 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2159 PARALLEL REGS. This is for calls that pass values in multiple
2160 non-contiguous locations. The Irix 6 ABI has examples of this. */
2162 void
2163 use_group_regs (rtx *call_fusage, rtx regs)
2165 int i;
2167 for (i = 0; i < XVECLEN (regs, 0); i++)
2169 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2171 /* A NULL entry means the parameter goes both on the stack and in
2172 registers. This can also be a MEM for targets that pass values
2173 partially on the stack and partially in registers. */
2174 if (reg != 0 && REG_P (reg))
2175 use_reg (call_fusage, reg);
2180 /* Determine whether the LEN bytes generated by CONSTFUN can be
2181 stored to memory using several move instructions. CONSTFUNDATA is
2182 a pointer which will be passed as argument in every CONSTFUN call.
2183 ALIGN is maximum alignment we can assume. Return nonzero if a
2184 call to store_by_pieces should succeed. */
2187 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2188 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2189 void *constfundata, unsigned int align)
2191 unsigned HOST_WIDE_INT l;
2192 unsigned int max_size;
2193 HOST_WIDE_INT offset = 0;
2194 enum machine_mode mode, tmode;
2195 enum insn_code icode;
2196 int reverse;
2197 rtx cst;
2199 if (len == 0)
2200 return 1;
2202 if (! STORE_BY_PIECES_P (len, align))
2203 return 0;
2205 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2206 if (align >= GET_MODE_ALIGNMENT (tmode))
2207 align = GET_MODE_ALIGNMENT (tmode);
2208 else
2210 enum machine_mode xmode;
2212 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2213 tmode != VOIDmode;
2214 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2215 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2216 || SLOW_UNALIGNED_ACCESS (tmode, align))
2217 break;
2219 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2222 /* We would first store what we can in the largest integer mode, then go to
2223 successively smaller modes. */
2225 for (reverse = 0;
2226 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2227 reverse++)
2229 l = len;
2230 mode = VOIDmode;
2231 max_size = STORE_MAX_PIECES + 1;
2232 while (max_size > 1)
2234 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2235 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2236 if (GET_MODE_SIZE (tmode) < max_size)
2237 mode = tmode;
2239 if (mode == VOIDmode)
2240 break;
2242 icode = mov_optab->handlers[(int) mode].insn_code;
2243 if (icode != CODE_FOR_nothing
2244 && align >= GET_MODE_ALIGNMENT (mode))
2246 unsigned int size = GET_MODE_SIZE (mode);
2248 while (l >= size)
2250 if (reverse)
2251 offset -= size;
2253 cst = (*constfun) (constfundata, offset, mode);
2254 if (!LEGITIMATE_CONSTANT_P (cst))
2255 return 0;
2257 if (!reverse)
2258 offset += size;
2260 l -= size;
2264 max_size = GET_MODE_SIZE (mode);
2267 /* The code above should have handled everything. */
2268 gcc_assert (!l);
2271 return 1;
2274 /* Generate several move instructions to store LEN bytes generated by
2275 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2276 pointer which will be passed as argument in every CONSTFUN call.
2277 ALIGN is maximum alignment we can assume.
2278 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2279 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2280 stpcpy. */
2283 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2284 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2285 void *constfundata, unsigned int align, int endp)
2287 struct store_by_pieces data;
2289 if (len == 0)
2291 gcc_assert (endp != 2);
2292 return to;
2295 gcc_assert (STORE_BY_PIECES_P (len, align));
2296 data.constfun = constfun;
2297 data.constfundata = constfundata;
2298 data.len = len;
2299 data.to = to;
2300 store_by_pieces_1 (&data, align);
2301 if (endp)
2303 rtx to1;
2305 gcc_assert (!data.reverse);
2306 if (data.autinc_to)
2308 if (endp == 2)
2310 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2311 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2312 else
2313 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2314 -1));
2316 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2317 data.offset);
2319 else
2321 if (endp == 2)
2322 --data.offset;
2323 to1 = adjust_address (data.to, QImode, data.offset);
2325 return to1;
2327 else
2328 return data.to;
2331 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2332 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2334 static void
2335 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2337 struct store_by_pieces data;
2339 if (len == 0)
2340 return;
2342 data.constfun = clear_by_pieces_1;
2343 data.constfundata = NULL;
2344 data.len = len;
2345 data.to = to;
2346 store_by_pieces_1 (&data, align);
2349 /* Callback routine for clear_by_pieces.
2350 Return const0_rtx unconditionally. */
2352 static rtx
2353 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2354 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2355 enum machine_mode mode ATTRIBUTE_UNUSED)
2357 return const0_rtx;
2360 /* Subroutine of clear_by_pieces and store_by_pieces.
2361 Generate several move instructions to store LEN bytes of block TO. (A MEM
2362 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2364 static void
2365 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2366 unsigned int align ATTRIBUTE_UNUSED)
2368 rtx to_addr = XEXP (data->to, 0);
2369 unsigned int max_size = STORE_MAX_PIECES + 1;
2370 enum machine_mode mode = VOIDmode, tmode;
2371 enum insn_code icode;
2373 data->offset = 0;
2374 data->to_addr = to_addr;
2375 data->autinc_to
2376 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2377 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2379 data->explicit_inc_to = 0;
2380 data->reverse
2381 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2382 if (data->reverse)
2383 data->offset = data->len;
2385 /* If storing requires more than two move insns,
2386 copy addresses to registers (to make displacements shorter)
2387 and use post-increment if available. */
2388 if (!data->autinc_to
2389 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2391 /* Determine the main mode we'll be using. */
2392 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2393 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2394 if (GET_MODE_SIZE (tmode) < max_size)
2395 mode = tmode;
2397 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2399 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2400 data->autinc_to = 1;
2401 data->explicit_inc_to = -1;
2404 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2405 && ! data->autinc_to)
2407 data->to_addr = copy_addr_to_reg (to_addr);
2408 data->autinc_to = 1;
2409 data->explicit_inc_to = 1;
2412 if ( !data->autinc_to && CONSTANT_P (to_addr))
2413 data->to_addr = copy_addr_to_reg (to_addr);
2416 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2417 if (align >= GET_MODE_ALIGNMENT (tmode))
2418 align = GET_MODE_ALIGNMENT (tmode);
2419 else
2421 enum machine_mode xmode;
2423 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2424 tmode != VOIDmode;
2425 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2426 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2427 || SLOW_UNALIGNED_ACCESS (tmode, align))
2428 break;
2430 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2433 /* First store what we can in the largest integer mode, then go to
2434 successively smaller modes. */
2436 while (max_size > 1)
2438 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2439 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2440 if (GET_MODE_SIZE (tmode) < max_size)
2441 mode = tmode;
2443 if (mode == VOIDmode)
2444 break;
2446 icode = mov_optab->handlers[(int) mode].insn_code;
2447 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2448 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2450 max_size = GET_MODE_SIZE (mode);
2453 /* The code above should have handled everything. */
2454 gcc_assert (!data->len);
2457 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2458 with move instructions for mode MODE. GENFUN is the gen_... function
2459 to make a move insn for that mode. DATA has all the other info. */
2461 static void
2462 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2463 struct store_by_pieces *data)
2465 unsigned int size = GET_MODE_SIZE (mode);
2466 rtx to1, cst;
2468 while (data->len >= size)
2470 if (data->reverse)
2471 data->offset -= size;
2473 if (data->autinc_to)
2474 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2475 data->offset);
2476 else
2477 to1 = adjust_address (data->to, mode, data->offset);
2479 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2480 emit_insn (gen_add2_insn (data->to_addr,
2481 GEN_INT (-(HOST_WIDE_INT) size)));
2483 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2484 emit_insn ((*genfun) (to1, cst));
2486 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2487 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2489 if (! data->reverse)
2490 data->offset += size;
2492 data->len -= size;
2496 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2497 its length in bytes. */
2500 clear_storage (rtx object, rtx size, enum block_op_methods method)
2502 enum machine_mode mode = GET_MODE (object);
2503 unsigned int align;
2505 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2507 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2508 just move a zero. Otherwise, do this a piece at a time. */
2509 if (mode != BLKmode
2510 && GET_CODE (size) == CONST_INT
2511 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2513 rtx zero = CONST0_RTX (mode);
2514 if (zero != NULL)
2516 emit_move_insn (object, zero);
2517 return NULL;
2520 if (COMPLEX_MODE_P (mode))
2522 zero = CONST0_RTX (GET_MODE_INNER (mode));
2523 if (zero != NULL)
2525 write_complex_part (object, zero, 0);
2526 write_complex_part (object, zero, 1);
2527 return NULL;
2532 if (size == const0_rtx)
2533 return NULL;
2535 align = MEM_ALIGN (object);
2537 if (GET_CODE (size) == CONST_INT
2538 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2539 clear_by_pieces (object, INTVAL (size), align);
2540 else if (set_storage_via_setmem (object, size, const0_rtx, align))
2542 else
2543 return clear_storage_via_libcall (object, size,
2544 method == BLOCK_OP_TAILCALL);
2546 return NULL;
2549 /* A subroutine of clear_storage. Expand a call to memset.
2550 Return the return value of memset, 0 otherwise. */
2552 static rtx
2553 clear_storage_via_libcall (rtx object, rtx size, bool tailcall)
2555 tree call_expr, arg_list, fn, object_tree, size_tree;
2556 enum machine_mode size_mode;
2557 rtx retval;
2559 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2560 place those into new pseudos into a VAR_DECL and use them later. */
2562 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2564 size_mode = TYPE_MODE (sizetype);
2565 size = convert_to_mode (size_mode, size, 1);
2566 size = copy_to_mode_reg (size_mode, size);
2568 /* It is incorrect to use the libcall calling conventions to call
2569 memset in this context. This could be a user call to memset and
2570 the user may wish to examine the return value from memset. For
2571 targets where libcalls and normal calls have different conventions
2572 for returning pointers, we could end up generating incorrect code. */
2574 object_tree = make_tree (ptr_type_node, object);
2575 size_tree = make_tree (sizetype, size);
2577 fn = clear_storage_libcall_fn (true);
2578 arg_list = tree_cons (NULL_TREE, size_tree, NULL_TREE);
2579 arg_list = tree_cons (NULL_TREE, integer_zero_node, arg_list);
2580 arg_list = tree_cons (NULL_TREE, object_tree, arg_list);
2582 /* Now we have to build up the CALL_EXPR itself. */
2583 call_expr = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (fn)), fn);
2584 call_expr = build3 (CALL_EXPR, TREE_TYPE (TREE_TYPE (fn)),
2585 call_expr, arg_list, NULL_TREE);
2586 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2588 retval = expand_normal (call_expr);
2590 return retval;
2593 /* A subroutine of clear_storage_via_libcall. Create the tree node
2594 for the function we use for block clears. The first time FOR_CALL
2595 is true, we call assemble_external. */
2597 static GTY(()) tree block_clear_fn;
2599 void
2600 init_block_clear_fn (const char *asmspec)
2602 if (!block_clear_fn)
2604 tree fn, args;
2606 fn = get_identifier ("memset");
2607 args = build_function_type_list (ptr_type_node, ptr_type_node,
2608 integer_type_node, sizetype,
2609 NULL_TREE);
2611 fn = build_decl (FUNCTION_DECL, fn, args);
2612 DECL_EXTERNAL (fn) = 1;
2613 TREE_PUBLIC (fn) = 1;
2614 DECL_ARTIFICIAL (fn) = 1;
2615 TREE_NOTHROW (fn) = 1;
2616 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2617 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2619 block_clear_fn = fn;
2622 if (asmspec)
2623 set_user_assembler_name (block_clear_fn, asmspec);
2626 static tree
2627 clear_storage_libcall_fn (int for_call)
2629 static bool emitted_extern;
2631 if (!block_clear_fn)
2632 init_block_clear_fn (NULL);
2634 if (for_call && !emitted_extern)
2636 emitted_extern = true;
2637 make_decl_rtl (block_clear_fn);
2638 assemble_external (block_clear_fn);
2641 return block_clear_fn;
2644 /* Expand a setmem pattern; return true if successful. */
2646 bool
2647 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align)
2649 /* Try the most limited insn first, because there's no point
2650 including more than one in the machine description unless
2651 the more limited one has some advantage. */
2653 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2654 enum machine_mode mode;
2656 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2657 mode = GET_MODE_WIDER_MODE (mode))
2659 enum insn_code code = setmem_optab[(int) mode];
2660 insn_operand_predicate_fn pred;
2662 if (code != CODE_FOR_nothing
2663 /* We don't need MODE to be narrower than
2664 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2665 the mode mask, as it is returned by the macro, it will
2666 definitely be less than the actual mode mask. */
2667 && ((GET_CODE (size) == CONST_INT
2668 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2669 <= (GET_MODE_MASK (mode) >> 1)))
2670 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2671 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2672 || (*pred) (object, BLKmode))
2673 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2674 || (*pred) (opalign, VOIDmode)))
2676 rtx opsize, opchar;
2677 enum machine_mode char_mode;
2678 rtx last = get_last_insn ();
2679 rtx pat;
2681 opsize = convert_to_mode (mode, size, 1);
2682 pred = insn_data[(int) code].operand[1].predicate;
2683 if (pred != 0 && ! (*pred) (opsize, mode))
2684 opsize = copy_to_mode_reg (mode, opsize);
2686 opchar = val;
2687 char_mode = insn_data[(int) code].operand[2].mode;
2688 if (char_mode != VOIDmode)
2690 opchar = convert_to_mode (char_mode, opchar, 1);
2691 pred = insn_data[(int) code].operand[2].predicate;
2692 if (pred != 0 && ! (*pred) (opchar, char_mode))
2693 opchar = copy_to_mode_reg (char_mode, opchar);
2696 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2697 if (pat)
2699 emit_insn (pat);
2700 return true;
2702 else
2703 delete_insns_since (last);
2707 return false;
2711 /* Write to one of the components of the complex value CPLX. Write VAL to
2712 the real part if IMAG_P is false, and the imaginary part if its true. */
2714 static void
2715 write_complex_part (rtx cplx, rtx val, bool imag_p)
2717 enum machine_mode cmode;
2718 enum machine_mode imode;
2719 unsigned ibitsize;
2721 if (GET_CODE (cplx) == CONCAT)
2723 emit_move_insn (XEXP (cplx, imag_p), val);
2724 return;
2727 cmode = GET_MODE (cplx);
2728 imode = GET_MODE_INNER (cmode);
2729 ibitsize = GET_MODE_BITSIZE (imode);
2731 /* For MEMs simplify_gen_subreg may generate an invalid new address
2732 because, e.g., the original address is considered mode-dependent
2733 by the target, which restricts simplify_subreg from invoking
2734 adjust_address_nv. Instead of preparing fallback support for an
2735 invalid address, we call adjust_address_nv directly. */
2736 if (MEM_P (cplx))
2738 emit_move_insn (adjust_address_nv (cplx, imode,
2739 imag_p ? GET_MODE_SIZE (imode) : 0),
2740 val);
2741 return;
2744 /* If the sub-object is at least word sized, then we know that subregging
2745 will work. This special case is important, since store_bit_field
2746 wants to operate on integer modes, and there's rarely an OImode to
2747 correspond to TCmode. */
2748 if (ibitsize >= BITS_PER_WORD
2749 /* For hard regs we have exact predicates. Assume we can split
2750 the original object if it spans an even number of hard regs.
2751 This special case is important for SCmode on 64-bit platforms
2752 where the natural size of floating-point regs is 32-bit. */
2753 || (REG_P (cplx)
2754 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2755 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2757 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2758 imag_p ? GET_MODE_SIZE (imode) : 0);
2759 if (part)
2761 emit_move_insn (part, val);
2762 return;
2764 else
2765 /* simplify_gen_subreg may fail for sub-word MEMs. */
2766 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2769 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2772 /* Extract one of the components of the complex value CPLX. Extract the
2773 real part if IMAG_P is false, and the imaginary part if it's true. */
2775 static rtx
2776 read_complex_part (rtx cplx, bool imag_p)
2778 enum machine_mode cmode, imode;
2779 unsigned ibitsize;
2781 if (GET_CODE (cplx) == CONCAT)
2782 return XEXP (cplx, imag_p);
2784 cmode = GET_MODE (cplx);
2785 imode = GET_MODE_INNER (cmode);
2786 ibitsize = GET_MODE_BITSIZE (imode);
2788 /* Special case reads from complex constants that got spilled to memory. */
2789 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2791 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2792 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2794 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2795 if (CONSTANT_CLASS_P (part))
2796 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2800 /* For MEMs simplify_gen_subreg may generate an invalid new address
2801 because, e.g., the original address is considered mode-dependent
2802 by the target, which restricts simplify_subreg from invoking
2803 adjust_address_nv. Instead of preparing fallback support for an
2804 invalid address, we call adjust_address_nv directly. */
2805 if (MEM_P (cplx))
2806 return adjust_address_nv (cplx, imode,
2807 imag_p ? GET_MODE_SIZE (imode) : 0);
2809 /* If the sub-object is at least word sized, then we know that subregging
2810 will work. This special case is important, since extract_bit_field
2811 wants to operate on integer modes, and there's rarely an OImode to
2812 correspond to TCmode. */
2813 if (ibitsize >= BITS_PER_WORD
2814 /* For hard regs we have exact predicates. Assume we can split
2815 the original object if it spans an even number of hard regs.
2816 This special case is important for SCmode on 64-bit platforms
2817 where the natural size of floating-point regs is 32-bit. */
2818 || (REG_P (cplx)
2819 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2820 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2822 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2823 imag_p ? GET_MODE_SIZE (imode) : 0);
2824 if (ret)
2825 return ret;
2826 else
2827 /* simplify_gen_subreg may fail for sub-word MEMs. */
2828 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2831 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2832 true, NULL_RTX, imode, imode);
2835 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2836 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2837 represented in NEW_MODE. If FORCE is true, this will never happen, as
2838 we'll force-create a SUBREG if needed. */
2840 static rtx
2841 emit_move_change_mode (enum machine_mode new_mode,
2842 enum machine_mode old_mode, rtx x, bool force)
2844 rtx ret;
2846 if (MEM_P (x))
2848 /* We don't have to worry about changing the address since the
2849 size in bytes is supposed to be the same. */
2850 if (reload_in_progress)
2852 /* Copy the MEM to change the mode and move any
2853 substitutions from the old MEM to the new one. */
2854 ret = adjust_address_nv (x, new_mode, 0);
2855 copy_replacements (x, ret);
2857 else
2858 ret = adjust_address (x, new_mode, 0);
2860 else
2862 /* Note that we do want simplify_subreg's behavior of validating
2863 that the new mode is ok for a hard register. If we were to use
2864 simplify_gen_subreg, we would create the subreg, but would
2865 probably run into the target not being able to implement it. */
2866 /* Except, of course, when FORCE is true, when this is exactly what
2867 we want. Which is needed for CCmodes on some targets. */
2868 if (force)
2869 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2870 else
2871 ret = simplify_subreg (new_mode, x, old_mode, 0);
2874 return ret;
2877 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2878 an integer mode of the same size as MODE. Returns the instruction
2879 emitted, or NULL if such a move could not be generated. */
2881 static rtx
2882 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
2884 enum machine_mode imode;
2885 enum insn_code code;
2887 /* There must exist a mode of the exact size we require. */
2888 imode = int_mode_for_mode (mode);
2889 if (imode == BLKmode)
2890 return NULL_RTX;
2892 /* The target must support moves in this mode. */
2893 code = mov_optab->handlers[imode].insn_code;
2894 if (code == CODE_FOR_nothing)
2895 return NULL_RTX;
2897 x = emit_move_change_mode (imode, mode, x, force);
2898 if (x == NULL_RTX)
2899 return NULL_RTX;
2900 y = emit_move_change_mode (imode, mode, y, force);
2901 if (y == NULL_RTX)
2902 return NULL_RTX;
2903 return emit_insn (GEN_FCN (code) (x, y));
2906 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
2907 Return an equivalent MEM that does not use an auto-increment. */
2909 static rtx
2910 emit_move_resolve_push (enum machine_mode mode, rtx x)
2912 enum rtx_code code = GET_CODE (XEXP (x, 0));
2913 HOST_WIDE_INT adjust;
2914 rtx temp;
2916 adjust = GET_MODE_SIZE (mode);
2917 #ifdef PUSH_ROUNDING
2918 adjust = PUSH_ROUNDING (adjust);
2919 #endif
2920 if (code == PRE_DEC || code == POST_DEC)
2921 adjust = -adjust;
2922 else if (code == PRE_MODIFY || code == POST_MODIFY)
2924 rtx expr = XEXP (XEXP (x, 0), 1);
2925 HOST_WIDE_INT val;
2927 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
2928 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
2929 val = INTVAL (XEXP (expr, 1));
2930 if (GET_CODE (expr) == MINUS)
2931 val = -val;
2932 gcc_assert (adjust == val || adjust == -val);
2933 adjust = val;
2936 /* Do not use anti_adjust_stack, since we don't want to update
2937 stack_pointer_delta. */
2938 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
2939 GEN_INT (adjust), stack_pointer_rtx,
2940 0, OPTAB_LIB_WIDEN);
2941 if (temp != stack_pointer_rtx)
2942 emit_move_insn (stack_pointer_rtx, temp);
2944 switch (code)
2946 case PRE_INC:
2947 case PRE_DEC:
2948 case PRE_MODIFY:
2949 temp = stack_pointer_rtx;
2950 break;
2951 case POST_INC:
2952 case POST_DEC:
2953 case POST_MODIFY:
2954 temp = plus_constant (stack_pointer_rtx, -adjust);
2955 break;
2956 default:
2957 gcc_unreachable ();
2960 return replace_equiv_address (x, temp);
2963 /* A subroutine of emit_move_complex. Generate a move from Y into X.
2964 X is known to satisfy push_operand, and MODE is known to be complex.
2965 Returns the last instruction emitted. */
2967 static rtx
2968 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
2970 enum machine_mode submode = GET_MODE_INNER (mode);
2971 bool imag_first;
2973 #ifdef PUSH_ROUNDING
2974 unsigned int submodesize = GET_MODE_SIZE (submode);
2976 /* In case we output to the stack, but the size is smaller than the
2977 machine can push exactly, we need to use move instructions. */
2978 if (PUSH_ROUNDING (submodesize) != submodesize)
2980 x = emit_move_resolve_push (mode, x);
2981 return emit_move_insn (x, y);
2983 #endif
2985 /* Note that the real part always precedes the imag part in memory
2986 regardless of machine's endianness. */
2987 switch (GET_CODE (XEXP (x, 0)))
2989 case PRE_DEC:
2990 case POST_DEC:
2991 imag_first = true;
2992 break;
2993 case PRE_INC:
2994 case POST_INC:
2995 imag_first = false;
2996 break;
2997 default:
2998 gcc_unreachable ();
3001 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3002 read_complex_part (y, imag_first));
3003 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3004 read_complex_part (y, !imag_first));
3007 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3008 MODE is known to be complex. Returns the last instruction emitted. */
3010 static rtx
3011 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3013 bool try_int;
3015 /* Need to take special care for pushes, to maintain proper ordering
3016 of the data, and possibly extra padding. */
3017 if (push_operand (x, mode))
3018 return emit_move_complex_push (mode, x, y);
3020 /* See if we can coerce the target into moving both values at once. */
3022 /* Move floating point as parts. */
3023 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3024 && mov_optab->handlers[GET_MODE_INNER (mode)].insn_code != CODE_FOR_nothing)
3025 try_int = false;
3026 /* Not possible if the values are inherently not adjacent. */
3027 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3028 try_int = false;
3029 /* Is possible if both are registers (or subregs of registers). */
3030 else if (register_operand (x, mode) && register_operand (y, mode))
3031 try_int = true;
3032 /* If one of the operands is a memory, and alignment constraints
3033 are friendly enough, we may be able to do combined memory operations.
3034 We do not attempt this if Y is a constant because that combination is
3035 usually better with the by-parts thing below. */
3036 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3037 && (!STRICT_ALIGNMENT
3038 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3039 try_int = true;
3040 else
3041 try_int = false;
3043 if (try_int)
3045 rtx ret;
3047 /* For memory to memory moves, optimal behavior can be had with the
3048 existing block move logic. */
3049 if (MEM_P (x) && MEM_P (y))
3051 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3052 BLOCK_OP_NO_LIBCALL);
3053 return get_last_insn ();
3056 ret = emit_move_via_integer (mode, x, y, true);
3057 if (ret)
3058 return ret;
3061 /* Show the output dies here. This is necessary for SUBREGs
3062 of pseudos since we cannot track their lifetimes correctly;
3063 hard regs shouldn't appear here except as return values. */
3064 if (!reload_completed && !reload_in_progress
3065 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3066 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3068 write_complex_part (x, read_complex_part (y, false), false);
3069 write_complex_part (x, read_complex_part (y, true), true);
3070 return get_last_insn ();
3073 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3074 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3076 static rtx
3077 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3079 rtx ret;
3081 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3082 if (mode != CCmode)
3084 enum insn_code code = mov_optab->handlers[CCmode].insn_code;
3085 if (code != CODE_FOR_nothing)
3087 x = emit_move_change_mode (CCmode, mode, x, true);
3088 y = emit_move_change_mode (CCmode, mode, y, true);
3089 return emit_insn (GEN_FCN (code) (x, y));
3093 /* Otherwise, find the MODE_INT mode of the same width. */
3094 ret = emit_move_via_integer (mode, x, y, false);
3095 gcc_assert (ret != NULL);
3096 return ret;
3099 /* Return true if word I of OP lies entirely in the
3100 undefined bits of a paradoxical subreg. */
3102 static bool
3103 undefined_operand_subword_p (rtx op, int i)
3105 enum machine_mode innermode, innermostmode;
3106 int offset;
3107 if (GET_CODE (op) != SUBREG)
3108 return false;
3109 innermode = GET_MODE (op);
3110 innermostmode = GET_MODE (SUBREG_REG (op));
3111 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3112 /* The SUBREG_BYTE represents offset, as if the value were stored in
3113 memory, except for a paradoxical subreg where we define
3114 SUBREG_BYTE to be 0; undo this exception as in
3115 simplify_subreg. */
3116 if (SUBREG_BYTE (op) == 0
3117 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3119 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3120 if (WORDS_BIG_ENDIAN)
3121 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3122 if (BYTES_BIG_ENDIAN)
3123 offset += difference % UNITS_PER_WORD;
3125 if (offset >= GET_MODE_SIZE (innermostmode)
3126 || offset <= -GET_MODE_SIZE (word_mode))
3127 return true;
3128 return false;
3131 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3132 MODE is any multi-word or full-word mode that lacks a move_insn
3133 pattern. Note that you will get better code if you define such
3134 patterns, even if they must turn into multiple assembler instructions. */
3136 static rtx
3137 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3139 rtx last_insn = 0;
3140 rtx seq, inner;
3141 bool need_clobber;
3142 int i;
3144 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3146 /* If X is a push on the stack, do the push now and replace
3147 X with a reference to the stack pointer. */
3148 if (push_operand (x, mode))
3149 x = emit_move_resolve_push (mode, x);
3151 /* If we are in reload, see if either operand is a MEM whose address
3152 is scheduled for replacement. */
3153 if (reload_in_progress && MEM_P (x)
3154 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3155 x = replace_equiv_address_nv (x, inner);
3156 if (reload_in_progress && MEM_P (y)
3157 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3158 y = replace_equiv_address_nv (y, inner);
3160 start_sequence ();
3162 need_clobber = false;
3163 for (i = 0;
3164 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3165 i++)
3167 rtx xpart = operand_subword (x, i, 1, mode);
3168 rtx ypart;
3170 /* Do not generate code for a move if it would come entirely
3171 from the undefined bits of a paradoxical subreg. */
3172 if (undefined_operand_subword_p (y, i))
3173 continue;
3175 ypart = operand_subword (y, i, 1, mode);
3177 /* If we can't get a part of Y, put Y into memory if it is a
3178 constant. Otherwise, force it into a register. Then we must
3179 be able to get a part of Y. */
3180 if (ypart == 0 && CONSTANT_P (y))
3182 y = use_anchored_address (force_const_mem (mode, y));
3183 ypart = operand_subword (y, i, 1, mode);
3185 else if (ypart == 0)
3186 ypart = operand_subword_force (y, i, mode);
3188 gcc_assert (xpart && ypart);
3190 need_clobber |= (GET_CODE (xpart) == SUBREG);
3192 last_insn = emit_move_insn (xpart, ypart);
3195 seq = get_insns ();
3196 end_sequence ();
3198 /* Show the output dies here. This is necessary for SUBREGs
3199 of pseudos since we cannot track their lifetimes correctly;
3200 hard regs shouldn't appear here except as return values.
3201 We never want to emit such a clobber after reload. */
3202 if (x != y
3203 && ! (reload_in_progress || reload_completed)
3204 && need_clobber != 0)
3205 emit_insn (gen_rtx_CLOBBER (VOIDmode, x));
3207 emit_insn (seq);
3209 return last_insn;
3212 /* Low level part of emit_move_insn.
3213 Called just like emit_move_insn, but assumes X and Y
3214 are basically valid. */
3217 emit_move_insn_1 (rtx x, rtx y)
3219 enum machine_mode mode = GET_MODE (x);
3220 enum insn_code code;
3222 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3224 code = mov_optab->handlers[mode].insn_code;
3225 if (code != CODE_FOR_nothing)
3226 return emit_insn (GEN_FCN (code) (x, y));
3228 /* Expand complex moves by moving real part and imag part. */
3229 if (COMPLEX_MODE_P (mode))
3230 return emit_move_complex (mode, x, y);
3232 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT)
3234 rtx result = emit_move_via_integer (mode, x, y, true);
3236 /* If we can't find an integer mode, use multi words. */
3237 if (result)
3238 return result;
3239 else
3240 return emit_move_multi_word (mode, x, y);
3243 if (GET_MODE_CLASS (mode) == MODE_CC)
3244 return emit_move_ccmode (mode, x, y);
3246 /* Try using a move pattern for the corresponding integer mode. This is
3247 only safe when simplify_subreg can convert MODE constants into integer
3248 constants. At present, it can only do this reliably if the value
3249 fits within a HOST_WIDE_INT. */
3250 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3252 rtx ret = emit_move_via_integer (mode, x, y, false);
3253 if (ret)
3254 return ret;
3257 return emit_move_multi_word (mode, x, y);
3260 /* Generate code to copy Y into X.
3261 Both Y and X must have the same mode, except that
3262 Y can be a constant with VOIDmode.
3263 This mode cannot be BLKmode; use emit_block_move for that.
3265 Return the last instruction emitted. */
3268 emit_move_insn (rtx x, rtx y)
3270 enum machine_mode mode = GET_MODE (x);
3271 rtx y_cst = NULL_RTX;
3272 rtx last_insn, set;
3274 gcc_assert (mode != BLKmode
3275 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3277 if (CONSTANT_P (y))
3279 if (optimize
3280 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3281 && (last_insn = compress_float_constant (x, y)))
3282 return last_insn;
3284 y_cst = y;
3286 if (!LEGITIMATE_CONSTANT_P (y))
3288 y = force_const_mem (mode, y);
3290 /* If the target's cannot_force_const_mem prevented the spill,
3291 assume that the target's move expanders will also take care
3292 of the non-legitimate constant. */
3293 if (!y)
3294 y = y_cst;
3295 else
3296 y = use_anchored_address (y);
3300 /* If X or Y are memory references, verify that their addresses are valid
3301 for the machine. */
3302 if (MEM_P (x)
3303 && ((! memory_address_p (GET_MODE (x), XEXP (x, 0))
3304 && ! push_operand (x, GET_MODE (x)))
3305 || (flag_force_addr
3306 && CONSTANT_ADDRESS_P (XEXP (x, 0)))))
3307 x = validize_mem (x);
3309 if (MEM_P (y)
3310 && (! memory_address_p (GET_MODE (y), XEXP (y, 0))
3311 || (flag_force_addr
3312 && CONSTANT_ADDRESS_P (XEXP (y, 0)))))
3313 y = validize_mem (y);
3315 gcc_assert (mode != BLKmode);
3317 last_insn = emit_move_insn_1 (x, y);
3319 if (y_cst && REG_P (x)
3320 && (set = single_set (last_insn)) != NULL_RTX
3321 && SET_DEST (set) == x
3322 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3323 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3325 return last_insn;
3328 /* If Y is representable exactly in a narrower mode, and the target can
3329 perform the extension directly from constant or memory, then emit the
3330 move as an extension. */
3332 static rtx
3333 compress_float_constant (rtx x, rtx y)
3335 enum machine_mode dstmode = GET_MODE (x);
3336 enum machine_mode orig_srcmode = GET_MODE (y);
3337 enum machine_mode srcmode;
3338 REAL_VALUE_TYPE r;
3339 int oldcost, newcost;
3341 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3343 if (LEGITIMATE_CONSTANT_P (y))
3344 oldcost = rtx_cost (y, SET);
3345 else
3346 oldcost = rtx_cost (force_const_mem (dstmode, y), SET);
3348 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3349 srcmode != orig_srcmode;
3350 srcmode = GET_MODE_WIDER_MODE (srcmode))
3352 enum insn_code ic;
3353 rtx trunc_y, last_insn;
3355 /* Skip if the target can't extend this way. */
3356 ic = can_extend_p (dstmode, srcmode, 0);
3357 if (ic == CODE_FOR_nothing)
3358 continue;
3360 /* Skip if the narrowed value isn't exact. */
3361 if (! exact_real_truncate (srcmode, &r))
3362 continue;
3364 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3366 if (LEGITIMATE_CONSTANT_P (trunc_y))
3368 /* Skip if the target needs extra instructions to perform
3369 the extension. */
3370 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3371 continue;
3372 /* This is valid, but may not be cheaper than the original. */
3373 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3374 if (oldcost < newcost)
3375 continue;
3377 else if (float_extend_from_mem[dstmode][srcmode])
3379 trunc_y = force_const_mem (srcmode, trunc_y);
3380 /* This is valid, but may not be cheaper than the original. */
3381 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET);
3382 if (oldcost < newcost)
3383 continue;
3384 trunc_y = validize_mem (trunc_y);
3386 else
3387 continue;
3389 /* For CSE's benefit, force the compressed constant pool entry
3390 into a new pseudo. This constant may be used in different modes,
3391 and if not, combine will put things back together for us. */
3392 trunc_y = force_reg (srcmode, trunc_y);
3393 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3394 last_insn = get_last_insn ();
3396 if (REG_P (x))
3397 set_unique_reg_note (last_insn, REG_EQUAL, y);
3399 return last_insn;
3402 return NULL_RTX;
3405 /* Pushing data onto the stack. */
3407 /* Push a block of length SIZE (perhaps variable)
3408 and return an rtx to address the beginning of the block.
3409 The value may be virtual_outgoing_args_rtx.
3411 EXTRA is the number of bytes of padding to push in addition to SIZE.
3412 BELOW nonzero means this padding comes at low addresses;
3413 otherwise, the padding comes at high addresses. */
3416 push_block (rtx size, int extra, int below)
3418 rtx temp;
3420 size = convert_modes (Pmode, ptr_mode, size, 1);
3421 if (CONSTANT_P (size))
3422 anti_adjust_stack (plus_constant (size, extra));
3423 else if (REG_P (size) && extra == 0)
3424 anti_adjust_stack (size);
3425 else
3427 temp = copy_to_mode_reg (Pmode, size);
3428 if (extra != 0)
3429 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3430 temp, 0, OPTAB_LIB_WIDEN);
3431 anti_adjust_stack (temp);
3434 #ifndef STACK_GROWS_DOWNWARD
3435 if (0)
3436 #else
3437 if (1)
3438 #endif
3440 temp = virtual_outgoing_args_rtx;
3441 if (extra != 0 && below)
3442 temp = plus_constant (temp, extra);
3444 else
3446 if (GET_CODE (size) == CONST_INT)
3447 temp = plus_constant (virtual_outgoing_args_rtx,
3448 -INTVAL (size) - (below ? 0 : extra));
3449 else if (extra != 0 && !below)
3450 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3451 negate_rtx (Pmode, plus_constant (size, extra)));
3452 else
3453 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3454 negate_rtx (Pmode, size));
3457 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3460 #ifdef PUSH_ROUNDING
3462 /* Emit single push insn. */
3464 static void
3465 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3467 rtx dest_addr;
3468 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3469 rtx dest;
3470 enum insn_code icode;
3471 insn_operand_predicate_fn pred;
3473 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3474 /* If there is push pattern, use it. Otherwise try old way of throwing
3475 MEM representing push operation to move expander. */
3476 icode = push_optab->handlers[(int) mode].insn_code;
3477 if (icode != CODE_FOR_nothing)
3479 if (((pred = insn_data[(int) icode].operand[0].predicate)
3480 && !((*pred) (x, mode))))
3481 x = force_reg (mode, x);
3482 emit_insn (GEN_FCN (icode) (x));
3483 return;
3485 if (GET_MODE_SIZE (mode) == rounded_size)
3486 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3487 /* If we are to pad downward, adjust the stack pointer first and
3488 then store X into the stack location using an offset. This is
3489 because emit_move_insn does not know how to pad; it does not have
3490 access to type. */
3491 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3493 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3494 HOST_WIDE_INT offset;
3496 emit_move_insn (stack_pointer_rtx,
3497 expand_binop (Pmode,
3498 #ifdef STACK_GROWS_DOWNWARD
3499 sub_optab,
3500 #else
3501 add_optab,
3502 #endif
3503 stack_pointer_rtx,
3504 GEN_INT (rounded_size),
3505 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3507 offset = (HOST_WIDE_INT) padding_size;
3508 #ifdef STACK_GROWS_DOWNWARD
3509 if (STACK_PUSH_CODE == POST_DEC)
3510 /* We have already decremented the stack pointer, so get the
3511 previous value. */
3512 offset += (HOST_WIDE_INT) rounded_size;
3513 #else
3514 if (STACK_PUSH_CODE == POST_INC)
3515 /* We have already incremented the stack pointer, so get the
3516 previous value. */
3517 offset -= (HOST_WIDE_INT) rounded_size;
3518 #endif
3519 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3521 else
3523 #ifdef STACK_GROWS_DOWNWARD
3524 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3525 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3526 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3527 #else
3528 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3529 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3530 GEN_INT (rounded_size));
3531 #endif
3532 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3535 dest = gen_rtx_MEM (mode, dest_addr);
3537 if (type != 0)
3539 set_mem_attributes (dest, type, 1);
3541 if (flag_optimize_sibling_calls)
3542 /* Function incoming arguments may overlap with sibling call
3543 outgoing arguments and we cannot allow reordering of reads
3544 from function arguments with stores to outgoing arguments
3545 of sibling calls. */
3546 set_mem_alias_set (dest, 0);
3548 emit_move_insn (dest, x);
3550 #endif
3552 /* Generate code to push X onto the stack, assuming it has mode MODE and
3553 type TYPE.
3554 MODE is redundant except when X is a CONST_INT (since they don't
3555 carry mode info).
3556 SIZE is an rtx for the size of data to be copied (in bytes),
3557 needed only if X is BLKmode.
3559 ALIGN (in bits) is maximum alignment we can assume.
3561 If PARTIAL and REG are both nonzero, then copy that many of the first
3562 bytes of X into registers starting with REG, and push the rest of X.
3563 The amount of space pushed is decreased by PARTIAL bytes.
3564 REG must be a hard register in this case.
3565 If REG is zero but PARTIAL is not, take any all others actions for an
3566 argument partially in registers, but do not actually load any
3567 registers.
3569 EXTRA is the amount in bytes of extra space to leave next to this arg.
3570 This is ignored if an argument block has already been allocated.
3572 On a machine that lacks real push insns, ARGS_ADDR is the address of
3573 the bottom of the argument block for this call. We use indexing off there
3574 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3575 argument block has not been preallocated.
3577 ARGS_SO_FAR is the size of args previously pushed for this call.
3579 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3580 for arguments passed in registers. If nonzero, it will be the number
3581 of bytes required. */
3583 void
3584 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3585 unsigned int align, int partial, rtx reg, int extra,
3586 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3587 rtx alignment_pad)
3589 rtx xinner;
3590 enum direction stack_direction
3591 #ifdef STACK_GROWS_DOWNWARD
3592 = downward;
3593 #else
3594 = upward;
3595 #endif
3597 /* Decide where to pad the argument: `downward' for below,
3598 `upward' for above, or `none' for don't pad it.
3599 Default is below for small data on big-endian machines; else above. */
3600 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3602 /* Invert direction if stack is post-decrement.
3603 FIXME: why? */
3604 if (STACK_PUSH_CODE == POST_DEC)
3605 if (where_pad != none)
3606 where_pad = (where_pad == downward ? upward : downward);
3608 xinner = x;
3610 if (mode == BLKmode)
3612 /* Copy a block into the stack, entirely or partially. */
3614 rtx temp;
3615 int used;
3616 int offset;
3617 int skip;
3619 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3620 used = partial - offset;
3622 gcc_assert (size);
3624 /* USED is now the # of bytes we need not copy to the stack
3625 because registers will take care of them. */
3627 if (partial != 0)
3628 xinner = adjust_address (xinner, BLKmode, used);
3630 /* If the partial register-part of the arg counts in its stack size,
3631 skip the part of stack space corresponding to the registers.
3632 Otherwise, start copying to the beginning of the stack space,
3633 by setting SKIP to 0. */
3634 skip = (reg_parm_stack_space == 0) ? 0 : used;
3636 #ifdef PUSH_ROUNDING
3637 /* Do it with several push insns if that doesn't take lots of insns
3638 and if there is no difficulty with push insns that skip bytes
3639 on the stack for alignment purposes. */
3640 if (args_addr == 0
3641 && PUSH_ARGS
3642 && GET_CODE (size) == CONST_INT
3643 && skip == 0
3644 && MEM_ALIGN (xinner) >= align
3645 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3646 /* Here we avoid the case of a structure whose weak alignment
3647 forces many pushes of a small amount of data,
3648 and such small pushes do rounding that causes trouble. */
3649 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3650 || align >= BIGGEST_ALIGNMENT
3651 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3652 == (align / BITS_PER_UNIT)))
3653 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3655 /* Push padding now if padding above and stack grows down,
3656 or if padding below and stack grows up.
3657 But if space already allocated, this has already been done. */
3658 if (extra && args_addr == 0
3659 && where_pad != none && where_pad != stack_direction)
3660 anti_adjust_stack (GEN_INT (extra));
3662 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3664 else
3665 #endif /* PUSH_ROUNDING */
3667 rtx target;
3669 /* Otherwise make space on the stack and copy the data
3670 to the address of that space. */
3672 /* Deduct words put into registers from the size we must copy. */
3673 if (partial != 0)
3675 if (GET_CODE (size) == CONST_INT)
3676 size = GEN_INT (INTVAL (size) - used);
3677 else
3678 size = expand_binop (GET_MODE (size), sub_optab, size,
3679 GEN_INT (used), NULL_RTX, 0,
3680 OPTAB_LIB_WIDEN);
3683 /* Get the address of the stack space.
3684 In this case, we do not deal with EXTRA separately.
3685 A single stack adjust will do. */
3686 if (! args_addr)
3688 temp = push_block (size, extra, where_pad == downward);
3689 extra = 0;
3691 else if (GET_CODE (args_so_far) == CONST_INT)
3692 temp = memory_address (BLKmode,
3693 plus_constant (args_addr,
3694 skip + INTVAL (args_so_far)));
3695 else
3696 temp = memory_address (BLKmode,
3697 plus_constant (gen_rtx_PLUS (Pmode,
3698 args_addr,
3699 args_so_far),
3700 skip));
3702 if (!ACCUMULATE_OUTGOING_ARGS)
3704 /* If the source is referenced relative to the stack pointer,
3705 copy it to another register to stabilize it. We do not need
3706 to do this if we know that we won't be changing sp. */
3708 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3709 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3710 temp = copy_to_reg (temp);
3713 target = gen_rtx_MEM (BLKmode, temp);
3715 /* We do *not* set_mem_attributes here, because incoming arguments
3716 may overlap with sibling call outgoing arguments and we cannot
3717 allow reordering of reads from function arguments with stores
3718 to outgoing arguments of sibling calls. We do, however, want
3719 to record the alignment of the stack slot. */
3720 /* ALIGN may well be better aligned than TYPE, e.g. due to
3721 PARM_BOUNDARY. Assume the caller isn't lying. */
3722 set_mem_align (target, align);
3724 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3727 else if (partial > 0)
3729 /* Scalar partly in registers. */
3731 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3732 int i;
3733 int not_stack;
3734 /* # bytes of start of argument
3735 that we must make space for but need not store. */
3736 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3737 int args_offset = INTVAL (args_so_far);
3738 int skip;
3740 /* Push padding now if padding above and stack grows down,
3741 or if padding below and stack grows up.
3742 But if space already allocated, this has already been done. */
3743 if (extra && args_addr == 0
3744 && where_pad != none && where_pad != stack_direction)
3745 anti_adjust_stack (GEN_INT (extra));
3747 /* If we make space by pushing it, we might as well push
3748 the real data. Otherwise, we can leave OFFSET nonzero
3749 and leave the space uninitialized. */
3750 if (args_addr == 0)
3751 offset = 0;
3753 /* Now NOT_STACK gets the number of words that we don't need to
3754 allocate on the stack. Convert OFFSET to words too. */
3755 not_stack = (partial - offset) / UNITS_PER_WORD;
3756 offset /= UNITS_PER_WORD;
3758 /* If the partial register-part of the arg counts in its stack size,
3759 skip the part of stack space corresponding to the registers.
3760 Otherwise, start copying to the beginning of the stack space,
3761 by setting SKIP to 0. */
3762 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3764 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3765 x = validize_mem (force_const_mem (mode, x));
3767 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3768 SUBREGs of such registers are not allowed. */
3769 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3770 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3771 x = copy_to_reg (x);
3773 /* Loop over all the words allocated on the stack for this arg. */
3774 /* We can do it by words, because any scalar bigger than a word
3775 has a size a multiple of a word. */
3776 #ifndef PUSH_ARGS_REVERSED
3777 for (i = not_stack; i < size; i++)
3778 #else
3779 for (i = size - 1; i >= not_stack; i--)
3780 #endif
3781 if (i >= not_stack + offset)
3782 emit_push_insn (operand_subword_force (x, i, mode),
3783 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3784 0, args_addr,
3785 GEN_INT (args_offset + ((i - not_stack + skip)
3786 * UNITS_PER_WORD)),
3787 reg_parm_stack_space, alignment_pad);
3789 else
3791 rtx addr;
3792 rtx dest;
3794 /* Push padding now if padding above and stack grows down,
3795 or if padding below and stack grows up.
3796 But if space already allocated, this has already been done. */
3797 if (extra && args_addr == 0
3798 && where_pad != none && where_pad != stack_direction)
3799 anti_adjust_stack (GEN_INT (extra));
3801 #ifdef PUSH_ROUNDING
3802 if (args_addr == 0 && PUSH_ARGS)
3803 emit_single_push_insn (mode, x, type);
3804 else
3805 #endif
3807 if (GET_CODE (args_so_far) == CONST_INT)
3808 addr
3809 = memory_address (mode,
3810 plus_constant (args_addr,
3811 INTVAL (args_so_far)));
3812 else
3813 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3814 args_so_far));
3815 dest = gen_rtx_MEM (mode, addr);
3817 /* We do *not* set_mem_attributes here, because incoming arguments
3818 may overlap with sibling call outgoing arguments and we cannot
3819 allow reordering of reads from function arguments with stores
3820 to outgoing arguments of sibling calls. We do, however, want
3821 to record the alignment of the stack slot. */
3822 /* ALIGN may well be better aligned than TYPE, e.g. due to
3823 PARM_BOUNDARY. Assume the caller isn't lying. */
3824 set_mem_align (dest, align);
3826 emit_move_insn (dest, x);
3830 /* If part should go in registers, copy that part
3831 into the appropriate registers. Do this now, at the end,
3832 since mem-to-mem copies above may do function calls. */
3833 if (partial > 0 && reg != 0)
3835 /* Handle calls that pass values in multiple non-contiguous locations.
3836 The Irix 6 ABI has examples of this. */
3837 if (GET_CODE (reg) == PARALLEL)
3838 emit_group_load (reg, x, type, -1);
3839 else
3841 gcc_assert (partial % UNITS_PER_WORD == 0);
3842 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3846 if (extra && args_addr == 0 && where_pad == stack_direction)
3847 anti_adjust_stack (GEN_INT (extra));
3849 if (alignment_pad && args_addr == 0)
3850 anti_adjust_stack (alignment_pad);
3853 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3854 operations. */
3856 static rtx
3857 get_subtarget (rtx x)
3859 return (optimize
3860 || x == 0
3861 /* Only registers can be subtargets. */
3862 || !REG_P (x)
3863 /* Don't use hard regs to avoid extending their life. */
3864 || REGNO (x) < FIRST_PSEUDO_REGISTER
3865 ? 0 : x);
3868 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
3869 FIELD is a bitfield. Returns true if the optimization was successful,
3870 and there's nothing else to do. */
3872 static bool
3873 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
3874 unsigned HOST_WIDE_INT bitpos,
3875 enum machine_mode mode1, rtx str_rtx,
3876 tree to, tree src)
3878 enum machine_mode str_mode = GET_MODE (str_rtx);
3879 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
3880 tree op0, op1;
3881 rtx value, result;
3882 optab binop;
3884 if (mode1 != VOIDmode
3885 || bitsize >= BITS_PER_WORD
3886 || str_bitsize > BITS_PER_WORD
3887 || TREE_SIDE_EFFECTS (to)
3888 || TREE_THIS_VOLATILE (to))
3889 return false;
3891 STRIP_NOPS (src);
3892 if (!BINARY_CLASS_P (src)
3893 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
3894 return false;
3896 op0 = TREE_OPERAND (src, 0);
3897 op1 = TREE_OPERAND (src, 1);
3898 STRIP_NOPS (op0);
3900 if (!operand_equal_p (to, op0, 0))
3901 return false;
3903 if (MEM_P (str_rtx))
3905 unsigned HOST_WIDE_INT offset1;
3907 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
3908 str_mode = word_mode;
3909 str_mode = get_best_mode (bitsize, bitpos,
3910 MEM_ALIGN (str_rtx), str_mode, 0);
3911 if (str_mode == VOIDmode)
3912 return false;
3913 str_bitsize = GET_MODE_BITSIZE (str_mode);
3915 offset1 = bitpos;
3916 bitpos %= str_bitsize;
3917 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
3918 str_rtx = adjust_address (str_rtx, str_mode, offset1);
3920 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
3921 return false;
3923 /* If the bit field covers the whole REG/MEM, store_field
3924 will likely generate better code. */
3925 if (bitsize >= str_bitsize)
3926 return false;
3928 /* We can't handle fields split across multiple entities. */
3929 if (bitpos + bitsize > str_bitsize)
3930 return false;
3932 if (BYTES_BIG_ENDIAN)
3933 bitpos = str_bitsize - bitpos - bitsize;
3935 switch (TREE_CODE (src))
3937 case PLUS_EXPR:
3938 case MINUS_EXPR:
3939 /* For now, just optimize the case of the topmost bitfield
3940 where we don't need to do any masking and also
3941 1 bit bitfields where xor can be used.
3942 We might win by one instruction for the other bitfields
3943 too if insv/extv instructions aren't used, so that
3944 can be added later. */
3945 if (bitpos + bitsize != str_bitsize
3946 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
3947 break;
3949 value = expand_expr (op1, NULL_RTX, str_mode, 0);
3950 value = convert_modes (str_mode,
3951 TYPE_MODE (TREE_TYPE (op1)), value,
3952 TYPE_UNSIGNED (TREE_TYPE (op1)));
3954 /* We may be accessing data outside the field, which means
3955 we can alias adjacent data. */
3956 if (MEM_P (str_rtx))
3958 str_rtx = shallow_copy_rtx (str_rtx);
3959 set_mem_alias_set (str_rtx, 0);
3960 set_mem_expr (str_rtx, 0);
3963 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
3964 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
3966 value = expand_and (str_mode, value, const1_rtx, NULL);
3967 binop = xor_optab;
3969 value = expand_shift (LSHIFT_EXPR, str_mode, value,
3970 build_int_cst (NULL_TREE, bitpos),
3971 NULL_RTX, 1);
3972 result = expand_binop (str_mode, binop, str_rtx,
3973 value, str_rtx, 1, OPTAB_WIDEN);
3974 if (result != str_rtx)
3975 emit_move_insn (str_rtx, result);
3976 return true;
3978 case BIT_IOR_EXPR:
3979 case BIT_XOR_EXPR:
3980 if (TREE_CODE (op1) != INTEGER_CST)
3981 break;
3982 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), 0);
3983 value = convert_modes (GET_MODE (str_rtx),
3984 TYPE_MODE (TREE_TYPE (op1)), value,
3985 TYPE_UNSIGNED (TREE_TYPE (op1)));
3987 /* We may be accessing data outside the field, which means
3988 we can alias adjacent data. */
3989 if (MEM_P (str_rtx))
3991 str_rtx = shallow_copy_rtx (str_rtx);
3992 set_mem_alias_set (str_rtx, 0);
3993 set_mem_expr (str_rtx, 0);
3996 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
3997 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
3999 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4000 - 1);
4001 value = expand_and (GET_MODE (str_rtx), value, mask,
4002 NULL_RTX);
4004 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4005 build_int_cst (NULL_TREE, bitpos),
4006 NULL_RTX, 1);
4007 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4008 value, str_rtx, 1, OPTAB_WIDEN);
4009 if (result != str_rtx)
4010 emit_move_insn (str_rtx, result);
4011 return true;
4013 default:
4014 break;
4017 return false;
4021 /* Expand an assignment that stores the value of FROM into TO. */
4023 void
4024 expand_assignment (tree to, tree from)
4026 rtx to_rtx = 0;
4027 rtx result;
4029 /* Don't crash if the lhs of the assignment was erroneous. */
4030 if (TREE_CODE (to) == ERROR_MARK)
4032 result = expand_normal (from);
4033 return;
4036 /* Optimize away no-op moves without side-effects. */
4037 if (operand_equal_p (to, from, 0))
4038 return;
4040 /* Assignment of a structure component needs special treatment
4041 if the structure component's rtx is not simply a MEM.
4042 Assignment of an array element at a constant index, and assignment of
4043 an array element in an unaligned packed structure field, has the same
4044 problem. */
4045 if (handled_component_p (to)
4046 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4048 enum machine_mode mode1;
4049 HOST_WIDE_INT bitsize, bitpos;
4050 tree offset;
4051 int unsignedp;
4052 int volatilep = 0;
4053 tree tem;
4055 push_temp_slots ();
4056 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4057 &unsignedp, &volatilep, true);
4059 /* If we are going to use store_bit_field and extract_bit_field,
4060 make sure to_rtx will be safe for multiple use. */
4062 to_rtx = expand_normal (tem);
4064 if (offset != 0)
4066 rtx offset_rtx;
4068 if (!MEM_P (to_rtx))
4070 /* We can get constant negative offsets into arrays with broken
4071 user code. Translate this to a trap instead of ICEing. */
4072 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4073 expand_builtin_trap ();
4074 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4077 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4078 #ifdef POINTERS_EXTEND_UNSIGNED
4079 if (GET_MODE (offset_rtx) != Pmode)
4080 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4081 #else
4082 if (GET_MODE (offset_rtx) != ptr_mode)
4083 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4084 #endif
4086 /* A constant address in TO_RTX can have VOIDmode, we must not try
4087 to call force_reg for that case. Avoid that case. */
4088 if (MEM_P (to_rtx)
4089 && GET_MODE (to_rtx) == BLKmode
4090 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4091 && bitsize > 0
4092 && (bitpos % bitsize) == 0
4093 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4094 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4096 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4097 bitpos = 0;
4100 to_rtx = offset_address (to_rtx, offset_rtx,
4101 highest_pow2_factor_for_target (to,
4102 offset));
4105 /* Handle expand_expr of a complex value returning a CONCAT. */
4106 if (GET_CODE (to_rtx) == CONCAT)
4108 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4110 gcc_assert (bitpos == 0);
4111 result = store_expr (from, to_rtx, false);
4113 else
4115 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4116 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false);
4119 else
4121 if (MEM_P (to_rtx))
4123 /* If the field is at offset zero, we could have been given the
4124 DECL_RTX of the parent struct. Don't munge it. */
4125 to_rtx = shallow_copy_rtx (to_rtx);
4127 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4129 /* Deal with volatile and readonly fields. The former is only
4130 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4131 if (volatilep)
4132 MEM_VOLATILE_P (to_rtx) = 1;
4133 if (component_uses_parent_alias_set (to))
4134 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4137 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4138 to_rtx, to, from))
4139 result = NULL;
4140 else
4141 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4142 TREE_TYPE (tem), get_alias_set (to));
4145 if (result)
4146 preserve_temp_slots (result);
4147 free_temp_slots ();
4148 pop_temp_slots ();
4149 return;
4152 /* If the rhs is a function call and its value is not an aggregate,
4153 call the function before we start to compute the lhs.
4154 This is needed for correct code for cases such as
4155 val = setjmp (buf) on machines where reference to val
4156 requires loading up part of an address in a separate insn.
4158 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4159 since it might be a promoted variable where the zero- or sign- extension
4160 needs to be done. Handling this in the normal way is safe because no
4161 computation is done before the call. */
4162 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4163 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4164 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4165 && REG_P (DECL_RTL (to))))
4167 rtx value;
4169 push_temp_slots ();
4170 value = expand_normal (from);
4171 if (to_rtx == 0)
4172 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4174 /* Handle calls that return values in multiple non-contiguous locations.
4175 The Irix 6 ABI has examples of this. */
4176 if (GET_CODE (to_rtx) == PARALLEL)
4177 emit_group_load (to_rtx, value, TREE_TYPE (from),
4178 int_size_in_bytes (TREE_TYPE (from)));
4179 else if (GET_MODE (to_rtx) == BLKmode)
4180 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4181 else
4183 if (POINTER_TYPE_P (TREE_TYPE (to)))
4184 value = convert_memory_address (GET_MODE (to_rtx), value);
4185 emit_move_insn (to_rtx, value);
4187 preserve_temp_slots (to_rtx);
4188 free_temp_slots ();
4189 pop_temp_slots ();
4190 return;
4193 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4194 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4196 if (to_rtx == 0)
4197 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4199 /* Don't move directly into a return register. */
4200 if (TREE_CODE (to) == RESULT_DECL
4201 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4203 rtx temp;
4205 push_temp_slots ();
4206 temp = expand_expr (from, 0, GET_MODE (to_rtx), 0);
4208 if (GET_CODE (to_rtx) == PARALLEL)
4209 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4210 int_size_in_bytes (TREE_TYPE (from)));
4211 else
4212 emit_move_insn (to_rtx, temp);
4214 preserve_temp_slots (to_rtx);
4215 free_temp_slots ();
4216 pop_temp_slots ();
4217 return;
4220 /* In case we are returning the contents of an object which overlaps
4221 the place the value is being stored, use a safe function when copying
4222 a value through a pointer into a structure value return block. */
4223 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4224 && current_function_returns_struct
4225 && !current_function_returns_pcc_struct)
4227 rtx from_rtx, size;
4229 push_temp_slots ();
4230 size = expr_size (from);
4231 from_rtx = expand_normal (from);
4233 emit_library_call (memmove_libfunc, LCT_NORMAL,
4234 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4235 XEXP (from_rtx, 0), Pmode,
4236 convert_to_mode (TYPE_MODE (sizetype),
4237 size, TYPE_UNSIGNED (sizetype)),
4238 TYPE_MODE (sizetype));
4240 preserve_temp_slots (to_rtx);
4241 free_temp_slots ();
4242 pop_temp_slots ();
4243 return;
4246 /* Compute FROM and store the value in the rtx we got. */
4248 push_temp_slots ();
4249 result = store_expr (from, to_rtx, 0);
4250 preserve_temp_slots (result);
4251 free_temp_slots ();
4252 pop_temp_slots ();
4253 return;
4256 /* Generate code for computing expression EXP,
4257 and storing the value into TARGET.
4259 If the mode is BLKmode then we may return TARGET itself.
4260 It turns out that in BLKmode it doesn't cause a problem.
4261 because C has no operators that could combine two different
4262 assignments into the same BLKmode object with different values
4263 with no sequence point. Will other languages need this to
4264 be more thorough?
4266 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4267 stack, and block moves may need to be treated specially. */
4270 store_expr (tree exp, rtx target, int call_param_p)
4272 rtx temp;
4273 rtx alt_rtl = NULL_RTX;
4274 int dont_return_target = 0;
4276 if (VOID_TYPE_P (TREE_TYPE (exp)))
4278 /* C++ can generate ?: expressions with a throw expression in one
4279 branch and an rvalue in the other. Here, we resolve attempts to
4280 store the throw expression's nonexistent result. */
4281 gcc_assert (!call_param_p);
4282 expand_expr (exp, const0_rtx, VOIDmode, 0);
4283 return NULL_RTX;
4285 if (TREE_CODE (exp) == COMPOUND_EXPR)
4287 /* Perform first part of compound expression, then assign from second
4288 part. */
4289 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4290 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4291 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4293 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4295 /* For conditional expression, get safe form of the target. Then
4296 test the condition, doing the appropriate assignment on either
4297 side. This avoids the creation of unnecessary temporaries.
4298 For non-BLKmode, it is more efficient not to do this. */
4300 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4302 do_pending_stack_adjust ();
4303 NO_DEFER_POP;
4304 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4305 store_expr (TREE_OPERAND (exp, 1), target, call_param_p);
4306 emit_jump_insn (gen_jump (lab2));
4307 emit_barrier ();
4308 emit_label (lab1);
4309 store_expr (TREE_OPERAND (exp, 2), target, call_param_p);
4310 emit_label (lab2);
4311 OK_DEFER_POP;
4313 return NULL_RTX;
4315 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4316 /* If this is a scalar in a register that is stored in a wider mode
4317 than the declared mode, compute the result into its declared mode
4318 and then convert to the wider mode. Our value is the computed
4319 expression. */
4321 rtx inner_target = 0;
4323 /* We can do the conversion inside EXP, which will often result
4324 in some optimizations. Do the conversion in two steps: first
4325 change the signedness, if needed, then the extend. But don't
4326 do this if the type of EXP is a subtype of something else
4327 since then the conversion might involve more than just
4328 converting modes. */
4329 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4330 && TREE_TYPE (TREE_TYPE (exp)) == 0
4331 && (!lang_hooks.reduce_bit_field_operations
4332 || (GET_MODE_PRECISION (GET_MODE (target))
4333 == TYPE_PRECISION (TREE_TYPE (exp)))))
4335 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4336 != SUBREG_PROMOTED_UNSIGNED_P (target))
4337 exp = fold_convert
4338 (lang_hooks.types.signed_or_unsigned_type
4339 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)), exp);
4341 exp = fold_convert (lang_hooks.types.type_for_mode
4342 (GET_MODE (SUBREG_REG (target)),
4343 SUBREG_PROMOTED_UNSIGNED_P (target)),
4344 exp);
4346 inner_target = SUBREG_REG (target);
4349 temp = expand_expr (exp, inner_target, VOIDmode,
4350 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4352 /* If TEMP is a VOIDmode constant, use convert_modes to make
4353 sure that we properly convert it. */
4354 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4356 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4357 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4358 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4359 GET_MODE (target), temp,
4360 SUBREG_PROMOTED_UNSIGNED_P (target));
4363 convert_move (SUBREG_REG (target), temp,
4364 SUBREG_PROMOTED_UNSIGNED_P (target));
4366 return NULL_RTX;
4368 else
4370 temp = expand_expr_real (exp, target, GET_MODE (target),
4371 (call_param_p
4372 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4373 &alt_rtl);
4374 /* Return TARGET if it's a specified hardware register.
4375 If TARGET is a volatile mem ref, either return TARGET
4376 or return a reg copied *from* TARGET; ANSI requires this.
4378 Otherwise, if TEMP is not TARGET, return TEMP
4379 if it is constant (for efficiency),
4380 or if we really want the correct value. */
4381 if (!(target && REG_P (target)
4382 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4383 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4384 && ! rtx_equal_p (temp, target)
4385 && CONSTANT_P (temp))
4386 dont_return_target = 1;
4389 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4390 the same as that of TARGET, adjust the constant. This is needed, for
4391 example, in case it is a CONST_DOUBLE and we want only a word-sized
4392 value. */
4393 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4394 && TREE_CODE (exp) != ERROR_MARK
4395 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4396 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4397 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4399 /* If value was not generated in the target, store it there.
4400 Convert the value to TARGET's type first if necessary and emit the
4401 pending incrementations that have been queued when expanding EXP.
4402 Note that we cannot emit the whole queue blindly because this will
4403 effectively disable the POST_INC optimization later.
4405 If TEMP and TARGET compare equal according to rtx_equal_p, but
4406 one or both of them are volatile memory refs, we have to distinguish
4407 two cases:
4408 - expand_expr has used TARGET. In this case, we must not generate
4409 another copy. This can be detected by TARGET being equal according
4410 to == .
4411 - expand_expr has not used TARGET - that means that the source just
4412 happens to have the same RTX form. Since temp will have been created
4413 by expand_expr, it will compare unequal according to == .
4414 We must generate a copy in this case, to reach the correct number
4415 of volatile memory references. */
4417 if ((! rtx_equal_p (temp, target)
4418 || (temp != target && (side_effects_p (temp)
4419 || side_effects_p (target))))
4420 && TREE_CODE (exp) != ERROR_MARK
4421 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4422 but TARGET is not valid memory reference, TEMP will differ
4423 from TARGET although it is really the same location. */
4424 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4425 /* If there's nothing to copy, don't bother. Don't call
4426 expr_size unless necessary, because some front-ends (C++)
4427 expr_size-hook must not be given objects that are not
4428 supposed to be bit-copied or bit-initialized. */
4429 && expr_size (exp) != const0_rtx)
4431 if (GET_MODE (temp) != GET_MODE (target)
4432 && GET_MODE (temp) != VOIDmode)
4434 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4435 if (dont_return_target)
4437 /* In this case, we will return TEMP,
4438 so make sure it has the proper mode.
4439 But don't forget to store the value into TARGET. */
4440 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4441 emit_move_insn (target, temp);
4443 else
4444 convert_move (target, temp, unsignedp);
4447 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4449 /* Handle copying a string constant into an array. The string
4450 constant may be shorter than the array. So copy just the string's
4451 actual length, and clear the rest. First get the size of the data
4452 type of the string, which is actually the size of the target. */
4453 rtx size = expr_size (exp);
4455 if (GET_CODE (size) == CONST_INT
4456 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4457 emit_block_move (target, temp, size,
4458 (call_param_p
4459 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4460 else
4462 /* Compute the size of the data to copy from the string. */
4463 tree copy_size
4464 = size_binop (MIN_EXPR,
4465 make_tree (sizetype, size),
4466 size_int (TREE_STRING_LENGTH (exp)));
4467 rtx copy_size_rtx
4468 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4469 (call_param_p
4470 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4471 rtx label = 0;
4473 /* Copy that much. */
4474 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4475 TYPE_UNSIGNED (sizetype));
4476 emit_block_move (target, temp, copy_size_rtx,
4477 (call_param_p
4478 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4480 /* Figure out how much is left in TARGET that we have to clear.
4481 Do all calculations in ptr_mode. */
4482 if (GET_CODE (copy_size_rtx) == CONST_INT)
4484 size = plus_constant (size, -INTVAL (copy_size_rtx));
4485 target = adjust_address (target, BLKmode,
4486 INTVAL (copy_size_rtx));
4488 else
4490 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4491 copy_size_rtx, NULL_RTX, 0,
4492 OPTAB_LIB_WIDEN);
4494 #ifdef POINTERS_EXTEND_UNSIGNED
4495 if (GET_MODE (copy_size_rtx) != Pmode)
4496 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4497 TYPE_UNSIGNED (sizetype));
4498 #endif
4500 target = offset_address (target, copy_size_rtx,
4501 highest_pow2_factor (copy_size));
4502 label = gen_label_rtx ();
4503 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4504 GET_MODE (size), 0, label);
4507 if (size != const0_rtx)
4508 clear_storage (target, size, BLOCK_OP_NORMAL);
4510 if (label)
4511 emit_label (label);
4514 /* Handle calls that return values in multiple non-contiguous locations.
4515 The Irix 6 ABI has examples of this. */
4516 else if (GET_CODE (target) == PARALLEL)
4517 emit_group_load (target, temp, TREE_TYPE (exp),
4518 int_size_in_bytes (TREE_TYPE (exp)));
4519 else if (GET_MODE (temp) == BLKmode)
4520 emit_block_move (target, temp, expr_size (exp),
4521 (call_param_p
4522 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4523 else
4525 temp = force_operand (temp, target);
4526 if (temp != target)
4527 emit_move_insn (target, temp);
4531 return NULL_RTX;
4534 /* Examine CTOR to discover:
4535 * how many scalar fields are set to nonzero values,
4536 and place it in *P_NZ_ELTS;
4537 * how many scalar fields are set to non-constant values,
4538 and place it in *P_NC_ELTS; and
4539 * how many scalar fields in total are in CTOR,
4540 and place it in *P_ELT_COUNT.
4541 * if a type is a union, and the initializer from the constructor
4542 is not the largest element in the union, then set *p_must_clear. */
4544 static void
4545 categorize_ctor_elements_1 (tree ctor, HOST_WIDE_INT *p_nz_elts,
4546 HOST_WIDE_INT *p_nc_elts,
4547 HOST_WIDE_INT *p_elt_count,
4548 bool *p_must_clear)
4550 unsigned HOST_WIDE_INT idx;
4551 HOST_WIDE_INT nz_elts, nc_elts, elt_count;
4552 tree value, purpose;
4554 nz_elts = 0;
4555 nc_elts = 0;
4556 elt_count = 0;
4558 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4560 HOST_WIDE_INT mult;
4562 mult = 1;
4563 if (TREE_CODE (purpose) == RANGE_EXPR)
4565 tree lo_index = TREE_OPERAND (purpose, 0);
4566 tree hi_index = TREE_OPERAND (purpose, 1);
4568 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4569 mult = (tree_low_cst (hi_index, 1)
4570 - tree_low_cst (lo_index, 1) + 1);
4573 switch (TREE_CODE (value))
4575 case CONSTRUCTOR:
4577 HOST_WIDE_INT nz = 0, nc = 0, ic = 0;
4578 categorize_ctor_elements_1 (value, &nz, &nc, &ic, p_must_clear);
4579 nz_elts += mult * nz;
4580 nc_elts += mult * nc;
4581 elt_count += mult * ic;
4583 break;
4585 case INTEGER_CST:
4586 case REAL_CST:
4587 if (!initializer_zerop (value))
4588 nz_elts += mult;
4589 elt_count += mult;
4590 break;
4592 case STRING_CST:
4593 nz_elts += mult * TREE_STRING_LENGTH (value);
4594 elt_count += mult * TREE_STRING_LENGTH (value);
4595 break;
4597 case COMPLEX_CST:
4598 if (!initializer_zerop (TREE_REALPART (value)))
4599 nz_elts += mult;
4600 if (!initializer_zerop (TREE_IMAGPART (value)))
4601 nz_elts += mult;
4602 elt_count += mult;
4603 break;
4605 case VECTOR_CST:
4607 tree v;
4608 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4610 if (!initializer_zerop (TREE_VALUE (v)))
4611 nz_elts += mult;
4612 elt_count += mult;
4615 break;
4617 default:
4618 nz_elts += mult;
4619 elt_count += mult;
4620 if (!initializer_constant_valid_p (value, TREE_TYPE (value)))
4621 nc_elts += mult;
4622 break;
4626 if (!*p_must_clear
4627 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4628 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4630 tree init_sub_type;
4631 bool clear_this = true;
4633 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4635 /* We don't expect more than one element of the union to be
4636 initialized. Not sure what we should do otherwise... */
4637 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4638 == 1);
4640 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4641 CONSTRUCTOR_ELTS (ctor),
4642 0)->value);
4644 /* ??? We could look at each element of the union, and find the
4645 largest element. Which would avoid comparing the size of the
4646 initialized element against any tail padding in the union.
4647 Doesn't seem worth the effort... */
4648 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4649 TYPE_SIZE (init_sub_type)) == 1)
4651 /* And now we have to find out if the element itself is fully
4652 constructed. E.g. for union { struct { int a, b; } s; } u
4653 = { .s = { .a = 1 } }. */
4654 if (elt_count == count_type_elements (init_sub_type, false))
4655 clear_this = false;
4659 *p_must_clear = clear_this;
4662 *p_nz_elts += nz_elts;
4663 *p_nc_elts += nc_elts;
4664 *p_elt_count += elt_count;
4667 void
4668 categorize_ctor_elements (tree ctor, HOST_WIDE_INT *p_nz_elts,
4669 HOST_WIDE_INT *p_nc_elts,
4670 HOST_WIDE_INT *p_elt_count,
4671 bool *p_must_clear)
4673 *p_nz_elts = 0;
4674 *p_nc_elts = 0;
4675 *p_elt_count = 0;
4676 *p_must_clear = false;
4677 categorize_ctor_elements_1 (ctor, p_nz_elts, p_nc_elts, p_elt_count,
4678 p_must_clear);
4681 /* Count the number of scalars in TYPE. Return -1 on overflow or
4682 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4683 array member at the end of the structure. */
4685 HOST_WIDE_INT
4686 count_type_elements (tree type, bool allow_flexarr)
4688 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4689 switch (TREE_CODE (type))
4691 case ARRAY_TYPE:
4693 tree telts = array_type_nelts (type);
4694 if (telts && host_integerp (telts, 1))
4696 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4697 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4698 if (n == 0)
4699 return 0;
4700 else if (max / n > m)
4701 return n * m;
4703 return -1;
4706 case RECORD_TYPE:
4708 HOST_WIDE_INT n = 0, t;
4709 tree f;
4711 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4712 if (TREE_CODE (f) == FIELD_DECL)
4714 t = count_type_elements (TREE_TYPE (f), false);
4715 if (t < 0)
4717 /* Check for structures with flexible array member. */
4718 tree tf = TREE_TYPE (f);
4719 if (allow_flexarr
4720 && TREE_CHAIN (f) == NULL
4721 && TREE_CODE (tf) == ARRAY_TYPE
4722 && TYPE_DOMAIN (tf)
4723 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4724 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4725 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4726 && int_size_in_bytes (type) >= 0)
4727 break;
4729 return -1;
4731 n += t;
4734 return n;
4737 case UNION_TYPE:
4738 case QUAL_UNION_TYPE:
4740 /* Ho hum. How in the world do we guess here? Clearly it isn't
4741 right to count the fields. Guess based on the number of words. */
4742 HOST_WIDE_INT n = int_size_in_bytes (type);
4743 if (n < 0)
4744 return -1;
4745 return n / UNITS_PER_WORD;
4748 case COMPLEX_TYPE:
4749 return 2;
4751 case VECTOR_TYPE:
4752 return TYPE_VECTOR_SUBPARTS (type);
4754 case INTEGER_TYPE:
4755 case REAL_TYPE:
4756 case ENUMERAL_TYPE:
4757 case BOOLEAN_TYPE:
4758 case POINTER_TYPE:
4759 case OFFSET_TYPE:
4760 case REFERENCE_TYPE:
4761 return 1;
4763 case VOID_TYPE:
4764 case METHOD_TYPE:
4765 case FUNCTION_TYPE:
4766 case LANG_TYPE:
4767 default:
4768 gcc_unreachable ();
4772 /* Return 1 if EXP contains mostly (3/4) zeros. */
4774 static int
4775 mostly_zeros_p (tree exp)
4777 if (TREE_CODE (exp) == CONSTRUCTOR)
4780 HOST_WIDE_INT nz_elts, nc_elts, count, elts;
4781 bool must_clear;
4783 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4784 if (must_clear)
4785 return 1;
4787 elts = count_type_elements (TREE_TYPE (exp), false);
4789 return nz_elts < elts / 4;
4792 return initializer_zerop (exp);
4795 /* Return 1 if EXP contains all zeros. */
4797 static int
4798 all_zeros_p (tree exp)
4800 if (TREE_CODE (exp) == CONSTRUCTOR)
4803 HOST_WIDE_INT nz_elts, nc_elts, count;
4804 bool must_clear;
4806 categorize_ctor_elements (exp, &nz_elts, &nc_elts, &count, &must_clear);
4807 return nz_elts == 0;
4810 return initializer_zerop (exp);
4813 /* Helper function for store_constructor.
4814 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
4815 TYPE is the type of the CONSTRUCTOR, not the element type.
4816 CLEARED is as for store_constructor.
4817 ALIAS_SET is the alias set to use for any stores.
4819 This provides a recursive shortcut back to store_constructor when it isn't
4820 necessary to go through store_field. This is so that we can pass through
4821 the cleared field to let store_constructor know that we may not have to
4822 clear a substructure if the outer structure has already been cleared. */
4824 static void
4825 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
4826 HOST_WIDE_INT bitpos, enum machine_mode mode,
4827 tree exp, tree type, int cleared, int alias_set)
4829 if (TREE_CODE (exp) == CONSTRUCTOR
4830 /* We can only call store_constructor recursively if the size and
4831 bit position are on a byte boundary. */
4832 && bitpos % BITS_PER_UNIT == 0
4833 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
4834 /* If we have a nonzero bitpos for a register target, then we just
4835 let store_field do the bitfield handling. This is unlikely to
4836 generate unnecessary clear instructions anyways. */
4837 && (bitpos == 0 || MEM_P (target)))
4839 if (MEM_P (target))
4840 target
4841 = adjust_address (target,
4842 GET_MODE (target) == BLKmode
4843 || 0 != (bitpos
4844 % GET_MODE_ALIGNMENT (GET_MODE (target)))
4845 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
4848 /* Update the alias set, if required. */
4849 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
4850 && MEM_ALIAS_SET (target) != 0)
4852 target = copy_rtx (target);
4853 set_mem_alias_set (target, alias_set);
4856 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
4858 else
4859 store_field (target, bitsize, bitpos, mode, exp, type, alias_set);
4862 /* Store the value of constructor EXP into the rtx TARGET.
4863 TARGET is either a REG or a MEM; we know it cannot conflict, since
4864 safe_from_p has been called.
4865 CLEARED is true if TARGET is known to have been zero'd.
4866 SIZE is the number of bytes of TARGET we are allowed to modify: this
4867 may not be the same as the size of EXP if we are assigning to a field
4868 which has been packed to exclude padding bits. */
4870 static void
4871 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
4873 tree type = TREE_TYPE (exp);
4874 #ifdef WORD_REGISTER_OPERATIONS
4875 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
4876 #endif
4878 switch (TREE_CODE (type))
4880 case RECORD_TYPE:
4881 case UNION_TYPE:
4882 case QUAL_UNION_TYPE:
4884 unsigned HOST_WIDE_INT idx;
4885 tree field, value;
4887 /* If size is zero or the target is already cleared, do nothing. */
4888 if (size == 0 || cleared)
4889 cleared = 1;
4890 /* We either clear the aggregate or indicate the value is dead. */
4891 else if ((TREE_CODE (type) == UNION_TYPE
4892 || TREE_CODE (type) == QUAL_UNION_TYPE)
4893 && ! CONSTRUCTOR_ELTS (exp))
4894 /* If the constructor is empty, clear the union. */
4896 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
4897 cleared = 1;
4900 /* If we are building a static constructor into a register,
4901 set the initial value as zero so we can fold the value into
4902 a constant. But if more than one register is involved,
4903 this probably loses. */
4904 else if (REG_P (target) && TREE_STATIC (exp)
4905 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
4907 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
4908 cleared = 1;
4911 /* If the constructor has fewer fields than the structure or
4912 if we are initializing the structure to mostly zeros, clear
4913 the whole structure first. Don't do this if TARGET is a
4914 register whose mode size isn't equal to SIZE since
4915 clear_storage can't handle this case. */
4916 else if (size > 0
4917 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
4918 != fields_length (type))
4919 || mostly_zeros_p (exp))
4920 && (!REG_P (target)
4921 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
4922 == size)))
4924 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
4925 cleared = 1;
4928 if (! cleared)
4929 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
4931 /* Store each element of the constructor into the
4932 corresponding field of TARGET. */
4933 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
4935 enum machine_mode mode;
4936 HOST_WIDE_INT bitsize;
4937 HOST_WIDE_INT bitpos = 0;
4938 tree offset;
4939 rtx to_rtx = target;
4941 /* Just ignore missing fields. We cleared the whole
4942 structure, above, if any fields are missing. */
4943 if (field == 0)
4944 continue;
4946 if (cleared && initializer_zerop (value))
4947 continue;
4949 if (host_integerp (DECL_SIZE (field), 1))
4950 bitsize = tree_low_cst (DECL_SIZE (field), 1);
4951 else
4952 bitsize = -1;
4954 mode = DECL_MODE (field);
4955 if (DECL_BIT_FIELD (field))
4956 mode = VOIDmode;
4958 offset = DECL_FIELD_OFFSET (field);
4959 if (host_integerp (offset, 0)
4960 && host_integerp (bit_position (field), 0))
4962 bitpos = int_bit_position (field);
4963 offset = 0;
4965 else
4966 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
4968 if (offset)
4970 rtx offset_rtx;
4972 offset
4973 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
4974 make_tree (TREE_TYPE (exp),
4975 target));
4977 offset_rtx = expand_normal (offset);
4978 gcc_assert (MEM_P (to_rtx));
4980 #ifdef POINTERS_EXTEND_UNSIGNED
4981 if (GET_MODE (offset_rtx) != Pmode)
4982 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4983 #else
4984 if (GET_MODE (offset_rtx) != ptr_mode)
4985 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4986 #endif
4988 to_rtx = offset_address (to_rtx, offset_rtx,
4989 highest_pow2_factor (offset));
4992 #ifdef WORD_REGISTER_OPERATIONS
4993 /* If this initializes a field that is smaller than a
4994 word, at the start of a word, try to widen it to a full
4995 word. This special case allows us to output C++ member
4996 function initializations in a form that the optimizers
4997 can understand. */
4998 if (REG_P (target)
4999 && bitsize < BITS_PER_WORD
5000 && bitpos % BITS_PER_WORD == 0
5001 && GET_MODE_CLASS (mode) == MODE_INT
5002 && TREE_CODE (value) == INTEGER_CST
5003 && exp_size >= 0
5004 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5006 tree type = TREE_TYPE (value);
5008 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5010 type = lang_hooks.types.type_for_size
5011 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5012 value = fold_convert (type, value);
5015 if (BYTES_BIG_ENDIAN)
5016 value
5017 = fold_build2 (LSHIFT_EXPR, type, value,
5018 build_int_cst (type,
5019 BITS_PER_WORD - bitsize));
5020 bitsize = BITS_PER_WORD;
5021 mode = word_mode;
5023 #endif
5025 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5026 && DECL_NONADDRESSABLE_P (field))
5028 to_rtx = copy_rtx (to_rtx);
5029 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5032 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5033 value, type, cleared,
5034 get_alias_set (TREE_TYPE (field)));
5036 break;
5038 case ARRAY_TYPE:
5040 tree value, index;
5041 unsigned HOST_WIDE_INT i;
5042 int need_to_clear;
5043 tree domain;
5044 tree elttype = TREE_TYPE (type);
5045 int const_bounds_p;
5046 HOST_WIDE_INT minelt = 0;
5047 HOST_WIDE_INT maxelt = 0;
5049 domain = TYPE_DOMAIN (type);
5050 const_bounds_p = (TYPE_MIN_VALUE (domain)
5051 && TYPE_MAX_VALUE (domain)
5052 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5053 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5055 /* If we have constant bounds for the range of the type, get them. */
5056 if (const_bounds_p)
5058 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5059 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5062 /* If the constructor has fewer elements than the array, clear
5063 the whole array first. Similarly if this is static
5064 constructor of a non-BLKmode object. */
5065 if (cleared)
5066 need_to_clear = 0;
5067 else if (REG_P (target) && TREE_STATIC (exp))
5068 need_to_clear = 1;
5069 else
5071 unsigned HOST_WIDE_INT idx;
5072 tree index, value;
5073 HOST_WIDE_INT count = 0, zero_count = 0;
5074 need_to_clear = ! const_bounds_p;
5076 /* This loop is a more accurate version of the loop in
5077 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5078 is also needed to check for missing elements. */
5079 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5081 HOST_WIDE_INT this_node_count;
5083 if (need_to_clear)
5084 break;
5086 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5088 tree lo_index = TREE_OPERAND (index, 0);
5089 tree hi_index = TREE_OPERAND (index, 1);
5091 if (! host_integerp (lo_index, 1)
5092 || ! host_integerp (hi_index, 1))
5094 need_to_clear = 1;
5095 break;
5098 this_node_count = (tree_low_cst (hi_index, 1)
5099 - tree_low_cst (lo_index, 1) + 1);
5101 else
5102 this_node_count = 1;
5104 count += this_node_count;
5105 if (mostly_zeros_p (value))
5106 zero_count += this_node_count;
5109 /* Clear the entire array first if there are any missing
5110 elements, or if the incidence of zero elements is >=
5111 75%. */
5112 if (! need_to_clear
5113 && (count < maxelt - minelt + 1
5114 || 4 * zero_count >= 3 * count))
5115 need_to_clear = 1;
5118 if (need_to_clear && size > 0)
5120 if (REG_P (target))
5121 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5122 else
5123 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5124 cleared = 1;
5127 if (!cleared && REG_P (target))
5128 /* Inform later passes that the old value is dead. */
5129 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
5131 /* Store each element of the constructor into the
5132 corresponding element of TARGET, determined by counting the
5133 elements. */
5134 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5136 enum machine_mode mode;
5137 HOST_WIDE_INT bitsize;
5138 HOST_WIDE_INT bitpos;
5139 int unsignedp;
5140 rtx xtarget = target;
5142 if (cleared && initializer_zerop (value))
5143 continue;
5145 unsignedp = TYPE_UNSIGNED (elttype);
5146 mode = TYPE_MODE (elttype);
5147 if (mode == BLKmode)
5148 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5149 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5150 : -1);
5151 else
5152 bitsize = GET_MODE_BITSIZE (mode);
5154 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5156 tree lo_index = TREE_OPERAND (index, 0);
5157 tree hi_index = TREE_OPERAND (index, 1);
5158 rtx index_r, pos_rtx;
5159 HOST_WIDE_INT lo, hi, count;
5160 tree position;
5162 /* If the range is constant and "small", unroll the loop. */
5163 if (const_bounds_p
5164 && host_integerp (lo_index, 0)
5165 && host_integerp (hi_index, 0)
5166 && (lo = tree_low_cst (lo_index, 0),
5167 hi = tree_low_cst (hi_index, 0),
5168 count = hi - lo + 1,
5169 (!MEM_P (target)
5170 || count <= 2
5171 || (host_integerp (TYPE_SIZE (elttype), 1)
5172 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5173 <= 40 * 8)))))
5175 lo -= minelt; hi -= minelt;
5176 for (; lo <= hi; lo++)
5178 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5180 if (MEM_P (target)
5181 && !MEM_KEEP_ALIAS_SET_P (target)
5182 && TREE_CODE (type) == ARRAY_TYPE
5183 && TYPE_NONALIASED_COMPONENT (type))
5185 target = copy_rtx (target);
5186 MEM_KEEP_ALIAS_SET_P (target) = 1;
5189 store_constructor_field
5190 (target, bitsize, bitpos, mode, value, type, cleared,
5191 get_alias_set (elttype));
5194 else
5196 rtx loop_start = gen_label_rtx ();
5197 rtx loop_end = gen_label_rtx ();
5198 tree exit_cond;
5200 expand_normal (hi_index);
5201 unsignedp = TYPE_UNSIGNED (domain);
5203 index = build_decl (VAR_DECL, NULL_TREE, domain);
5205 index_r
5206 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5207 &unsignedp, 0));
5208 SET_DECL_RTL (index, index_r);
5209 store_expr (lo_index, index_r, 0);
5211 /* Build the head of the loop. */
5212 do_pending_stack_adjust ();
5213 emit_label (loop_start);
5215 /* Assign value to element index. */
5216 position =
5217 fold_convert (ssizetype,
5218 fold_build2 (MINUS_EXPR,
5219 TREE_TYPE (index),
5220 index,
5221 TYPE_MIN_VALUE (domain)));
5223 position =
5224 size_binop (MULT_EXPR, position,
5225 fold_convert (ssizetype,
5226 TYPE_SIZE_UNIT (elttype)));
5228 pos_rtx = expand_normal (position);
5229 xtarget = offset_address (target, pos_rtx,
5230 highest_pow2_factor (position));
5231 xtarget = adjust_address (xtarget, mode, 0);
5232 if (TREE_CODE (value) == CONSTRUCTOR)
5233 store_constructor (value, xtarget, cleared,
5234 bitsize / BITS_PER_UNIT);
5235 else
5236 store_expr (value, xtarget, 0);
5238 /* Generate a conditional jump to exit the loop. */
5239 exit_cond = build2 (LT_EXPR, integer_type_node,
5240 index, hi_index);
5241 jumpif (exit_cond, loop_end);
5243 /* Update the loop counter, and jump to the head of
5244 the loop. */
5245 expand_assignment (index,
5246 build2 (PLUS_EXPR, TREE_TYPE (index),
5247 index, integer_one_node));
5249 emit_jump (loop_start);
5251 /* Build the end of the loop. */
5252 emit_label (loop_end);
5255 else if ((index != 0 && ! host_integerp (index, 0))
5256 || ! host_integerp (TYPE_SIZE (elttype), 1))
5258 tree position;
5260 if (index == 0)
5261 index = ssize_int (1);
5263 if (minelt)
5264 index = fold_convert (ssizetype,
5265 fold_build2 (MINUS_EXPR,
5266 TREE_TYPE (index),
5267 index,
5268 TYPE_MIN_VALUE (domain)));
5270 position =
5271 size_binop (MULT_EXPR, index,
5272 fold_convert (ssizetype,
5273 TYPE_SIZE_UNIT (elttype)));
5274 xtarget = offset_address (target,
5275 expand_normal (position),
5276 highest_pow2_factor (position));
5277 xtarget = adjust_address (xtarget, mode, 0);
5278 store_expr (value, xtarget, 0);
5280 else
5282 if (index != 0)
5283 bitpos = ((tree_low_cst (index, 0) - minelt)
5284 * tree_low_cst (TYPE_SIZE (elttype), 1));
5285 else
5286 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5288 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5289 && TREE_CODE (type) == ARRAY_TYPE
5290 && TYPE_NONALIASED_COMPONENT (type))
5292 target = copy_rtx (target);
5293 MEM_KEEP_ALIAS_SET_P (target) = 1;
5295 store_constructor_field (target, bitsize, bitpos, mode, value,
5296 type, cleared, get_alias_set (elttype));
5299 break;
5302 case VECTOR_TYPE:
5304 unsigned HOST_WIDE_INT idx;
5305 constructor_elt *ce;
5306 int i;
5307 int need_to_clear;
5308 int icode = 0;
5309 tree elttype = TREE_TYPE (type);
5310 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5311 enum machine_mode eltmode = TYPE_MODE (elttype);
5312 HOST_WIDE_INT bitsize;
5313 HOST_WIDE_INT bitpos;
5314 rtvec vector = NULL;
5315 unsigned n_elts;
5317 gcc_assert (eltmode != BLKmode);
5319 n_elts = TYPE_VECTOR_SUBPARTS (type);
5320 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5322 enum machine_mode mode = GET_MODE (target);
5324 icode = (int) vec_init_optab->handlers[mode].insn_code;
5325 if (icode != CODE_FOR_nothing)
5327 unsigned int i;
5329 vector = rtvec_alloc (n_elts);
5330 for (i = 0; i < n_elts; i++)
5331 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5335 /* If the constructor has fewer elements than the vector,
5336 clear the whole array first. Similarly if this is static
5337 constructor of a non-BLKmode object. */
5338 if (cleared)
5339 need_to_clear = 0;
5340 else if (REG_P (target) && TREE_STATIC (exp))
5341 need_to_clear = 1;
5342 else
5344 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5345 tree value;
5347 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5349 int n_elts_here = tree_low_cst
5350 (int_const_binop (TRUNC_DIV_EXPR,
5351 TYPE_SIZE (TREE_TYPE (value)),
5352 TYPE_SIZE (elttype), 0), 1);
5354 count += n_elts_here;
5355 if (mostly_zeros_p (value))
5356 zero_count += n_elts_here;
5359 /* Clear the entire vector first if there are any missing elements,
5360 or if the incidence of zero elements is >= 75%. */
5361 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5364 if (need_to_clear && size > 0 && !vector)
5366 if (REG_P (target))
5367 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5368 else
5369 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5370 cleared = 1;
5373 /* Inform later passes that the old value is dead. */
5374 if (!cleared && !vector && REG_P (target))
5375 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5377 /* Store each element of the constructor into the corresponding
5378 element of TARGET, determined by counting the elements. */
5379 for (idx = 0, i = 0;
5380 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5381 idx++, i += bitsize / elt_size)
5383 HOST_WIDE_INT eltpos;
5384 tree value = ce->value;
5386 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5387 if (cleared && initializer_zerop (value))
5388 continue;
5390 if (ce->index)
5391 eltpos = tree_low_cst (ce->index, 1);
5392 else
5393 eltpos = i;
5395 if (vector)
5397 /* Vector CONSTRUCTORs should only be built from smaller
5398 vectors in the case of BLKmode vectors. */
5399 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5400 RTVEC_ELT (vector, eltpos)
5401 = expand_normal (value);
5403 else
5405 enum machine_mode value_mode =
5406 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5407 ? TYPE_MODE (TREE_TYPE (value))
5408 : eltmode;
5409 bitpos = eltpos * elt_size;
5410 store_constructor_field (target, bitsize, bitpos,
5411 value_mode, value, type,
5412 cleared, get_alias_set (elttype));
5416 if (vector)
5417 emit_insn (GEN_FCN (icode)
5418 (target,
5419 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5420 break;
5423 default:
5424 gcc_unreachable ();
5428 /* Store the value of EXP (an expression tree)
5429 into a subfield of TARGET which has mode MODE and occupies
5430 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5431 If MODE is VOIDmode, it means that we are storing into a bit-field.
5433 Always return const0_rtx unless we have something particular to
5434 return.
5436 TYPE is the type of the underlying object,
5438 ALIAS_SET is the alias set for the destination. This value will
5439 (in general) be different from that for TARGET, since TARGET is a
5440 reference to the containing structure. */
5442 static rtx
5443 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5444 enum machine_mode mode, tree exp, tree type, int alias_set)
5446 HOST_WIDE_INT width_mask = 0;
5448 if (TREE_CODE (exp) == ERROR_MARK)
5449 return const0_rtx;
5451 /* If we have nothing to store, do nothing unless the expression has
5452 side-effects. */
5453 if (bitsize == 0)
5454 return expand_expr (exp, const0_rtx, VOIDmode, 0);
5455 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5456 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5458 /* If we are storing into an unaligned field of an aligned union that is
5459 in a register, we may have the mode of TARGET being an integer mode but
5460 MODE == BLKmode. In that case, get an aligned object whose size and
5461 alignment are the same as TARGET and store TARGET into it (we can avoid
5462 the store if the field being stored is the entire width of TARGET). Then
5463 call ourselves recursively to store the field into a BLKmode version of
5464 that object. Finally, load from the object into TARGET. This is not
5465 very efficient in general, but should only be slightly more expensive
5466 than the otherwise-required unaligned accesses. Perhaps this can be
5467 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5468 twice, once with emit_move_insn and once via store_field. */
5470 if (mode == BLKmode
5471 && (REG_P (target) || GET_CODE (target) == SUBREG))
5473 rtx object = assign_temp (type, 0, 1, 1);
5474 rtx blk_object = adjust_address (object, BLKmode, 0);
5476 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5477 emit_move_insn (object, target);
5479 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set);
5481 emit_move_insn (target, object);
5483 /* We want to return the BLKmode version of the data. */
5484 return blk_object;
5487 if (GET_CODE (target) == CONCAT)
5489 /* We're storing into a struct containing a single __complex. */
5491 gcc_assert (!bitpos);
5492 return store_expr (exp, target, 0);
5495 /* If the structure is in a register or if the component
5496 is a bit field, we cannot use addressing to access it.
5497 Use bit-field techniques or SUBREG to store in it. */
5499 if (mode == VOIDmode
5500 || (mode != BLKmode && ! direct_store[(int) mode]
5501 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5502 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5503 || REG_P (target)
5504 || GET_CODE (target) == SUBREG
5505 /* If the field isn't aligned enough to store as an ordinary memref,
5506 store it as a bit field. */
5507 || (mode != BLKmode
5508 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5509 || bitpos % GET_MODE_ALIGNMENT (mode))
5510 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5511 || (bitpos % BITS_PER_UNIT != 0)))
5512 /* If the RHS and field are a constant size and the size of the
5513 RHS isn't the same size as the bitfield, we must use bitfield
5514 operations. */
5515 || (bitsize >= 0
5516 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5517 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5519 rtx temp;
5521 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5522 implies a mask operation. If the precision is the same size as
5523 the field we're storing into, that mask is redundant. This is
5524 particularly common with bit field assignments generated by the
5525 C front end. */
5526 if (TREE_CODE (exp) == NOP_EXPR)
5528 tree type = TREE_TYPE (exp);
5529 if (INTEGRAL_TYPE_P (type)
5530 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5531 && bitsize == TYPE_PRECISION (type))
5533 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5534 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5535 exp = TREE_OPERAND (exp, 0);
5539 temp = expand_normal (exp);
5541 /* If BITSIZE is narrower than the size of the type of EXP
5542 we will be narrowing TEMP. Normally, what's wanted are the
5543 low-order bits. However, if EXP's type is a record and this is
5544 big-endian machine, we want the upper BITSIZE bits. */
5545 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5546 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5547 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5548 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5549 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5550 - bitsize),
5551 NULL_RTX, 1);
5553 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5554 MODE. */
5555 if (mode != VOIDmode && mode != BLKmode
5556 && mode != TYPE_MODE (TREE_TYPE (exp)))
5557 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5559 /* If the modes of TARGET and TEMP are both BLKmode, both
5560 must be in memory and BITPOS must be aligned on a byte
5561 boundary. If so, we simply do a block copy. */
5562 if (GET_MODE (target) == BLKmode && GET_MODE (temp) == BLKmode)
5564 gcc_assert (MEM_P (target) && MEM_P (temp)
5565 && !(bitpos % BITS_PER_UNIT));
5567 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5568 emit_block_move (target, temp,
5569 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5570 / BITS_PER_UNIT),
5571 BLOCK_OP_NORMAL);
5573 return const0_rtx;
5576 /* Store the value in the bitfield. */
5577 store_bit_field (target, bitsize, bitpos, mode, temp);
5579 return const0_rtx;
5581 else
5583 /* Now build a reference to just the desired component. */
5584 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5586 if (to_rtx == target)
5587 to_rtx = copy_rtx (to_rtx);
5589 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5590 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5591 set_mem_alias_set (to_rtx, alias_set);
5593 return store_expr (exp, to_rtx, 0);
5597 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5598 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5599 codes and find the ultimate containing object, which we return.
5601 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5602 bit position, and *PUNSIGNEDP to the signedness of the field.
5603 If the position of the field is variable, we store a tree
5604 giving the variable offset (in units) in *POFFSET.
5605 This offset is in addition to the bit position.
5606 If the position is not variable, we store 0 in *POFFSET.
5608 If any of the extraction expressions is volatile,
5609 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5611 If the field is a bit-field, *PMODE is set to VOIDmode. Otherwise, it
5612 is a mode that can be used to access the field. In that case, *PBITSIZE
5613 is redundant.
5615 If the field describes a variable-sized object, *PMODE is set to
5616 VOIDmode and *PBITSIZE is set to -1. An access cannot be made in
5617 this case, but the address of the object can be found.
5619 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5620 look through nodes that serve as markers of a greater alignment than
5621 the one that can be deduced from the expression. These nodes make it
5622 possible for front-ends to prevent temporaries from being created by
5623 the middle-end on alignment considerations. For that purpose, the
5624 normal operating mode at high-level is to always pass FALSE so that
5625 the ultimate containing object is really returned; moreover, the
5626 associated predicate handled_component_p will always return TRUE
5627 on these nodes, thus indicating that they are essentially handled
5628 by get_inner_reference. TRUE should only be passed when the caller
5629 is scanning the expression in order to build another representation
5630 and specifically knows how to handle these nodes; as such, this is
5631 the normal operating mode in the RTL expanders. */
5633 tree
5634 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5635 HOST_WIDE_INT *pbitpos, tree *poffset,
5636 enum machine_mode *pmode, int *punsignedp,
5637 int *pvolatilep, bool keep_aligning)
5639 tree size_tree = 0;
5640 enum machine_mode mode = VOIDmode;
5641 tree offset = size_zero_node;
5642 tree bit_offset = bitsize_zero_node;
5643 tree tem;
5645 /* First get the mode, signedness, and size. We do this from just the
5646 outermost expression. */
5647 if (TREE_CODE (exp) == COMPONENT_REF)
5649 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
5650 if (! DECL_BIT_FIELD (TREE_OPERAND (exp, 1)))
5651 mode = DECL_MODE (TREE_OPERAND (exp, 1));
5653 *punsignedp = DECL_UNSIGNED (TREE_OPERAND (exp, 1));
5655 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5657 size_tree = TREE_OPERAND (exp, 1);
5658 *punsignedp = BIT_FIELD_REF_UNSIGNED (exp);
5660 else
5662 mode = TYPE_MODE (TREE_TYPE (exp));
5663 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5665 if (mode == BLKmode)
5666 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5667 else
5668 *pbitsize = GET_MODE_BITSIZE (mode);
5671 if (size_tree != 0)
5673 if (! host_integerp (size_tree, 1))
5674 mode = BLKmode, *pbitsize = -1;
5675 else
5676 *pbitsize = tree_low_cst (size_tree, 1);
5679 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5680 and find the ultimate containing object. */
5681 while (1)
5683 switch (TREE_CODE (exp))
5685 case BIT_FIELD_REF:
5686 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5687 TREE_OPERAND (exp, 2));
5688 break;
5690 case COMPONENT_REF:
5692 tree field = TREE_OPERAND (exp, 1);
5693 tree this_offset = component_ref_field_offset (exp);
5695 /* If this field hasn't been filled in yet, don't go past it.
5696 This should only happen when folding expressions made during
5697 type construction. */
5698 if (this_offset == 0)
5699 break;
5701 offset = size_binop (PLUS_EXPR, offset, this_offset);
5702 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5703 DECL_FIELD_BIT_OFFSET (field));
5705 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5707 break;
5709 case ARRAY_REF:
5710 case ARRAY_RANGE_REF:
5712 tree index = TREE_OPERAND (exp, 1);
5713 tree low_bound = array_ref_low_bound (exp);
5714 tree unit_size = array_ref_element_size (exp);
5716 /* We assume all arrays have sizes that are a multiple of a byte.
5717 First subtract the lower bound, if any, in the type of the
5718 index, then convert to sizetype and multiply by the size of
5719 the array element. */
5720 if (! integer_zerop (low_bound))
5721 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
5722 index, low_bound);
5724 offset = size_binop (PLUS_EXPR, offset,
5725 size_binop (MULT_EXPR,
5726 fold_convert (sizetype, index),
5727 unit_size));
5729 break;
5731 case REALPART_EXPR:
5732 break;
5734 case IMAGPART_EXPR:
5735 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5736 bitsize_int (*pbitsize));
5737 break;
5739 case VIEW_CONVERT_EXPR:
5740 if (keep_aligning && STRICT_ALIGNMENT
5741 && (TYPE_ALIGN (TREE_TYPE (exp))
5742 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
5743 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
5744 < BIGGEST_ALIGNMENT)
5745 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
5746 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
5747 goto done;
5748 break;
5750 default:
5751 goto done;
5754 /* If any reference in the chain is volatile, the effect is volatile. */
5755 if (TREE_THIS_VOLATILE (exp))
5756 *pvolatilep = 1;
5758 exp = TREE_OPERAND (exp, 0);
5760 done:
5762 /* If OFFSET is constant, see if we can return the whole thing as a
5763 constant bit position. Otherwise, split it up. */
5764 if (host_integerp (offset, 0)
5765 && 0 != (tem = size_binop (MULT_EXPR,
5766 fold_convert (bitsizetype, offset),
5767 bitsize_unit_node))
5768 && 0 != (tem = size_binop (PLUS_EXPR, tem, bit_offset))
5769 && host_integerp (tem, 0))
5770 *pbitpos = tree_low_cst (tem, 0), *poffset = 0;
5771 else
5772 *pbitpos = tree_low_cst (bit_offset, 0), *poffset = offset;
5774 *pmode = mode;
5775 return exp;
5778 /* Return a tree of sizetype representing the size, in bytes, of the element
5779 of EXP, an ARRAY_REF. */
5781 tree
5782 array_ref_element_size (tree exp)
5784 tree aligned_size = TREE_OPERAND (exp, 3);
5785 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
5787 /* If a size was specified in the ARRAY_REF, it's the size measured
5788 in alignment units of the element type. So multiply by that value. */
5789 if (aligned_size)
5791 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5792 sizetype from another type of the same width and signedness. */
5793 if (TREE_TYPE (aligned_size) != sizetype)
5794 aligned_size = fold_convert (sizetype, aligned_size);
5795 return size_binop (MULT_EXPR, aligned_size,
5796 size_int (TYPE_ALIGN_UNIT (elmt_type)));
5799 /* Otherwise, take the size from that of the element type. Substitute
5800 any PLACEHOLDER_EXPR that we have. */
5801 else
5802 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
5805 /* Return a tree representing the lower bound of the array mentioned in
5806 EXP, an ARRAY_REF. */
5808 tree
5809 array_ref_low_bound (tree exp)
5811 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5813 /* If a lower bound is specified in EXP, use it. */
5814 if (TREE_OPERAND (exp, 2))
5815 return TREE_OPERAND (exp, 2);
5817 /* Otherwise, if there is a domain type and it has a lower bound, use it,
5818 substituting for a PLACEHOLDER_EXPR as needed. */
5819 if (domain_type && TYPE_MIN_VALUE (domain_type))
5820 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
5822 /* Otherwise, return a zero of the appropriate type. */
5823 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
5826 /* Return a tree representing the upper bound of the array mentioned in
5827 EXP, an ARRAY_REF. */
5829 tree
5830 array_ref_up_bound (tree exp)
5832 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
5834 /* If there is a domain type and it has an upper bound, use it, substituting
5835 for a PLACEHOLDER_EXPR as needed. */
5836 if (domain_type && TYPE_MAX_VALUE (domain_type))
5837 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
5839 /* Otherwise fail. */
5840 return NULL_TREE;
5843 /* Return a tree representing the offset, in bytes, of the field referenced
5844 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
5846 tree
5847 component_ref_field_offset (tree exp)
5849 tree aligned_offset = TREE_OPERAND (exp, 2);
5850 tree field = TREE_OPERAND (exp, 1);
5852 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
5853 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
5854 value. */
5855 if (aligned_offset)
5857 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
5858 sizetype from another type of the same width and signedness. */
5859 if (TREE_TYPE (aligned_offset) != sizetype)
5860 aligned_offset = fold_convert (sizetype, aligned_offset);
5861 return size_binop (MULT_EXPR, aligned_offset,
5862 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
5865 /* Otherwise, take the offset from that of the field. Substitute
5866 any PLACEHOLDER_EXPR that we have. */
5867 else
5868 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
5871 /* Return 1 if T is an expression that get_inner_reference handles. */
5874 handled_component_p (tree t)
5876 switch (TREE_CODE (t))
5878 case BIT_FIELD_REF:
5879 case COMPONENT_REF:
5880 case ARRAY_REF:
5881 case ARRAY_RANGE_REF:
5882 case VIEW_CONVERT_EXPR:
5883 case REALPART_EXPR:
5884 case IMAGPART_EXPR:
5885 return 1;
5887 default:
5888 return 0;
5892 /* Given an rtx VALUE that may contain additions and multiplications, return
5893 an equivalent value that just refers to a register, memory, or constant.
5894 This is done by generating instructions to perform the arithmetic and
5895 returning a pseudo-register containing the value.
5897 The returned value may be a REG, SUBREG, MEM or constant. */
5900 force_operand (rtx value, rtx target)
5902 rtx op1, op2;
5903 /* Use subtarget as the target for operand 0 of a binary operation. */
5904 rtx subtarget = get_subtarget (target);
5905 enum rtx_code code = GET_CODE (value);
5907 /* Check for subreg applied to an expression produced by loop optimizer. */
5908 if (code == SUBREG
5909 && !REG_P (SUBREG_REG (value))
5910 && !MEM_P (SUBREG_REG (value)))
5912 value = simplify_gen_subreg (GET_MODE (value),
5913 force_reg (GET_MODE (SUBREG_REG (value)),
5914 force_operand (SUBREG_REG (value),
5915 NULL_RTX)),
5916 GET_MODE (SUBREG_REG (value)),
5917 SUBREG_BYTE (value));
5918 code = GET_CODE (value);
5921 /* Check for a PIC address load. */
5922 if ((code == PLUS || code == MINUS)
5923 && XEXP (value, 0) == pic_offset_table_rtx
5924 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
5925 || GET_CODE (XEXP (value, 1)) == LABEL_REF
5926 || GET_CODE (XEXP (value, 1)) == CONST))
5928 if (!subtarget)
5929 subtarget = gen_reg_rtx (GET_MODE (value));
5930 emit_move_insn (subtarget, value);
5931 return subtarget;
5934 if (ARITHMETIC_P (value))
5936 op2 = XEXP (value, 1);
5937 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
5938 subtarget = 0;
5939 if (code == MINUS && GET_CODE (op2) == CONST_INT)
5941 code = PLUS;
5942 op2 = negate_rtx (GET_MODE (value), op2);
5945 /* Check for an addition with OP2 a constant integer and our first
5946 operand a PLUS of a virtual register and something else. In that
5947 case, we want to emit the sum of the virtual register and the
5948 constant first and then add the other value. This allows virtual
5949 register instantiation to simply modify the constant rather than
5950 creating another one around this addition. */
5951 if (code == PLUS && GET_CODE (op2) == CONST_INT
5952 && GET_CODE (XEXP (value, 0)) == PLUS
5953 && REG_P (XEXP (XEXP (value, 0), 0))
5954 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
5955 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
5957 rtx temp = expand_simple_binop (GET_MODE (value), code,
5958 XEXP (XEXP (value, 0), 0), op2,
5959 subtarget, 0, OPTAB_LIB_WIDEN);
5960 return expand_simple_binop (GET_MODE (value), code, temp,
5961 force_operand (XEXP (XEXP (value,
5962 0), 1), 0),
5963 target, 0, OPTAB_LIB_WIDEN);
5966 op1 = force_operand (XEXP (value, 0), subtarget);
5967 op2 = force_operand (op2, NULL_RTX);
5968 switch (code)
5970 case MULT:
5971 return expand_mult (GET_MODE (value), op1, op2, target, 1);
5972 case DIV:
5973 if (!INTEGRAL_MODE_P (GET_MODE (value)))
5974 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5975 target, 1, OPTAB_LIB_WIDEN);
5976 else
5977 return expand_divmod (0,
5978 FLOAT_MODE_P (GET_MODE (value))
5979 ? RDIV_EXPR : TRUNC_DIV_EXPR,
5980 GET_MODE (value), op1, op2, target, 0);
5981 break;
5982 case MOD:
5983 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5984 target, 0);
5985 break;
5986 case UDIV:
5987 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
5988 target, 1);
5989 break;
5990 case UMOD:
5991 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
5992 target, 1);
5993 break;
5994 case ASHIFTRT:
5995 return expand_simple_binop (GET_MODE (value), code, op1, op2,
5996 target, 0, OPTAB_LIB_WIDEN);
5997 break;
5998 default:
5999 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6000 target, 1, OPTAB_LIB_WIDEN);
6003 if (UNARY_P (value))
6005 if (!target)
6006 target = gen_reg_rtx (GET_MODE (value));
6007 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6008 switch (code)
6010 case ZERO_EXTEND:
6011 case SIGN_EXTEND:
6012 case TRUNCATE:
6013 convert_move (target, op1, code == ZERO_EXTEND);
6014 return target;
6016 case FIX:
6017 case UNSIGNED_FIX:
6018 expand_fix (target, op1, code == UNSIGNED_FIX);
6019 return target;
6021 case FLOAT:
6022 case UNSIGNED_FLOAT:
6023 expand_float (target, op1, code == UNSIGNED_FLOAT);
6024 return target;
6026 default:
6027 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6031 #ifdef INSN_SCHEDULING
6032 /* On machines that have insn scheduling, we want all memory reference to be
6033 explicit, so we need to deal with such paradoxical SUBREGs. */
6034 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6035 && (GET_MODE_SIZE (GET_MODE (value))
6036 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6037 value
6038 = simplify_gen_subreg (GET_MODE (value),
6039 force_reg (GET_MODE (SUBREG_REG (value)),
6040 force_operand (SUBREG_REG (value),
6041 NULL_RTX)),
6042 GET_MODE (SUBREG_REG (value)),
6043 SUBREG_BYTE (value));
6044 #endif
6046 return value;
6049 /* Subroutine of expand_expr: return nonzero iff there is no way that
6050 EXP can reference X, which is being modified. TOP_P is nonzero if this
6051 call is going to be used to determine whether we need a temporary
6052 for EXP, as opposed to a recursive call to this function.
6054 It is always safe for this routine to return zero since it merely
6055 searches for optimization opportunities. */
6058 safe_from_p (rtx x, tree exp, int top_p)
6060 rtx exp_rtl = 0;
6061 int i, nops;
6063 if (x == 0
6064 /* If EXP has varying size, we MUST use a target since we currently
6065 have no way of allocating temporaries of variable size
6066 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6067 So we assume here that something at a higher level has prevented a
6068 clash. This is somewhat bogus, but the best we can do. Only
6069 do this when X is BLKmode and when we are at the top level. */
6070 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6071 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6072 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6073 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6074 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6075 != INTEGER_CST)
6076 && GET_MODE (x) == BLKmode)
6077 /* If X is in the outgoing argument area, it is always safe. */
6078 || (MEM_P (x)
6079 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6080 || (GET_CODE (XEXP (x, 0)) == PLUS
6081 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6082 return 1;
6084 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6085 find the underlying pseudo. */
6086 if (GET_CODE (x) == SUBREG)
6088 x = SUBREG_REG (x);
6089 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6090 return 0;
6093 /* Now look at our tree code and possibly recurse. */
6094 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6096 case tcc_declaration:
6097 exp_rtl = DECL_RTL_IF_SET (exp);
6098 break;
6100 case tcc_constant:
6101 return 1;
6103 case tcc_exceptional:
6104 if (TREE_CODE (exp) == TREE_LIST)
6106 while (1)
6108 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6109 return 0;
6110 exp = TREE_CHAIN (exp);
6111 if (!exp)
6112 return 1;
6113 if (TREE_CODE (exp) != TREE_LIST)
6114 return safe_from_p (x, exp, 0);
6117 else if (TREE_CODE (exp) == CONSTRUCTOR)
6119 constructor_elt *ce;
6120 unsigned HOST_WIDE_INT idx;
6122 for (idx = 0;
6123 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6124 idx++)
6125 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6126 || !safe_from_p (x, ce->value, 0))
6127 return 0;
6128 return 1;
6130 else if (TREE_CODE (exp) == ERROR_MARK)
6131 return 1; /* An already-visited SAVE_EXPR? */
6132 else
6133 return 0;
6135 case tcc_statement:
6136 /* The only case we look at here is the DECL_INITIAL inside a
6137 DECL_EXPR. */
6138 return (TREE_CODE (exp) != DECL_EXPR
6139 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6140 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6141 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6143 case tcc_binary:
6144 case tcc_comparison:
6145 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6146 return 0;
6147 /* Fall through. */
6149 case tcc_unary:
6150 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6152 case tcc_expression:
6153 case tcc_reference:
6154 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6155 the expression. If it is set, we conflict iff we are that rtx or
6156 both are in memory. Otherwise, we check all operands of the
6157 expression recursively. */
6159 switch (TREE_CODE (exp))
6161 case ADDR_EXPR:
6162 /* If the operand is static or we are static, we can't conflict.
6163 Likewise if we don't conflict with the operand at all. */
6164 if (staticp (TREE_OPERAND (exp, 0))
6165 || TREE_STATIC (exp)
6166 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6167 return 1;
6169 /* Otherwise, the only way this can conflict is if we are taking
6170 the address of a DECL a that address if part of X, which is
6171 very rare. */
6172 exp = TREE_OPERAND (exp, 0);
6173 if (DECL_P (exp))
6175 if (!DECL_RTL_SET_P (exp)
6176 || !MEM_P (DECL_RTL (exp)))
6177 return 0;
6178 else
6179 exp_rtl = XEXP (DECL_RTL (exp), 0);
6181 break;
6183 case MISALIGNED_INDIRECT_REF:
6184 case ALIGN_INDIRECT_REF:
6185 case INDIRECT_REF:
6186 if (MEM_P (x)
6187 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6188 get_alias_set (exp)))
6189 return 0;
6190 break;
6192 case CALL_EXPR:
6193 /* Assume that the call will clobber all hard registers and
6194 all of memory. */
6195 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6196 || MEM_P (x))
6197 return 0;
6198 break;
6200 case WITH_CLEANUP_EXPR:
6201 case CLEANUP_POINT_EXPR:
6202 /* Lowered by gimplify.c. */
6203 gcc_unreachable ();
6205 case SAVE_EXPR:
6206 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6208 default:
6209 break;
6212 /* If we have an rtx, we do not need to scan our operands. */
6213 if (exp_rtl)
6214 break;
6216 nops = TREE_CODE_LENGTH (TREE_CODE (exp));
6217 for (i = 0; i < nops; i++)
6218 if (TREE_OPERAND (exp, i) != 0
6219 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6220 return 0;
6222 /* If this is a language-specific tree code, it may require
6223 special handling. */
6224 if ((unsigned int) TREE_CODE (exp)
6225 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE
6226 && !lang_hooks.safe_from_p (x, exp))
6227 return 0;
6228 break;
6230 case tcc_type:
6231 /* Should never get a type here. */
6232 gcc_unreachable ();
6235 /* If we have an rtl, find any enclosed object. Then see if we conflict
6236 with it. */
6237 if (exp_rtl)
6239 if (GET_CODE (exp_rtl) == SUBREG)
6241 exp_rtl = SUBREG_REG (exp_rtl);
6242 if (REG_P (exp_rtl)
6243 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6244 return 0;
6247 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6248 are memory and they conflict. */
6249 return ! (rtx_equal_p (x, exp_rtl)
6250 || (MEM_P (x) && MEM_P (exp_rtl)
6251 && true_dependence (exp_rtl, VOIDmode, x,
6252 rtx_addr_varies_p)));
6255 /* If we reach here, it is safe. */
6256 return 1;
6260 /* Return the highest power of two that EXP is known to be a multiple of.
6261 This is used in updating alignment of MEMs in array references. */
6263 unsigned HOST_WIDE_INT
6264 highest_pow2_factor (tree exp)
6266 unsigned HOST_WIDE_INT c0, c1;
6268 switch (TREE_CODE (exp))
6270 case INTEGER_CST:
6271 /* We can find the lowest bit that's a one. If the low
6272 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6273 We need to handle this case since we can find it in a COND_EXPR,
6274 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6275 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6276 later ICE. */
6277 if (TREE_CONSTANT_OVERFLOW (exp))
6278 return BIGGEST_ALIGNMENT;
6279 else
6281 /* Note: tree_low_cst is intentionally not used here,
6282 we don't care about the upper bits. */
6283 c0 = TREE_INT_CST_LOW (exp);
6284 c0 &= -c0;
6285 return c0 ? c0 : BIGGEST_ALIGNMENT;
6287 break;
6289 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6290 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6291 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6292 return MIN (c0, c1);
6294 case MULT_EXPR:
6295 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6296 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6297 return c0 * c1;
6299 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6300 case CEIL_DIV_EXPR:
6301 if (integer_pow2p (TREE_OPERAND (exp, 1))
6302 && host_integerp (TREE_OPERAND (exp, 1), 1))
6304 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6305 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6306 return MAX (1, c0 / c1);
6308 break;
6310 case NON_LVALUE_EXPR: case NOP_EXPR: case CONVERT_EXPR:
6311 case SAVE_EXPR:
6312 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6314 case COMPOUND_EXPR:
6315 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6317 case COND_EXPR:
6318 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6319 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6320 return MIN (c0, c1);
6322 default:
6323 break;
6326 return 1;
6329 /* Similar, except that the alignment requirements of TARGET are
6330 taken into account. Assume it is at least as aligned as its
6331 type, unless it is a COMPONENT_REF in which case the layout of
6332 the structure gives the alignment. */
6334 static unsigned HOST_WIDE_INT
6335 highest_pow2_factor_for_target (tree target, tree exp)
6337 unsigned HOST_WIDE_INT target_align, factor;
6339 factor = highest_pow2_factor (exp);
6340 if (TREE_CODE (target) == COMPONENT_REF)
6341 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6342 else
6343 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6344 return MAX (factor, target_align);
6347 /* Expands variable VAR. */
6349 void
6350 expand_var (tree var)
6352 if (DECL_EXTERNAL (var))
6353 return;
6355 if (TREE_STATIC (var))
6356 /* If this is an inlined copy of a static local variable,
6357 look up the original decl. */
6358 var = DECL_ORIGIN (var);
6360 if (TREE_STATIC (var)
6361 ? !TREE_ASM_WRITTEN (var)
6362 : !DECL_RTL_SET_P (var))
6364 if (TREE_CODE (var) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (var))
6365 /* Should be ignored. */;
6366 else if (lang_hooks.expand_decl (var))
6367 /* OK. */;
6368 else if (TREE_CODE (var) == VAR_DECL && !TREE_STATIC (var))
6369 expand_decl (var);
6370 else if (TREE_CODE (var) == VAR_DECL && TREE_STATIC (var))
6371 rest_of_decl_compilation (var, 0, 0);
6372 else
6373 /* No expansion needed. */
6374 gcc_assert (TREE_CODE (var) == TYPE_DECL
6375 || TREE_CODE (var) == CONST_DECL
6376 || TREE_CODE (var) == FUNCTION_DECL
6377 || TREE_CODE (var) == LABEL_DECL);
6381 /* Subroutine of expand_expr. Expand the two operands of a binary
6382 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6383 The value may be stored in TARGET if TARGET is nonzero. The
6384 MODIFIER argument is as documented by expand_expr. */
6386 static void
6387 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6388 enum expand_modifier modifier)
6390 if (! safe_from_p (target, exp1, 1))
6391 target = 0;
6392 if (operand_equal_p (exp0, exp1, 0))
6394 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6395 *op1 = copy_rtx (*op0);
6397 else
6399 /* If we need to preserve evaluation order, copy exp0 into its own
6400 temporary variable so that it can't be clobbered by exp1. */
6401 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6402 exp0 = save_expr (exp0);
6403 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6404 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6409 /* Return a MEM that contains constant EXP. DEFER is as for
6410 output_constant_def and MODIFIER is as for expand_expr. */
6412 static rtx
6413 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6415 rtx mem;
6417 mem = output_constant_def (exp, defer);
6418 if (modifier != EXPAND_INITIALIZER)
6419 mem = use_anchored_address (mem);
6420 return mem;
6423 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6424 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6426 static rtx
6427 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6428 enum expand_modifier modifier)
6430 rtx result, subtarget;
6431 tree inner, offset;
6432 HOST_WIDE_INT bitsize, bitpos;
6433 int volatilep, unsignedp;
6434 enum machine_mode mode1;
6436 /* If we are taking the address of a constant and are at the top level,
6437 we have to use output_constant_def since we can't call force_const_mem
6438 at top level. */
6439 /* ??? This should be considered a front-end bug. We should not be
6440 generating ADDR_EXPR of something that isn't an LVALUE. The only
6441 exception here is STRING_CST. */
6442 if (TREE_CODE (exp) == CONSTRUCTOR
6443 || CONSTANT_CLASS_P (exp))
6444 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6446 /* Everything must be something allowed by is_gimple_addressable. */
6447 switch (TREE_CODE (exp))
6449 case INDIRECT_REF:
6450 /* This case will happen via recursion for &a->b. */
6451 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6453 case CONST_DECL:
6454 /* Recurse and make the output_constant_def clause above handle this. */
6455 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6456 tmode, modifier);
6458 case REALPART_EXPR:
6459 /* The real part of the complex number is always first, therefore
6460 the address is the same as the address of the parent object. */
6461 offset = 0;
6462 bitpos = 0;
6463 inner = TREE_OPERAND (exp, 0);
6464 break;
6466 case IMAGPART_EXPR:
6467 /* The imaginary part of the complex number is always second.
6468 The expression is therefore always offset by the size of the
6469 scalar type. */
6470 offset = 0;
6471 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6472 inner = TREE_OPERAND (exp, 0);
6473 break;
6475 default:
6476 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6477 expand_expr, as that can have various side effects; LABEL_DECLs for
6478 example, may not have their DECL_RTL set yet. Assume language
6479 specific tree nodes can be expanded in some interesting way. */
6480 if (DECL_P (exp)
6481 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6483 result = expand_expr (exp, target, tmode,
6484 modifier == EXPAND_INITIALIZER
6485 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6487 /* If the DECL isn't in memory, then the DECL wasn't properly
6488 marked TREE_ADDRESSABLE, which will be either a front-end
6489 or a tree optimizer bug. */
6490 gcc_assert (MEM_P (result));
6491 result = XEXP (result, 0);
6493 /* ??? Is this needed anymore? */
6494 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6496 assemble_external (exp);
6497 TREE_USED (exp) = 1;
6500 if (modifier != EXPAND_INITIALIZER
6501 && modifier != EXPAND_CONST_ADDRESS)
6502 result = force_operand (result, target);
6503 return result;
6506 /* Pass FALSE as the last argument to get_inner_reference although
6507 we are expanding to RTL. The rationale is that we know how to
6508 handle "aligning nodes" here: we can just bypass them because
6509 they won't change the final object whose address will be returned
6510 (they actually exist only for that purpose). */
6511 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6512 &mode1, &unsignedp, &volatilep, false);
6513 break;
6516 /* We must have made progress. */
6517 gcc_assert (inner != exp);
6519 subtarget = offset || bitpos ? NULL_RTX : target;
6520 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6522 if (offset)
6524 rtx tmp;
6526 if (modifier != EXPAND_NORMAL)
6527 result = force_operand (result, NULL);
6528 tmp = expand_expr (offset, NULL, tmode, EXPAND_NORMAL);
6530 result = convert_memory_address (tmode, result);
6531 tmp = convert_memory_address (tmode, tmp);
6533 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6534 result = gen_rtx_PLUS (tmode, result, tmp);
6535 else
6537 subtarget = bitpos ? NULL_RTX : target;
6538 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6539 1, OPTAB_LIB_WIDEN);
6543 if (bitpos)
6545 /* Someone beforehand should have rejected taking the address
6546 of such an object. */
6547 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6549 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6550 if (modifier < EXPAND_SUM)
6551 result = force_operand (result, target);
6554 return result;
6557 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6558 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6560 static rtx
6561 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6562 enum expand_modifier modifier)
6564 enum machine_mode rmode;
6565 rtx result;
6567 /* Target mode of VOIDmode says "whatever's natural". */
6568 if (tmode == VOIDmode)
6569 tmode = TYPE_MODE (TREE_TYPE (exp));
6571 /* We can get called with some Weird Things if the user does silliness
6572 like "(short) &a". In that case, convert_memory_address won't do
6573 the right thing, so ignore the given target mode. */
6574 if (tmode != Pmode && tmode != ptr_mode)
6575 tmode = Pmode;
6577 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6578 tmode, modifier);
6580 /* Despite expand_expr claims concerning ignoring TMODE when not
6581 strictly convenient, stuff breaks if we don't honor it. Note
6582 that combined with the above, we only do this for pointer modes. */
6583 rmode = GET_MODE (result);
6584 if (rmode == VOIDmode)
6585 rmode = tmode;
6586 if (rmode != tmode)
6587 result = convert_memory_address (tmode, result);
6589 return result;
6593 /* expand_expr: generate code for computing expression EXP.
6594 An rtx for the computed value is returned. The value is never null.
6595 In the case of a void EXP, const0_rtx is returned.
6597 The value may be stored in TARGET if TARGET is nonzero.
6598 TARGET is just a suggestion; callers must assume that
6599 the rtx returned may not be the same as TARGET.
6601 If TARGET is CONST0_RTX, it means that the value will be ignored.
6603 If TMODE is not VOIDmode, it suggests generating the
6604 result in mode TMODE. But this is done only when convenient.
6605 Otherwise, TMODE is ignored and the value generated in its natural mode.
6606 TMODE is just a suggestion; callers must assume that
6607 the rtx returned may not have mode TMODE.
6609 Note that TARGET may have neither TMODE nor MODE. In that case, it
6610 probably will not be used.
6612 If MODIFIER is EXPAND_SUM then when EXP is an addition
6613 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
6614 or a nest of (PLUS ...) and (MINUS ...) where the terms are
6615 products as above, or REG or MEM, or constant.
6616 Ordinarily in such cases we would output mul or add instructions
6617 and then return a pseudo reg containing the sum.
6619 EXPAND_INITIALIZER is much like EXPAND_SUM except that
6620 it also marks a label as absolutely required (it can't be dead).
6621 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
6622 This is used for outputting expressions used in initializers.
6624 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
6625 with a constant address even if that address is not normally legitimate.
6626 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
6628 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
6629 a call parameter. Such targets require special care as we haven't yet
6630 marked TARGET so that it's safe from being trashed by libcalls. We
6631 don't want to use TARGET for anything but the final result;
6632 Intermediate values must go elsewhere. Additionally, calls to
6633 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
6635 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
6636 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
6637 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
6638 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
6639 recursively. */
6641 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
6642 enum expand_modifier, rtx *);
6645 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
6646 enum expand_modifier modifier, rtx *alt_rtl)
6648 int rn = -1;
6649 rtx ret, last = NULL;
6651 /* Handle ERROR_MARK before anybody tries to access its type. */
6652 if (TREE_CODE (exp) == ERROR_MARK
6653 || TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK)
6655 ret = CONST0_RTX (tmode);
6656 return ret ? ret : const0_rtx;
6659 if (flag_non_call_exceptions)
6661 rn = lookup_stmt_eh_region (exp);
6662 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
6663 if (rn >= 0)
6664 last = get_last_insn ();
6667 /* If this is an expression of some kind and it has an associated line
6668 number, then emit the line number before expanding the expression.
6670 We need to save and restore the file and line information so that
6671 errors discovered during expansion are emitted with the right
6672 information. It would be better of the diagnostic routines
6673 used the file/line information embedded in the tree nodes rather
6674 than globals. */
6675 if (cfun && cfun->ib_boundaries_block && EXPR_HAS_LOCATION (exp))
6677 location_t saved_location = input_location;
6678 input_location = EXPR_LOCATION (exp);
6679 emit_line_note (input_location);
6681 /* Record where the insns produced belong. */
6682 record_block_change (TREE_BLOCK (exp));
6684 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6686 input_location = saved_location;
6688 else
6690 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
6693 /* If using non-call exceptions, mark all insns that may trap.
6694 expand_call() will mark CALL_INSNs before we get to this code,
6695 but it doesn't handle libcalls, and these may trap. */
6696 if (rn >= 0)
6698 rtx insn;
6699 for (insn = next_real_insn (last); insn;
6700 insn = next_real_insn (insn))
6702 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
6703 /* If we want exceptions for non-call insns, any
6704 may_trap_p instruction may throw. */
6705 && GET_CODE (PATTERN (insn)) != CLOBBER
6706 && GET_CODE (PATTERN (insn)) != USE
6707 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
6709 REG_NOTES (insn) = alloc_EXPR_LIST (REG_EH_REGION, GEN_INT (rn),
6710 REG_NOTES (insn));
6715 return ret;
6718 static rtx
6719 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
6720 enum expand_modifier modifier, rtx *alt_rtl)
6722 rtx op0, op1, temp, decl_rtl;
6723 tree type = TREE_TYPE (exp);
6724 int unsignedp;
6725 enum machine_mode mode;
6726 enum tree_code code = TREE_CODE (exp);
6727 optab this_optab;
6728 rtx subtarget, original_target;
6729 int ignore;
6730 tree context, subexp0, subexp1;
6731 bool reduce_bit_field = false;
6732 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field && !ignore \
6733 ? reduce_to_bit_field_precision ((expr), \
6734 target, \
6735 type) \
6736 : (expr))
6738 mode = TYPE_MODE (type);
6739 unsignedp = TYPE_UNSIGNED (type);
6740 if (lang_hooks.reduce_bit_field_operations
6741 && TREE_CODE (type) == INTEGER_TYPE
6742 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type))
6744 /* An operation in what may be a bit-field type needs the
6745 result to be reduced to the precision of the bit-field type,
6746 which is narrower than that of the type's mode. */
6747 reduce_bit_field = true;
6748 if (modifier == EXPAND_STACK_PARM)
6749 target = 0;
6752 /* Use subtarget as the target for operand 0 of a binary operation. */
6753 subtarget = get_subtarget (target);
6754 original_target = target;
6755 ignore = (target == const0_rtx
6756 || ((code == NON_LVALUE_EXPR || code == NOP_EXPR
6757 || code == CONVERT_EXPR || code == COND_EXPR
6758 || code == VIEW_CONVERT_EXPR)
6759 && TREE_CODE (type) == VOID_TYPE));
6761 /* If we are going to ignore this result, we need only do something
6762 if there is a side-effect somewhere in the expression. If there
6763 is, short-circuit the most common cases here. Note that we must
6764 not call expand_expr with anything but const0_rtx in case this
6765 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
6767 if (ignore)
6769 if (! TREE_SIDE_EFFECTS (exp))
6770 return const0_rtx;
6772 /* Ensure we reference a volatile object even if value is ignored, but
6773 don't do this if all we are doing is taking its address. */
6774 if (TREE_THIS_VOLATILE (exp)
6775 && TREE_CODE (exp) != FUNCTION_DECL
6776 && mode != VOIDmode && mode != BLKmode
6777 && modifier != EXPAND_CONST_ADDRESS)
6779 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
6780 if (MEM_P (temp))
6781 temp = copy_to_reg (temp);
6782 return const0_rtx;
6785 if (TREE_CODE_CLASS (code) == tcc_unary
6786 || code == COMPONENT_REF || code == INDIRECT_REF)
6787 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
6788 modifier);
6790 else if (TREE_CODE_CLASS (code) == tcc_binary
6791 || TREE_CODE_CLASS (code) == tcc_comparison
6792 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
6794 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6795 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6796 return const0_rtx;
6798 else if (code == BIT_FIELD_REF)
6800 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
6801 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
6802 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
6803 return const0_rtx;
6806 target = 0;
6810 switch (code)
6812 case LABEL_DECL:
6814 tree function = decl_function_context (exp);
6816 temp = label_rtx (exp);
6817 temp = gen_rtx_LABEL_REF (Pmode, temp);
6819 if (function != current_function_decl
6820 && function != 0)
6821 LABEL_REF_NONLOCAL_P (temp) = 1;
6823 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
6824 return temp;
6827 case SSA_NAME:
6828 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
6829 NULL);
6831 case PARM_DECL:
6832 case VAR_DECL:
6833 /* If a static var's type was incomplete when the decl was written,
6834 but the type is complete now, lay out the decl now. */
6835 if (DECL_SIZE (exp) == 0
6836 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
6837 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
6838 layout_decl (exp, 0);
6840 /* ... fall through ... */
6842 case FUNCTION_DECL:
6843 case RESULT_DECL:
6844 decl_rtl = DECL_RTL (exp);
6845 gcc_assert (decl_rtl);
6847 /* Ensure variable marked as used even if it doesn't go through
6848 a parser. If it hasn't be used yet, write out an external
6849 definition. */
6850 if (! TREE_USED (exp))
6852 assemble_external (exp);
6853 TREE_USED (exp) = 1;
6856 /* Show we haven't gotten RTL for this yet. */
6857 temp = 0;
6859 /* Variables inherited from containing functions should have
6860 been lowered by this point. */
6861 context = decl_function_context (exp);
6862 gcc_assert (!context
6863 || context == current_function_decl
6864 || TREE_STATIC (exp)
6865 /* ??? C++ creates functions that are not TREE_STATIC. */
6866 || TREE_CODE (exp) == FUNCTION_DECL);
6868 /* This is the case of an array whose size is to be determined
6869 from its initializer, while the initializer is still being parsed.
6870 See expand_decl. */
6872 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
6873 temp = validize_mem (decl_rtl);
6875 /* If DECL_RTL is memory, we are in the normal case and either
6876 the address is not valid or it is not a register and -fforce-addr
6877 is specified, get the address into a register. */
6879 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
6881 if (alt_rtl)
6882 *alt_rtl = decl_rtl;
6883 decl_rtl = use_anchored_address (decl_rtl);
6884 if (modifier != EXPAND_CONST_ADDRESS
6885 && modifier != EXPAND_SUM
6886 && (!memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0))
6887 || (flag_force_addr && !REG_P (XEXP (decl_rtl, 0)))))
6888 temp = replace_equiv_address (decl_rtl,
6889 copy_rtx (XEXP (decl_rtl, 0)));
6892 /* If we got something, return it. But first, set the alignment
6893 if the address is a register. */
6894 if (temp != 0)
6896 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
6897 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
6899 return temp;
6902 /* If the mode of DECL_RTL does not match that of the decl, it
6903 must be a promoted value. We return a SUBREG of the wanted mode,
6904 but mark it so that we know that it was already extended. */
6906 if (REG_P (decl_rtl)
6907 && GET_MODE (decl_rtl) != DECL_MODE (exp))
6909 enum machine_mode pmode;
6911 /* Get the signedness used for this variable. Ensure we get the
6912 same mode we got when the variable was declared. */
6913 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
6914 (TREE_CODE (exp) == RESULT_DECL
6915 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
6916 gcc_assert (GET_MODE (decl_rtl) == pmode);
6918 temp = gen_lowpart_SUBREG (mode, decl_rtl);
6919 SUBREG_PROMOTED_VAR_P (temp) = 1;
6920 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
6921 return temp;
6924 return decl_rtl;
6926 case INTEGER_CST:
6927 temp = immed_double_const (TREE_INT_CST_LOW (exp),
6928 TREE_INT_CST_HIGH (exp), mode);
6930 /* ??? If overflow is set, fold will have done an incomplete job,
6931 which can result in (plus xx (const_int 0)), which can get
6932 simplified by validate_replace_rtx during virtual register
6933 instantiation, which can result in unrecognizable insns.
6934 Avoid this by forcing all overflows into registers. */
6935 if (TREE_CONSTANT_OVERFLOW (exp)
6936 && modifier != EXPAND_INITIALIZER)
6937 temp = force_reg (mode, temp);
6939 return temp;
6941 case VECTOR_CST:
6942 if (GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_INT
6943 || GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp))) == MODE_VECTOR_FLOAT)
6944 return const_vector_from_tree (exp);
6945 else
6946 return expand_expr (build_constructor_from_list
6947 (TREE_TYPE (exp),
6948 TREE_VECTOR_CST_ELTS (exp)),
6949 ignore ? const0_rtx : target, tmode, modifier);
6951 case CONST_DECL:
6952 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
6954 case REAL_CST:
6955 /* If optimized, generate immediate CONST_DOUBLE
6956 which will be turned into memory by reload if necessary.
6958 We used to force a register so that loop.c could see it. But
6959 this does not allow gen_* patterns to perform optimizations with
6960 the constants. It also produces two insns in cases like "x = 1.0;".
6961 On most machines, floating-point constants are not permitted in
6962 many insns, so we'd end up copying it to a register in any case.
6964 Now, we do the copying in expand_binop, if appropriate. */
6965 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
6966 TYPE_MODE (TREE_TYPE (exp)));
6968 case COMPLEX_CST:
6969 /* Handle evaluating a complex constant in a CONCAT target. */
6970 if (original_target && GET_CODE (original_target) == CONCAT)
6972 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
6973 rtx rtarg, itarg;
6975 rtarg = XEXP (original_target, 0);
6976 itarg = XEXP (original_target, 1);
6978 /* Move the real and imaginary parts separately. */
6979 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, 0);
6980 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, 0);
6982 if (op0 != rtarg)
6983 emit_move_insn (rtarg, op0);
6984 if (op1 != itarg)
6985 emit_move_insn (itarg, op1);
6987 return original_target;
6990 /* ... fall through ... */
6992 case STRING_CST:
6993 temp = expand_expr_constant (exp, 1, modifier);
6995 /* temp contains a constant address.
6996 On RISC machines where a constant address isn't valid,
6997 make some insns to get that address into a register. */
6998 if (modifier != EXPAND_CONST_ADDRESS
6999 && modifier != EXPAND_INITIALIZER
7000 && modifier != EXPAND_SUM
7001 && (! memory_address_p (mode, XEXP (temp, 0))
7002 || flag_force_addr))
7003 return replace_equiv_address (temp,
7004 copy_rtx (XEXP (temp, 0)));
7005 return temp;
7007 case SAVE_EXPR:
7009 tree val = TREE_OPERAND (exp, 0);
7010 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
7012 if (!SAVE_EXPR_RESOLVED_P (exp))
7014 /* We can indeed still hit this case, typically via builtin
7015 expanders calling save_expr immediately before expanding
7016 something. Assume this means that we only have to deal
7017 with non-BLKmode values. */
7018 gcc_assert (GET_MODE (ret) != BLKmode);
7020 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
7021 DECL_ARTIFICIAL (val) = 1;
7022 DECL_IGNORED_P (val) = 1;
7023 TREE_OPERAND (exp, 0) = val;
7024 SAVE_EXPR_RESOLVED_P (exp) = 1;
7026 if (!CONSTANT_P (ret))
7027 ret = copy_to_reg (ret);
7028 SET_DECL_RTL (val, ret);
7031 return ret;
7034 case GOTO_EXPR:
7035 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
7036 expand_goto (TREE_OPERAND (exp, 0));
7037 else
7038 expand_computed_goto (TREE_OPERAND (exp, 0));
7039 return const0_rtx;
7041 case CONSTRUCTOR:
7042 /* If we don't need the result, just ensure we evaluate any
7043 subexpressions. */
7044 if (ignore)
7046 unsigned HOST_WIDE_INT idx;
7047 tree value;
7049 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7050 expand_expr (value, const0_rtx, VOIDmode, 0);
7052 return const0_rtx;
7055 /* Try to avoid creating a temporary at all. This is possible
7056 if all of the initializer is zero.
7057 FIXME: try to handle all [0..255] initializers we can handle
7058 with memset. */
7059 else if (TREE_STATIC (exp)
7060 && !TREE_ADDRESSABLE (exp)
7061 && target != 0 && mode == BLKmode
7062 && all_zeros_p (exp))
7064 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
7065 return target;
7068 /* All elts simple constants => refer to a constant in memory. But
7069 if this is a non-BLKmode mode, let it store a field at a time
7070 since that should make a CONST_INT or CONST_DOUBLE when we
7071 fold. Likewise, if we have a target we can use, it is best to
7072 store directly into the target unless the type is large enough
7073 that memcpy will be used. If we are making an initializer and
7074 all operands are constant, put it in memory as well.
7076 FIXME: Avoid trying to fill vector constructors piece-meal.
7077 Output them with output_constant_def below unless we're sure
7078 they're zeros. This should go away when vector initializers
7079 are treated like VECTOR_CST instead of arrays.
7081 else if ((TREE_STATIC (exp)
7082 && ((mode == BLKmode
7083 && ! (target != 0 && safe_from_p (target, exp, 1)))
7084 || TREE_ADDRESSABLE (exp)
7085 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
7086 && (! MOVE_BY_PIECES_P
7087 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
7088 TYPE_ALIGN (type)))
7089 && ! mostly_zeros_p (exp))))
7090 || ((modifier == EXPAND_INITIALIZER
7091 || modifier == EXPAND_CONST_ADDRESS)
7092 && TREE_CONSTANT (exp)))
7094 rtx constructor = expand_expr_constant (exp, 1, modifier);
7096 if (modifier != EXPAND_CONST_ADDRESS
7097 && modifier != EXPAND_INITIALIZER
7098 && modifier != EXPAND_SUM)
7099 constructor = validize_mem (constructor);
7101 return constructor;
7103 else
7105 /* Handle calls that pass values in multiple non-contiguous
7106 locations. The Irix 6 ABI has examples of this. */
7107 if (target == 0 || ! safe_from_p (target, exp, 1)
7108 || GET_CODE (target) == PARALLEL
7109 || modifier == EXPAND_STACK_PARM)
7110 target
7111 = assign_temp (build_qualified_type (type,
7112 (TYPE_QUALS (type)
7113 | (TREE_READONLY (exp)
7114 * TYPE_QUAL_CONST))),
7115 0, TREE_ADDRESSABLE (exp), 1);
7117 store_constructor (exp, target, 0, int_expr_size (exp));
7118 return target;
7121 case MISALIGNED_INDIRECT_REF:
7122 case ALIGN_INDIRECT_REF:
7123 case INDIRECT_REF:
7125 tree exp1 = TREE_OPERAND (exp, 0);
7127 if (modifier != EXPAND_WRITE)
7129 tree t;
7131 t = fold_read_from_constant_string (exp);
7132 if (t)
7133 return expand_expr (t, target, tmode, modifier);
7136 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7137 op0 = memory_address (mode, op0);
7139 if (code == ALIGN_INDIRECT_REF)
7141 int align = TYPE_ALIGN_UNIT (type);
7142 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7143 op0 = memory_address (mode, op0);
7146 temp = gen_rtx_MEM (mode, op0);
7148 set_mem_attributes (temp, exp, 0);
7150 /* Resolve the misalignment now, so that we don't have to remember
7151 to resolve it later. Of course, this only works for reads. */
7152 /* ??? When we get around to supporting writes, we'll have to handle
7153 this in store_expr directly. The vectorizer isn't generating
7154 those yet, however. */
7155 if (code == MISALIGNED_INDIRECT_REF)
7157 int icode;
7158 rtx reg, insn;
7160 gcc_assert (modifier == EXPAND_NORMAL
7161 || modifier == EXPAND_STACK_PARM);
7163 /* The vectorizer should have already checked the mode. */
7164 icode = movmisalign_optab->handlers[mode].insn_code;
7165 gcc_assert (icode != CODE_FOR_nothing);
7167 /* We've already validated the memory, and we're creating a
7168 new pseudo destination. The predicates really can't fail. */
7169 reg = gen_reg_rtx (mode);
7171 /* Nor can the insn generator. */
7172 insn = GEN_FCN (icode) (reg, temp);
7173 emit_insn (insn);
7175 return reg;
7178 return temp;
7181 case TARGET_MEM_REF:
7183 struct mem_address addr;
7185 get_address_description (exp, &addr);
7186 op0 = addr_for_mem_ref (&addr, true);
7187 op0 = memory_address (mode, op0);
7188 temp = gen_rtx_MEM (mode, op0);
7189 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7191 return temp;
7193 case ARRAY_REF:
7196 tree array = TREE_OPERAND (exp, 0);
7197 tree index = TREE_OPERAND (exp, 1);
7199 /* Fold an expression like: "foo"[2].
7200 This is not done in fold so it won't happen inside &.
7201 Don't fold if this is for wide characters since it's too
7202 difficult to do correctly and this is a very rare case. */
7204 if (modifier != EXPAND_CONST_ADDRESS
7205 && modifier != EXPAND_INITIALIZER
7206 && modifier != EXPAND_MEMORY)
7208 tree t = fold_read_from_constant_string (exp);
7210 if (t)
7211 return expand_expr (t, target, tmode, modifier);
7214 /* If this is a constant index into a constant array,
7215 just get the value from the array. Handle both the cases when
7216 we have an explicit constructor and when our operand is a variable
7217 that was declared const. */
7219 if (modifier != EXPAND_CONST_ADDRESS
7220 && modifier != EXPAND_INITIALIZER
7221 && modifier != EXPAND_MEMORY
7222 && TREE_CODE (array) == CONSTRUCTOR
7223 && ! TREE_SIDE_EFFECTS (array)
7224 && TREE_CODE (index) == INTEGER_CST)
7226 unsigned HOST_WIDE_INT ix;
7227 tree field, value;
7229 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7230 field, value)
7231 if (tree_int_cst_equal (field, index))
7233 if (!TREE_SIDE_EFFECTS (value))
7234 return expand_expr (fold (value), target, tmode, modifier);
7235 break;
7239 else if (optimize >= 1
7240 && modifier != EXPAND_CONST_ADDRESS
7241 && modifier != EXPAND_INITIALIZER
7242 && modifier != EXPAND_MEMORY
7243 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7244 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7245 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7246 && targetm.binds_local_p (array))
7248 if (TREE_CODE (index) == INTEGER_CST)
7250 tree init = DECL_INITIAL (array);
7252 if (TREE_CODE (init) == CONSTRUCTOR)
7254 unsigned HOST_WIDE_INT ix;
7255 tree field, value;
7257 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7258 field, value)
7259 if (tree_int_cst_equal (field, index))
7261 if (!TREE_SIDE_EFFECTS (value))
7262 return expand_expr (fold (value), target, tmode,
7263 modifier);
7264 break;
7267 else if(TREE_CODE (init) == STRING_CST)
7269 tree index1 = index;
7270 tree low_bound = array_ref_low_bound (exp);
7271 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7273 /* Optimize the special-case of a zero lower bound.
7275 We convert the low_bound to sizetype to avoid some problems
7276 with constant folding. (E.g. suppose the lower bound is 1,
7277 and its mode is QI. Without the conversion,l (ARRAY
7278 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7279 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7281 if (! integer_zerop (low_bound))
7282 index1 = size_diffop (index1, fold_convert (sizetype,
7283 low_bound));
7285 if (0 > compare_tree_int (index1,
7286 TREE_STRING_LENGTH (init)))
7288 tree type = TREE_TYPE (TREE_TYPE (init));
7289 enum machine_mode mode = TYPE_MODE (type);
7291 if (GET_MODE_CLASS (mode) == MODE_INT
7292 && GET_MODE_SIZE (mode) == 1)
7293 return gen_int_mode (TREE_STRING_POINTER (init)
7294 [TREE_INT_CST_LOW (index1)],
7295 mode);
7301 goto normal_inner_ref;
7303 case COMPONENT_REF:
7304 /* If the operand is a CONSTRUCTOR, we can just extract the
7305 appropriate field if it is present. */
7306 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7308 unsigned HOST_WIDE_INT idx;
7309 tree field, value;
7311 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7312 idx, field, value)
7313 if (field == TREE_OPERAND (exp, 1)
7314 /* We can normally use the value of the field in the
7315 CONSTRUCTOR. However, if this is a bitfield in
7316 an integral mode that we can fit in a HOST_WIDE_INT,
7317 we must mask only the number of bits in the bitfield,
7318 since this is done implicitly by the constructor. If
7319 the bitfield does not meet either of those conditions,
7320 we can't do this optimization. */
7321 && (! DECL_BIT_FIELD (field)
7322 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7323 && (GET_MODE_BITSIZE (DECL_MODE (field))
7324 <= HOST_BITS_PER_WIDE_INT))))
7326 if (DECL_BIT_FIELD (field)
7327 && modifier == EXPAND_STACK_PARM)
7328 target = 0;
7329 op0 = expand_expr (value, target, tmode, modifier);
7330 if (DECL_BIT_FIELD (field))
7332 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7333 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7335 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7337 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7338 op0 = expand_and (imode, op0, op1, target);
7340 else
7342 tree count
7343 = build_int_cst (NULL_TREE,
7344 GET_MODE_BITSIZE (imode) - bitsize);
7346 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7347 target, 0);
7348 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7349 target, 0);
7353 return op0;
7356 goto normal_inner_ref;
7358 case BIT_FIELD_REF:
7359 case ARRAY_RANGE_REF:
7360 normal_inner_ref:
7362 enum machine_mode mode1;
7363 HOST_WIDE_INT bitsize, bitpos;
7364 tree offset;
7365 int volatilep = 0;
7366 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7367 &mode1, &unsignedp, &volatilep, true);
7368 rtx orig_op0;
7370 /* If we got back the original object, something is wrong. Perhaps
7371 we are evaluating an expression too early. In any event, don't
7372 infinitely recurse. */
7373 gcc_assert (tem != exp);
7375 /* If TEM's type is a union of variable size, pass TARGET to the inner
7376 computation, since it will need a temporary and TARGET is known
7377 to have to do. This occurs in unchecked conversion in Ada. */
7379 orig_op0 = op0
7380 = expand_expr (tem,
7381 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7382 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7383 != INTEGER_CST)
7384 && modifier != EXPAND_STACK_PARM
7385 ? target : NULL_RTX),
7386 VOIDmode,
7387 (modifier == EXPAND_INITIALIZER
7388 || modifier == EXPAND_CONST_ADDRESS
7389 || modifier == EXPAND_STACK_PARM)
7390 ? modifier : EXPAND_NORMAL);
7392 /* If this is a constant, put it into a register if it is a legitimate
7393 constant, OFFSET is 0, and we won't try to extract outside the
7394 register (in case we were passed a partially uninitialized object
7395 or a view_conversion to a larger size). Force the constant to
7396 memory otherwise. */
7397 if (CONSTANT_P (op0))
7399 enum machine_mode mode = TYPE_MODE (TREE_TYPE (tem));
7400 if (mode != BLKmode && LEGITIMATE_CONSTANT_P (op0)
7401 && offset == 0
7402 && bitpos + bitsize <= GET_MODE_BITSIZE (mode))
7403 op0 = force_reg (mode, op0);
7404 else
7405 op0 = validize_mem (force_const_mem (mode, op0));
7408 /* Otherwise, if this object not in memory and we either have an
7409 offset, a BLKmode result, or a reference outside the object, put it
7410 there. Such cases can occur in Ada if we have unchecked conversion
7411 of an expression from a scalar type to an array or record type or
7412 for an ARRAY_RANGE_REF whose type is BLKmode. */
7413 else if (!MEM_P (op0)
7414 && (offset != 0
7415 || (bitpos + bitsize > GET_MODE_BITSIZE (GET_MODE (op0)))
7416 || (code == ARRAY_RANGE_REF && mode == BLKmode)))
7418 tree nt = build_qualified_type (TREE_TYPE (tem),
7419 (TYPE_QUALS (TREE_TYPE (tem))
7420 | TYPE_QUAL_CONST));
7421 rtx memloc = assign_temp (nt, 1, 1, 1);
7423 emit_move_insn (memloc, op0);
7424 op0 = memloc;
7427 if (offset != 0)
7429 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7430 EXPAND_SUM);
7432 gcc_assert (MEM_P (op0));
7434 #ifdef POINTERS_EXTEND_UNSIGNED
7435 if (GET_MODE (offset_rtx) != Pmode)
7436 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7437 #else
7438 if (GET_MODE (offset_rtx) != ptr_mode)
7439 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7440 #endif
7442 if (GET_MODE (op0) == BLKmode
7443 /* A constant address in OP0 can have VOIDmode, we must
7444 not try to call force_reg in that case. */
7445 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7446 && bitsize != 0
7447 && (bitpos % bitsize) == 0
7448 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7449 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7451 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7452 bitpos = 0;
7455 op0 = offset_address (op0, offset_rtx,
7456 highest_pow2_factor (offset));
7459 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7460 record its alignment as BIGGEST_ALIGNMENT. */
7461 if (MEM_P (op0) && bitpos == 0 && offset != 0
7462 && is_aligning_offset (offset, tem))
7463 set_mem_align (op0, BIGGEST_ALIGNMENT);
7465 /* Don't forget about volatility even if this is a bitfield. */
7466 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7468 if (op0 == orig_op0)
7469 op0 = copy_rtx (op0);
7471 MEM_VOLATILE_P (op0) = 1;
7474 /* The following code doesn't handle CONCAT.
7475 Assume only bitpos == 0 can be used for CONCAT, due to
7476 one element arrays having the same mode as its element. */
7477 if (GET_CODE (op0) == CONCAT)
7479 gcc_assert (bitpos == 0
7480 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7481 return op0;
7484 /* In cases where an aligned union has an unaligned object
7485 as a field, we might be extracting a BLKmode value from
7486 an integer-mode (e.g., SImode) object. Handle this case
7487 by doing the extract into an object as wide as the field
7488 (which we know to be the width of a basic mode), then
7489 storing into memory, and changing the mode to BLKmode. */
7490 if (mode1 == VOIDmode
7491 || REG_P (op0) || GET_CODE (op0) == SUBREG
7492 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7493 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7494 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7495 && modifier != EXPAND_CONST_ADDRESS
7496 && modifier != EXPAND_INITIALIZER)
7497 /* If the field isn't aligned enough to fetch as a memref,
7498 fetch it as a bit field. */
7499 || (mode1 != BLKmode
7500 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7501 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7502 || (MEM_P (op0)
7503 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7504 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7505 && ((modifier == EXPAND_CONST_ADDRESS
7506 || modifier == EXPAND_INITIALIZER)
7507 ? STRICT_ALIGNMENT
7508 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7509 || (bitpos % BITS_PER_UNIT != 0)))
7510 /* If the type and the field are a constant size and the
7511 size of the type isn't the same size as the bitfield,
7512 we must use bitfield operations. */
7513 || (bitsize >= 0
7514 && TYPE_SIZE (TREE_TYPE (exp))
7515 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7516 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7517 bitsize)))
7519 enum machine_mode ext_mode = mode;
7521 if (ext_mode == BLKmode
7522 && ! (target != 0 && MEM_P (op0)
7523 && MEM_P (target)
7524 && bitpos % BITS_PER_UNIT == 0))
7525 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7527 if (ext_mode == BLKmode)
7529 if (target == 0)
7530 target = assign_temp (type, 0, 1, 1);
7532 if (bitsize == 0)
7533 return target;
7535 /* In this case, BITPOS must start at a byte boundary and
7536 TARGET, if specified, must be a MEM. */
7537 gcc_assert (MEM_P (op0)
7538 && (!target || MEM_P (target))
7539 && !(bitpos % BITS_PER_UNIT));
7541 emit_block_move (target,
7542 adjust_address (op0, VOIDmode,
7543 bitpos / BITS_PER_UNIT),
7544 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7545 / BITS_PER_UNIT),
7546 (modifier == EXPAND_STACK_PARM
7547 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7549 return target;
7552 op0 = validize_mem (op0);
7554 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7555 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7557 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7558 (modifier == EXPAND_STACK_PARM
7559 ? NULL_RTX : target),
7560 ext_mode, ext_mode);
7562 /* If the result is a record type and BITSIZE is narrower than
7563 the mode of OP0, an integral mode, and this is a big endian
7564 machine, we must put the field into the high-order bits. */
7565 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7566 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7567 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7568 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7569 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7570 - bitsize),
7571 op0, 1);
7573 /* If the result type is BLKmode, store the data into a temporary
7574 of the appropriate type, but with the mode corresponding to the
7575 mode for the data we have (op0's mode). It's tempting to make
7576 this a constant type, since we know it's only being stored once,
7577 but that can cause problems if we are taking the address of this
7578 COMPONENT_REF because the MEM of any reference via that address
7579 will have flags corresponding to the type, which will not
7580 necessarily be constant. */
7581 if (mode == BLKmode)
7583 rtx new
7584 = assign_stack_temp_for_type
7585 (ext_mode, GET_MODE_BITSIZE (ext_mode), 0, type);
7587 emit_move_insn (new, op0);
7588 op0 = copy_rtx (new);
7589 PUT_MODE (op0, BLKmode);
7590 set_mem_attributes (op0, exp, 1);
7593 return op0;
7596 /* If the result is BLKmode, use that to access the object
7597 now as well. */
7598 if (mode == BLKmode)
7599 mode1 = BLKmode;
7601 /* Get a reference to just this component. */
7602 if (modifier == EXPAND_CONST_ADDRESS
7603 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7604 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
7605 else
7606 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7608 if (op0 == orig_op0)
7609 op0 = copy_rtx (op0);
7611 set_mem_attributes (op0, exp, 0);
7612 if (REG_P (XEXP (op0, 0)))
7613 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7615 MEM_VOLATILE_P (op0) |= volatilep;
7616 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
7617 || modifier == EXPAND_CONST_ADDRESS
7618 || modifier == EXPAND_INITIALIZER)
7619 return op0;
7620 else if (target == 0)
7621 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
7623 convert_move (target, op0, unsignedp);
7624 return target;
7627 case OBJ_TYPE_REF:
7628 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
7630 case CALL_EXPR:
7631 /* Check for a built-in function. */
7632 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
7633 && (TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7634 == FUNCTION_DECL)
7635 && DECL_BUILT_IN (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
7637 if (DECL_BUILT_IN_CLASS (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
7638 == BUILT_IN_FRONTEND)
7639 return lang_hooks.expand_expr (exp, original_target,
7640 tmode, modifier,
7641 alt_rtl);
7642 else
7643 return expand_builtin (exp, target, subtarget, tmode, ignore);
7646 return expand_call (exp, target, ignore);
7648 case NON_LVALUE_EXPR:
7649 case NOP_EXPR:
7650 case CONVERT_EXPR:
7651 if (TREE_OPERAND (exp, 0) == error_mark_node)
7652 return const0_rtx;
7654 if (TREE_CODE (type) == UNION_TYPE)
7656 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
7658 /* If both input and output are BLKmode, this conversion isn't doing
7659 anything except possibly changing memory attribute. */
7660 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
7662 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
7663 modifier);
7665 result = copy_rtx (result);
7666 set_mem_attributes (result, exp, 0);
7667 return result;
7670 if (target == 0)
7672 if (TYPE_MODE (type) != BLKmode)
7673 target = gen_reg_rtx (TYPE_MODE (type));
7674 else
7675 target = assign_temp (type, 0, 1, 1);
7678 if (MEM_P (target))
7679 /* Store data into beginning of memory target. */
7680 store_expr (TREE_OPERAND (exp, 0),
7681 adjust_address (target, TYPE_MODE (valtype), 0),
7682 modifier == EXPAND_STACK_PARM);
7684 else
7686 gcc_assert (REG_P (target));
7688 /* Store this field into a union of the proper type. */
7689 store_field (target,
7690 MIN ((int_size_in_bytes (TREE_TYPE
7691 (TREE_OPERAND (exp, 0)))
7692 * BITS_PER_UNIT),
7693 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
7694 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
7695 type, 0);
7698 /* Return the entire union. */
7699 return target;
7702 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
7704 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
7705 modifier);
7707 /* If the signedness of the conversion differs and OP0 is
7708 a promoted SUBREG, clear that indication since we now
7709 have to do the proper extension. */
7710 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
7711 && GET_CODE (op0) == SUBREG)
7712 SUBREG_PROMOTED_VAR_P (op0) = 0;
7714 return REDUCE_BIT_FIELD (op0);
7717 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7718 if (GET_MODE (op0) == mode)
7721 /* If OP0 is a constant, just convert it into the proper mode. */
7722 else if (CONSTANT_P (op0))
7724 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7725 enum machine_mode inner_mode = TYPE_MODE (inner_type);
7727 if (modifier == EXPAND_INITIALIZER)
7728 op0 = simplify_gen_subreg (mode, op0, inner_mode,
7729 subreg_lowpart_offset (mode,
7730 inner_mode));
7731 else
7732 op0= convert_modes (mode, inner_mode, op0,
7733 TYPE_UNSIGNED (inner_type));
7736 else if (modifier == EXPAND_INITIALIZER)
7737 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
7739 else if (target == 0)
7740 op0 = convert_to_mode (mode, op0,
7741 TYPE_UNSIGNED (TREE_TYPE
7742 (TREE_OPERAND (exp, 0))));
7743 else
7745 convert_move (target, op0,
7746 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7747 op0 = target;
7750 return REDUCE_BIT_FIELD (op0);
7752 case VIEW_CONVERT_EXPR:
7753 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
7755 /* If the input and output modes are both the same, we are done. */
7756 if (TYPE_MODE (type) == GET_MODE (op0))
7758 /* If neither mode is BLKmode, and both modes are the same size
7759 then we can use gen_lowpart. */
7760 else if (TYPE_MODE (type) != BLKmode && GET_MODE (op0) != BLKmode
7761 && GET_MODE_SIZE (TYPE_MODE (type))
7762 == GET_MODE_SIZE (GET_MODE (op0)))
7764 if (GET_CODE (op0) == SUBREG)
7765 op0 = force_reg (GET_MODE (op0), op0);
7766 op0 = gen_lowpart (TYPE_MODE (type), op0);
7768 /* If both modes are integral, then we can convert from one to the
7769 other. */
7770 else if (SCALAR_INT_MODE_P (GET_MODE (op0))
7771 && SCALAR_INT_MODE_P (TYPE_MODE (type)))
7772 op0 = convert_modes (TYPE_MODE (type), GET_MODE (op0), op0,
7773 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
7774 /* As a last resort, spill op0 to memory, and reload it in a
7775 different mode. */
7776 else if (!MEM_P (op0))
7778 /* If the operand is not a MEM, force it into memory. Since we
7779 are going to be changing the mode of the MEM, don't call
7780 force_const_mem for constants because we don't allow pool
7781 constants to change mode. */
7782 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7784 gcc_assert (!TREE_ADDRESSABLE (exp));
7786 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
7787 target
7788 = assign_stack_temp_for_type
7789 (TYPE_MODE (inner_type),
7790 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
7792 emit_move_insn (target, op0);
7793 op0 = target;
7796 /* At this point, OP0 is in the correct mode. If the output type is such
7797 that the operand is known to be aligned, indicate that it is.
7798 Otherwise, we need only be concerned about alignment for non-BLKmode
7799 results. */
7800 if (MEM_P (op0))
7802 op0 = copy_rtx (op0);
7804 if (TYPE_ALIGN_OK (type))
7805 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
7806 else if (TYPE_MODE (type) != BLKmode && STRICT_ALIGNMENT
7807 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
7809 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
7810 HOST_WIDE_INT temp_size
7811 = MAX (int_size_in_bytes (inner_type),
7812 (HOST_WIDE_INT) GET_MODE_SIZE (TYPE_MODE (type)));
7813 rtx new = assign_stack_temp_for_type (TYPE_MODE (type),
7814 temp_size, 0, type);
7815 rtx new_with_op0_mode = adjust_address (new, GET_MODE (op0), 0);
7817 gcc_assert (!TREE_ADDRESSABLE (exp));
7819 if (GET_MODE (op0) == BLKmode)
7820 emit_block_move (new_with_op0_mode, op0,
7821 GEN_INT (GET_MODE_SIZE (TYPE_MODE (type))),
7822 (modifier == EXPAND_STACK_PARM
7823 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7824 else
7825 emit_move_insn (new_with_op0_mode, op0);
7827 op0 = new;
7830 op0 = adjust_address (op0, TYPE_MODE (type), 0);
7833 return op0;
7835 case PLUS_EXPR:
7836 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
7837 something else, make sure we add the register to the constant and
7838 then to the other thing. This case can occur during strength
7839 reduction and doing it this way will produce better code if the
7840 frame pointer or argument pointer is eliminated.
7842 fold-const.c will ensure that the constant is always in the inner
7843 PLUS_EXPR, so the only case we need to do anything about is if
7844 sp, ap, or fp is our second argument, in which case we must swap
7845 the innermost first argument and our second argument. */
7847 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
7848 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
7849 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
7850 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
7851 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
7852 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
7854 tree t = TREE_OPERAND (exp, 1);
7856 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
7857 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
7860 /* If the result is to be ptr_mode and we are adding an integer to
7861 something, we might be forming a constant. So try to use
7862 plus_constant. If it produces a sum and we can't accept it,
7863 use force_operand. This allows P = &ARR[const] to generate
7864 efficient code on machines where a SYMBOL_REF is not a valid
7865 address.
7867 If this is an EXPAND_SUM call, always return the sum. */
7868 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
7869 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
7871 if (modifier == EXPAND_STACK_PARM)
7872 target = 0;
7873 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
7874 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7875 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
7877 rtx constant_part;
7879 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
7880 EXPAND_SUM);
7881 /* Use immed_double_const to ensure that the constant is
7882 truncated according to the mode of OP1, then sign extended
7883 to a HOST_WIDE_INT. Using the constant directly can result
7884 in non-canonical RTL in a 64x32 cross compile. */
7885 constant_part
7886 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
7887 (HOST_WIDE_INT) 0,
7888 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
7889 op1 = plus_constant (op1, INTVAL (constant_part));
7890 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7891 op1 = force_operand (op1, target);
7892 return REDUCE_BIT_FIELD (op1);
7895 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
7896 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7897 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
7899 rtx constant_part;
7901 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
7902 (modifier == EXPAND_INITIALIZER
7903 ? EXPAND_INITIALIZER : EXPAND_SUM));
7904 if (! CONSTANT_P (op0))
7906 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
7907 VOIDmode, modifier);
7908 /* Return a PLUS if modifier says it's OK. */
7909 if (modifier == EXPAND_SUM
7910 || modifier == EXPAND_INITIALIZER)
7911 return simplify_gen_binary (PLUS, mode, op0, op1);
7912 goto binop2;
7914 /* Use immed_double_const to ensure that the constant is
7915 truncated according to the mode of OP1, then sign extended
7916 to a HOST_WIDE_INT. Using the constant directly can result
7917 in non-canonical RTL in a 64x32 cross compile. */
7918 constant_part
7919 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
7920 (HOST_WIDE_INT) 0,
7921 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
7922 op0 = plus_constant (op0, INTVAL (constant_part));
7923 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7924 op0 = force_operand (op0, target);
7925 return REDUCE_BIT_FIELD (op0);
7929 /* No sense saving up arithmetic to be done
7930 if it's all in the wrong mode to form part of an address.
7931 And force_operand won't know whether to sign-extend or
7932 zero-extend. */
7933 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7934 || mode != ptr_mode)
7936 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7937 subtarget, &op0, &op1, 0);
7938 if (op0 == const0_rtx)
7939 return op1;
7940 if (op1 == const0_rtx)
7941 return op0;
7942 goto binop2;
7945 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7946 subtarget, &op0, &op1, modifier);
7947 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7949 case MINUS_EXPR:
7950 /* For initializers, we are allowed to return a MINUS of two
7951 symbolic constants. Here we handle all cases when both operands
7952 are constant. */
7953 /* Handle difference of two symbolic constants,
7954 for the sake of an initializer. */
7955 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
7956 && really_constant_p (TREE_OPERAND (exp, 0))
7957 && really_constant_p (TREE_OPERAND (exp, 1)))
7959 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7960 NULL_RTX, &op0, &op1, modifier);
7962 /* If the last operand is a CONST_INT, use plus_constant of
7963 the negated constant. Else make the MINUS. */
7964 if (GET_CODE (op1) == CONST_INT)
7965 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
7966 else
7967 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
7970 /* No sense saving up arithmetic to be done
7971 if it's all in the wrong mode to form part of an address.
7972 And force_operand won't know whether to sign-extend or
7973 zero-extend. */
7974 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
7975 || mode != ptr_mode)
7976 goto binop;
7978 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
7979 subtarget, &op0, &op1, modifier);
7981 /* Convert A - const to A + (-const). */
7982 if (GET_CODE (op1) == CONST_INT)
7984 op1 = negate_rtx (mode, op1);
7985 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
7988 goto binop2;
7990 case MULT_EXPR:
7991 /* If first operand is constant, swap them.
7992 Thus the following special case checks need only
7993 check the second operand. */
7994 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
7996 tree t1 = TREE_OPERAND (exp, 0);
7997 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
7998 TREE_OPERAND (exp, 1) = t1;
8001 /* Attempt to return something suitable for generating an
8002 indexed address, for machines that support that. */
8004 if (modifier == EXPAND_SUM && mode == ptr_mode
8005 && host_integerp (TREE_OPERAND (exp, 1), 0))
8007 tree exp1 = TREE_OPERAND (exp, 1);
8009 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8010 EXPAND_SUM);
8012 if (!REG_P (op0))
8013 op0 = force_operand (op0, NULL_RTX);
8014 if (!REG_P (op0))
8015 op0 = copy_to_mode_reg (mode, op0);
8017 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8018 gen_int_mode (tree_low_cst (exp1, 0),
8019 TYPE_MODE (TREE_TYPE (exp1)))));
8022 if (modifier == EXPAND_STACK_PARM)
8023 target = 0;
8025 /* Check for multiplying things that have been extended
8026 from a narrower type. If this machine supports multiplying
8027 in that narrower type with a result in the desired type,
8028 do it that way, and avoid the explicit type-conversion. */
8030 subexp0 = TREE_OPERAND (exp, 0);
8031 subexp1 = TREE_OPERAND (exp, 1);
8032 /* First, check if we have a multiplication of one signed and one
8033 unsigned operand. */
8034 if (TREE_CODE (subexp0) == NOP_EXPR
8035 && TREE_CODE (subexp1) == NOP_EXPR
8036 && TREE_CODE (type) == INTEGER_TYPE
8037 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8038 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8039 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8040 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
8041 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8042 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
8044 enum machine_mode innermode
8045 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
8046 this_optab = usmul_widen_optab;
8047 if (mode == GET_MODE_WIDER_MODE (innermode))
8049 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
8051 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
8052 expand_operands (TREE_OPERAND (subexp0, 0),
8053 TREE_OPERAND (subexp1, 0),
8054 NULL_RTX, &op0, &op1, 0);
8055 else
8056 expand_operands (TREE_OPERAND (subexp0, 0),
8057 TREE_OPERAND (subexp1, 0),
8058 NULL_RTX, &op1, &op0, 0);
8060 goto binop3;
8064 /* Check for a multiplication with matching signedness. */
8065 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
8066 && TREE_CODE (type) == INTEGER_TYPE
8067 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8068 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8069 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8070 && int_fits_type_p (TREE_OPERAND (exp, 1),
8071 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8072 /* Don't use a widening multiply if a shift will do. */
8073 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8074 > HOST_BITS_PER_WIDE_INT)
8075 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
8077 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
8078 && (TYPE_PRECISION (TREE_TYPE
8079 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8080 == TYPE_PRECISION (TREE_TYPE
8081 (TREE_OPERAND
8082 (TREE_OPERAND (exp, 0), 0))))
8083 /* If both operands are extended, they must either both
8084 be zero-extended or both be sign-extended. */
8085 && (TYPE_UNSIGNED (TREE_TYPE
8086 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8087 == TYPE_UNSIGNED (TREE_TYPE
8088 (TREE_OPERAND
8089 (TREE_OPERAND (exp, 0), 0)))))))
8091 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8092 enum machine_mode innermode = TYPE_MODE (op0type);
8093 bool zextend_p = TYPE_UNSIGNED (op0type);
8094 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8095 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8097 if (mode == GET_MODE_2XWIDER_MODE (innermode))
8099 if (this_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
8101 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8102 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8103 TREE_OPERAND (exp, 1),
8104 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8105 else
8106 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8107 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
8108 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8109 goto binop3;
8111 else if (other_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing
8112 && innermode == word_mode)
8114 rtx htem, hipart;
8115 op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8116 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8117 op1 = convert_modes (innermode, mode,
8118 expand_normal (TREE_OPERAND (exp, 1)),
8119 unsignedp);
8120 else
8121 op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
8122 temp = expand_binop (mode, other_optab, op0, op1, target,
8123 unsignedp, OPTAB_LIB_WIDEN);
8124 hipart = gen_highpart (innermode, temp);
8125 htem = expand_mult_highpart_adjust (innermode, hipart,
8126 op0, op1, hipart,
8127 zextend_p);
8128 if (htem != hipart)
8129 emit_move_insn (hipart, htem);
8130 return REDUCE_BIT_FIELD (temp);
8134 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8135 subtarget, &op0, &op1, 0);
8136 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8138 case TRUNC_DIV_EXPR:
8139 case FLOOR_DIV_EXPR:
8140 case CEIL_DIV_EXPR:
8141 case ROUND_DIV_EXPR:
8142 case EXACT_DIV_EXPR:
8143 if (modifier == EXPAND_STACK_PARM)
8144 target = 0;
8145 /* Possible optimization: compute the dividend with EXPAND_SUM
8146 then if the divisor is constant can optimize the case
8147 where some terms of the dividend have coeffs divisible by it. */
8148 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8149 subtarget, &op0, &op1, 0);
8150 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8152 case RDIV_EXPR:
8153 goto binop;
8155 case TRUNC_MOD_EXPR:
8156 case FLOOR_MOD_EXPR:
8157 case CEIL_MOD_EXPR:
8158 case ROUND_MOD_EXPR:
8159 if (modifier == EXPAND_STACK_PARM)
8160 target = 0;
8161 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8162 subtarget, &op0, &op1, 0);
8163 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8165 case FIX_ROUND_EXPR:
8166 case FIX_FLOOR_EXPR:
8167 case FIX_CEIL_EXPR:
8168 gcc_unreachable (); /* Not used for C. */
8170 case FIX_TRUNC_EXPR:
8171 op0 = expand_normal (TREE_OPERAND (exp, 0));
8172 if (target == 0 || modifier == EXPAND_STACK_PARM)
8173 target = gen_reg_rtx (mode);
8174 expand_fix (target, op0, unsignedp);
8175 return target;
8177 case FLOAT_EXPR:
8178 op0 = expand_normal (TREE_OPERAND (exp, 0));
8179 if (target == 0 || modifier == EXPAND_STACK_PARM)
8180 target = gen_reg_rtx (mode);
8181 /* expand_float can't figure out what to do if FROM has VOIDmode.
8182 So give it the correct mode. With -O, cse will optimize this. */
8183 if (GET_MODE (op0) == VOIDmode)
8184 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8185 op0);
8186 expand_float (target, op0,
8187 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8188 return target;
8190 case NEGATE_EXPR:
8191 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8192 if (modifier == EXPAND_STACK_PARM)
8193 target = 0;
8194 temp = expand_unop (mode,
8195 optab_for_tree_code (NEGATE_EXPR, type),
8196 op0, target, 0);
8197 gcc_assert (temp);
8198 return REDUCE_BIT_FIELD (temp);
8200 case ABS_EXPR:
8201 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8202 if (modifier == EXPAND_STACK_PARM)
8203 target = 0;
8205 /* ABS_EXPR is not valid for complex arguments. */
8206 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8207 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8209 /* Unsigned abs is simply the operand. Testing here means we don't
8210 risk generating incorrect code below. */
8211 if (TYPE_UNSIGNED (type))
8212 return op0;
8214 return expand_abs (mode, op0, target, unsignedp,
8215 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8217 case MAX_EXPR:
8218 case MIN_EXPR:
8219 target = original_target;
8220 if (target == 0
8221 || modifier == EXPAND_STACK_PARM
8222 || (MEM_P (target) && MEM_VOLATILE_P (target))
8223 || GET_MODE (target) != mode
8224 || (REG_P (target)
8225 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8226 target = gen_reg_rtx (mode);
8227 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8228 target, &op0, &op1, 0);
8230 /* First try to do it with a special MIN or MAX instruction.
8231 If that does not win, use a conditional jump to select the proper
8232 value. */
8233 this_optab = optab_for_tree_code (code, type);
8234 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8235 OPTAB_WIDEN);
8236 if (temp != 0)
8237 return temp;
8239 /* At this point, a MEM target is no longer useful; we will get better
8240 code without it. */
8242 if (! REG_P (target))
8243 target = gen_reg_rtx (mode);
8245 /* If op1 was placed in target, swap op0 and op1. */
8246 if (target != op0 && target == op1)
8248 temp = op0;
8249 op0 = op1;
8250 op1 = temp;
8253 /* We generate better code and avoid problems with op1 mentioning
8254 target by forcing op1 into a pseudo if it isn't a constant. */
8255 if (! CONSTANT_P (op1))
8256 op1 = force_reg (mode, op1);
8259 enum rtx_code comparison_code;
8260 rtx cmpop1 = op1;
8262 if (code == MAX_EXPR)
8263 comparison_code = unsignedp ? GEU : GE;
8264 else
8265 comparison_code = unsignedp ? LEU : LE;
8267 /* Canonicalize to comparisons against 0. */
8268 if (op1 == const1_rtx)
8270 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8271 or (a != 0 ? a : 1) for unsigned.
8272 For MIN we are safe converting (a <= 1 ? a : 1)
8273 into (a <= 0 ? a : 1) */
8274 cmpop1 = const0_rtx;
8275 if (code == MAX_EXPR)
8276 comparison_code = unsignedp ? NE : GT;
8278 if (op1 == constm1_rtx && !unsignedp)
8280 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8281 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8282 cmpop1 = const0_rtx;
8283 if (code == MIN_EXPR)
8284 comparison_code = LT;
8286 #ifdef HAVE_conditional_move
8287 /* Use a conditional move if possible. */
8288 if (can_conditionally_move_p (mode))
8290 rtx insn;
8292 /* ??? Same problem as in expmed.c: emit_conditional_move
8293 forces a stack adjustment via compare_from_rtx, and we
8294 lose the stack adjustment if the sequence we are about
8295 to create is discarded. */
8296 do_pending_stack_adjust ();
8298 start_sequence ();
8300 /* Try to emit the conditional move. */
8301 insn = emit_conditional_move (target, comparison_code,
8302 op0, cmpop1, mode,
8303 op0, op1, mode,
8304 unsignedp);
8306 /* If we could do the conditional move, emit the sequence,
8307 and return. */
8308 if (insn)
8310 rtx seq = get_insns ();
8311 end_sequence ();
8312 emit_insn (seq);
8313 return target;
8316 /* Otherwise discard the sequence and fall back to code with
8317 branches. */
8318 end_sequence ();
8320 #endif
8321 if (target != op0)
8322 emit_move_insn (target, op0);
8324 temp = gen_label_rtx ();
8325 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8326 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8328 emit_move_insn (target, op1);
8329 emit_label (temp);
8330 return target;
8332 case BIT_NOT_EXPR:
8333 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8334 if (modifier == EXPAND_STACK_PARM)
8335 target = 0;
8336 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8337 gcc_assert (temp);
8338 return temp;
8340 /* ??? Can optimize bitwise operations with one arg constant.
8341 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8342 and (a bitwise1 b) bitwise2 b (etc)
8343 but that is probably not worth while. */
8345 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8346 boolean values when we want in all cases to compute both of them. In
8347 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8348 as actual zero-or-1 values and then bitwise anding. In cases where
8349 there cannot be any side effects, better code would be made by
8350 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8351 how to recognize those cases. */
8353 case TRUTH_AND_EXPR:
8354 code = BIT_AND_EXPR;
8355 case BIT_AND_EXPR:
8356 goto binop;
8358 case TRUTH_OR_EXPR:
8359 code = BIT_IOR_EXPR;
8360 case BIT_IOR_EXPR:
8361 goto binop;
8363 case TRUTH_XOR_EXPR:
8364 code = BIT_XOR_EXPR;
8365 case BIT_XOR_EXPR:
8366 goto binop;
8368 case LSHIFT_EXPR:
8369 case RSHIFT_EXPR:
8370 case LROTATE_EXPR:
8371 case RROTATE_EXPR:
8372 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
8373 subtarget = 0;
8374 if (modifier == EXPAND_STACK_PARM)
8375 target = 0;
8376 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode, 0);
8377 return expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
8378 unsignedp);
8380 /* Could determine the answer when only additive constants differ. Also,
8381 the addition of one can be handled by changing the condition. */
8382 case LT_EXPR:
8383 case LE_EXPR:
8384 case GT_EXPR:
8385 case GE_EXPR:
8386 case EQ_EXPR:
8387 case NE_EXPR:
8388 case UNORDERED_EXPR:
8389 case ORDERED_EXPR:
8390 case UNLT_EXPR:
8391 case UNLE_EXPR:
8392 case UNGT_EXPR:
8393 case UNGE_EXPR:
8394 case UNEQ_EXPR:
8395 case LTGT_EXPR:
8396 temp = do_store_flag (exp,
8397 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
8398 tmode != VOIDmode ? tmode : mode, 0);
8399 if (temp != 0)
8400 return temp;
8402 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
8403 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
8404 && original_target
8405 && REG_P (original_target)
8406 && (GET_MODE (original_target)
8407 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
8409 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
8410 VOIDmode, 0);
8412 /* If temp is constant, we can just compute the result. */
8413 if (GET_CODE (temp) == CONST_INT)
8415 if (INTVAL (temp) != 0)
8416 emit_move_insn (target, const1_rtx);
8417 else
8418 emit_move_insn (target, const0_rtx);
8420 return target;
8423 if (temp != original_target)
8425 enum machine_mode mode1 = GET_MODE (temp);
8426 if (mode1 == VOIDmode)
8427 mode1 = tmode != VOIDmode ? tmode : mode;
8429 temp = copy_to_mode_reg (mode1, temp);
8432 op1 = gen_label_rtx ();
8433 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
8434 GET_MODE (temp), unsignedp, op1);
8435 emit_move_insn (temp, const1_rtx);
8436 emit_label (op1);
8437 return temp;
8440 /* If no set-flag instruction, must generate a conditional store
8441 into a temporary variable. Drop through and handle this
8442 like && and ||. */
8444 if (! ignore
8445 && (target == 0
8446 || modifier == EXPAND_STACK_PARM
8447 || ! safe_from_p (target, exp, 1)
8448 /* Make sure we don't have a hard reg (such as function's return
8449 value) live across basic blocks, if not optimizing. */
8450 || (!optimize && REG_P (target)
8451 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
8452 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8454 if (target)
8455 emit_move_insn (target, const0_rtx);
8457 op1 = gen_label_rtx ();
8458 jumpifnot (exp, op1);
8460 if (target)
8461 emit_move_insn (target, const1_rtx);
8463 emit_label (op1);
8464 return ignore ? const0_rtx : target;
8466 case TRUTH_NOT_EXPR:
8467 if (modifier == EXPAND_STACK_PARM)
8468 target = 0;
8469 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode, 0);
8470 /* The parser is careful to generate TRUTH_NOT_EXPR
8471 only with operands that are always zero or one. */
8472 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
8473 target, 1, OPTAB_LIB_WIDEN);
8474 gcc_assert (temp);
8475 return temp;
8477 case STATEMENT_LIST:
8479 tree_stmt_iterator iter;
8481 gcc_assert (ignore);
8483 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
8484 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
8486 return const0_rtx;
8488 case COND_EXPR:
8489 /* A COND_EXPR with its type being VOID_TYPE represents a
8490 conditional jump and is handled in
8491 expand_gimple_cond_expr. */
8492 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
8494 /* Note that COND_EXPRs whose type is a structure or union
8495 are required to be constructed to contain assignments of
8496 a temporary variable, so that we can evaluate them here
8497 for side effect only. If type is void, we must do likewise. */
8499 gcc_assert (!TREE_ADDRESSABLE (type)
8500 && !ignore
8501 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
8502 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
8504 /* If we are not to produce a result, we have no target. Otherwise,
8505 if a target was specified use it; it will not be used as an
8506 intermediate target unless it is safe. If no target, use a
8507 temporary. */
8509 if (modifier != EXPAND_STACK_PARM
8510 && original_target
8511 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
8512 && GET_MODE (original_target) == mode
8513 #ifdef HAVE_conditional_move
8514 && (! can_conditionally_move_p (mode)
8515 || REG_P (original_target))
8516 #endif
8517 && !MEM_P (original_target))
8518 temp = original_target;
8519 else
8520 temp = assign_temp (type, 0, 0, 1);
8522 do_pending_stack_adjust ();
8523 NO_DEFER_POP;
8524 op0 = gen_label_rtx ();
8525 op1 = gen_label_rtx ();
8526 jumpifnot (TREE_OPERAND (exp, 0), op0);
8527 store_expr (TREE_OPERAND (exp, 1), temp,
8528 modifier == EXPAND_STACK_PARM);
8530 emit_jump_insn (gen_jump (op1));
8531 emit_barrier ();
8532 emit_label (op0);
8533 store_expr (TREE_OPERAND (exp, 2), temp,
8534 modifier == EXPAND_STACK_PARM);
8536 emit_label (op1);
8537 OK_DEFER_POP;
8538 return temp;
8540 case VEC_COND_EXPR:
8541 target = expand_vec_cond_expr (exp, target);
8542 return target;
8544 case MODIFY_EXPR:
8546 tree lhs = TREE_OPERAND (exp, 0);
8547 tree rhs = TREE_OPERAND (exp, 1);
8549 gcc_assert (ignore);
8551 /* Check for |= or &= of a bitfield of size one into another bitfield
8552 of size 1. In this case, (unless we need the result of the
8553 assignment) we can do this more efficiently with a
8554 test followed by an assignment, if necessary.
8556 ??? At this point, we can't get a BIT_FIELD_REF here. But if
8557 things change so we do, this code should be enhanced to
8558 support it. */
8559 if (TREE_CODE (lhs) == COMPONENT_REF
8560 && (TREE_CODE (rhs) == BIT_IOR_EXPR
8561 || TREE_CODE (rhs) == BIT_AND_EXPR)
8562 && TREE_OPERAND (rhs, 0) == lhs
8563 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
8564 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
8565 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
8567 rtx label = gen_label_rtx ();
8568 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
8569 do_jump (TREE_OPERAND (rhs, 1),
8570 value ? label : 0,
8571 value ? 0 : label);
8572 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value));
8573 do_pending_stack_adjust ();
8574 emit_label (label);
8575 return const0_rtx;
8578 expand_assignment (lhs, rhs);
8580 return const0_rtx;
8583 case RETURN_EXPR:
8584 if (!TREE_OPERAND (exp, 0))
8585 expand_null_return ();
8586 else
8587 expand_return (TREE_OPERAND (exp, 0));
8588 return const0_rtx;
8590 case ADDR_EXPR:
8591 return expand_expr_addr_expr (exp, target, tmode, modifier);
8593 case COMPLEX_EXPR:
8594 /* Get the rtx code of the operands. */
8595 op0 = expand_normal (TREE_OPERAND (exp, 0));
8596 op1 = expand_normal (TREE_OPERAND (exp, 1));
8598 if (!target)
8599 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
8601 /* Move the real (op0) and imaginary (op1) parts to their location. */
8602 write_complex_part (target, op0, false);
8603 write_complex_part (target, op1, true);
8605 return target;
8607 case REALPART_EXPR:
8608 op0 = expand_normal (TREE_OPERAND (exp, 0));
8609 return read_complex_part (op0, false);
8611 case IMAGPART_EXPR:
8612 op0 = expand_normal (TREE_OPERAND (exp, 0));
8613 return read_complex_part (op0, true);
8615 case RESX_EXPR:
8616 expand_resx_expr (exp);
8617 return const0_rtx;
8619 case TRY_CATCH_EXPR:
8620 case CATCH_EXPR:
8621 case EH_FILTER_EXPR:
8622 case TRY_FINALLY_EXPR:
8623 /* Lowered by tree-eh.c. */
8624 gcc_unreachable ();
8626 case WITH_CLEANUP_EXPR:
8627 case CLEANUP_POINT_EXPR:
8628 case TARGET_EXPR:
8629 case CASE_LABEL_EXPR:
8630 case VA_ARG_EXPR:
8631 case BIND_EXPR:
8632 case INIT_EXPR:
8633 case CONJ_EXPR:
8634 case COMPOUND_EXPR:
8635 case PREINCREMENT_EXPR:
8636 case PREDECREMENT_EXPR:
8637 case POSTINCREMENT_EXPR:
8638 case POSTDECREMENT_EXPR:
8639 case LOOP_EXPR:
8640 case EXIT_EXPR:
8641 case TRUTH_ANDIF_EXPR:
8642 case TRUTH_ORIF_EXPR:
8643 /* Lowered by gimplify.c. */
8644 gcc_unreachable ();
8646 case EXC_PTR_EXPR:
8647 return get_exception_pointer (cfun);
8649 case FILTER_EXPR:
8650 return get_exception_filter (cfun);
8652 case FDESC_EXPR:
8653 /* Function descriptors are not valid except for as
8654 initialization constants, and should not be expanded. */
8655 gcc_unreachable ();
8657 case SWITCH_EXPR:
8658 expand_case (exp);
8659 return const0_rtx;
8661 case LABEL_EXPR:
8662 expand_label (TREE_OPERAND (exp, 0));
8663 return const0_rtx;
8665 case ASM_EXPR:
8666 expand_asm_expr (exp);
8667 return const0_rtx;
8669 case WITH_SIZE_EXPR:
8670 /* WITH_SIZE_EXPR expands to its first argument. The caller should
8671 have pulled out the size to use in whatever context it needed. */
8672 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
8673 modifier, alt_rtl);
8675 case REALIGN_LOAD_EXPR:
8677 tree oprnd0 = TREE_OPERAND (exp, 0);
8678 tree oprnd1 = TREE_OPERAND (exp, 1);
8679 tree oprnd2 = TREE_OPERAND (exp, 2);
8680 rtx op2;
8682 this_optab = optab_for_tree_code (code, type);
8683 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8684 op2 = expand_normal (oprnd2);
8685 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8686 target, unsignedp);
8687 gcc_assert (temp);
8688 return temp;
8691 case DOT_PROD_EXPR:
8693 tree oprnd0 = TREE_OPERAND (exp, 0);
8694 tree oprnd1 = TREE_OPERAND (exp, 1);
8695 tree oprnd2 = TREE_OPERAND (exp, 2);
8696 rtx op2;
8698 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8699 op2 = expand_normal (oprnd2);
8700 target = expand_widen_pattern_expr (exp, op0, op1, op2,
8701 target, unsignedp);
8702 return target;
8705 case WIDEN_SUM_EXPR:
8707 tree oprnd0 = TREE_OPERAND (exp, 0);
8708 tree oprnd1 = TREE_OPERAND (exp, 1);
8710 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
8711 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
8712 target, unsignedp);
8713 return target;
8716 case REDUC_MAX_EXPR:
8717 case REDUC_MIN_EXPR:
8718 case REDUC_PLUS_EXPR:
8720 op0 = expand_normal (TREE_OPERAND (exp, 0));
8721 this_optab = optab_for_tree_code (code, type);
8722 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
8723 gcc_assert (temp);
8724 return temp;
8727 case VEC_LSHIFT_EXPR:
8728 case VEC_RSHIFT_EXPR:
8730 target = expand_vec_shift_expr (exp, target);
8731 return target;
8734 default:
8735 return lang_hooks.expand_expr (exp, original_target, tmode,
8736 modifier, alt_rtl);
8739 /* Here to do an ordinary binary operator. */
8740 binop:
8741 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8742 subtarget, &op0, &op1, 0);
8743 binop2:
8744 this_optab = optab_for_tree_code (code, type);
8745 binop3:
8746 if (modifier == EXPAND_STACK_PARM)
8747 target = 0;
8748 temp = expand_binop (mode, this_optab, op0, op1, target,
8749 unsignedp, OPTAB_LIB_WIDEN);
8750 gcc_assert (temp);
8751 return REDUCE_BIT_FIELD (temp);
8753 #undef REDUCE_BIT_FIELD
8755 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
8756 signedness of TYPE), possibly returning the result in TARGET. */
8757 static rtx
8758 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
8760 HOST_WIDE_INT prec = TYPE_PRECISION (type);
8761 if (target && GET_MODE (target) != GET_MODE (exp))
8762 target = 0;
8763 if (TYPE_UNSIGNED (type))
8765 rtx mask;
8766 if (prec < HOST_BITS_PER_WIDE_INT)
8767 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
8768 GET_MODE (exp));
8769 else
8770 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
8771 ((unsigned HOST_WIDE_INT) 1
8772 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
8773 GET_MODE (exp));
8774 return expand_and (GET_MODE (exp), exp, mask, target);
8776 else
8778 tree count = build_int_cst (NULL_TREE,
8779 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
8780 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8781 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
8785 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
8786 when applied to the address of EXP produces an address known to be
8787 aligned more than BIGGEST_ALIGNMENT. */
8789 static int
8790 is_aligning_offset (tree offset, tree exp)
8792 /* Strip off any conversions. */
8793 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8794 || TREE_CODE (offset) == NOP_EXPR
8795 || TREE_CODE (offset) == CONVERT_EXPR)
8796 offset = TREE_OPERAND (offset, 0);
8798 /* We must now have a BIT_AND_EXPR with a constant that is one less than
8799 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
8800 if (TREE_CODE (offset) != BIT_AND_EXPR
8801 || !host_integerp (TREE_OPERAND (offset, 1), 1)
8802 || compare_tree_int (TREE_OPERAND (offset, 1),
8803 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
8804 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
8805 return 0;
8807 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
8808 It must be NEGATE_EXPR. Then strip any more conversions. */
8809 offset = TREE_OPERAND (offset, 0);
8810 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8811 || TREE_CODE (offset) == NOP_EXPR
8812 || TREE_CODE (offset) == CONVERT_EXPR)
8813 offset = TREE_OPERAND (offset, 0);
8815 if (TREE_CODE (offset) != NEGATE_EXPR)
8816 return 0;
8818 offset = TREE_OPERAND (offset, 0);
8819 while (TREE_CODE (offset) == NON_LVALUE_EXPR
8820 || TREE_CODE (offset) == NOP_EXPR
8821 || TREE_CODE (offset) == CONVERT_EXPR)
8822 offset = TREE_OPERAND (offset, 0);
8824 /* This must now be the address of EXP. */
8825 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
8828 /* Return the tree node if an ARG corresponds to a string constant or zero
8829 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
8830 in bytes within the string that ARG is accessing. The type of the
8831 offset will be `sizetype'. */
8833 tree
8834 string_constant (tree arg, tree *ptr_offset)
8836 tree array, offset;
8837 STRIP_NOPS (arg);
8839 if (TREE_CODE (arg) == ADDR_EXPR)
8841 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
8843 *ptr_offset = size_zero_node;
8844 return TREE_OPERAND (arg, 0);
8846 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
8848 array = TREE_OPERAND (arg, 0);
8849 offset = size_zero_node;
8851 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
8853 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
8854 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
8855 if (TREE_CODE (array) != STRING_CST
8856 && TREE_CODE (array) != VAR_DECL)
8857 return 0;
8859 else
8860 return 0;
8862 else if (TREE_CODE (arg) == PLUS_EXPR)
8864 tree arg0 = TREE_OPERAND (arg, 0);
8865 tree arg1 = TREE_OPERAND (arg, 1);
8867 STRIP_NOPS (arg0);
8868 STRIP_NOPS (arg1);
8870 if (TREE_CODE (arg0) == ADDR_EXPR
8871 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
8872 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
8874 array = TREE_OPERAND (arg0, 0);
8875 offset = arg1;
8877 else if (TREE_CODE (arg1) == ADDR_EXPR
8878 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
8879 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
8881 array = TREE_OPERAND (arg1, 0);
8882 offset = arg0;
8884 else
8885 return 0;
8887 else
8888 return 0;
8890 if (TREE_CODE (array) == STRING_CST)
8892 *ptr_offset = fold_convert (sizetype, offset);
8893 return array;
8895 else if (TREE_CODE (array) == VAR_DECL)
8897 int length;
8899 /* Variables initialized to string literals can be handled too. */
8900 if (DECL_INITIAL (array) == NULL_TREE
8901 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
8902 return 0;
8904 /* If they are read-only, non-volatile and bind locally. */
8905 if (! TREE_READONLY (array)
8906 || TREE_SIDE_EFFECTS (array)
8907 || ! targetm.binds_local_p (array))
8908 return 0;
8910 /* Avoid const char foo[4] = "abcde"; */
8911 if (DECL_SIZE_UNIT (array) == NULL_TREE
8912 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
8913 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
8914 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
8915 return 0;
8917 /* If variable is bigger than the string literal, OFFSET must be constant
8918 and inside of the bounds of the string literal. */
8919 offset = fold_convert (sizetype, offset);
8920 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
8921 && (! host_integerp (offset, 1)
8922 || compare_tree_int (offset, length) >= 0))
8923 return 0;
8925 *ptr_offset = offset;
8926 return DECL_INITIAL (array);
8929 return 0;
8932 /* Generate code to calculate EXP using a store-flag instruction
8933 and return an rtx for the result. EXP is either a comparison
8934 or a TRUTH_NOT_EXPR whose operand is a comparison.
8936 If TARGET is nonzero, store the result there if convenient.
8938 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
8939 cheap.
8941 Return zero if there is no suitable set-flag instruction
8942 available on this machine.
8944 Once expand_expr has been called on the arguments of the comparison,
8945 we are committed to doing the store flag, since it is not safe to
8946 re-evaluate the expression. We emit the store-flag insn by calling
8947 emit_store_flag, but only expand the arguments if we have a reason
8948 to believe that emit_store_flag will be successful. If we think that
8949 it will, but it isn't, we have to simulate the store-flag with a
8950 set/jump/set sequence. */
8952 static rtx
8953 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
8955 enum rtx_code code;
8956 tree arg0, arg1, type;
8957 tree tem;
8958 enum machine_mode operand_mode;
8959 int invert = 0;
8960 int unsignedp;
8961 rtx op0, op1;
8962 enum insn_code icode;
8963 rtx subtarget = target;
8964 rtx result, label;
8966 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
8967 result at the end. We can't simply invert the test since it would
8968 have already been inverted if it were valid. This case occurs for
8969 some floating-point comparisons. */
8971 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
8972 invert = 1, exp = TREE_OPERAND (exp, 0);
8974 arg0 = TREE_OPERAND (exp, 0);
8975 arg1 = TREE_OPERAND (exp, 1);
8977 /* Don't crash if the comparison was erroneous. */
8978 if (arg0 == error_mark_node || arg1 == error_mark_node)
8979 return const0_rtx;
8981 type = TREE_TYPE (arg0);
8982 operand_mode = TYPE_MODE (type);
8983 unsignedp = TYPE_UNSIGNED (type);
8985 /* We won't bother with BLKmode store-flag operations because it would mean
8986 passing a lot of information to emit_store_flag. */
8987 if (operand_mode == BLKmode)
8988 return 0;
8990 /* We won't bother with store-flag operations involving function pointers
8991 when function pointers must be canonicalized before comparisons. */
8992 #ifdef HAVE_canonicalize_funcptr_for_compare
8993 if (HAVE_canonicalize_funcptr_for_compare
8994 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
8995 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8996 == FUNCTION_TYPE))
8997 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
8998 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8999 == FUNCTION_TYPE))))
9000 return 0;
9001 #endif
9003 STRIP_NOPS (arg0);
9004 STRIP_NOPS (arg1);
9006 /* Get the rtx comparison code to use. We know that EXP is a comparison
9007 operation of some type. Some comparisons against 1 and -1 can be
9008 converted to comparisons with zero. Do so here so that the tests
9009 below will be aware that we have a comparison with zero. These
9010 tests will not catch constants in the first operand, but constants
9011 are rarely passed as the first operand. */
9013 switch (TREE_CODE (exp))
9015 case EQ_EXPR:
9016 code = EQ;
9017 break;
9018 case NE_EXPR:
9019 code = NE;
9020 break;
9021 case LT_EXPR:
9022 if (integer_onep (arg1))
9023 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9024 else
9025 code = unsignedp ? LTU : LT;
9026 break;
9027 case LE_EXPR:
9028 if (! unsignedp && integer_all_onesp (arg1))
9029 arg1 = integer_zero_node, code = LT;
9030 else
9031 code = unsignedp ? LEU : LE;
9032 break;
9033 case GT_EXPR:
9034 if (! unsignedp && integer_all_onesp (arg1))
9035 arg1 = integer_zero_node, code = GE;
9036 else
9037 code = unsignedp ? GTU : GT;
9038 break;
9039 case GE_EXPR:
9040 if (integer_onep (arg1))
9041 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9042 else
9043 code = unsignedp ? GEU : GE;
9044 break;
9046 case UNORDERED_EXPR:
9047 code = UNORDERED;
9048 break;
9049 case ORDERED_EXPR:
9050 code = ORDERED;
9051 break;
9052 case UNLT_EXPR:
9053 code = UNLT;
9054 break;
9055 case UNLE_EXPR:
9056 code = UNLE;
9057 break;
9058 case UNGT_EXPR:
9059 code = UNGT;
9060 break;
9061 case UNGE_EXPR:
9062 code = UNGE;
9063 break;
9064 case UNEQ_EXPR:
9065 code = UNEQ;
9066 break;
9067 case LTGT_EXPR:
9068 code = LTGT;
9069 break;
9071 default:
9072 gcc_unreachable ();
9075 /* Put a constant second. */
9076 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST)
9078 tem = arg0; arg0 = arg1; arg1 = tem;
9079 code = swap_condition (code);
9082 /* If this is an equality or inequality test of a single bit, we can
9083 do this by shifting the bit being tested to the low-order bit and
9084 masking the result with the constant 1. If the condition was EQ,
9085 we xor it with 1. This does not require an scc insn and is faster
9086 than an scc insn even if we have it.
9088 The code to make this transformation was moved into fold_single_bit_test,
9089 so we just call into the folder and expand its result. */
9091 if ((code == NE || code == EQ)
9092 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9093 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9095 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9096 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
9097 arg0, arg1, type),
9098 target, VOIDmode, EXPAND_NORMAL);
9101 /* Now see if we are likely to be able to do this. Return if not. */
9102 if (! can_compare_p (code, operand_mode, ccp_store_flag))
9103 return 0;
9105 icode = setcc_gen_code[(int) code];
9106 if (icode == CODE_FOR_nothing
9107 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
9109 /* We can only do this if it is one of the special cases that
9110 can be handled without an scc insn. */
9111 if ((code == LT && integer_zerop (arg1))
9112 || (! only_cheap && code == GE && integer_zerop (arg1)))
9114 else if (! only_cheap && (code == NE || code == EQ)
9115 && TREE_CODE (type) != REAL_TYPE
9116 && ((abs_optab->handlers[(int) operand_mode].insn_code
9117 != CODE_FOR_nothing)
9118 || (ffs_optab->handlers[(int) operand_mode].insn_code
9119 != CODE_FOR_nothing)))
9121 else
9122 return 0;
9125 if (! get_subtarget (target)
9126 || GET_MODE (subtarget) != operand_mode)
9127 subtarget = 0;
9129 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9131 if (target == 0)
9132 target = gen_reg_rtx (mode);
9134 result = emit_store_flag (target, code, op0, op1,
9135 operand_mode, unsignedp, 1);
9137 if (result)
9139 if (invert)
9140 result = expand_binop (mode, xor_optab, result, const1_rtx,
9141 result, 0, OPTAB_LIB_WIDEN);
9142 return result;
9145 /* If this failed, we have to do this with set/compare/jump/set code. */
9146 if (!REG_P (target)
9147 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9148 target = gen_reg_rtx (GET_MODE (target));
9150 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9151 result = compare_from_rtx (op0, op1, code, unsignedp,
9152 operand_mode, NULL_RTX);
9153 if (GET_CODE (result) == CONST_INT)
9154 return (((result == const0_rtx && ! invert)
9155 || (result != const0_rtx && invert))
9156 ? const0_rtx : const1_rtx);
9158 /* The code of RESULT may not match CODE if compare_from_rtx
9159 decided to swap its operands and reverse the original code.
9161 We know that compare_from_rtx returns either a CONST_INT or
9162 a new comparison code, so it is safe to just extract the
9163 code from RESULT. */
9164 code = GET_CODE (result);
9166 label = gen_label_rtx ();
9167 gcc_assert (bcc_gen_fctn[(int) code]);
9169 emit_jump_insn ((*bcc_gen_fctn[(int) code]) (label));
9170 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9171 emit_label (label);
9173 return target;
9177 /* Stubs in case we haven't got a casesi insn. */
9178 #ifndef HAVE_casesi
9179 # define HAVE_casesi 0
9180 # define gen_casesi(a, b, c, d, e) (0)
9181 # define CODE_FOR_casesi CODE_FOR_nothing
9182 #endif
9184 /* If the machine does not have a case insn that compares the bounds,
9185 this means extra overhead for dispatch tables, which raises the
9186 threshold for using them. */
9187 #ifndef CASE_VALUES_THRESHOLD
9188 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9189 #endif /* CASE_VALUES_THRESHOLD */
9191 unsigned int
9192 case_values_threshold (void)
9194 return CASE_VALUES_THRESHOLD;
9197 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9198 0 otherwise (i.e. if there is no casesi instruction). */
9200 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9201 rtx table_label ATTRIBUTE_UNUSED, rtx default_label)
9203 enum machine_mode index_mode = SImode;
9204 int index_bits = GET_MODE_BITSIZE (index_mode);
9205 rtx op1, op2, index;
9206 enum machine_mode op_mode;
9208 if (! HAVE_casesi)
9209 return 0;
9211 /* Convert the index to SImode. */
9212 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9214 enum machine_mode omode = TYPE_MODE (index_type);
9215 rtx rangertx = expand_normal (range);
9217 /* We must handle the endpoints in the original mode. */
9218 index_expr = build2 (MINUS_EXPR, index_type,
9219 index_expr, minval);
9220 minval = integer_zero_node;
9221 index = expand_normal (index_expr);
9222 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9223 omode, 1, default_label);
9224 /* Now we can safely truncate. */
9225 index = convert_to_mode (index_mode, index, 0);
9227 else
9229 if (TYPE_MODE (index_type) != index_mode)
9231 index_type = lang_hooks.types.type_for_size (index_bits, 0);
9232 index_expr = fold_convert (index_type, index_expr);
9235 index = expand_normal (index_expr);
9238 do_pending_stack_adjust ();
9240 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9241 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9242 (index, op_mode))
9243 index = copy_to_mode_reg (op_mode, index);
9245 op1 = expand_normal (minval);
9247 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9248 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9249 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9250 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9251 (op1, op_mode))
9252 op1 = copy_to_mode_reg (op_mode, op1);
9254 op2 = expand_normal (range);
9256 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
9257 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
9258 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
9259 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
9260 (op2, op_mode))
9261 op2 = copy_to_mode_reg (op_mode, op2);
9263 emit_jump_insn (gen_casesi (index, op1, op2,
9264 table_label, default_label));
9265 return 1;
9268 /* Attempt to generate a tablejump instruction; same concept. */
9269 #ifndef HAVE_tablejump
9270 #define HAVE_tablejump 0
9271 #define gen_tablejump(x, y) (0)
9272 #endif
9274 /* Subroutine of the next function.
9276 INDEX is the value being switched on, with the lowest value
9277 in the table already subtracted.
9278 MODE is its expected mode (needed if INDEX is constant).
9279 RANGE is the length of the jump table.
9280 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
9282 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
9283 index value is out of range. */
9285 static void
9286 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
9287 rtx default_label)
9289 rtx temp, vector;
9291 if (INTVAL (range) > cfun->max_jumptable_ents)
9292 cfun->max_jumptable_ents = INTVAL (range);
9294 /* Do an unsigned comparison (in the proper mode) between the index
9295 expression and the value which represents the length of the range.
9296 Since we just finished subtracting the lower bound of the range
9297 from the index expression, this comparison allows us to simultaneously
9298 check that the original index expression value is both greater than
9299 or equal to the minimum value of the range and less than or equal to
9300 the maximum value of the range. */
9302 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
9303 default_label);
9305 /* If index is in range, it must fit in Pmode.
9306 Convert to Pmode so we can index with it. */
9307 if (mode != Pmode)
9308 index = convert_to_mode (Pmode, index, 1);
9310 /* Don't let a MEM slip through, because then INDEX that comes
9311 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
9312 and break_out_memory_refs will go to work on it and mess it up. */
9313 #ifdef PIC_CASE_VECTOR_ADDRESS
9314 if (flag_pic && !REG_P (index))
9315 index = copy_to_mode_reg (Pmode, index);
9316 #endif
9318 /* If flag_force_addr were to affect this address
9319 it could interfere with the tricky assumptions made
9320 about addresses that contain label-refs,
9321 which may be valid only very near the tablejump itself. */
9322 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
9323 GET_MODE_SIZE, because this indicates how large insns are. The other
9324 uses should all be Pmode, because they are addresses. This code
9325 could fail if addresses and insns are not the same size. */
9326 index = gen_rtx_PLUS (Pmode,
9327 gen_rtx_MULT (Pmode, index,
9328 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
9329 gen_rtx_LABEL_REF (Pmode, table_label));
9330 #ifdef PIC_CASE_VECTOR_ADDRESS
9331 if (flag_pic)
9332 index = PIC_CASE_VECTOR_ADDRESS (index);
9333 else
9334 #endif
9335 index = memory_address_noforce (CASE_VECTOR_MODE, index);
9336 temp = gen_reg_rtx (CASE_VECTOR_MODE);
9337 vector = gen_const_mem (CASE_VECTOR_MODE, index);
9338 convert_move (temp, vector, 0);
9340 emit_jump_insn (gen_tablejump (temp, table_label));
9342 /* If we are generating PIC code or if the table is PC-relative, the
9343 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
9344 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
9345 emit_barrier ();
9349 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
9350 rtx table_label, rtx default_label)
9352 rtx index;
9354 if (! HAVE_tablejump)
9355 return 0;
9357 index_expr = fold_build2 (MINUS_EXPR, index_type,
9358 fold_convert (index_type, index_expr),
9359 fold_convert (index_type, minval));
9360 index = expand_normal (index_expr);
9361 do_pending_stack_adjust ();
9363 do_tablejump (index, TYPE_MODE (index_type),
9364 convert_modes (TYPE_MODE (index_type),
9365 TYPE_MODE (TREE_TYPE (range)),
9366 expand_normal (range),
9367 TYPE_UNSIGNED (TREE_TYPE (range))),
9368 table_label, default_label);
9369 return 1;
9372 /* Nonzero if the mode is a valid vector mode for this architecture.
9373 This returns nonzero even if there is no hardware support for the
9374 vector mode, but we can emulate with narrower modes. */
9377 vector_mode_valid_p (enum machine_mode mode)
9379 enum mode_class class = GET_MODE_CLASS (mode);
9380 enum machine_mode innermode;
9382 /* Doh! What's going on? */
9383 if (class != MODE_VECTOR_INT
9384 && class != MODE_VECTOR_FLOAT)
9385 return 0;
9387 /* Hardware support. Woo hoo! */
9388 if (targetm.vector_mode_supported_p (mode))
9389 return 1;
9391 innermode = GET_MODE_INNER (mode);
9393 /* We should probably return 1 if requesting V4DI and we have no DI,
9394 but we have V2DI, but this is probably very unlikely. */
9396 /* If we have support for the inner mode, we can safely emulate it.
9397 We may not have V2DI, but me can emulate with a pair of DIs. */
9398 return targetm.scalar_mode_supported_p (innermode);
9401 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
9402 static rtx
9403 const_vector_from_tree (tree exp)
9405 rtvec v;
9406 int units, i;
9407 tree link, elt;
9408 enum machine_mode inner, mode;
9410 mode = TYPE_MODE (TREE_TYPE (exp));
9412 if (initializer_zerop (exp))
9413 return CONST0_RTX (mode);
9415 units = GET_MODE_NUNITS (mode);
9416 inner = GET_MODE_INNER (mode);
9418 v = rtvec_alloc (units);
9420 link = TREE_VECTOR_CST_ELTS (exp);
9421 for (i = 0; link; link = TREE_CHAIN (link), ++i)
9423 elt = TREE_VALUE (link);
9425 if (TREE_CODE (elt) == REAL_CST)
9426 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
9427 inner);
9428 else
9429 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
9430 TREE_INT_CST_HIGH (elt),
9431 inner);
9434 /* Initialize remaining elements to 0. */
9435 for (; i < units; ++i)
9436 RTVEC_ELT (v, i) = CONST0_RTX (inner);
9438 return gen_rtx_CONST_VECTOR (mode, v);
9440 #include "gt-expr.h"