EnumSet*.class: Regenerate
[official-gcc.git] / gcc / see.c
blob0aba8df71328704986898ea360afef60fb1cd8c5
1 /* Sign extension elimination optimization for GNU compiler.
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Leehod Baruch <leehod@il.ibm.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 -Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>.
21 Problem description:
22 --------------------
23 In order to support 32bit computations on a 64bit machine, sign
24 extension instructions are generated to ensure the correctness of
25 the computation.
26 A possible policy (as currently implemented) is to generate a sign
27 extension right after each 32bit computation.
28 Depending on the instruction set of the architecture, some of these
29 sign extension instructions may be redundant.
30 There are two cases in which the extension may be redundant:
32 Case1:
33 The instruction that uses the 64bit operands that are sign
34 extended has a dual mode that works with 32bit operands.
35 For example:
37 int32 a, b;
39 a = .... --> a = ....
40 a = sign extend a -->
41 b = .... --> b = ....
42 b = sign extend a -->
43 -->
44 cmpd a, b --> cmpw a, b //half word compare
46 Case2:
47 The instruction that defines the 64bit operand (which is later sign
48 extended) has a dual mode that defines and sign-extends simultaneously
49 a 32bit operand. For example:
51 int32 a;
53 ld a --> lwa a // load half word and sign extend
54 a = sign extend a -->
55 -->
56 return a --> return a
59 General idea for solution:
60 --------------------------
61 First, try to merge the sign extension with the instruction that
62 defines the source of the extension and (separately) with the
63 instructions that uses the extended result. By doing this, both cases
64 of redundancies (as described above) will be eliminated.
66 Then, use partial redundancy elimination to place the non redundant
67 ones at optimal placements.
70 Implementation by example:
71 --------------------------
72 Note: The instruction stream is not changed till the last phase.
74 Phase 0: Initial code, as currently generated by gcc.
76 def1 def3
77 se1 def2 se3
78 | \ | / |
79 | \ | / |
80 | \ | / |
81 | \ | / |
82 | \ | / |
83 | \|/ |
84 use1 use2 use3
85 use4
86 def1 + se1:
87 set ((reg:SI 10) (..def1rhs..))
88 set ((reg:DI 100) (sign_extend:DI (reg:SI 10)))
90 def2:
91 set ((reg:DI 100) (const_int 7))
93 def3 + se3:
94 set ((reg:SI 20) (..def3rhs..))
95 set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
97 use1:
98 set ((reg:CC...) (compare:CC (reg:DI 100) (...)))
100 use2, use3, use4:
101 set ((...) (reg:DI 100))
103 Phase 1: Propagate extensions to uses.
105 def1 def3
106 se1 def2 se3
107 | \ | / |
108 | \ | / |
109 | \ | / |
110 | \ | / |
111 | \ | / |
112 | \|/ |
113 se se se
114 use1 use2 use3
116 use4
118 From here, all of the subregs are lowpart !
120 def1, def2, def3: No change.
122 use1:
123 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
124 set ((reg:CC...) (compare:CC (reg:DI 100) (...)))
126 use2, use3, use4:
127 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
128 set ((...) (reg:DI 100))
131 Phase 2: Merge and eliminate locally redundant extensions.
134 *def1 def2 *def3
135 [se removed] se se3
136 | \ | / |
137 | \ | / |
138 | \ | / |
139 | \ | / |
140 | \ | / |
141 | \|/ |
142 [se removed] se se
143 *use1 use2 use3
144 [se removed]
145 use4
147 The instructions that were changed at this phase are marked with
148 asterisk.
150 *def1: Merge failed.
151 Remove the sign extension instruction, modify def1 and
152 insert a move instruction to assure to correctness of the code.
153 set ((subreg:SI (reg:DI 100)) (..def1rhs..))
154 set ((reg:SI 10) (subreg:SI (reg:DI 100)))
156 def2 + se: There is no need for merge.
157 Def2 is not changed but a sign extension instruction is
158 created.
159 set ((reg:DI 100) (const_int 7))
160 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
162 *def3 + se3: Merge succeeded.
163 set ((reg:DI 100) (sign_extend:DI (..def3rhs..)))
164 set ((reg:SI 20) (reg:DI 100))
165 set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
166 (The extension instruction is the original one).
168 *use1: Merge succeeded. Remove the sign extension instruction.
169 set ((reg:CC...)
170 (compare:CC (subreg:SI (reg:DI 100)) (...)))
172 use2, use3: Merge failed. No change.
174 use4: The extension is locally redundant, therefore it is eliminated
175 at this point.
178 Phase 3: Eliminate globally redundant extensions.
180 Following the LCM output:
182 def1 def2 def3
183 se se3
184 | \ | / |
185 | \ | / |
186 | se | / |
187 | \ | / |
188 | \ | / |
189 | \|/ |
190 [ses removed]
191 use1 use2 use3
192 use4
195 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
197 se3:
198 set ((reg:DI 100) (sign_extend:DI (reg:SI 20)))
201 Phase 4: Commit changes to the insn stream.
204 def1 def3 *def1 def2 *def3
205 se1 def2 se3 [se removed] [se removed]
206 | \ | / | | \ | / |
207 | \ | / | ------> | \ | / |
208 | \ | / | ------> | se | / |
209 | \ | / | | \ | / |
210 | \ | / | | \ | / |
211 | \|/ | | \|/ |
212 use1 use2 use3 *use1 use2 use3
213 use4 use4
215 The instructions that were changed during the whole optimization are
216 marked with asterisk.
218 The result:
220 def1 + se1:
221 [ set ((reg:SI 10) (..def1rhs..)) ] - Deleted
222 [ set ((reg:DI 100) (sign_extend:DI (reg:SI 10))) ] - Deleted
223 set ((subreg:SI (reg:DI 100)) (..def3rhs..)) - Inserted
224 set ((reg:SI 10) (subreg:SI (reg:DI 100))) - Inserted
226 def2:
227 set ((reg:DI 100) (const_int 7)) - No change
229 def3 + se3:
230 [ set ((reg:SI 20) (..def3rhs..)) ] - Deleted
231 [ set ((reg:DI 100) (sign_extend:DI (reg:SI 20))) ] - Deleted
232 set ((reg:DI 100) (sign_extend:DI (..def3rhs..))) - Inserted
233 set ((reg:SI 20) (reg:DI 100)) - Inserted
235 use1:
236 [ set ((reg:CC...) (compare:CC (reg:DI 100) (...))) ] - Deleted
237 set ((reg:CC...) - Inserted
238 (compare:CC (subreg:SI (reg:DI 100)) (...)))
240 use2, use3, use4:
241 set ((...) (reg:DI 100)) - No change
243 se: - Inserted
244 set ((reg:DI 100) (sign_extend:DI ((subreg:SI (reg:DI 100)))))
246 Note: Most of the simple move instructions that were inserted will be
247 trivially dead and therefore eliminated.
249 The implementation outline:
250 ---------------------------
251 Some definitions:
252 A web is RELEVANT if at the end of phase 1, his leader's
253 relevancy is {ZERO, SIGN}_EXTENDED_DEF. The source_mode of
254 the web is the source_mode of his leader.
255 A definition is a candidate for the optimization if it is part
256 of a RELEVANT web and his local source_mode is not narrower
257 then the source_mode of its web.
258 A use is a candidate for the optimization if it is part of a
259 RELEVANT web.
260 A simple explicit extension is a single set instruction that
261 extends a register (or a subregister) to a register (or
262 subregister).
263 A complex explicit extension is an explicit extension instruction
264 that is not simple.
265 A def extension is a simple explicit extension that is
266 also a candidate for the optimization. This extension is part
267 of the instruction stream, it is not generated by this
268 optimization.
269 A use extension is a simple explicit extension that is generated
270 and stored for candidate use during this optimization. It is
271 not emitted to the instruction stream till the last phase of
272 the optimization.
273 A reference is an instruction that satisfy at least on of these
274 criteria:
275 - It contains a definition with EXTENDED_DEF relevancy in a RELEVANT web.
276 - It is followed by a def extension.
277 - It contains a candidate use.
279 Phase 1: Propagate extensions to uses.
280 In this phase, we find candidate extensions for the optimization
281 and we generate (but not emit) proper extensions "right before the
282 uses".
284 a. Build a DF object.
285 b. Traverse over all the instructions that contains a definition
286 and set their local relevancy and local source_mode like this:
287 - If the instruction is a simple explicit extension instruction,
288 mark it as {ZERO, SIGN}_EXTENDED_DEF according to the extension
289 type and mark its source_mode to be the mode of the quantity
290 that is been extended.
291 - Otherwise, If the instruction has an implicit extension,
292 which means that its high part is an extension of its low part,
293 or if it is a complicated explicit extension, mark it as
294 EXTENDED_DEF and set its source_mode to be the narrowest
295 mode that is been extended in the instruction.
296 c. Traverse over all the instructions that contains a use and set
297 their local relevancy to RELEVANT_USE (except for few corner
298 cases).
299 d. Produce the web. During union of two entries, update the
300 relevancy and source_mode of the leader. There are two major
301 guide lines for this update:
302 - If one of the entries is NOT_RELEVANT, mark the leader
303 NOT_RELEVANT.
304 - If one is ZERO_EXTENDED_DEF and the other is SIGN_EXTENDED_DEF
305 (or vice versa) mark the leader as NOT_RELEVANT. We don't
306 handle this kind of mixed webs.
307 (For more details about this update process,
308 see see_update_leader_extra_info ()).
309 e. Generate uses extensions according to the relevancy and
310 source_mode of the webs.
312 Phase 2: Merge and eliminate locally redundant extensions.
313 In this phase, we try to merge def extensions and use
314 extensions with their references, and eliminate redundant extensions
315 in the same basic block.
317 Traverse over all the references. Do this in basic block number and
318 luid number forward order.
319 For each reference do:
320 a. Peephole optimization - try to merge it with all its
321 def extensions and use extensions in the following
322 order:
323 - Try to merge only the def extensions, one by one.
324 - Try to merge only the use extensions, one by one.
325 - Try to merge any couple of use extensions simultaneously.
326 - Try to merge any def extension with one or two uses
327 extensions simultaneously.
328 b. Handle each EXTENDED_DEF in it as if it was already merged with
329 an extension.
331 During the merge process we save the following data for each
332 register in each basic block:
333 a. The first instruction that defines the register in the basic
334 block.
335 b. The last instruction that defines the register in the basic
336 block.
337 c. The first extension of this register before the first
338 instruction that defines it in the basic block.
339 c. The first extension of this register after the last
340 instruction that defines it in the basic block.
341 This data will help us eliminate (or more precisely, not generate)
342 locally redundant extensions, and will be useful in the next stage.
344 While merging extensions with their reference there are 4 possible
345 situations:
346 a. A use extension was merged with the reference:
347 Delete the extension instruction and save the merged reference
348 for phase 4. (For details, see see_use_extension_merged ())
349 b. A use extension failed to be merged with the reference:
350 If there is already such an extension in the same basic block
351 and it is not dead at this point, delete the unmerged extension
352 (it is locally redundant), otherwise properly update the above
353 basic block data.
354 (For details, see see_merge_one_use_extension ())
355 c. A def extension was merged with the reference:
356 Mark this extension as a merged_def extension and properly
357 update the above basic block data.
358 (For details, see see_merge_one_def_extension ())
359 d. A def extension failed to be merged with the reference:
360 Replace the definition of the NARROWmode register in the
361 reference with the proper subreg of WIDEmode register and save
362 the result as a merged reference. Also, properly update the
363 the above basic block data.
364 (For details, see see_def_extension_not_merged ())
366 Phase 3: Eliminate globally redundant extensions.
367 In this phase, we set the bit vectors input of the edge based LCM
368 using the recorded data on the registers in each basic block.
369 We also save pointers for all the anticipatable and available
370 occurrences of the relevant extensions. Then we run the LCM.
372 a. Initialize the comp, antloc, kill bit vectors to zero and the
373 transp bit vector to ones.
375 b. Traverse over all the references. Do this in basic block number
376 and luid number forward order. For each reference:
377 - Go over all its use extensions. For each such extension -
378 If it is not dead from the beginning of the basic block SET
379 the antloc bit of the current extension in the current
380 basic block bits.
381 If it is not dead till the end of the basic block SET the
382 comp bit of the current extension in the current basic
383 block bits.
384 - Go over all its def extensions that were merged with
385 it. For each such extension -
386 If it is not dead till the end of the basic block SET the
387 comp bit of the current extension in the current basic
388 block bits.
389 RESET the proper transp and kill bits.
390 - Go over all its def extensions that were not merged
391 with it. For each such extension -
392 RESET the transp bit and SET the kill bit of the current
393 extension in the current basic block bits.
395 c. Run the edge based LCM.
397 Phase 4: Commit changes to the insn stream.
398 This is the only phase that actually changes the instruction stream.
399 Up to this point the optimization could be aborted at any time.
400 Here we insert extensions at their best placements and delete the
401 redundant ones according to the output of the LCM. We also replace
402 some of the instructions according to the second phase merges results.
404 a. Use the pre_delete_map (from the output of the LCM) in order to
405 delete redundant extensions. This will prevent them from been
406 emitted in the first place.
408 b. Insert extensions on edges where needed according to
409 pre_insert_map and edge_list (from the output of the LCM).
411 c. For each reference do-
412 - Emit all the uses extensions that were not deleted until now,
413 right before the reference.
414 - Delete all the merged and unmerged def extensions from
415 the instruction stream.
416 - Replace the reference with the merged one, if exist.
418 The implementation consists of four data structures:
419 - Data structure I
420 Purpose: To handle the relevancy of the uses, definitions and webs.
421 Relevant structures: web_entry (from df.h), see_entry_extra_info.
422 Details: This is a disjoint-set data structure. Most of its functions are
423 implemented in web.c. Each definition and use in the code are
424 elements. A web_entry structure is allocated for each element to
425 hold the element's relevancy and source_mode. The union rules are
426 defined in see_update_leader_extra_info ().
427 - Data structure II
428 Purpose: To store references and their extensions (uses and defs)
429 and to enable traverse over these references according to basic
430 block order.
431 Relevant structure: see_ref_s.
432 Details: This data structure consists of an array of splay trees. One splay
433 tree for each basic block. The splay tree nodes are references and
434 the keys are the luids of the references.
435 A see_ref_s structure is allocated for each reference. It holds the
436 reference itself, its def and uses extensions and later the merged
437 version of the reference.
438 Using this data structure we can traverse over all the references of
439 a basic block and their extensions in forward order.
440 - Data structure III.
441 Purpose: To store local properties of registers for each basic block.
442 This data will later help us build the LCM sbitmap_vectors
443 input.
444 Relevant structure: see_register_properties.
445 Details: This data structure consists of an array of hash tables. One hash
446 for each basic block. The hash node are a register properties
447 and the keys are the numbers of the registers.
448 A see_register_properties structure is allocated for each register
449 that we might be interested in its properties.
450 Using this data structure we can easily find the properties of a
451 register in a specific basic block. This is necessary for locally
452 redundancy elimination and for setting up the LCM input.
453 - Data structure IV.
454 Purpose: To store the extensions that are candidate for PRE and their
455 anticipatable and available occurrences.
456 Relevant structure: see_occr, see_pre_extension_expr.
457 Details: This data structure is a hash tables. Its nodes are the extensions
458 that are candidate for PRE.
459 A see_pre_extension_expr structure is allocated for each candidate
460 extension. It holds a copy of the extension and a linked list of all
461 the anticipatable and available occurrences of it.
462 We use this data structure when we read the output of the LCM. */
464 #include "config.h"
465 #include "system.h"
466 #include "coretypes.h"
467 #include "tm.h"
469 #include "obstack.h"
470 #include "rtl.h"
471 #include "output.h"
472 #include "df.h"
473 #include "insn-config.h"
474 #include "recog.h"
475 #include "expr.h"
476 #include "splay-tree.h"
477 #include "hashtab.h"
478 #include "regs.h"
479 #include "timevar.h"
480 #include "tree-pass.h"
481 #include "dce.h"
483 /* Used to classify defs and uses according to relevancy. */
484 enum entry_type {
485 NOT_RELEVANT,
486 SIGN_EXTENDED_DEF,
487 ZERO_EXTENDED_DEF,
488 EXTENDED_DEF,
489 RELEVANT_USE
492 /* Used to classify extensions in relevant webs. */
493 enum extension_type {
494 DEF_EXTENSION,
495 EXPLICIT_DEF_EXTENSION,
496 IMPLICIT_DEF_EXTENSION,
497 USE_EXTENSION
500 /* Global data structures and flags. */
502 /* This structure will be assigned for each web_entry structure (defined
503 in df.h). It is placed in the extra_info field of a web_entry and holds the
504 relevancy and source mode of the web_entry. */
506 struct see_entry_extra_info
508 /* The relevancy of the ref. */
509 enum entry_type relevancy;
510 /* The relevancy of the ref.
511 This field is updated only once - when this structure is created. */
512 enum entry_type local_relevancy;
513 /* The source register mode. */
514 enum machine_mode source_mode;
515 /* This field is used only if the relevancy is ZERO/SIGN_EXTENDED_DEF.
516 It is updated only once when this structure is created. */
517 enum machine_mode local_source_mode;
518 /* This field is used only if the relevancy is EXTENDED_DEF.
519 It holds the narrowest mode that is sign extended. */
520 enum machine_mode source_mode_signed;
521 /* This field is used only if the relevancy is EXTENDED_DEF.
522 It holds the narrowest mode that is zero extended. */
523 enum machine_mode source_mode_unsigned;
526 /* There is one such structure for every reference. It stores the reference
527 itself as well as its extensions (uses and definitions).
528 Used as the value in splay_tree see_bb_splay_ar[]. */
529 struct see_ref_s
531 /* The luid of the insn. */
532 unsigned int luid;
533 /* The insn of the ref. */
534 rtx insn;
535 /* The merged insn that was formed from the reference's insn and extensions.
536 If all merges failed, it remains NULL. */
537 rtx merged_insn;
538 /* The def extensions of the reference that were not merged with
539 it. */
540 htab_t unmerged_def_se_hash;
541 /* The def extensions of the reference that were merged with
542 it. Implicit extensions of the reference will be stored here too. */
543 htab_t merged_def_se_hash;
544 /* The uses extensions of reference. */
545 htab_t use_se_hash;
548 /* There is one such structure for every relevant extended register in a
549 specific basic block. This data will help us build the LCM sbitmap_vectors
550 input. */
551 struct see_register_properties
553 /* The register number. */
554 unsigned int regno;
555 /* The last luid of the reference that defines this register in this basic
556 block. */
557 int last_def;
558 /* The luid of the reference that has the first extension of this register
559 that appears before any definition in this basic block. */
560 int first_se_before_any_def;
561 /* The luid of the reference that has the first extension of this register
562 that appears after the last definition in this basic block. */
563 int first_se_after_last_def;
566 /* Occurrence of an expression.
567 There must be at most one available occurrence and at most one anticipatable
568 occurrence per basic block. */
569 struct see_occr
571 /* Next occurrence of this expression. */
572 struct see_occr *next;
573 /* The insn that computes the expression. */
574 rtx insn;
575 int block_num;
578 /* There is one such structure for every relevant extension expression.
579 It holds a copy of this extension instruction as well as a linked lists of
580 pointers to all the antic and avail occurrences of it. */
581 struct see_pre_extension_expr
583 /* A copy of the extension instruction. */
584 rtx se_insn;
585 /* Index in the available expression bitmaps. */
586 int bitmap_index;
587 /* List of anticipatable occurrences in basic blocks in the function.
588 An "anticipatable occurrence" is the first occurrence in the basic block,
589 the operands are not modified in the basic block prior to the occurrence
590 and the output is not used between the start of the block and the
591 occurrence. */
592 struct see_occr *antic_occr;
593 /* List of available occurrence in basic blocks in the function.
594 An "available occurrence" is the last occurrence in the basic block and
595 the operands are not modified by following statements in the basic block
596 [including this insn]. */
597 struct see_occr *avail_occr;
600 /* Helper structure for the note_uses and see_replace_src functions. */
601 struct see_replace_data
603 rtx from;
604 rtx to;
607 /* Helper structure for the note_uses and see_mentioned_reg functions. */
608 struct see_mentioned_reg_data
610 rtx reg;
611 bool mentioned;
614 /* An array of web_entries. The i'th definition in the df object is associated
615 with def_entry[i] */
616 static struct web_entry *def_entry = NULL;
617 /* An array of web_entries. The i'th use in the df object is associated with
618 use_entry[i] */
619 static struct web_entry *use_entry = NULL;
620 /* Array of splay_trees.
621 see_bb_splay_ar[i] refers to the splay tree of the i'th basic block.
622 The splay tree will hold see_ref_s structures. The key is the luid
623 of the insn. This way we can traverse over the references of each basic
624 block in forward or backward order. */
625 static splay_tree *see_bb_splay_ar = NULL;
626 /* Array of hashes.
627 see_bb_hash_ar[i] refers to the hash of the i'th basic block.
628 The hash will hold see_register_properties structure. The key is regno. */
629 static htab_t *see_bb_hash_ar = NULL;
630 /* Hash table that holds a copy of all the extensions. The key is the right
631 hand side of the se_insn field. */
632 static htab_t see_pre_extension_hash = NULL;
634 /* Local LCM properties of expressions. */
635 /* Nonzero for expressions that are transparent in the block. */
636 static sbitmap *transp = NULL;
637 /* Nonzero for expressions that are computed (available) in the block. */
638 static sbitmap *comp = NULL;
639 /* Nonzero for expressions that are locally anticipatable in the block. */
640 static sbitmap *antloc = NULL;
641 /* Nonzero for expressions that are locally killed in the block. */
642 static sbitmap *ae_kill = NULL;
643 /* Nonzero for expressions which should be inserted on a specific edge. */
644 static sbitmap *pre_insert_map = NULL;
645 /* Nonzero for expressions which should be deleted in a specific block. */
646 static sbitmap *pre_delete_map = NULL;
647 /* Contains the edge_list returned by pre_edge_lcm. */
648 static struct edge_list *edge_list = NULL;
649 /* Records the last basic block at the beginning of the optimization. */
650 static int last_bb;
651 /* Records the number of uses at the beginning of the optimization. */
652 static unsigned int uses_num;
653 /* Records the number of definitions at the beginning of the optimization. */
654 static unsigned int defs_num;
656 #define ENTRY_EI(ENTRY) ((struct see_entry_extra_info *) (ENTRY)->extra_info)
658 /* Functions implementation. */
660 /* Verifies that EXTENSION's pattern is this:
662 set (reg/subreg reg1) (sign/zero_extend:WIDEmode (reg/subreg reg2))
664 If it doesn't have the expected pattern return NULL.
665 Otherwise, if RETURN_DEST_REG is set, return reg1 else return reg2. */
667 static rtx
668 see_get_extension_reg (rtx extension, bool return_dest_reg)
670 rtx set, rhs, lhs;
671 rtx reg1 = NULL;
672 rtx reg2 = NULL;
674 /* Parallel pattern for extension not supported for the moment. */
675 if (GET_CODE (PATTERN (extension)) == PARALLEL)
676 return NULL;
678 set = single_set (extension);
679 if (!set)
680 return NULL;
681 lhs = SET_DEST (set);
682 rhs = SET_SRC (set);
684 if (REG_P (lhs))
685 reg1 = lhs;
686 else if (REG_P (SUBREG_REG (lhs)))
687 reg1 = SUBREG_REG (lhs);
688 else
689 return NULL;
691 if (GET_CODE (rhs) != SIGN_EXTEND && GET_CODE (rhs) != ZERO_EXTEND)
692 return NULL;
694 rhs = XEXP (rhs, 0);
695 if (REG_P (rhs))
696 reg2 = rhs;
697 else if (REG_P (SUBREG_REG (rhs)))
698 reg2 = SUBREG_REG (rhs);
699 else
700 return NULL;
702 if (return_dest_reg)
703 return reg1;
704 return reg2;
707 /* Verifies that EXTENSION's pattern is this:
709 set (reg/subreg reg1) (sign/zero_extend: (...expr...)
711 If it doesn't have the expected pattern return UNKNOWN.
712 Otherwise, set SOURCE_MODE to be the mode of the extended expr and return
713 the rtx code of the extension. */
715 static enum rtx_code
716 see_get_extension_data (rtx extension, enum machine_mode *source_mode)
718 rtx rhs, lhs, set;
720 if (!extension || !INSN_P (extension))
721 return UNKNOWN;
723 /* Parallel pattern for extension not supported for the moment. */
724 if (GET_CODE (PATTERN (extension)) == PARALLEL)
725 return NOT_RELEVANT;
727 set = single_set (extension);
728 if (!set)
729 return NOT_RELEVANT;
730 rhs = SET_SRC (set);
731 lhs = SET_DEST (set);
733 /* Don't handle extensions to something other then register or
734 subregister. */
735 if (!REG_P (lhs) && !SUBREG_REG (lhs))
736 return UNKNOWN;
738 if (GET_CODE (rhs) != SIGN_EXTEND && GET_CODE (rhs) != ZERO_EXTEND)
739 return UNKNOWN;
741 if (!REG_P (XEXP (rhs, 0))
742 && !(GET_CODE (XEXP (rhs, 0)) == SUBREG
743 && REG_P (SUBREG_REG (XEXP (rhs, 0)))))
744 return UNKNOWN;
746 *source_mode = GET_MODE (XEXP (rhs, 0));
748 if (GET_CODE (rhs) == SIGN_EXTEND)
749 return SIGN_EXTEND;
750 return ZERO_EXTEND;
754 /* Generate instruction with the pattern:
755 set ((reg r) (sign/zero_extend (subreg:mode (reg r))))
756 (the register r on both sides of the set is the same register).
757 And recognize it.
758 If the recognition failed, this is very bad, return NULL (This will abort
759 the entire optimization).
760 Otherwise, return the generated instruction. */
762 static rtx
763 see_gen_normalized_extension (rtx reg, enum rtx_code extension_code,
764 enum machine_mode mode)
766 rtx subreg, insn;
767 rtx extension = NULL;
769 if (!reg
770 || !REG_P (reg)
771 || (extension_code != SIGN_EXTEND && extension_code != ZERO_EXTEND))
772 return NULL;
774 subreg = gen_lowpart_SUBREG (mode, reg);
775 if (extension_code == SIGN_EXTEND)
776 extension = gen_rtx_SIGN_EXTEND (GET_MODE (reg), subreg);
777 else
778 extension = gen_rtx_ZERO_EXTEND (GET_MODE (reg), subreg);
780 start_sequence ();
781 emit_insn (gen_rtx_SET (VOIDmode, reg, extension));
782 insn = get_insns ();
783 end_sequence ();
785 if (insn_invalid_p (insn))
786 /* Recognition failed, this is very bad for this optimization.
787 Abort the optimization. */
788 return NULL;
789 return insn;
792 /* Hashes and splay_trees related functions implementation. */
794 /* Helper functions for the pre_extension hash.
795 This kind of hash will hold see_pre_extension_expr structures.
797 The key is the right hand side of the se_insn field.
798 Note that the se_insn is an expression that looks like:
800 set ((reg:WIDEmode r1) (sign_extend:WIDEmode
801 (subreg:NARROWmode (reg:WIDEmode r2)))) */
803 /* Return TRUE if P1 has the same value in its rhs as P2.
804 Otherwise, return FALSE.
805 P1 and P2 are see_pre_extension_expr structures. */
807 static int
808 eq_descriptor_pre_extension (const void *p1, const void *p2)
810 const struct see_pre_extension_expr *extension1 = p1;
811 const struct see_pre_extension_expr *extension2 = p2;
812 rtx set1 = single_set (extension1->se_insn);
813 rtx set2 = single_set (extension2->se_insn);
814 rtx rhs1, rhs2;
816 gcc_assert (set1 && set2);
817 rhs1 = SET_SRC (set1);
818 rhs2 = SET_SRC (set2);
820 return rtx_equal_p (rhs1, rhs2);
824 /* P is a see_pre_extension_expr struct, use the RHS of the se_insn field.
825 Note that the RHS is an expression that looks like this:
826 (sign_extend:WIDEmode (subreg:NARROWmode (reg:WIDEmode r))) */
828 static hashval_t
829 hash_descriptor_pre_extension (const void *p)
831 const struct see_pre_extension_expr *extension = p;
832 rtx set = single_set (extension->se_insn);
833 rtx rhs;
835 gcc_assert (set);
836 rhs = SET_SRC (set);
838 return hash_rtx (rhs, GET_MODE (rhs), 0, NULL, 0);
842 /* Free the allocated memory of the current see_pre_extension_expr struct.
844 It frees the two linked list of the occurrences structures. */
846 static void
847 hash_del_pre_extension (void *p)
849 struct see_pre_extension_expr *extension = p;
850 struct see_occr *curr_occr = extension->antic_occr;
851 struct see_occr *next_occr = NULL;
853 /* Free the linked list of the anticipatable occurrences. */
854 while (curr_occr)
856 next_occr = curr_occr->next;
857 free (curr_occr);
858 curr_occr = next_occr;
861 /* Free the linked list of the available occurrences. */
862 curr_occr = extension->avail_occr;
863 while (curr_occr)
865 next_occr = curr_occr->next;
866 free (curr_occr);
867 curr_occr = next_occr;
870 /* Free the see_pre_extension_expr structure itself. */
871 free (extension);
875 /* Helper functions for the register_properties hash.
876 This kind of hash will hold see_register_properties structures.
878 The value of the key is the regno field of the structure. */
880 /* Return TRUE if P1 has the same value in the regno field as P2.
881 Otherwise, return FALSE.
882 Where P1 and P2 are see_register_properties structures. */
884 static int
885 eq_descriptor_properties (const void *p1, const void *p2)
887 const struct see_register_properties *curr_prop1 = p1;
888 const struct see_register_properties *curr_prop2 = p2;
890 return curr_prop1->regno == curr_prop2->regno;
894 /* P is a see_register_properties struct, use the register number in the
895 regno field. */
897 static hashval_t
898 hash_descriptor_properties (const void *p)
900 const struct see_register_properties *curr_prop = p;
901 return curr_prop->regno;
905 /* Free the allocated memory of the current see_register_properties struct. */
906 static void
907 hash_del_properties (void *p)
909 struct see_register_properties *curr_prop = p;
910 free (curr_prop);
914 /* Helper functions for an extension hash.
915 This kind of hash will hold insns that look like:
917 set ((reg:WIDEmode r1) (sign_extend:WIDEmode
918 (subreg:NARROWmode (reg:WIDEmode r2))))
920 set ((reg:WIDEmode r1) (sign_extend:WIDEmode (reg:NARROWmode r2)))
922 The value of the key is (REGNO (reg:WIDEmode r1))
923 It is possible to search this hash in two ways:
924 1. By a register rtx. The Value that is been compared to the keys is the
925 REGNO of it.
926 2. By an insn with the above pattern. The Value that is been compared to
927 the keys is the REGNO of the reg on the lhs. */
929 /* Return TRUE if P1 has the same value as P2. Otherwise, return FALSE.
930 Where P1 is an insn and P2 is an insn or a register. */
932 static int
933 eq_descriptor_extension (const void *p1, const void *p2)
935 const_rtx const insn = (const_rtx) p1;
936 const_rtx const element = (const_rtx) p2;
937 rtx set1 = single_set (insn);
938 rtx dest_reg1;
939 rtx set2 = NULL;
940 const_rtx dest_reg2 = NULL;
942 gcc_assert (set1 && element && (REG_P (element) || INSN_P (element)));
944 dest_reg1 = SET_DEST (set1);
946 if (INSN_P (element))
948 set2 = single_set (element);
949 dest_reg2 = SET_DEST (set2);
951 else
952 dest_reg2 = element;
954 return REGNO (dest_reg1) == REGNO (dest_reg2);
958 /* If P is an insn, use the register number of its lhs
959 otherwise, P is a register, use its number. */
961 static hashval_t
962 hash_descriptor_extension (const void *p)
964 const_rtx const r = (const_rtx) p;
965 rtx set, lhs;
967 if (r && REG_P (r))
968 return REGNO (r);
970 gcc_assert (r && INSN_P (r));
971 set = single_set (r);
972 gcc_assert (set);
973 lhs = SET_DEST (set);
974 return REGNO (lhs);
978 /* Helper function for a see_bb_splay_ar[i] splay tree.
979 It frees all the allocated memory of a struct see_ref_s pointer.
981 VALUE is the value of a splay tree node. */
983 static void
984 see_free_ref_s (splay_tree_value value)
986 struct see_ref_s *ref_s = (struct see_ref_s *)value;
988 if (ref_s->unmerged_def_se_hash)
989 htab_delete (ref_s->unmerged_def_se_hash);
990 if (ref_s->merged_def_se_hash)
991 htab_delete (ref_s->merged_def_se_hash);
992 if (ref_s->use_se_hash)
993 htab_delete (ref_s->use_se_hash);
994 free (ref_s);
998 /* Rest of the implementation. */
1000 /* Search the extension hash for a suitable entry for EXTENSION.
1001 TYPE is the type of EXTENSION (USE_EXTENSION or DEF_EXTENSION).
1003 If TYPE is DEF_EXTENSION we need to normalize EXTENSION before searching the
1004 extension hash.
1006 If a suitable entry was found, return the slot. Otherwise, store EXTENSION
1007 in the hash and return NULL. */
1009 static struct see_pre_extension_expr *
1010 see_seek_pre_extension_expr (rtx extension, enum extension_type type)
1012 struct see_pre_extension_expr **slot_pre_exp, temp_pre_exp;
1013 rtx dest_extension_reg = see_get_extension_reg (extension, 1);
1014 enum rtx_code extension_code;
1015 enum machine_mode source_extension_mode;
1017 if (type == DEF_EXTENSION)
1019 extension_code = see_get_extension_data (extension,
1020 &source_extension_mode);
1021 gcc_assert (extension_code != UNKNOWN);
1022 extension =
1023 see_gen_normalized_extension (dest_extension_reg, extension_code,
1024 source_extension_mode);
1026 temp_pre_exp.se_insn = extension;
1027 slot_pre_exp =
1028 (struct see_pre_extension_expr **) htab_find_slot (see_pre_extension_hash,
1029 &temp_pre_exp, INSERT);
1030 if (*slot_pre_exp == NULL)
1031 /* This is the first time this extension instruction is encountered. Store
1032 it in the hash. */
1034 (*slot_pre_exp) = xmalloc (sizeof (struct see_pre_extension_expr));
1035 (*slot_pre_exp)->se_insn = extension;
1036 (*slot_pre_exp)->bitmap_index =
1037 (htab_elements (see_pre_extension_hash) - 1);
1038 (*slot_pre_exp)->antic_occr = NULL;
1039 (*slot_pre_exp)->avail_occr = NULL;
1040 return NULL;
1042 return *slot_pre_exp;
1046 /* This function defines how to update the extra_info of the web_entry.
1048 FIRST is the pointer of the extra_info of the first web_entry.
1049 SECOND is the pointer of the extra_info of the second web_entry.
1050 The first web_entry will be the predecessor (leader) of the second web_entry
1051 after the union.
1053 Return true if FIRST and SECOND points to the same web entry structure and
1054 nothing is done. Otherwise, return false. */
1056 static bool
1057 see_update_leader_extra_info (struct web_entry *first, struct web_entry *second)
1059 struct see_entry_extra_info *first_ei, *second_ei;
1061 first = unionfind_root (first);
1062 second = unionfind_root (second);
1064 if (unionfind_union (first, second))
1065 return true;
1067 first_ei = (struct see_entry_extra_info *) first->extra_info;
1068 second_ei = (struct see_entry_extra_info *) second->extra_info;
1070 gcc_assert (first_ei && second_ei);
1072 if (second_ei->relevancy == NOT_RELEVANT)
1074 first_ei->relevancy = NOT_RELEVANT;
1075 return false;
1077 switch (first_ei->relevancy)
1079 case NOT_RELEVANT:
1080 break;
1081 case RELEVANT_USE:
1082 switch (second_ei->relevancy)
1084 case RELEVANT_USE:
1085 break;
1086 case EXTENDED_DEF:
1087 first_ei->relevancy = second_ei->relevancy;
1088 first_ei->source_mode_signed = second_ei->source_mode_signed;
1089 first_ei->source_mode_unsigned = second_ei->source_mode_unsigned;
1090 break;
1091 case SIGN_EXTENDED_DEF:
1092 case ZERO_EXTENDED_DEF:
1093 first_ei->relevancy = second_ei->relevancy;
1094 first_ei->source_mode = second_ei->source_mode;
1095 break;
1096 default:
1097 gcc_unreachable ();
1099 break;
1100 case SIGN_EXTENDED_DEF:
1101 switch (second_ei->relevancy)
1103 case SIGN_EXTENDED_DEF:
1104 /* The mode of the root should be the wider one in this case. */
1105 first_ei->source_mode =
1106 (first_ei->source_mode > second_ei->source_mode) ?
1107 first_ei->source_mode : second_ei->source_mode;
1108 break;
1109 case RELEVANT_USE:
1110 break;
1111 case ZERO_EXTENDED_DEF:
1112 /* Don't mix webs with zero extend and sign extend. */
1113 first_ei->relevancy = NOT_RELEVANT;
1114 break;
1115 case EXTENDED_DEF:
1116 if (second_ei->source_mode_signed == MAX_MACHINE_MODE)
1117 first_ei->relevancy = NOT_RELEVANT;
1118 else
1119 /* The mode of the root should be the wider one in this case. */
1120 first_ei->source_mode =
1121 (first_ei->source_mode > second_ei->source_mode_signed) ?
1122 first_ei->source_mode : second_ei->source_mode_signed;
1123 break;
1124 default:
1125 gcc_unreachable ();
1127 break;
1128 /* This case is similar to the previous one, with little changes. */
1129 case ZERO_EXTENDED_DEF:
1130 switch (second_ei->relevancy)
1132 case SIGN_EXTENDED_DEF:
1133 /* Don't mix webs with zero extend and sign extend. */
1134 first_ei->relevancy = NOT_RELEVANT;
1135 break;
1136 case RELEVANT_USE:
1137 break;
1138 case ZERO_EXTENDED_DEF:
1139 /* The mode of the root should be the wider one in this case. */
1140 first_ei->source_mode =
1141 (first_ei->source_mode > second_ei->source_mode) ?
1142 first_ei->source_mode : second_ei->source_mode;
1143 break;
1144 case EXTENDED_DEF:
1145 if (second_ei->source_mode_unsigned == MAX_MACHINE_MODE)
1146 first_ei->relevancy = NOT_RELEVANT;
1147 else
1148 /* The mode of the root should be the wider one in this case. */
1149 first_ei->source_mode =
1150 (first_ei->source_mode > second_ei->source_mode_unsigned) ?
1151 first_ei->source_mode : second_ei->source_mode_unsigned;
1152 break;
1153 default:
1154 gcc_unreachable ();
1156 break;
1157 case EXTENDED_DEF:
1158 if (first_ei->source_mode_signed != MAX_MACHINE_MODE
1159 && first_ei->source_mode_unsigned != MAX_MACHINE_MODE)
1161 switch (second_ei->relevancy)
1163 case SIGN_EXTENDED_DEF:
1164 first_ei->relevancy = SIGN_EXTENDED_DEF;
1165 first_ei->source_mode =
1166 (first_ei->source_mode_signed > second_ei->source_mode) ?
1167 first_ei->source_mode_signed : second_ei->source_mode;
1168 break;
1169 case RELEVANT_USE:
1170 break;
1171 case ZERO_EXTENDED_DEF:
1172 first_ei->relevancy = ZERO_EXTENDED_DEF;
1173 first_ei->source_mode =
1174 (first_ei->source_mode_unsigned > second_ei->source_mode) ?
1175 first_ei->source_mode_unsigned : second_ei->source_mode;
1176 break;
1177 case EXTENDED_DEF:
1178 if (second_ei->source_mode_unsigned != MAX_MACHINE_MODE)
1179 first_ei->source_mode_unsigned =
1180 (first_ei->source_mode_unsigned >
1181 second_ei->source_mode_unsigned) ?
1182 first_ei->source_mode_unsigned :
1183 second_ei->source_mode_unsigned;
1184 if (second_ei->source_mode_signed != MAX_MACHINE_MODE)
1185 first_ei->source_mode_signed =
1186 (first_ei->source_mode_signed >
1187 second_ei->source_mode_signed) ?
1188 first_ei->source_mode_signed : second_ei->source_mode_signed;
1189 break;
1190 default:
1191 gcc_unreachable ();
1194 else if (first_ei->source_mode_signed == MAX_MACHINE_MODE)
1196 gcc_assert (first_ei->source_mode_unsigned != MAX_MACHINE_MODE);
1197 switch (second_ei->relevancy)
1199 case SIGN_EXTENDED_DEF:
1200 first_ei->relevancy = NOT_RELEVANT;
1201 break;
1202 case RELEVANT_USE:
1203 break;
1204 case ZERO_EXTENDED_DEF:
1205 first_ei->relevancy = ZERO_EXTENDED_DEF;
1206 first_ei->source_mode =
1207 (first_ei->source_mode_unsigned > second_ei->source_mode) ?
1208 first_ei->source_mode_unsigned : second_ei->source_mode;
1209 break;
1210 case EXTENDED_DEF:
1211 if (second_ei->source_mode_unsigned == MAX_MACHINE_MODE)
1212 first_ei->relevancy = NOT_RELEVANT;
1213 else
1214 first_ei->source_mode_unsigned =
1215 (first_ei->source_mode_unsigned >
1216 second_ei->source_mode_unsigned) ?
1217 first_ei->source_mode_unsigned :
1218 second_ei->source_mode_unsigned;
1219 break;
1220 default:
1221 gcc_unreachable ();
1224 else
1226 gcc_assert (first_ei->source_mode_unsigned == MAX_MACHINE_MODE);
1227 gcc_assert (first_ei->source_mode_signed != MAX_MACHINE_MODE);
1228 switch (second_ei->relevancy)
1230 case SIGN_EXTENDED_DEF:
1231 first_ei->relevancy = SIGN_EXTENDED_DEF;
1232 first_ei->source_mode =
1233 (first_ei->source_mode_signed > second_ei->source_mode) ?
1234 first_ei->source_mode_signed : second_ei->source_mode;
1235 break;
1236 case RELEVANT_USE:
1237 break;
1238 case ZERO_EXTENDED_DEF:
1239 first_ei->relevancy = NOT_RELEVANT;
1240 break;
1241 case EXTENDED_DEF:
1242 if (second_ei->source_mode_signed == MAX_MACHINE_MODE)
1243 first_ei->relevancy = NOT_RELEVANT;
1244 else
1245 first_ei->source_mode_signed =
1246 (first_ei->source_mode_signed >
1247 second_ei->source_mode_signed) ?
1248 first_ei->source_mode_signed : second_ei->source_mode_signed;
1249 break;
1250 default:
1251 gcc_unreachable ();
1254 break;
1255 default:
1256 /* Unknown patern type. */
1257 gcc_unreachable ();
1260 return false;
1264 /* Free global data structures. */
1266 static void
1267 see_free_data_structures (void)
1269 int i;
1270 unsigned int j;
1272 /* Free the bitmap vectors. */
1273 if (transp)
1275 sbitmap_vector_free (transp);
1276 transp = NULL;
1277 sbitmap_vector_free (comp);
1278 comp = NULL;
1279 sbitmap_vector_free (antloc);
1280 antloc = NULL;
1281 sbitmap_vector_free (ae_kill);
1282 ae_kill = NULL;
1284 if (pre_insert_map)
1286 sbitmap_vector_free (pre_insert_map);
1287 pre_insert_map = NULL;
1289 if (pre_delete_map)
1291 sbitmap_vector_free (pre_delete_map);
1292 pre_delete_map = NULL;
1294 if (edge_list)
1296 free_edge_list (edge_list);
1297 edge_list = NULL;
1300 /* Free the extension hash. */
1301 htab_delete (see_pre_extension_hash);
1303 /* Free the array of hashes. */
1304 for (i = 0; i < last_bb; i++)
1305 if (see_bb_hash_ar[i])
1306 htab_delete (see_bb_hash_ar[i]);
1307 free (see_bb_hash_ar);
1309 /* Free the array of splay trees. */
1310 for (i = 0; i < last_bb; i++)
1311 if (see_bb_splay_ar[i])
1312 splay_tree_delete (see_bb_splay_ar[i]);
1313 free (see_bb_splay_ar);
1315 /* Free the array of web entries and their extra info field. */
1316 for (j = 0; j < defs_num; j++)
1317 free (def_entry[j].extra_info);
1318 free (def_entry);
1319 for (j = 0; j < uses_num; j++)
1320 free (use_entry[j].extra_info);
1321 free (use_entry);
1325 /* Initialize global data structures and variables. */
1327 static void
1328 see_initialize_data_structures (void)
1330 unsigned int max_reg = max_reg_num ();
1331 unsigned int i;
1333 /* Build the df object. */
1334 df_set_flags (DF_EQ_NOTES);
1335 df_chain_add_problem (DF_DU_CHAIN + DF_UD_CHAIN);
1336 df_analyze ();
1337 df_set_flags (DF_DEFER_INSN_RESCAN);
1339 if (dump_file)
1340 df_dump (dump_file);
1342 /* Record the last basic block at the beginning of the optimization. */
1343 last_bb = last_basic_block;
1345 /* Record the number of uses and defs at the beginning of the optimization. */
1346 uses_num = 0;
1347 defs_num = 0;
1348 for (i = 0; i < max_reg; i++)
1350 uses_num += DF_REG_USE_COUNT (i) + DF_REG_EQ_USE_COUNT (i);
1351 defs_num += DF_REG_DEF_COUNT (i);
1354 /* Allocate web entries array for the union-find data structure. */
1355 def_entry = xcalloc (defs_num, sizeof (struct web_entry));
1356 use_entry = xcalloc (uses_num, sizeof (struct web_entry));
1358 /* Allocate an array of splay trees.
1359 One splay tree for each basic block. */
1360 see_bb_splay_ar = xcalloc (last_bb, sizeof (splay_tree));
1362 /* Allocate an array of hashes.
1363 One hash for each basic block. */
1364 see_bb_hash_ar = xcalloc (last_bb, sizeof (htab_t));
1366 /* Allocate the extension hash. It will hold the extensions that we want
1367 to PRE. */
1368 see_pre_extension_hash = htab_create (10,
1369 hash_descriptor_pre_extension,
1370 eq_descriptor_pre_extension,
1371 hash_del_pre_extension);
1375 /* Function called by note_uses to check if a register is used in a
1376 subexpressions.
1378 X is a pointer to the subexpression and DATA is a pointer to a
1379 see_mentioned_reg_data structure that contains the register to look for and
1380 a place for the result. */
1382 static void
1383 see_mentioned_reg (rtx *x, void *data)
1385 struct see_mentioned_reg_data *d
1386 = (struct see_mentioned_reg_data *) data;
1388 if (reg_mentioned_p (d->reg, *x))
1389 d->mentioned = true;
1393 /* We don't want to merge a use extension with a reference if the extended
1394 register is used only in a simple move instruction. We also don't want to
1395 merge a def extension with a reference if the source register of the
1396 extension is defined only in a simple move in the reference.
1398 REF is the reference instruction.
1399 EXTENSION is the use extension or def extension instruction.
1400 TYPE is the type of the extension (use or def).
1402 Return true if the reference is complicated enough, so we would like to merge
1403 it with the extension. Otherwise, return false. */
1405 static bool
1406 see_want_to_be_merged_with_extension (rtx ref, rtx extension,
1407 enum extension_type type)
1409 rtx pat;
1410 rtx dest_extension_reg = see_get_extension_reg (extension, 1);
1411 rtx source_extension_reg = see_get_extension_reg (extension, 0);
1412 enum rtx_code code;
1413 struct see_mentioned_reg_data d;
1414 int i;
1416 pat = PATTERN (ref);
1417 code = GET_CODE (pat);
1419 if (code == PARALLEL)
1421 for (i = 0; i < XVECLEN (pat, 0); i++)
1423 rtx sub = XVECEXP (pat, 0, i);
1425 if (GET_CODE (sub) == SET
1426 && (REG_P (SET_DEST (sub))
1427 || (GET_CODE (SET_DEST (sub)) == SUBREG
1428 && REG_P (SUBREG_REG (SET_DEST (sub)))))
1429 && (REG_P (SET_SRC (sub))
1430 || (GET_CODE (SET_SRC (sub)) == SUBREG
1431 && REG_P (SUBREG_REG (SET_SRC (sub))))))
1433 /* This is a simple move SET. */
1434 if (type == DEF_EXTENSION
1435 && reg_mentioned_p (source_extension_reg, SET_DEST (sub)))
1436 return false;
1438 else
1440 /* This is not a simple move SET.
1441 Check if it uses the source of the extension. */
1442 if (type == USE_EXTENSION)
1444 d.reg = dest_extension_reg;
1445 d.mentioned = false;
1446 note_uses (&sub, see_mentioned_reg, &d);
1447 if (d.mentioned)
1448 return true;
1452 if (type == USE_EXTENSION)
1453 return false;
1455 else
1457 if (code == SET
1458 && (REG_P (SET_DEST (pat))
1459 || (GET_CODE (SET_DEST (pat)) == SUBREG
1460 && REG_P (SUBREG_REG (SET_DEST (pat)))))
1461 && (REG_P (SET_SRC (pat))
1462 || (GET_CODE (SET_SRC (pat)) == SUBREG
1463 && REG_P (SUBREG_REG (SET_SRC (pat))))))
1464 /* This is a simple move SET. */
1465 return false;
1468 return true;
1472 /* Print the register number of the current see_register_properties
1473 structure.
1475 This is a subroutine of see_main called via htab_traverse.
1476 SLOT contains the current see_register_properties structure pointer. */
1478 static int
1479 see_print_register_properties (void **slot, void *b ATTRIBUTE_UNUSED)
1481 struct see_register_properties *prop = *slot;
1483 gcc_assert (prop);
1484 fprintf (dump_file, "Property found for register %d\n", prop->regno);
1485 return 1;
1489 /* Print the extension instruction of the current see_register_properties
1490 structure.
1492 This is a subroutine of see_main called via htab_traverse.
1493 SLOT contains the current see_pre_extension_expr structure pointer. */
1495 static int
1496 see_print_pre_extension_expr (void **slot, void *b ATTRIBUTE_UNUSED)
1498 struct see_pre_extension_expr *pre_extension = *slot;
1500 gcc_assert (pre_extension
1501 && pre_extension->se_insn
1502 && INSN_P (pre_extension->se_insn));
1504 fprintf (dump_file, "Index %d for:\n", pre_extension->bitmap_index);
1505 print_rtl_single (dump_file, pre_extension->se_insn);
1507 return 1;
1511 /* Phase 4 implementation: Commit changes to the insn stream. */
1513 /* Delete the merged def extension.
1515 This is a subroutine of see_commit_ref_changes called via htab_traverse.
1517 SLOT contains the current def extension instruction.
1518 B is the see_ref_s structure pointer. */
1520 static int
1521 see_delete_merged_def_extension (void **slot, void *b ATTRIBUTE_UNUSED)
1523 rtx def_se = *slot;
1525 if (dump_file)
1527 fprintf (dump_file, "Deleting merged def extension:\n");
1528 print_rtl_single (dump_file, def_se);
1531 if (INSN_DELETED_P (def_se))
1532 /* This def extension is an implicit one. No need to delete it since
1533 it is not in the insn stream. */
1534 return 1;
1536 delete_insn (def_se);
1537 return 1;
1541 /* Delete the unmerged def extension.
1543 This is a subroutine of see_commit_ref_changes called via htab_traverse.
1545 SLOT contains the current def extension instruction.
1546 B is the see_ref_s structure pointer. */
1548 static int
1549 see_delete_unmerged_def_extension (void **slot, void *b ATTRIBUTE_UNUSED)
1551 rtx def_se = *slot;
1553 if (dump_file)
1555 fprintf (dump_file, "Deleting unmerged def extension:\n");
1556 print_rtl_single (dump_file, def_se);
1559 delete_insn (def_se);
1560 return 1;
1564 /* Emit the non-redundant use extension to the instruction stream.
1566 This is a subroutine of see_commit_ref_changes called via htab_traverse.
1568 SLOT contains the current use extension instruction.
1569 B is the see_ref_s structure pointer. */
1571 static int
1572 see_emit_use_extension (void **slot, void *b)
1574 rtx use_se = *slot;
1575 struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
1577 if (INSN_DELETED_P (use_se))
1578 /* This use extension was previously removed according to the lcm
1579 output. */
1580 return 1;
1582 if (dump_file)
1584 fprintf (dump_file, "Inserting use extension:\n");
1585 print_rtl_single (dump_file, use_se);
1588 add_insn_before (use_se, curr_ref_s->insn, NULL);
1590 return 1;
1594 /* For each relevant reference:
1595 a. Emit the non-redundant use extensions.
1596 b. Delete the def extensions.
1597 c. Replace the original reference with the merged one (if exists) and add the
1598 move instructions that were generated.
1600 This is a subroutine of see_commit_changes called via splay_tree_foreach.
1602 STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
1603 see_ref_s structure. */
1605 static int
1606 see_commit_ref_changes (splay_tree_node stn,
1607 void *data ATTRIBUTE_UNUSED)
1609 htab_t use_se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
1610 htab_t unmerged_def_se_hash =
1611 ((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
1612 htab_t merged_def_se_hash =
1613 ((struct see_ref_s *) (stn->value))->merged_def_se_hash;
1614 rtx ref = ((struct see_ref_s *) (stn->value))->insn;
1615 rtx merged_ref = ((struct see_ref_s *) (stn->value))->merged_insn;
1617 /* Emit the non-redundant use extensions. */
1618 if (use_se_hash)
1619 htab_traverse_noresize (use_se_hash, see_emit_use_extension,
1620 (PTR) (stn->value));
1622 /* Delete the def extensions. */
1623 if (unmerged_def_se_hash)
1624 htab_traverse (unmerged_def_se_hash, see_delete_unmerged_def_extension,
1625 (PTR) (stn->value));
1627 if (merged_def_se_hash)
1628 htab_traverse (merged_def_se_hash, see_delete_merged_def_extension,
1629 (PTR) (stn->value));
1631 /* Replace the original reference with the merged one (if exists) and add the
1632 move instructions that were generated. */
1633 if (merged_ref && !INSN_DELETED_P (ref))
1635 if (dump_file)
1637 fprintf (dump_file, "Replacing orig reference:\n");
1638 print_rtl_single (dump_file, ref);
1639 fprintf (dump_file, "With merged reference:\n");
1640 print_rtl_single (dump_file, merged_ref);
1642 emit_insn_after (merged_ref, ref);
1643 delete_insn (ref);
1646 /* Continue to the next reference. */
1647 return 0;
1651 /* Insert partially redundant expressions on edges to make the expressions fully
1652 redundant.
1654 INDEX_MAP is a mapping of an index to an expression.
1655 Return true if an instruction was inserted on an edge.
1656 Otherwise, return false. */
1658 static bool
1659 see_pre_insert_extensions (struct see_pre_extension_expr **index_map)
1661 int num_edges = NUM_EDGES (edge_list);
1662 int set_size = pre_insert_map[0]->size;
1663 size_t pre_extension_num = htab_elements (see_pre_extension_hash);
1665 int did_insert = 0;
1666 int e;
1667 int i;
1668 int j;
1670 for (e = 0; e < num_edges; e++)
1672 int indx;
1673 basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
1675 for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
1677 SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
1679 for (j = indx; insert && j < (int) pre_extension_num;
1680 j++, insert >>= 1)
1681 if (insert & 1)
1683 struct see_pre_extension_expr *expr = index_map[j];
1684 int idx = expr->bitmap_index;
1685 rtx se_insn = NULL;
1686 edge eg = INDEX_EDGE (edge_list, e);
1688 start_sequence ();
1689 emit_insn (PATTERN (expr->se_insn));
1690 se_insn = get_insns ();
1691 end_sequence ();
1693 if (eg->flags & EDGE_ABNORMAL)
1695 rtx new_insn = NULL;
1697 new_insn = insert_insn_end_bb_new (se_insn, bb);
1698 gcc_assert (new_insn && INSN_P (new_insn));
1700 if (dump_file)
1702 fprintf (dump_file,
1703 "PRE: end of bb %d, insn %d, ",
1704 bb->index, INSN_UID (new_insn));
1705 fprintf (dump_file,
1706 "inserting expression %d\n", idx);
1709 else
1711 insert_insn_on_edge (se_insn, eg);
1713 if (dump_file)
1715 fprintf (dump_file, "PRE: edge (%d,%d), ",
1716 bb->index,
1717 INDEX_EDGE_SUCC_BB (edge_list, e)->index);
1718 fprintf (dump_file, "inserting expression %d\n", idx);
1721 did_insert = true;
1725 return did_insert;
1729 /* Since all the redundant extensions must be anticipatable, they must be a use
1730 extensions. Mark them as deleted. This will prevent them from been emitted
1731 in the first place.
1733 This is a subroutine of see_commit_changes called via htab_traverse.
1735 SLOT contains the current see_pre_extension_expr structure pointer. */
1737 static int
1738 see_pre_delete_extension (void **slot, void *b ATTRIBUTE_UNUSED)
1740 struct see_pre_extension_expr *expr = *slot;
1741 struct see_occr *occr;
1742 int indx = expr->bitmap_index;
1744 for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
1746 if (TEST_BIT (pre_delete_map[occr->block_num], indx))
1748 /* Mark as deleted. */
1749 INSN_DELETED_P (occr->insn) = 1;
1750 if (dump_file)
1752 fprintf (dump_file,"Redundant extension deleted:\n");
1753 print_rtl_single (dump_file, occr->insn);
1757 return 1;
1761 /* Create the index_map mapping of an index to an expression.
1763 This is a subroutine of see_commit_changes called via htab_traverse.
1765 SLOT contains the current see_pre_extension_expr structure pointer.
1766 B a pointer to see_pre_extension_expr structure pointer. */
1768 static int
1769 see_map_extension (void **slot, void *b)
1771 struct see_pre_extension_expr *expr = *slot;
1772 struct see_pre_extension_expr **index_map =
1773 (struct see_pre_extension_expr **) b;
1775 index_map[expr->bitmap_index] = expr;
1777 return 1;
1781 /* Phase 4 top level function.
1782 In this phase we finally change the instruction stream.
1783 Here we insert extensions at their best placements and delete the
1784 redundant ones according to the output of the LCM. We also replace
1785 some of the instructions according to phase 2 merges results. */
1787 static void
1788 see_commit_changes (void)
1790 struct see_pre_extension_expr **index_map;
1791 size_t pre_extension_num = htab_elements (see_pre_extension_hash);
1792 bool did_insert = false;
1793 int i;
1795 index_map = xcalloc (pre_extension_num,
1796 sizeof (struct see_pre_extension_expr *));
1798 if (dump_file)
1799 fprintf (dump_file,
1800 "* Phase 4: Commit changes to the insn stream. *\n");
1802 /* Produce a mapping of all the pre_extensions. */
1803 htab_traverse (see_pre_extension_hash, see_map_extension, (PTR) index_map);
1805 /* Delete redundant extension. This will prevent them from been emitted in
1806 the first place. */
1807 htab_traverse (see_pre_extension_hash, see_pre_delete_extension, NULL);
1809 /* Insert extensions on edges, according to the LCM result. */
1810 did_insert = see_pre_insert_extensions (index_map);
1812 if (did_insert)
1813 commit_edge_insertions ();
1815 /* Commit the rest of the changes. */
1816 for (i = 0; i < last_bb; i++)
1818 if (see_bb_splay_ar[i])
1820 /* Traverse over all the references in the basic block in forward
1821 order. */
1822 splay_tree_foreach (see_bb_splay_ar[i],
1823 see_commit_ref_changes, NULL);
1827 free (index_map);
1831 /* Phase 3 implementation: Eliminate globally redundant extensions. */
1833 /* Analyze the properties of a merged def extension for the LCM and record avail
1834 occurrences.
1836 This is a subroutine of see_analyze_ref_local_prop called
1837 via htab_traverse.
1839 SLOT contains the current def extension instruction.
1840 B is the see_ref_s structure pointer. */
1842 static int
1843 see_analyze_merged_def_local_prop (void **slot, void *b)
1845 rtx def_se = *slot;
1846 struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
1847 rtx ref = curr_ref_s->insn;
1848 struct see_pre_extension_expr *extension_expr;
1849 int indx;
1850 int bb_num = BLOCK_NUM (ref);
1851 htab_t curr_bb_hash;
1852 struct see_register_properties *curr_prop, **slot_prop;
1853 struct see_register_properties temp_prop;
1854 rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
1855 struct see_occr *curr_occr = NULL;
1856 struct see_occr *tmp_occr = NULL;
1858 extension_expr = see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
1859 /* The extension_expr must be found. */
1860 gcc_assert (extension_expr);
1862 curr_bb_hash = see_bb_hash_ar[bb_num];
1863 gcc_assert (curr_bb_hash);
1864 temp_prop.regno = REGNO (dest_extension_reg);
1865 slot_prop =
1866 (struct see_register_properties **) htab_find_slot (curr_bb_hash,
1867 &temp_prop, INSERT);
1868 curr_prop = *slot_prop;
1869 gcc_assert (curr_prop);
1871 indx = extension_expr->bitmap_index;
1873 /* Reset the transparency bit. */
1874 RESET_BIT (transp[bb_num], indx);
1875 /* Reset the killed bit. */
1876 RESET_BIT (ae_kill[bb_num], indx);
1878 if (curr_prop->first_se_after_last_def == DF_INSN_LUID (ref))
1880 /* Set the available bit. */
1881 SET_BIT (comp[bb_num], indx);
1882 /* Record the available occurrence. */
1883 curr_occr = xmalloc (sizeof (struct see_occr));
1884 curr_occr->next = NULL;
1885 curr_occr->insn = def_se;
1886 curr_occr->block_num = bb_num;
1887 tmp_occr = extension_expr->avail_occr;
1888 if (!tmp_occr)
1889 extension_expr->avail_occr = curr_occr;
1890 else
1892 while (tmp_occr->next)
1893 tmp_occr = tmp_occr->next;
1894 tmp_occr->next = curr_occr;
1898 return 1;
1902 /* Analyze the properties of a unmerged def extension for the LCM.
1904 This is a subroutine of see_analyze_ref_local_prop called
1905 via htab_traverse.
1907 SLOT contains the current def extension instruction.
1908 B is the see_ref_s structure pointer. */
1910 static int
1911 see_analyze_unmerged_def_local_prop (void **slot, void *b)
1913 rtx def_se = *slot;
1914 struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
1915 rtx ref = curr_ref_s->insn;
1916 struct see_pre_extension_expr *extension_expr;
1917 int indx;
1918 int bb_num = BLOCK_NUM (ref);
1919 htab_t curr_bb_hash;
1920 struct see_register_properties *curr_prop, **slot_prop;
1921 struct see_register_properties temp_prop;
1922 rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
1924 extension_expr = see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
1925 /* The extension_expr must be found. */
1926 gcc_assert (extension_expr);
1928 curr_bb_hash = see_bb_hash_ar[bb_num];
1929 gcc_assert (curr_bb_hash);
1930 temp_prop.regno = REGNO (dest_extension_reg);
1931 slot_prop =
1932 (struct see_register_properties **) htab_find_slot (curr_bb_hash,
1933 &temp_prop, INSERT);
1934 curr_prop = *slot_prop;
1935 gcc_assert (curr_prop);
1937 indx = extension_expr->bitmap_index;
1939 /* Reset the transparency bit. */
1940 RESET_BIT (transp[bb_num], indx);
1941 /* Set the killed bit. */
1942 SET_BIT (ae_kill[bb_num], indx);
1944 return 1;
1948 /* Analyze the properties of a use extension for the LCM and record anic and
1949 avail occurrences.
1951 This is a subroutine of see_analyze_ref_local_prop called
1952 via htab_traverse.
1954 SLOT contains the current use extension instruction.
1955 B is the see_ref_s structure pointer. */
1957 static int
1958 see_analyze_use_local_prop (void **slot, void *b)
1960 struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
1961 rtx use_se = *slot;
1962 rtx ref = curr_ref_s->insn;
1963 rtx dest_extension_reg = see_get_extension_reg (use_se, 1);
1964 struct see_pre_extension_expr *extension_expr;
1965 struct see_register_properties *curr_prop, **slot_prop;
1966 struct see_register_properties temp_prop;
1967 struct see_occr *curr_occr = NULL;
1968 struct see_occr *tmp_occr = NULL;
1969 htab_t curr_bb_hash;
1970 int indx;
1971 int bb_num = BLOCK_NUM (ref);
1973 extension_expr = see_seek_pre_extension_expr (use_se, USE_EXTENSION);
1974 /* The extension_expr must be found. */
1975 gcc_assert (extension_expr);
1977 curr_bb_hash = see_bb_hash_ar[bb_num];
1978 gcc_assert (curr_bb_hash);
1979 temp_prop.regno = REGNO (dest_extension_reg);
1980 slot_prop =
1981 (struct see_register_properties **) htab_find_slot (curr_bb_hash,
1982 &temp_prop, INSERT);
1983 curr_prop = *slot_prop;
1984 gcc_assert (curr_prop);
1986 indx = extension_expr->bitmap_index;
1988 if (curr_prop->first_se_before_any_def == DF_INSN_LUID (ref))
1990 /* Set the anticipatable bit. */
1991 SET_BIT (antloc[bb_num], indx);
1992 /* Record the anticipatable occurrence. */
1993 curr_occr = xmalloc (sizeof (struct see_occr));
1994 curr_occr->next = NULL;
1995 curr_occr->insn = use_se;
1996 curr_occr->block_num = bb_num;
1997 tmp_occr = extension_expr->antic_occr;
1998 if (!tmp_occr)
1999 extension_expr->antic_occr = curr_occr;
2000 else
2002 while (tmp_occr->next)
2003 tmp_occr = tmp_occr->next;
2004 tmp_occr->next = curr_occr;
2006 if (curr_prop->last_def < 0)
2008 /* Set the available bit. */
2009 SET_BIT (comp[bb_num], indx);
2010 /* Record the available occurrence. */
2011 curr_occr = xmalloc (sizeof (struct see_occr));
2012 curr_occr->next = NULL;
2013 curr_occr->insn = use_se;
2014 curr_occr->block_num = bb_num;
2015 tmp_occr = extension_expr->avail_occr;
2016 if (!tmp_occr)
2017 extension_expr->avail_occr = curr_occr;
2018 else
2020 while (tmp_occr->next)
2021 tmp_occr = tmp_occr->next;
2022 tmp_occr->next = curr_occr;
2025 /* Note: there is no need to reset the killed bit since it must be zero at
2026 this point. */
2028 else if (curr_prop->first_se_after_last_def == DF_INSN_LUID (ref))
2030 /* Set the available bit. */
2031 SET_BIT (comp[bb_num], indx);
2032 /* Reset the killed bit. */
2033 RESET_BIT (ae_kill[bb_num], indx);
2034 /* Record the available occurrence. */
2035 curr_occr = xmalloc (sizeof (struct see_occr));
2036 curr_occr->next = NULL;
2037 curr_occr->insn = use_se;
2038 curr_occr->block_num = bb_num;
2039 tmp_occr = extension_expr->avail_occr;
2040 if (!tmp_occr)
2041 extension_expr->avail_occr = curr_occr;
2042 else
2044 while (tmp_occr->next)
2045 tmp_occr = tmp_occr->next;
2046 tmp_occr->next = curr_occr;
2049 return 1;
2053 /* Here we traverse over all the merged and unmerged extensions of the reference
2054 and analyze their properties for the LCM.
2056 This is a subroutine of see_execute_LCM called via splay_tree_foreach.
2058 STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
2059 see_ref_s structure. */
2061 static int
2062 see_analyze_ref_local_prop (splay_tree_node stn,
2063 void *data ATTRIBUTE_UNUSED)
2065 htab_t use_se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
2066 htab_t unmerged_def_se_hash =
2067 ((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
2068 htab_t merged_def_se_hash =
2069 ((struct see_ref_s *) (stn->value))->merged_def_se_hash;
2071 /* Analyze use extensions that were not merged with the reference. */
2072 if (use_se_hash)
2073 htab_traverse_noresize (use_se_hash, see_analyze_use_local_prop,
2074 (PTR) (stn->value));
2076 /* Analyze def extensions that were not merged with the reference. */
2077 if (unmerged_def_se_hash)
2078 htab_traverse (unmerged_def_se_hash, see_analyze_unmerged_def_local_prop,
2079 (PTR) (stn->value));
2081 /* Analyze def extensions that were merged with the reference. */
2082 if (merged_def_se_hash)
2083 htab_traverse (merged_def_se_hash, see_analyze_merged_def_local_prop,
2084 (PTR) (stn->value));
2086 /* Continue to the next definition. */
2087 return 0;
2091 /* Phase 3 top level function.
2092 In this phase, we set the input bit vectors of the LCM according to data
2093 gathered in phase 2.
2094 Then we run the edge based LCM. */
2096 static void
2097 see_execute_LCM (void)
2099 size_t pre_extension_num = htab_elements (see_pre_extension_hash);
2100 int i = 0;
2102 if (dump_file)
2103 fprintf (dump_file,
2104 "* Phase 3: Eliminate globally redundant extensions. *\n");
2106 /* Initialize the global sbitmap vectors. */
2107 transp = sbitmap_vector_alloc (last_bb, pre_extension_num);
2108 comp = sbitmap_vector_alloc (last_bb, pre_extension_num);
2109 antloc = sbitmap_vector_alloc (last_bb, pre_extension_num);
2110 ae_kill = sbitmap_vector_alloc (last_bb, pre_extension_num);
2111 sbitmap_vector_ones (transp, last_bb);
2112 sbitmap_vector_zero (comp, last_bb);
2113 sbitmap_vector_zero (antloc, last_bb);
2114 sbitmap_vector_zero (ae_kill, last_bb);
2116 /* Traverse over all the splay trees of the basic blocks. */
2117 for (i = 0; i < last_bb; i++)
2119 if (see_bb_splay_ar[i])
2121 /* Traverse over all the references in the basic block in forward
2122 order. */
2123 splay_tree_foreach (see_bb_splay_ar[i],
2124 see_analyze_ref_local_prop, NULL);
2128 /* Add fake exit edges before running the lcm. */
2129 add_noreturn_fake_exit_edges ();
2131 /* Run the LCM. */
2132 edge_list = pre_edge_lcm (pre_extension_num, transp, comp, antloc,
2133 ae_kill, &pre_insert_map, &pre_delete_map);
2135 /* Remove the fake edges. */
2136 remove_fake_exit_edges ();
2140 /* Phase 2 implementation: Merge and eliminate locally redundant extensions. */
2142 /* In this function we set the register properties for the register that is
2143 defined and extended in the reference.
2144 The properties are defined in see_register_properties structure which is
2145 allocated per basic block and per register.
2146 Later the extension is inserted into the see_pre_extension_hash for the next
2147 phase of the optimization.
2149 This is a subroutine of see_handle_extensions_for_one_ref called
2150 via htab_traverse.
2152 SLOT contains the current def extension instruction.
2153 B is the see_ref_s structure pointer. */
2155 static int
2156 see_set_prop_merged_def (void **slot, void *b)
2158 rtx def_se = *slot;
2159 struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
2160 rtx insn = curr_ref_s->insn;
2161 rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
2162 htab_t curr_bb_hash;
2163 struct see_register_properties *curr_prop = NULL;
2164 struct see_register_properties **slot_prop;
2165 struct see_register_properties temp_prop;
2166 int ref_luid = DF_INSN_LUID (insn);
2168 curr_bb_hash = see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)];
2169 if (!curr_bb_hash)
2171 /* The hash doesn't exist yet. Create it. */
2172 curr_bb_hash = htab_create (10,
2173 hash_descriptor_properties,
2174 eq_descriptor_properties,
2175 hash_del_properties);
2176 see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)] = curr_bb_hash;
2179 /* Find the right register properties in the right basic block. */
2180 temp_prop.regno = REGNO (dest_extension_reg);
2181 slot_prop =
2182 (struct see_register_properties **) htab_find_slot (curr_bb_hash,
2183 &temp_prop, INSERT);
2185 if (slot_prop && *slot_prop != NULL)
2187 /* Property already exists. */
2188 curr_prop = *slot_prop;
2189 gcc_assert (curr_prop->regno == REGNO (dest_extension_reg));
2191 curr_prop->last_def = ref_luid;
2192 curr_prop->first_se_after_last_def = ref_luid;
2194 else
2196 /* Property doesn't exist yet. */
2197 curr_prop = xmalloc (sizeof (struct see_register_properties));
2198 curr_prop->regno = REGNO (dest_extension_reg);
2199 curr_prop->last_def = ref_luid;
2200 curr_prop->first_se_before_any_def = -1;
2201 curr_prop->first_se_after_last_def = ref_luid;
2202 *slot_prop = curr_prop;
2205 /* Insert the def_se into see_pre_extension_hash if it isn't already
2206 there. */
2207 see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
2209 return 1;
2213 /* In this function we set the register properties for the register that is
2214 defined but not extended in the reference.
2215 The properties are defined in see_register_properties structure which is
2216 allocated per basic block and per register.
2217 Later the extension is inserted into the see_pre_extension_hash for the next
2218 phase of the optimization.
2220 This is a subroutine of see_handle_extensions_for_one_ref called
2221 via htab_traverse.
2223 SLOT contains the current def extension instruction.
2224 B is the see_ref_s structure pointer. */
2226 static int
2227 see_set_prop_unmerged_def (void **slot, void *b)
2229 rtx def_se = *slot;
2230 struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
2231 rtx insn = curr_ref_s->insn;
2232 rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
2233 htab_t curr_bb_hash;
2234 struct see_register_properties *curr_prop = NULL;
2235 struct see_register_properties **slot_prop;
2236 struct see_register_properties temp_prop;
2237 int ref_luid = DF_INSN_LUID (insn);
2239 curr_bb_hash = see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)];
2240 if (!curr_bb_hash)
2242 /* The hash doesn't exist yet. Create it. */
2243 curr_bb_hash = htab_create (10,
2244 hash_descriptor_properties,
2245 eq_descriptor_properties,
2246 hash_del_properties);
2247 see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)] = curr_bb_hash;
2250 /* Find the right register properties in the right basic block. */
2251 temp_prop.regno = REGNO (dest_extension_reg);
2252 slot_prop =
2253 (struct see_register_properties **) htab_find_slot (curr_bb_hash,
2254 &temp_prop, INSERT);
2256 if (slot_prop && *slot_prop != NULL)
2258 /* Property already exists. */
2259 curr_prop = *slot_prop;
2260 gcc_assert (curr_prop->regno == REGNO (dest_extension_reg));
2262 curr_prop->last_def = ref_luid;
2263 curr_prop->first_se_after_last_def = -1;
2265 else
2267 /* Property doesn't exist yet. */
2268 curr_prop = xmalloc (sizeof (struct see_register_properties));
2269 curr_prop->regno = REGNO (dest_extension_reg);
2270 curr_prop->last_def = ref_luid;
2271 curr_prop->first_se_before_any_def = -1;
2272 curr_prop->first_se_after_last_def = -1;
2273 *slot_prop = curr_prop;
2276 /* Insert the def_se into see_pre_extension_hash if it isn't already
2277 there. */
2278 see_seek_pre_extension_expr (def_se, DEF_EXTENSION);
2280 return 1;
2284 /* In this function we set the register properties for the register that is used
2285 in the reference.
2286 The properties are defined in see_register_properties structure which is
2287 allocated per basic block and per register.
2288 When a redundant use extension is found it is removed from the hash of the
2289 reference.
2290 If the extension is non redundant it is inserted into the
2291 see_pre_extension_hash for the next phase of the optimization.
2293 This is a subroutine of see_handle_extensions_for_one_ref called
2294 via htab_traverse.
2296 SLOT contains the current use extension instruction.
2297 B is the see_ref_s structure pointer. */
2299 static int
2300 see_set_prop_unmerged_use (void **slot, void *b)
2302 rtx use_se = *slot;
2303 struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
2304 rtx insn = curr_ref_s->insn;
2305 rtx dest_extension_reg = see_get_extension_reg (use_se, 1);
2306 htab_t curr_bb_hash;
2307 struct see_register_properties *curr_prop = NULL;
2308 struct see_register_properties **slot_prop;
2309 struct see_register_properties temp_prop;
2310 bool locally_redundant = false;
2311 int ref_luid = DF_INSN_LUID (insn);
2313 curr_bb_hash = see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)];
2314 if (!curr_bb_hash)
2316 /* The hash doesn't exist yet. Create it. */
2317 curr_bb_hash = htab_create (10,
2318 hash_descriptor_properties,
2319 eq_descriptor_properties,
2320 hash_del_properties);
2321 see_bb_hash_ar[BLOCK_NUM (curr_ref_s->insn)] = curr_bb_hash;
2324 /* Find the right register properties in the right basic block. */
2325 temp_prop.regno = REGNO (dest_extension_reg);
2326 slot_prop =
2327 (struct see_register_properties **) htab_find_slot (curr_bb_hash,
2328 &temp_prop, INSERT);
2330 if (slot_prop && *slot_prop != NULL)
2332 /* Property already exists. */
2333 curr_prop = *slot_prop;
2334 gcc_assert (curr_prop->regno == REGNO (dest_extension_reg));
2337 if (curr_prop->last_def < 0 && curr_prop->first_se_before_any_def < 0)
2338 curr_prop->first_se_before_any_def = ref_luid;
2339 else if (curr_prop->last_def < 0
2340 && curr_prop->first_se_before_any_def >= 0)
2342 /* In this case the extension is locally redundant. */
2343 htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
2344 locally_redundant = true;
2346 else if (curr_prop->last_def >= 0
2347 && curr_prop->first_se_after_last_def < 0)
2348 curr_prop->first_se_after_last_def = ref_luid;
2349 else if (curr_prop->last_def >= 0
2350 && curr_prop->first_se_after_last_def >= 0)
2352 /* In this case the extension is locally redundant. */
2353 htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
2354 locally_redundant = true;
2356 else
2357 gcc_unreachable ();
2359 else
2361 /* Property doesn't exist yet. Create a new one. */
2362 curr_prop = xmalloc (sizeof (struct see_register_properties));
2363 curr_prop->regno = REGNO (dest_extension_reg);
2364 curr_prop->last_def = -1;
2365 curr_prop->first_se_before_any_def = ref_luid;
2366 curr_prop->first_se_after_last_def = -1;
2367 *slot_prop = curr_prop;
2370 /* Insert the use_se into see_pre_extension_hash if it isn't already
2371 there. */
2372 if (!locally_redundant)
2373 see_seek_pre_extension_expr (use_se, USE_EXTENSION);
2374 if (locally_redundant && dump_file)
2376 fprintf (dump_file, "Locally redundant extension:\n");
2377 print_rtl_single (dump_file, use_se);
2379 return 1;
2383 /* Print an extension instruction.
2385 This is a subroutine of see_handle_extensions_for_one_ref called
2386 via htab_traverse.
2387 SLOT contains the extension instruction. */
2389 static int
2390 see_print_one_extension (void **slot, void *b ATTRIBUTE_UNUSED)
2392 rtx def_se = *slot;
2394 gcc_assert (def_se && INSN_P (def_se));
2395 print_rtl_single (dump_file, def_se);
2397 return 1;
2400 /* Function called by note_uses to replace used subexpressions.
2402 X is a pointer to the subexpression and DATA is a pointer to a
2403 see_replace_data structure that contains the data for the replacement. */
2405 static void
2406 see_replace_src (rtx *x, void *data)
2408 struct see_replace_data *d
2409 = (struct see_replace_data *) data;
2411 *x = replace_rtx (*x, d->from, d->to);
2415 /* At this point the pattern is expected to be:
2417 ref: set (dest_reg) (rhs)
2418 def_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
2420 The merge of these two instructions didn't succeed.
2422 We try to generate the pattern:
2423 set (subreg (dest_extension_reg)) (rhs)
2425 We do this in 4 steps:
2426 a. Replace every use of dest_reg with a new pseudo register.
2427 b. Replace every instance of dest_reg with the subreg.
2428 c. Replace every use of the new pseudo register back to dest_reg.
2429 d. Try to recognize and simplify.
2431 If the manipulation failed, leave the original ref but try to generate and
2432 recognize a simple move instruction:
2433 set (subreg (dest_extension_reg)) (dest_reg)
2434 This move instruction will be emitted right after the ref to the instruction
2435 stream and assure the correctness of the code after def_se will be removed.
2437 CURR_REF_S is the current reference.
2438 DEF_SE is the extension that couldn't be merged. */
2440 static void
2441 see_def_extension_not_merged (struct see_ref_s *curr_ref_s, rtx def_se)
2443 struct see_replace_data d;
2444 /* If the original insn was already merged with an extension before,
2445 take the merged one. */
2446 rtx ref = (curr_ref_s->merged_insn) ? curr_ref_s->merged_insn :
2447 curr_ref_s->insn;
2448 rtx merged_ref_next = (curr_ref_s->merged_insn) ?
2449 NEXT_INSN (curr_ref_s->merged_insn): NULL_RTX;
2450 rtx ref_copy = copy_rtx (ref);
2451 rtx source_extension_reg = see_get_extension_reg (def_se, 0);
2452 rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
2453 rtx move_insn = NULL;
2454 rtx set, rhs;
2455 rtx dest_reg, dest_real_reg;
2456 rtx new_pseudo_reg, subreg;
2457 enum machine_mode source_extension_mode = GET_MODE (source_extension_reg);
2458 enum machine_mode dest_mode;
2460 set = single_set (def_se);
2461 gcc_assert (set);
2462 rhs = SET_SRC (set);
2463 gcc_assert (GET_CODE (rhs) == SIGN_EXTEND
2464 || GET_CODE (rhs) == ZERO_EXTEND);
2465 dest_reg = XEXP (rhs, 0);
2466 gcc_assert (REG_P (dest_reg)
2467 || (GET_CODE (dest_reg) == SUBREG
2468 && REG_P (SUBREG_REG (dest_reg))));
2469 dest_real_reg = REG_P (dest_reg) ? dest_reg : SUBREG_REG (dest_reg);
2470 dest_mode = GET_MODE (dest_reg);
2472 subreg = gen_lowpart_SUBREG (dest_mode, dest_extension_reg);
2473 new_pseudo_reg = gen_reg_rtx (source_extension_mode);
2475 /* Step a: Replace every use of dest_real_reg with a new pseudo register. */
2476 d.from = dest_real_reg;
2477 d.to = new_pseudo_reg;
2478 note_uses (&PATTERN (ref_copy), see_replace_src, &d);
2479 /* Step b: Replace every instance of dest_reg with the subreg. */
2480 ref_copy = replace_rtx (ref_copy, dest_reg, subreg);
2482 /* Step c: Replace every use of the new pseudo register back to
2483 dest_real_reg. */
2484 d.from = new_pseudo_reg;
2485 d.to = dest_real_reg;
2486 note_uses (&PATTERN (ref_copy), see_replace_src, &d);
2488 if (rtx_equal_p (PATTERN (ref), PATTERN (ref_copy))
2489 || insn_invalid_p (ref_copy))
2491 /* The manipulation failed. */
2493 /* Create a new copy. */
2494 ref_copy = copy_rtx (ref);
2496 /* Create a simple move instruction that will replace the def_se. */
2497 start_sequence ();
2498 emit_move_insn (subreg, dest_reg);
2499 move_insn = get_insns ();
2500 end_sequence ();
2502 /* Link the manipulated instruction to the newly created move instruction
2503 and to the former created move instructions. */
2504 PREV_INSN (ref_copy) = NULL_RTX;
2505 NEXT_INSN (ref_copy) = move_insn;
2506 PREV_INSN (move_insn) = ref_copy;
2507 NEXT_INSN (move_insn) = merged_ref_next;
2508 if (merged_ref_next != NULL_RTX)
2509 PREV_INSN (merged_ref_next) = move_insn;
2510 curr_ref_s->merged_insn = ref_copy;
2512 if (dump_file)
2514 fprintf (dump_file, "Following def merge failure a move ");
2515 fprintf (dump_file, "insn was added after the ref.\n");
2516 fprintf (dump_file, "Original ref:\n");
2517 print_rtl_single (dump_file, ref);
2518 fprintf (dump_file, "Move insn that was added:\n");
2519 print_rtl_single (dump_file, move_insn);
2521 return;
2524 /* The manipulation succeeded. Store the new manipulated reference. */
2526 /* Try to simplify the new manipulated insn. */
2527 validate_simplify_insn (ref_copy);
2529 /* Create a simple move instruction to assure the correctness of the code. */
2530 start_sequence ();
2531 emit_move_insn (dest_reg, subreg);
2532 move_insn = get_insns ();
2533 end_sequence ();
2535 /* Link the manipulated instruction to the newly created move instruction and
2536 to the former created move instructions. */
2537 PREV_INSN (ref_copy) = NULL_RTX;
2538 NEXT_INSN (ref_copy) = move_insn;
2539 PREV_INSN (move_insn) = ref_copy;
2540 NEXT_INSN (move_insn) = merged_ref_next;
2541 if (merged_ref_next != NULL_RTX)
2542 PREV_INSN (merged_ref_next) = move_insn;
2543 curr_ref_s->merged_insn = ref_copy;
2545 if (dump_file)
2547 fprintf (dump_file, "Following merge failure the ref was transformed!\n");
2548 fprintf (dump_file, "Original ref:\n");
2549 print_rtl_single (dump_file, ref);
2550 fprintf (dump_file, "Transformed ref:\n");
2551 print_rtl_single (dump_file, ref_copy);
2552 fprintf (dump_file, "Move insn that was added:\n");
2553 print_rtl_single (dump_file, move_insn);
2558 /* Merge the reference instruction (ref) with the current use extension.
2560 use_se extends a NARROWmode register to a WIDEmode register.
2561 ref uses the WIDEmode register.
2563 The pattern we try to merge is this:
2564 use_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
2565 ref: use (dest_extension_reg)
2567 where dest_extension_reg and source_extension_reg can be subregs.
2569 The merge is done by generating, simplifying and recognizing the pattern:
2570 use (sign/zero_extend (source_extension_reg))
2572 If ref is too simple (according to see_want_to_be_merged_with_extension ())
2573 we don't try to merge it with use_se and we continue as if the merge failed.
2575 This is a subroutine of see_handle_extensions_for_one_ref called
2576 via htab_traverse.
2577 SLOT contains the current use extension instruction.
2578 B is the see_ref_s structure pointer. */
2580 static int
2581 see_merge_one_use_extension (void **slot, void *b)
2583 struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
2584 rtx use_se = *slot;
2585 rtx ref = (curr_ref_s->merged_insn) ? curr_ref_s->merged_insn :
2586 curr_ref_s->insn;
2587 rtx merged_ref_next = (curr_ref_s->merged_insn) ?
2588 NEXT_INSN (curr_ref_s->merged_insn): NULL_RTX;
2589 rtx ref_copy = copy_rtx (ref);
2590 rtx extension_set = single_set (use_se);
2591 rtx extension_rhs = NULL;
2592 rtx dest_extension_reg = see_get_extension_reg (use_se, 1);
2593 rtx note = NULL;
2594 rtx simplified_note = NULL;
2596 gcc_assert (use_se && curr_ref_s && extension_set);
2598 extension_rhs = SET_SRC (extension_set);
2600 /* In REG_EQUIV and REG_EQUAL notes that mention the register we need to
2601 replace the uses of the dest_extension_reg with the rhs of the extension
2602 instruction. This is necessary since there might not be an extension in
2603 the path between the definition and the note when this optimization is
2604 over. */
2605 note = find_reg_equal_equiv_note (ref_copy);
2606 if (note)
2608 simplified_note = simplify_replace_rtx (XEXP (note, 0),
2609 dest_extension_reg,
2610 extension_rhs);
2611 if (rtx_equal_p (XEXP (note, 0), simplified_note))
2612 /* Replacement failed. Remove the note. */
2613 remove_note (ref_copy, note);
2614 else
2615 set_unique_reg_note (ref_copy, REG_NOTE_KIND (note),
2616 simplified_note);
2619 if (!see_want_to_be_merged_with_extension (ref, use_se, USE_EXTENSION))
2621 /* The use in the reference is too simple. Don't try to merge. */
2622 if (dump_file)
2624 fprintf (dump_file, "Use merge skipped!\n");
2625 fprintf (dump_file, "Original instructions:\n");
2626 print_rtl_single (dump_file, use_se);
2627 print_rtl_single (dump_file, ref);
2629 /* Don't remove the current use_se from the use_se_hash and continue to
2630 the next extension. */
2631 return 1;
2634 validate_replace_src_group (dest_extension_reg, extension_rhs, ref_copy);
2636 if (!num_changes_pending ())
2637 /* In this case this is not a real use (the only use is/was in the notes
2638 list). Remove the use extension from the hash. This will prevent it
2639 from been emitted in the first place. */
2641 if (dump_file)
2643 fprintf (dump_file, "Use extension not necessary before:\n");
2644 print_rtl_single (dump_file, ref);
2646 htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
2647 PREV_INSN (ref_copy) = NULL_RTX;
2648 NEXT_INSN (ref_copy) = merged_ref_next;
2649 if (merged_ref_next != NULL_RTX)
2650 PREV_INSN (merged_ref_next) = ref_copy;
2651 curr_ref_s->merged_insn = ref_copy;
2652 return 1;
2655 if (!apply_change_group ())
2657 /* The merge failed. */
2658 if (dump_file)
2660 fprintf (dump_file, "Use merge failed!\n");
2661 fprintf (dump_file, "Original instructions:\n");
2662 print_rtl_single (dump_file, use_se);
2663 print_rtl_single (dump_file, ref);
2665 /* Don't remove the current use_se from the use_se_hash and continue to
2666 the next extension. */
2667 return 1;
2670 /* The merge succeeded! */
2672 /* Try to simplify the new merged insn. */
2673 validate_simplify_insn (ref_copy);
2675 PREV_INSN (ref_copy) = NULL_RTX;
2676 NEXT_INSN (ref_copy) = merged_ref_next;
2677 if (merged_ref_next != NULL_RTX)
2678 PREV_INSN (merged_ref_next) = ref_copy;
2679 curr_ref_s->merged_insn = ref_copy;
2681 if (dump_file)
2683 fprintf (dump_file, "Use merge succeeded!\n");
2684 fprintf (dump_file, "Original instructions:\n");
2685 print_rtl_single (dump_file, use_se);
2686 print_rtl_single (dump_file, ref);
2687 fprintf (dump_file, "Merged instruction:\n");
2688 print_rtl_single (dump_file, ref_copy);
2691 /* Remove the current use_se from the use_se_hash. This will prevent it from
2692 been emitted in the first place. */
2693 htab_clear_slot (curr_ref_s->use_se_hash, (PTR *)slot);
2694 return 1;
2698 /* Merge the reference instruction (ref) with the extension that follows it
2699 in the same basic block (def_se).
2700 ref sets a NARROWmode register and def_se extends it to WIDEmode register.
2702 The pattern we try to merge is this:
2703 ref: set (dest_reg) (rhs)
2704 def_se: set (dest_extension_reg) (sign/zero_extend (source_extension_reg))
2706 where dest_reg and source_extension_reg can both be subregs (together)
2707 and (REGNO (dest_reg) == REGNO (source_extension_reg))
2709 The merge is done by generating, simplifying and recognizing the pattern:
2710 set (dest_extension_reg) (sign/zero_extend (rhs))
2711 If ref is a parallel instruction we just replace the relevant set in it.
2713 If ref is too simple (according to see_want_to_be_merged_with_extension ())
2714 we don't try to merge it with def_se and we continue as if the merge failed.
2716 This is a subroutine of see_handle_extensions_for_one_ref called
2717 via htab_traverse.
2719 SLOT contains the current def extension instruction.
2720 B is the see_ref_s structure pointer. */
2722 static int
2723 see_merge_one_def_extension (void **slot, void *b)
2725 struct see_ref_s *curr_ref_s = (struct see_ref_s *) b;
2726 rtx def_se = *slot;
2727 /* If the original insn was already merged with an extension before,
2728 take the merged one. */
2729 rtx ref = (curr_ref_s->merged_insn) ? curr_ref_s->merged_insn :
2730 curr_ref_s->insn;
2731 rtx merged_ref_next = (curr_ref_s->merged_insn) ?
2732 NEXT_INSN (curr_ref_s->merged_insn): NULL_RTX;
2733 rtx ref_copy = copy_rtx (ref);
2734 rtx new_set = NULL;
2735 rtx source_extension_reg = see_get_extension_reg (def_se, 0);
2736 rtx dest_extension_reg = see_get_extension_reg (def_se, 1);
2737 rtx move_insn, *rtx_slot, subreg;
2738 rtx temp_extension = NULL;
2739 rtx simplified_temp_extension = NULL;
2740 rtx *pat;
2741 enum rtx_code code;
2742 enum rtx_code extension_code;
2743 enum machine_mode source_extension_mode;
2744 enum machine_mode source_mode;
2745 enum machine_mode dest_extension_mode;
2746 bool merge_success = false;
2747 int i;
2749 gcc_assert (def_se
2750 && INSN_P (def_se)
2751 && curr_ref_s
2752 && ref
2753 && INSN_P (ref));
2755 if (!see_want_to_be_merged_with_extension (ref, def_se, DEF_EXTENSION))
2757 /* The definition in the reference is too simple. Don't try to merge. */
2758 if (dump_file)
2760 fprintf (dump_file, "Def merge skipped!\n");
2761 fprintf (dump_file, "Original instructions:\n");
2762 print_rtl_single (dump_file, ref);
2763 print_rtl_single (dump_file, def_se);
2766 see_def_extension_not_merged (curr_ref_s, def_se);
2767 /* Continue to the next extension. */
2768 return 1;
2771 extension_code = see_get_extension_data (def_se, &source_mode);
2773 /* Try to merge and simplify the extension. */
2774 source_extension_mode = GET_MODE (source_extension_reg);
2775 dest_extension_mode = GET_MODE (dest_extension_reg);
2777 pat = &PATTERN (ref_copy);
2778 code = GET_CODE (*pat);
2780 if (code == PARALLEL)
2782 bool need_to_apply_change = false;
2784 for (i = 0; i < XVECLEN (*pat, 0); i++)
2786 rtx *sub = &XVECEXP (*pat, 0, i);
2788 if (GET_CODE (*sub) == SET
2789 && GET_MODE (SET_SRC (*sub)) != VOIDmode
2790 && GET_MODE (SET_DEST (*sub)) == source_mode
2791 && ((REG_P (SET_DEST (*sub))
2792 && REGNO (SET_DEST (*sub)) == REGNO (source_extension_reg))
2793 || (GET_CODE (SET_DEST (*sub)) == SUBREG
2794 && REG_P (SUBREG_REG (SET_DEST (*sub)))
2795 && (REGNO (SUBREG_REG (SET_DEST (*sub))) ==
2796 REGNO (source_extension_reg)))))
2798 rtx orig_src = SET_SRC (*sub);
2800 if (extension_code == SIGN_EXTEND)
2801 temp_extension = gen_rtx_SIGN_EXTEND (dest_extension_mode,
2802 orig_src);
2803 else
2804 temp_extension = gen_rtx_ZERO_EXTEND (dest_extension_mode,
2805 orig_src);
2806 simplified_temp_extension = simplify_rtx (temp_extension);
2807 temp_extension =
2808 (simplified_temp_extension) ? simplified_temp_extension :
2809 temp_extension;
2810 new_set = gen_rtx_SET (VOIDmode, dest_extension_reg,
2811 temp_extension);
2812 validate_change (ref_copy, sub, new_set, 1);
2813 need_to_apply_change = true;
2816 if (need_to_apply_change)
2817 if (apply_change_group ())
2818 merge_success = true;
2820 else if (code == SET
2821 && GET_MODE (SET_SRC (*pat)) != VOIDmode
2822 && GET_MODE (SET_DEST (*pat)) == source_mode
2823 && ((REG_P (SET_DEST (*pat))
2824 && REGNO (SET_DEST (*pat)) == REGNO (source_extension_reg))
2825 || (GET_CODE (SET_DEST (*pat)) == SUBREG
2826 && REG_P (SUBREG_REG (SET_DEST (*pat)))
2827 && (REGNO (SUBREG_REG (SET_DEST (*pat))) ==
2828 REGNO (source_extension_reg)))))
2830 rtx orig_src = SET_SRC (*pat);
2832 if (extension_code == SIGN_EXTEND)
2833 temp_extension = gen_rtx_SIGN_EXTEND (dest_extension_mode, orig_src);
2834 else
2835 temp_extension = gen_rtx_ZERO_EXTEND (dest_extension_mode, orig_src);
2836 simplified_temp_extension = simplify_rtx (temp_extension);
2837 temp_extension = (simplified_temp_extension) ? simplified_temp_extension :
2838 temp_extension;
2839 new_set = gen_rtx_SET (VOIDmode, dest_extension_reg, temp_extension);
2840 if (validate_change (ref_copy, pat, new_set, 0))
2841 merge_success = true;
2843 if (!merge_success)
2845 /* The merge failed. */
2846 if (dump_file)
2848 fprintf (dump_file, "Def merge failed!\n");
2849 fprintf (dump_file, "Original instructions:\n");
2850 print_rtl_single (dump_file, ref);
2851 print_rtl_single (dump_file, def_se);
2854 see_def_extension_not_merged (curr_ref_s, def_se);
2855 /* Continue to the next extension. */
2856 return 1;
2859 /* The merge succeeded! */
2861 /* Create a simple move instruction to assure the correctness of the code. */
2862 subreg = gen_lowpart_SUBREG (source_extension_mode, dest_extension_reg);
2863 start_sequence ();
2864 emit_move_insn (source_extension_reg, subreg);
2865 move_insn = get_insns ();
2866 end_sequence ();
2868 /* Link the merged instruction to the newly created move instruction and
2869 to the former created move instructions. */
2870 PREV_INSN (ref_copy) = NULL_RTX;
2871 NEXT_INSN (ref_copy) = move_insn;
2872 PREV_INSN (move_insn) = ref_copy;
2873 NEXT_INSN (move_insn) = merged_ref_next;
2874 if (merged_ref_next != NULL_RTX)
2875 PREV_INSN (merged_ref_next) = move_insn;
2876 curr_ref_s->merged_insn = ref_copy;
2878 if (dump_file)
2880 fprintf (dump_file, "Def merge succeeded!\n");
2881 fprintf (dump_file, "Original instructions:\n");
2882 print_rtl_single (dump_file, ref);
2883 print_rtl_single (dump_file, def_se);
2884 fprintf (dump_file, "Merged instruction:\n");
2885 print_rtl_single (dump_file, ref_copy);
2886 fprintf (dump_file, "Move instruction that was added:\n");
2887 print_rtl_single (dump_file, move_insn);
2890 /* Remove the current def_se from the unmerged_def_se_hash and insert it to
2891 the merged_def_se_hash. */
2892 htab_clear_slot (curr_ref_s->unmerged_def_se_hash, (PTR *)slot);
2893 if (!curr_ref_s->merged_def_se_hash)
2894 curr_ref_s->merged_def_se_hash = htab_create (10,
2895 hash_descriptor_extension,
2896 eq_descriptor_extension,
2897 NULL);
2898 rtx_slot = (rtx *) htab_find_slot (curr_ref_s->merged_def_se_hash,
2899 dest_extension_reg, INSERT);
2900 gcc_assert (*rtx_slot == NULL);
2901 *rtx_slot = def_se;
2903 return 1;
2907 /* Try to eliminate extensions in this order:
2908 a. Try to merge only the def extensions, one by one.
2909 b. Try to merge only the use extensions, one by one.
2911 TODO:
2912 Try to merge any couple of use extensions simultaneously.
2913 Try to merge any def extension with one or two uses extensions
2914 simultaneously.
2916 After all the merges are done, update the register properties for the basic
2917 block and eliminate locally redundant use extensions.
2919 This is a subroutine of see_merge_and_eliminate_extensions called
2920 via splay_tree_foreach.
2921 STN is the current node in the see_bb_splay_ar[i] splay tree. It holds a
2922 see_ref_s structure. */
2924 static int
2925 see_handle_extensions_for_one_ref (splay_tree_node stn,
2926 void *data ATTRIBUTE_UNUSED)
2928 htab_t use_se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
2929 htab_t unmerged_def_se_hash =
2930 ((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
2931 htab_t merged_def_se_hash;
2932 rtx ref = ((struct see_ref_s *) (stn->value))->insn;
2934 if (dump_file)
2936 fprintf (dump_file, "Handling ref:\n");
2937 print_rtl_single (dump_file, ref);
2940 /* a. Try to eliminate only def extensions, one by one. */
2941 if (unmerged_def_se_hash)
2942 htab_traverse_noresize (unmerged_def_se_hash, see_merge_one_def_extension,
2943 (PTR) (stn->value));
2945 if (use_se_hash)
2946 /* b. Try to eliminate only use extensions, one by one. */
2947 htab_traverse_noresize (use_se_hash, see_merge_one_use_extension,
2948 (PTR) (stn->value));
2950 merged_def_se_hash = ((struct see_ref_s *) (stn->value))->merged_def_se_hash;
2952 if (dump_file)
2954 fprintf (dump_file, "The hashes of the current reference:\n");
2955 if (unmerged_def_se_hash)
2957 fprintf (dump_file, "unmerged_def_se_hash:\n");
2958 htab_traverse (unmerged_def_se_hash, see_print_one_extension, NULL);
2960 if (merged_def_se_hash)
2962 fprintf (dump_file, "merged_def_se_hash:\n");
2963 htab_traverse (merged_def_se_hash, see_print_one_extension, NULL);
2965 if (use_se_hash)
2967 fprintf (dump_file, "use_se_hash:\n");
2968 htab_traverse (use_se_hash, see_print_one_extension, NULL);
2972 /* Now that all the merges are done, update the register properties of the
2973 basic block and eliminate locally redundant extensions.
2974 It is important that we first traverse the use extensions hash and
2975 afterwards the def extensions hashes. */
2977 if (use_se_hash)
2978 htab_traverse_noresize (use_se_hash, see_set_prop_unmerged_use,
2979 (PTR) (stn->value));
2981 if (unmerged_def_se_hash)
2982 htab_traverse (unmerged_def_se_hash, see_set_prop_unmerged_def,
2983 (PTR) (stn->value));
2985 if (merged_def_se_hash)
2986 htab_traverse (merged_def_se_hash, see_set_prop_merged_def,
2987 (PTR) (stn->value));
2989 /* Continue to the next definition. */
2990 return 0;
2994 /* Phase 2 top level function.
2995 In this phase, we try to merge def extensions and use extensions with their
2996 references, and eliminate redundant extensions in the same basic block.
2997 We also gather information for the next phases. */
2999 static void
3000 see_merge_and_eliminate_extensions (void)
3002 int i = 0;
3004 if (dump_file)
3005 fprintf (dump_file,
3006 "* Phase 2: Merge and eliminate locally redundant extensions. *\n");
3008 /* Traverse over all the splay trees of the basic blocks. */
3009 for (i = 0; i < last_bb; i++)
3011 if (see_bb_splay_ar[i])
3013 if (dump_file)
3014 fprintf (dump_file, "Handling references for bb %d\n", i);
3015 /* Traverse over all the references in the basic block in forward
3016 order. */
3017 splay_tree_foreach (see_bb_splay_ar[i],
3018 see_handle_extensions_for_one_ref, NULL);
3024 /* Phase 1 implementation: Propagate extensions to uses. */
3026 /* Insert REF_INSN into the splay tree of its basic block.
3027 SE_INSN is the extension to store in the proper hash according to TYPE.
3029 Return true if everything went well.
3030 Otherwise, return false (this will cause the optimization to be aborted). */
3032 static bool
3033 see_store_reference_and_extension (rtx ref_insn, rtx se_insn,
3034 enum extension_type type)
3036 rtx *rtx_slot;
3037 int curr_bb_num;
3038 splay_tree_node stn = NULL;
3039 htab_t se_hash = NULL;
3040 struct see_ref_s *ref_s = NULL;
3042 /* Check the arguments. */
3043 gcc_assert (ref_insn && se_insn);
3044 if (!see_bb_splay_ar)
3045 return false;
3047 curr_bb_num = BLOCK_NUM (ref_insn);
3048 gcc_assert (curr_bb_num < last_bb && curr_bb_num >= 0);
3050 /* Insert the reference to the splay tree of its basic block. */
3051 if (!see_bb_splay_ar[curr_bb_num])
3052 /* The splay tree for this block doesn't exist yet, create it. */
3053 see_bb_splay_ar[curr_bb_num] = splay_tree_new (splay_tree_compare_ints,
3054 NULL, see_free_ref_s);
3055 else
3056 /* Splay tree already exists, check if the current reference is already
3057 in it. */
3059 stn = splay_tree_lookup (see_bb_splay_ar[curr_bb_num],
3060 DF_INSN_LUID (ref_insn));
3061 if (stn)
3062 switch (type)
3064 case EXPLICIT_DEF_EXTENSION:
3065 se_hash =
3066 ((struct see_ref_s *) (stn->value))->unmerged_def_se_hash;
3067 if (!se_hash)
3069 se_hash = htab_create (10,
3070 hash_descriptor_extension,
3071 eq_descriptor_extension,
3072 NULL);
3073 ((struct see_ref_s *) (stn->value))->unmerged_def_se_hash =
3074 se_hash;
3076 break;
3077 case IMPLICIT_DEF_EXTENSION:
3078 se_hash = ((struct see_ref_s *) (stn->value))->merged_def_se_hash;
3079 if (!se_hash)
3081 se_hash = htab_create (10,
3082 hash_descriptor_extension,
3083 eq_descriptor_extension,
3084 NULL);
3085 ((struct see_ref_s *) (stn->value))->merged_def_se_hash =
3086 se_hash;
3088 break;
3089 case USE_EXTENSION:
3090 se_hash = ((struct see_ref_s *) (stn->value))->use_se_hash;
3091 if (!se_hash)
3093 se_hash = htab_create (10,
3094 hash_descriptor_extension,
3095 eq_descriptor_extension,
3096 NULL);
3097 ((struct see_ref_s *) (stn->value))->use_se_hash = se_hash;
3099 break;
3100 default:
3101 gcc_unreachable ();
3105 /* Initialize a new see_ref_s structure and insert it to the splay
3106 tree. */
3107 if (!stn)
3109 ref_s = xmalloc (sizeof (struct see_ref_s));
3110 ref_s->luid = DF_INSN_LUID (ref_insn);
3111 ref_s->insn = ref_insn;
3112 ref_s->merged_insn = NULL;
3114 /* Initialize the hashes. */
3115 switch (type)
3117 case EXPLICIT_DEF_EXTENSION:
3118 ref_s->unmerged_def_se_hash = htab_create (10,
3119 hash_descriptor_extension,
3120 eq_descriptor_extension,
3121 NULL);
3122 se_hash = ref_s->unmerged_def_se_hash;
3123 ref_s->merged_def_se_hash = NULL;
3124 ref_s->use_se_hash = NULL;
3125 break;
3126 case IMPLICIT_DEF_EXTENSION:
3127 ref_s->merged_def_se_hash = htab_create (10,
3128 hash_descriptor_extension,
3129 eq_descriptor_extension,
3130 NULL);
3131 se_hash = ref_s->merged_def_se_hash;
3132 ref_s->unmerged_def_se_hash = NULL;
3133 ref_s->use_se_hash = NULL;
3134 break;
3135 case USE_EXTENSION:
3136 ref_s->use_se_hash = htab_create (10,
3137 hash_descriptor_extension,
3138 eq_descriptor_extension,
3139 NULL);
3140 se_hash = ref_s->use_se_hash;
3141 ref_s->unmerged_def_se_hash = NULL;
3142 ref_s->merged_def_se_hash = NULL;
3143 break;
3144 default:
3145 gcc_unreachable ();
3149 /* Insert the new extension instruction into the correct se_hash of the
3150 current reference. */
3151 rtx_slot = (rtx *) htab_find_slot (se_hash, se_insn, INSERT);
3152 if (*rtx_slot != NULL)
3154 gcc_assert (type == USE_EXTENSION);
3155 gcc_assert (rtx_equal_p (PATTERN (*rtx_slot), PATTERN (se_insn)));
3157 else
3158 *rtx_slot = se_insn;
3160 /* If this is a new reference, insert it into the splay_tree. */
3161 if (!stn)
3162 splay_tree_insert (see_bb_splay_ar[curr_bb_num],
3163 DF_INSN_LUID (ref_insn), (splay_tree_value) ref_s);
3164 return true;
3168 /* Go over all the defs, for each relevant definition (defined below) store its
3169 instruction as a reference.
3171 A definition is relevant if its root has
3172 ((entry_type == SIGN_EXTENDED_DEF) || (entry_type == ZERO_EXTENDED_DEF)) and
3173 his source_mode is not narrower then the roots source_mode.
3175 Return the number of relevant defs or negative number if something bad had
3176 happened and the optimization should be aborted. */
3178 static int
3179 see_handle_relevant_defs (struct df_ref *ref, rtx insn)
3181 struct web_entry *root_entry = NULL;
3182 rtx se_insn = NULL;
3183 enum rtx_code extension_code;
3184 rtx reg = DF_REF_REAL_REG (ref);
3185 rtx ref_insn = NULL;
3186 unsigned int i = DF_REF_ID (ref);
3188 root_entry = unionfind_root (&def_entry[DF_REF_ID (ref)]);
3190 if (ENTRY_EI (root_entry)->relevancy != SIGN_EXTENDED_DEF
3191 && ENTRY_EI (root_entry)->relevancy != ZERO_EXTENDED_DEF)
3192 /* The current web is not relevant. Continue to the next def. */
3193 return 0;
3195 if (root_entry->reg)
3196 /* It isn't possible to have two different register for the same
3197 web. */
3198 gcc_assert (rtx_equal_p (root_entry->reg, reg));
3199 else
3200 root_entry->reg = reg;
3202 /* The current definition is an EXTENDED_DEF or a definition that its
3203 source_mode is narrower then its web's source_mode.
3204 This means that we need to generate the implicit extension explicitly
3205 and store it in the current reference's merged_def_se_hash. */
3206 if (ENTRY_EI (&def_entry[i])->local_relevancy == EXTENDED_DEF
3207 || (ENTRY_EI (&def_entry[i])->local_source_mode <
3208 ENTRY_EI (root_entry)->source_mode))
3211 if (ENTRY_EI (root_entry)->relevancy == SIGN_EXTENDED_DEF)
3212 extension_code = SIGN_EXTEND;
3213 else
3214 extension_code = ZERO_EXTEND;
3216 se_insn =
3217 see_gen_normalized_extension (reg, extension_code,
3218 ENTRY_EI (root_entry)->source_mode);
3220 /* This is a dummy extension, mark it as deleted. */
3221 INSN_DELETED_P (se_insn) = 1;
3223 if (!see_store_reference_and_extension (insn, se_insn,
3224 IMPLICIT_DEF_EXTENSION))
3225 /* Something bad happened. Abort the optimization. */
3226 return -1;
3227 return 1;
3230 ref_insn = PREV_INSN (insn);
3231 gcc_assert (BLOCK_NUM (ref_insn) == BLOCK_NUM (insn));
3233 if (!see_store_reference_and_extension (ref_insn, insn,
3234 EXPLICIT_DEF_EXTENSION))
3235 /* Something bad happened. Abort the optimization. */
3236 return -1;
3238 return 0;
3241 /* Go over all the uses, for each use in relevant web store its instruction as
3242 a reference and generate an extension before it.
3244 Return the number of relevant uses or negative number if something bad had
3245 happened and the optimization should be aborted. */
3247 static int
3248 see_handle_relevant_uses (struct df_ref *ref, rtx insn)
3250 struct web_entry *root_entry = NULL;
3251 rtx se_insn = NULL;
3252 enum rtx_code extension_code;
3253 rtx reg = DF_REF_REAL_REG (ref);
3255 root_entry = unionfind_root (&use_entry[DF_REF_ID (ref)]);
3257 if (ENTRY_EI (root_entry)->relevancy != SIGN_EXTENDED_DEF
3258 && ENTRY_EI (root_entry)->relevancy != ZERO_EXTENDED_DEF)
3259 /* The current web is not relevant. Continue to the next use. */
3260 return 0;
3262 if (root_entry->reg)
3263 /* It isn't possible to have two different register for the same
3264 web. */
3265 gcc_assert (rtx_equal_p (root_entry->reg, reg));
3266 else
3267 root_entry->reg = reg;
3269 /* Generate the use extension. */
3270 if (ENTRY_EI (root_entry)->relevancy == SIGN_EXTENDED_DEF)
3271 extension_code = SIGN_EXTEND;
3272 else
3273 extension_code = ZERO_EXTEND;
3275 se_insn =
3276 see_gen_normalized_extension (reg, extension_code,
3277 ENTRY_EI (root_entry)->source_mode);
3278 if (!se_insn)
3279 /* This is very bad, abort the transformation. */
3280 return -1;
3282 if (!see_store_reference_and_extension (insn, se_insn,
3283 USE_EXTENSION))
3284 /* Something bad happened. Abort the optimization. */
3285 return -1;
3286 return 1;
3289 static int
3290 see_handle_relevant_refs (void)
3292 int num_relevant_refs = 0;
3293 basic_block bb;
3295 FOR_ALL_BB (bb)
3297 rtx insn;
3298 FOR_BB_INSNS (bb, insn)
3300 unsigned int uid = INSN_UID (insn);
3302 if (INSN_P (insn))
3304 struct df_ref **use_rec;
3305 struct df_ref **def_rec;
3307 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3309 struct df_ref *use = *use_rec;
3310 int result = see_handle_relevant_uses (use, insn);
3311 if (result == -1)
3312 return -1;
3313 num_relevant_refs += result;
3315 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
3317 struct df_ref *use = *use_rec;
3318 int result = see_handle_relevant_uses (use, insn);
3319 if (result == -1)
3320 return -1;
3321 num_relevant_refs += result;
3323 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3325 struct df_ref *def = *def_rec;
3326 int result = see_handle_relevant_defs (def, insn);
3327 if (result == -1)
3328 return -1;
3329 num_relevant_refs += result;
3334 return num_relevant_refs;
3338 /* Initialized the use_entry field for REF in INSN at INDEX with ET. */
3340 static void
3341 see_update_uses_relevancy (rtx insn, struct df_ref *ref,
3342 enum entry_type et, unsigned int index)
3344 struct see_entry_extra_info *curr_entry_extra_info;
3346 if (dump_file)
3348 rtx reg = DF_REF_REAL_REG (ref);
3349 fprintf (dump_file, "u%i insn %i reg %i ",
3350 index, (insn ? INSN_UID (insn) : -1), REGNO (reg));
3351 if (et == NOT_RELEVANT)
3352 fprintf (dump_file, "NOT RELEVANT \n");
3353 else
3354 fprintf (dump_file, "RELEVANT USE \n");
3357 DF_REF_ID (ref) = index;
3358 curr_entry_extra_info = xmalloc (sizeof (struct see_entry_extra_info));
3359 curr_entry_extra_info->relevancy = et;
3360 curr_entry_extra_info->local_relevancy = et;
3361 use_entry[index].extra_info = curr_entry_extra_info;
3362 use_entry[index].reg = NULL;
3363 use_entry[index].pred = NULL;
3367 /* A definition in a candidate for this optimization only if its pattern is
3368 recognized as relevant in this function.
3369 INSN is the instruction to be recognized.
3371 - If this is the pattern of a common sign extension after definition:
3372 PREV_INSN (INSN): def (reg:NARROWmode r)
3373 INSN: set ((reg:WIDEmode r')
3374 (sign_extend:WIDEmode (reg:NARROWmode r)))
3375 return SIGN_EXTENDED_DEF and set SOURCE_MODE to NARROWmode.
3377 - If this is the pattern of a common zero extension after definition:
3378 PREV_INSN (INSN): def (reg:NARROWmode r)
3379 INSN: set ((reg:WIDEmode r')
3380 (zero_extend:WIDEmode (reg:NARROWmode r)))
3381 return ZERO_EXTENDED_DEF and set SOURCE_MODE to NARROWmode.
3383 - Otherwise,
3385 For the pattern:
3386 INSN: set ((reg:WIDEmode r) (sign_extend:WIDEmode (...expr...)))
3387 return EXTENDED_DEF and set SOURCE_MODE to the mode of expr.
3389 For the pattern:
3390 INSN: set ((reg:WIDEmode r) (zero_extend:WIDEmode (...expr...)))
3391 return EXTENDED_DEF and set SOURCE_MODE_UNSIGNED to the mode of expr.
3393 For the pattern:
3394 INSN: set ((reg:WIDEmode r) (CONST_INT (...)))
3395 return EXTENDED_DEF and set SOURCE_MODE(_UNSIGNED) to the narrowest mode that
3396 is implicitly sign(zero) extended to WIDEmode in the INSN.
3398 - FIXME: Extensions that are not adjacent to their definition and EXTENDED_DEF
3399 that is part of a PARALLEL instruction are not handled.
3400 These restriction can be relaxed. */
3402 static enum entry_type
3403 see_analyze_one_def (rtx insn, enum machine_mode *source_mode,
3404 enum machine_mode *source_mode_unsigned)
3406 enum rtx_code extension_code;
3407 rtx rhs = NULL;
3408 rtx lhs = NULL;
3409 rtx set = NULL;
3410 rtx source_register = NULL;
3411 rtx prev_insn = NULL;
3412 rtx next_insn = NULL;
3413 enum machine_mode mode;
3414 enum machine_mode next_source_mode;
3415 HOST_WIDE_INT val = 0;
3416 HOST_WIDE_INT val2 = 0;
3417 int i = 0;
3419 *source_mode = MAX_MACHINE_MODE;
3420 *source_mode_unsigned = MAX_MACHINE_MODE;
3422 extension_code = see_get_extension_data (insn, source_mode);
3423 switch (extension_code)
3425 case SIGN_EXTEND:
3426 case ZERO_EXTEND:
3427 source_register = see_get_extension_reg (insn, 0);
3428 /* FIXME: This restriction can be relaxed. The only thing that is
3429 important is that the reference would be inside the same basic block
3430 as the extension. */
3431 prev_insn = PREV_INSN (insn);
3432 if (!prev_insn || !INSN_P (prev_insn))
3433 return NOT_RELEVANT;
3435 if (!reg_set_between_p (source_register, PREV_INSN (prev_insn), insn))
3436 return NOT_RELEVANT;
3438 if (find_reg_note (prev_insn, REG_LIBCALL, NULL_RTX))
3439 return NOT_RELEVANT;
3441 if (find_reg_note (prev_insn, REG_RETVAL, NULL_RTX))
3442 return NOT_RELEVANT;
3444 /* If we can't use copy_rtx on the reference it can't be a reference. */
3445 if (GET_CODE (PATTERN (prev_insn)) == PARALLEL
3446 && asm_noperands (PATTERN (prev_insn)) >= 0)
3447 return NOT_RELEVANT;
3449 /* Now, check if this extension is a reference itself. If so, it is not
3450 relevant. Handling this extension as relevant would make things much
3451 more complicated. */
3452 next_insn = NEXT_INSN (insn);
3453 if (next_insn
3454 && INSN_P (next_insn)
3455 && (see_get_extension_data (next_insn, &next_source_mode) !=
3456 NOT_RELEVANT))
3458 rtx curr_dest_register = see_get_extension_reg (insn, 1);
3459 rtx next_source_register = see_get_extension_reg (next_insn, 0);
3461 if (REGNO (curr_dest_register) == REGNO (next_source_register))
3462 return NOT_RELEVANT;
3465 if (extension_code == SIGN_EXTEND)
3466 return SIGN_EXTENDED_DEF;
3467 else
3468 return ZERO_EXTENDED_DEF;
3470 case UNKNOWN:
3471 /* This may still be an EXTENDED_DEF. */
3473 /* FIXME: This restriction can be relaxed. It is possible to handle
3474 PARALLEL insns too. */
3475 set = single_set (insn);
3476 if (!set)
3477 return NOT_RELEVANT;
3478 rhs = SET_SRC (set);
3479 lhs = SET_DEST (set);
3481 /* Don't handle extensions to something other then register or
3482 subregister. */
3483 if (!REG_P (lhs) && !SUBREG_REG (lhs))
3484 return NOT_RELEVANT;
3486 switch (GET_CODE (rhs))
3488 case SIGN_EXTEND:
3489 *source_mode = GET_MODE (XEXP (rhs, 0));
3490 *source_mode_unsigned = MAX_MACHINE_MODE;
3491 return EXTENDED_DEF;
3492 case ZERO_EXTEND:
3493 *source_mode = MAX_MACHINE_MODE;
3494 *source_mode_unsigned = GET_MODE (XEXP (rhs, 0));
3495 return EXTENDED_DEF;
3496 case CONST_INT:
3498 val = INTVAL (rhs);
3500 /* Find the narrowest mode, val could fit into. */
3501 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT), i = 0;
3502 GET_MODE_BITSIZE (mode) < BITS_PER_WORD;
3503 mode = GET_MODE_WIDER_MODE (mode), i++)
3505 val2 = trunc_int_for_mode (val, mode);
3506 if (val2 == val && *source_mode == MAX_MACHINE_MODE)
3507 *source_mode = mode;
3508 if (val == (val & (HOST_WIDE_INT)GET_MODE_MASK (mode))
3509 && *source_mode_unsigned == MAX_MACHINE_MODE)
3510 *source_mode_unsigned = mode;
3511 if (*source_mode != MAX_MACHINE_MODE
3512 && *source_mode_unsigned !=MAX_MACHINE_MODE)
3513 return EXTENDED_DEF;
3515 if (*source_mode != MAX_MACHINE_MODE
3516 || *source_mode_unsigned !=MAX_MACHINE_MODE)
3517 return EXTENDED_DEF;
3518 return NOT_RELEVANT;
3519 default:
3520 return NOT_RELEVANT;
3522 default:
3523 gcc_unreachable ();
3528 /* Initialized the def_entry field for REF in INSN at INDEX with ET. */
3530 static void
3531 see_update_defs_relevancy (rtx insn, struct df_ref *ref,
3532 enum entry_type et,
3533 enum machine_mode source_mode,
3534 enum machine_mode source_mode_unsigned,
3535 unsigned int index)
3537 struct see_entry_extra_info *curr_entry_extra_info
3538 = xmalloc (sizeof (struct see_entry_extra_info));
3539 curr_entry_extra_info->relevancy = et;
3540 curr_entry_extra_info->local_relevancy = et;
3542 DF_REF_ID (ref) = index;
3544 if (et != EXTENDED_DEF)
3546 curr_entry_extra_info->source_mode = source_mode;
3547 curr_entry_extra_info->local_source_mode = source_mode;
3549 else
3551 curr_entry_extra_info->source_mode_signed = source_mode;
3552 curr_entry_extra_info->source_mode_unsigned = source_mode_unsigned;
3554 def_entry[index].extra_info = curr_entry_extra_info;
3555 def_entry[index].reg = NULL;
3556 def_entry[index].pred = NULL;
3558 if (dump_file)
3560 rtx reg = DF_REF_REAL_REG (ref);
3561 if (et == NOT_RELEVANT)
3563 fprintf (dump_file, "d%i insn %i reg %i ",
3564 index, (insn ? INSN_UID (insn) : -1), REGNO (reg));
3565 fprintf (dump_file, "NOT RELEVANT \n");
3567 else
3569 fprintf (dump_file, "d%i insn %i reg %i ",
3570 index, INSN_UID (insn), REGNO (reg));
3571 fprintf (dump_file, "RELEVANT - ");
3572 switch (et)
3574 case SIGN_EXTENDED_DEF :
3575 fprintf (dump_file, "SIGN_EXTENDED_DEF, source_mode = %s\n",
3576 GET_MODE_NAME (source_mode));
3577 break;
3578 case ZERO_EXTENDED_DEF :
3579 fprintf (dump_file, "ZERO_EXTENDED_DEF, source_mode = %s\n",
3580 GET_MODE_NAME (source_mode));
3581 break;
3582 case EXTENDED_DEF :
3583 fprintf (dump_file, "EXTENDED_DEF, ");
3584 if (source_mode != MAX_MACHINE_MODE
3585 && source_mode_unsigned != MAX_MACHINE_MODE)
3587 fprintf (dump_file, "positive const, ");
3588 fprintf (dump_file, "source_mode_signed = %s, ",
3589 GET_MODE_NAME (source_mode));
3590 fprintf (dump_file, "source_mode_unsigned = %s\n",
3591 GET_MODE_NAME (source_mode_unsigned));
3593 else if (source_mode != MAX_MACHINE_MODE)
3594 fprintf (dump_file, "source_mode_signed = %s\n",
3595 GET_MODE_NAME (source_mode));
3596 else
3597 fprintf (dump_file, "source_mode_unsigned = %s\n",
3598 GET_MODE_NAME (source_mode_unsigned));
3599 break;
3600 default :
3601 gcc_unreachable ();
3608 /* Updates the relevancy of all the uses and all defs.
3610 The information of the u'th use is stored in use_entry[u] and the
3611 information of the d'th definition is stored in def_entry[d].
3613 Currently all the uses are relevant for the optimization except for
3614 uses that are in LIBCALL instructions. */
3616 static void
3617 see_update_relevancy (void)
3619 unsigned int d = 0;
3620 unsigned int u = 0;
3621 enum entry_type et;
3622 enum machine_mode source_mode;
3623 enum machine_mode source_mode_unsigned;
3624 basic_block bb;
3626 if (!def_entry)
3627 return;
3629 FOR_ALL_BB (bb)
3631 struct df_ref **use_rec;
3632 struct df_ref **def_rec;
3633 rtx insn;
3634 FOR_BB_INSNS (bb, insn)
3636 unsigned int uid = INSN_UID (insn);
3637 if (INSN_P (insn))
3640 /* If this is an insn in a libcall, do not touch the uses. */
3641 if (find_reg_note (insn, REG_LIBCALL_ID, NULL_RTX))
3642 et = NOT_RELEVANT;
3643 else
3644 et = RELEVANT_USE;
3646 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3648 struct df_ref *use = *use_rec;
3649 see_update_uses_relevancy (insn, use, et, u);
3650 u++;
3653 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
3655 struct df_ref *use = *use_rec;
3656 see_update_uses_relevancy (insn, use, et, u);
3657 u++;
3660 et = see_analyze_one_def (insn, &source_mode, &source_mode_unsigned);
3661 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3663 struct df_ref *def = *def_rec;
3664 see_update_defs_relevancy (insn, def, et, source_mode,
3665 source_mode_unsigned, d);
3666 d++;
3671 for (use_rec = df_get_artificial_uses (bb->index); *use_rec; use_rec++)
3673 struct df_ref *use = *use_rec;
3674 see_update_uses_relevancy (NULL, use, NOT_RELEVANT, u);
3675 u++;
3678 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
3680 struct df_ref *def = *def_rec;
3681 see_update_defs_relevancy (NULL, def, NOT_RELEVANT,
3682 MAX_MACHINE_MODE, MAX_MACHINE_MODE, d);
3683 d++;
3689 /* Phase 1 top level function.
3690 In this phase the relevancy of all the definitions and uses are checked,
3691 later the webs are produces and the extensions are generated.
3692 These extensions are not emitted yet into the insns stream.
3694 returns true if at list one relevant web was found and there were no
3695 problems, otherwise return false. */
3697 static bool
3698 see_propagate_extensions_to_uses (void)
3700 int num_relevant_refs;
3701 basic_block bb;
3703 if (dump_file)
3704 fprintf (dump_file,
3705 "* Phase 1: Propagate extensions to uses. *\n");
3707 /* Update the relevancy of references using the DF object. */
3708 see_update_relevancy ();
3710 /* Produce the webs and update the extra_info of the root.
3711 In general, a web is relevant if all its definitions and uses are relevant
3712 and there is at least one definition that was marked as SIGN_EXTENDED_DEF
3713 or ZERO_EXTENDED_DEF. */
3714 FOR_ALL_BB (bb)
3716 rtx insn;
3717 struct df_ref **use_rec;
3719 FOR_BB_INSNS (bb, insn)
3721 unsigned int uid = INSN_UID (insn);
3722 if (INSN_P (insn))
3724 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
3726 struct df_ref *use = *use_rec;
3727 union_defs (use, def_entry, use_entry, see_update_leader_extra_info);
3730 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
3732 struct df_ref *use = *use_rec;
3733 union_defs (use, def_entry, use_entry, see_update_leader_extra_info);
3738 for (use_rec = df_get_artificial_uses (bb->index); *use_rec; use_rec++)
3740 struct df_ref *use = *use_rec;
3741 union_defs (use, def_entry, use_entry, see_update_leader_extra_info);
3745 /* Generate use extensions for references and insert these
3746 references to see_bb_splay_ar data structure. */
3747 num_relevant_refs = see_handle_relevant_refs ();
3749 return num_relevant_refs > 0;
3753 /* Main entry point for the sign extension elimination optimization. */
3755 static void
3756 see_main (void)
3758 bool cont = false;
3759 int i = 0;
3761 /* Initialize global data structures. */
3762 see_initialize_data_structures ();
3764 /* Phase 1: Propagate extensions to uses. */
3765 cont = see_propagate_extensions_to_uses ();
3767 if (cont)
3769 init_recog ();
3771 /* Phase 2: Merge and eliminate locally redundant extensions. */
3772 see_merge_and_eliminate_extensions ();
3774 /* Phase 3: Eliminate globally redundant extensions. */
3775 see_execute_LCM ();
3777 /* Phase 4: Commit changes to the insn stream. */
3778 see_commit_changes ();
3780 if (dump_file)
3782 /* For debug purpose only. */
3783 fprintf (dump_file, "see_pre_extension_hash:\n");
3784 htab_traverse (see_pre_extension_hash, see_print_pre_extension_expr,
3785 NULL);
3787 for (i = 0; i < last_bb; i++)
3789 if (see_bb_hash_ar[i])
3790 /* Traverse over all the references in the basic block in
3791 forward order. */
3793 fprintf (dump_file,
3794 "Searching register properties in bb %d\n", i);
3795 htab_traverse (see_bb_hash_ar[i],
3796 see_print_register_properties, NULL);
3802 /* Free global data structures. */
3803 see_free_data_structures ();
3807 static bool
3808 gate_handle_see (void)
3810 return optimize > 1 && flag_see;
3813 static unsigned int
3814 rest_of_handle_see (void)
3816 see_main ();
3817 run_fast_dce ();
3818 return 0;
3821 struct tree_opt_pass pass_see =
3823 "see", /* name */
3824 gate_handle_see, /* gate */
3825 rest_of_handle_see, /* execute */
3826 NULL, /* sub */
3827 NULL, /* next */
3828 0, /* static_pass_number */
3829 TV_SEE, /* tv_id */
3830 0, /* properties_required */
3831 0, /* properties_provided */
3832 0, /* properties_destroyed */
3833 0, /* todo_flags_start */
3834 TODO_df_verify |
3835 TODO_df_finish |
3836 TODO_dump_func, /* todo_flags_finish */
3837 'u' /* letter */