EnumSet*.class: Regenerate
[official-gcc.git] / gcc / tree-vectorizer.c
blob2c525eaaa719878c520ea66135fb232d6aae43b0
1 /* Loop Vectorization
2 Copyright (C) 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 /* Loop Vectorization Pass.
23 This pass tries to vectorize loops. This first implementation focuses on
24 simple inner-most loops, with no conditional control flow, and a set of
25 simple operations which vector form can be expressed using existing
26 tree codes (PLUS, MULT etc).
28 For example, the vectorizer transforms the following simple loop:
30 short a[N]; short b[N]; short c[N]; int i;
32 for (i=0; i<N; i++){
33 a[i] = b[i] + c[i];
36 as if it was manually vectorized by rewriting the source code into:
38 typedef int __attribute__((mode(V8HI))) v8hi;
39 short a[N]; short b[N]; short c[N]; int i;
40 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
41 v8hi va, vb, vc;
43 for (i=0; i<N/8; i++){
44 vb = pb[i];
45 vc = pc[i];
46 va = vb + vc;
47 pa[i] = va;
50 The main entry to this pass is vectorize_loops(), in which
51 the vectorizer applies a set of analyses on a given set of loops,
52 followed by the actual vectorization transformation for the loops that
53 had successfully passed the analysis phase.
55 Throughout this pass we make a distinction between two types of
56 data: scalars (which are represented by SSA_NAMES), and memory references
57 ("data-refs"). These two types of data require different handling both
58 during analysis and transformation. The types of data-refs that the
59 vectorizer currently supports are ARRAY_REFS which base is an array DECL
60 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
61 accesses are required to have a simple (consecutive) access pattern.
63 Analysis phase:
64 ===============
65 The driver for the analysis phase is vect_analyze_loop_nest().
66 It applies a set of analyses, some of which rely on the scalar evolution
67 analyzer (scev) developed by Sebastian Pop.
69 During the analysis phase the vectorizer records some information
70 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
71 loop, as well as general information about the loop as a whole, which is
72 recorded in a "loop_vec_info" struct attached to each loop.
74 Transformation phase:
75 =====================
76 The loop transformation phase scans all the stmts in the loop, and
77 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
78 the loop that needs to be vectorized. It insert the vector code sequence
79 just before the scalar stmt S, and records a pointer to the vector code
80 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
81 attached to S). This pointer will be used for the vectorization of following
82 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
83 otherwise, we rely on dead code elimination for removing it.
85 For example, say stmt S1 was vectorized into stmt VS1:
87 VS1: vb = px[i];
88 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
89 S2: a = b;
91 To vectorize stmt S2, the vectorizer first finds the stmt that defines
92 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
93 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
94 resulting sequence would be:
96 VS1: vb = px[i];
97 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
98 VS2: va = vb;
99 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
101 Operands that are not SSA_NAMEs, are data-refs that appear in
102 load/store operations (like 'x[i]' in S1), and are handled differently.
104 Target modeling:
105 =================
106 Currently the only target specific information that is used is the
107 size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
108 support different sizes of vectors, for now will need to specify one value
109 for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
111 Since we only vectorize operations which vector form can be
112 expressed using existing tree codes, to verify that an operation is
113 supported, the vectorizer checks the relevant optab at the relevant
114 machine_mode (e.g, optab_handler (add_optab, V8HImode)->insn_code). If
115 the value found is CODE_FOR_nothing, then there's no target support, and
116 we can't vectorize the stmt.
118 For additional information on this project see:
119 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
122 #include "config.h"
123 #include "system.h"
124 #include "coretypes.h"
125 #include "tm.h"
126 #include "ggc.h"
127 #include "tree.h"
128 #include "target.h"
129 #include "rtl.h"
130 #include "basic-block.h"
131 #include "diagnostic.h"
132 #include "tree-flow.h"
133 #include "tree-dump.h"
134 #include "timevar.h"
135 #include "cfgloop.h"
136 #include "cfglayout.h"
137 #include "expr.h"
138 #include "recog.h"
139 #include "optabs.h"
140 #include "params.h"
141 #include "toplev.h"
142 #include "tree-chrec.h"
143 #include "tree-data-ref.h"
144 #include "tree-scalar-evolution.h"
145 #include "input.h"
146 #include "tree-vectorizer.h"
147 #include "tree-pass.h"
149 /*************************************************************************
150 Simple Loop Peeling Utilities
151 *************************************************************************/
152 static void slpeel_update_phis_for_duplicate_loop
153 (struct loop *, struct loop *, bool after);
154 static void slpeel_update_phi_nodes_for_guard1
155 (edge, struct loop *, bool, basic_block *, bitmap *);
156 static void slpeel_update_phi_nodes_for_guard2
157 (edge, struct loop *, bool, basic_block *);
158 static edge slpeel_add_loop_guard (basic_block, tree, basic_block, basic_block);
160 static void rename_use_op (use_operand_p);
161 static void rename_variables_in_bb (basic_block);
162 static void rename_variables_in_loop (struct loop *);
164 /*************************************************************************
165 General Vectorization Utilities
166 *************************************************************************/
167 static void vect_set_dump_settings (void);
169 /* vect_dump will be set to stderr or dump_file if exist. */
170 FILE *vect_dump;
172 /* vect_verbosity_level set to an invalid value
173 to mark that it's uninitialized. */
174 enum verbosity_levels vect_verbosity_level = MAX_VERBOSITY_LEVEL;
176 /* Loop location. */
177 static LOC vect_loop_location;
179 /* Bitmap of virtual variables to be renamed. */
180 bitmap vect_memsyms_to_rename;
182 /*************************************************************************
183 Simple Loop Peeling Utilities
185 Utilities to support loop peeling for vectorization purposes.
186 *************************************************************************/
189 /* Renames the use *OP_P. */
191 static void
192 rename_use_op (use_operand_p op_p)
194 tree new_name;
196 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
197 return;
199 new_name = get_current_def (USE_FROM_PTR (op_p));
201 /* Something defined outside of the loop. */
202 if (!new_name)
203 return;
205 /* An ordinary ssa name defined in the loop. */
207 SET_USE (op_p, new_name);
211 /* Renames the variables in basic block BB. */
213 static void
214 rename_variables_in_bb (basic_block bb)
216 tree phi;
217 block_stmt_iterator bsi;
218 tree stmt;
219 use_operand_p use_p;
220 ssa_op_iter iter;
221 edge e;
222 edge_iterator ei;
223 struct loop *loop = bb->loop_father;
225 for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
227 stmt = bsi_stmt (bsi);
228 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
229 rename_use_op (use_p);
232 FOR_EACH_EDGE (e, ei, bb->succs)
234 if (!flow_bb_inside_loop_p (loop, e->dest))
235 continue;
236 for (phi = phi_nodes (e->dest); phi; phi = PHI_CHAIN (phi))
237 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e));
242 /* Renames variables in new generated LOOP. */
244 static void
245 rename_variables_in_loop (struct loop *loop)
247 unsigned i;
248 basic_block *bbs;
250 bbs = get_loop_body (loop);
252 for (i = 0; i < loop->num_nodes; i++)
253 rename_variables_in_bb (bbs[i]);
255 free (bbs);
259 /* Update the PHI nodes of NEW_LOOP.
261 NEW_LOOP is a duplicate of ORIG_LOOP.
262 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
263 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
264 executes before it. */
266 static void
267 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
268 struct loop *new_loop, bool after)
270 tree new_ssa_name;
271 tree phi_new, phi_orig;
272 tree def;
273 edge orig_loop_latch = loop_latch_edge (orig_loop);
274 edge orig_entry_e = loop_preheader_edge (orig_loop);
275 edge new_loop_exit_e = single_exit (new_loop);
276 edge new_loop_entry_e = loop_preheader_edge (new_loop);
277 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
280 step 1. For each loop-header-phi:
281 Add the first phi argument for the phi in NEW_LOOP
282 (the one associated with the entry of NEW_LOOP)
284 step 2. For each loop-header-phi:
285 Add the second phi argument for the phi in NEW_LOOP
286 (the one associated with the latch of NEW_LOOP)
288 step 3. Update the phis in the successor block of NEW_LOOP.
290 case 1: NEW_LOOP was placed before ORIG_LOOP:
291 The successor block of NEW_LOOP is the header of ORIG_LOOP.
292 Updating the phis in the successor block can therefore be done
293 along with the scanning of the loop header phis, because the
294 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
295 phi nodes, organized in the same order.
297 case 2: NEW_LOOP was placed after ORIG_LOOP:
298 The successor block of NEW_LOOP is the original exit block of
299 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
300 We postpone updating these phis to a later stage (when
301 loop guards are added).
305 /* Scan the phis in the headers of the old and new loops
306 (they are organized in exactly the same order). */
308 for (phi_new = phi_nodes (new_loop->header),
309 phi_orig = phi_nodes (orig_loop->header);
310 phi_new && phi_orig;
311 phi_new = PHI_CHAIN (phi_new), phi_orig = PHI_CHAIN (phi_orig))
313 /* step 1. */
314 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
315 add_phi_arg (phi_new, def, new_loop_entry_e);
317 /* step 2. */
318 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
319 if (TREE_CODE (def) != SSA_NAME)
320 continue;
322 new_ssa_name = get_current_def (def);
323 if (!new_ssa_name)
325 /* This only happens if there are no definitions
326 inside the loop. use the phi_result in this case. */
327 new_ssa_name = PHI_RESULT (phi_new);
330 /* An ordinary ssa name defined in the loop. */
331 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop));
333 /* step 3 (case 1). */
334 if (!after)
336 gcc_assert (new_loop_exit_e == orig_entry_e);
337 SET_PHI_ARG_DEF (phi_orig,
338 new_loop_exit_e->dest_idx,
339 new_ssa_name);
345 /* Update PHI nodes for a guard of the LOOP.
347 Input:
348 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
349 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
350 originates from the guard-bb, skips LOOP and reaches the (unique) exit
351 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
352 We denote this bb NEW_MERGE_BB because before the guard code was added
353 it had a single predecessor (the LOOP header), and now it became a merge
354 point of two paths - the path that ends with the LOOP exit-edge, and
355 the path that ends with GUARD_EDGE.
356 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
357 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
359 ===> The CFG before the guard-code was added:
360 LOOP_header_bb:
361 loop_body
362 if (exit_loop) goto update_bb
363 else goto LOOP_header_bb
364 update_bb:
366 ==> The CFG after the guard-code was added:
367 guard_bb:
368 if (LOOP_guard_condition) goto new_merge_bb
369 else goto LOOP_header_bb
370 LOOP_header_bb:
371 loop_body
372 if (exit_loop_condition) goto new_merge_bb
373 else goto LOOP_header_bb
374 new_merge_bb:
375 goto update_bb
376 update_bb:
378 ==> The CFG after this function:
379 guard_bb:
380 if (LOOP_guard_condition) goto new_merge_bb
381 else goto LOOP_header_bb
382 LOOP_header_bb:
383 loop_body
384 if (exit_loop_condition) goto new_exit_bb
385 else goto LOOP_header_bb
386 new_exit_bb:
387 new_merge_bb:
388 goto update_bb
389 update_bb:
391 This function:
392 1. creates and updates the relevant phi nodes to account for the new
393 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
394 1.1. Create phi nodes at NEW_MERGE_BB.
395 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
396 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
397 2. preserves loop-closed-ssa-form by creating the required phi nodes
398 at the exit of LOOP (i.e, in NEW_EXIT_BB).
400 There are two flavors to this function:
402 slpeel_update_phi_nodes_for_guard1:
403 Here the guard controls whether we enter or skip LOOP, where LOOP is a
404 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
405 for variables that have phis in the loop header.
407 slpeel_update_phi_nodes_for_guard2:
408 Here the guard controls whether we enter or skip LOOP, where LOOP is an
409 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
410 for variables that have phis in the loop exit.
412 I.E., the overall structure is:
414 loop1_preheader_bb:
415 guard1 (goto loop1/merg1_bb)
416 loop1
417 loop1_exit_bb:
418 guard2 (goto merge1_bb/merge2_bb)
419 merge1_bb
420 loop2
421 loop2_exit_bb
422 merge2_bb
423 next_bb
425 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
426 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
427 that have phis in loop1->header).
429 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
430 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
431 that have phis in next_bb). It also adds some of these phis to
432 loop1_exit_bb.
434 slpeel_update_phi_nodes_for_guard1 is always called before
435 slpeel_update_phi_nodes_for_guard2. They are both needed in order
436 to create correct data-flow and loop-closed-ssa-form.
438 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
439 that change between iterations of a loop (and therefore have a phi-node
440 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
441 phis for variables that are used out of the loop (and therefore have
442 loop-closed exit phis). Some variables may be both updated between
443 iterations and used after the loop. This is why in loop1_exit_bb we
444 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
445 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
447 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
448 an original loop. i.e., we have:
450 orig_loop
451 guard_bb (goto LOOP/new_merge)
452 new_loop <-- LOOP
453 new_exit
454 new_merge
455 next_bb
457 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
458 have:
460 new_loop
461 guard_bb (goto LOOP/new_merge)
462 orig_loop <-- LOOP
463 new_exit
464 new_merge
465 next_bb
467 The SSA names defined in the original loop have a current
468 reaching definition that that records the corresponding new
469 ssa-name used in the new duplicated loop copy.
472 /* Function slpeel_update_phi_nodes_for_guard1
474 Input:
475 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
476 - DEFS - a bitmap of ssa names to mark new names for which we recorded
477 information.
479 In the context of the overall structure, we have:
481 loop1_preheader_bb:
482 guard1 (goto loop1/merg1_bb)
483 LOOP-> loop1
484 loop1_exit_bb:
485 guard2 (goto merge1_bb/merge2_bb)
486 merge1_bb
487 loop2
488 loop2_exit_bb
489 merge2_bb
490 next_bb
492 For each name updated between loop iterations (i.e - for each name that has
493 an entry (loop-header) phi in LOOP) we create a new phi in:
494 1. merge1_bb (to account for the edge from guard1)
495 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
498 static void
499 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
500 bool is_new_loop, basic_block *new_exit_bb,
501 bitmap *defs)
503 tree orig_phi, new_phi;
504 tree update_phi, update_phi2;
505 tree guard_arg, loop_arg;
506 basic_block new_merge_bb = guard_edge->dest;
507 edge e = EDGE_SUCC (new_merge_bb, 0);
508 basic_block update_bb = e->dest;
509 basic_block orig_bb = loop->header;
510 edge new_exit_e;
511 tree current_new_name;
512 tree name;
514 /* Create new bb between loop and new_merge_bb. */
515 *new_exit_bb = split_edge (single_exit (loop));
517 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
519 for (orig_phi = phi_nodes (orig_bb), update_phi = phi_nodes (update_bb);
520 orig_phi && update_phi;
521 orig_phi = PHI_CHAIN (orig_phi), update_phi = PHI_CHAIN (update_phi))
523 /* Virtual phi; Mark it for renaming. We actually want to call
524 mar_sym_for_renaming, but since all ssa renaming datastructures
525 are going to be freed before we get to call ssa_upate, we just
526 record this name for now in a bitmap, and will mark it for
527 renaming later. */
528 name = PHI_RESULT (orig_phi);
529 if (!is_gimple_reg (SSA_NAME_VAR (name)))
530 bitmap_set_bit (vect_memsyms_to_rename, DECL_UID (SSA_NAME_VAR (name)));
532 /** 1. Handle new-merge-point phis **/
534 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
535 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
536 new_merge_bb);
538 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
539 of LOOP. Set the two phi args in NEW_PHI for these edges: */
540 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
541 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
543 add_phi_arg (new_phi, loop_arg, new_exit_e);
544 add_phi_arg (new_phi, guard_arg, guard_edge);
546 /* 1.3. Update phi in successor block. */
547 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
548 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
549 SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
550 update_phi2 = new_phi;
553 /** 2. Handle loop-closed-ssa-form phis **/
555 if (!is_gimple_reg (PHI_RESULT (orig_phi)))
556 continue;
558 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
559 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
560 *new_exit_bb);
562 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
563 add_phi_arg (new_phi, loop_arg, single_exit (loop));
565 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
566 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
567 SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
569 /* 2.4. Record the newly created name with set_current_def.
570 We want to find a name such that
571 name = get_current_def (orig_loop_name)
572 and to set its current definition as follows:
573 set_current_def (name, new_phi_name)
575 If LOOP is a new loop then loop_arg is already the name we're
576 looking for. If LOOP is the original loop, then loop_arg is
577 the orig_loop_name and the relevant name is recorded in its
578 current reaching definition. */
579 if (is_new_loop)
580 current_new_name = loop_arg;
581 else
583 current_new_name = get_current_def (loop_arg);
584 /* current_def is not available only if the variable does not
585 change inside the loop, in which case we also don't care
586 about recording a current_def for it because we won't be
587 trying to create loop-exit-phis for it. */
588 if (!current_new_name)
589 continue;
591 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
593 set_current_def (current_new_name, PHI_RESULT (new_phi));
594 bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
597 set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
601 /* Function slpeel_update_phi_nodes_for_guard2
603 Input:
604 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
606 In the context of the overall structure, we have:
608 loop1_preheader_bb:
609 guard1 (goto loop1/merg1_bb)
610 loop1
611 loop1_exit_bb:
612 guard2 (goto merge1_bb/merge2_bb)
613 merge1_bb
614 LOOP-> loop2
615 loop2_exit_bb
616 merge2_bb
617 next_bb
619 For each name used out side the loop (i.e - for each name that has an exit
620 phi in next_bb) we create a new phi in:
621 1. merge2_bb (to account for the edge from guard_bb)
622 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
623 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
624 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
627 static void
628 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
629 bool is_new_loop, basic_block *new_exit_bb)
631 tree orig_phi, new_phi;
632 tree update_phi, update_phi2;
633 tree guard_arg, loop_arg;
634 basic_block new_merge_bb = guard_edge->dest;
635 edge e = EDGE_SUCC (new_merge_bb, 0);
636 basic_block update_bb = e->dest;
637 edge new_exit_e;
638 tree orig_def, orig_def_new_name;
639 tree new_name, new_name2;
640 tree arg;
642 /* Create new bb between loop and new_merge_bb. */
643 *new_exit_bb = split_edge (single_exit (loop));
645 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
647 for (update_phi = phi_nodes (update_bb); update_phi;
648 update_phi = PHI_CHAIN (update_phi))
650 orig_phi = update_phi;
651 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
652 /* This loop-closed-phi actually doesn't represent a use
653 out of the loop - the phi arg is a constant. */
654 if (TREE_CODE (orig_def) != SSA_NAME)
655 continue;
656 orig_def_new_name = get_current_def (orig_def);
657 arg = NULL_TREE;
659 /** 1. Handle new-merge-point phis **/
661 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
662 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
663 new_merge_bb);
665 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
666 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
667 new_name = orig_def;
668 new_name2 = NULL_TREE;
669 if (orig_def_new_name)
671 new_name = orig_def_new_name;
672 /* Some variables have both loop-entry-phis and loop-exit-phis.
673 Such variables were given yet newer names by phis placed in
674 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
675 new_name2 = get_current_def (get_current_def (orig_name)). */
676 new_name2 = get_current_def (new_name);
679 if (is_new_loop)
681 guard_arg = orig_def;
682 loop_arg = new_name;
684 else
686 guard_arg = new_name;
687 loop_arg = orig_def;
689 if (new_name2)
690 guard_arg = new_name2;
692 add_phi_arg (new_phi, loop_arg, new_exit_e);
693 add_phi_arg (new_phi, guard_arg, guard_edge);
695 /* 1.3. Update phi in successor block. */
696 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
697 SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
698 update_phi2 = new_phi;
701 /** 2. Handle loop-closed-ssa-form phis **/
703 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
704 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
705 *new_exit_bb);
707 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
708 add_phi_arg (new_phi, loop_arg, single_exit (loop));
710 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
711 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
712 SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
715 /** 3. Handle loop-closed-ssa-form phis for first loop **/
717 /* 3.1. Find the relevant names that need an exit-phi in
718 GUARD_BB, i.e. names for which
719 slpeel_update_phi_nodes_for_guard1 had not already created a
720 phi node. This is the case for names that are used outside
721 the loop (and therefore need an exit phi) but are not updated
722 across loop iterations (and therefore don't have a
723 loop-header-phi).
725 slpeel_update_phi_nodes_for_guard1 is responsible for
726 creating loop-exit phis in GUARD_BB for names that have a
727 loop-header-phi. When such a phi is created we also record
728 the new name in its current definition. If this new name
729 exists, then guard_arg was set to this new name (see 1.2
730 above). Therefore, if guard_arg is not this new name, this
731 is an indication that an exit-phi in GUARD_BB was not yet
732 created, so we take care of it here. */
733 if (guard_arg == new_name2)
734 continue;
735 arg = guard_arg;
737 /* 3.2. Generate new phi node in GUARD_BB: */
738 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
739 guard_edge->src);
741 /* 3.3. GUARD_BB has one incoming edge: */
742 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
743 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0));
745 /* 3.4. Update phi in successor of GUARD_BB: */
746 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
747 == guard_arg);
748 SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi));
751 set_phi_nodes (new_merge_bb, phi_reverse (phi_nodes (new_merge_bb)));
755 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
756 that starts at zero, increases by one and its limit is NITERS.
758 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
760 void
761 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
763 tree indx_before_incr, indx_after_incr, cond_stmt, cond;
764 tree orig_cond;
765 edge exit_edge = single_exit (loop);
766 block_stmt_iterator loop_cond_bsi;
767 block_stmt_iterator incr_bsi;
768 bool insert_after;
769 tree init = build_int_cst (TREE_TYPE (niters), 0);
770 tree step = build_int_cst (TREE_TYPE (niters), 1);
771 LOC loop_loc;
773 orig_cond = get_loop_exit_condition (loop);
774 gcc_assert (orig_cond);
775 loop_cond_bsi = bsi_for_stmt (orig_cond);
777 standard_iv_increment_position (loop, &incr_bsi, &insert_after);
778 create_iv (init, step, NULL_TREE, loop,
779 &incr_bsi, insert_after, &indx_before_incr, &indx_after_incr);
781 if (exit_edge->flags & EDGE_TRUE_VALUE) /* 'then' edge exits the loop. */
782 cond = build2 (GE_EXPR, boolean_type_node, indx_after_incr, niters);
783 else /* 'then' edge loops back. */
784 cond = build2 (LT_EXPR, boolean_type_node, indx_after_incr, niters);
786 cond_stmt = build3 (COND_EXPR, TREE_TYPE (orig_cond), cond,
787 NULL_TREE, NULL_TREE);
788 bsi_insert_before (&loop_cond_bsi, cond_stmt, BSI_SAME_STMT);
790 /* Remove old loop exit test: */
791 bsi_remove (&loop_cond_bsi, true);
793 loop_loc = find_loop_location (loop);
794 if (dump_file && (dump_flags & TDF_DETAILS))
796 if (loop_loc != UNKNOWN_LOC)
797 fprintf (dump_file, "\nloop at %s:%d: ",
798 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
799 print_generic_expr (dump_file, cond_stmt, TDF_SLIM);
802 loop->nb_iterations = niters;
806 /* Given LOOP this function generates a new copy of it and puts it
807 on E which is either the entry or exit of LOOP. */
809 static struct loop *
810 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
812 struct loop *new_loop;
813 basic_block *new_bbs, *bbs;
814 bool at_exit;
815 bool was_imm_dom;
816 basic_block exit_dest;
817 tree phi, phi_arg;
818 edge exit, new_exit;
820 at_exit = (e == single_exit (loop));
821 if (!at_exit && e != loop_preheader_edge (loop))
822 return NULL;
824 bbs = get_loop_body (loop);
826 /* Check whether duplication is possible. */
827 if (!can_copy_bbs_p (bbs, loop->num_nodes))
829 free (bbs);
830 return NULL;
833 /* Generate new loop structure. */
834 new_loop = duplicate_loop (loop, loop_outer (loop));
835 if (!new_loop)
837 free (bbs);
838 return NULL;
841 exit_dest = single_exit (loop)->dest;
842 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
843 exit_dest) == loop->header ?
844 true : false);
846 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
848 exit = single_exit (loop);
849 copy_bbs (bbs, loop->num_nodes, new_bbs,
850 &exit, 1, &new_exit, NULL,
851 e->src);
853 /* Duplicating phi args at exit bbs as coming
854 also from exit of duplicated loop. */
855 for (phi = phi_nodes (exit_dest); phi; phi = PHI_CHAIN (phi))
857 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
858 if (phi_arg)
860 edge new_loop_exit_edge;
862 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
863 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
864 else
865 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
867 add_phi_arg (phi, phi_arg, new_loop_exit_edge);
871 if (at_exit) /* Add the loop copy at exit. */
873 redirect_edge_and_branch_force (e, new_loop->header);
874 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
875 if (was_imm_dom)
876 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
878 else /* Add the copy at entry. */
880 edge new_exit_e;
881 edge entry_e = loop_preheader_edge (loop);
882 basic_block preheader = entry_e->src;
884 if (!flow_bb_inside_loop_p (new_loop,
885 EDGE_SUCC (new_loop->header, 0)->dest))
886 new_exit_e = EDGE_SUCC (new_loop->header, 0);
887 else
888 new_exit_e = EDGE_SUCC (new_loop->header, 1);
890 redirect_edge_and_branch_force (new_exit_e, loop->header);
891 set_immediate_dominator (CDI_DOMINATORS, loop->header,
892 new_exit_e->src);
894 /* We have to add phi args to the loop->header here as coming
895 from new_exit_e edge. */
896 for (phi = phi_nodes (loop->header); phi; phi = PHI_CHAIN (phi))
898 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
899 if (phi_arg)
900 add_phi_arg (phi, phi_arg, new_exit_e);
903 redirect_edge_and_branch_force (entry_e, new_loop->header);
904 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
907 free (new_bbs);
908 free (bbs);
910 return new_loop;
914 /* Given the condition statement COND, put it as the last statement
915 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
916 Assumes that this is the single exit of the guarded loop.
917 Returns the skip edge. */
919 static edge
920 slpeel_add_loop_guard (basic_block guard_bb, tree cond, basic_block exit_bb,
921 basic_block dom_bb)
923 block_stmt_iterator bsi;
924 edge new_e, enter_e;
925 tree cond_stmt;
927 enter_e = EDGE_SUCC (guard_bb, 0);
928 enter_e->flags &= ~EDGE_FALLTHRU;
929 enter_e->flags |= EDGE_FALSE_VALUE;
930 bsi = bsi_last (guard_bb);
932 cond_stmt = build3 (COND_EXPR, void_type_node, cond,
933 NULL_TREE, NULL_TREE);
934 bsi_insert_after (&bsi, cond_stmt, BSI_NEW_STMT);
935 /* Add new edge to connect guard block to the merge/loop-exit block. */
936 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
937 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
938 return new_e;
942 /* This function verifies that the following restrictions apply to LOOP:
943 (1) it is innermost
944 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
945 (3) it is single entry, single exit
946 (4) its exit condition is the last stmt in the header
947 (5) E is the entry/exit edge of LOOP.
950 bool
951 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
953 edge exit_e = single_exit (loop);
954 edge entry_e = loop_preheader_edge (loop);
955 tree orig_cond = get_loop_exit_condition (loop);
956 block_stmt_iterator loop_exit_bsi = bsi_last (exit_e->src);
958 if (need_ssa_update_p ())
959 return false;
961 if (loop->inner
962 /* All loops have an outer scope; the only case loop->outer is NULL is for
963 the function itself. */
964 || !loop_outer (loop)
965 || loop->num_nodes != 2
966 || !empty_block_p (loop->latch)
967 || !single_exit (loop)
968 /* Verify that new loop exit condition can be trivially modified. */
969 || (!orig_cond || orig_cond != bsi_stmt (loop_exit_bsi))
970 || (e != exit_e && e != entry_e))
971 return false;
973 return true;
976 #ifdef ENABLE_CHECKING
977 void
978 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
979 struct loop *second_loop)
981 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
982 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
983 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
985 /* A guard that controls whether the second_loop is to be executed or skipped
986 is placed in first_loop->exit. first_loopt->exit therefore has two
987 successors - one is the preheader of second_loop, and the other is a bb
988 after second_loop.
990 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
992 /* 1. Verify that one of the successors of first_loopt->exit is the preheader
993 of second_loop. */
995 /* The preheader of new_loop is expected to have two predecessors:
996 first_loop->exit and the block that precedes first_loop. */
998 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
999 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1000 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1001 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1002 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1004 /* Verify that the other successor of first_loopt->exit is after the
1005 second_loop. */
1006 /* TODO */
1008 #endif
1010 /* Function slpeel_tree_peel_loop_to_edge.
1012 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1013 that is placed on the entry (exit) edge E of LOOP. After this transformation
1014 we have two loops one after the other - first-loop iterates FIRST_NITERS
1015 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1017 Input:
1018 - LOOP: the loop to be peeled.
1019 - E: the exit or entry edge of LOOP.
1020 If it is the entry edge, we peel the first iterations of LOOP. In this
1021 case first-loop is LOOP, and second-loop is the newly created loop.
1022 If it is the exit edge, we peel the last iterations of LOOP. In this
1023 case, first-loop is the newly created loop, and second-loop is LOOP.
1024 - NITERS: the number of iterations that LOOP iterates.
1025 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1026 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1027 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1028 is false, the caller of this function may want to take care of this
1029 (this can be useful if we don't want new stmts added to first-loop).
1031 Output:
1032 The function returns a pointer to the new loop-copy, or NULL if it failed
1033 to perform the transformation.
1035 The function generates two if-then-else guards: one before the first loop,
1036 and the other before the second loop:
1037 The first guard is:
1038 if (FIRST_NITERS == 0) then skip the first loop,
1039 and go directly to the second loop.
1040 The second guard is:
1041 if (FIRST_NITERS == NITERS) then skip the second loop.
1043 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1044 FORNOW the resulting code will not be in loop-closed-ssa form.
1047 struct loop*
1048 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1049 edge e, tree first_niters,
1050 tree niters, bool update_first_loop_count,
1051 unsigned int th)
1053 struct loop *new_loop = NULL, *first_loop, *second_loop;
1054 edge skip_e;
1055 tree pre_condition;
1056 bitmap definitions;
1057 basic_block bb_before_second_loop, bb_after_second_loop;
1058 basic_block bb_before_first_loop;
1059 basic_block bb_between_loops;
1060 basic_block new_exit_bb;
1061 edge exit_e = single_exit (loop);
1062 LOC loop_loc;
1064 if (!slpeel_can_duplicate_loop_p (loop, e))
1065 return NULL;
1067 /* We have to initialize cfg_hooks. Then, when calling
1068 cfg_hooks->split_edge, the function tree_split_edge
1069 is actually called and, when calling cfg_hooks->duplicate_block,
1070 the function tree_duplicate_bb is called. */
1071 tree_register_cfg_hooks ();
1074 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1075 Resulting CFG would be:
1077 first_loop:
1078 do {
1079 } while ...
1081 second_loop:
1082 do {
1083 } while ...
1085 orig_exit_bb:
1088 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1090 loop_loc = find_loop_location (loop);
1091 if (dump_file && (dump_flags & TDF_DETAILS))
1093 if (loop_loc != UNKNOWN_LOC)
1094 fprintf (dump_file, "\n%s:%d: note: ",
1095 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1096 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1098 return NULL;
1101 if (e == exit_e)
1103 /* NEW_LOOP was placed after LOOP. */
1104 first_loop = loop;
1105 second_loop = new_loop;
1107 else
1109 /* NEW_LOOP was placed before LOOP. */
1110 first_loop = new_loop;
1111 second_loop = loop;
1114 definitions = ssa_names_to_replace ();
1115 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1116 rename_variables_in_loop (new_loop);
1119 /* 2. Add the guard that controls whether the first loop is executed.
1120 Resulting CFG would be:
1122 bb_before_first_loop:
1123 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1124 GOTO first-loop
1126 first_loop:
1127 do {
1128 } while ...
1130 bb_before_second_loop:
1132 second_loop:
1133 do {
1134 } while ...
1136 orig_exit_bb:
1139 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1140 bb_before_second_loop = split_edge (single_exit (first_loop));
1142 pre_condition =
1143 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1144 build_int_cst (TREE_TYPE (first_niters), th));
1146 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1147 bb_before_second_loop, bb_before_first_loop);
1148 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1149 first_loop == new_loop,
1150 &new_exit_bb, &definitions);
1153 /* 3. Add the guard that controls whether the second loop is executed.
1154 Resulting CFG would be:
1156 bb_before_first_loop:
1157 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1158 GOTO first-loop
1160 first_loop:
1161 do {
1162 } while ...
1164 bb_between_loops:
1165 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1166 GOTO bb_before_second_loop
1168 bb_before_second_loop:
1170 second_loop:
1171 do {
1172 } while ...
1174 bb_after_second_loop:
1176 orig_exit_bb:
1179 bb_between_loops = new_exit_bb;
1180 bb_after_second_loop = split_edge (single_exit (second_loop));
1182 pre_condition =
1183 fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
1184 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition,
1185 bb_after_second_loop, bb_before_first_loop);
1186 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1187 second_loop == new_loop, &new_exit_bb);
1189 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1191 if (update_first_loop_count)
1192 slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1194 BITMAP_FREE (definitions);
1195 delete_update_ssa ();
1197 return new_loop;
1200 /* Function vect_get_loop_location.
1202 Extract the location of the loop in the source code.
1203 If the loop is not well formed for vectorization, an estimated
1204 location is calculated.
1205 Return the loop location if succeed and NULL if not. */
1208 find_loop_location (struct loop *loop)
1210 tree node = NULL_TREE;
1211 basic_block bb;
1212 block_stmt_iterator si;
1214 if (!loop)
1215 return UNKNOWN_LOC;
1217 node = get_loop_exit_condition (loop);
1219 if (node && CAN_HAVE_LOCATION_P (node) && EXPR_HAS_LOCATION (node)
1220 && EXPR_FILENAME (node) && EXPR_LINENO (node))
1221 return EXPR_LOC (node);
1223 /* If we got here the loop is probably not "well formed",
1224 try to estimate the loop location */
1226 if (!loop->header)
1227 return UNKNOWN_LOC;
1229 bb = loop->header;
1231 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1233 node = bsi_stmt (si);
1234 if (node && CAN_HAVE_LOCATION_P (node) && EXPR_HAS_LOCATION (node))
1235 return EXPR_LOC (node);
1238 return UNKNOWN_LOC;
1242 /*************************************************************************
1243 Vectorization Debug Information.
1244 *************************************************************************/
1246 /* Function vect_set_verbosity_level.
1248 Called from toplev.c upon detection of the
1249 -ftree-vectorizer-verbose=N option. */
1251 void
1252 vect_set_verbosity_level (const char *val)
1254 unsigned int vl;
1256 vl = atoi (val);
1257 if (vl < MAX_VERBOSITY_LEVEL)
1258 vect_verbosity_level = vl;
1259 else
1260 vect_verbosity_level = MAX_VERBOSITY_LEVEL - 1;
1264 /* Function vect_set_dump_settings.
1266 Fix the verbosity level of the vectorizer if the
1267 requested level was not set explicitly using the flag
1268 -ftree-vectorizer-verbose=N.
1269 Decide where to print the debugging information (dump_file/stderr).
1270 If the user defined the verbosity level, but there is no dump file,
1271 print to stderr, otherwise print to the dump file. */
1273 static void
1274 vect_set_dump_settings (void)
1276 vect_dump = dump_file;
1278 /* Check if the verbosity level was defined by the user: */
1279 if (vect_verbosity_level != MAX_VERBOSITY_LEVEL)
1281 /* If there is no dump file, print to stderr. */
1282 if (!dump_file)
1283 vect_dump = stderr;
1284 return;
1287 /* User didn't specify verbosity level: */
1288 if (dump_file && (dump_flags & TDF_DETAILS))
1289 vect_verbosity_level = REPORT_DETAILS;
1290 else if (dump_file && (dump_flags & TDF_STATS))
1291 vect_verbosity_level = REPORT_UNVECTORIZED_LOOPS;
1292 else
1293 vect_verbosity_level = REPORT_NONE;
1295 gcc_assert (dump_file || vect_verbosity_level == REPORT_NONE);
1299 /* Function debug_loop_details.
1301 For vectorization debug dumps. */
1303 bool
1304 vect_print_dump_info (enum verbosity_levels vl)
1306 if (vl > vect_verbosity_level)
1307 return false;
1309 if (!current_function_decl || !vect_dump)
1310 return false;
1312 if (vect_loop_location == UNKNOWN_LOC)
1313 fprintf (vect_dump, "\n%s:%d: note: ",
1314 DECL_SOURCE_FILE (current_function_decl),
1315 DECL_SOURCE_LINE (current_function_decl));
1316 else
1317 fprintf (vect_dump, "\n%s:%d: note: ",
1318 LOC_FILE (vect_loop_location), LOC_LINE (vect_loop_location));
1320 return true;
1324 /*************************************************************************
1325 Vectorization Utilities.
1326 *************************************************************************/
1328 /* Function new_stmt_vec_info.
1330 Create and initialize a new stmt_vec_info struct for STMT. */
1332 stmt_vec_info
1333 new_stmt_vec_info (tree stmt, loop_vec_info loop_vinfo)
1335 stmt_vec_info res;
1336 res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
1338 STMT_VINFO_TYPE (res) = undef_vec_info_type;
1339 STMT_VINFO_STMT (res) = stmt;
1340 STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
1341 STMT_VINFO_RELEVANT (res) = 0;
1342 STMT_VINFO_LIVE_P (res) = false;
1343 STMT_VINFO_VECTYPE (res) = NULL;
1344 STMT_VINFO_VEC_STMT (res) = NULL;
1345 STMT_VINFO_IN_PATTERN_P (res) = false;
1346 STMT_VINFO_RELATED_STMT (res) = NULL;
1347 STMT_VINFO_DATA_REF (res) = NULL;
1349 STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
1350 STMT_VINFO_DR_OFFSET (res) = NULL;
1351 STMT_VINFO_DR_INIT (res) = NULL;
1352 STMT_VINFO_DR_STEP (res) = NULL;
1353 STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
1355 if (TREE_CODE (stmt) == PHI_NODE && is_loop_header_bb_p (bb_for_stmt (stmt)))
1356 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
1357 else
1358 STMT_VINFO_DEF_TYPE (res) = vect_loop_def;
1359 STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
1360 STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
1361 STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
1362 DR_GROUP_FIRST_DR (res) = NULL_TREE;
1363 DR_GROUP_NEXT_DR (res) = NULL_TREE;
1364 DR_GROUP_SIZE (res) = 0;
1365 DR_GROUP_STORE_COUNT (res) = 0;
1366 DR_GROUP_GAP (res) = 0;
1367 DR_GROUP_SAME_DR_STMT (res) = NULL_TREE;
1368 DR_GROUP_READ_WRITE_DEPENDENCE (res) = false;
1370 return res;
1374 /* Function bb_in_loop_p
1376 Used as predicate for dfs order traversal of the loop bbs. */
1378 static bool
1379 bb_in_loop_p (const_basic_block bb, const void *data)
1381 const struct loop *const loop = (const struct loop *)data;
1382 if (flow_bb_inside_loop_p (loop, bb))
1383 return true;
1384 return false;
1388 /* Function new_loop_vec_info.
1390 Create and initialize a new loop_vec_info struct for LOOP, as well as
1391 stmt_vec_info structs for all the stmts in LOOP. */
1393 loop_vec_info
1394 new_loop_vec_info (struct loop *loop)
1396 loop_vec_info res;
1397 basic_block *bbs;
1398 block_stmt_iterator si;
1399 unsigned int i, nbbs;
1401 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
1402 LOOP_VINFO_LOOP (res) = loop;
1404 bbs = get_loop_body (loop);
1406 /* Create/Update stmt_info for all stmts in the loop. */
1407 for (i = 0; i < loop->num_nodes; i++)
1409 basic_block bb = bbs[i];
1410 tree phi;
1412 /* BBs in a nested inner-loop will have been already processed (because
1413 we will have called vect_analyze_loop_form for any nested inner-loop).
1414 Therefore, for stmts in an inner-loop we just want to update the
1415 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
1416 loop_info of the outer-loop we are currently considering to vectorize
1417 (instead of the loop_info of the inner-loop).
1418 For stmts in other BBs we need to create a stmt_info from scratch. */
1419 if (bb->loop_father != loop)
1421 /* Inner-loop bb. */
1422 gcc_assert (loop->inner && bb->loop_father == loop->inner);
1423 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1425 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
1426 loop_vec_info inner_loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1427 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
1428 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
1430 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1432 tree stmt = bsi_stmt (si);
1433 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1434 loop_vec_info inner_loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1435 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
1436 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
1439 else
1441 /* bb in current nest. */
1442 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1444 stmt_ann_t ann = get_stmt_ann (phi);
1445 set_stmt_info (ann, new_stmt_vec_info (phi, res));
1448 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
1450 tree stmt = bsi_stmt (si);
1451 stmt_ann_t ann = stmt_ann (stmt);
1452 set_stmt_info (ann, new_stmt_vec_info (stmt, res));
1457 /* CHECKME: We want to visit all BBs before their successors (except for
1458 latch blocks, for which this assertion wouldn't hold). In the simple
1459 case of the loop forms we allow, a dfs order of the BBs would the same
1460 as reversed postorder traversal, so we are safe. */
1462 free (bbs);
1463 bbs = XCNEWVEC (basic_block, loop->num_nodes);
1464 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
1465 bbs, loop->num_nodes, loop);
1466 gcc_assert (nbbs == loop->num_nodes);
1468 LOOP_VINFO_BBS (res) = bbs;
1469 LOOP_VINFO_NITERS (res) = NULL;
1470 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
1471 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
1472 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
1473 LOOP_VINFO_VECT_FACTOR (res) = 0;
1474 LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
1475 LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
1476 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
1477 LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
1478 VEC_alloc (tree, heap, PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
1479 LOOP_VINFO_MAY_ALIAS_DDRS (res) =
1480 VEC_alloc (ddr_p, heap, PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
1483 return res;
1487 /* Function destroy_loop_vec_info.
1489 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
1490 stmts in the loop. */
1492 void
1493 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
1495 struct loop *loop;
1496 basic_block *bbs;
1497 int nbbs;
1498 block_stmt_iterator si;
1499 int j;
1501 if (!loop_vinfo)
1502 return;
1504 loop = LOOP_VINFO_LOOP (loop_vinfo);
1506 bbs = LOOP_VINFO_BBS (loop_vinfo);
1507 nbbs = loop->num_nodes;
1509 if (!clean_stmts)
1511 free (LOOP_VINFO_BBS (loop_vinfo));
1512 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
1513 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1514 VEC_free (tree, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
1516 free (loop_vinfo);
1517 loop->aux = NULL;
1518 return;
1521 for (j = 0; j < nbbs; j++)
1523 basic_block bb = bbs[j];
1524 tree phi;
1525 stmt_vec_info stmt_info;
1527 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
1529 stmt_ann_t ann = stmt_ann (phi);
1531 stmt_info = vinfo_for_stmt (phi);
1532 free (stmt_info);
1533 set_stmt_info (ann, NULL);
1536 for (si = bsi_start (bb); !bsi_end_p (si); )
1538 tree stmt = bsi_stmt (si);
1539 stmt_ann_t ann = stmt_ann (stmt);
1540 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1542 if (stmt_info)
1544 /* Check if this is a "pattern stmt" (introduced by the
1545 vectorizer during the pattern recognition pass). */
1546 bool remove_stmt_p = false;
1547 tree orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1548 if (orig_stmt)
1550 stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
1551 if (orig_stmt_info
1552 && STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
1553 remove_stmt_p = true;
1556 /* Free stmt_vec_info. */
1557 VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
1558 free (stmt_info);
1559 set_stmt_info (ann, NULL);
1561 /* Remove dead "pattern stmts". */
1562 if (remove_stmt_p)
1563 bsi_remove (&si, true);
1565 bsi_next (&si);
1569 free (LOOP_VINFO_BBS (loop_vinfo));
1570 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
1571 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1572 VEC_free (tree, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
1573 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
1575 free (loop_vinfo);
1576 loop->aux = NULL;
1580 /* Function vect_force_dr_alignment_p.
1582 Returns whether the alignment of a DECL can be forced to be aligned
1583 on ALIGNMENT bit boundary. */
1585 bool
1586 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
1588 if (TREE_CODE (decl) != VAR_DECL)
1589 return false;
1591 if (DECL_EXTERNAL (decl))
1592 return false;
1594 if (TREE_ASM_WRITTEN (decl))
1595 return false;
1597 if (TREE_STATIC (decl))
1598 return (alignment <= MAX_OFILE_ALIGNMENT);
1599 else
1600 /* This is not 100% correct. The absolute correct stack alignment
1601 is STACK_BOUNDARY. We're supposed to hope, but not assume, that
1602 PREFERRED_STACK_BOUNDARY is honored by all translation units.
1603 However, until someone implements forced stack alignment, SSE
1604 isn't really usable without this. */
1605 return (alignment <= PREFERRED_STACK_BOUNDARY);
1609 /* Function get_vectype_for_scalar_type.
1611 Returns the vector type corresponding to SCALAR_TYPE as supported
1612 by the target. */
1614 tree
1615 get_vectype_for_scalar_type (tree scalar_type)
1617 enum machine_mode inner_mode = TYPE_MODE (scalar_type);
1618 int nbytes = GET_MODE_SIZE (inner_mode);
1619 int nunits;
1620 tree vectype;
1622 if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD)
1623 return NULL_TREE;
1625 /* FORNOW: Only a single vector size per target (UNITS_PER_SIMD_WORD)
1626 is expected. */
1627 nunits = UNITS_PER_SIMD_WORD / nbytes;
1629 vectype = build_vector_type (scalar_type, nunits);
1630 if (vect_print_dump_info (REPORT_DETAILS))
1632 fprintf (vect_dump, "get vectype with %d units of type ", nunits);
1633 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
1636 if (!vectype)
1637 return NULL_TREE;
1639 if (vect_print_dump_info (REPORT_DETAILS))
1641 fprintf (vect_dump, "vectype: ");
1642 print_generic_expr (vect_dump, vectype, TDF_SLIM);
1645 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
1646 && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
1648 if (vect_print_dump_info (REPORT_DETAILS))
1649 fprintf (vect_dump, "mode not supported by target.");
1650 return NULL_TREE;
1653 return vectype;
1657 /* Function vect_supportable_dr_alignment
1659 Return whether the data reference DR is supported with respect to its
1660 alignment. */
1662 enum dr_alignment_support
1663 vect_supportable_dr_alignment (struct data_reference *dr)
1665 tree stmt = DR_STMT (dr);
1666 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1667 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1668 enum machine_mode mode = (int) TYPE_MODE (vectype);
1669 struct loop *vect_loop = LOOP_VINFO_LOOP (STMT_VINFO_LOOP_VINFO (stmt_info));
1670 bool nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
1671 bool invariant_in_outerloop = false;
1673 if (aligned_access_p (dr))
1674 return dr_aligned;
1676 if (nested_in_vect_loop)
1678 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
1679 invariant_in_outerloop =
1680 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
1683 /* Possibly unaligned access. */
1685 /* We can choose between using the implicit realignment scheme (generating
1686 a misaligned_move stmt) and the explicit realignment scheme (generating
1687 aligned loads with a REALIGN_LOAD). There are two variants to the explicit
1688 realignment scheme: optimized, and unoptimized.
1689 We can optimize the realignment only if the step between consecutive
1690 vector loads is equal to the vector size. Since the vector memory
1691 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
1692 is guaranteed that the misalignment amount remains the same throughout the
1693 execution of the vectorized loop. Therefore, we can create the
1694 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
1695 at the loop preheader.
1697 However, in the case of outer-loop vectorization, when vectorizing a
1698 memory access in the inner-loop nested within the LOOP that is now being
1699 vectorized, while it is guaranteed that the misalignment of the
1700 vectorized memory access will remain the same in different outer-loop
1701 iterations, it is *not* guaranteed that is will remain the same throughout
1702 the execution of the inner-loop. This is because the inner-loop advances
1703 with the original scalar step (and not in steps of VS). If the inner-loop
1704 step happens to be a multiple of VS, then the misalignment remaines fixed
1705 and we can use the optimized realignment scheme. For example:
1707 for (i=0; i<N; i++)
1708 for (j=0; j<M; j++)
1709 s += a[i+j];
1711 When vectorizing the i-loop in the above example, the step between
1712 consecutive vector loads is 1, and so the misalignment does not remain
1713 fixed across the execution of the inner-loop, and the realignment cannot
1714 be optimized (as illustrated in the following pseudo vectorized loop):
1716 for (i=0; i<N; i+=4)
1717 for (j=0; j<M; j++){
1718 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
1719 // when j is {0,1,2,3,4,5,6,7,...} respectively.
1720 // (assuming that we start from an aligned address).
1723 We therefore have to use the unoptimized realignment scheme:
1725 for (i=0; i<N; i+=4)
1726 for (j=k; j<M; j+=4)
1727 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
1728 // that the misalignment of the initial address is
1729 // 0).
1731 The loop can then be vectorized as follows:
1733 for (k=0; k<4; k++){
1734 rt = get_realignment_token (&vp[k]);
1735 for (i=0; i<N; i+=4){
1736 v1 = vp[i+k];
1737 for (j=k; j<M; j+=4){
1738 v2 = vp[i+j+VS-1];
1739 va = REALIGN_LOAD <v1,v2,rt>;
1740 vs += va;
1741 v1 = v2;
1744 } */
1746 if (DR_IS_READ (dr))
1748 if (optab_handler (vec_realign_load_optab, mode)->insn_code !=
1749 CODE_FOR_nothing
1750 && (!targetm.vectorize.builtin_mask_for_load
1751 || targetm.vectorize.builtin_mask_for_load ()))
1753 if (nested_in_vect_loop
1754 && TREE_INT_CST_LOW (DR_STEP (dr)) != UNITS_PER_SIMD_WORD)
1755 return dr_explicit_realign;
1756 else
1757 return dr_explicit_realign_optimized;
1760 if (optab_handler (movmisalign_optab, mode)->insn_code !=
1761 CODE_FOR_nothing)
1762 /* Can't software pipeline the loads, but can at least do them. */
1763 return dr_unaligned_supported;
1766 /* Unsupported. */
1767 return dr_unaligned_unsupported;
1771 /* Function vect_is_simple_use.
1773 Input:
1774 LOOP - the loop that is being vectorized.
1775 OPERAND - operand of a stmt in LOOP.
1776 DEF - the defining stmt in case OPERAND is an SSA_NAME.
1778 Returns whether a stmt with OPERAND can be vectorized.
1779 Supportable operands are constants, loop invariants, and operands that are
1780 defined by the current iteration of the loop. Unsupportable operands are
1781 those that are defined by a previous iteration of the loop (as is the case
1782 in reduction/induction computations). */
1784 bool
1785 vect_is_simple_use (tree operand, loop_vec_info loop_vinfo, tree *def_stmt,
1786 tree *def, enum vect_def_type *dt)
1788 basic_block bb;
1789 stmt_vec_info stmt_vinfo;
1790 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1792 *def_stmt = NULL_TREE;
1793 *def = NULL_TREE;
1795 if (vect_print_dump_info (REPORT_DETAILS))
1797 fprintf (vect_dump, "vect_is_simple_use: operand ");
1798 print_generic_expr (vect_dump, operand, TDF_SLIM);
1801 if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
1803 *dt = vect_constant_def;
1804 return true;
1806 if (is_gimple_min_invariant (operand))
1808 *def = operand;
1809 *dt = vect_invariant_def;
1810 return true;
1813 if (TREE_CODE (operand) != SSA_NAME)
1815 if (vect_print_dump_info (REPORT_DETAILS))
1816 fprintf (vect_dump, "not ssa-name.");
1817 return false;
1820 *def_stmt = SSA_NAME_DEF_STMT (operand);
1821 if (*def_stmt == NULL_TREE )
1823 if (vect_print_dump_info (REPORT_DETAILS))
1824 fprintf (vect_dump, "no def_stmt.");
1825 return false;
1828 if (vect_print_dump_info (REPORT_DETAILS))
1830 fprintf (vect_dump, "def_stmt: ");
1831 print_generic_expr (vect_dump, *def_stmt, TDF_SLIM);
1834 /* empty stmt is expected only in case of a function argument.
1835 (Otherwise - we expect a phi_node or a GIMPLE_MODIFY_STMT). */
1836 if (IS_EMPTY_STMT (*def_stmt))
1838 tree arg = TREE_OPERAND (*def_stmt, 0);
1839 if (is_gimple_min_invariant (arg))
1841 *def = operand;
1842 *dt = vect_invariant_def;
1843 return true;
1846 if (vect_print_dump_info (REPORT_DETAILS))
1847 fprintf (vect_dump, "Unexpected empty stmt.");
1848 return false;
1851 bb = bb_for_stmt (*def_stmt);
1852 if (!flow_bb_inside_loop_p (loop, bb))
1853 *dt = vect_invariant_def;
1854 else
1856 stmt_vinfo = vinfo_for_stmt (*def_stmt);
1857 *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
1860 if (*dt == vect_unknown_def_type)
1862 if (vect_print_dump_info (REPORT_DETAILS))
1863 fprintf (vect_dump, "Unsupported pattern.");
1864 return false;
1867 if (vect_print_dump_info (REPORT_DETAILS))
1868 fprintf (vect_dump, "type of def: %d.",*dt);
1870 switch (TREE_CODE (*def_stmt))
1872 case PHI_NODE:
1873 *def = PHI_RESULT (*def_stmt);
1874 break;
1876 case GIMPLE_MODIFY_STMT:
1877 *def = GIMPLE_STMT_OPERAND (*def_stmt, 0);
1878 break;
1880 default:
1881 if (vect_print_dump_info (REPORT_DETAILS))
1882 fprintf (vect_dump, "unsupported defining stmt: ");
1883 return false;
1886 return true;
1890 /* Function supportable_widening_operation
1892 Check whether an operation represented by the code CODE is a
1893 widening operation that is supported by the target platform in
1894 vector form (i.e., when operating on arguments of type VECTYPE).
1896 Widening operations we currently support are NOP (CONVERT), FLOAT
1897 and WIDEN_MULT. This function checks if these operations are supported
1898 by the target platform either directly (via vector tree-codes), or via
1899 target builtins.
1901 Output:
1902 - CODE1 and CODE2 are codes of vector operations to be used when
1903 vectorizing the operation, if available.
1904 - DECL1 and DECL2 are decls of target builtin functions to be used
1905 when vectorizing the operation, if available. In this case,
1906 CODE1 and CODE2 are CALL_EXPR. */
1908 bool
1909 supportable_widening_operation (enum tree_code code, tree stmt, tree vectype,
1910 tree *decl1, tree *decl2,
1911 enum tree_code *code1, enum tree_code *code2)
1913 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1914 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
1915 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1916 bool ordered_p;
1917 enum machine_mode vec_mode;
1918 enum insn_code icode1, icode2;
1919 optab optab1, optab2;
1920 tree expr = GIMPLE_STMT_OPERAND (stmt, 1);
1921 tree type = TREE_TYPE (expr);
1922 tree wide_vectype = get_vectype_for_scalar_type (type);
1923 enum tree_code c1, c2;
1925 /* The result of a vectorized widening operation usually requires two vectors
1926 (because the widened results do not fit int one vector). The generated
1927 vector results would normally be expected to be generated in the same
1928 order as in the original scalar computation. i.e. if 8 results are
1929 generated in each vector iteration, they are to be organized as follows:
1930 vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8].
1932 However, in the special case that the result of the widening operation is
1933 used in a reduction computation only, the order doesn't matter (because
1934 when vectorizing a reduction we change the order of the computation).
1935 Some targets can take advantage of this and generate more efficient code.
1936 For example, targets like Altivec, that support widen_mult using a sequence
1937 of {mult_even,mult_odd} generate the following vectors:
1938 vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].
1940 When vectorizaing outer-loops, we execute the inner-loop sequentially
1941 (each vectorized inner-loop iteration contributes to VF outer-loop
1942 iterations in parallel). We therefore don't allow to change the order
1943 of the computation in the inner-loop during outer-loop vectorization. */
1945 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
1946 && !nested_in_vect_loop_p (vect_loop, stmt))
1947 ordered_p = false;
1948 else
1949 ordered_p = true;
1951 if (!ordered_p
1952 && code == WIDEN_MULT_EXPR
1953 && targetm.vectorize.builtin_mul_widen_even
1954 && targetm.vectorize.builtin_mul_widen_even (vectype)
1955 && targetm.vectorize.builtin_mul_widen_odd
1956 && targetm.vectorize.builtin_mul_widen_odd (vectype))
1958 if (vect_print_dump_info (REPORT_DETAILS))
1959 fprintf (vect_dump, "Unordered widening operation detected.");
1961 *code1 = *code2 = CALL_EXPR;
1962 *decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
1963 *decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
1964 return true;
1967 switch (code)
1969 case WIDEN_MULT_EXPR:
1970 if (BYTES_BIG_ENDIAN)
1972 c1 = VEC_WIDEN_MULT_HI_EXPR;
1973 c2 = VEC_WIDEN_MULT_LO_EXPR;
1975 else
1977 c2 = VEC_WIDEN_MULT_HI_EXPR;
1978 c1 = VEC_WIDEN_MULT_LO_EXPR;
1980 break;
1982 case NOP_EXPR:
1983 case CONVERT_EXPR:
1984 if (BYTES_BIG_ENDIAN)
1986 c1 = VEC_UNPACK_HI_EXPR;
1987 c2 = VEC_UNPACK_LO_EXPR;
1989 else
1991 c2 = VEC_UNPACK_HI_EXPR;
1992 c1 = VEC_UNPACK_LO_EXPR;
1994 break;
1996 case FLOAT_EXPR:
1997 if (BYTES_BIG_ENDIAN)
1999 c1 = VEC_UNPACK_FLOAT_HI_EXPR;
2000 c2 = VEC_UNPACK_FLOAT_LO_EXPR;
2002 else
2004 c2 = VEC_UNPACK_FLOAT_HI_EXPR;
2005 c1 = VEC_UNPACK_FLOAT_LO_EXPR;
2007 break;
2009 case FIX_TRUNC_EXPR:
2010 /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
2011 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
2012 computing the operation. */
2013 return false;
2015 default:
2016 gcc_unreachable ();
2019 if (code == FIX_TRUNC_EXPR)
2021 /* The signedness is determined from output operand. */
2022 optab1 = optab_for_tree_code (c1, type);
2023 optab2 = optab_for_tree_code (c2, type);
2025 else
2027 optab1 = optab_for_tree_code (c1, vectype);
2028 optab2 = optab_for_tree_code (c2, vectype);
2031 if (!optab1 || !optab2)
2032 return false;
2034 vec_mode = TYPE_MODE (vectype);
2035 if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) == CODE_FOR_nothing
2036 || insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype)
2037 || (icode2 = optab_handler (optab2, vec_mode)->insn_code)
2038 == CODE_FOR_nothing
2039 || insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype))
2040 return false;
2042 *code1 = c1;
2043 *code2 = c2;
2044 return true;
2048 /* Function supportable_narrowing_operation
2050 Check whether an operation represented by the code CODE is a
2051 narrowing operation that is supported by the target platform in
2052 vector form (i.e., when operating on arguments of type VECTYPE).
2054 Narrowing operations we currently support are NOP (CONVERT) and
2055 FIX_TRUNC. This function checks if these operations are supported by
2056 the target platform directly via vector tree-codes.
2058 Output:
2059 - CODE1 is the code of a vector operation to be used when
2060 vectorizing the operation, if available. */
2062 bool
2063 supportable_narrowing_operation (enum tree_code code,
2064 const_tree stmt, const_tree vectype,
2065 enum tree_code *code1)
2067 enum machine_mode vec_mode;
2068 enum insn_code icode1;
2069 optab optab1;
2070 tree expr = GIMPLE_STMT_OPERAND (stmt, 1);
2071 tree type = TREE_TYPE (expr);
2072 tree narrow_vectype = get_vectype_for_scalar_type (type);
2073 enum tree_code c1;
2075 switch (code)
2077 case NOP_EXPR:
2078 case CONVERT_EXPR:
2079 c1 = VEC_PACK_TRUNC_EXPR;
2080 break;
2082 case FIX_TRUNC_EXPR:
2083 c1 = VEC_PACK_FIX_TRUNC_EXPR;
2084 break;
2086 case FLOAT_EXPR:
2087 /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
2088 tree code and optabs used for computing the operation. */
2089 return false;
2091 default:
2092 gcc_unreachable ();
2095 if (code == FIX_TRUNC_EXPR)
2096 /* The signedness is determined from output operand. */
2097 optab1 = optab_for_tree_code (c1, type);
2098 else
2099 optab1 = optab_for_tree_code (c1, vectype);
2101 if (!optab1)
2102 return false;
2104 vec_mode = TYPE_MODE (vectype);
2105 if ((icode1 = optab_handler (optab1, vec_mode)->insn_code) == CODE_FOR_nothing
2106 || insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype))
2107 return false;
2109 *code1 = c1;
2110 return true;
2114 /* Function reduction_code_for_scalar_code
2116 Input:
2117 CODE - tree_code of a reduction operations.
2119 Output:
2120 REDUC_CODE - the corresponding tree-code to be used to reduce the
2121 vector of partial results into a single scalar result (which
2122 will also reside in a vector).
2124 Return TRUE if a corresponding REDUC_CODE was found, FALSE otherwise. */
2126 bool
2127 reduction_code_for_scalar_code (enum tree_code code,
2128 enum tree_code *reduc_code)
2130 switch (code)
2132 case MAX_EXPR:
2133 *reduc_code = REDUC_MAX_EXPR;
2134 return true;
2136 case MIN_EXPR:
2137 *reduc_code = REDUC_MIN_EXPR;
2138 return true;
2140 case PLUS_EXPR:
2141 *reduc_code = REDUC_PLUS_EXPR;
2142 return true;
2144 default:
2145 return false;
2150 /* Function vect_is_simple_reduction
2152 Detect a cross-iteration def-use cucle that represents a simple
2153 reduction computation. We look for the following pattern:
2155 loop_header:
2156 a1 = phi < a0, a2 >
2157 a3 = ...
2158 a2 = operation (a3, a1)
2160 such that:
2161 1. operation is commutative and associative and it is safe to
2162 change the order of the computation.
2163 2. no uses for a2 in the loop (a2 is used out of the loop)
2164 3. no uses of a1 in the loop besides the reduction operation.
2166 Condition 1 is tested here.
2167 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized. */
2169 tree
2170 vect_is_simple_reduction (loop_vec_info loop_info, tree phi)
2172 struct loop *loop = (bb_for_stmt (phi))->loop_father;
2173 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2174 edge latch_e = loop_latch_edge (loop);
2175 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2176 tree def_stmt, def1, def2;
2177 enum tree_code code;
2178 int op_type;
2179 tree operation, op1, op2;
2180 tree type;
2181 int nloop_uses;
2182 tree name;
2183 imm_use_iterator imm_iter;
2184 use_operand_p use_p;
2186 gcc_assert (loop == vect_loop || flow_loop_nested_p (vect_loop, loop));
2188 name = PHI_RESULT (phi);
2189 nloop_uses = 0;
2190 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2192 tree use_stmt = USE_STMT (use_p);
2193 if (flow_bb_inside_loop_p (loop, bb_for_stmt (use_stmt))
2194 && vinfo_for_stmt (use_stmt)
2195 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2196 nloop_uses++;
2197 if (nloop_uses > 1)
2199 if (vect_print_dump_info (REPORT_DETAILS))
2200 fprintf (vect_dump, "reduction used in loop.");
2201 return NULL_TREE;
2205 if (TREE_CODE (loop_arg) != SSA_NAME)
2207 if (vect_print_dump_info (REPORT_DETAILS))
2209 fprintf (vect_dump, "reduction: not ssa_name: ");
2210 print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
2212 return NULL_TREE;
2215 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2216 if (!def_stmt)
2218 if (vect_print_dump_info (REPORT_DETAILS))
2219 fprintf (vect_dump, "reduction: no def_stmt.");
2220 return NULL_TREE;
2223 if (TREE_CODE (def_stmt) != GIMPLE_MODIFY_STMT)
2225 if (vect_print_dump_info (REPORT_DETAILS))
2226 print_generic_expr (vect_dump, def_stmt, TDF_SLIM);
2227 return NULL_TREE;
2230 name = GIMPLE_STMT_OPERAND (def_stmt, 0);
2231 nloop_uses = 0;
2232 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2234 tree use_stmt = USE_STMT (use_p);
2235 if (flow_bb_inside_loop_p (loop, bb_for_stmt (use_stmt))
2236 && vinfo_for_stmt (use_stmt)
2237 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2238 nloop_uses++;
2239 if (nloop_uses > 1)
2241 if (vect_print_dump_info (REPORT_DETAILS))
2242 fprintf (vect_dump, "reduction used in loop.");
2243 return NULL_TREE;
2247 operation = GIMPLE_STMT_OPERAND (def_stmt, 1);
2248 code = TREE_CODE (operation);
2249 if (!commutative_tree_code (code) || !associative_tree_code (code))
2251 if (vect_print_dump_info (REPORT_DETAILS))
2253 fprintf (vect_dump, "reduction: not commutative/associative: ");
2254 print_generic_expr (vect_dump, operation, TDF_SLIM);
2256 return NULL_TREE;
2259 op_type = TREE_OPERAND_LENGTH (operation);
2260 if (op_type != binary_op)
2262 if (vect_print_dump_info (REPORT_DETAILS))
2264 fprintf (vect_dump, "reduction: not binary operation: ");
2265 print_generic_expr (vect_dump, operation, TDF_SLIM);
2267 return NULL_TREE;
2270 op1 = TREE_OPERAND (operation, 0);
2271 op2 = TREE_OPERAND (operation, 1);
2272 if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
2274 if (vect_print_dump_info (REPORT_DETAILS))
2276 fprintf (vect_dump, "reduction: uses not ssa_names: ");
2277 print_generic_expr (vect_dump, operation, TDF_SLIM);
2279 return NULL_TREE;
2282 /* Check that it's ok to change the order of the computation. */
2283 type = TREE_TYPE (operation);
2284 if (TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1))
2285 || TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2)))
2287 if (vect_print_dump_info (REPORT_DETAILS))
2289 fprintf (vect_dump, "reduction: multiple types: operation type: ");
2290 print_generic_expr (vect_dump, type, TDF_SLIM);
2291 fprintf (vect_dump, ", operands types: ");
2292 print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
2293 fprintf (vect_dump, ",");
2294 print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
2296 return NULL_TREE;
2299 /* Generally, when vectorizing a reduction we change the order of the
2300 computation. This may change the behavior of the program in some
2301 cases, so we need to check that this is ok. One exception is when
2302 vectorizing an outer-loop: the inner-loop is executed sequentially,
2303 and therefore vectorizing reductions in the inner-loop durint
2304 outer-loop vectorization is safe. */
2306 /* CHECKME: check for !flag_finite_math_only too? */
2307 if (SCALAR_FLOAT_TYPE_P (type) && !flag_unsafe_math_optimizations
2308 && !nested_in_vect_loop_p (vect_loop, def_stmt))
2310 /* Changing the order of operations changes the semantics. */
2311 if (vect_print_dump_info (REPORT_DETAILS))
2313 fprintf (vect_dump, "reduction: unsafe fp math optimization: ");
2314 print_generic_expr (vect_dump, operation, TDF_SLIM);
2316 return NULL_TREE;
2318 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2319 && !nested_in_vect_loop_p (vect_loop, def_stmt))
2321 /* Changing the order of operations changes the semantics. */
2322 if (vect_print_dump_info (REPORT_DETAILS))
2324 fprintf (vect_dump, "reduction: unsafe int math optimization: ");
2325 print_generic_expr (vect_dump, operation, TDF_SLIM);
2327 return NULL_TREE;
2329 else if (SAT_FIXED_POINT_TYPE_P (type))
2331 /* Changing the order of operations changes the semantics. */
2332 if (vect_print_dump_info (REPORT_DETAILS))
2334 fprintf (vect_dump, "reduction: unsafe fixed-point math optimization: ");
2335 print_generic_expr (vect_dump, operation, TDF_SLIM);
2337 return NULL_TREE;
2340 /* reduction is safe. we're dealing with one of the following:
2341 1) integer arithmetic and no trapv
2342 2) floating point arithmetic, and special flags permit this optimization.
2344 def1 = SSA_NAME_DEF_STMT (op1);
2345 def2 = SSA_NAME_DEF_STMT (op2);
2346 if (!def1 || !def2 || IS_EMPTY_STMT (def1) || IS_EMPTY_STMT (def2))
2348 if (vect_print_dump_info (REPORT_DETAILS))
2350 fprintf (vect_dump, "reduction: no defs for operands: ");
2351 print_generic_expr (vect_dump, operation, TDF_SLIM);
2353 return NULL_TREE;
2357 /* Check that one def is the reduction def, defined by PHI,
2358 the other def is either defined in the loop ("vect_loop_def"),
2359 or it's an induction (defined by a loop-header phi-node). */
2361 if (def2 == phi
2362 && flow_bb_inside_loop_p (loop, bb_for_stmt (def1))
2363 && (TREE_CODE (def1) == GIMPLE_MODIFY_STMT
2364 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_induction_def
2365 || (TREE_CODE (def1) == PHI_NODE
2366 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1)) == vect_loop_def
2367 && !is_loop_header_bb_p (bb_for_stmt (def1)))))
2369 if (vect_print_dump_info (REPORT_DETAILS))
2371 fprintf (vect_dump, "detected reduction:");
2372 print_generic_expr (vect_dump, operation, TDF_SLIM);
2374 return def_stmt;
2376 else if (def1 == phi
2377 && flow_bb_inside_loop_p (loop, bb_for_stmt (def2))
2378 && (TREE_CODE (def2) == GIMPLE_MODIFY_STMT
2379 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_induction_def
2380 || (TREE_CODE (def2) == PHI_NODE
2381 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2)) == vect_loop_def
2382 && !is_loop_header_bb_p (bb_for_stmt (def2)))))
2384 /* Swap operands (just for simplicity - so that the rest of the code
2385 can assume that the reduction variable is always the last (second)
2386 argument). */
2387 if (vect_print_dump_info (REPORT_DETAILS))
2389 fprintf (vect_dump, "detected reduction: need to swap operands:");
2390 print_generic_expr (vect_dump, operation, TDF_SLIM);
2392 swap_tree_operands (def_stmt, &TREE_OPERAND (operation, 0),
2393 &TREE_OPERAND (operation, 1));
2394 return def_stmt;
2396 else
2398 if (vect_print_dump_info (REPORT_DETAILS))
2400 fprintf (vect_dump, "reduction: unknown pattern.");
2401 print_generic_expr (vect_dump, operation, TDF_SLIM);
2403 return NULL_TREE;
2408 /* Function vect_is_simple_iv_evolution.
2410 FORNOW: A simple evolution of an induction variables in the loop is
2411 considered a polynomial evolution with constant step. */
2413 bool
2414 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
2415 tree * step)
2417 tree init_expr;
2418 tree step_expr;
2419 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
2421 /* When there is no evolution in this loop, the evolution function
2422 is not "simple". */
2423 if (evolution_part == NULL_TREE)
2424 return false;
2426 /* When the evolution is a polynomial of degree >= 2
2427 the evolution function is not "simple". */
2428 if (tree_is_chrec (evolution_part))
2429 return false;
2431 step_expr = evolution_part;
2432 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
2434 if (vect_print_dump_info (REPORT_DETAILS))
2436 fprintf (vect_dump, "step: ");
2437 print_generic_expr (vect_dump, step_expr, TDF_SLIM);
2438 fprintf (vect_dump, ", init: ");
2439 print_generic_expr (vect_dump, init_expr, TDF_SLIM);
2442 *init = init_expr;
2443 *step = step_expr;
2445 if (TREE_CODE (step_expr) != INTEGER_CST)
2447 if (vect_print_dump_info (REPORT_DETAILS))
2448 fprintf (vect_dump, "step unknown.");
2449 return false;
2452 return true;
2456 /* Function vectorize_loops.
2458 Entry Point to loop vectorization phase. */
2460 unsigned
2461 vectorize_loops (void)
2463 unsigned int i;
2464 unsigned int num_vectorized_loops = 0;
2465 unsigned int vect_loops_num;
2466 loop_iterator li;
2467 struct loop *loop;
2469 vect_loops_num = number_of_loops ();
2471 /* Bail out if there are no loops. */
2472 if (vect_loops_num <= 1)
2473 return 0;
2475 /* Fix the verbosity level if not defined explicitly by the user. */
2476 vect_set_dump_settings ();
2478 /* Allocate the bitmap that records which virtual variables that
2479 need to be renamed. */
2480 vect_memsyms_to_rename = BITMAP_ALLOC (NULL);
2482 /* ----------- Analyze loops. ----------- */
2484 /* If some loop was duplicated, it gets bigger number
2485 than all previously defined loops. This fact allows us to run
2486 only over initial loops skipping newly generated ones. */
2487 FOR_EACH_LOOP (li, loop, 0)
2489 loop_vec_info loop_vinfo;
2491 vect_loop_location = find_loop_location (loop);
2492 loop_vinfo = vect_analyze_loop (loop);
2493 loop->aux = loop_vinfo;
2495 if (!loop_vinfo || !LOOP_VINFO_VECTORIZABLE_P (loop_vinfo))
2496 continue;
2498 vect_transform_loop (loop_vinfo);
2499 num_vectorized_loops++;
2501 vect_loop_location = UNKNOWN_LOC;
2503 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS)
2504 || (vect_print_dump_info (REPORT_VECTORIZED_LOOPS)
2505 && num_vectorized_loops > 0))
2506 fprintf (vect_dump, "vectorized %u loops in function.\n",
2507 num_vectorized_loops);
2509 /* ----------- Finalize. ----------- */
2511 BITMAP_FREE (vect_memsyms_to_rename);
2513 for (i = 1; i < vect_loops_num; i++)
2515 loop_vec_info loop_vinfo;
2517 loop = get_loop (i);
2518 if (!loop)
2519 continue;
2520 loop_vinfo = loop->aux;
2521 destroy_loop_vec_info (loop_vinfo, true);
2522 loop->aux = NULL;
2525 return num_vectorized_loops > 0 ? TODO_cleanup_cfg : 0;
2528 /* Increase alignment of global arrays to improve vectorization potential.
2529 TODO:
2530 - Consider also structs that have an array field.
2531 - Use ipa analysis to prune arrays that can't be vectorized?
2532 This should involve global alignment analysis and in the future also
2533 array padding. */
2535 static unsigned int
2536 increase_alignment (void)
2538 struct varpool_node *vnode;
2540 /* Increase the alignment of all global arrays for vectorization. */
2541 for (vnode = varpool_nodes_queue;
2542 vnode;
2543 vnode = vnode->next_needed)
2545 tree vectype, decl = vnode->decl;
2546 unsigned int alignment;
2548 if (TREE_CODE (TREE_TYPE (decl)) != ARRAY_TYPE)
2549 continue;
2550 vectype = get_vectype_for_scalar_type (TREE_TYPE (TREE_TYPE (decl)));
2551 if (!vectype)
2552 continue;
2553 alignment = TYPE_ALIGN (vectype);
2554 if (DECL_ALIGN (decl) >= alignment)
2555 continue;
2557 if (vect_can_force_dr_alignment_p (decl, alignment))
2559 DECL_ALIGN (decl) = TYPE_ALIGN (vectype);
2560 DECL_USER_ALIGN (decl) = 1;
2561 if (dump_file)
2563 fprintf (dump_file, "Increasing alignment of decl: ");
2564 print_generic_expr (dump_file, decl, TDF_SLIM);
2568 return 0;
2571 static bool
2572 gate_increase_alignment (void)
2574 return flag_section_anchors && flag_tree_vectorize;
2577 struct tree_opt_pass pass_ipa_increase_alignment =
2579 "increase_alignment", /* name */
2580 gate_increase_alignment, /* gate */
2581 increase_alignment, /* execute */
2582 NULL, /* sub */
2583 NULL, /* next */
2584 0, /* static_pass_number */
2585 0, /* tv_id */
2586 0, /* properties_required */
2587 0, /* properties_provided */
2588 0, /* properties_destroyed */
2589 0, /* todo_flags_start */
2590 0, /* todo_flags_finish */
2591 0 /* letter */