EnumSet*.class: Regenerate
[official-gcc.git] / gcc / vec.h
blob10bdcc5f2e94d463a0ecc3b7d18a99cd31d9ab9a
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004, 2005, 2007 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef GCC_VEC_H
22 #define GCC_VEC_H
24 /* The macros here implement a set of templated vector types and
25 associated interfaces. These templates are implemented with
26 macros, as we're not in C++ land. The interface functions are
27 typesafe and use static inline functions, sometimes backed by
28 out-of-line generic functions. The vectors are designed to
29 interoperate with the GTY machinery.
31 Because of the different behavior of structure objects, scalar
32 objects and of pointers, there are three flavors, one for each of
33 these variants. Both the structure object and pointer variants
34 pass pointers to objects around -- in the former case the pointers
35 are stored into the vector and in the latter case the pointers are
36 dereferenced and the objects copied into the vector. The scalar
37 object variant is suitable for int-like objects, and the vector
38 elements are returned by value.
40 There are both 'index' and 'iterate' accessors. The iterator
41 returns a boolean iteration condition and updates the iteration
42 variable passed by reference. Because the iterator will be
43 inlined, the address-of can be optimized away.
45 The vectors are implemented using the trailing array idiom, thus
46 they are not resizeable without changing the address of the vector
47 object itself. This means you cannot have variables or fields of
48 vector type -- always use a pointer to a vector. The one exception
49 is the final field of a structure, which could be a vector type.
50 You will have to use the embedded_size & embedded_init calls to
51 create such objects, and they will probably not be resizeable (so
52 don't use the 'safe' allocation variants). The trailing array
53 idiom is used (rather than a pointer to an array of data), because,
54 if we allow NULL to also represent an empty vector, empty vectors
55 occupy minimal space in the structure containing them.
57 Each operation that increases the number of active elements is
58 available in 'quick' and 'safe' variants. The former presumes that
59 there is sufficient allocated space for the operation to succeed
60 (it dies if there is not). The latter will reallocate the
61 vector, if needed. Reallocation causes an exponential increase in
62 vector size. If you know you will be adding N elements, it would
63 be more efficient to use the reserve operation before adding the
64 elements with the 'quick' operation. This will ensure there are at
65 least as many elements as you ask for, it will exponentially
66 increase if there are too few spare slots. If you want reserve a
67 specific number of slots, but do not want the exponential increase
68 (for instance, you know this is the last allocation), use the
69 reserve_exact operation. You can also create a vector of a
70 specific size from the get go.
72 You should prefer the push and pop operations, as they append and
73 remove from the end of the vector. If you need to remove several
74 items in one go, use the truncate operation. The insert and remove
75 operations allow you to change elements in the middle of the
76 vector. There are two remove operations, one which preserves the
77 element ordering 'ordered_remove', and one which does not
78 'unordered_remove'. The latter function copies the end element
79 into the removed slot, rather than invoke a memmove operation. The
80 'lower_bound' function will determine where to place an item in the
81 array using insert that will maintain sorted order.
83 When a vector type is defined, first a non-memory managed version
84 is created. You can then define either or both garbage collected
85 and heap allocated versions. The allocation mechanism is specified
86 when the type is defined, and is therefore part of the type. If
87 you need both gc'd and heap allocated versions, you still must have
88 *exactly* one definition of the common non-memory managed base vector.
90 If you need to directly manipulate a vector, then the 'address'
91 accessor will return the address of the start of the vector. Also
92 the 'space' predicate will tell you whether there is spare capacity
93 in the vector. You will not normally need to use these two functions.
95 Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro, to
96 get the non-memory allocation version, and then a
97 DEF_VEC_ALLOC_{O,P,I}(TYPEDEF,ALLOC) macro to get memory managed
98 vectors. Variables of vector type are declared using a
99 VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the
100 allocation strategy, and can be either 'gc' or 'heap' for garbage
101 collected and heap allocated respectively. It can be 'none' to get
102 a vector that must be explicitly allocated (for instance as a
103 trailing array of another structure). The characters O, P and I
104 indicate whether TYPEDEF is a pointer (P), object (O) or integral
105 (I) type. Be careful to pick the correct one, as you'll get an
106 awkward and inefficient API if you use the wrong one. There is a
107 check, which results in a compile-time warning, for the P and I
108 versions, but there is no check for the O versions, as that is not
109 possible in plain C. Due to the way GTY works, you must annotate
110 any structures you wish to insert or reference from a vector with a
111 GTY(()) tag. You need to do this even if you never declare the GC
112 allocated variants.
114 An example of their use would be,
116 DEF_VEC_P(tree); // non-managed tree vector.
117 DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must
118 // appear at file scope.
120 struct my_struct {
121 VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers.
124 struct my_struct *s;
126 if (VEC_length(tree,s->v)) { we have some contents }
127 VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
128 for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
129 { do something with elt }
133 /* Macros to invoke API calls. A single macro works for both pointer
134 and object vectors, but the argument and return types might well be
135 different. In each macro, T is the typedef of the vector elements,
136 and A is the allocation strategy. The allocation strategy is only
137 present when it is required. Some of these macros pass the vector,
138 V, by reference (by taking its address), this is noted in the
139 descriptions. */
141 /* Length of vector
142 unsigned VEC_T_length(const VEC(T) *v);
144 Return the number of active elements in V. V can be NULL, in which
145 case zero is returned. */
147 #define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V)))
150 /* Check if vector is empty
151 int VEC_T_empty(const VEC(T) *v);
153 Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */
155 #define VEC_empty(T,V) (VEC_length (T,V) == 0)
158 /* Get the final element of the vector.
159 T VEC_T_last(VEC(T) *v); // Integer
160 T VEC_T_last(VEC(T) *v); // Pointer
161 T *VEC_T_last(VEC(T) *v); // Object
163 Return the final element. V must not be empty. */
165 #define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
167 /* Index into vector
168 T VEC_T_index(VEC(T) *v, unsigned ix); // Integer
169 T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
170 T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
172 Return the IX'th element. If IX must be in the domain of V. */
174 #define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
176 /* Iterate over vector
177 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer
178 int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
179 int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
181 Return iteration condition and update PTR to point to the IX'th
182 element. At the end of iteration, sets PTR to NULL. Use this to
183 iterate over the elements of a vector as follows,
185 for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
186 continue; */
188 #define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
190 /* Allocate new vector.
191 VEC(T,A) *VEC_T_A_alloc(int reserve);
193 Allocate a new vector with space for RESERVE objects. If RESERVE
194 is zero, NO vector is created. */
196 #define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
198 /* Free a vector.
199 void VEC_T_A_free(VEC(T,A) *&);
201 Free a vector and set it to NULL. */
203 #define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V))
205 /* Use these to determine the required size and initialization of a
206 vector embedded within another structure (as the final member).
208 size_t VEC_T_embedded_size(int reserve);
209 void VEC_T_embedded_init(VEC(T) *v, int reserve);
211 These allow the caller to perform the memory allocation. */
213 #define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N))
214 #define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
216 /* Copy a vector.
217 VEC(T,A) *VEC_T_A_copy(VEC(T) *);
219 Copy the live elements of a vector into a new vector. The new and
220 old vectors need not be allocated by the same mechanism. */
222 #define VEC_copy(T,A,V) (VEC_OP(T,A,copy)(VEC_BASE(V) MEM_STAT_INFO))
224 /* Determine if a vector has additional capacity.
226 int VEC_T_space (VEC(T) *v,int reserve)
228 If V has space for RESERVE additional entries, return nonzero. You
229 usually only need to use this if you are doing your own vector
230 reallocation, for instance on an embedded vector. This returns
231 nonzero in exactly the same circumstances that VEC_T_reserve
232 will. */
234 #define VEC_space(T,V,R) \
235 (VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
237 /* Reserve space.
238 int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
240 Ensure that V has at least RESERVE slots available. This will
241 create additional headroom. Note this can cause V to be
242 reallocated. Returns nonzero iff reallocation actually
243 occurred. */
245 #define VEC_reserve(T,A,V,R) \
246 (VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
248 /* Reserve space exactly.
249 int VEC_T_A_reserve_exact(VEC(T,A) *&v, int reserve);
251 Ensure that V has at least RESERVE slots available. This will not
252 create additional headroom. Note this can cause V to be
253 reallocated. Returns nonzero iff reallocation actually
254 occurred. */
256 #define VEC_reserve_exact(T,A,V,R) \
257 (VEC_OP(T,A,reserve_exact)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
259 /* Push object with no reallocation
260 T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer
261 T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
262 T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
264 Push a new element onto the end, returns a pointer to the slot
265 filled in. For object vectors, the new value can be NULL, in which
266 case NO initialization is performed. There must
267 be sufficient space in the vector. */
269 #define VEC_quick_push(T,V,O) \
270 (VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
272 /* Push object with reallocation
273 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Integer
274 T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
275 T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
277 Push a new element onto the end, returns a pointer to the slot
278 filled in. For object vectors, the new value can be NULL, in which
279 case NO initialization is performed. Reallocates V, if needed. */
281 #define VEC_safe_push(T,A,V,O) \
282 (VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
284 /* Pop element off end
285 T VEC_T_pop (VEC(T) *v); // Integer
286 T VEC_T_pop (VEC(T) *v); // Pointer
287 void VEC_T_pop (VEC(T) *v); // Object
289 Pop the last element off the end. Returns the element popped, for
290 pointer vectors. */
292 #define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
294 /* Truncate to specific length
295 void VEC_T_truncate (VEC(T) *v, unsigned len);
297 Set the length as specified. The new length must be less than or
298 equal to the current length. This is an O(1) operation. */
300 #define VEC_truncate(T,V,I) \
301 (VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
303 /* Grow to a specific length.
304 void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
306 Grow the vector to a specific length. The LEN must be as
307 long or longer than the current length. The new elements are
308 uninitialized. */
310 #define VEC_safe_grow(T,A,V,I) \
311 (VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
313 /* Grow to a specific length.
314 void VEC_T_A_safe_grow_cleared (VEC(T,A) *&v, int len);
316 Grow the vector to a specific length. The LEN must be as
317 long or longer than the current length. The new elements are
318 initialized to zero. */
320 #define VEC_safe_grow_cleared(T,A,V,I) \
321 (VEC_OP(T,A,safe_grow_cleared)(&(V),I VEC_CHECK_INFO MEM_STAT_INFO))
323 /* Replace element
324 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer
325 T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
326 T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
328 Replace the IXth element of V with a new value, VAL. For pointer
329 vectors returns the original value. For object vectors returns a
330 pointer to the new value. For object vectors the new value can be
331 NULL, in which case no overwriting of the slot is actually
332 performed. */
334 #define VEC_replace(T,V,I,O) \
335 (VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
337 /* Insert object with no reallocation
338 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer
339 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
340 T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
342 Insert an element, VAL, at the IXth position of V. Return a pointer
343 to the slot created. For vectors of object, the new value can be
344 NULL, in which case no initialization of the inserted slot takes
345 place. There must be sufficient space. */
347 #define VEC_quick_insert(T,V,I,O) \
348 (VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
350 /* Insert object with reallocation
351 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer
352 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
353 T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
355 Insert an element, VAL, at the IXth position of V. Return a pointer
356 to the slot created. For vectors of object, the new value can be
357 NULL, in which case no initialization of the inserted slot takes
358 place. Reallocate V, if necessary. */
360 #define VEC_safe_insert(T,A,V,I,O) \
361 (VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
363 /* Remove element retaining order
364 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer
365 T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
366 void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
368 Remove an element from the IXth position of V. Ordering of
369 remaining elements is preserved. For pointer vectors returns the
370 removed object. This is an O(N) operation due to a memmove. */
372 #define VEC_ordered_remove(T,V,I) \
373 (VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
375 /* Remove element destroying order
376 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer
377 T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
378 void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
380 Remove an element from the IXth position of V. Ordering of
381 remaining elements is destroyed. For pointer vectors returns the
382 removed object. This is an O(1) operation. */
384 #define VEC_unordered_remove(T,V,I) \
385 (VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
387 /* Remove a block of elements
388 void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len);
390 Remove LEN elements starting at the IXth. Ordering is retained.
391 This is an O(1) operation. */
393 #define VEC_block_remove(T,V,I,L) \
394 (VEC_OP(T,base,block_remove)(VEC_BASE(V),I,L VEC_CHECK_INFO))
396 /* Get the address of the array of elements
397 T *VEC_T_address (VEC(T) v)
399 If you need to directly manipulate the array (for instance, you
400 want to feed it to qsort), use this accessor. */
402 #define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V)))
404 /* Find the first index in the vector not less than the object.
405 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
406 bool (*lessthan) (const T, const T)); // Integer
407 unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
408 bool (*lessthan) (const T, const T)); // Pointer
409 unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
410 bool (*lessthan) (const T*, const T*)); // Object
412 Find the first position in which VAL could be inserted without
413 changing the ordering of V. LESSTHAN is a function that returns
414 true if the first argument is strictly less than the second. */
416 #define VEC_lower_bound(T,V,O,LT) \
417 (VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
419 /* Reallocate an array of elements with prefix. */
420 extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
421 extern void *vec_gc_p_reserve_exact (void *, int MEM_STAT_DECL);
422 extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
423 extern void *vec_gc_o_reserve_exact (void *, int, size_t, size_t
424 MEM_STAT_DECL);
425 extern void ggc_free (void *);
426 #define vec_gc_free(V) ggc_free (V)
427 extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
428 extern void *vec_heap_p_reserve_exact (void *, int MEM_STAT_DECL);
429 extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
430 extern void *vec_heap_o_reserve_exact (void *, int, size_t, size_t
431 MEM_STAT_DECL);
432 #define vec_heap_free(V) free (V)
434 #if ENABLE_CHECKING
435 #define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
436 #define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
437 #define VEC_CHECK_PASS ,file_,line_,function_
439 #define VEC_ASSERT(EXPR,OP,T,A) \
440 (void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
442 extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
443 ATTRIBUTE_NORETURN;
444 #define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
445 #else
446 #define VEC_CHECK_INFO
447 #define VEC_CHECK_DECL
448 #define VEC_CHECK_PASS
449 #define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
450 #endif
452 /* Note: gengtype has hardwired knowledge of the expansions of the
453 VEC, DEF_VEC_*, and DEF_VEC_ALLOC_* macros. If you change the
454 expansions of these macros you may need to change gengtype too. */
456 #define VEC(T,A) VEC_##T##_##A
457 #define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
459 /* Base of vector type, not user visible. */
460 #define VEC_T(T,B) \
461 typedef struct VEC(T,B) \
463 unsigned num; \
464 unsigned alloc; \
465 T vec[1]; \
466 } VEC(T,B)
468 #define VEC_T_GTY(T,B) \
469 typedef struct VEC(T,B) GTY(()) \
471 unsigned num; \
472 unsigned alloc; \
473 T GTY ((length ("%h.num"))) vec[1]; \
474 } VEC(T,B)
476 /* Derived vector type, user visible. */
477 #define VEC_TA_GTY(T,B,A,GTY) \
478 typedef struct VEC(T,A) GTY \
480 VEC(T,B) base; \
481 } VEC(T,A)
483 /* Convert to base type. */
484 #define VEC_BASE(P) ((P) ? &(P)->base : 0)
486 /* Vector of integer-like object. */
487 #define DEF_VEC_I(T) \
488 static inline void VEC_OP (T,must_be,integral_type) (void) \
490 (void)~(T)0; \
493 VEC_T(T,base); \
494 VEC_TA_GTY(T,base,none,); \
495 DEF_VEC_FUNC_P(T) \
496 struct vec_swallow_trailing_semi
497 #define DEF_VEC_ALLOC_I(T,A) \
498 VEC_TA_GTY(T,base,A,); \
499 DEF_VEC_ALLOC_FUNC_I(T,A) \
500 struct vec_swallow_trailing_semi
502 /* Vector of pointer to object. */
503 #define DEF_VEC_P(T) \
504 static inline void VEC_OP (T,must_be,pointer_type) (void) \
506 (void)((T)1 == (void *)1); \
509 VEC_T_GTY(T,base); \
510 VEC_TA_GTY(T,base,none,); \
511 DEF_VEC_FUNC_P(T) \
512 struct vec_swallow_trailing_semi
513 #define DEF_VEC_ALLOC_P(T,A) \
514 VEC_TA_GTY(T,base,A,); \
515 DEF_VEC_ALLOC_FUNC_P(T,A) \
516 struct vec_swallow_trailing_semi
518 #define DEF_VEC_FUNC_P(T) \
519 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
521 return vec_ ? vec_->num : 0; \
524 static inline T VEC_OP (T,base,last) \
525 (const VEC(T,base) *vec_ VEC_CHECK_DECL) \
527 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
529 return vec_->vec[vec_->num - 1]; \
532 static inline T VEC_OP (T,base,index) \
533 (const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
535 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
537 return vec_->vec[ix_]; \
540 static inline int VEC_OP (T,base,iterate) \
541 (const VEC(T,base) *vec_, unsigned ix_, T *ptr) \
543 if (vec_ && ix_ < vec_->num) \
545 *ptr = vec_->vec[ix_]; \
546 return 1; \
548 else \
550 *ptr = 0; \
551 return 0; \
555 static inline size_t VEC_OP (T,base,embedded_size) \
556 (int alloc_) \
558 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
561 static inline void VEC_OP (T,base,embedded_init) \
562 (VEC(T,base) *vec_, int alloc_) \
564 vec_->num = 0; \
565 vec_->alloc = alloc_; \
568 static inline int VEC_OP (T,base,space) \
569 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
571 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
572 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
575 static inline T *VEC_OP (T,base,quick_push) \
576 (VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \
578 T *slot_; \
580 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
581 slot_ = &vec_->vec[vec_->num++]; \
582 *slot_ = obj_; \
584 return slot_; \
587 static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
589 T obj_; \
591 VEC_ASSERT (vec_->num, "pop", T, base); \
592 obj_ = vec_->vec[--vec_->num]; \
594 return obj_; \
597 static inline void VEC_OP (T,base,truncate) \
598 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
600 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
601 if (vec_) \
602 vec_->num = size_; \
605 static inline T VEC_OP (T,base,replace) \
606 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
608 T old_obj_; \
610 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
611 old_obj_ = vec_->vec[ix_]; \
612 vec_->vec[ix_] = obj_; \
614 return old_obj_; \
617 static inline T *VEC_OP (T,base,quick_insert) \
618 (VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
620 T *slot_; \
622 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
623 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
624 slot_ = &vec_->vec[ix_]; \
625 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
626 *slot_ = obj_; \
628 return slot_; \
631 static inline T VEC_OP (T,base,ordered_remove) \
632 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
634 T *slot_; \
635 T obj_; \
637 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
638 slot_ = &vec_->vec[ix_]; \
639 obj_ = *slot_; \
640 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
642 return obj_; \
645 static inline T VEC_OP (T,base,unordered_remove) \
646 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
648 T *slot_; \
649 T obj_; \
651 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
652 slot_ = &vec_->vec[ix_]; \
653 obj_ = *slot_; \
654 *slot_ = vec_->vec[--vec_->num]; \
656 return obj_; \
659 static inline void VEC_OP (T,base,block_remove) \
660 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
662 T *slot_; \
664 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
665 slot_ = &vec_->vec[ix_]; \
666 vec_->num -= len_; \
667 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
670 static inline T *VEC_OP (T,base,address) \
671 (VEC(T,base) *vec_) \
673 return vec_ ? vec_->vec : 0; \
676 static inline unsigned VEC_OP (T,base,lower_bound) \
677 (VEC(T,base) *vec_, const T obj_, \
678 bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \
680 unsigned int len_ = VEC_OP (T,base, length) (vec_); \
681 unsigned int half_, middle_; \
682 unsigned int first_ = 0; \
683 while (len_ > 0) \
685 T middle_elem_; \
686 half_ = len_ >> 1; \
687 middle_ = first_; \
688 middle_ += half_; \
689 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
690 if (lessthan_ (middle_elem_, obj_)) \
692 first_ = middle_; \
693 ++first_; \
694 len_ = len_ - half_ - 1; \
696 else \
697 len_ = half_; \
699 return first_; \
702 #define DEF_VEC_ALLOC_FUNC_P(T,A) \
703 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
704 (int alloc_ MEM_STAT_DECL) \
706 return (VEC(T,A) *) vec_##A##_p_reserve_exact (NULL, alloc_ \
707 PASS_MEM_STAT); \
710 static inline void VEC_OP (T,A,free) \
711 (VEC(T,A) **vec_) \
713 if (*vec_) \
714 vec_##A##_free (*vec_); \
715 *vec_ = NULL; \
718 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
720 size_t len_ = vec_ ? vec_->num : 0; \
721 VEC (T,A) *new_vec_ = NULL; \
723 if (len_) \
725 new_vec_ = (VEC (T,A) *)(vec_##A##_p_reserve_exact \
726 (NULL, len_ PASS_MEM_STAT)); \
728 new_vec_->base.num = len_; \
729 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
731 return new_vec_; \
734 static inline int VEC_OP (T,A,reserve) \
735 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
737 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
738 VEC_CHECK_PASS); \
740 if (extend) \
741 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
743 return extend; \
746 static inline int VEC_OP (T,A,reserve_exact) \
747 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
749 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
750 VEC_CHECK_PASS); \
752 if (extend) \
753 *vec_ = (VEC(T,A) *) vec_##A##_p_reserve_exact (*vec_, alloc_ \
754 PASS_MEM_STAT); \
756 return extend; \
759 static inline void VEC_OP (T,A,safe_grow) \
760 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
762 VEC_ASSERT (size_ >= 0 \
763 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
764 "grow", T, A); \
765 VEC_OP (T,A,reserve_exact) (vec_, \
766 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
767 VEC_CHECK_PASS PASS_MEM_STAT); \
768 VEC_BASE (*vec_)->num = size_; \
771 static inline void VEC_OP (T,A,safe_grow_cleared) \
772 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
774 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
775 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
776 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
777 sizeof (T) * (size_ - oldsize)); \
780 static inline T *VEC_OP (T,A,safe_push) \
781 (VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
783 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
785 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
788 static inline T *VEC_OP (T,A,safe_insert) \
789 (VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
791 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
793 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
794 VEC_CHECK_PASS); \
797 /* Vector of object. */
798 #define DEF_VEC_O(T) \
799 VEC_T_GTY(T,base); \
800 VEC_TA_GTY(T,base,none,); \
801 DEF_VEC_FUNC_O(T) \
802 struct vec_swallow_trailing_semi
803 #define DEF_VEC_ALLOC_O(T,A) \
804 VEC_TA_GTY(T,base,A,); \
805 DEF_VEC_ALLOC_FUNC_O(T,A) \
806 struct vec_swallow_trailing_semi
808 #define DEF_VEC_FUNC_O(T) \
809 static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
811 return vec_ ? vec_->num : 0; \
814 static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
816 VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
818 return &vec_->vec[vec_->num - 1]; \
821 static inline T *VEC_OP (T,base,index) \
822 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
824 VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
826 return &vec_->vec[ix_]; \
829 static inline int VEC_OP (T,base,iterate) \
830 (VEC(T,base) *vec_, unsigned ix_, T **ptr) \
832 if (vec_ && ix_ < vec_->num) \
834 *ptr = &vec_->vec[ix_]; \
835 return 1; \
837 else \
839 *ptr = 0; \
840 return 0; \
844 static inline size_t VEC_OP (T,base,embedded_size) \
845 (int alloc_) \
847 return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
850 static inline void VEC_OP (T,base,embedded_init) \
851 (VEC(T,base) *vec_, int alloc_) \
853 vec_->num = 0; \
854 vec_->alloc = alloc_; \
857 static inline int VEC_OP (T,base,space) \
858 (VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
860 VEC_ASSERT (alloc_ >= 0, "space", T, base); \
861 return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
864 static inline T *VEC_OP (T,base,quick_push) \
865 (VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \
867 T *slot_; \
869 VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
870 slot_ = &vec_->vec[vec_->num++]; \
871 if (obj_) \
872 *slot_ = *obj_; \
874 return slot_; \
877 static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
879 VEC_ASSERT (vec_->num, "pop", T, base); \
880 --vec_->num; \
883 static inline void VEC_OP (T,base,truncate) \
884 (VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
886 VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
887 if (vec_) \
888 vec_->num = size_; \
891 static inline T *VEC_OP (T,base,replace) \
892 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
894 T *slot_; \
896 VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
897 slot_ = &vec_->vec[ix_]; \
898 if (obj_) \
899 *slot_ = *obj_; \
901 return slot_; \
904 static inline T *VEC_OP (T,base,quick_insert) \
905 (VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
907 T *slot_; \
909 VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
910 VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
911 slot_ = &vec_->vec[ix_]; \
912 memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
913 if (obj_) \
914 *slot_ = *obj_; \
916 return slot_; \
919 static inline void VEC_OP (T,base,ordered_remove) \
920 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
922 T *slot_; \
924 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
925 slot_ = &vec_->vec[ix_]; \
926 memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
929 static inline void VEC_OP (T,base,unordered_remove) \
930 (VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
932 VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
933 vec_->vec[ix_] = vec_->vec[--vec_->num]; \
936 static inline void VEC_OP (T,base,block_remove) \
937 (VEC(T,base) *vec_, unsigned ix_, unsigned len_ VEC_CHECK_DECL) \
939 T *slot_; \
941 VEC_ASSERT (ix_ + len_ <= vec_->num, "block_remove", T, base); \
942 slot_ = &vec_->vec[ix_]; \
943 vec_->num -= len_; \
944 memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \
947 static inline T *VEC_OP (T,base,address) \
948 (VEC(T,base) *vec_) \
950 return vec_ ? vec_->vec : 0; \
953 static inline unsigned VEC_OP (T,base,lower_bound) \
954 (VEC(T,base) *vec_, const T *obj_, \
955 bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \
957 unsigned int len_ = VEC_OP (T, base, length) (vec_); \
958 unsigned int half_, middle_; \
959 unsigned int first_ = 0; \
960 while (len_ > 0) \
962 T *middle_elem_; \
963 half_ = len_ >> 1; \
964 middle_ = first_; \
965 middle_ += half_; \
966 middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
967 if (lessthan_ (middle_elem_, obj_)) \
969 first_ = middle_; \
970 ++first_; \
971 len_ = len_ - half_ - 1; \
973 else \
974 len_ = half_; \
976 return first_; \
979 #define DEF_VEC_ALLOC_FUNC_O(T,A) \
980 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
981 (int alloc_ MEM_STAT_DECL) \
983 return (VEC(T,A) *) vec_##A##_o_reserve_exact (NULL, alloc_, \
984 offsetof (VEC(T,A),base.vec), \
985 sizeof (T) \
986 PASS_MEM_STAT); \
989 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
991 size_t len_ = vec_ ? vec_->num : 0; \
992 VEC (T,A) *new_vec_ = NULL; \
994 if (len_) \
996 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \
997 (NULL, len_, \
998 offsetof (VEC(T,A),base.vec), sizeof (T) \
999 PASS_MEM_STAT)); \
1001 new_vec_->base.num = len_; \
1002 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1004 return new_vec_; \
1007 static inline void VEC_OP (T,A,free) \
1008 (VEC(T,A) **vec_) \
1010 if (*vec_) \
1011 vec_##A##_free (*vec_); \
1012 *vec_ = NULL; \
1015 static inline int VEC_OP (T,A,reserve) \
1016 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1018 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1019 VEC_CHECK_PASS); \
1021 if (extend) \
1022 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1023 offsetof (VEC(T,A),base.vec),\
1024 sizeof (T) \
1025 PASS_MEM_STAT); \
1027 return extend; \
1030 static inline int VEC_OP (T,A,reserve_exact) \
1031 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1033 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1034 VEC_CHECK_PASS); \
1036 if (extend) \
1037 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \
1038 (*vec_, alloc_, \
1039 offsetof (VEC(T,A),base.vec), \
1040 sizeof (T) PASS_MEM_STAT); \
1042 return extend; \
1045 static inline void VEC_OP (T,A,safe_grow) \
1046 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1048 VEC_ASSERT (size_ >= 0 \
1049 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1050 "grow", T, A); \
1051 VEC_OP (T,A,reserve_exact) (vec_, \
1052 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1053 VEC_CHECK_PASS PASS_MEM_STAT); \
1054 VEC_BASE (*vec_)->num = size_; \
1057 static inline void VEC_OP (T,A,safe_grow_cleared) \
1058 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1060 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1061 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1062 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1063 sizeof (T) * (size_ - oldsize)); \
1066 static inline T *VEC_OP (T,A,safe_push) \
1067 (VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1069 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1071 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1074 static inline T *VEC_OP (T,A,safe_insert) \
1075 (VEC(T,A) **vec_, unsigned ix_, const T *obj_ \
1076 VEC_CHECK_DECL MEM_STAT_DECL) \
1078 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1080 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1081 VEC_CHECK_PASS); \
1084 #define DEF_VEC_ALLOC_FUNC_I(T,A) \
1085 static inline VEC(T,A) *VEC_OP (T,A,alloc) \
1086 (int alloc_ MEM_STAT_DECL) \
1088 return (VEC(T,A) *) vec_##A##_o_reserve_exact \
1089 (NULL, alloc_, offsetof (VEC(T,A),base.vec), \
1090 sizeof (T) PASS_MEM_STAT); \
1093 static inline VEC(T,A) *VEC_OP (T,A,copy) (VEC(T,base) *vec_ MEM_STAT_DECL) \
1095 size_t len_ = vec_ ? vec_->num : 0; \
1096 VEC (T,A) *new_vec_ = NULL; \
1098 if (len_) \
1100 new_vec_ = (VEC (T,A) *)(vec_##A##_o_reserve_exact \
1101 (NULL, len_, \
1102 offsetof (VEC(T,A),base.vec), sizeof (T) \
1103 PASS_MEM_STAT)); \
1105 new_vec_->base.num = len_; \
1106 memcpy (new_vec_->base.vec, vec_->vec, sizeof (T) * len_); \
1108 return new_vec_; \
1111 static inline void VEC_OP (T,A,free) \
1112 (VEC(T,A) **vec_) \
1114 if (*vec_) \
1115 vec_##A##_free (*vec_); \
1116 *vec_ = NULL; \
1119 static inline int VEC_OP (T,A,reserve) \
1120 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1122 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1123 VEC_CHECK_PASS); \
1125 if (extend) \
1126 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
1127 offsetof (VEC(T,A),base.vec),\
1128 sizeof (T) \
1129 PASS_MEM_STAT); \
1131 return extend; \
1134 static inline int VEC_OP (T,A,reserve_exact) \
1135 (VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
1137 int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), alloc_ \
1138 VEC_CHECK_PASS); \
1140 if (extend) \
1141 *vec_ = (VEC(T,A) *) vec_##A##_o_reserve_exact \
1142 (*vec_, alloc_, offsetof (VEC(T,A),base.vec), \
1143 sizeof (T) PASS_MEM_STAT); \
1145 return extend; \
1148 static inline void VEC_OP (T,A,safe_grow) \
1149 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1151 VEC_ASSERT (size_ >= 0 \
1152 && VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
1153 "grow", T, A); \
1154 VEC_OP (T,A,reserve_exact) (vec_, \
1155 size_ - (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) \
1156 VEC_CHECK_PASS PASS_MEM_STAT); \
1157 VEC_BASE (*vec_)->num = size_; \
1160 static inline void VEC_OP (T,A,safe_grow_cleared) \
1161 (VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
1163 int oldsize = VEC_OP(T,base,length) VEC_BASE(*vec_); \
1164 VEC_OP (T,A,safe_grow) (vec_, size_ VEC_CHECK_PASS PASS_MEM_STAT); \
1165 memset (&(VEC_OP (T,base,address) VEC_BASE(*vec_))[oldsize], 0, \
1166 sizeof (T) * (size_ - oldsize)); \
1169 static inline T *VEC_OP (T,A,safe_push) \
1170 (VEC(T,A) **vec_, const T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
1172 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1174 return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
1177 static inline T *VEC_OP (T,A,safe_insert) \
1178 (VEC(T,A) **vec_, unsigned ix_, const T obj_ \
1179 VEC_CHECK_DECL MEM_STAT_DECL) \
1181 VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
1183 return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
1184 VEC_CHECK_PASS); \
1187 #endif /* GCC_VEC_H */