* doc/invoke.texi: Add cpu_type power6.
[official-gcc.git] / gcc / cse.c
blob29e20cc5f43affaa1e4a9ffc30c41fdb4d95b403
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
48 /* The basic idea of common subexpression elimination is to go
49 through the code, keeping a record of expressions that would
50 have the same value at the current scan point, and replacing
51 expressions encountered with the cheapest equivalent expression.
53 It is too complicated to keep track of the different possibilities
54 when control paths merge in this code; so, at each label, we forget all
55 that is known and start fresh. This can be described as processing each
56 extended basic block separately. We have a separate pass to perform
57 global CSE.
59 Note CSE can turn a conditional or computed jump into a nop or
60 an unconditional jump. When this occurs we arrange to run the jump
61 optimizer after CSE to delete the unreachable code.
63 We use two data structures to record the equivalent expressions:
64 a hash table for most expressions, and a vector of "quantity
65 numbers" to record equivalent (pseudo) registers.
67 The use of the special data structure for registers is desirable
68 because it is faster. It is possible because registers references
69 contain a fairly small number, the register number, taken from
70 a contiguously allocated series, and two register references are
71 identical if they have the same number. General expressions
72 do not have any such thing, so the only way to retrieve the
73 information recorded on an expression other than a register
74 is to keep it in a hash table.
76 Registers and "quantity numbers":
78 At the start of each basic block, all of the (hardware and pseudo)
79 registers used in the function are given distinct quantity
80 numbers to indicate their contents. During scan, when the code
81 copies one register into another, we copy the quantity number.
82 When a register is loaded in any other way, we allocate a new
83 quantity number to describe the value generated by this operation.
84 `REG_QTY (N)' records what quantity register N is currently thought
85 of as containing.
87 All real quantity numbers are greater than or equal to zero.
88 If register N has not been assigned a quantity, `REG_QTY (N)' will
89 equal -N - 1, which is always negative.
91 Quantity numbers below zero do not exist and none of the `qty_table'
92 entries should be referenced with a negative index.
94 We also maintain a bidirectional chain of registers for each
95 quantity number. The `qty_table` members `first_reg' and `last_reg',
96 and `reg_eqv_table' members `next' and `prev' hold these chains.
98 The first register in a chain is the one whose lifespan is least local.
99 Among equals, it is the one that was seen first.
100 We replace any equivalent register with that one.
102 If two registers have the same quantity number, it must be true that
103 REG expressions with qty_table `mode' must be in the hash table for both
104 registers and must be in the same class.
106 The converse is not true. Since hard registers may be referenced in
107 any mode, two REG expressions might be equivalent in the hash table
108 but not have the same quantity number if the quantity number of one
109 of the registers is not the same mode as those expressions.
111 Constants and quantity numbers
113 When a quantity has a known constant value, that value is stored
114 in the appropriate qty_table `const_rtx'. This is in addition to
115 putting the constant in the hash table as is usual for non-regs.
117 Whether a reg or a constant is preferred is determined by the configuration
118 macro CONST_COSTS and will often depend on the constant value. In any
119 event, expressions containing constants can be simplified, by fold_rtx.
121 When a quantity has a known nearly constant value (such as an address
122 of a stack slot), that value is stored in the appropriate qty_table
123 `const_rtx'.
125 Integer constants don't have a machine mode. However, cse
126 determines the intended machine mode from the destination
127 of the instruction that moves the constant. The machine mode
128 is recorded in the hash table along with the actual RTL
129 constant expression so that different modes are kept separate.
131 Other expressions:
133 To record known equivalences among expressions in general
134 we use a hash table called `table'. It has a fixed number of buckets
135 that contain chains of `struct table_elt' elements for expressions.
136 These chains connect the elements whose expressions have the same
137 hash codes.
139 Other chains through the same elements connect the elements which
140 currently have equivalent values.
142 Register references in an expression are canonicalized before hashing
143 the expression. This is done using `reg_qty' and qty_table `first_reg'.
144 The hash code of a register reference is computed using the quantity
145 number, not the register number.
147 When the value of an expression changes, it is necessary to remove from the
148 hash table not just that expression but all expressions whose values
149 could be different as a result.
151 1. If the value changing is in memory, except in special cases
152 ANYTHING referring to memory could be changed. That is because
153 nobody knows where a pointer does not point.
154 The function `invalidate_memory' removes what is necessary.
156 The special cases are when the address is constant or is
157 a constant plus a fixed register such as the frame pointer
158 or a static chain pointer. When such addresses are stored in,
159 we can tell exactly which other such addresses must be invalidated
160 due to overlap. `invalidate' does this.
161 All expressions that refer to non-constant
162 memory addresses are also invalidated. `invalidate_memory' does this.
164 2. If the value changing is a register, all expressions
165 containing references to that register, and only those,
166 must be removed.
168 Because searching the entire hash table for expressions that contain
169 a register is very slow, we try to figure out when it isn't necessary.
170 Precisely, this is necessary only when expressions have been
171 entered in the hash table using this register, and then the value has
172 changed, and then another expression wants to be added to refer to
173 the register's new value. This sequence of circumstances is rare
174 within any one basic block.
176 `REG_TICK' and `REG_IN_TABLE', accessors for members of
177 cse_reg_info, are used to detect this case. REG_TICK (i) is
178 incremented whenever a value is stored in register i.
179 REG_IN_TABLE (i) holds -1 if no references to register i have been
180 entered in the table; otherwise, it contains the value REG_TICK (i)
181 had when the references were entered. If we want to enter a
182 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
183 remove old references. Until we want to enter a new entry, the
184 mere fact that the two vectors don't match makes the entries be
185 ignored if anyone tries to match them.
187 Registers themselves are entered in the hash table as well as in
188 the equivalent-register chains. However, `REG_TICK' and
189 `REG_IN_TABLE' do not apply to expressions which are simple
190 register references. These expressions are removed from the table
191 immediately when they become invalid, and this can be done even if
192 we do not immediately search for all the expressions that refer to
193 the register.
195 A CLOBBER rtx in an instruction invalidates its operand for further
196 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
197 invalidates everything that resides in memory.
199 Related expressions:
201 Constant expressions that differ only by an additive integer
202 are called related. When a constant expression is put in
203 the table, the related expression with no constant term
204 is also entered. These are made to point at each other
205 so that it is possible to find out if there exists any
206 register equivalent to an expression related to a given expression. */
208 /* Length of qty_table vector. We know in advance we will not need
209 a quantity number this big. */
211 static int max_qty;
213 /* Next quantity number to be allocated.
214 This is 1 + the largest number needed so far. */
216 static int next_qty;
218 /* Per-qty information tracking.
220 `first_reg' and `last_reg' track the head and tail of the
221 chain of registers which currently contain this quantity.
223 `mode' contains the machine mode of this quantity.
225 `const_rtx' holds the rtx of the constant value of this
226 quantity, if known. A summations of the frame/arg pointer
227 and a constant can also be entered here. When this holds
228 a known value, `const_insn' is the insn which stored the
229 constant value.
231 `comparison_{code,const,qty}' are used to track when a
232 comparison between a quantity and some constant or register has
233 been passed. In such a case, we know the results of the comparison
234 in case we see it again. These members record a comparison that
235 is known to be true. `comparison_code' holds the rtx code of such
236 a comparison, else it is set to UNKNOWN and the other two
237 comparison members are undefined. `comparison_const' holds
238 the constant being compared against, or zero if the comparison
239 is not against a constant. `comparison_qty' holds the quantity
240 being compared against when the result is known. If the comparison
241 is not with a register, `comparison_qty' is -1. */
243 struct qty_table_elem
245 rtx const_rtx;
246 rtx const_insn;
247 rtx comparison_const;
248 int comparison_qty;
249 unsigned int first_reg, last_reg;
250 /* The sizes of these fields should match the sizes of the
251 code and mode fields of struct rtx_def (see rtl.h). */
252 ENUM_BITFIELD(rtx_code) comparison_code : 16;
253 ENUM_BITFIELD(machine_mode) mode : 8;
256 /* The table of all qtys, indexed by qty number. */
257 static struct qty_table_elem *qty_table;
259 /* Structure used to pass arguments via for_each_rtx to function
260 cse_change_cc_mode. */
261 struct change_cc_mode_args
263 rtx insn;
264 rtx newreg;
267 #ifdef HAVE_cc0
268 /* For machines that have a CC0, we do not record its value in the hash
269 table since its use is guaranteed to be the insn immediately following
270 its definition and any other insn is presumed to invalidate it.
272 Instead, we store below the value last assigned to CC0. If it should
273 happen to be a constant, it is stored in preference to the actual
274 assigned value. In case it is a constant, we store the mode in which
275 the constant should be interpreted. */
277 static rtx prev_insn_cc0;
278 static enum machine_mode prev_insn_cc0_mode;
280 /* Previous actual insn. 0 if at first insn of basic block. */
282 static rtx prev_insn;
283 #endif
285 /* Insn being scanned. */
287 static rtx this_insn;
289 /* Index by register number, gives the number of the next (or
290 previous) register in the chain of registers sharing the same
291 value.
293 Or -1 if this register is at the end of the chain.
295 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
297 /* Per-register equivalence chain. */
298 struct reg_eqv_elem
300 int next, prev;
303 /* The table of all register equivalence chains. */
304 static struct reg_eqv_elem *reg_eqv_table;
306 struct cse_reg_info
308 /* The timestamp at which this register is initialized. */
309 unsigned int timestamp;
311 /* The quantity number of the register's current contents. */
312 int reg_qty;
314 /* The number of times the register has been altered in the current
315 basic block. */
316 int reg_tick;
318 /* The REG_TICK value at which rtx's containing this register are
319 valid in the hash table. If this does not equal the current
320 reg_tick value, such expressions existing in the hash table are
321 invalid. */
322 int reg_in_table;
324 /* The SUBREG that was set when REG_TICK was last incremented. Set
325 to -1 if the last store was to the whole register, not a subreg. */
326 unsigned int subreg_ticked;
329 /* A table of cse_reg_info indexed by register numbers. */
330 static struct cse_reg_info *cse_reg_info_table;
332 /* The size of the above table. */
333 static unsigned int cse_reg_info_table_size;
335 /* The index of the first entry that has not been initialized. */
336 static unsigned int cse_reg_info_table_first_uninitialized;
338 /* The timestamp at the beginning of the current run of
339 cse_basic_block. We increment this variable at the beginning of
340 the current run of cse_basic_block. The timestamp field of a
341 cse_reg_info entry matches the value of this variable if and only
342 if the entry has been initialized during the current run of
343 cse_basic_block. */
344 static unsigned int cse_reg_info_timestamp;
346 /* A HARD_REG_SET containing all the hard registers for which there is
347 currently a REG expression in the hash table. Note the difference
348 from the above variables, which indicate if the REG is mentioned in some
349 expression in the table. */
351 static HARD_REG_SET hard_regs_in_table;
353 /* CUID of insn that starts the basic block currently being cse-processed. */
355 static int cse_basic_block_start;
357 /* CUID of insn that ends the basic block currently being cse-processed. */
359 static int cse_basic_block_end;
361 /* Vector mapping INSN_UIDs to cuids.
362 The cuids are like uids but increase monotonically always.
363 We use them to see whether a reg is used outside a given basic block. */
365 static int *uid_cuid;
367 /* Highest UID in UID_CUID. */
368 static int max_uid;
370 /* Get the cuid of an insn. */
372 #define INSN_CUID(INSN) (uid_cuid[INSN_UID (INSN)])
374 /* Nonzero if this pass has made changes, and therefore it's
375 worthwhile to run the garbage collector. */
377 static int cse_altered;
379 /* Nonzero if cse has altered conditional jump insns
380 in such a way that jump optimization should be redone. */
382 static int cse_jumps_altered;
384 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
385 REG_LABEL, we have to rerun jump after CSE to put in the note. */
386 static int recorded_label_ref;
388 /* canon_hash stores 1 in do_not_record
389 if it notices a reference to CC0, PC, or some other volatile
390 subexpression. */
392 static int do_not_record;
394 /* canon_hash stores 1 in hash_arg_in_memory
395 if it notices a reference to memory within the expression being hashed. */
397 static int hash_arg_in_memory;
399 /* The hash table contains buckets which are chains of `struct table_elt's,
400 each recording one expression's information.
401 That expression is in the `exp' field.
403 The canon_exp field contains a canonical (from the point of view of
404 alias analysis) version of the `exp' field.
406 Those elements with the same hash code are chained in both directions
407 through the `next_same_hash' and `prev_same_hash' fields.
409 Each set of expressions with equivalent values
410 are on a two-way chain through the `next_same_value'
411 and `prev_same_value' fields, and all point with
412 the `first_same_value' field at the first element in
413 that chain. The chain is in order of increasing cost.
414 Each element's cost value is in its `cost' field.
416 The `in_memory' field is nonzero for elements that
417 involve any reference to memory. These elements are removed
418 whenever a write is done to an unidentified location in memory.
419 To be safe, we assume that a memory address is unidentified unless
420 the address is either a symbol constant or a constant plus
421 the frame pointer or argument pointer.
423 The `related_value' field is used to connect related expressions
424 (that differ by adding an integer).
425 The related expressions are chained in a circular fashion.
426 `related_value' is zero for expressions for which this
427 chain is not useful.
429 The `cost' field stores the cost of this element's expression.
430 The `regcost' field stores the value returned by approx_reg_cost for
431 this element's expression.
433 The `is_const' flag is set if the element is a constant (including
434 a fixed address).
436 The `flag' field is used as a temporary during some search routines.
438 The `mode' field is usually the same as GET_MODE (`exp'), but
439 if `exp' is a CONST_INT and has no machine mode then the `mode'
440 field is the mode it was being used as. Each constant is
441 recorded separately for each mode it is used with. */
443 struct table_elt
445 rtx exp;
446 rtx canon_exp;
447 struct table_elt *next_same_hash;
448 struct table_elt *prev_same_hash;
449 struct table_elt *next_same_value;
450 struct table_elt *prev_same_value;
451 struct table_elt *first_same_value;
452 struct table_elt *related_value;
453 int cost;
454 int regcost;
455 /* The size of this field should match the size
456 of the mode field of struct rtx_def (see rtl.h). */
457 ENUM_BITFIELD(machine_mode) mode : 8;
458 char in_memory;
459 char is_const;
460 char flag;
463 /* We don't want a lot of buckets, because we rarely have very many
464 things stored in the hash table, and a lot of buckets slows
465 down a lot of loops that happen frequently. */
466 #define HASH_SHIFT 5
467 #define HASH_SIZE (1 << HASH_SHIFT)
468 #define HASH_MASK (HASH_SIZE - 1)
470 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
471 register (hard registers may require `do_not_record' to be set). */
473 #define HASH(X, M) \
474 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
475 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
476 : canon_hash (X, M)) & HASH_MASK)
478 /* Like HASH, but without side-effects. */
479 #define SAFE_HASH(X, M) \
480 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
481 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
482 : safe_hash (X, M)) & HASH_MASK)
484 /* Determine whether register number N is considered a fixed register for the
485 purpose of approximating register costs.
486 It is desirable to replace other regs with fixed regs, to reduce need for
487 non-fixed hard regs.
488 A reg wins if it is either the frame pointer or designated as fixed. */
489 #define FIXED_REGNO_P(N) \
490 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
491 || fixed_regs[N] || global_regs[N])
493 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
494 hard registers and pointers into the frame are the cheapest with a cost
495 of 0. Next come pseudos with a cost of one and other hard registers with
496 a cost of 2. Aside from these special cases, call `rtx_cost'. */
498 #define CHEAP_REGNO(N) \
499 (REGNO_PTR_FRAME_P(N) \
500 || (HARD_REGISTER_NUM_P (N) \
501 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
503 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
504 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
506 /* Get the number of times this register has been updated in this
507 basic block. */
509 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
511 /* Get the point at which REG was recorded in the table. */
513 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
515 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
516 SUBREG). */
518 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
520 /* Get the quantity number for REG. */
522 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
524 /* Determine if the quantity number for register X represents a valid index
525 into the qty_table. */
527 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
529 static struct table_elt *table[HASH_SIZE];
531 /* Chain of `struct table_elt's made so far for this function
532 but currently removed from the table. */
534 static struct table_elt *free_element_chain;
536 /* Set to the cost of a constant pool reference if one was found for a
537 symbolic constant. If this was found, it means we should try to
538 convert constants into constant pool entries if they don't fit in
539 the insn. */
541 static int constant_pool_entries_cost;
542 static int constant_pool_entries_regcost;
544 /* This data describes a block that will be processed by cse_basic_block. */
546 struct cse_basic_block_data
548 /* Lowest CUID value of insns in block. */
549 int low_cuid;
550 /* Highest CUID value of insns in block. */
551 int high_cuid;
552 /* Total number of SETs in block. */
553 int nsets;
554 /* Last insn in the block. */
555 rtx last;
556 /* Size of current branch path, if any. */
557 int path_size;
558 /* Current branch path, indicating which branches will be taken. */
559 struct branch_path
561 /* The branch insn. */
562 rtx branch;
563 /* Whether it should be taken or not. AROUND is the same as taken
564 except that it is used when the destination label is not preceded
565 by a BARRIER. */
566 enum taken {PATH_TAKEN, PATH_NOT_TAKEN, PATH_AROUND} status;
567 } *path;
570 static bool fixed_base_plus_p (rtx x);
571 static int notreg_cost (rtx, enum rtx_code);
572 static int approx_reg_cost_1 (rtx *, void *);
573 static int approx_reg_cost (rtx);
574 static int preferable (int, int, int, int);
575 static void new_basic_block (void);
576 static void make_new_qty (unsigned int, enum machine_mode);
577 static void make_regs_eqv (unsigned int, unsigned int);
578 static void delete_reg_equiv (unsigned int);
579 static int mention_regs (rtx);
580 static int insert_regs (rtx, struct table_elt *, int);
581 static void remove_from_table (struct table_elt *, unsigned);
582 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
583 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
584 static rtx lookup_as_function (rtx, enum rtx_code);
585 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
586 enum machine_mode);
587 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
588 static void invalidate (rtx, enum machine_mode);
589 static int cse_rtx_varies_p (rtx, int);
590 static void remove_invalid_refs (unsigned int);
591 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
592 enum machine_mode);
593 static void rehash_using_reg (rtx);
594 static void invalidate_memory (void);
595 static void invalidate_for_call (void);
596 static rtx use_related_value (rtx, struct table_elt *);
598 static inline unsigned canon_hash (rtx, enum machine_mode);
599 static inline unsigned safe_hash (rtx, enum machine_mode);
600 static unsigned hash_rtx_string (const char *);
602 static rtx canon_reg (rtx, rtx);
603 static void find_best_addr (rtx, rtx *, enum machine_mode);
604 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
605 enum machine_mode *,
606 enum machine_mode *);
607 static rtx fold_rtx (rtx, rtx);
608 static rtx equiv_constant (rtx);
609 static void record_jump_equiv (rtx, int);
610 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
611 int);
612 static void cse_insn (rtx, rtx);
613 static void cse_end_of_basic_block (rtx, struct cse_basic_block_data *,
614 int, int);
615 static int addr_affects_sp_p (rtx);
616 static void invalidate_from_clobbers (rtx);
617 static rtx cse_process_notes (rtx, rtx);
618 static void invalidate_skipped_set (rtx, rtx, void *);
619 static void invalidate_skipped_block (rtx);
620 static rtx cse_basic_block (rtx, rtx, struct branch_path *);
621 static void count_reg_usage (rtx, int *, rtx, int);
622 static int check_for_label_ref (rtx *, void *);
623 extern void dump_class (struct table_elt*);
624 static void get_cse_reg_info_1 (unsigned int regno);
625 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
626 static int check_dependence (rtx *, void *);
628 static void flush_hash_table (void);
629 static bool insn_live_p (rtx, int *);
630 static bool set_live_p (rtx, rtx, int *);
631 static bool dead_libcall_p (rtx, int *);
632 static int cse_change_cc_mode (rtx *, void *);
633 static void cse_change_cc_mode_insn (rtx, rtx);
634 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
635 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
638 #undef RTL_HOOKS_GEN_LOWPART
639 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
641 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
643 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
644 virtual regs here because the simplify_*_operation routines are called
645 by integrate.c, which is called before virtual register instantiation. */
647 static bool
648 fixed_base_plus_p (rtx x)
650 switch (GET_CODE (x))
652 case REG:
653 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
654 return true;
655 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
656 return true;
657 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
658 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
659 return true;
660 return false;
662 case PLUS:
663 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
664 return false;
665 return fixed_base_plus_p (XEXP (x, 0));
667 default:
668 return false;
672 /* Dump the expressions in the equivalence class indicated by CLASSP.
673 This function is used only for debugging. */
674 void
675 dump_class (struct table_elt *classp)
677 struct table_elt *elt;
679 fprintf (stderr, "Equivalence chain for ");
680 print_rtl (stderr, classp->exp);
681 fprintf (stderr, ": \n");
683 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
685 print_rtl (stderr, elt->exp);
686 fprintf (stderr, "\n");
690 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
692 static int
693 approx_reg_cost_1 (rtx *xp, void *data)
695 rtx x = *xp;
696 int *cost_p = data;
698 if (x && REG_P (x))
700 unsigned int regno = REGNO (x);
702 if (! CHEAP_REGNO (regno))
704 if (regno < FIRST_PSEUDO_REGISTER)
706 if (SMALL_REGISTER_CLASSES)
707 return 1;
708 *cost_p += 2;
710 else
711 *cost_p += 1;
715 return 0;
718 /* Return an estimate of the cost of the registers used in an rtx.
719 This is mostly the number of different REG expressions in the rtx;
720 however for some exceptions like fixed registers we use a cost of
721 0. If any other hard register reference occurs, return MAX_COST. */
723 static int
724 approx_reg_cost (rtx x)
726 int cost = 0;
728 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
729 return MAX_COST;
731 return cost;
734 /* Returns a canonical version of X for the address, from the point of view,
735 that all multiplications are represented as MULT instead of the multiply
736 by a power of 2 being represented as ASHIFT. */
738 static rtx
739 canon_for_address (rtx x)
741 enum rtx_code code;
742 enum machine_mode mode;
743 rtx new = 0;
744 int i;
745 const char *fmt;
747 if (!x)
748 return x;
750 code = GET_CODE (x);
751 mode = GET_MODE (x);
753 switch (code)
755 case ASHIFT:
756 if (GET_CODE (XEXP (x, 1)) == CONST_INT
757 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode)
758 && INTVAL (XEXP (x, 1)) >= 0)
760 new = canon_for_address (XEXP (x, 0));
761 new = gen_rtx_MULT (mode, new,
762 gen_int_mode ((HOST_WIDE_INT) 1
763 << INTVAL (XEXP (x, 1)),
764 mode));
766 break;
767 default:
768 break;
771 if (new)
772 return new;
774 /* Now recursively process each operand of this operation. */
775 fmt = GET_RTX_FORMAT (code);
776 for (i = 0; i < GET_RTX_LENGTH (code); i++)
777 if (fmt[i] == 'e')
779 new = canon_for_address (XEXP (x, i));
780 XEXP (x, i) = new;
782 return x;
785 /* Return a negative value if an rtx A, whose costs are given by COST_A
786 and REGCOST_A, is more desirable than an rtx B.
787 Return a positive value if A is less desirable, or 0 if the two are
788 equally good. */
789 static int
790 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
792 /* First, get rid of cases involving expressions that are entirely
793 unwanted. */
794 if (cost_a != cost_b)
796 if (cost_a == MAX_COST)
797 return 1;
798 if (cost_b == MAX_COST)
799 return -1;
802 /* Avoid extending lifetimes of hardregs. */
803 if (regcost_a != regcost_b)
805 if (regcost_a == MAX_COST)
806 return 1;
807 if (regcost_b == MAX_COST)
808 return -1;
811 /* Normal operation costs take precedence. */
812 if (cost_a != cost_b)
813 return cost_a - cost_b;
814 /* Only if these are identical consider effects on register pressure. */
815 if (regcost_a != regcost_b)
816 return regcost_a - regcost_b;
817 return 0;
820 /* Internal function, to compute cost when X is not a register; called
821 from COST macro to keep it simple. */
823 static int
824 notreg_cost (rtx x, enum rtx_code outer)
826 return ((GET_CODE (x) == SUBREG
827 && REG_P (SUBREG_REG (x))
828 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
829 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
830 && (GET_MODE_SIZE (GET_MODE (x))
831 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
832 && subreg_lowpart_p (x)
833 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
834 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
836 : rtx_cost (x, outer) * 2);
840 /* Initialize CSE_REG_INFO_TABLE. */
842 static void
843 init_cse_reg_info (unsigned int nregs)
845 /* Do we need to grow the table? */
846 if (nregs > cse_reg_info_table_size)
848 unsigned int new_size;
850 if (cse_reg_info_table_size < 2048)
852 /* Compute a new size that is a power of 2 and no smaller
853 than the large of NREGS and 64. */
854 new_size = (cse_reg_info_table_size
855 ? cse_reg_info_table_size : 64);
857 while (new_size < nregs)
858 new_size *= 2;
860 else
862 /* If we need a big table, allocate just enough to hold
863 NREGS registers. */
864 new_size = nregs;
867 /* Reallocate the table with NEW_SIZE entries. */
868 if (cse_reg_info_table)
869 free (cse_reg_info_table);
870 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
871 cse_reg_info_table_size = new_size;
872 cse_reg_info_table_first_uninitialized = 0;
875 /* Do we have all of the first NREGS entries initialized? */
876 if (cse_reg_info_table_first_uninitialized < nregs)
878 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
879 unsigned int i;
881 /* Put the old timestamp on newly allocated entries so that they
882 will all be considered out of date. We do not touch those
883 entries beyond the first NREGS entries to be nice to the
884 virtual memory. */
885 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
886 cse_reg_info_table[i].timestamp = old_timestamp;
888 cse_reg_info_table_first_uninitialized = nregs;
892 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
894 static void
895 get_cse_reg_info_1 (unsigned int regno)
897 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
898 entry will be considered to have been initialized. */
899 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
901 /* Initialize the rest of the entry. */
902 cse_reg_info_table[regno].reg_tick = 1;
903 cse_reg_info_table[regno].reg_in_table = -1;
904 cse_reg_info_table[regno].subreg_ticked = -1;
905 cse_reg_info_table[regno].reg_qty = -regno - 1;
908 /* Find a cse_reg_info entry for REGNO. */
910 static inline struct cse_reg_info *
911 get_cse_reg_info (unsigned int regno)
913 struct cse_reg_info *p = &cse_reg_info_table[regno];
915 /* If this entry has not been initialized, go ahead and initialize
916 it. */
917 if (p->timestamp != cse_reg_info_timestamp)
918 get_cse_reg_info_1 (regno);
920 return p;
923 /* Clear the hash table and initialize each register with its own quantity,
924 for a new basic block. */
926 static void
927 new_basic_block (void)
929 int i;
931 next_qty = 0;
933 /* Invalidate cse_reg_info_table. */
934 cse_reg_info_timestamp++;
936 /* Clear out hash table state for this pass. */
937 CLEAR_HARD_REG_SET (hard_regs_in_table);
939 /* The per-quantity values used to be initialized here, but it is
940 much faster to initialize each as it is made in `make_new_qty'. */
942 for (i = 0; i < HASH_SIZE; i++)
944 struct table_elt *first;
946 first = table[i];
947 if (first != NULL)
949 struct table_elt *last = first;
951 table[i] = NULL;
953 while (last->next_same_hash != NULL)
954 last = last->next_same_hash;
956 /* Now relink this hash entire chain into
957 the free element list. */
959 last->next_same_hash = free_element_chain;
960 free_element_chain = first;
964 #ifdef HAVE_cc0
965 prev_insn = 0;
966 prev_insn_cc0 = 0;
967 #endif
970 /* Say that register REG contains a quantity in mode MODE not in any
971 register before and initialize that quantity. */
973 static void
974 make_new_qty (unsigned int reg, enum machine_mode mode)
976 int q;
977 struct qty_table_elem *ent;
978 struct reg_eqv_elem *eqv;
980 gcc_assert (next_qty < max_qty);
982 q = REG_QTY (reg) = next_qty++;
983 ent = &qty_table[q];
984 ent->first_reg = reg;
985 ent->last_reg = reg;
986 ent->mode = mode;
987 ent->const_rtx = ent->const_insn = NULL_RTX;
988 ent->comparison_code = UNKNOWN;
990 eqv = &reg_eqv_table[reg];
991 eqv->next = eqv->prev = -1;
994 /* Make reg NEW equivalent to reg OLD.
995 OLD is not changing; NEW is. */
997 static void
998 make_regs_eqv (unsigned int new, unsigned int old)
1000 unsigned int lastr, firstr;
1001 int q = REG_QTY (old);
1002 struct qty_table_elem *ent;
1004 ent = &qty_table[q];
1006 /* Nothing should become eqv until it has a "non-invalid" qty number. */
1007 gcc_assert (REGNO_QTY_VALID_P (old));
1009 REG_QTY (new) = q;
1010 firstr = ent->first_reg;
1011 lastr = ent->last_reg;
1013 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
1014 hard regs. Among pseudos, if NEW will live longer than any other reg
1015 of the same qty, and that is beyond the current basic block,
1016 make it the new canonical replacement for this qty. */
1017 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
1018 /* Certain fixed registers might be of the class NO_REGS. This means
1019 that not only can they not be allocated by the compiler, but
1020 they cannot be used in substitutions or canonicalizations
1021 either. */
1022 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
1023 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
1024 || (new >= FIRST_PSEUDO_REGISTER
1025 && (firstr < FIRST_PSEUDO_REGISTER
1026 || ((uid_cuid[REGNO_LAST_UID (new)] > cse_basic_block_end
1027 || (uid_cuid[REGNO_FIRST_UID (new)]
1028 < cse_basic_block_start))
1029 && (uid_cuid[REGNO_LAST_UID (new)]
1030 > uid_cuid[REGNO_LAST_UID (firstr)]))))))
1032 reg_eqv_table[firstr].prev = new;
1033 reg_eqv_table[new].next = firstr;
1034 reg_eqv_table[new].prev = -1;
1035 ent->first_reg = new;
1037 else
1039 /* If NEW is a hard reg (known to be non-fixed), insert at end.
1040 Otherwise, insert before any non-fixed hard regs that are at the
1041 end. Registers of class NO_REGS cannot be used as an
1042 equivalent for anything. */
1043 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
1044 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
1045 && new >= FIRST_PSEUDO_REGISTER)
1046 lastr = reg_eqv_table[lastr].prev;
1047 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
1048 if (reg_eqv_table[lastr].next >= 0)
1049 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
1050 else
1051 qty_table[q].last_reg = new;
1052 reg_eqv_table[lastr].next = new;
1053 reg_eqv_table[new].prev = lastr;
1057 /* Remove REG from its equivalence class. */
1059 static void
1060 delete_reg_equiv (unsigned int reg)
1062 struct qty_table_elem *ent;
1063 int q = REG_QTY (reg);
1064 int p, n;
1066 /* If invalid, do nothing. */
1067 if (! REGNO_QTY_VALID_P (reg))
1068 return;
1070 ent = &qty_table[q];
1072 p = reg_eqv_table[reg].prev;
1073 n = reg_eqv_table[reg].next;
1075 if (n != -1)
1076 reg_eqv_table[n].prev = p;
1077 else
1078 ent->last_reg = p;
1079 if (p != -1)
1080 reg_eqv_table[p].next = n;
1081 else
1082 ent->first_reg = n;
1084 REG_QTY (reg) = -reg - 1;
1087 /* Remove any invalid expressions from the hash table
1088 that refer to any of the registers contained in expression X.
1090 Make sure that newly inserted references to those registers
1091 as subexpressions will be considered valid.
1093 mention_regs is not called when a register itself
1094 is being stored in the table.
1096 Return 1 if we have done something that may have changed the hash code
1097 of X. */
1099 static int
1100 mention_regs (rtx x)
1102 enum rtx_code code;
1103 int i, j;
1104 const char *fmt;
1105 int changed = 0;
1107 if (x == 0)
1108 return 0;
1110 code = GET_CODE (x);
1111 if (code == REG)
1113 unsigned int regno = REGNO (x);
1114 unsigned int endregno
1115 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
1116 : hard_regno_nregs[regno][GET_MODE (x)]);
1117 unsigned int i;
1119 for (i = regno; i < endregno; i++)
1121 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1122 remove_invalid_refs (i);
1124 REG_IN_TABLE (i) = REG_TICK (i);
1125 SUBREG_TICKED (i) = -1;
1128 return 0;
1131 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1132 pseudo if they don't use overlapping words. We handle only pseudos
1133 here for simplicity. */
1134 if (code == SUBREG && REG_P (SUBREG_REG (x))
1135 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1137 unsigned int i = REGNO (SUBREG_REG (x));
1139 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1141 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1142 the last store to this register really stored into this
1143 subreg, then remove the memory of this subreg.
1144 Otherwise, remove any memory of the entire register and
1145 all its subregs from the table. */
1146 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1147 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1148 remove_invalid_refs (i);
1149 else
1150 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1153 REG_IN_TABLE (i) = REG_TICK (i);
1154 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1155 return 0;
1158 /* If X is a comparison or a COMPARE and either operand is a register
1159 that does not have a quantity, give it one. This is so that a later
1160 call to record_jump_equiv won't cause X to be assigned a different
1161 hash code and not found in the table after that call.
1163 It is not necessary to do this here, since rehash_using_reg can
1164 fix up the table later, but doing this here eliminates the need to
1165 call that expensive function in the most common case where the only
1166 use of the register is in the comparison. */
1168 if (code == COMPARE || COMPARISON_P (x))
1170 if (REG_P (XEXP (x, 0))
1171 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1172 if (insert_regs (XEXP (x, 0), NULL, 0))
1174 rehash_using_reg (XEXP (x, 0));
1175 changed = 1;
1178 if (REG_P (XEXP (x, 1))
1179 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1180 if (insert_regs (XEXP (x, 1), NULL, 0))
1182 rehash_using_reg (XEXP (x, 1));
1183 changed = 1;
1187 fmt = GET_RTX_FORMAT (code);
1188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1189 if (fmt[i] == 'e')
1190 changed |= mention_regs (XEXP (x, i));
1191 else if (fmt[i] == 'E')
1192 for (j = 0; j < XVECLEN (x, i); j++)
1193 changed |= mention_regs (XVECEXP (x, i, j));
1195 return changed;
1198 /* Update the register quantities for inserting X into the hash table
1199 with a value equivalent to CLASSP.
1200 (If the class does not contain a REG, it is irrelevant.)
1201 If MODIFIED is nonzero, X is a destination; it is being modified.
1202 Note that delete_reg_equiv should be called on a register
1203 before insert_regs is done on that register with MODIFIED != 0.
1205 Nonzero value means that elements of reg_qty have changed
1206 so X's hash code may be different. */
1208 static int
1209 insert_regs (rtx x, struct table_elt *classp, int modified)
1211 if (REG_P (x))
1213 unsigned int regno = REGNO (x);
1214 int qty_valid;
1216 /* If REGNO is in the equivalence table already but is of the
1217 wrong mode for that equivalence, don't do anything here. */
1219 qty_valid = REGNO_QTY_VALID_P (regno);
1220 if (qty_valid)
1222 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1224 if (ent->mode != GET_MODE (x))
1225 return 0;
1228 if (modified || ! qty_valid)
1230 if (classp)
1231 for (classp = classp->first_same_value;
1232 classp != 0;
1233 classp = classp->next_same_value)
1234 if (REG_P (classp->exp)
1235 && GET_MODE (classp->exp) == GET_MODE (x))
1237 unsigned c_regno = REGNO (classp->exp);
1239 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1241 /* Suppose that 5 is hard reg and 100 and 101 are
1242 pseudos. Consider
1244 (set (reg:si 100) (reg:si 5))
1245 (set (reg:si 5) (reg:si 100))
1246 (set (reg:di 101) (reg:di 5))
1248 We would now set REG_QTY (101) = REG_QTY (5), but the
1249 entry for 5 is in SImode. When we use this later in
1250 copy propagation, we get the register in wrong mode. */
1251 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1252 continue;
1254 make_regs_eqv (regno, c_regno);
1255 return 1;
1258 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1259 than REG_IN_TABLE to find out if there was only a single preceding
1260 invalidation - for the SUBREG - or another one, which would be
1261 for the full register. However, if we find here that REG_TICK
1262 indicates that the register is invalid, it means that it has
1263 been invalidated in a separate operation. The SUBREG might be used
1264 now (then this is a recursive call), or we might use the full REG
1265 now and a SUBREG of it later. So bump up REG_TICK so that
1266 mention_regs will do the right thing. */
1267 if (! modified
1268 && REG_IN_TABLE (regno) >= 0
1269 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1270 REG_TICK (regno)++;
1271 make_new_qty (regno, GET_MODE (x));
1272 return 1;
1275 return 0;
1278 /* If X is a SUBREG, we will likely be inserting the inner register in the
1279 table. If that register doesn't have an assigned quantity number at
1280 this point but does later, the insertion that we will be doing now will
1281 not be accessible because its hash code will have changed. So assign
1282 a quantity number now. */
1284 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1285 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1287 insert_regs (SUBREG_REG (x), NULL, 0);
1288 mention_regs (x);
1289 return 1;
1291 else
1292 return mention_regs (x);
1295 /* Look in or update the hash table. */
1297 /* Remove table element ELT from use in the table.
1298 HASH is its hash code, made using the HASH macro.
1299 It's an argument because often that is known in advance
1300 and we save much time not recomputing it. */
1302 static void
1303 remove_from_table (struct table_elt *elt, unsigned int hash)
1305 if (elt == 0)
1306 return;
1308 /* Mark this element as removed. See cse_insn. */
1309 elt->first_same_value = 0;
1311 /* Remove the table element from its equivalence class. */
1314 struct table_elt *prev = elt->prev_same_value;
1315 struct table_elt *next = elt->next_same_value;
1317 if (next)
1318 next->prev_same_value = prev;
1320 if (prev)
1321 prev->next_same_value = next;
1322 else
1324 struct table_elt *newfirst = next;
1325 while (next)
1327 next->first_same_value = newfirst;
1328 next = next->next_same_value;
1333 /* Remove the table element from its hash bucket. */
1336 struct table_elt *prev = elt->prev_same_hash;
1337 struct table_elt *next = elt->next_same_hash;
1339 if (next)
1340 next->prev_same_hash = prev;
1342 if (prev)
1343 prev->next_same_hash = next;
1344 else if (table[hash] == elt)
1345 table[hash] = next;
1346 else
1348 /* This entry is not in the proper hash bucket. This can happen
1349 when two classes were merged by `merge_equiv_classes'. Search
1350 for the hash bucket that it heads. This happens only very
1351 rarely, so the cost is acceptable. */
1352 for (hash = 0; hash < HASH_SIZE; hash++)
1353 if (table[hash] == elt)
1354 table[hash] = next;
1358 /* Remove the table element from its related-value circular chain. */
1360 if (elt->related_value != 0 && elt->related_value != elt)
1362 struct table_elt *p = elt->related_value;
1364 while (p->related_value != elt)
1365 p = p->related_value;
1366 p->related_value = elt->related_value;
1367 if (p->related_value == p)
1368 p->related_value = 0;
1371 /* Now add it to the free element chain. */
1372 elt->next_same_hash = free_element_chain;
1373 free_element_chain = elt;
1376 /* Look up X in the hash table and return its table element,
1377 or 0 if X is not in the table.
1379 MODE is the machine-mode of X, or if X is an integer constant
1380 with VOIDmode then MODE is the mode with which X will be used.
1382 Here we are satisfied to find an expression whose tree structure
1383 looks like X. */
1385 static struct table_elt *
1386 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1388 struct table_elt *p;
1390 for (p = table[hash]; p; p = p->next_same_hash)
1391 if (mode == p->mode && ((x == p->exp && REG_P (x))
1392 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1393 return p;
1395 return 0;
1398 /* Like `lookup' but don't care whether the table element uses invalid regs.
1399 Also ignore discrepancies in the machine mode of a register. */
1401 static struct table_elt *
1402 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1404 struct table_elt *p;
1406 if (REG_P (x))
1408 unsigned int regno = REGNO (x);
1410 /* Don't check the machine mode when comparing registers;
1411 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1412 for (p = table[hash]; p; p = p->next_same_hash)
1413 if (REG_P (p->exp)
1414 && REGNO (p->exp) == regno)
1415 return p;
1417 else
1419 for (p = table[hash]; p; p = p->next_same_hash)
1420 if (mode == p->mode
1421 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1422 return p;
1425 return 0;
1428 /* Look for an expression equivalent to X and with code CODE.
1429 If one is found, return that expression. */
1431 static rtx
1432 lookup_as_function (rtx x, enum rtx_code code)
1434 struct table_elt *p
1435 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1437 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1438 long as we are narrowing. So if we looked in vain for a mode narrower
1439 than word_mode before, look for word_mode now. */
1440 if (p == 0 && code == CONST_INT
1441 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1443 x = copy_rtx (x);
1444 PUT_MODE (x, word_mode);
1445 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1448 if (p == 0)
1449 return 0;
1451 for (p = p->first_same_value; p; p = p->next_same_value)
1452 if (GET_CODE (p->exp) == code
1453 /* Make sure this is a valid entry in the table. */
1454 && exp_equiv_p (p->exp, p->exp, 1, false))
1455 return p->exp;
1457 return 0;
1460 /* Insert X in the hash table, assuming HASH is its hash code
1461 and CLASSP is an element of the class it should go in
1462 (or 0 if a new class should be made).
1463 It is inserted at the proper position to keep the class in
1464 the order cheapest first.
1466 MODE is the machine-mode of X, or if X is an integer constant
1467 with VOIDmode then MODE is the mode with which X will be used.
1469 For elements of equal cheapness, the most recent one
1470 goes in front, except that the first element in the list
1471 remains first unless a cheaper element is added. The order of
1472 pseudo-registers does not matter, as canon_reg will be called to
1473 find the cheapest when a register is retrieved from the table.
1475 The in_memory field in the hash table element is set to 0.
1476 The caller must set it nonzero if appropriate.
1478 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1479 and if insert_regs returns a nonzero value
1480 you must then recompute its hash code before calling here.
1482 If necessary, update table showing constant values of quantities. */
1484 #define CHEAPER(X, Y) \
1485 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1487 static struct table_elt *
1488 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1490 struct table_elt *elt;
1492 /* If X is a register and we haven't made a quantity for it,
1493 something is wrong. */
1494 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1496 /* If X is a hard register, show it is being put in the table. */
1497 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1499 unsigned int regno = REGNO (x);
1500 unsigned int endregno = regno + hard_regno_nregs[regno][GET_MODE (x)];
1501 unsigned int i;
1503 for (i = regno; i < endregno; i++)
1504 SET_HARD_REG_BIT (hard_regs_in_table, i);
1507 /* Put an element for X into the right hash bucket. */
1509 elt = free_element_chain;
1510 if (elt)
1511 free_element_chain = elt->next_same_hash;
1512 else
1513 elt = XNEW (struct table_elt);
1515 elt->exp = x;
1516 elt->canon_exp = NULL_RTX;
1517 elt->cost = COST (x);
1518 elt->regcost = approx_reg_cost (x);
1519 elt->next_same_value = 0;
1520 elt->prev_same_value = 0;
1521 elt->next_same_hash = table[hash];
1522 elt->prev_same_hash = 0;
1523 elt->related_value = 0;
1524 elt->in_memory = 0;
1525 elt->mode = mode;
1526 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1528 if (table[hash])
1529 table[hash]->prev_same_hash = elt;
1530 table[hash] = elt;
1532 /* Put it into the proper value-class. */
1533 if (classp)
1535 classp = classp->first_same_value;
1536 if (CHEAPER (elt, classp))
1537 /* Insert at the head of the class. */
1539 struct table_elt *p;
1540 elt->next_same_value = classp;
1541 classp->prev_same_value = elt;
1542 elt->first_same_value = elt;
1544 for (p = classp; p; p = p->next_same_value)
1545 p->first_same_value = elt;
1547 else
1549 /* Insert not at head of the class. */
1550 /* Put it after the last element cheaper than X. */
1551 struct table_elt *p, *next;
1553 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1554 p = next);
1556 /* Put it after P and before NEXT. */
1557 elt->next_same_value = next;
1558 if (next)
1559 next->prev_same_value = elt;
1561 elt->prev_same_value = p;
1562 p->next_same_value = elt;
1563 elt->first_same_value = classp;
1566 else
1567 elt->first_same_value = elt;
1569 /* If this is a constant being set equivalent to a register or a register
1570 being set equivalent to a constant, note the constant equivalence.
1572 If this is a constant, it cannot be equivalent to a different constant,
1573 and a constant is the only thing that can be cheaper than a register. So
1574 we know the register is the head of the class (before the constant was
1575 inserted).
1577 If this is a register that is not already known equivalent to a
1578 constant, we must check the entire class.
1580 If this is a register that is already known equivalent to an insn,
1581 update the qtys `const_insn' to show that `this_insn' is the latest
1582 insn making that quantity equivalent to the constant. */
1584 if (elt->is_const && classp && REG_P (classp->exp)
1585 && !REG_P (x))
1587 int exp_q = REG_QTY (REGNO (classp->exp));
1588 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1590 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1591 exp_ent->const_insn = this_insn;
1594 else if (REG_P (x)
1595 && classp
1596 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1597 && ! elt->is_const)
1599 struct table_elt *p;
1601 for (p = classp; p != 0; p = p->next_same_value)
1603 if (p->is_const && !REG_P (p->exp))
1605 int x_q = REG_QTY (REGNO (x));
1606 struct qty_table_elem *x_ent = &qty_table[x_q];
1608 x_ent->const_rtx
1609 = gen_lowpart (GET_MODE (x), p->exp);
1610 x_ent->const_insn = this_insn;
1611 break;
1616 else if (REG_P (x)
1617 && qty_table[REG_QTY (REGNO (x))].const_rtx
1618 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1619 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1621 /* If this is a constant with symbolic value,
1622 and it has a term with an explicit integer value,
1623 link it up with related expressions. */
1624 if (GET_CODE (x) == CONST)
1626 rtx subexp = get_related_value (x);
1627 unsigned subhash;
1628 struct table_elt *subelt, *subelt_prev;
1630 if (subexp != 0)
1632 /* Get the integer-free subexpression in the hash table. */
1633 subhash = SAFE_HASH (subexp, mode);
1634 subelt = lookup (subexp, subhash, mode);
1635 if (subelt == 0)
1636 subelt = insert (subexp, NULL, subhash, mode);
1637 /* Initialize SUBELT's circular chain if it has none. */
1638 if (subelt->related_value == 0)
1639 subelt->related_value = subelt;
1640 /* Find the element in the circular chain that precedes SUBELT. */
1641 subelt_prev = subelt;
1642 while (subelt_prev->related_value != subelt)
1643 subelt_prev = subelt_prev->related_value;
1644 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1645 This way the element that follows SUBELT is the oldest one. */
1646 elt->related_value = subelt_prev->related_value;
1647 subelt_prev->related_value = elt;
1651 return elt;
1654 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1655 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1656 the two classes equivalent.
1658 CLASS1 will be the surviving class; CLASS2 should not be used after this
1659 call.
1661 Any invalid entries in CLASS2 will not be copied. */
1663 static void
1664 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1666 struct table_elt *elt, *next, *new;
1668 /* Ensure we start with the head of the classes. */
1669 class1 = class1->first_same_value;
1670 class2 = class2->first_same_value;
1672 /* If they were already equal, forget it. */
1673 if (class1 == class2)
1674 return;
1676 for (elt = class2; elt; elt = next)
1678 unsigned int hash;
1679 rtx exp = elt->exp;
1680 enum machine_mode mode = elt->mode;
1682 next = elt->next_same_value;
1684 /* Remove old entry, make a new one in CLASS1's class.
1685 Don't do this for invalid entries as we cannot find their
1686 hash code (it also isn't necessary). */
1687 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1689 bool need_rehash = false;
1691 hash_arg_in_memory = 0;
1692 hash = HASH (exp, mode);
1694 if (REG_P (exp))
1696 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1697 delete_reg_equiv (REGNO (exp));
1700 remove_from_table (elt, hash);
1702 if (insert_regs (exp, class1, 0) || need_rehash)
1704 rehash_using_reg (exp);
1705 hash = HASH (exp, mode);
1707 new = insert (exp, class1, hash, mode);
1708 new->in_memory = hash_arg_in_memory;
1713 /* Flush the entire hash table. */
1715 static void
1716 flush_hash_table (void)
1718 int i;
1719 struct table_elt *p;
1721 for (i = 0; i < HASH_SIZE; i++)
1722 for (p = table[i]; p; p = table[i])
1724 /* Note that invalidate can remove elements
1725 after P in the current hash chain. */
1726 if (REG_P (p->exp))
1727 invalidate (p->exp, p->mode);
1728 else
1729 remove_from_table (p, i);
1733 /* Function called for each rtx to check whether true dependence exist. */
1734 struct check_dependence_data
1736 enum machine_mode mode;
1737 rtx exp;
1738 rtx addr;
1741 static int
1742 check_dependence (rtx *x, void *data)
1744 struct check_dependence_data *d = (struct check_dependence_data *) data;
1745 if (*x && MEM_P (*x))
1746 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1747 cse_rtx_varies_p);
1748 else
1749 return 0;
1752 /* Remove from the hash table, or mark as invalid, all expressions whose
1753 values could be altered by storing in X. X is a register, a subreg, or
1754 a memory reference with nonvarying address (because, when a memory
1755 reference with a varying address is stored in, all memory references are
1756 removed by invalidate_memory so specific invalidation is superfluous).
1757 FULL_MODE, if not VOIDmode, indicates that this much should be
1758 invalidated instead of just the amount indicated by the mode of X. This
1759 is only used for bitfield stores into memory.
1761 A nonvarying address may be just a register or just a symbol reference,
1762 or it may be either of those plus a numeric offset. */
1764 static void
1765 invalidate (rtx x, enum machine_mode full_mode)
1767 int i;
1768 struct table_elt *p;
1769 rtx addr;
1771 switch (GET_CODE (x))
1773 case REG:
1775 /* If X is a register, dependencies on its contents are recorded
1776 through the qty number mechanism. Just change the qty number of
1777 the register, mark it as invalid for expressions that refer to it,
1778 and remove it itself. */
1779 unsigned int regno = REGNO (x);
1780 unsigned int hash = HASH (x, GET_MODE (x));
1782 /* Remove REGNO from any quantity list it might be on and indicate
1783 that its value might have changed. If it is a pseudo, remove its
1784 entry from the hash table.
1786 For a hard register, we do the first two actions above for any
1787 additional hard registers corresponding to X. Then, if any of these
1788 registers are in the table, we must remove any REG entries that
1789 overlap these registers. */
1791 delete_reg_equiv (regno);
1792 REG_TICK (regno)++;
1793 SUBREG_TICKED (regno) = -1;
1795 if (regno >= FIRST_PSEUDO_REGISTER)
1797 /* Because a register can be referenced in more than one mode,
1798 we might have to remove more than one table entry. */
1799 struct table_elt *elt;
1801 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1802 remove_from_table (elt, hash);
1804 else
1806 HOST_WIDE_INT in_table
1807 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1808 unsigned int endregno
1809 = regno + hard_regno_nregs[regno][GET_MODE (x)];
1810 unsigned int tregno, tendregno, rn;
1811 struct table_elt *p, *next;
1813 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1815 for (rn = regno + 1; rn < endregno; rn++)
1817 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1818 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1819 delete_reg_equiv (rn);
1820 REG_TICK (rn)++;
1821 SUBREG_TICKED (rn) = -1;
1824 if (in_table)
1825 for (hash = 0; hash < HASH_SIZE; hash++)
1826 for (p = table[hash]; p; p = next)
1828 next = p->next_same_hash;
1830 if (!REG_P (p->exp)
1831 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1832 continue;
1834 tregno = REGNO (p->exp);
1835 tendregno
1836 = tregno + hard_regno_nregs[tregno][GET_MODE (p->exp)];
1837 if (tendregno > regno && tregno < endregno)
1838 remove_from_table (p, hash);
1842 return;
1844 case SUBREG:
1845 invalidate (SUBREG_REG (x), VOIDmode);
1846 return;
1848 case PARALLEL:
1849 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1850 invalidate (XVECEXP (x, 0, i), VOIDmode);
1851 return;
1853 case EXPR_LIST:
1854 /* This is part of a disjoint return value; extract the location in
1855 question ignoring the offset. */
1856 invalidate (XEXP (x, 0), VOIDmode);
1857 return;
1859 case MEM:
1860 addr = canon_rtx (get_addr (XEXP (x, 0)));
1861 /* Calculate the canonical version of X here so that
1862 true_dependence doesn't generate new RTL for X on each call. */
1863 x = canon_rtx (x);
1865 /* Remove all hash table elements that refer to overlapping pieces of
1866 memory. */
1867 if (full_mode == VOIDmode)
1868 full_mode = GET_MODE (x);
1870 for (i = 0; i < HASH_SIZE; i++)
1872 struct table_elt *next;
1874 for (p = table[i]; p; p = next)
1876 next = p->next_same_hash;
1877 if (p->in_memory)
1879 struct check_dependence_data d;
1881 /* Just canonicalize the expression once;
1882 otherwise each time we call invalidate
1883 true_dependence will canonicalize the
1884 expression again. */
1885 if (!p->canon_exp)
1886 p->canon_exp = canon_rtx (p->exp);
1887 d.exp = x;
1888 d.addr = addr;
1889 d.mode = full_mode;
1890 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1891 remove_from_table (p, i);
1895 return;
1897 default:
1898 gcc_unreachable ();
1902 /* Remove all expressions that refer to register REGNO,
1903 since they are already invalid, and we are about to
1904 mark that register valid again and don't want the old
1905 expressions to reappear as valid. */
1907 static void
1908 remove_invalid_refs (unsigned int regno)
1910 unsigned int i;
1911 struct table_elt *p, *next;
1913 for (i = 0; i < HASH_SIZE; i++)
1914 for (p = table[i]; p; p = next)
1916 next = p->next_same_hash;
1917 if (!REG_P (p->exp)
1918 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1919 remove_from_table (p, i);
1923 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1924 and mode MODE. */
1925 static void
1926 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1927 enum machine_mode mode)
1929 unsigned int i;
1930 struct table_elt *p, *next;
1931 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1933 for (i = 0; i < HASH_SIZE; i++)
1934 for (p = table[i]; p; p = next)
1936 rtx exp = p->exp;
1937 next = p->next_same_hash;
1939 if (!REG_P (exp)
1940 && (GET_CODE (exp) != SUBREG
1941 || !REG_P (SUBREG_REG (exp))
1942 || REGNO (SUBREG_REG (exp)) != regno
1943 || (((SUBREG_BYTE (exp)
1944 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1945 && SUBREG_BYTE (exp) <= end))
1946 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1947 remove_from_table (p, i);
1951 /* Recompute the hash codes of any valid entries in the hash table that
1952 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1954 This is called when we make a jump equivalence. */
1956 static void
1957 rehash_using_reg (rtx x)
1959 unsigned int i;
1960 struct table_elt *p, *next;
1961 unsigned hash;
1963 if (GET_CODE (x) == SUBREG)
1964 x = SUBREG_REG (x);
1966 /* If X is not a register or if the register is known not to be in any
1967 valid entries in the table, we have no work to do. */
1969 if (!REG_P (x)
1970 || REG_IN_TABLE (REGNO (x)) < 0
1971 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1972 return;
1974 /* Scan all hash chains looking for valid entries that mention X.
1975 If we find one and it is in the wrong hash chain, move it. */
1977 for (i = 0; i < HASH_SIZE; i++)
1978 for (p = table[i]; p; p = next)
1980 next = p->next_same_hash;
1981 if (reg_mentioned_p (x, p->exp)
1982 && exp_equiv_p (p->exp, p->exp, 1, false)
1983 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1985 if (p->next_same_hash)
1986 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1988 if (p->prev_same_hash)
1989 p->prev_same_hash->next_same_hash = p->next_same_hash;
1990 else
1991 table[i] = p->next_same_hash;
1993 p->next_same_hash = table[hash];
1994 p->prev_same_hash = 0;
1995 if (table[hash])
1996 table[hash]->prev_same_hash = p;
1997 table[hash] = p;
2002 /* Remove from the hash table any expression that is a call-clobbered
2003 register. Also update their TICK values. */
2005 static void
2006 invalidate_for_call (void)
2008 unsigned int regno, endregno;
2009 unsigned int i;
2010 unsigned hash;
2011 struct table_elt *p, *next;
2012 int in_table = 0;
2014 /* Go through all the hard registers. For each that is clobbered in
2015 a CALL_INSN, remove the register from quantity chains and update
2016 reg_tick if defined. Also see if any of these registers is currently
2017 in the table. */
2019 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
2020 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
2022 delete_reg_equiv (regno);
2023 if (REG_TICK (regno) >= 0)
2025 REG_TICK (regno)++;
2026 SUBREG_TICKED (regno) = -1;
2029 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
2032 /* In the case where we have no call-clobbered hard registers in the
2033 table, we are done. Otherwise, scan the table and remove any
2034 entry that overlaps a call-clobbered register. */
2036 if (in_table)
2037 for (hash = 0; hash < HASH_SIZE; hash++)
2038 for (p = table[hash]; p; p = next)
2040 next = p->next_same_hash;
2042 if (!REG_P (p->exp)
2043 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
2044 continue;
2046 regno = REGNO (p->exp);
2047 endregno = regno + hard_regno_nregs[regno][GET_MODE (p->exp)];
2049 for (i = regno; i < endregno; i++)
2050 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2052 remove_from_table (p, hash);
2053 break;
2058 /* Given an expression X of type CONST,
2059 and ELT which is its table entry (or 0 if it
2060 is not in the hash table),
2061 return an alternate expression for X as a register plus integer.
2062 If none can be found, return 0. */
2064 static rtx
2065 use_related_value (rtx x, struct table_elt *elt)
2067 struct table_elt *relt = 0;
2068 struct table_elt *p, *q;
2069 HOST_WIDE_INT offset;
2071 /* First, is there anything related known?
2072 If we have a table element, we can tell from that.
2073 Otherwise, must look it up. */
2075 if (elt != 0 && elt->related_value != 0)
2076 relt = elt;
2077 else if (elt == 0 && GET_CODE (x) == CONST)
2079 rtx subexp = get_related_value (x);
2080 if (subexp != 0)
2081 relt = lookup (subexp,
2082 SAFE_HASH (subexp, GET_MODE (subexp)),
2083 GET_MODE (subexp));
2086 if (relt == 0)
2087 return 0;
2089 /* Search all related table entries for one that has an
2090 equivalent register. */
2092 p = relt;
2093 while (1)
2095 /* This loop is strange in that it is executed in two different cases.
2096 The first is when X is already in the table. Then it is searching
2097 the RELATED_VALUE list of X's class (RELT). The second case is when
2098 X is not in the table. Then RELT points to a class for the related
2099 value.
2101 Ensure that, whatever case we are in, that we ignore classes that have
2102 the same value as X. */
2104 if (rtx_equal_p (x, p->exp))
2105 q = 0;
2106 else
2107 for (q = p->first_same_value; q; q = q->next_same_value)
2108 if (REG_P (q->exp))
2109 break;
2111 if (q)
2112 break;
2114 p = p->related_value;
2116 /* We went all the way around, so there is nothing to be found.
2117 Alternatively, perhaps RELT was in the table for some other reason
2118 and it has no related values recorded. */
2119 if (p == relt || p == 0)
2120 break;
2123 if (q == 0)
2124 return 0;
2126 offset = (get_integer_term (x) - get_integer_term (p->exp));
2127 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2128 return plus_constant (q->exp, offset);
2131 /* Hash a string. Just add its bytes up. */
2132 static inline unsigned
2133 hash_rtx_string (const char *ps)
2135 unsigned hash = 0;
2136 const unsigned char *p = (const unsigned char *) ps;
2138 if (p)
2139 while (*p)
2140 hash += *p++;
2142 return hash;
2145 /* Hash an rtx. We are careful to make sure the value is never negative.
2146 Equivalent registers hash identically.
2147 MODE is used in hashing for CONST_INTs only;
2148 otherwise the mode of X is used.
2150 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2152 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2153 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2155 Note that cse_insn knows that the hash code of a MEM expression
2156 is just (int) MEM plus the hash code of the address. */
2158 unsigned
2159 hash_rtx (rtx x, enum machine_mode mode, int *do_not_record_p,
2160 int *hash_arg_in_memory_p, bool have_reg_qty)
2162 int i, j;
2163 unsigned hash = 0;
2164 enum rtx_code code;
2165 const char *fmt;
2167 /* Used to turn recursion into iteration. We can't rely on GCC's
2168 tail-recursion elimination since we need to keep accumulating values
2169 in HASH. */
2170 repeat:
2171 if (x == 0)
2172 return hash;
2174 code = GET_CODE (x);
2175 switch (code)
2177 case REG:
2179 unsigned int regno = REGNO (x);
2181 if (!reload_completed)
2183 /* On some machines, we can't record any non-fixed hard register,
2184 because extending its life will cause reload problems. We
2185 consider ap, fp, sp, gp to be fixed for this purpose.
2187 We also consider CCmode registers to be fixed for this purpose;
2188 failure to do so leads to failure to simplify 0<100 type of
2189 conditionals.
2191 On all machines, we can't record any global registers.
2192 Nor should we record any register that is in a small
2193 class, as defined by CLASS_LIKELY_SPILLED_P. */
2194 bool record;
2196 if (regno >= FIRST_PSEUDO_REGISTER)
2197 record = true;
2198 else if (x == frame_pointer_rtx
2199 || x == hard_frame_pointer_rtx
2200 || x == arg_pointer_rtx
2201 || x == stack_pointer_rtx
2202 || x == pic_offset_table_rtx)
2203 record = true;
2204 else if (global_regs[regno])
2205 record = false;
2206 else if (fixed_regs[regno])
2207 record = true;
2208 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2209 record = true;
2210 else if (SMALL_REGISTER_CLASSES)
2211 record = false;
2212 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2213 record = false;
2214 else
2215 record = true;
2217 if (!record)
2219 *do_not_record_p = 1;
2220 return 0;
2224 hash += ((unsigned int) REG << 7);
2225 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2226 return hash;
2229 /* We handle SUBREG of a REG specially because the underlying
2230 reg changes its hash value with every value change; we don't
2231 want to have to forget unrelated subregs when one subreg changes. */
2232 case SUBREG:
2234 if (REG_P (SUBREG_REG (x)))
2236 hash += (((unsigned int) SUBREG << 7)
2237 + REGNO (SUBREG_REG (x))
2238 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2239 return hash;
2241 break;
2244 case CONST_INT:
2245 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2246 + (unsigned int) INTVAL (x));
2247 return hash;
2249 case CONST_DOUBLE:
2250 /* This is like the general case, except that it only counts
2251 the integers representing the constant. */
2252 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2253 if (GET_MODE (x) != VOIDmode)
2254 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2255 else
2256 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2257 + (unsigned int) CONST_DOUBLE_HIGH (x));
2258 return hash;
2260 case CONST_VECTOR:
2262 int units;
2263 rtx elt;
2265 units = CONST_VECTOR_NUNITS (x);
2267 for (i = 0; i < units; ++i)
2269 elt = CONST_VECTOR_ELT (x, i);
2270 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2271 hash_arg_in_memory_p, have_reg_qty);
2274 return hash;
2277 /* Assume there is only one rtx object for any given label. */
2278 case LABEL_REF:
2279 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2280 differences and differences between each stage's debugging dumps. */
2281 hash += (((unsigned int) LABEL_REF << 7)
2282 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2283 return hash;
2285 case SYMBOL_REF:
2287 /* Don't hash on the symbol's address to avoid bootstrap differences.
2288 Different hash values may cause expressions to be recorded in
2289 different orders and thus different registers to be used in the
2290 final assembler. This also avoids differences in the dump files
2291 between various stages. */
2292 unsigned int h = 0;
2293 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2295 while (*p)
2296 h += (h << 7) + *p++; /* ??? revisit */
2298 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2299 return hash;
2302 case MEM:
2303 /* We don't record if marked volatile or if BLKmode since we don't
2304 know the size of the move. */
2305 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2307 *do_not_record_p = 1;
2308 return 0;
2310 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2311 *hash_arg_in_memory_p = 1;
2313 /* Now that we have already found this special case,
2314 might as well speed it up as much as possible. */
2315 hash += (unsigned) MEM;
2316 x = XEXP (x, 0);
2317 goto repeat;
2319 case USE:
2320 /* A USE that mentions non-volatile memory needs special
2321 handling since the MEM may be BLKmode which normally
2322 prevents an entry from being made. Pure calls are
2323 marked by a USE which mentions BLKmode memory.
2324 See calls.c:emit_call_1. */
2325 if (MEM_P (XEXP (x, 0))
2326 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2328 hash += (unsigned) USE;
2329 x = XEXP (x, 0);
2331 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2332 *hash_arg_in_memory_p = 1;
2334 /* Now that we have already found this special case,
2335 might as well speed it up as much as possible. */
2336 hash += (unsigned) MEM;
2337 x = XEXP (x, 0);
2338 goto repeat;
2340 break;
2342 case PRE_DEC:
2343 case PRE_INC:
2344 case POST_DEC:
2345 case POST_INC:
2346 case PRE_MODIFY:
2347 case POST_MODIFY:
2348 case PC:
2349 case CC0:
2350 case CALL:
2351 case UNSPEC_VOLATILE:
2352 *do_not_record_p = 1;
2353 return 0;
2355 case ASM_OPERANDS:
2356 if (MEM_VOLATILE_P (x))
2358 *do_not_record_p = 1;
2359 return 0;
2361 else
2363 /* We don't want to take the filename and line into account. */
2364 hash += (unsigned) code + (unsigned) GET_MODE (x)
2365 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2366 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2367 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2369 if (ASM_OPERANDS_INPUT_LENGTH (x))
2371 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2373 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2374 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2375 do_not_record_p, hash_arg_in_memory_p,
2376 have_reg_qty)
2377 + hash_rtx_string
2378 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2381 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2382 x = ASM_OPERANDS_INPUT (x, 0);
2383 mode = GET_MODE (x);
2384 goto repeat;
2387 return hash;
2389 break;
2391 default:
2392 break;
2395 i = GET_RTX_LENGTH (code) - 1;
2396 hash += (unsigned) code + (unsigned) GET_MODE (x);
2397 fmt = GET_RTX_FORMAT (code);
2398 for (; i >= 0; i--)
2400 switch (fmt[i])
2402 case 'e':
2403 /* If we are about to do the last recursive call
2404 needed at this level, change it into iteration.
2405 This function is called enough to be worth it. */
2406 if (i == 0)
2408 x = XEXP (x, i);
2409 goto repeat;
2412 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2413 hash_arg_in_memory_p, have_reg_qty);
2414 break;
2416 case 'E':
2417 for (j = 0; j < XVECLEN (x, i); j++)
2418 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2419 hash_arg_in_memory_p, have_reg_qty);
2420 break;
2422 case 's':
2423 hash += hash_rtx_string (XSTR (x, i));
2424 break;
2426 case 'i':
2427 hash += (unsigned int) XINT (x, i);
2428 break;
2430 case '0': case 't':
2431 /* Unused. */
2432 break;
2434 default:
2435 gcc_unreachable ();
2439 return hash;
2442 /* Hash an rtx X for cse via hash_rtx.
2443 Stores 1 in do_not_record if any subexpression is volatile.
2444 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2445 does not have the RTX_UNCHANGING_P bit set. */
2447 static inline unsigned
2448 canon_hash (rtx x, enum machine_mode mode)
2450 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2453 /* Like canon_hash but with no side effects, i.e. do_not_record
2454 and hash_arg_in_memory are not changed. */
2456 static inline unsigned
2457 safe_hash (rtx x, enum machine_mode mode)
2459 int dummy_do_not_record;
2460 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2463 /* Return 1 iff X and Y would canonicalize into the same thing,
2464 without actually constructing the canonicalization of either one.
2465 If VALIDATE is nonzero,
2466 we assume X is an expression being processed from the rtl
2467 and Y was found in the hash table. We check register refs
2468 in Y for being marked as valid.
2470 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2473 exp_equiv_p (rtx x, rtx y, int validate, bool for_gcse)
2475 int i, j;
2476 enum rtx_code code;
2477 const char *fmt;
2479 /* Note: it is incorrect to assume an expression is equivalent to itself
2480 if VALIDATE is nonzero. */
2481 if (x == y && !validate)
2482 return 1;
2484 if (x == 0 || y == 0)
2485 return x == y;
2487 code = GET_CODE (x);
2488 if (code != GET_CODE (y))
2489 return 0;
2491 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2492 if (GET_MODE (x) != GET_MODE (y))
2493 return 0;
2495 switch (code)
2497 case PC:
2498 case CC0:
2499 case CONST_INT:
2500 case CONST_DOUBLE:
2501 return x == y;
2503 case LABEL_REF:
2504 return XEXP (x, 0) == XEXP (y, 0);
2506 case SYMBOL_REF:
2507 return XSTR (x, 0) == XSTR (y, 0);
2509 case REG:
2510 if (for_gcse)
2511 return REGNO (x) == REGNO (y);
2512 else
2514 unsigned int regno = REGNO (y);
2515 unsigned int i;
2516 unsigned int endregno
2517 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
2518 : hard_regno_nregs[regno][GET_MODE (y)]);
2520 /* If the quantities are not the same, the expressions are not
2521 equivalent. If there are and we are not to validate, they
2522 are equivalent. Otherwise, ensure all regs are up-to-date. */
2524 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2525 return 0;
2527 if (! validate)
2528 return 1;
2530 for (i = regno; i < endregno; i++)
2531 if (REG_IN_TABLE (i) != REG_TICK (i))
2532 return 0;
2534 return 1;
2537 case MEM:
2538 if (for_gcse)
2540 /* A volatile mem should not be considered equivalent to any
2541 other. */
2542 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2543 return 0;
2545 /* Can't merge two expressions in different alias sets, since we
2546 can decide that the expression is transparent in a block when
2547 it isn't, due to it being set with the different alias set.
2549 Also, can't merge two expressions with different MEM_ATTRS.
2550 They could e.g. be two different entities allocated into the
2551 same space on the stack (see e.g. PR25130). In that case, the
2552 MEM addresses can be the same, even though the two MEMs are
2553 absolutely not equivalent.
2555 But because really all MEM attributes should be the same for
2556 equivalent MEMs, we just use the invariant that MEMs that have
2557 the same attributes share the same mem_attrs data structure. */
2558 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2559 return 0;
2561 break;
2563 /* For commutative operations, check both orders. */
2564 case PLUS:
2565 case MULT:
2566 case AND:
2567 case IOR:
2568 case XOR:
2569 case NE:
2570 case EQ:
2571 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2572 validate, for_gcse)
2573 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2574 validate, for_gcse))
2575 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2576 validate, for_gcse)
2577 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2578 validate, for_gcse)));
2580 case ASM_OPERANDS:
2581 /* We don't use the generic code below because we want to
2582 disregard filename and line numbers. */
2584 /* A volatile asm isn't equivalent to any other. */
2585 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2586 return 0;
2588 if (GET_MODE (x) != GET_MODE (y)
2589 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2590 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2591 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2592 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2593 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2594 return 0;
2596 if (ASM_OPERANDS_INPUT_LENGTH (x))
2598 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2599 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2600 ASM_OPERANDS_INPUT (y, i),
2601 validate, for_gcse)
2602 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2603 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2604 return 0;
2607 return 1;
2609 default:
2610 break;
2613 /* Compare the elements. If any pair of corresponding elements
2614 fail to match, return 0 for the whole thing. */
2616 fmt = GET_RTX_FORMAT (code);
2617 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2619 switch (fmt[i])
2621 case 'e':
2622 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2623 validate, for_gcse))
2624 return 0;
2625 break;
2627 case 'E':
2628 if (XVECLEN (x, i) != XVECLEN (y, i))
2629 return 0;
2630 for (j = 0; j < XVECLEN (x, i); j++)
2631 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2632 validate, for_gcse))
2633 return 0;
2634 break;
2636 case 's':
2637 if (strcmp (XSTR (x, i), XSTR (y, i)))
2638 return 0;
2639 break;
2641 case 'i':
2642 if (XINT (x, i) != XINT (y, i))
2643 return 0;
2644 break;
2646 case 'w':
2647 if (XWINT (x, i) != XWINT (y, i))
2648 return 0;
2649 break;
2651 case '0':
2652 case 't':
2653 break;
2655 default:
2656 gcc_unreachable ();
2660 return 1;
2663 /* Return 1 if X has a value that can vary even between two
2664 executions of the program. 0 means X can be compared reliably
2665 against certain constants or near-constants. */
2667 static int
2668 cse_rtx_varies_p (rtx x, int from_alias)
2670 /* We need not check for X and the equivalence class being of the same
2671 mode because if X is equivalent to a constant in some mode, it
2672 doesn't vary in any mode. */
2674 if (REG_P (x)
2675 && REGNO_QTY_VALID_P (REGNO (x)))
2677 int x_q = REG_QTY (REGNO (x));
2678 struct qty_table_elem *x_ent = &qty_table[x_q];
2680 if (GET_MODE (x) == x_ent->mode
2681 && x_ent->const_rtx != NULL_RTX)
2682 return 0;
2685 if (GET_CODE (x) == PLUS
2686 && GET_CODE (XEXP (x, 1)) == CONST_INT
2687 && REG_P (XEXP (x, 0))
2688 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2690 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2691 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2693 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2694 && x0_ent->const_rtx != NULL_RTX)
2695 return 0;
2698 /* This can happen as the result of virtual register instantiation, if
2699 the initial constant is too large to be a valid address. This gives
2700 us a three instruction sequence, load large offset into a register,
2701 load fp minus a constant into a register, then a MEM which is the
2702 sum of the two `constant' registers. */
2703 if (GET_CODE (x) == PLUS
2704 && REG_P (XEXP (x, 0))
2705 && REG_P (XEXP (x, 1))
2706 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2707 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2709 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2710 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2711 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2712 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2714 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2715 && x0_ent->const_rtx != NULL_RTX
2716 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2717 && x1_ent->const_rtx != NULL_RTX)
2718 return 0;
2721 return rtx_varies_p (x, from_alias);
2724 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2725 the result if necessary. INSN is as for canon_reg. */
2727 static void
2728 validate_canon_reg (rtx *xloc, rtx insn)
2730 rtx new = canon_reg (*xloc, insn);
2732 /* If replacing pseudo with hard reg or vice versa, ensure the
2733 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2734 if (insn != 0 && new != 0)
2735 validate_change (insn, xloc, new, 1);
2736 else
2737 *xloc = new;
2740 /* Canonicalize an expression:
2741 replace each register reference inside it
2742 with the "oldest" equivalent register.
2744 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2745 after we make our substitution. The calls are made with IN_GROUP nonzero
2746 so apply_change_group must be called upon the outermost return from this
2747 function (unless INSN is zero). The result of apply_change_group can
2748 generally be discarded since the changes we are making are optional. */
2750 static rtx
2751 canon_reg (rtx x, rtx insn)
2753 int i;
2754 enum rtx_code code;
2755 const char *fmt;
2757 if (x == 0)
2758 return x;
2760 code = GET_CODE (x);
2761 switch (code)
2763 case PC:
2764 case CC0:
2765 case CONST:
2766 case CONST_INT:
2767 case CONST_DOUBLE:
2768 case CONST_VECTOR:
2769 case SYMBOL_REF:
2770 case LABEL_REF:
2771 case ADDR_VEC:
2772 case ADDR_DIFF_VEC:
2773 return x;
2775 case REG:
2777 int first;
2778 int q;
2779 struct qty_table_elem *ent;
2781 /* Never replace a hard reg, because hard regs can appear
2782 in more than one machine mode, and we must preserve the mode
2783 of each occurrence. Also, some hard regs appear in
2784 MEMs that are shared and mustn't be altered. Don't try to
2785 replace any reg that maps to a reg of class NO_REGS. */
2786 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2787 || ! REGNO_QTY_VALID_P (REGNO (x)))
2788 return x;
2790 q = REG_QTY (REGNO (x));
2791 ent = &qty_table[q];
2792 first = ent->first_reg;
2793 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2794 : REGNO_REG_CLASS (first) == NO_REGS ? x
2795 : gen_rtx_REG (ent->mode, first));
2798 default:
2799 break;
2802 fmt = GET_RTX_FORMAT (code);
2803 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2805 int j;
2807 if (fmt[i] == 'e')
2808 validate_canon_reg (&XEXP (x, i), insn);
2809 else if (fmt[i] == 'E')
2810 for (j = 0; j < XVECLEN (x, i); j++)
2811 validate_canon_reg (&XVECEXP (x, i, j), insn);
2814 return x;
2817 /* LOC is a location within INSN that is an operand address (the contents of
2818 a MEM). Find the best equivalent address to use that is valid for this
2819 insn.
2821 On most CISC machines, complicated address modes are costly, and rtx_cost
2822 is a good approximation for that cost. However, most RISC machines have
2823 only a few (usually only one) memory reference formats. If an address is
2824 valid at all, it is often just as cheap as any other address. Hence, for
2825 RISC machines, we use `address_cost' to compare the costs of various
2826 addresses. For two addresses of equal cost, choose the one with the
2827 highest `rtx_cost' value as that has the potential of eliminating the
2828 most insns. For equal costs, we choose the first in the equivalence
2829 class. Note that we ignore the fact that pseudo registers are cheaper than
2830 hard registers here because we would also prefer the pseudo registers. */
2832 static void
2833 find_best_addr (rtx insn, rtx *loc, enum machine_mode mode)
2835 struct table_elt *elt;
2836 rtx addr = *loc;
2837 struct table_elt *p;
2838 int found_better = 1;
2839 int save_do_not_record = do_not_record;
2840 int save_hash_arg_in_memory = hash_arg_in_memory;
2841 int addr_volatile;
2842 int regno;
2843 unsigned hash;
2845 /* Do not try to replace constant addresses or addresses of local and
2846 argument slots. These MEM expressions are made only once and inserted
2847 in many instructions, as well as being used to control symbol table
2848 output. It is not safe to clobber them.
2850 There are some uncommon cases where the address is already in a register
2851 for some reason, but we cannot take advantage of that because we have
2852 no easy way to unshare the MEM. In addition, looking up all stack
2853 addresses is costly. */
2854 if ((GET_CODE (addr) == PLUS
2855 && REG_P (XEXP (addr, 0))
2856 && GET_CODE (XEXP (addr, 1)) == CONST_INT
2857 && (regno = REGNO (XEXP (addr, 0)),
2858 regno == FRAME_POINTER_REGNUM || regno == HARD_FRAME_POINTER_REGNUM
2859 || regno == ARG_POINTER_REGNUM))
2860 || (REG_P (addr)
2861 && (regno = REGNO (addr), regno == FRAME_POINTER_REGNUM
2862 || regno == HARD_FRAME_POINTER_REGNUM
2863 || regno == ARG_POINTER_REGNUM))
2864 || CONSTANT_ADDRESS_P (addr))
2865 return;
2867 /* If this address is not simply a register, try to fold it. This will
2868 sometimes simplify the expression. Many simplifications
2869 will not be valid, but some, usually applying the associative rule, will
2870 be valid and produce better code. */
2871 if (!REG_P (addr))
2873 rtx folded = canon_for_address (fold_rtx (addr, NULL_RTX));
2875 if (folded != addr)
2877 int addr_folded_cost = address_cost (folded, mode);
2878 int addr_cost = address_cost (addr, mode);
2880 if ((addr_folded_cost < addr_cost
2881 || (addr_folded_cost == addr_cost
2882 /* ??? The rtx_cost comparison is left over from an older
2883 version of this code. It is probably no longer helpful.*/
2884 && (rtx_cost (folded, MEM) > rtx_cost (addr, MEM)
2885 || approx_reg_cost (folded) < approx_reg_cost (addr))))
2886 && validate_change (insn, loc, folded, 0))
2887 addr = folded;
2891 /* If this address is not in the hash table, we can't look for equivalences
2892 of the whole address. Also, ignore if volatile. */
2894 do_not_record = 0;
2895 hash = HASH (addr, Pmode);
2896 addr_volatile = do_not_record;
2897 do_not_record = save_do_not_record;
2898 hash_arg_in_memory = save_hash_arg_in_memory;
2900 if (addr_volatile)
2901 return;
2903 elt = lookup (addr, hash, Pmode);
2905 if (elt)
2907 /* We need to find the best (under the criteria documented above) entry
2908 in the class that is valid. We use the `flag' field to indicate
2909 choices that were invalid and iterate until we can't find a better
2910 one that hasn't already been tried. */
2912 for (p = elt->first_same_value; p; p = p->next_same_value)
2913 p->flag = 0;
2915 while (found_better)
2917 int best_addr_cost = address_cost (*loc, mode);
2918 int best_rtx_cost = (elt->cost + 1) >> 1;
2919 int exp_cost;
2920 struct table_elt *best_elt = elt;
2922 found_better = 0;
2923 for (p = elt->first_same_value; p; p = p->next_same_value)
2924 if (! p->flag)
2926 if ((REG_P (p->exp)
2927 || exp_equiv_p (p->exp, p->exp, 1, false))
2928 && ((exp_cost = address_cost (p->exp, mode)) < best_addr_cost
2929 || (exp_cost == best_addr_cost
2930 && ((p->cost + 1) >> 1) > best_rtx_cost)))
2932 found_better = 1;
2933 best_addr_cost = exp_cost;
2934 best_rtx_cost = (p->cost + 1) >> 1;
2935 best_elt = p;
2939 if (found_better)
2941 if (validate_change (insn, loc,
2942 canon_reg (copy_rtx (best_elt->exp),
2943 NULL_RTX), 0))
2944 return;
2945 else
2946 best_elt->flag = 1;
2951 /* If the address is a binary operation with the first operand a register
2952 and the second a constant, do the same as above, but looking for
2953 equivalences of the register. Then try to simplify before checking for
2954 the best address to use. This catches a few cases: First is when we
2955 have REG+const and the register is another REG+const. We can often merge
2956 the constants and eliminate one insn and one register. It may also be
2957 that a machine has a cheap REG+REG+const. Finally, this improves the
2958 code on the Alpha for unaligned byte stores. */
2960 if (flag_expensive_optimizations
2961 && ARITHMETIC_P (*loc)
2962 && REG_P (XEXP (*loc, 0)))
2964 rtx op1 = XEXP (*loc, 1);
2966 do_not_record = 0;
2967 hash = HASH (XEXP (*loc, 0), Pmode);
2968 do_not_record = save_do_not_record;
2969 hash_arg_in_memory = save_hash_arg_in_memory;
2971 elt = lookup (XEXP (*loc, 0), hash, Pmode);
2972 if (elt == 0)
2973 return;
2975 /* We need to find the best (under the criteria documented above) entry
2976 in the class that is valid. We use the `flag' field to indicate
2977 choices that were invalid and iterate until we can't find a better
2978 one that hasn't already been tried. */
2980 for (p = elt->first_same_value; p; p = p->next_same_value)
2981 p->flag = 0;
2983 while (found_better)
2985 int best_addr_cost = address_cost (*loc, mode);
2986 int best_rtx_cost = (COST (*loc) + 1) >> 1;
2987 struct table_elt *best_elt = elt;
2988 rtx best_rtx = *loc;
2989 int count;
2991 /* This is at worst case an O(n^2) algorithm, so limit our search
2992 to the first 32 elements on the list. This avoids trouble
2993 compiling code with very long basic blocks that can easily
2994 call simplify_gen_binary so many times that we run out of
2995 memory. */
2997 found_better = 0;
2998 for (p = elt->first_same_value, count = 0;
2999 p && count < 32;
3000 p = p->next_same_value, count++)
3001 if (! p->flag
3002 && (REG_P (p->exp)
3003 || (GET_CODE (p->exp) != EXPR_LIST
3004 && exp_equiv_p (p->exp, p->exp, 1, false))))
3007 rtx new = simplify_gen_binary (GET_CODE (*loc), Pmode,
3008 p->exp, op1);
3009 int new_cost;
3011 /* Get the canonical version of the address so we can accept
3012 more. */
3013 new = canon_for_address (new);
3015 new_cost = address_cost (new, mode);
3017 if (new_cost < best_addr_cost
3018 || (new_cost == best_addr_cost
3019 && (COST (new) + 1) >> 1 > best_rtx_cost))
3021 found_better = 1;
3022 best_addr_cost = new_cost;
3023 best_rtx_cost = (COST (new) + 1) >> 1;
3024 best_elt = p;
3025 best_rtx = new;
3029 if (found_better)
3031 if (validate_change (insn, loc,
3032 canon_reg (copy_rtx (best_rtx),
3033 NULL_RTX), 0))
3034 return;
3035 else
3036 best_elt->flag = 1;
3042 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
3043 operation (EQ, NE, GT, etc.), follow it back through the hash table and
3044 what values are being compared.
3046 *PARG1 and *PARG2 are updated to contain the rtx representing the values
3047 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
3048 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
3049 compared to produce cc0.
3051 The return value is the comparison operator and is either the code of
3052 A or the code corresponding to the inverse of the comparison. */
3054 static enum rtx_code
3055 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
3056 enum machine_mode *pmode1, enum machine_mode *pmode2)
3058 rtx arg1, arg2;
3060 arg1 = *parg1, arg2 = *parg2;
3062 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
3064 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
3066 /* Set nonzero when we find something of interest. */
3067 rtx x = 0;
3068 int reverse_code = 0;
3069 struct table_elt *p = 0;
3071 /* If arg1 is a COMPARE, extract the comparison arguments from it.
3072 On machines with CC0, this is the only case that can occur, since
3073 fold_rtx will return the COMPARE or item being compared with zero
3074 when given CC0. */
3076 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
3077 x = arg1;
3079 /* If ARG1 is a comparison operator and CODE is testing for
3080 STORE_FLAG_VALUE, get the inner arguments. */
3082 else if (COMPARISON_P (arg1))
3084 #ifdef FLOAT_STORE_FLAG_VALUE
3085 REAL_VALUE_TYPE fsfv;
3086 #endif
3088 if (code == NE
3089 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3090 && code == LT && STORE_FLAG_VALUE == -1)
3091 #ifdef FLOAT_STORE_FLAG_VALUE
3092 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
3093 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3094 REAL_VALUE_NEGATIVE (fsfv)))
3095 #endif
3097 x = arg1;
3098 else if (code == EQ
3099 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
3100 && code == GE && STORE_FLAG_VALUE == -1)
3101 #ifdef FLOAT_STORE_FLAG_VALUE
3102 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
3103 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3104 REAL_VALUE_NEGATIVE (fsfv)))
3105 #endif
3107 x = arg1, reverse_code = 1;
3110 /* ??? We could also check for
3112 (ne (and (eq (...) (const_int 1))) (const_int 0))
3114 and related forms, but let's wait until we see them occurring. */
3116 if (x == 0)
3117 /* Look up ARG1 in the hash table and see if it has an equivalence
3118 that lets us see what is being compared. */
3119 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
3120 if (p)
3122 p = p->first_same_value;
3124 /* If what we compare is already known to be constant, that is as
3125 good as it gets.
3126 We need to break the loop in this case, because otherwise we
3127 can have an infinite loop when looking at a reg that is known
3128 to be a constant which is the same as a comparison of a reg
3129 against zero which appears later in the insn stream, which in
3130 turn is constant and the same as the comparison of the first reg
3131 against zero... */
3132 if (p->is_const)
3133 break;
3136 for (; p; p = p->next_same_value)
3138 enum machine_mode inner_mode = GET_MODE (p->exp);
3139 #ifdef FLOAT_STORE_FLAG_VALUE
3140 REAL_VALUE_TYPE fsfv;
3141 #endif
3143 /* If the entry isn't valid, skip it. */
3144 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3145 continue;
3147 if (GET_CODE (p->exp) == COMPARE
3148 /* Another possibility is that this machine has a compare insn
3149 that includes the comparison code. In that case, ARG1 would
3150 be equivalent to a comparison operation that would set ARG1 to
3151 either STORE_FLAG_VALUE or zero. If this is an NE operation,
3152 ORIG_CODE is the actual comparison being done; if it is an EQ,
3153 we must reverse ORIG_CODE. On machine with a negative value
3154 for STORE_FLAG_VALUE, also look at LT and GE operations. */
3155 || ((code == NE
3156 || (code == LT
3157 && GET_MODE_CLASS (inner_mode) == MODE_INT
3158 && (GET_MODE_BITSIZE (inner_mode)
3159 <= HOST_BITS_PER_WIDE_INT)
3160 && (STORE_FLAG_VALUE
3161 & ((HOST_WIDE_INT) 1
3162 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3163 #ifdef FLOAT_STORE_FLAG_VALUE
3164 || (code == LT
3165 && SCALAR_FLOAT_MODE_P (inner_mode)
3166 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3167 REAL_VALUE_NEGATIVE (fsfv)))
3168 #endif
3170 && COMPARISON_P (p->exp)))
3172 x = p->exp;
3173 break;
3175 else if ((code == EQ
3176 || (code == GE
3177 && GET_MODE_CLASS (inner_mode) == MODE_INT
3178 && (GET_MODE_BITSIZE (inner_mode)
3179 <= HOST_BITS_PER_WIDE_INT)
3180 && (STORE_FLAG_VALUE
3181 & ((HOST_WIDE_INT) 1
3182 << (GET_MODE_BITSIZE (inner_mode) - 1))))
3183 #ifdef FLOAT_STORE_FLAG_VALUE
3184 || (code == GE
3185 && SCALAR_FLOAT_MODE_P (inner_mode)
3186 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
3187 REAL_VALUE_NEGATIVE (fsfv)))
3188 #endif
3190 && COMPARISON_P (p->exp))
3192 reverse_code = 1;
3193 x = p->exp;
3194 break;
3197 /* If this non-trapping address, e.g. fp + constant, the
3198 equivalent is a better operand since it may let us predict
3199 the value of the comparison. */
3200 else if (!rtx_addr_can_trap_p (p->exp))
3202 arg1 = p->exp;
3203 continue;
3207 /* If we didn't find a useful equivalence for ARG1, we are done.
3208 Otherwise, set up for the next iteration. */
3209 if (x == 0)
3210 break;
3212 /* If we need to reverse the comparison, make sure that that is
3213 possible -- we can't necessarily infer the value of GE from LT
3214 with floating-point operands. */
3215 if (reverse_code)
3217 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
3218 if (reversed == UNKNOWN)
3219 break;
3220 else
3221 code = reversed;
3223 else if (COMPARISON_P (x))
3224 code = GET_CODE (x);
3225 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
3228 /* Return our results. Return the modes from before fold_rtx
3229 because fold_rtx might produce const_int, and then it's too late. */
3230 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
3231 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
3233 return code;
3236 /* Fold SUBREG. */
3238 static rtx
3239 fold_rtx_subreg (rtx x, rtx insn)
3241 enum machine_mode mode = GET_MODE (x);
3242 rtx folded_arg0;
3243 rtx const_arg0;
3244 rtx new;
3246 /* See if we previously assigned a constant value to this SUBREG. */
3247 if ((new = lookup_as_function (x, CONST_INT)) != 0
3248 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0)
3249 return new;
3251 /* If this is a paradoxical SUBREG, we have no idea what value the
3252 extra bits would have. However, if the operand is equivalent to
3253 a SUBREG whose operand is the same as our mode, and all the modes
3254 are within a word, we can just use the inner operand because
3255 these SUBREGs just say how to treat the register.
3257 Similarly if we find an integer constant. */
3259 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3261 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3262 struct table_elt *elt;
3264 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
3265 && GET_MODE_SIZE (imode) <= UNITS_PER_WORD
3266 && (elt = lookup (SUBREG_REG (x), HASH (SUBREG_REG (x), imode),
3267 imode)) != 0)
3268 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3270 if (CONSTANT_P (elt->exp)
3271 && GET_MODE (elt->exp) == VOIDmode)
3272 return elt->exp;
3274 if (GET_CODE (elt->exp) == SUBREG
3275 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3276 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3277 return copy_rtx (SUBREG_REG (elt->exp));
3280 return x;
3283 /* Fold SUBREG_REG. If it changed, see if we can simplify the
3284 SUBREG. We might be able to if the SUBREG is extracting a single
3285 word in an integral mode or extracting the low part. */
3287 folded_arg0 = fold_rtx (SUBREG_REG (x), insn);
3288 const_arg0 = equiv_constant (folded_arg0);
3289 if (const_arg0)
3290 folded_arg0 = const_arg0;
3292 if (folded_arg0 != SUBREG_REG (x))
3294 new = simplify_subreg (mode, folded_arg0,
3295 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3296 if (new)
3297 return new;
3300 if (REG_P (folded_arg0)
3301 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (folded_arg0)))
3303 struct table_elt *elt;
3305 elt = lookup (folded_arg0,
3306 HASH (folded_arg0, GET_MODE (folded_arg0)),
3307 GET_MODE (folded_arg0));
3309 if (elt)
3310 elt = elt->first_same_value;
3312 if (subreg_lowpart_p (x))
3313 /* If this is a narrowing SUBREG and our operand is a REG, see
3314 if we can find an equivalence for REG that is an arithmetic
3315 operation in a wider mode where both operands are
3316 paradoxical SUBREGs from objects of our result mode. In
3317 that case, we couldn-t report an equivalent value for that
3318 operation, since we don't know what the extra bits will be.
3319 But we can find an equivalence for this SUBREG by folding
3320 that operation in the narrow mode. This allows us to fold
3321 arithmetic in narrow modes when the machine only supports
3322 word-sized arithmetic.
3324 Also look for a case where we have a SUBREG whose operand
3325 is the same as our result. If both modes are smaller than
3326 a word, we are simply interpreting a register in different
3327 modes and we can use the inner value. */
3329 for (; elt; elt = elt->next_same_value)
3331 enum rtx_code eltcode = GET_CODE (elt->exp);
3333 /* Just check for unary and binary operations. */
3334 if (UNARY_P (elt->exp)
3335 && eltcode != SIGN_EXTEND
3336 && eltcode != ZERO_EXTEND
3337 && GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3338 && GET_MODE (SUBREG_REG (XEXP (elt->exp, 0))) == mode
3339 && (GET_MODE_CLASS (mode)
3340 == GET_MODE_CLASS (GET_MODE (XEXP (elt->exp, 0)))))
3342 rtx op0 = SUBREG_REG (XEXP (elt->exp, 0));
3344 if (!REG_P (op0) && ! CONSTANT_P (op0))
3345 op0 = fold_rtx (op0, NULL_RTX);
3347 op0 = equiv_constant (op0);
3348 if (op0)
3349 new = simplify_unary_operation (GET_CODE (elt->exp), mode,
3350 op0, mode);
3352 else if (ARITHMETIC_P (elt->exp)
3353 && eltcode != DIV && eltcode != MOD
3354 && eltcode != UDIV && eltcode != UMOD
3355 && eltcode != ASHIFTRT && eltcode != LSHIFTRT
3356 && eltcode != ROTATE && eltcode != ROTATERT
3357 && ((GET_CODE (XEXP (elt->exp, 0)) == SUBREG
3358 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 0)))
3359 == mode))
3360 || CONSTANT_P (XEXP (elt->exp, 0)))
3361 && ((GET_CODE (XEXP (elt->exp, 1)) == SUBREG
3362 && (GET_MODE (SUBREG_REG (XEXP (elt->exp, 1)))
3363 == mode))
3364 || CONSTANT_P (XEXP (elt->exp, 1))))
3366 rtx op0 = gen_lowpart_common (mode, XEXP (elt->exp, 0));
3367 rtx op1 = gen_lowpart_common (mode, XEXP (elt->exp, 1));
3369 if (op0 && !REG_P (op0) && ! CONSTANT_P (op0))
3370 op0 = fold_rtx (op0, NULL_RTX);
3372 if (op0)
3373 op0 = equiv_constant (op0);
3375 if (op1 && !REG_P (op1) && ! CONSTANT_P (op1))
3376 op1 = fold_rtx (op1, NULL_RTX);
3378 if (op1)
3379 op1 = equiv_constant (op1);
3381 /* If we are looking for the low SImode part of
3382 (ashift:DI c (const_int 32)), it doesn't work to
3383 compute that in SImode, because a 32-bit shift in
3384 SImode is unpredictable. We know the value is
3385 0. */
3386 if (op0 && op1
3387 && GET_CODE (elt->exp) == ASHIFT
3388 && GET_CODE (op1) == CONST_INT
3389 && INTVAL (op1) >= GET_MODE_BITSIZE (mode))
3391 if (INTVAL (op1)
3392 < GET_MODE_BITSIZE (GET_MODE (elt->exp)))
3393 /* If the count fits in the inner mode's width,
3394 but exceeds the outer mode's width, the value
3395 will get truncated to 0 by the subreg. */
3396 new = CONST0_RTX (mode);
3397 else
3398 /* If the count exceeds even the inner mode's width,
3399 don't fold this expression. */
3400 new = 0;
3402 else if (op0 && op1)
3403 new = simplify_binary_operation (GET_CODE (elt->exp),
3404 mode, op0, op1);
3407 else if (GET_CODE (elt->exp) == SUBREG
3408 && GET_MODE (SUBREG_REG (elt->exp)) == mode
3409 && (GET_MODE_SIZE (GET_MODE (folded_arg0))
3410 <= UNITS_PER_WORD)
3411 && exp_equiv_p (elt->exp, elt->exp, 1, false))
3412 new = copy_rtx (SUBREG_REG (elt->exp));
3414 if (new)
3415 return new;
3417 else
3418 /* A SUBREG resulting from a zero extension may fold to zero
3419 if it extracts higher bits than the ZERO_EXTEND's source
3420 bits. FIXME: if combine tried to, er, combine these
3421 instructions, this transformation may be moved to
3422 simplify_subreg. */
3423 for (; elt; elt = elt->next_same_value)
3425 if (GET_CODE (elt->exp) == ZERO_EXTEND
3426 && subreg_lsb (x)
3427 >= GET_MODE_BITSIZE (GET_MODE (XEXP (elt->exp, 0))))
3428 return CONST0_RTX (mode);
3432 return x;
3435 /* Fold MEM. */
3437 static rtx
3438 fold_rtx_mem (rtx x, rtx insn)
3440 enum machine_mode mode = GET_MODE (x);
3441 rtx new;
3443 /* If we are not actually processing an insn, don't try to find the
3444 best address. Not only don't we care, but we could modify the
3445 MEM in an invalid way since we have no insn to validate
3446 against. */
3447 if (insn != 0)
3448 find_best_addr (insn, &XEXP (x, 0), mode);
3451 /* Even if we don't fold in the insn itself, we can safely do so
3452 here, in hopes of getting a constant. */
3453 rtx addr = fold_rtx (XEXP (x, 0), NULL_RTX);
3454 rtx base = 0;
3455 HOST_WIDE_INT offset = 0;
3457 if (REG_P (addr)
3458 && REGNO_QTY_VALID_P (REGNO (addr)))
3460 int addr_q = REG_QTY (REGNO (addr));
3461 struct qty_table_elem *addr_ent = &qty_table[addr_q];
3463 if (GET_MODE (addr) == addr_ent->mode
3464 && addr_ent->const_rtx != NULL_RTX)
3465 addr = addr_ent->const_rtx;
3468 /* Call target hook to avoid the effects of -fpic etc.... */
3469 addr = targetm.delegitimize_address (addr);
3471 /* If address is constant, split it into a base and integer
3472 offset. */
3473 if (GET_CODE (addr) == SYMBOL_REF || GET_CODE (addr) == LABEL_REF)
3474 base = addr;
3475 else if (GET_CODE (addr) == CONST && GET_CODE (XEXP (addr, 0)) == PLUS
3476 && GET_CODE (XEXP (XEXP (addr, 0), 1)) == CONST_INT)
3478 base = XEXP (XEXP (addr, 0), 0);
3479 offset = INTVAL (XEXP (XEXP (addr, 0), 1));
3481 else if (GET_CODE (addr) == LO_SUM
3482 && GET_CODE (XEXP (addr, 1)) == SYMBOL_REF)
3483 base = XEXP (addr, 1);
3485 /* If this is a constant pool reference, we can fold it into its
3486 constant to allow better value tracking. */
3487 if (base && GET_CODE (base) == SYMBOL_REF
3488 && CONSTANT_POOL_ADDRESS_P (base))
3490 rtx constant = get_pool_constant (base);
3491 enum machine_mode const_mode = get_pool_mode (base);
3492 rtx new;
3494 if (CONSTANT_P (constant) && GET_CODE (constant) != CONST_INT)
3496 constant_pool_entries_cost = COST (constant);
3497 constant_pool_entries_regcost = approx_reg_cost (constant);
3500 /* If we are loading the full constant, we have an
3501 equivalence. */
3502 if (offset == 0 && mode == const_mode)
3503 return constant;
3505 /* If this actually isn't a constant (weird!), we can't do
3506 anything. Otherwise, handle the two most common cases:
3507 extracting a word from a multi-word constant, and
3508 extracting the low-order bits. Other cases don't seem
3509 common enough to worry about. */
3510 if (! CONSTANT_P (constant))
3511 return x;
3513 if (GET_MODE_CLASS (mode) == MODE_INT
3514 && GET_MODE_SIZE (mode) == UNITS_PER_WORD
3515 && offset % UNITS_PER_WORD == 0
3516 && (new = operand_subword (constant,
3517 offset / UNITS_PER_WORD,
3518 0, const_mode)) != 0)
3519 return new;
3521 if (((BYTES_BIG_ENDIAN
3522 && offset == GET_MODE_SIZE (GET_MODE (constant)) - 1)
3523 || (! BYTES_BIG_ENDIAN && offset == 0))
3524 && (new = gen_lowpart (mode, constant)) != 0)
3525 return new;
3528 /* If this is a reference to a label at a known position in a jump
3529 table, we also know its value. */
3530 if (base && GET_CODE (base) == LABEL_REF)
3532 rtx label = XEXP (base, 0);
3533 rtx table_insn = NEXT_INSN (label);
3535 if (table_insn && JUMP_P (table_insn)
3536 && GET_CODE (PATTERN (table_insn)) == ADDR_VEC)
3538 rtx table = PATTERN (table_insn);
3540 if (offset >= 0
3541 && (offset / GET_MODE_SIZE (GET_MODE (table))
3542 < XVECLEN (table, 0)))
3544 rtx label = XVECEXP
3545 (table, 0, offset / GET_MODE_SIZE (GET_MODE (table)));
3546 rtx set;
3548 /* If we have an insn that loads the label from the
3549 jumptable into a reg, we don't want to set the reg
3550 to the label, because this may cause a reference to
3551 the label to remain after the label is removed in
3552 some very obscure cases (PR middle-end/18628). */
3553 if (!insn)
3554 return label;
3556 set = single_set (insn);
3558 if (! set || SET_SRC (set) != x)
3559 return x;
3561 /* If it's a jump, it's safe to reference the label. */
3562 if (SET_DEST (set) == pc_rtx)
3563 return label;
3565 return x;
3568 if (table_insn && JUMP_P (table_insn)
3569 && GET_CODE (PATTERN (table_insn)) == ADDR_DIFF_VEC)
3571 rtx table = PATTERN (table_insn);
3573 if (offset >= 0
3574 && (offset / GET_MODE_SIZE (GET_MODE (table))
3575 < XVECLEN (table, 1)))
3577 offset /= GET_MODE_SIZE (GET_MODE (table));
3578 new = gen_rtx_MINUS (Pmode, XVECEXP (table, 1, offset),
3579 XEXP (table, 0));
3581 if (GET_MODE (table) != Pmode)
3582 new = gen_rtx_TRUNCATE (GET_MODE (table), new);
3584 /* Indicate this is a constant. This isn't a valid
3585 form of CONST, but it will only be used to fold the
3586 next insns and then discarded, so it should be
3587 safe.
3589 Note this expression must be explicitly discarded,
3590 by cse_insn, else it may end up in a REG_EQUAL note
3591 and "escape" to cause problems elsewhere. */
3592 return gen_rtx_CONST (GET_MODE (new), new);
3597 return x;
3601 /* If X is a nontrivial arithmetic operation on an argument
3602 for which a constant value can be determined, return
3603 the result of operating on that value, as a constant.
3604 Otherwise, return X, possibly with one or more operands
3605 modified by recursive calls to this function.
3607 If X is a register whose contents are known, we do NOT
3608 return those contents here. equiv_constant is called to
3609 perform that task.
3611 INSN is the insn that we may be modifying. If it is 0, make a copy
3612 of X before modifying it. */
3614 static rtx
3615 fold_rtx (rtx x, rtx insn)
3617 enum rtx_code code;
3618 enum machine_mode mode;
3619 const char *fmt;
3620 int i;
3621 rtx new = 0;
3622 int copied = 0;
3623 int must_swap = 0;
3625 /* Folded equivalents of first two operands of X. */
3626 rtx folded_arg0;
3627 rtx folded_arg1;
3629 /* Constant equivalents of first three operands of X;
3630 0 when no such equivalent is known. */
3631 rtx const_arg0;
3632 rtx const_arg1;
3633 rtx const_arg2;
3635 /* The mode of the first operand of X. We need this for sign and zero
3636 extends. */
3637 enum machine_mode mode_arg0;
3639 if (x == 0)
3640 return x;
3642 mode = GET_MODE (x);
3643 code = GET_CODE (x);
3644 switch (code)
3646 case CONST:
3647 case CONST_INT:
3648 case CONST_DOUBLE:
3649 case CONST_VECTOR:
3650 case SYMBOL_REF:
3651 case LABEL_REF:
3652 case REG:
3653 case PC:
3654 /* No use simplifying an EXPR_LIST
3655 since they are used only for lists of args
3656 in a function call's REG_EQUAL note. */
3657 case EXPR_LIST:
3658 return x;
3660 #ifdef HAVE_cc0
3661 case CC0:
3662 return prev_insn_cc0;
3663 #endif
3665 case SUBREG:
3666 return fold_rtx_subreg (x, insn);
3668 case NOT:
3669 case NEG:
3670 /* If we have (NOT Y), see if Y is known to be (NOT Z).
3671 If so, (NOT Y) simplifies to Z. Similarly for NEG. */
3672 new = lookup_as_function (XEXP (x, 0), code);
3673 if (new)
3674 return fold_rtx (copy_rtx (XEXP (new, 0)), insn);
3675 break;
3677 case MEM:
3678 return fold_rtx_mem (x, insn);
3680 #ifdef NO_FUNCTION_CSE
3681 case CALL:
3682 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3683 return x;
3684 break;
3685 #endif
3687 case ASM_OPERANDS:
3688 if (insn)
3690 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3691 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3692 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3694 break;
3696 default:
3697 break;
3700 const_arg0 = 0;
3701 const_arg1 = 0;
3702 const_arg2 = 0;
3703 mode_arg0 = VOIDmode;
3705 /* Try folding our operands.
3706 Then see which ones have constant values known. */
3708 fmt = GET_RTX_FORMAT (code);
3709 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3710 if (fmt[i] == 'e')
3712 rtx arg = XEXP (x, i);
3713 rtx folded_arg = arg, const_arg = 0;
3714 enum machine_mode mode_arg = GET_MODE (arg);
3715 rtx cheap_arg, expensive_arg;
3716 rtx replacements[2];
3717 int j;
3718 int old_cost = COST_IN (XEXP (x, i), code);
3720 /* Most arguments are cheap, so handle them specially. */
3721 switch (GET_CODE (arg))
3723 case REG:
3724 /* This is the same as calling equiv_constant; it is duplicated
3725 here for speed. */
3726 if (REGNO_QTY_VALID_P (REGNO (arg)))
3728 int arg_q = REG_QTY (REGNO (arg));
3729 struct qty_table_elem *arg_ent = &qty_table[arg_q];
3731 if (arg_ent->const_rtx != NULL_RTX
3732 && !REG_P (arg_ent->const_rtx)
3733 && GET_CODE (arg_ent->const_rtx) != PLUS)
3734 const_arg
3735 = gen_lowpart (GET_MODE (arg),
3736 arg_ent->const_rtx);
3738 break;
3740 case CONST:
3741 case CONST_INT:
3742 case SYMBOL_REF:
3743 case LABEL_REF:
3744 case CONST_DOUBLE:
3745 case CONST_VECTOR:
3746 const_arg = arg;
3747 break;
3749 #ifdef HAVE_cc0
3750 case CC0:
3751 folded_arg = prev_insn_cc0;
3752 mode_arg = prev_insn_cc0_mode;
3753 const_arg = equiv_constant (folded_arg);
3754 break;
3755 #endif
3757 default:
3758 folded_arg = fold_rtx (arg, insn);
3759 const_arg = equiv_constant (folded_arg);
3762 /* For the first three operands, see if the operand
3763 is constant or equivalent to a constant. */
3764 switch (i)
3766 case 0:
3767 folded_arg0 = folded_arg;
3768 const_arg0 = const_arg;
3769 mode_arg0 = mode_arg;
3770 break;
3771 case 1:
3772 folded_arg1 = folded_arg;
3773 const_arg1 = const_arg;
3774 break;
3775 case 2:
3776 const_arg2 = const_arg;
3777 break;
3780 /* Pick the least expensive of the folded argument and an
3781 equivalent constant argument. */
3782 if (const_arg == 0 || const_arg == folded_arg
3783 || COST_IN (const_arg, code) > COST_IN (folded_arg, code))
3784 cheap_arg = folded_arg, expensive_arg = const_arg;
3785 else
3786 cheap_arg = const_arg, expensive_arg = folded_arg;
3788 /* Try to replace the operand with the cheapest of the two
3789 possibilities. If it doesn't work and this is either of the first
3790 two operands of a commutative operation, try swapping them.
3791 If THAT fails, try the more expensive, provided it is cheaper
3792 than what is already there. */
3794 if (cheap_arg == XEXP (x, i))
3795 continue;
3797 if (insn == 0 && ! copied)
3799 x = copy_rtx (x);
3800 copied = 1;
3803 /* Order the replacements from cheapest to most expensive. */
3804 replacements[0] = cheap_arg;
3805 replacements[1] = expensive_arg;
3807 for (j = 0; j < 2 && replacements[j]; j++)
3809 int new_cost = COST_IN (replacements[j], code);
3811 /* Stop if what existed before was cheaper. Prefer constants
3812 in the case of a tie. */
3813 if (new_cost > old_cost
3814 || (new_cost == old_cost && CONSTANT_P (XEXP (x, i))))
3815 break;
3817 /* It's not safe to substitute the operand of a conversion
3818 operator with a constant, as the conversion's identity
3819 depends upon the mode of its operand. This optimization
3820 is handled by the call to simplify_unary_operation. */
3821 if (GET_RTX_CLASS (code) == RTX_UNARY
3822 && GET_MODE (replacements[j]) != mode_arg0
3823 && (code == ZERO_EXTEND
3824 || code == SIGN_EXTEND
3825 || code == TRUNCATE
3826 || code == FLOAT_TRUNCATE
3827 || code == FLOAT_EXTEND
3828 || code == FLOAT
3829 || code == FIX
3830 || code == UNSIGNED_FLOAT
3831 || code == UNSIGNED_FIX))
3832 continue;
3834 if (validate_change (insn, &XEXP (x, i), replacements[j], 0))
3835 break;
3837 if (GET_RTX_CLASS (code) == RTX_COMM_COMPARE
3838 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
3840 validate_change (insn, &XEXP (x, i), XEXP (x, 1 - i), 1);
3841 validate_change (insn, &XEXP (x, 1 - i), replacements[j], 1);
3843 if (apply_change_group ())
3845 /* Swap them back to be invalid so that this loop can
3846 continue and flag them to be swapped back later. */
3847 rtx tem;
3849 tem = XEXP (x, 0); XEXP (x, 0) = XEXP (x, 1);
3850 XEXP (x, 1) = tem;
3851 must_swap = 1;
3852 break;
3858 else
3860 if (fmt[i] == 'E')
3861 /* Don't try to fold inside of a vector of expressions.
3862 Doing nothing is harmless. */
3866 /* If a commutative operation, place a constant integer as the second
3867 operand unless the first operand is also a constant integer. Otherwise,
3868 place any constant second unless the first operand is also a constant. */
3870 if (COMMUTATIVE_P (x))
3872 if (must_swap
3873 || swap_commutative_operands_p (const_arg0 ? const_arg0
3874 : XEXP (x, 0),
3875 const_arg1 ? const_arg1
3876 : XEXP (x, 1)))
3878 rtx tem = XEXP (x, 0);
3880 if (insn == 0 && ! copied)
3882 x = copy_rtx (x);
3883 copied = 1;
3886 validate_change (insn, &XEXP (x, 0), XEXP (x, 1), 1);
3887 validate_change (insn, &XEXP (x, 1), tem, 1);
3888 if (apply_change_group ())
3890 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3891 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3896 /* If X is an arithmetic operation, see if we can simplify it. */
3898 switch (GET_RTX_CLASS (code))
3900 case RTX_UNARY:
3902 int is_const = 0;
3904 /* We can't simplify extension ops unless we know the
3905 original mode. */
3906 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3907 && mode_arg0 == VOIDmode)
3908 break;
3910 /* If we had a CONST, strip it off and put it back later if we
3911 fold. */
3912 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3913 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3915 new = simplify_unary_operation (code, mode,
3916 const_arg0 ? const_arg0 : folded_arg0,
3917 mode_arg0);
3918 /* NEG of PLUS could be converted into MINUS, but that causes
3919 expressions of the form
3920 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3921 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3922 FIXME: those ports should be fixed. */
3923 if (new != 0 && is_const
3924 && GET_CODE (new) == PLUS
3925 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3926 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3927 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3928 new = gen_rtx_CONST (mode, new);
3930 break;
3932 case RTX_COMPARE:
3933 case RTX_COMM_COMPARE:
3934 /* See what items are actually being compared and set FOLDED_ARG[01]
3935 to those values and CODE to the actual comparison code. If any are
3936 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3937 do anything if both operands are already known to be constant. */
3939 /* ??? Vector mode comparisons are not supported yet. */
3940 if (VECTOR_MODE_P (mode))
3941 break;
3943 if (const_arg0 == 0 || const_arg1 == 0)
3945 struct table_elt *p0, *p1;
3946 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3947 enum machine_mode mode_arg1;
3949 #ifdef FLOAT_STORE_FLAG_VALUE
3950 if (SCALAR_FLOAT_MODE_P (mode))
3952 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3953 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3954 false_rtx = CONST0_RTX (mode);
3956 #endif
3958 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3959 &mode_arg0, &mode_arg1);
3961 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3962 what kinds of things are being compared, so we can't do
3963 anything with this comparison. */
3965 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3966 break;
3968 const_arg0 = equiv_constant (folded_arg0);
3969 const_arg1 = equiv_constant (folded_arg1);
3971 /* If we do not now have two constants being compared, see
3972 if we can nevertheless deduce some things about the
3973 comparison. */
3974 if (const_arg0 == 0 || const_arg1 == 0)
3976 if (const_arg1 != NULL)
3978 rtx cheapest_simplification;
3979 int cheapest_cost;
3980 rtx simp_result;
3981 struct table_elt *p;
3983 /* See if we can find an equivalent of folded_arg0
3984 that gets us a cheaper expression, possibly a
3985 constant through simplifications. */
3986 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3987 mode_arg0);
3989 if (p != NULL)
3991 cheapest_simplification = x;
3992 cheapest_cost = COST (x);
3994 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3996 int cost;
3998 /* If the entry isn't valid, skip it. */
3999 if (! exp_equiv_p (p->exp, p->exp, 1, false))
4000 continue;
4002 /* Try to simplify using this equivalence. */
4003 simp_result
4004 = simplify_relational_operation (code, mode,
4005 mode_arg0,
4006 p->exp,
4007 const_arg1);
4009 if (simp_result == NULL)
4010 continue;
4012 cost = COST (simp_result);
4013 if (cost < cheapest_cost)
4015 cheapest_cost = cost;
4016 cheapest_simplification = simp_result;
4020 /* If we have a cheaper expression now, use that
4021 and try folding it further, from the top. */
4022 if (cheapest_simplification != x)
4023 return fold_rtx (cheapest_simplification, insn);
4027 /* Some addresses are known to be nonzero. We don't know
4028 their sign, but equality comparisons are known. */
4029 if (const_arg1 == const0_rtx
4030 && nonzero_address_p (folded_arg0))
4032 if (code == EQ)
4033 return false_rtx;
4034 else if (code == NE)
4035 return true_rtx;
4038 /* See if the two operands are the same. */
4040 if (folded_arg0 == folded_arg1
4041 || (REG_P (folded_arg0)
4042 && REG_P (folded_arg1)
4043 && (REG_QTY (REGNO (folded_arg0))
4044 == REG_QTY (REGNO (folded_arg1))))
4045 || ((p0 = lookup (folded_arg0,
4046 SAFE_HASH (folded_arg0, mode_arg0),
4047 mode_arg0))
4048 && (p1 = lookup (folded_arg1,
4049 SAFE_HASH (folded_arg1, mode_arg0),
4050 mode_arg0))
4051 && p0->first_same_value == p1->first_same_value))
4053 /* Sadly two equal NaNs are not equivalent. */
4054 if (!HONOR_NANS (mode_arg0))
4055 return ((code == EQ || code == LE || code == GE
4056 || code == LEU || code == GEU || code == UNEQ
4057 || code == UNLE || code == UNGE
4058 || code == ORDERED)
4059 ? true_rtx : false_rtx);
4060 /* Take care for the FP compares we can resolve. */
4061 if (code == UNEQ || code == UNLE || code == UNGE)
4062 return true_rtx;
4063 if (code == LTGT || code == LT || code == GT)
4064 return false_rtx;
4067 /* If FOLDED_ARG0 is a register, see if the comparison we are
4068 doing now is either the same as we did before or the reverse
4069 (we only check the reverse if not floating-point). */
4070 else if (REG_P (folded_arg0))
4072 int qty = REG_QTY (REGNO (folded_arg0));
4074 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
4076 struct qty_table_elem *ent = &qty_table[qty];
4078 if ((comparison_dominates_p (ent->comparison_code, code)
4079 || (! FLOAT_MODE_P (mode_arg0)
4080 && comparison_dominates_p (ent->comparison_code,
4081 reverse_condition (code))))
4082 && (rtx_equal_p (ent->comparison_const, folded_arg1)
4083 || (const_arg1
4084 && rtx_equal_p (ent->comparison_const,
4085 const_arg1))
4086 || (REG_P (folded_arg1)
4087 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
4088 return (comparison_dominates_p (ent->comparison_code, code)
4089 ? true_rtx : false_rtx);
4095 /* If we are comparing against zero, see if the first operand is
4096 equivalent to an IOR with a constant. If so, we may be able to
4097 determine the result of this comparison. */
4099 if (const_arg1 == const0_rtx)
4101 rtx y = lookup_as_function (folded_arg0, IOR);
4102 rtx inner_const;
4104 if (y != 0
4105 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
4106 && GET_CODE (inner_const) == CONST_INT
4107 && INTVAL (inner_const) != 0)
4109 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
4110 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
4111 && (INTVAL (inner_const)
4112 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
4113 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
4115 #ifdef FLOAT_STORE_FLAG_VALUE
4116 if (SCALAR_FLOAT_MODE_P (mode))
4118 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
4119 (FLOAT_STORE_FLAG_VALUE (mode), mode));
4120 false_rtx = CONST0_RTX (mode);
4122 #endif
4124 switch (code)
4126 case EQ:
4127 return false_rtx;
4128 case NE:
4129 return true_rtx;
4130 case LT: case LE:
4131 if (has_sign)
4132 return true_rtx;
4133 break;
4134 case GT: case GE:
4135 if (has_sign)
4136 return false_rtx;
4137 break;
4138 default:
4139 break;
4145 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
4146 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
4147 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
4149 break;
4151 case RTX_BIN_ARITH:
4152 case RTX_COMM_ARITH:
4153 switch (code)
4155 case PLUS:
4156 /* If the second operand is a LABEL_REF, see if the first is a MINUS
4157 with that LABEL_REF as its second operand. If so, the result is
4158 the first operand of that MINUS. This handles switches with an
4159 ADDR_DIFF_VEC table. */
4160 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
4162 rtx y
4163 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
4164 : lookup_as_function (folded_arg0, MINUS);
4166 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4167 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
4168 return XEXP (y, 0);
4170 /* Now try for a CONST of a MINUS like the above. */
4171 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
4172 : lookup_as_function (folded_arg0, CONST))) != 0
4173 && GET_CODE (XEXP (y, 0)) == MINUS
4174 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4175 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
4176 return XEXP (XEXP (y, 0), 0);
4179 /* Likewise if the operands are in the other order. */
4180 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
4182 rtx y
4183 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
4184 : lookup_as_function (folded_arg1, MINUS);
4186 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
4187 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
4188 return XEXP (y, 0);
4190 /* Now try for a CONST of a MINUS like the above. */
4191 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
4192 : lookup_as_function (folded_arg1, CONST))) != 0
4193 && GET_CODE (XEXP (y, 0)) == MINUS
4194 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
4195 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
4196 return XEXP (XEXP (y, 0), 0);
4199 /* If second operand is a register equivalent to a negative
4200 CONST_INT, see if we can find a register equivalent to the
4201 positive constant. Make a MINUS if so. Don't do this for
4202 a non-negative constant since we might then alternate between
4203 choosing positive and negative constants. Having the positive
4204 constant previously-used is the more common case. Be sure
4205 the resulting constant is non-negative; if const_arg1 were
4206 the smallest negative number this would overflow: depending
4207 on the mode, this would either just be the same value (and
4208 hence not save anything) or be incorrect. */
4209 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
4210 && INTVAL (const_arg1) < 0
4211 /* This used to test
4213 -INTVAL (const_arg1) >= 0
4215 But The Sun V5.0 compilers mis-compiled that test. So
4216 instead we test for the problematic value in a more direct
4217 manner and hope the Sun compilers get it correct. */
4218 && INTVAL (const_arg1) !=
4219 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
4220 && REG_P (folded_arg1))
4222 rtx new_const = GEN_INT (-INTVAL (const_arg1));
4223 struct table_elt *p
4224 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
4226 if (p)
4227 for (p = p->first_same_value; p; p = p->next_same_value)
4228 if (REG_P (p->exp))
4229 return simplify_gen_binary (MINUS, mode, folded_arg0,
4230 canon_reg (p->exp, NULL_RTX));
4232 goto from_plus;
4234 case MINUS:
4235 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
4236 If so, produce (PLUS Z C2-C). */
4237 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
4239 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
4240 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
4241 return fold_rtx (plus_constant (copy_rtx (y),
4242 -INTVAL (const_arg1)),
4243 NULL_RTX);
4246 /* Fall through. */
4248 from_plus:
4249 case SMIN: case SMAX: case UMIN: case UMAX:
4250 case IOR: case AND: case XOR:
4251 case MULT:
4252 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
4253 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
4254 is known to be of similar form, we may be able to replace the
4255 operation with a combined operation. This may eliminate the
4256 intermediate operation if every use is simplified in this way.
4257 Note that the similar optimization done by combine.c only works
4258 if the intermediate operation's result has only one reference. */
4260 if (REG_P (folded_arg0)
4261 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
4263 int is_shift
4264 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
4265 rtx y = lookup_as_function (folded_arg0, code);
4266 rtx inner_const;
4267 enum rtx_code associate_code;
4268 rtx new_const;
4270 if (y == 0
4271 || 0 == (inner_const
4272 = equiv_constant (fold_rtx (XEXP (y, 1), 0)))
4273 || GET_CODE (inner_const) != CONST_INT
4274 /* If we have compiled a statement like
4275 "if (x == (x & mask1))", and now are looking at
4276 "x & mask2", we will have a case where the first operand
4277 of Y is the same as our first operand. Unless we detect
4278 this case, an infinite loop will result. */
4279 || XEXP (y, 0) == folded_arg0)
4280 break;
4282 /* Don't associate these operations if they are a PLUS with the
4283 same constant and it is a power of two. These might be doable
4284 with a pre- or post-increment. Similarly for two subtracts of
4285 identical powers of two with post decrement. */
4287 if (code == PLUS && const_arg1 == inner_const
4288 && ((HAVE_PRE_INCREMENT
4289 && exact_log2 (INTVAL (const_arg1)) >= 0)
4290 || (HAVE_POST_INCREMENT
4291 && exact_log2 (INTVAL (const_arg1)) >= 0)
4292 || (HAVE_PRE_DECREMENT
4293 && exact_log2 (- INTVAL (const_arg1)) >= 0)
4294 || (HAVE_POST_DECREMENT
4295 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
4296 break;
4298 /* Compute the code used to compose the constants. For example,
4299 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
4301 associate_code = (is_shift || code == MINUS ? PLUS : code);
4303 new_const = simplify_binary_operation (associate_code, mode,
4304 const_arg1, inner_const);
4306 if (new_const == 0)
4307 break;
4309 /* If we are associating shift operations, don't let this
4310 produce a shift of the size of the object or larger.
4311 This could occur when we follow a sign-extend by a right
4312 shift on a machine that does a sign-extend as a pair
4313 of shifts. */
4315 if (is_shift && GET_CODE (new_const) == CONST_INT
4316 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
4318 /* As an exception, we can turn an ASHIFTRT of this
4319 form into a shift of the number of bits - 1. */
4320 if (code == ASHIFTRT)
4321 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
4322 else
4323 break;
4326 y = copy_rtx (XEXP (y, 0));
4328 /* If Y contains our first operand (the most common way this
4329 can happen is if Y is a MEM), we would do into an infinite
4330 loop if we tried to fold it. So don't in that case. */
4332 if (! reg_mentioned_p (folded_arg0, y))
4333 y = fold_rtx (y, insn);
4335 return simplify_gen_binary (code, mode, y, new_const);
4337 break;
4339 case DIV: case UDIV:
4340 /* ??? The associative optimization performed immediately above is
4341 also possible for DIV and UDIV using associate_code of MULT.
4342 However, we would need extra code to verify that the
4343 multiplication does not overflow, that is, there is no overflow
4344 in the calculation of new_const. */
4345 break;
4347 default:
4348 break;
4351 new = simplify_binary_operation (code, mode,
4352 const_arg0 ? const_arg0 : folded_arg0,
4353 const_arg1 ? const_arg1 : folded_arg1);
4354 break;
4356 case RTX_OBJ:
4357 /* (lo_sum (high X) X) is simply X. */
4358 if (code == LO_SUM && const_arg0 != 0
4359 && GET_CODE (const_arg0) == HIGH
4360 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
4361 return const_arg1;
4362 break;
4364 case RTX_TERNARY:
4365 case RTX_BITFIELD_OPS:
4366 new = simplify_ternary_operation (code, mode, mode_arg0,
4367 const_arg0 ? const_arg0 : folded_arg0,
4368 const_arg1 ? const_arg1 : folded_arg1,
4369 const_arg2 ? const_arg2 : XEXP (x, 2));
4370 break;
4372 default:
4373 break;
4376 return new ? new : x;
4379 /* Return a constant value currently equivalent to X.
4380 Return 0 if we don't know one. */
4382 static rtx
4383 equiv_constant (rtx x)
4385 if (REG_P (x)
4386 && REGNO_QTY_VALID_P (REGNO (x)))
4388 int x_q = REG_QTY (REGNO (x));
4389 struct qty_table_elem *x_ent = &qty_table[x_q];
4391 if (x_ent->const_rtx)
4392 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
4395 if (x == 0 || CONSTANT_P (x))
4396 return x;
4398 /* If X is a MEM, try to fold it outside the context of any insn to see if
4399 it might be equivalent to a constant. That handles the case where it
4400 is a constant-pool reference. Then try to look it up in the hash table
4401 in case it is something whose value we have seen before. */
4403 if (MEM_P (x))
4405 struct table_elt *elt;
4407 x = fold_rtx (x, NULL_RTX);
4408 if (CONSTANT_P (x))
4409 return x;
4411 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
4412 if (elt == 0)
4413 return 0;
4415 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
4416 if (elt->is_const && CONSTANT_P (elt->exp))
4417 return elt->exp;
4420 return 0;
4423 /* Given INSN, a jump insn, PATH_TAKEN indicates if we are following the "taken"
4424 branch. It will be zero if not.
4426 In certain cases, this can cause us to add an equivalence. For example,
4427 if we are following the taken case of
4428 if (i == 2)
4429 we can add the fact that `i' and '2' are now equivalent.
4431 In any case, we can record that this comparison was passed. If the same
4432 comparison is seen later, we will know its value. */
4434 static void
4435 record_jump_equiv (rtx insn, int taken)
4437 int cond_known_true;
4438 rtx op0, op1;
4439 rtx set;
4440 enum machine_mode mode, mode0, mode1;
4441 int reversed_nonequality = 0;
4442 enum rtx_code code;
4444 /* Ensure this is the right kind of insn. */
4445 if (! any_condjump_p (insn))
4446 return;
4447 set = pc_set (insn);
4449 /* See if this jump condition is known true or false. */
4450 if (taken)
4451 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
4452 else
4453 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
4455 /* Get the type of comparison being done and the operands being compared.
4456 If we had to reverse a non-equality condition, record that fact so we
4457 know that it isn't valid for floating-point. */
4458 code = GET_CODE (XEXP (SET_SRC (set), 0));
4459 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
4460 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
4462 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
4463 if (! cond_known_true)
4465 code = reversed_comparison_code_parts (code, op0, op1, insn);
4467 /* Don't remember if we can't find the inverse. */
4468 if (code == UNKNOWN)
4469 return;
4472 /* The mode is the mode of the non-constant. */
4473 mode = mode0;
4474 if (mode1 != VOIDmode)
4475 mode = mode1;
4477 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
4480 /* Yet another form of subreg creation. In this case, we want something in
4481 MODE, and we should assume OP has MODE iff it is naturally modeless. */
4483 static rtx
4484 record_jump_cond_subreg (enum machine_mode mode, rtx op)
4486 enum machine_mode op_mode = GET_MODE (op);
4487 if (op_mode == mode || op_mode == VOIDmode)
4488 return op;
4489 return lowpart_subreg (mode, op, op_mode);
4492 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
4493 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
4494 Make any useful entries we can with that information. Called from
4495 above function and called recursively. */
4497 static void
4498 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
4499 rtx op1, int reversed_nonequality)
4501 unsigned op0_hash, op1_hash;
4502 int op0_in_memory, op1_in_memory;
4503 struct table_elt *op0_elt, *op1_elt;
4505 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
4506 we know that they are also equal in the smaller mode (this is also
4507 true for all smaller modes whether or not there is a SUBREG, but
4508 is not worth testing for with no SUBREG). */
4510 /* Note that GET_MODE (op0) may not equal MODE. */
4511 if (code == EQ && GET_CODE (op0) == SUBREG
4512 && (GET_MODE_SIZE (GET_MODE (op0))
4513 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4515 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4516 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4517 if (tem)
4518 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4519 reversed_nonequality);
4522 if (code == EQ && GET_CODE (op1) == SUBREG
4523 && (GET_MODE_SIZE (GET_MODE (op1))
4524 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4526 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4527 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4528 if (tem)
4529 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4530 reversed_nonequality);
4533 /* Similarly, if this is an NE comparison, and either is a SUBREG
4534 making a smaller mode, we know the whole thing is also NE. */
4536 /* Note that GET_MODE (op0) may not equal MODE;
4537 if we test MODE instead, we can get an infinite recursion
4538 alternating between two modes each wider than MODE. */
4540 if (code == NE && GET_CODE (op0) == SUBREG
4541 && subreg_lowpart_p (op0)
4542 && (GET_MODE_SIZE (GET_MODE (op0))
4543 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
4545 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
4546 rtx tem = record_jump_cond_subreg (inner_mode, op1);
4547 if (tem)
4548 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
4549 reversed_nonequality);
4552 if (code == NE && GET_CODE (op1) == SUBREG
4553 && subreg_lowpart_p (op1)
4554 && (GET_MODE_SIZE (GET_MODE (op1))
4555 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
4557 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
4558 rtx tem = record_jump_cond_subreg (inner_mode, op0);
4559 if (tem)
4560 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
4561 reversed_nonequality);
4564 /* Hash both operands. */
4566 do_not_record = 0;
4567 hash_arg_in_memory = 0;
4568 op0_hash = HASH (op0, mode);
4569 op0_in_memory = hash_arg_in_memory;
4571 if (do_not_record)
4572 return;
4574 do_not_record = 0;
4575 hash_arg_in_memory = 0;
4576 op1_hash = HASH (op1, mode);
4577 op1_in_memory = hash_arg_in_memory;
4579 if (do_not_record)
4580 return;
4582 /* Look up both operands. */
4583 op0_elt = lookup (op0, op0_hash, mode);
4584 op1_elt = lookup (op1, op1_hash, mode);
4586 /* If both operands are already equivalent or if they are not in the
4587 table but are identical, do nothing. */
4588 if ((op0_elt != 0 && op1_elt != 0
4589 && op0_elt->first_same_value == op1_elt->first_same_value)
4590 || op0 == op1 || rtx_equal_p (op0, op1))
4591 return;
4593 /* If we aren't setting two things equal all we can do is save this
4594 comparison. Similarly if this is floating-point. In the latter
4595 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
4596 If we record the equality, we might inadvertently delete code
4597 whose intent was to change -0 to +0. */
4599 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
4601 struct qty_table_elem *ent;
4602 int qty;
4604 /* If we reversed a floating-point comparison, if OP0 is not a
4605 register, or if OP1 is neither a register or constant, we can't
4606 do anything. */
4608 if (!REG_P (op1))
4609 op1 = equiv_constant (op1);
4611 if ((reversed_nonequality && FLOAT_MODE_P (mode))
4612 || !REG_P (op0) || op1 == 0)
4613 return;
4615 /* Put OP0 in the hash table if it isn't already. This gives it a
4616 new quantity number. */
4617 if (op0_elt == 0)
4619 if (insert_regs (op0, NULL, 0))
4621 rehash_using_reg (op0);
4622 op0_hash = HASH (op0, mode);
4624 /* If OP0 is contained in OP1, this changes its hash code
4625 as well. Faster to rehash than to check, except
4626 for the simple case of a constant. */
4627 if (! CONSTANT_P (op1))
4628 op1_hash = HASH (op1,mode);
4631 op0_elt = insert (op0, NULL, op0_hash, mode);
4632 op0_elt->in_memory = op0_in_memory;
4635 qty = REG_QTY (REGNO (op0));
4636 ent = &qty_table[qty];
4638 ent->comparison_code = code;
4639 if (REG_P (op1))
4641 /* Look it up again--in case op0 and op1 are the same. */
4642 op1_elt = lookup (op1, op1_hash, mode);
4644 /* Put OP1 in the hash table so it gets a new quantity number. */
4645 if (op1_elt == 0)
4647 if (insert_regs (op1, NULL, 0))
4649 rehash_using_reg (op1);
4650 op1_hash = HASH (op1, mode);
4653 op1_elt = insert (op1, NULL, op1_hash, mode);
4654 op1_elt->in_memory = op1_in_memory;
4657 ent->comparison_const = NULL_RTX;
4658 ent->comparison_qty = REG_QTY (REGNO (op1));
4660 else
4662 ent->comparison_const = op1;
4663 ent->comparison_qty = -1;
4666 return;
4669 /* If either side is still missing an equivalence, make it now,
4670 then merge the equivalences. */
4672 if (op0_elt == 0)
4674 if (insert_regs (op0, NULL, 0))
4676 rehash_using_reg (op0);
4677 op0_hash = HASH (op0, mode);
4680 op0_elt = insert (op0, NULL, op0_hash, mode);
4681 op0_elt->in_memory = op0_in_memory;
4684 if (op1_elt == 0)
4686 if (insert_regs (op1, NULL, 0))
4688 rehash_using_reg (op1);
4689 op1_hash = HASH (op1, mode);
4692 op1_elt = insert (op1, NULL, op1_hash, mode);
4693 op1_elt->in_memory = op1_in_memory;
4696 merge_equiv_classes (op0_elt, op1_elt);
4699 /* CSE processing for one instruction.
4700 First simplify sources and addresses of all assignments
4701 in the instruction, using previously-computed equivalents values.
4702 Then install the new sources and destinations in the table
4703 of available values.
4705 If LIBCALL_INSN is nonzero, don't record any equivalence made in
4706 the insn. It means that INSN is inside libcall block. In this
4707 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
4709 /* Data on one SET contained in the instruction. */
4711 struct set
4713 /* The SET rtx itself. */
4714 rtx rtl;
4715 /* The SET_SRC of the rtx (the original value, if it is changing). */
4716 rtx src;
4717 /* The hash-table element for the SET_SRC of the SET. */
4718 struct table_elt *src_elt;
4719 /* Hash value for the SET_SRC. */
4720 unsigned src_hash;
4721 /* Hash value for the SET_DEST. */
4722 unsigned dest_hash;
4723 /* The SET_DEST, with SUBREG, etc., stripped. */
4724 rtx inner_dest;
4725 /* Nonzero if the SET_SRC is in memory. */
4726 char src_in_memory;
4727 /* Nonzero if the SET_SRC contains something
4728 whose value cannot be predicted and understood. */
4729 char src_volatile;
4730 /* Original machine mode, in case it becomes a CONST_INT.
4731 The size of this field should match the size of the mode
4732 field of struct rtx_def (see rtl.h). */
4733 ENUM_BITFIELD(machine_mode) mode : 8;
4734 /* A constant equivalent for SET_SRC, if any. */
4735 rtx src_const;
4736 /* Original SET_SRC value used for libcall notes. */
4737 rtx orig_src;
4738 /* Hash value of constant equivalent for SET_SRC. */
4739 unsigned src_const_hash;
4740 /* Table entry for constant equivalent for SET_SRC, if any. */
4741 struct table_elt *src_const_elt;
4744 static void
4745 cse_insn (rtx insn, rtx libcall_insn)
4747 rtx x = PATTERN (insn);
4748 int i;
4749 rtx tem;
4750 int n_sets = 0;
4752 #ifdef HAVE_cc0
4753 /* Records what this insn does to set CC0. */
4754 rtx this_insn_cc0 = 0;
4755 enum machine_mode this_insn_cc0_mode = VOIDmode;
4756 #endif
4758 rtx src_eqv = 0;
4759 struct table_elt *src_eqv_elt = 0;
4760 int src_eqv_volatile = 0;
4761 int src_eqv_in_memory = 0;
4762 unsigned src_eqv_hash = 0;
4764 struct set *sets = (struct set *) 0;
4766 this_insn = insn;
4768 /* Find all the SETs and CLOBBERs in this instruction.
4769 Record all the SETs in the array `set' and count them.
4770 Also determine whether there is a CLOBBER that invalidates
4771 all memory references, or all references at varying addresses. */
4773 if (CALL_P (insn))
4775 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4777 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4778 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4779 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4783 if (GET_CODE (x) == SET)
4785 sets = alloca (sizeof (struct set));
4786 sets[0].rtl = x;
4788 /* Ignore SETs that are unconditional jumps.
4789 They never need cse processing, so this does not hurt.
4790 The reason is not efficiency but rather
4791 so that we can test at the end for instructions
4792 that have been simplified to unconditional jumps
4793 and not be misled by unchanged instructions
4794 that were unconditional jumps to begin with. */
4795 if (SET_DEST (x) == pc_rtx
4796 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4799 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4800 The hard function value register is used only once, to copy to
4801 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4802 Ensure we invalidate the destination register. On the 80386 no
4803 other code would invalidate it since it is a fixed_reg.
4804 We need not check the return of apply_change_group; see canon_reg. */
4806 else if (GET_CODE (SET_SRC (x)) == CALL)
4808 canon_reg (SET_SRC (x), insn);
4809 apply_change_group ();
4810 fold_rtx (SET_SRC (x), insn);
4811 invalidate (SET_DEST (x), VOIDmode);
4813 else
4814 n_sets = 1;
4816 else if (GET_CODE (x) == PARALLEL)
4818 int lim = XVECLEN (x, 0);
4820 sets = alloca (lim * sizeof (struct set));
4822 /* Find all regs explicitly clobbered in this insn,
4823 and ensure they are not replaced with any other regs
4824 elsewhere in this insn.
4825 When a reg that is clobbered is also used for input,
4826 we should presume that that is for a reason,
4827 and we should not substitute some other register
4828 which is not supposed to be clobbered.
4829 Therefore, this loop cannot be merged into the one below
4830 because a CALL may precede a CLOBBER and refer to the
4831 value clobbered. We must not let a canonicalization do
4832 anything in that case. */
4833 for (i = 0; i < lim; i++)
4835 rtx y = XVECEXP (x, 0, i);
4836 if (GET_CODE (y) == CLOBBER)
4838 rtx clobbered = XEXP (y, 0);
4840 if (REG_P (clobbered)
4841 || GET_CODE (clobbered) == SUBREG)
4842 invalidate (clobbered, VOIDmode);
4843 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4844 || GET_CODE (clobbered) == ZERO_EXTRACT)
4845 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4849 for (i = 0; i < lim; i++)
4851 rtx y = XVECEXP (x, 0, i);
4852 if (GET_CODE (y) == SET)
4854 /* As above, we ignore unconditional jumps and call-insns and
4855 ignore the result of apply_change_group. */
4856 if (GET_CODE (SET_SRC (y)) == CALL)
4858 canon_reg (SET_SRC (y), insn);
4859 apply_change_group ();
4860 fold_rtx (SET_SRC (y), insn);
4861 invalidate (SET_DEST (y), VOIDmode);
4863 else if (SET_DEST (y) == pc_rtx
4864 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4866 else
4867 sets[n_sets++].rtl = y;
4869 else if (GET_CODE (y) == CLOBBER)
4871 /* If we clobber memory, canon the address.
4872 This does nothing when a register is clobbered
4873 because we have already invalidated the reg. */
4874 if (MEM_P (XEXP (y, 0)))
4875 canon_reg (XEXP (y, 0), NULL_RTX);
4877 else if (GET_CODE (y) == USE
4878 && ! (REG_P (XEXP (y, 0))
4879 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4880 canon_reg (y, NULL_RTX);
4881 else if (GET_CODE (y) == CALL)
4883 /* The result of apply_change_group can be ignored; see
4884 canon_reg. */
4885 canon_reg (y, insn);
4886 apply_change_group ();
4887 fold_rtx (y, insn);
4891 else if (GET_CODE (x) == CLOBBER)
4893 if (MEM_P (XEXP (x, 0)))
4894 canon_reg (XEXP (x, 0), NULL_RTX);
4897 /* Canonicalize a USE of a pseudo register or memory location. */
4898 else if (GET_CODE (x) == USE
4899 && ! (REG_P (XEXP (x, 0))
4900 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4901 canon_reg (XEXP (x, 0), NULL_RTX);
4902 else if (GET_CODE (x) == CALL)
4904 /* The result of apply_change_group can be ignored; see canon_reg. */
4905 canon_reg (x, insn);
4906 apply_change_group ();
4907 fold_rtx (x, insn);
4910 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4911 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4912 is handled specially for this case, and if it isn't set, then there will
4913 be no equivalence for the destination. */
4914 if (n_sets == 1 && REG_NOTES (insn) != 0
4915 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4916 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4917 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4919 src_eqv = fold_rtx (canon_reg (XEXP (tem, 0), NULL_RTX), insn);
4920 XEXP (tem, 0) = src_eqv;
4923 /* Canonicalize sources and addresses of destinations.
4924 We do this in a separate pass to avoid problems when a MATCH_DUP is
4925 present in the insn pattern. In that case, we want to ensure that
4926 we don't break the duplicate nature of the pattern. So we will replace
4927 both operands at the same time. Otherwise, we would fail to find an
4928 equivalent substitution in the loop calling validate_change below.
4930 We used to suppress canonicalization of DEST if it appears in SRC,
4931 but we don't do this any more. */
4933 for (i = 0; i < n_sets; i++)
4935 rtx dest = SET_DEST (sets[i].rtl);
4936 rtx src = SET_SRC (sets[i].rtl);
4937 rtx new = canon_reg (src, insn);
4939 sets[i].orig_src = src;
4940 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4942 if (GET_CODE (dest) == ZERO_EXTRACT)
4944 validate_change (insn, &XEXP (dest, 1),
4945 canon_reg (XEXP (dest, 1), insn), 1);
4946 validate_change (insn, &XEXP (dest, 2),
4947 canon_reg (XEXP (dest, 2), insn), 1);
4950 while (GET_CODE (dest) == SUBREG
4951 || GET_CODE (dest) == ZERO_EXTRACT
4952 || GET_CODE (dest) == STRICT_LOW_PART)
4953 dest = XEXP (dest, 0);
4955 if (MEM_P (dest))
4956 canon_reg (dest, insn);
4959 /* Now that we have done all the replacements, we can apply the change
4960 group and see if they all work. Note that this will cause some
4961 canonicalizations that would have worked individually not to be applied
4962 because some other canonicalization didn't work, but this should not
4963 occur often.
4965 The result of apply_change_group can be ignored; see canon_reg. */
4967 apply_change_group ();
4969 /* Set sets[i].src_elt to the class each source belongs to.
4970 Detect assignments from or to volatile things
4971 and set set[i] to zero so they will be ignored
4972 in the rest of this function.
4974 Nothing in this loop changes the hash table or the register chains. */
4976 for (i = 0; i < n_sets; i++)
4978 rtx src, dest;
4979 rtx src_folded;
4980 struct table_elt *elt = 0, *p;
4981 enum machine_mode mode;
4982 rtx src_eqv_here;
4983 rtx src_const = 0;
4984 rtx src_related = 0;
4985 struct table_elt *src_const_elt = 0;
4986 int src_cost = MAX_COST;
4987 int src_eqv_cost = MAX_COST;
4988 int src_folded_cost = MAX_COST;
4989 int src_related_cost = MAX_COST;
4990 int src_elt_cost = MAX_COST;
4991 int src_regcost = MAX_COST;
4992 int src_eqv_regcost = MAX_COST;
4993 int src_folded_regcost = MAX_COST;
4994 int src_related_regcost = MAX_COST;
4995 int src_elt_regcost = MAX_COST;
4996 /* Set nonzero if we need to call force_const_mem on with the
4997 contents of src_folded before using it. */
4998 int src_folded_force_flag = 0;
5000 dest = SET_DEST (sets[i].rtl);
5001 src = SET_SRC (sets[i].rtl);
5003 /* If SRC is a constant that has no machine mode,
5004 hash it with the destination's machine mode.
5005 This way we can keep different modes separate. */
5007 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5008 sets[i].mode = mode;
5010 if (src_eqv)
5012 enum machine_mode eqvmode = mode;
5013 if (GET_CODE (dest) == STRICT_LOW_PART)
5014 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5015 do_not_record = 0;
5016 hash_arg_in_memory = 0;
5017 src_eqv_hash = HASH (src_eqv, eqvmode);
5019 /* Find the equivalence class for the equivalent expression. */
5021 if (!do_not_record)
5022 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
5024 src_eqv_volatile = do_not_record;
5025 src_eqv_in_memory = hash_arg_in_memory;
5028 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
5029 value of the INNER register, not the destination. So it is not
5030 a valid substitution for the source. But save it for later. */
5031 if (GET_CODE (dest) == STRICT_LOW_PART)
5032 src_eqv_here = 0;
5033 else
5034 src_eqv_here = src_eqv;
5036 /* Simplify and foldable subexpressions in SRC. Then get the fully-
5037 simplified result, which may not necessarily be valid. */
5038 src_folded = fold_rtx (src, insn);
5040 #if 0
5041 /* ??? This caused bad code to be generated for the m68k port with -O2.
5042 Suppose src is (CONST_INT -1), and that after truncation src_folded
5043 is (CONST_INT 3). Suppose src_folded is then used for src_const.
5044 At the end we will add src and src_const to the same equivalence
5045 class. We now have 3 and -1 on the same equivalence class. This
5046 causes later instructions to be mis-optimized. */
5047 /* If storing a constant in a bitfield, pre-truncate the constant
5048 so we will be able to record it later. */
5049 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5051 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5053 if (GET_CODE (src) == CONST_INT
5054 && GET_CODE (width) == CONST_INT
5055 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5056 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5057 src_folded
5058 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
5059 << INTVAL (width)) - 1));
5061 #endif
5063 /* Compute SRC's hash code, and also notice if it
5064 should not be recorded at all. In that case,
5065 prevent any further processing of this assignment. */
5066 do_not_record = 0;
5067 hash_arg_in_memory = 0;
5069 sets[i].src = src;
5070 sets[i].src_hash = HASH (src, mode);
5071 sets[i].src_volatile = do_not_record;
5072 sets[i].src_in_memory = hash_arg_in_memory;
5074 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
5075 a pseudo, do not record SRC. Using SRC as a replacement for
5076 anything else will be incorrect in that situation. Note that
5077 this usually occurs only for stack slots, in which case all the
5078 RTL would be referring to SRC, so we don't lose any optimization
5079 opportunities by not having SRC in the hash table. */
5081 if (MEM_P (src)
5082 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
5083 && REG_P (dest)
5084 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5085 sets[i].src_volatile = 1;
5087 #if 0
5088 /* It is no longer clear why we used to do this, but it doesn't
5089 appear to still be needed. So let's try without it since this
5090 code hurts cse'ing widened ops. */
5091 /* If source is a paradoxical subreg (such as QI treated as an SI),
5092 treat it as volatile. It may do the work of an SI in one context
5093 where the extra bits are not being used, but cannot replace an SI
5094 in general. */
5095 if (GET_CODE (src) == SUBREG
5096 && (GET_MODE_SIZE (GET_MODE (src))
5097 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
5098 sets[i].src_volatile = 1;
5099 #endif
5101 /* Locate all possible equivalent forms for SRC. Try to replace
5102 SRC in the insn with each cheaper equivalent.
5104 We have the following types of equivalents: SRC itself, a folded
5105 version, a value given in a REG_EQUAL note, or a value related
5106 to a constant.
5108 Each of these equivalents may be part of an additional class
5109 of equivalents (if more than one is in the table, they must be in
5110 the same class; we check for this).
5112 If the source is volatile, we don't do any table lookups.
5114 We note any constant equivalent for possible later use in a
5115 REG_NOTE. */
5117 if (!sets[i].src_volatile)
5118 elt = lookup (src, sets[i].src_hash, mode);
5120 sets[i].src_elt = elt;
5122 if (elt && src_eqv_here && src_eqv_elt)
5124 if (elt->first_same_value != src_eqv_elt->first_same_value)
5126 /* The REG_EQUAL is indicating that two formerly distinct
5127 classes are now equivalent. So merge them. */
5128 merge_equiv_classes (elt, src_eqv_elt);
5129 src_eqv_hash = HASH (src_eqv, elt->mode);
5130 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
5133 src_eqv_here = 0;
5136 else if (src_eqv_elt)
5137 elt = src_eqv_elt;
5139 /* Try to find a constant somewhere and record it in `src_const'.
5140 Record its table element, if any, in `src_const_elt'. Look in
5141 any known equivalences first. (If the constant is not in the
5142 table, also set `sets[i].src_const_hash'). */
5143 if (elt)
5144 for (p = elt->first_same_value; p; p = p->next_same_value)
5145 if (p->is_const)
5147 src_const = p->exp;
5148 src_const_elt = elt;
5149 break;
5152 if (src_const == 0
5153 && (CONSTANT_P (src_folded)
5154 /* Consider (minus (label_ref L1) (label_ref L2)) as
5155 "constant" here so we will record it. This allows us
5156 to fold switch statements when an ADDR_DIFF_VEC is used. */
5157 || (GET_CODE (src_folded) == MINUS
5158 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
5159 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
5160 src_const = src_folded, src_const_elt = elt;
5161 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
5162 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
5164 /* If we don't know if the constant is in the table, get its
5165 hash code and look it up. */
5166 if (src_const && src_const_elt == 0)
5168 sets[i].src_const_hash = HASH (src_const, mode);
5169 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
5172 sets[i].src_const = src_const;
5173 sets[i].src_const_elt = src_const_elt;
5175 /* If the constant and our source are both in the table, mark them as
5176 equivalent. Otherwise, if a constant is in the table but the source
5177 isn't, set ELT to it. */
5178 if (src_const_elt && elt
5179 && src_const_elt->first_same_value != elt->first_same_value)
5180 merge_equiv_classes (elt, src_const_elt);
5181 else if (src_const_elt && elt == 0)
5182 elt = src_const_elt;
5184 /* See if there is a register linearly related to a constant
5185 equivalent of SRC. */
5186 if (src_const
5187 && (GET_CODE (src_const) == CONST
5188 || (src_const_elt && src_const_elt->related_value != 0)))
5190 src_related = use_related_value (src_const, src_const_elt);
5191 if (src_related)
5193 struct table_elt *src_related_elt
5194 = lookup (src_related, HASH (src_related, mode), mode);
5195 if (src_related_elt && elt)
5197 if (elt->first_same_value
5198 != src_related_elt->first_same_value)
5199 /* This can occur when we previously saw a CONST
5200 involving a SYMBOL_REF and then see the SYMBOL_REF
5201 twice. Merge the involved classes. */
5202 merge_equiv_classes (elt, src_related_elt);
5204 src_related = 0;
5205 src_related_elt = 0;
5207 else if (src_related_elt && elt == 0)
5208 elt = src_related_elt;
5212 /* See if we have a CONST_INT that is already in a register in a
5213 wider mode. */
5215 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
5216 && GET_MODE_CLASS (mode) == MODE_INT
5217 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
5219 enum machine_mode wider_mode;
5221 for (wider_mode = GET_MODE_WIDER_MODE (mode);
5222 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
5223 && src_related == 0;
5224 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
5226 struct table_elt *const_elt
5227 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
5229 if (const_elt == 0)
5230 continue;
5232 for (const_elt = const_elt->first_same_value;
5233 const_elt; const_elt = const_elt->next_same_value)
5234 if (REG_P (const_elt->exp))
5236 src_related = gen_lowpart (mode,
5237 const_elt->exp);
5238 break;
5243 /* Another possibility is that we have an AND with a constant in
5244 a mode narrower than a word. If so, it might have been generated
5245 as part of an "if" which would narrow the AND. If we already
5246 have done the AND in a wider mode, we can use a SUBREG of that
5247 value. */
5249 if (flag_expensive_optimizations && ! src_related
5250 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
5251 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5253 enum machine_mode tmode;
5254 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
5256 for (tmode = GET_MODE_WIDER_MODE (mode);
5257 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5258 tmode = GET_MODE_WIDER_MODE (tmode))
5260 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
5261 struct table_elt *larger_elt;
5263 if (inner)
5265 PUT_MODE (new_and, tmode);
5266 XEXP (new_and, 0) = inner;
5267 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
5268 if (larger_elt == 0)
5269 continue;
5271 for (larger_elt = larger_elt->first_same_value;
5272 larger_elt; larger_elt = larger_elt->next_same_value)
5273 if (REG_P (larger_elt->exp))
5275 src_related
5276 = gen_lowpart (mode, larger_elt->exp);
5277 break;
5280 if (src_related)
5281 break;
5286 #ifdef LOAD_EXTEND_OP
5287 /* See if a MEM has already been loaded with a widening operation;
5288 if it has, we can use a subreg of that. Many CISC machines
5289 also have such operations, but this is only likely to be
5290 beneficial on these machines. */
5292 if (flag_expensive_optimizations && src_related == 0
5293 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
5294 && GET_MODE_CLASS (mode) == MODE_INT
5295 && MEM_P (src) && ! do_not_record
5296 && LOAD_EXTEND_OP (mode) != UNKNOWN)
5298 struct rtx_def memory_extend_buf;
5299 rtx memory_extend_rtx = &memory_extend_buf;
5300 enum machine_mode tmode;
5302 /* Set what we are trying to extend and the operation it might
5303 have been extended with. */
5304 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
5305 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
5306 XEXP (memory_extend_rtx, 0) = src;
5308 for (tmode = GET_MODE_WIDER_MODE (mode);
5309 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
5310 tmode = GET_MODE_WIDER_MODE (tmode))
5312 struct table_elt *larger_elt;
5314 PUT_MODE (memory_extend_rtx, tmode);
5315 larger_elt = lookup (memory_extend_rtx,
5316 HASH (memory_extend_rtx, tmode), tmode);
5317 if (larger_elt == 0)
5318 continue;
5320 for (larger_elt = larger_elt->first_same_value;
5321 larger_elt; larger_elt = larger_elt->next_same_value)
5322 if (REG_P (larger_elt->exp))
5324 src_related = gen_lowpart (mode,
5325 larger_elt->exp);
5326 break;
5329 if (src_related)
5330 break;
5333 #endif /* LOAD_EXTEND_OP */
5335 if (src == src_folded)
5336 src_folded = 0;
5338 /* At this point, ELT, if nonzero, points to a class of expressions
5339 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
5340 and SRC_RELATED, if nonzero, each contain additional equivalent
5341 expressions. Prune these latter expressions by deleting expressions
5342 already in the equivalence class.
5344 Check for an equivalent identical to the destination. If found,
5345 this is the preferred equivalent since it will likely lead to
5346 elimination of the insn. Indicate this by placing it in
5347 `src_related'. */
5349 if (elt)
5350 elt = elt->first_same_value;
5351 for (p = elt; p; p = p->next_same_value)
5353 enum rtx_code code = GET_CODE (p->exp);
5355 /* If the expression is not valid, ignore it. Then we do not
5356 have to check for validity below. In most cases, we can use
5357 `rtx_equal_p', since canonicalization has already been done. */
5358 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
5359 continue;
5361 /* Also skip paradoxical subregs, unless that's what we're
5362 looking for. */
5363 if (code == SUBREG
5364 && (GET_MODE_SIZE (GET_MODE (p->exp))
5365 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
5366 && ! (src != 0
5367 && GET_CODE (src) == SUBREG
5368 && GET_MODE (src) == GET_MODE (p->exp)
5369 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5370 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
5371 continue;
5373 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
5374 src = 0;
5375 else if (src_folded && GET_CODE (src_folded) == code
5376 && rtx_equal_p (src_folded, p->exp))
5377 src_folded = 0;
5378 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
5379 && rtx_equal_p (src_eqv_here, p->exp))
5380 src_eqv_here = 0;
5381 else if (src_related && GET_CODE (src_related) == code
5382 && rtx_equal_p (src_related, p->exp))
5383 src_related = 0;
5385 /* This is the same as the destination of the insns, we want
5386 to prefer it. Copy it to src_related. The code below will
5387 then give it a negative cost. */
5388 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
5389 src_related = dest;
5392 /* Find the cheapest valid equivalent, trying all the available
5393 possibilities. Prefer items not in the hash table to ones
5394 that are when they are equal cost. Note that we can never
5395 worsen an insn as the current contents will also succeed.
5396 If we find an equivalent identical to the destination, use it as best,
5397 since this insn will probably be eliminated in that case. */
5398 if (src)
5400 if (rtx_equal_p (src, dest))
5401 src_cost = src_regcost = -1;
5402 else
5404 src_cost = COST (src);
5405 src_regcost = approx_reg_cost (src);
5409 if (src_eqv_here)
5411 if (rtx_equal_p (src_eqv_here, dest))
5412 src_eqv_cost = src_eqv_regcost = -1;
5413 else
5415 src_eqv_cost = COST (src_eqv_here);
5416 src_eqv_regcost = approx_reg_cost (src_eqv_here);
5420 if (src_folded)
5422 if (rtx_equal_p (src_folded, dest))
5423 src_folded_cost = src_folded_regcost = -1;
5424 else
5426 src_folded_cost = COST (src_folded);
5427 src_folded_regcost = approx_reg_cost (src_folded);
5431 if (src_related)
5433 if (rtx_equal_p (src_related, dest))
5434 src_related_cost = src_related_regcost = -1;
5435 else
5437 src_related_cost = COST (src_related);
5438 src_related_regcost = approx_reg_cost (src_related);
5442 /* If this was an indirect jump insn, a known label will really be
5443 cheaper even though it looks more expensive. */
5444 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
5445 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
5447 /* Terminate loop when replacement made. This must terminate since
5448 the current contents will be tested and will always be valid. */
5449 while (1)
5451 rtx trial;
5453 /* Skip invalid entries. */
5454 while (elt && !REG_P (elt->exp)
5455 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5456 elt = elt->next_same_value;
5458 /* A paradoxical subreg would be bad here: it'll be the right
5459 size, but later may be adjusted so that the upper bits aren't
5460 what we want. So reject it. */
5461 if (elt != 0
5462 && GET_CODE (elt->exp) == SUBREG
5463 && (GET_MODE_SIZE (GET_MODE (elt->exp))
5464 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
5465 /* It is okay, though, if the rtx we're trying to match
5466 will ignore any of the bits we can't predict. */
5467 && ! (src != 0
5468 && GET_CODE (src) == SUBREG
5469 && GET_MODE (src) == GET_MODE (elt->exp)
5470 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5471 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
5473 elt = elt->next_same_value;
5474 continue;
5477 if (elt)
5479 src_elt_cost = elt->cost;
5480 src_elt_regcost = elt->regcost;
5483 /* Find cheapest and skip it for the next time. For items
5484 of equal cost, use this order:
5485 src_folded, src, src_eqv, src_related and hash table entry. */
5486 if (src_folded
5487 && preferable (src_folded_cost, src_folded_regcost,
5488 src_cost, src_regcost) <= 0
5489 && preferable (src_folded_cost, src_folded_regcost,
5490 src_eqv_cost, src_eqv_regcost) <= 0
5491 && preferable (src_folded_cost, src_folded_regcost,
5492 src_related_cost, src_related_regcost) <= 0
5493 && preferable (src_folded_cost, src_folded_regcost,
5494 src_elt_cost, src_elt_regcost) <= 0)
5496 trial = src_folded, src_folded_cost = MAX_COST;
5497 if (src_folded_force_flag)
5499 rtx forced = force_const_mem (mode, trial);
5500 if (forced)
5501 trial = forced;
5504 else if (src
5505 && preferable (src_cost, src_regcost,
5506 src_eqv_cost, src_eqv_regcost) <= 0
5507 && preferable (src_cost, src_regcost,
5508 src_related_cost, src_related_regcost) <= 0
5509 && preferable (src_cost, src_regcost,
5510 src_elt_cost, src_elt_regcost) <= 0)
5511 trial = src, src_cost = MAX_COST;
5512 else if (src_eqv_here
5513 && preferable (src_eqv_cost, src_eqv_regcost,
5514 src_related_cost, src_related_regcost) <= 0
5515 && preferable (src_eqv_cost, src_eqv_regcost,
5516 src_elt_cost, src_elt_regcost) <= 0)
5517 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
5518 else if (src_related
5519 && preferable (src_related_cost, src_related_regcost,
5520 src_elt_cost, src_elt_regcost) <= 0)
5521 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
5522 else
5524 trial = copy_rtx (elt->exp);
5525 elt = elt->next_same_value;
5526 src_elt_cost = MAX_COST;
5529 /* We don't normally have an insn matching (set (pc) (pc)), so
5530 check for this separately here. We will delete such an
5531 insn below.
5533 For other cases such as a table jump or conditional jump
5534 where we know the ultimate target, go ahead and replace the
5535 operand. While that may not make a valid insn, we will
5536 reemit the jump below (and also insert any necessary
5537 barriers). */
5538 if (n_sets == 1 && dest == pc_rtx
5539 && (trial == pc_rtx
5540 || (GET_CODE (trial) == LABEL_REF
5541 && ! condjump_p (insn))))
5543 /* Don't substitute non-local labels, this confuses CFG. */
5544 if (GET_CODE (trial) == LABEL_REF
5545 && LABEL_REF_NONLOCAL_P (trial))
5546 continue;
5548 SET_SRC (sets[i].rtl) = trial;
5549 cse_jumps_altered = 1;
5550 break;
5553 /* Reject certain invalid forms of CONST that we create. */
5554 else if (CONSTANT_P (trial)
5555 && GET_CODE (trial) == CONST
5556 /* Reject cases that will cause decode_rtx_const to
5557 die. On the alpha when simplifying a switch, we
5558 get (const (truncate (minus (label_ref)
5559 (label_ref)))). */
5560 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
5561 /* Likewise on IA-64, except without the
5562 truncate. */
5563 || (GET_CODE (XEXP (trial, 0)) == MINUS
5564 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
5565 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
5566 /* Do nothing for this case. */
5569 /* Look for a substitution that makes a valid insn. */
5570 else if (validate_change (insn, &SET_SRC (sets[i].rtl), trial, 0))
5572 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
5574 /* If we just made a substitution inside a libcall, then we
5575 need to make the same substitution in any notes attached
5576 to the RETVAL insn. */
5577 if (libcall_insn
5578 && (REG_P (sets[i].orig_src)
5579 || GET_CODE (sets[i].orig_src) == SUBREG
5580 || MEM_P (sets[i].orig_src)))
5582 rtx note = find_reg_equal_equiv_note (libcall_insn);
5583 if (note != 0)
5584 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
5585 sets[i].orig_src,
5586 copy_rtx (new));
5589 /* The result of apply_change_group can be ignored; see
5590 canon_reg. */
5592 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
5593 apply_change_group ();
5594 break;
5597 /* If we previously found constant pool entries for
5598 constants and this is a constant, try making a
5599 pool entry. Put it in src_folded unless we already have done
5600 this since that is where it likely came from. */
5602 else if (constant_pool_entries_cost
5603 && CONSTANT_P (trial)
5604 && (src_folded == 0
5605 || (!MEM_P (src_folded)
5606 && ! src_folded_force_flag))
5607 && GET_MODE_CLASS (mode) != MODE_CC
5608 && mode != VOIDmode)
5610 src_folded_force_flag = 1;
5611 src_folded = trial;
5612 src_folded_cost = constant_pool_entries_cost;
5613 src_folded_regcost = constant_pool_entries_regcost;
5617 src = SET_SRC (sets[i].rtl);
5619 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
5620 However, there is an important exception: If both are registers
5621 that are not the head of their equivalence class, replace SET_SRC
5622 with the head of the class. If we do not do this, we will have
5623 both registers live over a portion of the basic block. This way,
5624 their lifetimes will likely abut instead of overlapping. */
5625 if (REG_P (dest)
5626 && REGNO_QTY_VALID_P (REGNO (dest)))
5628 int dest_q = REG_QTY (REGNO (dest));
5629 struct qty_table_elem *dest_ent = &qty_table[dest_q];
5631 if (dest_ent->mode == GET_MODE (dest)
5632 && dest_ent->first_reg != REGNO (dest)
5633 && REG_P (src) && REGNO (src) == REGNO (dest)
5634 /* Don't do this if the original insn had a hard reg as
5635 SET_SRC or SET_DEST. */
5636 && (!REG_P (sets[i].src)
5637 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
5638 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
5639 /* We can't call canon_reg here because it won't do anything if
5640 SRC is a hard register. */
5642 int src_q = REG_QTY (REGNO (src));
5643 struct qty_table_elem *src_ent = &qty_table[src_q];
5644 int first = src_ent->first_reg;
5645 rtx new_src
5646 = (first >= FIRST_PSEUDO_REGISTER
5647 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
5649 /* We must use validate-change even for this, because this
5650 might be a special no-op instruction, suitable only to
5651 tag notes onto. */
5652 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
5654 src = new_src;
5655 /* If we had a constant that is cheaper than what we are now
5656 setting SRC to, use that constant. We ignored it when we
5657 thought we could make this into a no-op. */
5658 if (src_const && COST (src_const) < COST (src)
5659 && validate_change (insn, &SET_SRC (sets[i].rtl),
5660 src_const, 0))
5661 src = src_const;
5666 /* If we made a change, recompute SRC values. */
5667 if (src != sets[i].src)
5669 cse_altered = 1;
5670 do_not_record = 0;
5671 hash_arg_in_memory = 0;
5672 sets[i].src = src;
5673 sets[i].src_hash = HASH (src, mode);
5674 sets[i].src_volatile = do_not_record;
5675 sets[i].src_in_memory = hash_arg_in_memory;
5676 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
5679 /* If this is a single SET, we are setting a register, and we have an
5680 equivalent constant, we want to add a REG_NOTE. We don't want
5681 to write a REG_EQUAL note for a constant pseudo since verifying that
5682 that pseudo hasn't been eliminated is a pain. Such a note also
5683 won't help anything.
5685 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
5686 which can be created for a reference to a compile time computable
5687 entry in a jump table. */
5689 if (n_sets == 1 && src_const && REG_P (dest)
5690 && !REG_P (src_const)
5691 && ! (GET_CODE (src_const) == CONST
5692 && GET_CODE (XEXP (src_const, 0)) == MINUS
5693 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
5694 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
5696 /* We only want a REG_EQUAL note if src_const != src. */
5697 if (! rtx_equal_p (src, src_const))
5699 /* Make sure that the rtx is not shared. */
5700 src_const = copy_rtx (src_const);
5702 /* Record the actual constant value in a REG_EQUAL note,
5703 making a new one if one does not already exist. */
5704 set_unique_reg_note (insn, REG_EQUAL, src_const);
5708 /* Now deal with the destination. */
5709 do_not_record = 0;
5711 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
5712 while (GET_CODE (dest) == SUBREG
5713 || GET_CODE (dest) == ZERO_EXTRACT
5714 || GET_CODE (dest) == STRICT_LOW_PART)
5715 dest = XEXP (dest, 0);
5717 sets[i].inner_dest = dest;
5719 if (MEM_P (dest))
5721 #ifdef PUSH_ROUNDING
5722 /* Stack pushes invalidate the stack pointer. */
5723 rtx addr = XEXP (dest, 0);
5724 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5725 && XEXP (addr, 0) == stack_pointer_rtx)
5726 invalidate (stack_pointer_rtx, Pmode);
5727 #endif
5728 dest = fold_rtx (dest, insn);
5731 /* Compute the hash code of the destination now,
5732 before the effects of this instruction are recorded,
5733 since the register values used in the address computation
5734 are those before this instruction. */
5735 sets[i].dest_hash = HASH (dest, mode);
5737 /* Don't enter a bit-field in the hash table
5738 because the value in it after the store
5739 may not equal what was stored, due to truncation. */
5741 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5743 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5745 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5746 && GET_CODE (width) == CONST_INT
5747 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5748 && ! (INTVAL (src_const)
5749 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5750 /* Exception: if the value is constant,
5751 and it won't be truncated, record it. */
5753 else
5755 /* This is chosen so that the destination will be invalidated
5756 but no new value will be recorded.
5757 We must invalidate because sometimes constant
5758 values can be recorded for bitfields. */
5759 sets[i].src_elt = 0;
5760 sets[i].src_volatile = 1;
5761 src_eqv = 0;
5762 src_eqv_elt = 0;
5766 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5767 the insn. */
5768 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5770 /* One less use of the label this insn used to jump to. */
5771 delete_insn (insn);
5772 cse_jumps_altered = 1;
5773 /* No more processing for this set. */
5774 sets[i].rtl = 0;
5777 /* If this SET is now setting PC to a label, we know it used to
5778 be a conditional or computed branch. */
5779 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5780 && !LABEL_REF_NONLOCAL_P (src))
5782 /* Now emit a BARRIER after the unconditional jump. */
5783 if (NEXT_INSN (insn) == 0
5784 || !BARRIER_P (NEXT_INSN (insn)))
5785 emit_barrier_after (insn);
5787 /* We reemit the jump in as many cases as possible just in
5788 case the form of an unconditional jump is significantly
5789 different than a computed jump or conditional jump.
5791 If this insn has multiple sets, then reemitting the
5792 jump is nontrivial. So instead we just force rerecognition
5793 and hope for the best. */
5794 if (n_sets == 1)
5796 rtx new, note;
5798 new = emit_jump_insn_after (gen_jump (XEXP (src, 0)), insn);
5799 JUMP_LABEL (new) = XEXP (src, 0);
5800 LABEL_NUSES (XEXP (src, 0))++;
5802 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5803 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5804 if (note)
5806 XEXP (note, 1) = NULL_RTX;
5807 REG_NOTES (new) = note;
5810 delete_insn (insn);
5811 insn = new;
5813 /* Now emit a BARRIER after the unconditional jump. */
5814 if (NEXT_INSN (insn) == 0
5815 || !BARRIER_P (NEXT_INSN (insn)))
5816 emit_barrier_after (insn);
5818 else
5819 INSN_CODE (insn) = -1;
5821 /* Do not bother deleting any unreachable code,
5822 let jump/flow do that. */
5824 cse_jumps_altered = 1;
5825 sets[i].rtl = 0;
5828 /* If destination is volatile, invalidate it and then do no further
5829 processing for this assignment. */
5831 else if (do_not_record)
5833 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5834 invalidate (dest, VOIDmode);
5835 else if (MEM_P (dest))
5836 invalidate (dest, VOIDmode);
5837 else if (GET_CODE (dest) == STRICT_LOW_PART
5838 || GET_CODE (dest) == ZERO_EXTRACT)
5839 invalidate (XEXP (dest, 0), GET_MODE (dest));
5840 sets[i].rtl = 0;
5843 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5844 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5846 #ifdef HAVE_cc0
5847 /* If setting CC0, record what it was set to, or a constant, if it
5848 is equivalent to a constant. If it is being set to a floating-point
5849 value, make a COMPARE with the appropriate constant of 0. If we
5850 don't do this, later code can interpret this as a test against
5851 const0_rtx, which can cause problems if we try to put it into an
5852 insn as a floating-point operand. */
5853 if (dest == cc0_rtx)
5855 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5856 this_insn_cc0_mode = mode;
5857 if (FLOAT_MODE_P (mode))
5858 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5859 CONST0_RTX (mode));
5861 #endif
5864 /* Now enter all non-volatile source expressions in the hash table
5865 if they are not already present.
5866 Record their equivalence classes in src_elt.
5867 This way we can insert the corresponding destinations into
5868 the same classes even if the actual sources are no longer in them
5869 (having been invalidated). */
5871 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5872 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5874 struct table_elt *elt;
5875 struct table_elt *classp = sets[0].src_elt;
5876 rtx dest = SET_DEST (sets[0].rtl);
5877 enum machine_mode eqvmode = GET_MODE (dest);
5879 if (GET_CODE (dest) == STRICT_LOW_PART)
5881 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5882 classp = 0;
5884 if (insert_regs (src_eqv, classp, 0))
5886 rehash_using_reg (src_eqv);
5887 src_eqv_hash = HASH (src_eqv, eqvmode);
5889 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5890 elt->in_memory = src_eqv_in_memory;
5891 src_eqv_elt = elt;
5893 /* Check to see if src_eqv_elt is the same as a set source which
5894 does not yet have an elt, and if so set the elt of the set source
5895 to src_eqv_elt. */
5896 for (i = 0; i < n_sets; i++)
5897 if (sets[i].rtl && sets[i].src_elt == 0
5898 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5899 sets[i].src_elt = src_eqv_elt;
5902 for (i = 0; i < n_sets; i++)
5903 if (sets[i].rtl && ! sets[i].src_volatile
5904 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5906 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5908 /* REG_EQUAL in setting a STRICT_LOW_PART
5909 gives an equivalent for the entire destination register,
5910 not just for the subreg being stored in now.
5911 This is a more interesting equivalence, so we arrange later
5912 to treat the entire reg as the destination. */
5913 sets[i].src_elt = src_eqv_elt;
5914 sets[i].src_hash = src_eqv_hash;
5916 else
5918 /* Insert source and constant equivalent into hash table, if not
5919 already present. */
5920 struct table_elt *classp = src_eqv_elt;
5921 rtx src = sets[i].src;
5922 rtx dest = SET_DEST (sets[i].rtl);
5923 enum machine_mode mode
5924 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5926 /* It's possible that we have a source value known to be
5927 constant but don't have a REG_EQUAL note on the insn.
5928 Lack of a note will mean src_eqv_elt will be NULL. This
5929 can happen where we've generated a SUBREG to access a
5930 CONST_INT that is already in a register in a wider mode.
5931 Ensure that the source expression is put in the proper
5932 constant class. */
5933 if (!classp)
5934 classp = sets[i].src_const_elt;
5936 if (sets[i].src_elt == 0)
5938 /* Don't put a hard register source into the table if this is
5939 the last insn of a libcall. In this case, we only need
5940 to put src_eqv_elt in src_elt. */
5941 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5943 struct table_elt *elt;
5945 /* Note that these insert_regs calls cannot remove
5946 any of the src_elt's, because they would have failed to
5947 match if not still valid. */
5948 if (insert_regs (src, classp, 0))
5950 rehash_using_reg (src);
5951 sets[i].src_hash = HASH (src, mode);
5953 elt = insert (src, classp, sets[i].src_hash, mode);
5954 elt->in_memory = sets[i].src_in_memory;
5955 sets[i].src_elt = classp = elt;
5957 else
5958 sets[i].src_elt = classp;
5960 if (sets[i].src_const && sets[i].src_const_elt == 0
5961 && src != sets[i].src_const
5962 && ! rtx_equal_p (sets[i].src_const, src))
5963 sets[i].src_elt = insert (sets[i].src_const, classp,
5964 sets[i].src_const_hash, mode);
5967 else if (sets[i].src_elt == 0)
5968 /* If we did not insert the source into the hash table (e.g., it was
5969 volatile), note the equivalence class for the REG_EQUAL value, if any,
5970 so that the destination goes into that class. */
5971 sets[i].src_elt = src_eqv_elt;
5973 invalidate_from_clobbers (x);
5975 /* Some registers are invalidated by subroutine calls. Memory is
5976 invalidated by non-constant calls. */
5978 if (CALL_P (insn))
5980 if (! CONST_OR_PURE_CALL_P (insn))
5981 invalidate_memory ();
5982 invalidate_for_call ();
5985 /* Now invalidate everything set by this instruction.
5986 If a SUBREG or other funny destination is being set,
5987 sets[i].rtl is still nonzero, so here we invalidate the reg
5988 a part of which is being set. */
5990 for (i = 0; i < n_sets; i++)
5991 if (sets[i].rtl)
5993 /* We can't use the inner dest, because the mode associated with
5994 a ZERO_EXTRACT is significant. */
5995 rtx dest = SET_DEST (sets[i].rtl);
5997 /* Needed for registers to remove the register from its
5998 previous quantity's chain.
5999 Needed for memory if this is a nonvarying address, unless
6000 we have just done an invalidate_memory that covers even those. */
6001 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
6002 invalidate (dest, VOIDmode);
6003 else if (MEM_P (dest))
6004 invalidate (dest, VOIDmode);
6005 else if (GET_CODE (dest) == STRICT_LOW_PART
6006 || GET_CODE (dest) == ZERO_EXTRACT)
6007 invalidate (XEXP (dest, 0), GET_MODE (dest));
6010 /* A volatile ASM invalidates everything. */
6011 if (NONJUMP_INSN_P (insn)
6012 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
6013 && MEM_VOLATILE_P (PATTERN (insn)))
6014 flush_hash_table ();
6016 /* Make sure registers mentioned in destinations
6017 are safe for use in an expression to be inserted.
6018 This removes from the hash table
6019 any invalid entry that refers to one of these registers.
6021 We don't care about the return value from mention_regs because
6022 we are going to hash the SET_DEST values unconditionally. */
6024 for (i = 0; i < n_sets; i++)
6026 if (sets[i].rtl)
6028 rtx x = SET_DEST (sets[i].rtl);
6030 if (!REG_P (x))
6031 mention_regs (x);
6032 else
6034 /* We used to rely on all references to a register becoming
6035 inaccessible when a register changes to a new quantity,
6036 since that changes the hash code. However, that is not
6037 safe, since after HASH_SIZE new quantities we get a
6038 hash 'collision' of a register with its own invalid
6039 entries. And since SUBREGs have been changed not to
6040 change their hash code with the hash code of the register,
6041 it wouldn't work any longer at all. So we have to check
6042 for any invalid references lying around now.
6043 This code is similar to the REG case in mention_regs,
6044 but it knows that reg_tick has been incremented, and
6045 it leaves reg_in_table as -1 . */
6046 unsigned int regno = REGNO (x);
6047 unsigned int endregno
6048 = regno + (regno >= FIRST_PSEUDO_REGISTER ? 1
6049 : hard_regno_nregs[regno][GET_MODE (x)]);
6050 unsigned int i;
6052 for (i = regno; i < endregno; i++)
6054 if (REG_IN_TABLE (i) >= 0)
6056 remove_invalid_refs (i);
6057 REG_IN_TABLE (i) = -1;
6064 /* We may have just removed some of the src_elt's from the hash table.
6065 So replace each one with the current head of the same class. */
6067 for (i = 0; i < n_sets; i++)
6068 if (sets[i].rtl)
6070 if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
6071 /* If elt was removed, find current head of same class,
6072 or 0 if nothing remains of that class. */
6074 struct table_elt *elt = sets[i].src_elt;
6076 while (elt && elt->prev_same_value)
6077 elt = elt->prev_same_value;
6079 while (elt && elt->first_same_value == 0)
6080 elt = elt->next_same_value;
6081 sets[i].src_elt = elt ? elt->first_same_value : 0;
6085 /* Now insert the destinations into their equivalence classes. */
6087 for (i = 0; i < n_sets; i++)
6088 if (sets[i].rtl)
6090 rtx dest = SET_DEST (sets[i].rtl);
6091 struct table_elt *elt;
6093 /* Don't record value if we are not supposed to risk allocating
6094 floating-point values in registers that might be wider than
6095 memory. */
6096 if ((flag_float_store
6097 && MEM_P (dest)
6098 && FLOAT_MODE_P (GET_MODE (dest)))
6099 /* Don't record BLKmode values, because we don't know the
6100 size of it, and can't be sure that other BLKmode values
6101 have the same or smaller size. */
6102 || GET_MODE (dest) == BLKmode
6103 /* Don't record values of destinations set inside a libcall block
6104 since we might delete the libcall. Things should have been set
6105 up so we won't want to reuse such a value, but we play it safe
6106 here. */
6107 || libcall_insn
6108 /* If we didn't put a REG_EQUAL value or a source into the hash
6109 table, there is no point is recording DEST. */
6110 || sets[i].src_elt == 0
6111 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
6112 or SIGN_EXTEND, don't record DEST since it can cause
6113 some tracking to be wrong.
6115 ??? Think about this more later. */
6116 || (GET_CODE (dest) == SUBREG
6117 && (GET_MODE_SIZE (GET_MODE (dest))
6118 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6119 && (GET_CODE (sets[i].src) == SIGN_EXTEND
6120 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
6121 continue;
6123 /* STRICT_LOW_PART isn't part of the value BEING set,
6124 and neither is the SUBREG inside it.
6125 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
6126 if (GET_CODE (dest) == STRICT_LOW_PART)
6127 dest = SUBREG_REG (XEXP (dest, 0));
6129 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
6130 /* Registers must also be inserted into chains for quantities. */
6131 if (insert_regs (dest, sets[i].src_elt, 1))
6133 /* If `insert_regs' changes something, the hash code must be
6134 recalculated. */
6135 rehash_using_reg (dest);
6136 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
6139 elt = insert (dest, sets[i].src_elt,
6140 sets[i].dest_hash, GET_MODE (dest));
6142 elt->in_memory = (MEM_P (sets[i].inner_dest)
6143 && !MEM_READONLY_P (sets[i].inner_dest));
6145 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
6146 narrower than M2, and both M1 and M2 are the same number of words,
6147 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
6148 make that equivalence as well.
6150 However, BAR may have equivalences for which gen_lowpart
6151 will produce a simpler value than gen_lowpart applied to
6152 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
6153 BAR's equivalences. If we don't get a simplified form, make
6154 the SUBREG. It will not be used in an equivalence, but will
6155 cause two similar assignments to be detected.
6157 Note the loop below will find SUBREG_REG (DEST) since we have
6158 already entered SRC and DEST of the SET in the table. */
6160 if (GET_CODE (dest) == SUBREG
6161 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
6162 / UNITS_PER_WORD)
6163 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
6164 && (GET_MODE_SIZE (GET_MODE (dest))
6165 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
6166 && sets[i].src_elt != 0)
6168 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
6169 struct table_elt *elt, *classp = 0;
6171 for (elt = sets[i].src_elt->first_same_value; elt;
6172 elt = elt->next_same_value)
6174 rtx new_src = 0;
6175 unsigned src_hash;
6176 struct table_elt *src_elt;
6177 int byte = 0;
6179 /* Ignore invalid entries. */
6180 if (!REG_P (elt->exp)
6181 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
6182 continue;
6184 /* We may have already been playing subreg games. If the
6185 mode is already correct for the destination, use it. */
6186 if (GET_MODE (elt->exp) == new_mode)
6187 new_src = elt->exp;
6188 else
6190 /* Calculate big endian correction for the SUBREG_BYTE.
6191 We have already checked that M1 (GET_MODE (dest))
6192 is not narrower than M2 (new_mode). */
6193 if (BYTES_BIG_ENDIAN)
6194 byte = (GET_MODE_SIZE (GET_MODE (dest))
6195 - GET_MODE_SIZE (new_mode));
6197 new_src = simplify_gen_subreg (new_mode, elt->exp,
6198 GET_MODE (dest), byte);
6201 /* The call to simplify_gen_subreg fails if the value
6202 is VOIDmode, yet we can't do any simplification, e.g.
6203 for EXPR_LISTs denoting function call results.
6204 It is invalid to construct a SUBREG with a VOIDmode
6205 SUBREG_REG, hence a zero new_src means we can't do
6206 this substitution. */
6207 if (! new_src)
6208 continue;
6210 src_hash = HASH (new_src, new_mode);
6211 src_elt = lookup (new_src, src_hash, new_mode);
6213 /* Put the new source in the hash table is if isn't
6214 already. */
6215 if (src_elt == 0)
6217 if (insert_regs (new_src, classp, 0))
6219 rehash_using_reg (new_src);
6220 src_hash = HASH (new_src, new_mode);
6222 src_elt = insert (new_src, classp, src_hash, new_mode);
6223 src_elt->in_memory = elt->in_memory;
6225 else if (classp && classp != src_elt->first_same_value)
6226 /* Show that two things that we've seen before are
6227 actually the same. */
6228 merge_equiv_classes (src_elt, classp);
6230 classp = src_elt->first_same_value;
6231 /* Ignore invalid entries. */
6232 while (classp
6233 && !REG_P (classp->exp)
6234 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
6235 classp = classp->next_same_value;
6240 /* Special handling for (set REG0 REG1) where REG0 is the
6241 "cheapest", cheaper than REG1. After cse, REG1 will probably not
6242 be used in the sequel, so (if easily done) change this insn to
6243 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
6244 that computed their value. Then REG1 will become a dead store
6245 and won't cloud the situation for later optimizations.
6247 Do not make this change if REG1 is a hard register, because it will
6248 then be used in the sequel and we may be changing a two-operand insn
6249 into a three-operand insn.
6251 Also do not do this if we are operating on a copy of INSN.
6253 Also don't do this if INSN ends a libcall; this would cause an unrelated
6254 register to be set in the middle of a libcall, and we then get bad code
6255 if the libcall is deleted. */
6257 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
6258 && NEXT_INSN (PREV_INSN (insn)) == insn
6259 && REG_P (SET_SRC (sets[0].rtl))
6260 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
6261 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
6263 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
6264 struct qty_table_elem *src_ent = &qty_table[src_q];
6266 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
6267 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
6269 rtx prev = insn;
6270 /* Scan for the previous nonnote insn, but stop at a basic
6271 block boundary. */
6274 prev = PREV_INSN (prev);
6276 while (prev && NOTE_P (prev)
6277 && NOTE_LINE_NUMBER (prev) != NOTE_INSN_BASIC_BLOCK);
6279 /* Do not swap the registers around if the previous instruction
6280 attaches a REG_EQUIV note to REG1.
6282 ??? It's not entirely clear whether we can transfer a REG_EQUIV
6283 from the pseudo that originally shadowed an incoming argument
6284 to another register. Some uses of REG_EQUIV might rely on it
6285 being attached to REG1 rather than REG2.
6287 This section previously turned the REG_EQUIV into a REG_EQUAL
6288 note. We cannot do that because REG_EQUIV may provide an
6289 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
6291 if (prev != 0 && NONJUMP_INSN_P (prev)
6292 && GET_CODE (PATTERN (prev)) == SET
6293 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
6294 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
6296 rtx dest = SET_DEST (sets[0].rtl);
6297 rtx src = SET_SRC (sets[0].rtl);
6298 rtx note;
6300 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
6301 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
6302 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
6303 apply_change_group ();
6305 /* If INSN has a REG_EQUAL note, and this note mentions
6306 REG0, then we must delete it, because the value in
6307 REG0 has changed. If the note's value is REG1, we must
6308 also delete it because that is now this insn's dest. */
6309 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6310 if (note != 0
6311 && (reg_mentioned_p (dest, XEXP (note, 0))
6312 || rtx_equal_p (src, XEXP (note, 0))))
6313 remove_note (insn, note);
6318 /* If this is a conditional jump insn, record any known equivalences due to
6319 the condition being tested. */
6321 if (JUMP_P (insn)
6322 && n_sets == 1 && GET_CODE (x) == SET
6323 && GET_CODE (SET_SRC (x)) == IF_THEN_ELSE)
6324 record_jump_equiv (insn, 0);
6326 #ifdef HAVE_cc0
6327 /* If the previous insn set CC0 and this insn no longer references CC0,
6328 delete the previous insn. Here we use the fact that nothing expects CC0
6329 to be valid over an insn, which is true until the final pass. */
6330 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6331 && (tem = single_set (prev_insn)) != 0
6332 && SET_DEST (tem) == cc0_rtx
6333 && ! reg_mentioned_p (cc0_rtx, x))
6334 delete_insn (prev_insn);
6336 prev_insn_cc0 = this_insn_cc0;
6337 prev_insn_cc0_mode = this_insn_cc0_mode;
6338 prev_insn = insn;
6339 #endif
6342 /* Remove from the hash table all expressions that reference memory. */
6344 static void
6345 invalidate_memory (void)
6347 int i;
6348 struct table_elt *p, *next;
6350 for (i = 0; i < HASH_SIZE; i++)
6351 for (p = table[i]; p; p = next)
6353 next = p->next_same_hash;
6354 if (p->in_memory)
6355 remove_from_table (p, i);
6359 /* If ADDR is an address that implicitly affects the stack pointer, return
6360 1 and update the register tables to show the effect. Else, return 0. */
6362 static int
6363 addr_affects_sp_p (rtx addr)
6365 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
6366 && REG_P (XEXP (addr, 0))
6367 && REGNO (XEXP (addr, 0)) == STACK_POINTER_REGNUM)
6369 if (REG_TICK (STACK_POINTER_REGNUM) >= 0)
6371 REG_TICK (STACK_POINTER_REGNUM)++;
6372 /* Is it possible to use a subreg of SP? */
6373 SUBREG_TICKED (STACK_POINTER_REGNUM) = -1;
6376 /* This should be *very* rare. */
6377 if (TEST_HARD_REG_BIT (hard_regs_in_table, STACK_POINTER_REGNUM))
6378 invalidate (stack_pointer_rtx, VOIDmode);
6380 return 1;
6383 return 0;
6386 /* Perform invalidation on the basis of everything about an insn
6387 except for invalidating the actual places that are SET in it.
6388 This includes the places CLOBBERed, and anything that might
6389 alias with something that is SET or CLOBBERed.
6391 X is the pattern of the insn. */
6393 static void
6394 invalidate_from_clobbers (rtx x)
6396 if (GET_CODE (x) == CLOBBER)
6398 rtx ref = XEXP (x, 0);
6399 if (ref)
6401 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6402 || MEM_P (ref))
6403 invalidate (ref, VOIDmode);
6404 else if (GET_CODE (ref) == STRICT_LOW_PART
6405 || GET_CODE (ref) == ZERO_EXTRACT)
6406 invalidate (XEXP (ref, 0), GET_MODE (ref));
6409 else if (GET_CODE (x) == PARALLEL)
6411 int i;
6412 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
6414 rtx y = XVECEXP (x, 0, i);
6415 if (GET_CODE (y) == CLOBBER)
6417 rtx ref = XEXP (y, 0);
6418 if (REG_P (ref) || GET_CODE (ref) == SUBREG
6419 || MEM_P (ref))
6420 invalidate (ref, VOIDmode);
6421 else if (GET_CODE (ref) == STRICT_LOW_PART
6422 || GET_CODE (ref) == ZERO_EXTRACT)
6423 invalidate (XEXP (ref, 0), GET_MODE (ref));
6429 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
6430 and replace any registers in them with either an equivalent constant
6431 or the canonical form of the register. If we are inside an address,
6432 only do this if the address remains valid.
6434 OBJECT is 0 except when within a MEM in which case it is the MEM.
6436 Return the replacement for X. */
6438 static rtx
6439 cse_process_notes (rtx x, rtx object)
6441 enum rtx_code code = GET_CODE (x);
6442 const char *fmt = GET_RTX_FORMAT (code);
6443 int i;
6445 switch (code)
6447 case CONST_INT:
6448 case CONST:
6449 case SYMBOL_REF:
6450 case LABEL_REF:
6451 case CONST_DOUBLE:
6452 case CONST_VECTOR:
6453 case PC:
6454 case CC0:
6455 case LO_SUM:
6456 return x;
6458 case MEM:
6459 validate_change (x, &XEXP (x, 0),
6460 cse_process_notes (XEXP (x, 0), x), 0);
6461 return x;
6463 case EXPR_LIST:
6464 case INSN_LIST:
6465 if (REG_NOTE_KIND (x) == REG_EQUAL)
6466 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX);
6467 if (XEXP (x, 1))
6468 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX);
6469 return x;
6471 case SIGN_EXTEND:
6472 case ZERO_EXTEND:
6473 case SUBREG:
6475 rtx new = cse_process_notes (XEXP (x, 0), object);
6476 /* We don't substitute VOIDmode constants into these rtx,
6477 since they would impede folding. */
6478 if (GET_MODE (new) != VOIDmode)
6479 validate_change (object, &XEXP (x, 0), new, 0);
6480 return x;
6483 case REG:
6484 i = REG_QTY (REGNO (x));
6486 /* Return a constant or a constant register. */
6487 if (REGNO_QTY_VALID_P (REGNO (x)))
6489 struct qty_table_elem *ent = &qty_table[i];
6491 if (ent->const_rtx != NULL_RTX
6492 && (CONSTANT_P (ent->const_rtx)
6493 || REG_P (ent->const_rtx)))
6495 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
6496 if (new)
6497 return new;
6501 /* Otherwise, canonicalize this register. */
6502 return canon_reg (x, NULL_RTX);
6504 default:
6505 break;
6508 for (i = 0; i < GET_RTX_LENGTH (code); i++)
6509 if (fmt[i] == 'e')
6510 validate_change (object, &XEXP (x, i),
6511 cse_process_notes (XEXP (x, i), object), 0);
6513 return x;
6516 /* Process one SET of an insn that was skipped. We ignore CLOBBERs
6517 since they are done elsewhere. This function is called via note_stores. */
6519 static void
6520 invalidate_skipped_set (rtx dest, rtx set, void *data ATTRIBUTE_UNUSED)
6522 enum rtx_code code = GET_CODE (dest);
6524 if (code == MEM
6525 && ! addr_affects_sp_p (dest) /* If this is not a stack push ... */
6526 /* There are times when an address can appear varying and be a PLUS
6527 during this scan when it would be a fixed address were we to know
6528 the proper equivalences. So invalidate all memory if there is
6529 a BLKmode or nonscalar memory reference or a reference to a
6530 variable address. */
6531 && (MEM_IN_STRUCT_P (dest) || GET_MODE (dest) == BLKmode
6532 || cse_rtx_varies_p (XEXP (dest, 0), 0)))
6534 invalidate_memory ();
6535 return;
6538 if (GET_CODE (set) == CLOBBER
6539 || CC0_P (dest)
6540 || dest == pc_rtx)
6541 return;
6543 if (code == STRICT_LOW_PART || code == ZERO_EXTRACT)
6544 invalidate (XEXP (dest, 0), GET_MODE (dest));
6545 else if (code == REG || code == SUBREG || code == MEM)
6546 invalidate (dest, VOIDmode);
6549 /* Invalidate all insns from START up to the end of the function or the
6550 next label. This called when we wish to CSE around a block that is
6551 conditionally executed. */
6553 static void
6554 invalidate_skipped_block (rtx start)
6556 rtx insn;
6558 for (insn = start; insn && !LABEL_P (insn);
6559 insn = NEXT_INSN (insn))
6561 if (! INSN_P (insn))
6562 continue;
6564 if (CALL_P (insn))
6566 if (! CONST_OR_PURE_CALL_P (insn))
6567 invalidate_memory ();
6568 invalidate_for_call ();
6571 invalidate_from_clobbers (PATTERN (insn));
6572 note_stores (PATTERN (insn), invalidate_skipped_set, NULL);
6576 /* Find the end of INSN's basic block and return its range,
6577 the total number of SETs in all the insns of the block, the last insn of the
6578 block, and the branch path.
6580 The branch path indicates which branches should be followed. If a nonzero
6581 path size is specified, the block should be rescanned and a different set
6582 of branches will be taken. The branch path is only used if
6583 FLAG_CSE_FOLLOW_JUMPS or FLAG_CSE_SKIP_BLOCKS is nonzero.
6585 DATA is a pointer to a struct cse_basic_block_data, defined below, that is
6586 used to describe the block. It is filled in with the information about
6587 the current block. The incoming structure's branch path, if any, is used
6588 to construct the output branch path. */
6590 static void
6591 cse_end_of_basic_block (rtx insn, struct cse_basic_block_data *data,
6592 int follow_jumps, int skip_blocks)
6594 rtx p = insn, q;
6595 int nsets = 0;
6596 int low_cuid = INSN_CUID (insn), high_cuid = INSN_CUID (insn);
6597 rtx next = INSN_P (insn) ? insn : next_real_insn (insn);
6598 int path_size = data->path_size;
6599 int path_entry = 0;
6600 int i;
6602 /* Update the previous branch path, if any. If the last branch was
6603 previously PATH_TAKEN, mark it PATH_NOT_TAKEN.
6604 If it was previously PATH_NOT_TAKEN,
6605 shorten the path by one and look at the previous branch. We know that
6606 at least one branch must have been taken if PATH_SIZE is nonzero. */
6607 while (path_size > 0)
6609 if (data->path[path_size - 1].status != PATH_NOT_TAKEN)
6611 data->path[path_size - 1].status = PATH_NOT_TAKEN;
6612 break;
6614 else
6615 path_size--;
6618 /* If the first instruction is marked with QImode, that means we've
6619 already processed this block. Our caller will look at DATA->LAST
6620 to figure out where to go next. We want to return the next block
6621 in the instruction stream, not some branched-to block somewhere
6622 else. We accomplish this by pretending our called forbid us to
6623 follow jumps, or skip blocks. */
6624 if (GET_MODE (insn) == QImode)
6625 follow_jumps = skip_blocks = 0;
6627 /* Scan to end of this basic block. */
6628 while (p && !LABEL_P (p))
6630 /* Don't cse over a call to setjmp; on some machines (eg VAX)
6631 the regs restored by the longjmp come from
6632 a later time than the setjmp. */
6633 if (PREV_INSN (p) && CALL_P (PREV_INSN (p))
6634 && find_reg_note (PREV_INSN (p), REG_SETJMP, NULL))
6635 break;
6637 /* A PARALLEL can have lots of SETs in it,
6638 especially if it is really an ASM_OPERANDS. */
6639 if (INSN_P (p) && GET_CODE (PATTERN (p)) == PARALLEL)
6640 nsets += XVECLEN (PATTERN (p), 0);
6641 else if (!NOTE_P (p))
6642 nsets += 1;
6644 /* Ignore insns made by CSE; they cannot affect the boundaries of
6645 the basic block. */
6647 if (INSN_UID (p) <= max_uid && INSN_CUID (p) > high_cuid)
6648 high_cuid = INSN_CUID (p);
6649 if (INSN_UID (p) <= max_uid && INSN_CUID (p) < low_cuid)
6650 low_cuid = INSN_CUID (p);
6652 /* See if this insn is in our branch path. If it is and we are to
6653 take it, do so. */
6654 if (path_entry < path_size && data->path[path_entry].branch == p)
6656 if (data->path[path_entry].status != PATH_NOT_TAKEN)
6657 p = JUMP_LABEL (p);
6659 /* Point to next entry in path, if any. */
6660 path_entry++;
6663 /* If this is a conditional jump, we can follow it if -fcse-follow-jumps
6664 was specified, we haven't reached our maximum path length, there are
6665 insns following the target of the jump, this is the only use of the
6666 jump label, and the target label is preceded by a BARRIER.
6668 Alternatively, we can follow the jump if it branches around a
6669 block of code and there are no other branches into the block.
6670 In this case invalidate_skipped_block will be called to invalidate any
6671 registers set in the block when following the jump. */
6673 else if ((follow_jumps || skip_blocks) && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH) - 1
6674 && JUMP_P (p)
6675 && GET_CODE (PATTERN (p)) == SET
6676 && GET_CODE (SET_SRC (PATTERN (p))) == IF_THEN_ELSE
6677 && JUMP_LABEL (p) != 0
6678 && LABEL_NUSES (JUMP_LABEL (p)) == 1
6679 && NEXT_INSN (JUMP_LABEL (p)) != 0)
6681 for (q = PREV_INSN (JUMP_LABEL (p)); q; q = PREV_INSN (q))
6682 if ((!NOTE_P (q)
6683 || (PREV_INSN (q) && CALL_P (PREV_INSN (q))
6684 && find_reg_note (PREV_INSN (q), REG_SETJMP, NULL)))
6685 && (!LABEL_P (q) || LABEL_NUSES (q) != 0))
6686 break;
6688 /* If we ran into a BARRIER, this code is an extension of the
6689 basic block when the branch is taken. */
6690 if (follow_jumps && q != 0 && BARRIER_P (q))
6692 /* Don't allow ourself to keep walking around an
6693 always-executed loop. */
6694 if (next_real_insn (q) == next)
6696 p = NEXT_INSN (p);
6697 continue;
6700 /* Similarly, don't put a branch in our path more than once. */
6701 for (i = 0; i < path_entry; i++)
6702 if (data->path[i].branch == p)
6703 break;
6705 if (i != path_entry)
6706 break;
6708 data->path[path_entry].branch = p;
6709 data->path[path_entry++].status = PATH_TAKEN;
6711 /* This branch now ends our path. It was possible that we
6712 didn't see this branch the last time around (when the
6713 insn in front of the target was a JUMP_INSN that was
6714 turned into a no-op). */
6715 path_size = path_entry;
6717 p = JUMP_LABEL (p);
6718 /* Mark block so we won't scan it again later. */
6719 PUT_MODE (NEXT_INSN (p), QImode);
6721 /* Detect a branch around a block of code. */
6722 else if (skip_blocks && q != 0 && !LABEL_P (q))
6724 rtx tmp;
6726 if (next_real_insn (q) == next)
6728 p = NEXT_INSN (p);
6729 continue;
6732 for (i = 0; i < path_entry; i++)
6733 if (data->path[i].branch == p)
6734 break;
6736 if (i != path_entry)
6737 break;
6739 /* This is no_labels_between_p (p, q) with an added check for
6740 reaching the end of a function (in case Q precedes P). */
6741 for (tmp = NEXT_INSN (p); tmp && tmp != q; tmp = NEXT_INSN (tmp))
6742 if (LABEL_P (tmp))
6743 break;
6745 if (tmp == q)
6747 data->path[path_entry].branch = p;
6748 data->path[path_entry++].status = PATH_AROUND;
6750 path_size = path_entry;
6752 p = JUMP_LABEL (p);
6753 /* Mark block so we won't scan it again later. */
6754 PUT_MODE (NEXT_INSN (p), QImode);
6758 p = NEXT_INSN (p);
6761 data->low_cuid = low_cuid;
6762 data->high_cuid = high_cuid;
6763 data->nsets = nsets;
6764 data->last = p;
6766 /* If all jumps in the path are not taken, set our path length to zero
6767 so a rescan won't be done. */
6768 for (i = path_size - 1; i >= 0; i--)
6769 if (data->path[i].status != PATH_NOT_TAKEN)
6770 break;
6772 if (i == -1)
6773 data->path_size = 0;
6774 else
6775 data->path_size = path_size;
6777 /* End the current branch path. */
6778 data->path[path_size].branch = 0;
6781 /* Perform cse on the instructions of a function.
6782 F is the first instruction.
6783 NREGS is one plus the highest pseudo-reg number used in the instruction.
6785 Returns 1 if jump_optimize should be redone due to simplifications
6786 in conditional jump instructions. */
6789 cse_main (rtx f, int nregs)
6791 struct cse_basic_block_data val;
6792 rtx insn = f;
6793 int i;
6795 init_cse_reg_info (nregs);
6797 val.path = XNEWVEC (struct branch_path, PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6799 cse_jumps_altered = 0;
6800 recorded_label_ref = 0;
6801 constant_pool_entries_cost = 0;
6802 constant_pool_entries_regcost = 0;
6803 val.path_size = 0;
6804 rtl_hooks = cse_rtl_hooks;
6806 init_recog ();
6807 init_alias_analysis ();
6809 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6811 /* Find the largest uid. */
6813 max_uid = get_max_uid ();
6814 uid_cuid = XCNEWVEC (int, max_uid + 1);
6816 /* Compute the mapping from uids to cuids.
6817 CUIDs are numbers assigned to insns, like uids,
6818 except that cuids increase monotonically through the code.
6819 Don't assign cuids to line-number NOTEs, so that the distance in cuids
6820 between two insns is not affected by -g. */
6822 for (insn = f, i = 0; insn; insn = NEXT_INSN (insn))
6824 if (!NOTE_P (insn)
6825 || NOTE_LINE_NUMBER (insn) < 0)
6826 INSN_CUID (insn) = ++i;
6827 else
6828 /* Give a line number note the same cuid as preceding insn. */
6829 INSN_CUID (insn) = i;
6832 /* Loop over basic blocks.
6833 Compute the maximum number of qty's needed for each basic block
6834 (which is 2 for each SET). */
6835 insn = f;
6836 while (insn)
6838 cse_altered = 0;
6839 cse_end_of_basic_block (insn, &val, flag_cse_follow_jumps,
6840 flag_cse_skip_blocks);
6842 /* If this basic block was already processed or has no sets, skip it. */
6843 if (val.nsets == 0 || GET_MODE (insn) == QImode)
6845 PUT_MODE (insn, VOIDmode);
6846 insn = (val.last ? NEXT_INSN (val.last) : 0);
6847 val.path_size = 0;
6848 continue;
6851 cse_basic_block_start = val.low_cuid;
6852 cse_basic_block_end = val.high_cuid;
6853 max_qty = val.nsets * 2;
6855 if (dump_file)
6856 fprintf (dump_file, ";; Processing block from %d to %d, %d sets.\n",
6857 INSN_UID (insn), val.last ? INSN_UID (val.last) : 0,
6858 val.nsets);
6860 /* Make MAX_QTY bigger to give us room to optimize
6861 past the end of this basic block, if that should prove useful. */
6862 if (max_qty < 500)
6863 max_qty = 500;
6865 /* If this basic block is being extended by following certain jumps,
6866 (see `cse_end_of_basic_block'), we reprocess the code from the start.
6867 Otherwise, we start after this basic block. */
6868 if (val.path_size > 0)
6869 cse_basic_block (insn, val.last, val.path);
6870 else
6872 int old_cse_jumps_altered = cse_jumps_altered;
6873 rtx temp;
6875 /* When cse changes a conditional jump to an unconditional
6876 jump, we want to reprocess the block, since it will give
6877 us a new branch path to investigate. */
6878 cse_jumps_altered = 0;
6879 temp = cse_basic_block (insn, val.last, val.path);
6880 if (cse_jumps_altered == 0
6881 || (flag_cse_follow_jumps == 0 && flag_cse_skip_blocks == 0))
6882 insn = temp;
6884 cse_jumps_altered |= old_cse_jumps_altered;
6887 if (cse_altered)
6888 ggc_collect ();
6890 #ifdef USE_C_ALLOCA
6891 alloca (0);
6892 #endif
6895 /* Clean up. */
6896 end_alias_analysis ();
6897 free (uid_cuid);
6898 free (reg_eqv_table);
6899 free (val.path);
6900 rtl_hooks = general_rtl_hooks;
6902 return cse_jumps_altered || recorded_label_ref;
6905 /* Process a single basic block. FROM and TO and the limits of the basic
6906 block. NEXT_BRANCH points to the branch path when following jumps or
6907 a null path when not following jumps. */
6909 static rtx
6910 cse_basic_block (rtx from, rtx to, struct branch_path *next_branch)
6912 rtx insn;
6913 int to_usage = 0;
6914 rtx libcall_insn = NULL_RTX;
6915 int num_insns = 0;
6916 int no_conflict = 0;
6918 /* Allocate the space needed by qty_table. */
6919 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6921 new_basic_block ();
6923 /* TO might be a label. If so, protect it from being deleted. */
6924 if (to != 0 && LABEL_P (to))
6925 ++LABEL_NUSES (to);
6927 for (insn = from; insn != to; insn = NEXT_INSN (insn))
6929 enum rtx_code code = GET_CODE (insn);
6931 /* If we have processed 1,000 insns, flush the hash table to
6932 avoid extreme quadratic behavior. We must not include NOTEs
6933 in the count since there may be more of them when generating
6934 debugging information. If we clear the table at different
6935 times, code generated with -g -O might be different than code
6936 generated with -O but not -g.
6938 ??? This is a real kludge and needs to be done some other way.
6939 Perhaps for 2.9. */
6940 if (code != NOTE && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6942 flush_hash_table ();
6943 num_insns = 0;
6946 /* See if this is a branch that is part of the path. If so, and it is
6947 to be taken, do so. */
6948 if (next_branch->branch == insn)
6950 enum taken status = next_branch++->status;
6951 if (status != PATH_NOT_TAKEN)
6953 if (status == PATH_TAKEN)
6954 record_jump_equiv (insn, 1);
6955 else
6956 invalidate_skipped_block (NEXT_INSN (insn));
6958 /* Set the last insn as the jump insn; it doesn't affect cc0.
6959 Then follow this branch. */
6960 #ifdef HAVE_cc0
6961 prev_insn_cc0 = 0;
6962 prev_insn = insn;
6963 #endif
6964 insn = JUMP_LABEL (insn);
6965 continue;
6969 if (GET_MODE (insn) == QImode)
6970 PUT_MODE (insn, VOIDmode);
6972 if (GET_RTX_CLASS (code) == RTX_INSN)
6974 rtx p;
6976 /* Process notes first so we have all notes in canonical forms when
6977 looking for duplicate operations. */
6979 if (REG_NOTES (insn))
6980 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn), NULL_RTX);
6982 /* Track when we are inside in LIBCALL block. Inside such a block,
6983 we do not want to record destinations. The last insn of a
6984 LIBCALL block is not considered to be part of the block, since
6985 its destination is the result of the block and hence should be
6986 recorded. */
6988 if (REG_NOTES (insn) != 0)
6990 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6991 libcall_insn = XEXP (p, 0);
6992 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6994 /* Keep libcall_insn for the last SET insn of a no-conflict
6995 block to prevent changing the destination. */
6996 if (! no_conflict)
6997 libcall_insn = 0;
6998 else
6999 no_conflict = -1;
7001 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
7002 no_conflict = 1;
7005 cse_insn (insn, libcall_insn);
7007 if (no_conflict == -1)
7009 libcall_insn = 0;
7010 no_conflict = 0;
7013 /* If we haven't already found an insn where we added a LABEL_REF,
7014 check this one. */
7015 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
7016 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
7017 (void *) insn))
7018 recorded_label_ref = 1;
7021 /* If INSN is now an unconditional jump, skip to the end of our
7022 basic block by pretending that we just did the last insn in the
7023 basic block. If we are jumping to the end of our block, show
7024 that we can have one usage of TO. */
7026 if (any_uncondjump_p (insn))
7028 if (to == 0)
7030 free (qty_table);
7031 return 0;
7034 if (JUMP_LABEL (insn) == to)
7035 to_usage = 1;
7037 /* Maybe TO was deleted because the jump is unconditional.
7038 If so, there is nothing left in this basic block. */
7039 /* ??? Perhaps it would be smarter to set TO
7040 to whatever follows this insn,
7041 and pretend the basic block had always ended here. */
7042 if (INSN_DELETED_P (to))
7043 break;
7045 insn = PREV_INSN (to);
7048 /* See if it is ok to keep on going past the label
7049 which used to end our basic block. Remember that we incremented
7050 the count of that label, so we decrement it here. If we made
7051 a jump unconditional, TO_USAGE will be one; in that case, we don't
7052 want to count the use in that jump. */
7054 if (to != 0 && NEXT_INSN (insn) == to
7055 && LABEL_P (to) && --LABEL_NUSES (to) == to_usage)
7057 struct cse_basic_block_data val;
7058 rtx prev;
7060 insn = NEXT_INSN (to);
7062 /* If TO was the last insn in the function, we are done. */
7063 if (insn == 0)
7065 free (qty_table);
7066 return 0;
7069 /* If TO was preceded by a BARRIER we are done with this block
7070 because it has no continuation. */
7071 prev = prev_nonnote_insn (to);
7072 if (prev && BARRIER_P (prev))
7074 free (qty_table);
7075 return insn;
7078 /* Find the end of the following block. Note that we won't be
7079 following branches in this case. */
7080 to_usage = 0;
7081 val.path_size = 0;
7082 val.path = XNEWVEC (struct branch_path, PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
7083 cse_end_of_basic_block (insn, &val, 0, 0);
7084 free (val.path);
7086 /* If the tables we allocated have enough space left
7087 to handle all the SETs in the next basic block,
7088 continue through it. Otherwise, return,
7089 and that block will be scanned individually. */
7090 if (val.nsets * 2 + next_qty > max_qty)
7091 break;
7093 cse_basic_block_start = val.low_cuid;
7094 cse_basic_block_end = val.high_cuid;
7095 to = val.last;
7097 /* Prevent TO from being deleted if it is a label. */
7098 if (to != 0 && LABEL_P (to))
7099 ++LABEL_NUSES (to);
7101 /* Back up so we process the first insn in the extension. */
7102 insn = PREV_INSN (insn);
7106 gcc_assert (next_qty <= max_qty);
7108 free (qty_table);
7110 return to ? NEXT_INSN (to) : 0;
7113 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
7114 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
7116 static int
7117 check_for_label_ref (rtx *rtl, void *data)
7119 rtx insn = (rtx) data;
7121 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
7122 we must rerun jump since it needs to place the note. If this is a
7123 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
7124 since no REG_LABEL will be added. */
7125 return (GET_CODE (*rtl) == LABEL_REF
7126 && ! LABEL_REF_NONLOCAL_P (*rtl)
7127 && LABEL_P (XEXP (*rtl, 0))
7128 && INSN_UID (XEXP (*rtl, 0)) != 0
7129 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
7132 /* Count the number of times registers are used (not set) in X.
7133 COUNTS is an array in which we accumulate the count, INCR is how much
7134 we count each register usage.
7136 Don't count a usage of DEST, which is the SET_DEST of a SET which
7137 contains X in its SET_SRC. This is because such a SET does not
7138 modify the liveness of DEST.
7139 DEST is set to pc_rtx for a trapping insn, which means that we must count
7140 uses of a SET_DEST regardless because the insn can't be deleted here. */
7142 static void
7143 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
7145 enum rtx_code code;
7146 rtx note;
7147 const char *fmt;
7148 int i, j;
7150 if (x == 0)
7151 return;
7153 switch (code = GET_CODE (x))
7155 case REG:
7156 if (x != dest)
7157 counts[REGNO (x)] += incr;
7158 return;
7160 case PC:
7161 case CC0:
7162 case CONST:
7163 case CONST_INT:
7164 case CONST_DOUBLE:
7165 case CONST_VECTOR:
7166 case SYMBOL_REF:
7167 case LABEL_REF:
7168 return;
7170 case CLOBBER:
7171 /* If we are clobbering a MEM, mark any registers inside the address
7172 as being used. */
7173 if (MEM_P (XEXP (x, 0)))
7174 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
7175 return;
7177 case SET:
7178 /* Unless we are setting a REG, count everything in SET_DEST. */
7179 if (!REG_P (SET_DEST (x)))
7180 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
7181 count_reg_usage (SET_SRC (x), counts,
7182 dest ? dest : SET_DEST (x),
7183 incr);
7184 return;
7186 case CALL_INSN:
7187 case INSN:
7188 case JUMP_INSN:
7189 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
7190 this fact by setting DEST to pc_rtx. */
7191 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
7192 dest = pc_rtx;
7193 if (code == CALL_INSN)
7194 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
7195 count_reg_usage (PATTERN (x), counts, dest, incr);
7197 /* Things used in a REG_EQUAL note aren't dead since loop may try to
7198 use them. */
7200 note = find_reg_equal_equiv_note (x);
7201 if (note)
7203 rtx eqv = XEXP (note, 0);
7205 if (GET_CODE (eqv) == EXPR_LIST)
7206 /* This REG_EQUAL note describes the result of a function call.
7207 Process all the arguments. */
7210 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
7211 eqv = XEXP (eqv, 1);
7213 while (eqv && GET_CODE (eqv) == EXPR_LIST);
7214 else
7215 count_reg_usage (eqv, counts, dest, incr);
7217 return;
7219 case EXPR_LIST:
7220 if (REG_NOTE_KIND (x) == REG_EQUAL
7221 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
7222 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
7223 involving registers in the address. */
7224 || GET_CODE (XEXP (x, 0)) == CLOBBER)
7225 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
7227 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
7228 return;
7230 case ASM_OPERANDS:
7231 /* If the asm is volatile, then this insn cannot be deleted,
7232 and so the inputs *must* be live. */
7233 if (MEM_VOLATILE_P (x))
7234 dest = NULL_RTX;
7235 /* Iterate over just the inputs, not the constraints as well. */
7236 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
7237 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
7238 return;
7240 case INSN_LIST:
7241 gcc_unreachable ();
7243 default:
7244 break;
7247 fmt = GET_RTX_FORMAT (code);
7248 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7250 if (fmt[i] == 'e')
7251 count_reg_usage (XEXP (x, i), counts, dest, incr);
7252 else if (fmt[i] == 'E')
7253 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
7254 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
7258 /* Return true if set is live. */
7259 static bool
7260 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
7261 int *counts)
7263 #ifdef HAVE_cc0
7264 rtx tem;
7265 #endif
7267 if (set_noop_p (set))
7270 #ifdef HAVE_cc0
7271 else if (GET_CODE (SET_DEST (set)) == CC0
7272 && !side_effects_p (SET_SRC (set))
7273 && ((tem = next_nonnote_insn (insn)) == 0
7274 || !INSN_P (tem)
7275 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
7276 return false;
7277 #endif
7278 else if (!REG_P (SET_DEST (set))
7279 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
7280 || counts[REGNO (SET_DEST (set))] != 0
7281 || side_effects_p (SET_SRC (set)))
7282 return true;
7283 return false;
7286 /* Return true if insn is live. */
7288 static bool
7289 insn_live_p (rtx insn, int *counts)
7291 int i;
7292 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
7293 return true;
7294 else if (GET_CODE (PATTERN (insn)) == SET)
7295 return set_live_p (PATTERN (insn), insn, counts);
7296 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
7298 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
7300 rtx elt = XVECEXP (PATTERN (insn), 0, i);
7302 if (GET_CODE (elt) == SET)
7304 if (set_live_p (elt, insn, counts))
7305 return true;
7307 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
7308 return true;
7310 return false;
7312 else
7313 return true;
7316 /* Return true if libcall is dead as a whole. */
7318 static bool
7319 dead_libcall_p (rtx insn, int *counts)
7321 rtx note, set, new;
7323 /* See if there's a REG_EQUAL note on this insn and try to
7324 replace the source with the REG_EQUAL expression.
7326 We assume that insns with REG_RETVALs can only be reg->reg
7327 copies at this point. */
7328 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
7329 if (!note)
7330 return false;
7332 set = single_set (insn);
7333 if (!set)
7334 return false;
7336 new = simplify_rtx (XEXP (note, 0));
7337 if (!new)
7338 new = XEXP (note, 0);
7340 /* While changing insn, we must update the counts accordingly. */
7341 count_reg_usage (insn, counts, NULL_RTX, -1);
7343 if (validate_change (insn, &SET_SRC (set), new, 0))
7345 count_reg_usage (insn, counts, NULL_RTX, 1);
7346 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7347 remove_note (insn, note);
7348 return true;
7351 if (CONSTANT_P (new))
7353 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
7354 if (new && validate_change (insn, &SET_SRC (set), new, 0))
7356 count_reg_usage (insn, counts, NULL_RTX, 1);
7357 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
7358 remove_note (insn, note);
7359 return true;
7363 count_reg_usage (insn, counts, NULL_RTX, 1);
7364 return false;
7367 /* Scan all the insns and delete any that are dead; i.e., they store a register
7368 that is never used or they copy a register to itself.
7370 This is used to remove insns made obviously dead by cse, loop or other
7371 optimizations. It improves the heuristics in loop since it won't try to
7372 move dead invariants out of loops or make givs for dead quantities. The
7373 remaining passes of the compilation are also sped up. */
7376 delete_trivially_dead_insns (rtx insns, int nreg)
7378 int *counts;
7379 rtx insn, prev;
7380 int in_libcall = 0, dead_libcall = 0;
7381 int ndead = 0;
7383 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
7384 /* First count the number of times each register is used. */
7385 counts = XCNEWVEC (int, nreg);
7386 for (insn = insns; insn; insn = NEXT_INSN (insn))
7387 if (INSN_P (insn))
7388 count_reg_usage (insn, counts, NULL_RTX, 1);
7390 /* Go from the last insn to the first and delete insns that only set unused
7391 registers or copy a register to itself. As we delete an insn, remove
7392 usage counts for registers it uses.
7394 The first jump optimization pass may leave a real insn as the last
7395 insn in the function. We must not skip that insn or we may end
7396 up deleting code that is not really dead. */
7397 for (insn = get_last_insn (); insn; insn = prev)
7399 int live_insn = 0;
7401 prev = PREV_INSN (insn);
7402 if (!INSN_P (insn))
7403 continue;
7405 /* Don't delete any insns that are part of a libcall block unless
7406 we can delete the whole libcall block.
7408 Flow or loop might get confused if we did that. Remember
7409 that we are scanning backwards. */
7410 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
7412 in_libcall = 1;
7413 live_insn = 1;
7414 dead_libcall = dead_libcall_p (insn, counts);
7416 else if (in_libcall)
7417 live_insn = ! dead_libcall;
7418 else
7419 live_insn = insn_live_p (insn, counts);
7421 /* If this is a dead insn, delete it and show registers in it aren't
7422 being used. */
7424 if (! live_insn)
7426 count_reg_usage (insn, counts, NULL_RTX, -1);
7427 delete_insn_and_edges (insn);
7428 ndead++;
7431 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
7433 in_libcall = 0;
7434 dead_libcall = 0;
7438 if (dump_file && ndead)
7439 fprintf (dump_file, "Deleted %i trivially dead insns\n",
7440 ndead);
7441 /* Clean up. */
7442 free (counts);
7443 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
7444 return ndead;
7447 /* This function is called via for_each_rtx. The argument, NEWREG, is
7448 a condition code register with the desired mode. If we are looking
7449 at the same register in a different mode, replace it with
7450 NEWREG. */
7452 static int
7453 cse_change_cc_mode (rtx *loc, void *data)
7455 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
7457 if (*loc
7458 && REG_P (*loc)
7459 && REGNO (*loc) == REGNO (args->newreg)
7460 && GET_MODE (*loc) != GET_MODE (args->newreg))
7462 validate_change (args->insn, loc, args->newreg, 1);
7464 return -1;
7466 return 0;
7469 /* Change the mode of any reference to the register REGNO (NEWREG) to
7470 GET_MODE (NEWREG) in INSN. */
7472 static void
7473 cse_change_cc_mode_insn (rtx insn, rtx newreg)
7475 struct change_cc_mode_args args;
7476 int success;
7478 if (!INSN_P (insn))
7479 return;
7481 args.insn = insn;
7482 args.newreg = newreg;
7484 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
7485 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
7487 /* If the following assertion was triggered, there is most probably
7488 something wrong with the cc_modes_compatible back end function.
7489 CC modes only can be considered compatible if the insn - with the mode
7490 replaced by any of the compatible modes - can still be recognized. */
7491 success = apply_change_group ();
7492 gcc_assert (success);
7495 /* Change the mode of any reference to the register REGNO (NEWREG) to
7496 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
7497 any instruction which modifies NEWREG. */
7499 static void
7500 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
7502 rtx insn;
7504 for (insn = start; insn != end; insn = NEXT_INSN (insn))
7506 if (! INSN_P (insn))
7507 continue;
7509 if (reg_set_p (newreg, insn))
7510 return;
7512 cse_change_cc_mode_insn (insn, newreg);
7516 /* BB is a basic block which finishes with CC_REG as a condition code
7517 register which is set to CC_SRC. Look through the successors of BB
7518 to find blocks which have a single predecessor (i.e., this one),
7519 and look through those blocks for an assignment to CC_REG which is
7520 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
7521 permitted to change the mode of CC_SRC to a compatible mode. This
7522 returns VOIDmode if no equivalent assignments were found.
7523 Otherwise it returns the mode which CC_SRC should wind up with.
7525 The main complexity in this function is handling the mode issues.
7526 We may have more than one duplicate which we can eliminate, and we
7527 try to find a mode which will work for multiple duplicates. */
7529 static enum machine_mode
7530 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
7532 bool found_equiv;
7533 enum machine_mode mode;
7534 unsigned int insn_count;
7535 edge e;
7536 rtx insns[2];
7537 enum machine_mode modes[2];
7538 rtx last_insns[2];
7539 unsigned int i;
7540 rtx newreg;
7541 edge_iterator ei;
7543 /* We expect to have two successors. Look at both before picking
7544 the final mode for the comparison. If we have more successors
7545 (i.e., some sort of table jump, although that seems unlikely),
7546 then we require all beyond the first two to use the same
7547 mode. */
7549 found_equiv = false;
7550 mode = GET_MODE (cc_src);
7551 insn_count = 0;
7552 FOR_EACH_EDGE (e, ei, bb->succs)
7554 rtx insn;
7555 rtx end;
7557 if (e->flags & EDGE_COMPLEX)
7558 continue;
7560 if (EDGE_COUNT (e->dest->preds) != 1
7561 || e->dest == EXIT_BLOCK_PTR)
7562 continue;
7564 end = NEXT_INSN (BB_END (e->dest));
7565 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
7567 rtx set;
7569 if (! INSN_P (insn))
7570 continue;
7572 /* If CC_SRC is modified, we have to stop looking for
7573 something which uses it. */
7574 if (modified_in_p (cc_src, insn))
7575 break;
7577 /* Check whether INSN sets CC_REG to CC_SRC. */
7578 set = single_set (insn);
7579 if (set
7580 && REG_P (SET_DEST (set))
7581 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7583 bool found;
7584 enum machine_mode set_mode;
7585 enum machine_mode comp_mode;
7587 found = false;
7588 set_mode = GET_MODE (SET_SRC (set));
7589 comp_mode = set_mode;
7590 if (rtx_equal_p (cc_src, SET_SRC (set)))
7591 found = true;
7592 else if (GET_CODE (cc_src) == COMPARE
7593 && GET_CODE (SET_SRC (set)) == COMPARE
7594 && mode != set_mode
7595 && rtx_equal_p (XEXP (cc_src, 0),
7596 XEXP (SET_SRC (set), 0))
7597 && rtx_equal_p (XEXP (cc_src, 1),
7598 XEXP (SET_SRC (set), 1)))
7601 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
7602 if (comp_mode != VOIDmode
7603 && (can_change_mode || comp_mode == mode))
7604 found = true;
7607 if (found)
7609 found_equiv = true;
7610 if (insn_count < ARRAY_SIZE (insns))
7612 insns[insn_count] = insn;
7613 modes[insn_count] = set_mode;
7614 last_insns[insn_count] = end;
7615 ++insn_count;
7617 if (mode != comp_mode)
7619 gcc_assert (can_change_mode);
7620 mode = comp_mode;
7622 /* The modified insn will be re-recognized later. */
7623 PUT_MODE (cc_src, mode);
7626 else
7628 if (set_mode != mode)
7630 /* We found a matching expression in the
7631 wrong mode, but we don't have room to
7632 store it in the array. Punt. This case
7633 should be rare. */
7634 break;
7636 /* INSN sets CC_REG to a value equal to CC_SRC
7637 with the right mode. We can simply delete
7638 it. */
7639 delete_insn (insn);
7642 /* We found an instruction to delete. Keep looking,
7643 in the hopes of finding a three-way jump. */
7644 continue;
7647 /* We found an instruction which sets the condition
7648 code, so don't look any farther. */
7649 break;
7652 /* If INSN sets CC_REG in some other way, don't look any
7653 farther. */
7654 if (reg_set_p (cc_reg, insn))
7655 break;
7658 /* If we fell off the bottom of the block, we can keep looking
7659 through successors. We pass CAN_CHANGE_MODE as false because
7660 we aren't prepared to handle compatibility between the
7661 further blocks and this block. */
7662 if (insn == end)
7664 enum machine_mode submode;
7666 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
7667 if (submode != VOIDmode)
7669 gcc_assert (submode == mode);
7670 found_equiv = true;
7671 can_change_mode = false;
7676 if (! found_equiv)
7677 return VOIDmode;
7679 /* Now INSN_COUNT is the number of instructions we found which set
7680 CC_REG to a value equivalent to CC_SRC. The instructions are in
7681 INSNS. The modes used by those instructions are in MODES. */
7683 newreg = NULL_RTX;
7684 for (i = 0; i < insn_count; ++i)
7686 if (modes[i] != mode)
7688 /* We need to change the mode of CC_REG in INSNS[i] and
7689 subsequent instructions. */
7690 if (! newreg)
7692 if (GET_MODE (cc_reg) == mode)
7693 newreg = cc_reg;
7694 else
7695 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7697 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
7698 newreg);
7701 delete_insn (insns[i]);
7704 return mode;
7707 /* If we have a fixed condition code register (or two), walk through
7708 the instructions and try to eliminate duplicate assignments. */
7710 static void
7711 cse_condition_code_reg (void)
7713 unsigned int cc_regno_1;
7714 unsigned int cc_regno_2;
7715 rtx cc_reg_1;
7716 rtx cc_reg_2;
7717 basic_block bb;
7719 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
7720 return;
7722 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
7723 if (cc_regno_2 != INVALID_REGNUM)
7724 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
7725 else
7726 cc_reg_2 = NULL_RTX;
7728 FOR_EACH_BB (bb)
7730 rtx last_insn;
7731 rtx cc_reg;
7732 rtx insn;
7733 rtx cc_src_insn;
7734 rtx cc_src;
7735 enum machine_mode mode;
7736 enum machine_mode orig_mode;
7738 /* Look for blocks which end with a conditional jump based on a
7739 condition code register. Then look for the instruction which
7740 sets the condition code register. Then look through the
7741 successor blocks for instructions which set the condition
7742 code register to the same value. There are other possible
7743 uses of the condition code register, but these are by far the
7744 most common and the ones which we are most likely to be able
7745 to optimize. */
7747 last_insn = BB_END (bb);
7748 if (!JUMP_P (last_insn))
7749 continue;
7751 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
7752 cc_reg = cc_reg_1;
7753 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
7754 cc_reg = cc_reg_2;
7755 else
7756 continue;
7758 cc_src_insn = NULL_RTX;
7759 cc_src = NULL_RTX;
7760 for (insn = PREV_INSN (last_insn);
7761 insn && insn != PREV_INSN (BB_HEAD (bb));
7762 insn = PREV_INSN (insn))
7764 rtx set;
7766 if (! INSN_P (insn))
7767 continue;
7768 set = single_set (insn);
7769 if (set
7770 && REG_P (SET_DEST (set))
7771 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
7773 cc_src_insn = insn;
7774 cc_src = SET_SRC (set);
7775 break;
7777 else if (reg_set_p (cc_reg, insn))
7778 break;
7781 if (! cc_src_insn)
7782 continue;
7784 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
7785 continue;
7787 /* Now CC_REG is a condition code register used for a
7788 conditional jump at the end of the block, and CC_SRC, in
7789 CC_SRC_INSN, is the value to which that condition code
7790 register is set, and CC_SRC is still meaningful at the end of
7791 the basic block. */
7793 orig_mode = GET_MODE (cc_src);
7794 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
7795 if (mode != VOIDmode)
7797 gcc_assert (mode == GET_MODE (cc_src));
7798 if (mode != orig_mode)
7800 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
7802 cse_change_cc_mode_insn (cc_src_insn, newreg);
7804 /* Do the same in the following insns that use the
7805 current value of CC_REG within BB. */
7806 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
7807 NEXT_INSN (last_insn),
7808 newreg);
7815 /* Perform common subexpression elimination. Nonzero value from
7816 `cse_main' means that jumps were simplified and some code may now
7817 be unreachable, so do jump optimization again. */
7818 static bool
7819 gate_handle_cse (void)
7821 return optimize > 0;
7824 static unsigned int
7825 rest_of_handle_cse (void)
7827 int tem;
7829 if (dump_file)
7830 dump_flow_info (dump_file, dump_flags);
7832 reg_scan (get_insns (), max_reg_num ());
7834 tem = cse_main (get_insns (), max_reg_num ());
7835 if (tem)
7836 rebuild_jump_labels (get_insns ());
7837 if (purge_all_dead_edges ())
7838 delete_unreachable_blocks ();
7840 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7842 /* If we are not running more CSE passes, then we are no longer
7843 expecting CSE to be run. But always rerun it in a cheap mode. */
7844 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7846 if (tem)
7847 delete_dead_jumptables ();
7849 if (tem || optimize > 1)
7850 cleanup_cfg (CLEANUP_EXPENSIVE);
7851 return 0;
7854 struct tree_opt_pass pass_cse =
7856 "cse1", /* name */
7857 gate_handle_cse, /* gate */
7858 rest_of_handle_cse, /* execute */
7859 NULL, /* sub */
7860 NULL, /* next */
7861 0, /* static_pass_number */
7862 TV_CSE, /* tv_id */
7863 0, /* properties_required */
7864 0, /* properties_provided */
7865 0, /* properties_destroyed */
7866 0, /* todo_flags_start */
7867 TODO_dump_func |
7868 TODO_ggc_collect, /* todo_flags_finish */
7869 's' /* letter */
7873 static bool
7874 gate_handle_cse2 (void)
7876 return optimize > 0 && flag_rerun_cse_after_loop;
7879 /* Run second CSE pass after loop optimizations. */
7880 static unsigned int
7881 rest_of_handle_cse2 (void)
7883 int tem;
7885 if (dump_file)
7886 dump_flow_info (dump_file, dump_flags);
7888 tem = cse_main (get_insns (), max_reg_num ());
7890 /* Run a pass to eliminate duplicated assignments to condition code
7891 registers. We have to run this after bypass_jumps, because it
7892 makes it harder for that pass to determine whether a jump can be
7893 bypassed safely. */
7894 cse_condition_code_reg ();
7896 purge_all_dead_edges ();
7897 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7899 if (tem)
7901 timevar_push (TV_JUMP);
7902 rebuild_jump_labels (get_insns ());
7903 delete_dead_jumptables ();
7904 cleanup_cfg (CLEANUP_EXPENSIVE);
7905 timevar_pop (TV_JUMP);
7907 reg_scan (get_insns (), max_reg_num ());
7908 cse_not_expected = 1;
7909 return 0;
7913 struct tree_opt_pass pass_cse2 =
7915 "cse2", /* name */
7916 gate_handle_cse2, /* gate */
7917 rest_of_handle_cse2, /* execute */
7918 NULL, /* sub */
7919 NULL, /* next */
7920 0, /* static_pass_number */
7921 TV_CSE2, /* tv_id */
7922 0, /* properties_required */
7923 0, /* properties_provided */
7924 0, /* properties_destroyed */
7925 0, /* todo_flags_start */
7926 TODO_dump_func |
7927 TODO_ggc_collect, /* todo_flags_finish */
7928 't' /* letter */