EnumSet*.class: Regenerate
[official-gcc.git] / gcc / sched-deps.c
blob433394956ab1a548b34977659554c15c5266568c
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
5 Free Software Foundation, Inc.
6 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
7 and currently maintained by, Jim Wilson (wilson@cygnus.com)
9 This file is part of GCC.
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "toplev.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "hard-reg-set.h"
33 #include "regs.h"
34 #include "function.h"
35 #include "flags.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 #include "except.h"
39 #include "toplev.h"
40 #include "recog.h"
41 #include "sched-int.h"
42 #include "params.h"
43 #include "cselib.h"
45 #ifdef ENABLE_CHECKING
46 #define CHECK (true)
47 #else
48 #define CHECK (false)
49 #endif
51 /* Return the major type present in the DS. */
52 enum reg_note
53 ds_to_dk (ds_t ds)
55 if (ds & DEP_TRUE)
56 return REG_DEP_TRUE;
58 if (ds & DEP_OUTPUT)
59 return REG_DEP_OUTPUT;
61 gcc_assert (ds & DEP_ANTI);
63 return REG_DEP_ANTI;
66 /* Return equivalent dep_status. */
67 ds_t
68 dk_to_ds (enum reg_note dk)
70 switch (dk)
72 case REG_DEP_TRUE:
73 return DEP_TRUE;
75 case REG_DEP_OUTPUT:
76 return DEP_OUTPUT;
78 default:
79 gcc_assert (dk == REG_DEP_ANTI);
80 return DEP_ANTI;
84 /* Functions to operate with dependence information container - dep_t. */
86 /* Init DEP with the arguments. */
87 void
88 init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note type, ds_t ds)
90 DEP_PRO (dep) = pro;
91 DEP_CON (dep) = con;
92 DEP_TYPE (dep) = type;
93 DEP_STATUS (dep) = ds;
96 /* Init DEP with the arguments.
97 While most of the scheduler (including targets) only need the major type
98 of the dependency, it is convenient to hide full dep_status from them. */
99 void
100 init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind)
102 ds_t ds;
104 if ((current_sched_info->flags & USE_DEPS_LIST))
105 ds = dk_to_ds (kind);
106 else
107 ds = -1;
109 init_dep_1 (dep, pro, con, kind, ds);
112 /* Make a copy of FROM in TO. */
113 static void
114 copy_dep (dep_t to, dep_t from)
116 memcpy (to, from, sizeof (*to));
119 static void dump_ds (FILE *, ds_t);
121 /* Define flags for dump_dep (). */
123 /* Dump producer of the dependence. */
124 #define DUMP_DEP_PRO (2)
126 /* Dump consumer of the dependence. */
127 #define DUMP_DEP_CON (4)
129 /* Dump type of the dependence. */
130 #define DUMP_DEP_TYPE (8)
132 /* Dump status of the dependence. */
133 #define DUMP_DEP_STATUS (16)
135 /* Dump all information about the dependence. */
136 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
137 |DUMP_DEP_STATUS)
139 /* Dump DEP to DUMP.
140 FLAGS is a bit mask specifying what information about DEP needs
141 to be printed.
142 If FLAGS has the very first bit set, then dump all information about DEP
143 and propagate this bit into the callee dump functions. */
144 static void
145 dump_dep (FILE *dump, dep_t dep, int flags)
147 if (flags & 1)
148 flags |= DUMP_DEP_ALL;
150 fprintf (dump, "<");
152 if (flags & DUMP_DEP_PRO)
153 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
155 if (flags & DUMP_DEP_CON)
156 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
158 if (flags & DUMP_DEP_TYPE)
160 char t;
161 enum reg_note type = DEP_TYPE (dep);
163 switch (type)
165 case REG_DEP_TRUE:
166 t = 't';
167 break;
169 case REG_DEP_OUTPUT:
170 t = 'o';
171 break;
173 case REG_DEP_ANTI:
174 t = 'a';
175 break;
177 default:
178 gcc_unreachable ();
179 break;
182 fprintf (dump, "%c; ", t);
185 if (flags & DUMP_DEP_STATUS)
187 if (current_sched_info->flags & USE_DEPS_LIST)
188 dump_ds (dump, DEP_STATUS (dep));
191 fprintf (dump, ">");
194 /* Default flags for dump_dep (). */
195 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
197 /* Dump all fields of DEP to STDERR. */
198 void
199 sd_debug_dep (dep_t dep)
201 dump_dep (stderr, dep, 1);
202 fprintf (stderr, "\n");
205 /* Functions to operate with a single link from the dependencies lists -
206 dep_link_t. */
208 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
209 PREV_NEXT_P. */
210 static void
211 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
213 dep_link_t next = *prev_nextp;
215 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
216 && DEP_LINK_NEXT (l) == NULL);
218 /* Init node being inserted. */
219 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
220 DEP_LINK_NEXT (l) = next;
222 /* Fix next node. */
223 if (next != NULL)
225 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
227 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
230 /* Fix prev node. */
231 *prev_nextp = l;
234 /* Add dep_link LINK to deps_list L. */
235 static void
236 add_to_deps_list (dep_link_t link, deps_list_t l)
238 attach_dep_link (link, &DEPS_LIST_FIRST (l));
240 ++DEPS_LIST_N_LINKS (l);
243 /* Detach dep_link L from the list. */
244 static void
245 detach_dep_link (dep_link_t l)
247 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
248 dep_link_t next = DEP_LINK_NEXT (l);
250 *prev_nextp = next;
252 if (next != NULL)
253 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
255 DEP_LINK_PREV_NEXTP (l) = NULL;
256 DEP_LINK_NEXT (l) = NULL;
259 /* Remove link LINK from list LIST. */
260 static void
261 remove_from_deps_list (dep_link_t link, deps_list_t list)
263 detach_dep_link (link);
265 --DEPS_LIST_N_LINKS (list);
268 /* Move link LINK from list FROM to list TO. */
269 static void
270 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
272 remove_from_deps_list (link, from);
273 add_to_deps_list (link, to);
276 /* Return true of LINK is not attached to any list. */
277 static bool
278 dep_link_is_detached_p (dep_link_t link)
280 return DEP_LINK_PREV_NEXTP (link) == NULL;
283 /* Pool to hold all dependency nodes (dep_node_t). */
284 static alloc_pool dn_pool;
286 /* Number of dep_nodes out there. */
287 static int dn_pool_diff = 0;
289 /* Create a dep_node. */
290 static dep_node_t
291 create_dep_node (void)
293 dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
294 dep_link_t back = DEP_NODE_BACK (n);
295 dep_link_t forw = DEP_NODE_FORW (n);
297 DEP_LINK_NODE (back) = n;
298 DEP_LINK_NEXT (back) = NULL;
299 DEP_LINK_PREV_NEXTP (back) = NULL;
301 DEP_LINK_NODE (forw) = n;
302 DEP_LINK_NEXT (forw) = NULL;
303 DEP_LINK_PREV_NEXTP (forw) = NULL;
305 ++dn_pool_diff;
307 return n;
310 /* Delete dep_node N. N must not be connected to any deps_list. */
311 static void
312 delete_dep_node (dep_node_t n)
314 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
315 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
317 --dn_pool_diff;
319 pool_free (dn_pool, n);
322 /* Pool to hold dependencies lists (deps_list_t). */
323 static alloc_pool dl_pool;
325 /* Number of deps_lists out there. */
326 static int dl_pool_diff = 0;
328 /* Functions to operate with dependences lists - deps_list_t. */
330 /* Return true if list L is empty. */
331 static bool
332 deps_list_empty_p (deps_list_t l)
334 return DEPS_LIST_N_LINKS (l) == 0;
337 /* Create a new deps_list. */
338 static deps_list_t
339 create_deps_list (void)
341 deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
343 DEPS_LIST_FIRST (l) = NULL;
344 DEPS_LIST_N_LINKS (l) = 0;
346 ++dl_pool_diff;
347 return l;
350 /* Free deps_list L. */
351 static void
352 free_deps_list (deps_list_t l)
354 gcc_assert (deps_list_empty_p (l));
356 --dl_pool_diff;
358 pool_free (dl_pool, l);
361 /* Return true if there is no dep_nodes and deps_lists out there.
362 After the region is scheduled all the depedency nodes and lists
363 should [generally] be returned to pool. */
364 bool
365 deps_pools_are_empty_p (void)
367 return dn_pool_diff == 0 && dl_pool_diff == 0;
370 /* Remove all elements from L. */
371 static void
372 clear_deps_list (deps_list_t l)
376 dep_link_t link = DEPS_LIST_FIRST (l);
378 if (link == NULL)
379 break;
381 remove_from_deps_list (link, l);
383 while (1);
386 static regset reg_pending_sets;
387 static regset reg_pending_clobbers;
388 static regset reg_pending_uses;
390 /* The following enumeration values tell us what dependencies we
391 should use to implement the barrier. We use true-dependencies for
392 TRUE_BARRIER and anti-dependencies for MOVE_BARRIER. */
393 enum reg_pending_barrier_mode
395 NOT_A_BARRIER = 0,
396 MOVE_BARRIER,
397 TRUE_BARRIER
400 static enum reg_pending_barrier_mode reg_pending_barrier;
402 /* To speed up the test for duplicate dependency links we keep a
403 record of dependencies created by add_dependence when the average
404 number of instructions in a basic block is very large.
406 Studies have shown that there is typically around 5 instructions between
407 branches for typical C code. So we can make a guess that the average
408 basic block is approximately 5 instructions long; we will choose 100X
409 the average size as a very large basic block.
411 Each insn has associated bitmaps for its dependencies. Each bitmap
412 has enough entries to represent a dependency on any other insn in
413 the insn chain. All bitmap for true dependencies cache is
414 allocated then the rest two ones are also allocated. */
415 static bitmap_head *true_dependency_cache;
416 static bitmap_head *output_dependency_cache;
417 static bitmap_head *anti_dependency_cache;
418 static bitmap_head *spec_dependency_cache;
419 static int cache_size;
421 static int deps_may_trap_p (const_rtx);
422 static void add_dependence_list (rtx, rtx, int, enum reg_note);
423 static void add_dependence_list_and_free (rtx, rtx *, int, enum reg_note);
424 static void delete_all_dependences (rtx);
425 static void fixup_sched_groups (rtx);
427 static void flush_pending_lists (struct deps *, rtx, int, int);
428 static void sched_analyze_1 (struct deps *, rtx, rtx);
429 static void sched_analyze_2 (struct deps *, rtx, rtx);
430 static void sched_analyze_insn (struct deps *, rtx, rtx);
432 static rtx sched_get_condition (const_rtx);
433 static int conditions_mutex_p (const_rtx, const_rtx);
435 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
436 rtx, rtx);
437 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
439 static dw_t estimate_dep_weak (rtx, rtx);
440 #ifdef INSN_SCHEDULING
441 #ifdef ENABLE_CHECKING
442 static void check_dep (dep_t, bool);
443 #endif
444 #endif
446 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
448 static int
449 deps_may_trap_p (const_rtx mem)
451 const_rtx addr = XEXP (mem, 0);
453 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
455 const_rtx t = get_reg_known_value (REGNO (addr));
456 if (t)
457 addr = t;
459 return rtx_addr_can_trap_p (addr);
462 /* Find the condition under which INSN is executed. */
464 static rtx
465 sched_get_condition (const_rtx insn)
467 rtx pat = PATTERN (insn);
468 rtx src;
470 if (pat == 0)
471 return 0;
473 if (GET_CODE (pat) == COND_EXEC)
474 return COND_EXEC_TEST (pat);
476 if (!any_condjump_p (insn) || !onlyjump_p (insn))
477 return 0;
479 src = SET_SRC (pc_set (insn));
481 if (XEXP (src, 2) == pc_rtx)
482 return XEXP (src, 0);
483 else if (XEXP (src, 1) == pc_rtx)
485 rtx cond = XEXP (src, 0);
486 enum rtx_code revcode = reversed_comparison_code (cond, insn);
488 if (revcode == UNKNOWN)
489 return 0;
490 return gen_rtx_fmt_ee (revcode, GET_MODE (cond), XEXP (cond, 0),
491 XEXP (cond, 1));
494 return 0;
498 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
500 static int
501 conditions_mutex_p (const_rtx cond1, const_rtx cond2)
503 if (COMPARISON_P (cond1)
504 && COMPARISON_P (cond2)
505 && GET_CODE (cond1) == reversed_comparison_code (cond2, NULL)
506 && XEXP (cond1, 0) == XEXP (cond2, 0)
507 && XEXP (cond1, 1) == XEXP (cond2, 1))
508 return 1;
509 return 0;
512 /* Return true if insn1 and insn2 can never depend on one another because
513 the conditions under which they are executed are mutually exclusive. */
514 bool
515 sched_insns_conditions_mutex_p (const_rtx insn1, const_rtx insn2)
517 rtx cond1, cond2;
519 /* df doesn't handle conditional lifetimes entirely correctly;
520 calls mess up the conditional lifetimes. */
521 if (!CALL_P (insn1) && !CALL_P (insn2))
523 cond1 = sched_get_condition (insn1);
524 cond2 = sched_get_condition (insn2);
525 if (cond1 && cond2
526 && conditions_mutex_p (cond1, cond2)
527 /* Make sure first instruction doesn't affect condition of second
528 instruction if switched. */
529 && !modified_in_p (cond1, insn2)
530 /* Make sure second instruction doesn't affect condition of first
531 instruction if switched. */
532 && !modified_in_p (cond2, insn1))
533 return true;
535 return false;
539 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
540 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
541 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
542 This function is used to switch sd_iterator to the next list.
543 !!! For internal use only. Might consider moving it to sched-int.h. */
544 void
545 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
546 deps_list_t *list_ptr, bool *resolved_p_ptr)
548 sd_list_types_def types = *types_ptr;
550 if (types & SD_LIST_HARD_BACK)
552 *list_ptr = INSN_HARD_BACK_DEPS (insn);
553 *resolved_p_ptr = false;
554 *types_ptr = types & ~SD_LIST_HARD_BACK;
556 else if (types & SD_LIST_SPEC_BACK)
558 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
559 *resolved_p_ptr = false;
560 *types_ptr = types & ~SD_LIST_SPEC_BACK;
562 else if (types & SD_LIST_FORW)
564 *list_ptr = INSN_FORW_DEPS (insn);
565 *resolved_p_ptr = false;
566 *types_ptr = types & ~SD_LIST_FORW;
568 else if (types & SD_LIST_RES_BACK)
570 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
571 *resolved_p_ptr = true;
572 *types_ptr = types & ~SD_LIST_RES_BACK;
574 else if (types & SD_LIST_RES_FORW)
576 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
577 *resolved_p_ptr = true;
578 *types_ptr = types & ~SD_LIST_RES_FORW;
580 else
582 *list_ptr = NULL;
583 *resolved_p_ptr = false;
584 *types_ptr = SD_LIST_NONE;
588 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
590 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
592 int size = 0;
594 while (list_types != SD_LIST_NONE)
596 deps_list_t list;
597 bool resolved_p;
599 sd_next_list (insn, &list_types, &list, &resolved_p);
600 size += DEPS_LIST_N_LINKS (list);
603 return size;
606 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
607 bool
608 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
610 return sd_lists_size (insn, list_types) == 0;
613 /* Initialize data for INSN. */
614 void
615 sd_init_insn (rtx insn)
617 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
618 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
619 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
620 INSN_FORW_DEPS (insn) = create_deps_list ();
621 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
623 /* ??? It would be nice to allocate dependency caches here. */
626 /* Free data for INSN. */
627 void
628 sd_finish_insn (rtx insn)
630 /* ??? It would be nice to deallocate dependency caches here. */
632 free_deps_list (INSN_HARD_BACK_DEPS (insn));
633 INSN_HARD_BACK_DEPS (insn) = NULL;
635 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
636 INSN_SPEC_BACK_DEPS (insn) = NULL;
638 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
639 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
641 free_deps_list (INSN_FORW_DEPS (insn));
642 INSN_FORW_DEPS (insn) = NULL;
644 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
645 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
648 /* Find a dependency between producer PRO and consumer CON.
649 Search through resolved dependency lists if RESOLVED_P is true.
650 If no such dependency is found return NULL,
651 overwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
652 with an iterator pointing to it. */
653 static dep_t
654 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
655 sd_iterator_def *sd_it_ptr)
657 sd_list_types_def pro_list_type;
658 sd_list_types_def con_list_type;
659 sd_iterator_def sd_it;
660 dep_t dep;
661 bool found_p = false;
663 if (resolved_p)
665 pro_list_type = SD_LIST_RES_FORW;
666 con_list_type = SD_LIST_RES_BACK;
668 else
670 pro_list_type = SD_LIST_FORW;
671 con_list_type = SD_LIST_BACK;
674 /* Walk through either back list of INSN or forw list of ELEM
675 depending on which one is shorter. */
676 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
678 /* Find the dep_link with producer PRO in consumer's back_deps. */
679 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
680 if (DEP_PRO (dep) == pro)
682 found_p = true;
683 break;
686 else
688 /* Find the dep_link with consumer CON in producer's forw_deps. */
689 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
690 if (DEP_CON (dep) == con)
692 found_p = true;
693 break;
697 if (found_p)
699 if (sd_it_ptr != NULL)
700 *sd_it_ptr = sd_it;
702 return dep;
705 return NULL;
708 /* Find a dependency between producer PRO and consumer CON.
709 Use dependency [if available] to check if dependency is present at all.
710 Search through resolved dependency lists if RESOLVED_P is true.
711 If the dependency or NULL if none found. */
712 dep_t
713 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
715 if (true_dependency_cache != NULL)
716 /* Avoiding the list walk below can cut compile times dramatically
717 for some code. */
719 int elem_luid = INSN_LUID (pro);
720 int insn_luid = INSN_LUID (con);
722 gcc_assert (output_dependency_cache != NULL
723 && anti_dependency_cache != NULL);
725 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
726 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
727 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
728 return NULL;
731 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
734 /* Add or update a dependence described by DEP.
735 MEM1 and MEM2, if non-null, correspond to memory locations in case of
736 data speculation.
738 The function returns a value indicating if an old entry has been changed
739 or a new entry has been added to insn's backward deps.
741 This function merely checks if producer and consumer is the same insn
742 and doesn't create a dep in this case. Actual manipulation of
743 dependence data structures is performed in add_or_update_dep_1. */
744 static enum DEPS_ADJUST_RESULT
745 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
747 rtx elem = DEP_PRO (dep);
748 rtx insn = DEP_CON (dep);
750 gcc_assert (INSN_P (insn) && INSN_P (elem));
752 /* Don't depend an insn on itself. */
753 if (insn == elem)
755 #ifdef INSN_SCHEDULING
756 if (current_sched_info->flags & DO_SPECULATION)
757 /* INSN has an internal dependence, which we can't overcome. */
758 HAS_INTERNAL_DEP (insn) = 1;
759 #endif
761 return DEP_NODEP;
764 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
767 #ifdef INSN_SCHEDULING
768 /* Ask dependency caches what needs to be done for dependence DEP.
769 Return DEP_CREATED if new dependence should be created and there is no
770 need to try to find one searching the dependencies lists.
771 Return DEP_PRESENT if there already is a dependence described by DEP and
772 hence nothing is to be done.
773 Return DEP_CHANGED if there already is a dependence, but it should be
774 updated to incorporate additional information from DEP. */
775 static enum DEPS_ADJUST_RESULT
776 ask_dependency_caches (dep_t dep)
778 int elem_luid = INSN_LUID (DEP_PRO (dep));
779 int insn_luid = INSN_LUID (DEP_CON (dep));
781 gcc_assert (true_dependency_cache != NULL
782 && output_dependency_cache != NULL
783 && anti_dependency_cache != NULL);
785 if (!(current_sched_info->flags & USE_DEPS_LIST))
787 enum reg_note present_dep_type;
789 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
790 present_dep_type = REG_DEP_TRUE;
791 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
792 present_dep_type = REG_DEP_OUTPUT;
793 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
794 present_dep_type = REG_DEP_ANTI;
795 else
796 /* There is no existing dep so it should be created. */
797 return DEP_CREATED;
799 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
800 /* DEP does not add anything to the existing dependence. */
801 return DEP_PRESENT;
803 else
805 ds_t present_dep_types = 0;
807 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
808 present_dep_types |= DEP_TRUE;
809 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
810 present_dep_types |= DEP_OUTPUT;
811 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
812 present_dep_types |= DEP_ANTI;
814 if (present_dep_types == 0)
815 /* There is no existing dep so it should be created. */
816 return DEP_CREATED;
818 if (!(current_sched_info->flags & DO_SPECULATION)
819 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
821 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
822 == present_dep_types)
823 /* DEP does not add anything to the existing dependence. */
824 return DEP_PRESENT;
826 else
828 /* Only true dependencies can be data speculative and
829 only anti dependencies can be control speculative. */
830 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
831 == present_dep_types);
833 /* if (DEP is SPECULATIVE) then
834 ..we should update DEP_STATUS
835 else
836 ..we should reset existing dep to non-speculative. */
840 return DEP_CHANGED;
843 /* Set dependency caches according to DEP. */
844 static void
845 set_dependency_caches (dep_t dep)
847 int elem_luid = INSN_LUID (DEP_PRO (dep));
848 int insn_luid = INSN_LUID (DEP_CON (dep));
850 if (!(current_sched_info->flags & USE_DEPS_LIST))
852 switch (DEP_TYPE (dep))
854 case REG_DEP_TRUE:
855 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
856 break;
858 case REG_DEP_OUTPUT:
859 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
860 break;
862 case REG_DEP_ANTI:
863 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
864 break;
866 default:
867 gcc_unreachable ();
870 else
872 ds_t ds = DEP_STATUS (dep);
874 if (ds & DEP_TRUE)
875 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
876 if (ds & DEP_OUTPUT)
877 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
878 if (ds & DEP_ANTI)
879 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
881 if (ds & SPECULATIVE)
883 gcc_assert (current_sched_info->flags & DO_SPECULATION);
884 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
889 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
890 caches accordingly. */
891 static void
892 update_dependency_caches (dep_t dep, enum reg_note old_type)
894 int elem_luid = INSN_LUID (DEP_PRO (dep));
895 int insn_luid = INSN_LUID (DEP_CON (dep));
897 /* Clear corresponding cache entry because type of the link
898 may have changed. Keep them if we use_deps_list. */
899 if (!(current_sched_info->flags & USE_DEPS_LIST))
901 switch (old_type)
903 case REG_DEP_OUTPUT:
904 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
905 break;
907 case REG_DEP_ANTI:
908 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
909 break;
911 default:
912 gcc_unreachable ();
916 set_dependency_caches (dep);
919 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
920 static void
921 change_spec_dep_to_hard (sd_iterator_def sd_it)
923 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
924 dep_link_t link = DEP_NODE_BACK (node);
925 dep_t dep = DEP_NODE_DEP (node);
926 rtx elem = DEP_PRO (dep);
927 rtx insn = DEP_CON (dep);
929 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
931 DEP_STATUS (dep) &= ~SPECULATIVE;
933 if (true_dependency_cache != NULL)
934 /* Clear the cache entry. */
935 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
936 INSN_LUID (elem));
938 #endif
940 /* Update DEP to incorporate information from NEW_DEP.
941 SD_IT points to DEP in case it should be moved to another list.
942 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
943 data-speculative dependence should be updated. */
944 static enum DEPS_ADJUST_RESULT
945 update_dep (dep_t dep, dep_t new_dep,
946 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
947 rtx mem1 ATTRIBUTE_UNUSED,
948 rtx mem2 ATTRIBUTE_UNUSED)
950 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
951 enum reg_note old_type = DEP_TYPE (dep);
953 /* If this is a more restrictive type of dependence than the
954 existing one, then change the existing dependence to this
955 type. */
956 if ((int) DEP_TYPE (new_dep) < (int) old_type)
958 DEP_TYPE (dep) = DEP_TYPE (new_dep);
959 res = DEP_CHANGED;
962 #ifdef INSN_SCHEDULING
963 if (current_sched_info->flags & USE_DEPS_LIST)
964 /* Update DEP_STATUS. */
966 ds_t dep_status = DEP_STATUS (dep);
967 ds_t ds = DEP_STATUS (new_dep);
968 ds_t new_status = ds | dep_status;
970 if (new_status & SPECULATIVE)
971 /* Either existing dep or a dep we're adding or both are
972 speculative. */
974 if (!(ds & SPECULATIVE)
975 || !(dep_status & SPECULATIVE))
976 /* The new dep can't be speculative. */
978 new_status &= ~SPECULATIVE;
980 if (dep_status & SPECULATIVE)
981 /* The old dep was speculative, but now it
982 isn't. */
983 change_spec_dep_to_hard (sd_it);
985 else
987 /* Both are speculative. Merge probabilities. */
988 if (mem1 != NULL)
990 dw_t dw;
992 dw = estimate_dep_weak (mem1, mem2);
993 ds = set_dep_weak (ds, BEGIN_DATA, dw);
996 new_status = ds_merge (dep_status, ds);
1000 ds = new_status;
1002 if (dep_status != ds)
1004 DEP_STATUS (dep) = ds;
1005 res = DEP_CHANGED;
1009 if (true_dependency_cache != NULL
1010 && res == DEP_CHANGED)
1011 update_dependency_caches (dep, old_type);
1012 #endif
1014 return res;
1017 /* Add or update a dependence described by DEP.
1018 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1019 data speculation.
1021 The function returns a value indicating if an old entry has been changed
1022 or a new entry has been added to insn's backward deps or nothing has
1023 been updated at all. */
1024 static enum DEPS_ADJUST_RESULT
1025 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1026 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1028 bool maybe_present_p = true;
1029 bool present_p = false;
1031 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1032 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1034 #ifdef INSN_SCHEDULING
1036 #ifdef ENABLE_CHECKING
1037 check_dep (new_dep, mem1 != NULL);
1038 #endif
1040 if (true_dependency_cache != NULL)
1042 switch (ask_dependency_caches (new_dep))
1044 case DEP_PRESENT:
1045 return DEP_PRESENT;
1047 case DEP_CHANGED:
1048 maybe_present_p = true;
1049 present_p = true;
1050 break;
1052 case DEP_CREATED:
1053 maybe_present_p = false;
1054 present_p = false;
1055 break;
1057 default:
1058 gcc_unreachable ();
1059 break;
1062 #endif
1064 /* Check that we don't already have this dependence. */
1065 if (maybe_present_p)
1067 dep_t present_dep;
1068 sd_iterator_def sd_it;
1070 gcc_assert (true_dependency_cache == NULL || present_p);
1072 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1073 DEP_CON (new_dep),
1074 resolved_p, &sd_it);
1076 if (present_dep != NULL)
1077 /* We found an existing dependency between ELEM and INSN. */
1078 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1079 else
1080 /* We didn't find a dep, it shouldn't present in the cache. */
1081 gcc_assert (!present_p);
1084 /* Might want to check one level of transitivity to save conses.
1085 This check should be done in maybe_add_or_update_dep_1.
1086 Since we made it to add_or_update_dep_1, we must create
1087 (or update) a link. */
1089 if (mem1 != NULL_RTX)
1091 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1092 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1093 estimate_dep_weak (mem1, mem2));
1096 sd_add_dep (new_dep, resolved_p);
1098 return DEP_CREATED;
1101 /* Initialize BACK_LIST_PTR with consumer's backward list and
1102 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1103 initialize with lists that hold resolved deps. */
1104 static void
1105 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1106 deps_list_t *back_list_ptr,
1107 deps_list_t *forw_list_ptr)
1109 rtx con = DEP_CON (dep);
1111 if (!resolved_p)
1113 if ((current_sched_info->flags & DO_SPECULATION)
1114 && (DEP_STATUS (dep) & SPECULATIVE))
1115 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1116 else
1117 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1119 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1121 else
1123 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1124 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1128 /* Add dependence described by DEP.
1129 If RESOLVED_P is true treat the dependence as a resolved one. */
1130 void
1131 sd_add_dep (dep_t dep, bool resolved_p)
1133 dep_node_t n = create_dep_node ();
1134 deps_list_t con_back_deps;
1135 deps_list_t pro_forw_deps;
1136 rtx elem = DEP_PRO (dep);
1137 rtx insn = DEP_CON (dep);
1139 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1141 if ((current_sched_info->flags & DO_SPECULATION)
1142 && !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1143 DEP_STATUS (dep) &= ~SPECULATIVE;
1145 copy_dep (DEP_NODE_DEP (n), dep);
1147 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1149 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1151 #ifdef INSN_SCHEDULING
1152 #ifdef ENABLE_CHECKING
1153 check_dep (dep, false);
1154 #endif
1156 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1158 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1159 in the bitmap caches of dependency information. */
1160 if (true_dependency_cache != NULL)
1161 set_dependency_caches (dep);
1162 #endif
1165 /* Add or update backward dependence between INSN and ELEM
1166 with given type DEP_TYPE and dep_status DS.
1167 This function is a convenience wrapper. */
1168 enum DEPS_ADJUST_RESULT
1169 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1171 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1174 /* Resolved dependence pointed to by SD_IT.
1175 SD_IT will advance to the next element. */
1176 void
1177 sd_resolve_dep (sd_iterator_def sd_it)
1179 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1180 dep_t dep = DEP_NODE_DEP (node);
1181 rtx pro = DEP_PRO (dep);
1182 rtx con = DEP_CON (dep);
1184 if ((current_sched_info->flags & DO_SPECULATION)
1185 && (DEP_STATUS (dep) & SPECULATIVE))
1186 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1187 INSN_RESOLVED_BACK_DEPS (con));
1188 else
1189 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1190 INSN_RESOLVED_BACK_DEPS (con));
1192 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1193 INSN_RESOLVED_FORW_DEPS (pro));
1196 /* Make TO depend on all the FROM's producers.
1197 If RESOLVED_P is true add dependencies to the resolved lists. */
1198 void
1199 sd_copy_back_deps (rtx to, rtx from, bool resolved_p)
1201 sd_list_types_def list_type;
1202 sd_iterator_def sd_it;
1203 dep_t dep;
1205 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1207 FOR_EACH_DEP (from, list_type, sd_it, dep)
1209 dep_def _new_dep, *new_dep = &_new_dep;
1211 copy_dep (new_dep, dep);
1212 DEP_CON (new_dep) = to;
1213 sd_add_dep (new_dep, resolved_p);
1217 /* Remove a dependency referred to by SD_IT.
1218 SD_IT will point to the next dependence after removal. */
1219 void
1220 sd_delete_dep (sd_iterator_def sd_it)
1222 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1223 dep_t dep = DEP_NODE_DEP (n);
1224 rtx pro = DEP_PRO (dep);
1225 rtx con = DEP_CON (dep);
1226 deps_list_t con_back_deps;
1227 deps_list_t pro_forw_deps;
1229 if (true_dependency_cache != NULL)
1231 int elem_luid = INSN_LUID (pro);
1232 int insn_luid = INSN_LUID (con);
1234 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1235 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1236 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1238 if (current_sched_info->flags & DO_SPECULATION)
1239 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1242 get_back_and_forw_lists (dep, sd_it.resolved_p,
1243 &con_back_deps, &pro_forw_deps);
1245 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1246 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1248 delete_dep_node (n);
1251 /* Dump size of the lists. */
1252 #define DUMP_LISTS_SIZE (2)
1254 /* Dump dependencies of the lists. */
1255 #define DUMP_LISTS_DEPS (4)
1257 /* Dump all information about the lists. */
1258 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1260 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1261 FLAGS is a bit mask specifying what information about the lists needs
1262 to be printed.
1263 If FLAGS has the very first bit set, then dump all information about
1264 the lists and propagate this bit into the callee dump functions. */
1265 static void
1266 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1268 sd_iterator_def sd_it;
1269 dep_t dep;
1270 int all;
1272 all = (flags & 1);
1274 if (all)
1275 flags |= DUMP_LISTS_ALL;
1277 fprintf (dump, "[");
1279 if (flags & DUMP_LISTS_SIZE)
1280 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1282 if (flags & DUMP_LISTS_DEPS)
1284 FOR_EACH_DEP (insn, types, sd_it, dep)
1286 dump_dep (dump, dep, dump_dep_flags | all);
1287 fprintf (dump, " ");
1292 /* Dump all information about deps_lists of INSN specified by TYPES
1293 to STDERR. */
1294 void
1295 sd_debug_lists (rtx insn, sd_list_types_def types)
1297 dump_lists (stderr, insn, types, 1);
1298 fprintf (stderr, "\n");
1301 /* A convenience wrapper to operate on an entire list. */
1303 static void
1304 add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type)
1306 for (; list; list = XEXP (list, 1))
1308 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1309 add_dependence (insn, XEXP (list, 0), dep_type);
1313 /* Similar, but free *LISTP at the same time. */
1315 static void
1316 add_dependence_list_and_free (rtx insn, rtx *listp, int uncond,
1317 enum reg_note dep_type)
1319 rtx list, next;
1320 for (list = *listp, *listp = NULL; list ; list = next)
1322 next = XEXP (list, 1);
1323 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1324 add_dependence (insn, XEXP (list, 0), dep_type);
1325 free_INSN_LIST_node (list);
1329 /* Clear all dependencies for an insn. */
1330 static void
1331 delete_all_dependences (rtx insn)
1333 sd_iterator_def sd_it;
1334 dep_t dep;
1336 /* The below cycle can be optimized to clear the caches and back_deps
1337 in one call but that would provoke duplication of code from
1338 delete_dep (). */
1340 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1341 sd_iterator_cond (&sd_it, &dep);)
1342 sd_delete_dep (sd_it);
1345 /* All insns in a scheduling group except the first should only have
1346 dependencies on the previous insn in the group. So we find the
1347 first instruction in the scheduling group by walking the dependence
1348 chains backwards. Then we add the dependencies for the group to
1349 the previous nonnote insn. */
1351 static void
1352 fixup_sched_groups (rtx insn)
1354 sd_iterator_def sd_it;
1355 dep_t dep;
1356 rtx prev_nonnote;
1358 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1360 rtx i = insn;
1361 rtx pro = DEP_PRO (dep);
1365 i = prev_nonnote_insn (i);
1367 if (pro == i)
1368 goto next_link;
1369 } while (SCHED_GROUP_P (i));
1371 if (! sched_insns_conditions_mutex_p (i, pro))
1372 add_dependence (i, pro, DEP_TYPE (dep));
1373 next_link:;
1376 delete_all_dependences (insn);
1378 prev_nonnote = prev_nonnote_insn (insn);
1379 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1380 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1381 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1384 /* Process an insn's memory dependencies. There are four kinds of
1385 dependencies:
1387 (0) read dependence: read follows read
1388 (1) true dependence: read follows write
1389 (2) output dependence: write follows write
1390 (3) anti dependence: write follows read
1392 We are careful to build only dependencies which actually exist, and
1393 use transitivity to avoid building too many links. */
1395 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1396 The MEM is a memory reference contained within INSN, which we are saving
1397 so that we can do memory aliasing on it. */
1399 static void
1400 add_insn_mem_dependence (struct deps *deps, bool read_p,
1401 rtx insn, rtx mem)
1403 rtx *insn_list;
1404 rtx *mem_list;
1405 rtx link;
1407 if (read_p)
1409 insn_list = &deps->pending_read_insns;
1410 mem_list = &deps->pending_read_mems;
1411 deps->pending_read_list_length++;
1413 else
1415 insn_list = &deps->pending_write_insns;
1416 mem_list = &deps->pending_write_mems;
1417 deps->pending_write_list_length++;
1420 link = alloc_INSN_LIST (insn, *insn_list);
1421 *insn_list = link;
1423 if (current_sched_info->use_cselib)
1425 mem = shallow_copy_rtx (mem);
1426 XEXP (mem, 0) = cselib_subst_to_values (XEXP (mem, 0));
1428 link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1429 *mem_list = link;
1432 /* Make a dependency between every memory reference on the pending lists
1433 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1434 dependencies for a read operation, similarly with FOR_WRITE. */
1436 static void
1437 flush_pending_lists (struct deps *deps, rtx insn, int for_read,
1438 int for_write)
1440 if (for_write)
1442 add_dependence_list_and_free (insn, &deps->pending_read_insns, 1,
1443 REG_DEP_ANTI);
1444 free_EXPR_LIST_list (&deps->pending_read_mems);
1445 deps->pending_read_list_length = 0;
1448 add_dependence_list_and_free (insn, &deps->pending_write_insns, 1,
1449 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1450 free_EXPR_LIST_list (&deps->pending_write_mems);
1451 deps->pending_write_list_length = 0;
1453 add_dependence_list_and_free (insn, &deps->last_pending_memory_flush, 1,
1454 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT);
1455 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1456 deps->pending_flush_length = 1;
1459 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
1460 The type of the reference is specified by REF and can be SET,
1461 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
1463 static void
1464 sched_analyze_reg (struct deps *deps, int regno, enum machine_mode mode,
1465 enum rtx_code ref, rtx insn)
1467 /* A hard reg in a wide mode may really be multiple registers.
1468 If so, mark all of them just like the first. */
1469 if (regno < FIRST_PSEUDO_REGISTER)
1471 int i = hard_regno_nregs[regno][mode];
1472 if (ref == SET)
1474 while (--i >= 0)
1475 SET_REGNO_REG_SET (reg_pending_sets, regno + i);
1477 else if (ref == USE)
1479 while (--i >= 0)
1480 SET_REGNO_REG_SET (reg_pending_uses, regno + i);
1482 else
1484 while (--i >= 0)
1485 SET_REGNO_REG_SET (reg_pending_clobbers, regno + i);
1489 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
1490 it does not reload. Ignore these as they have served their
1491 purpose already. */
1492 else if (regno >= deps->max_reg)
1494 enum rtx_code code = GET_CODE (PATTERN (insn));
1495 gcc_assert (code == USE || code == CLOBBER);
1498 else
1500 if (ref == SET)
1501 SET_REGNO_REG_SET (reg_pending_sets, regno);
1502 else if (ref == USE)
1503 SET_REGNO_REG_SET (reg_pending_uses, regno);
1504 else
1505 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1507 /* Pseudos that are REG_EQUIV to something may be replaced
1508 by that during reloading. We need only add dependencies for
1509 the address in the REG_EQUIV note. */
1510 if (!reload_completed && get_reg_known_equiv_p (regno))
1512 rtx t = get_reg_known_value (regno);
1513 if (MEM_P (t))
1514 sched_analyze_2 (deps, XEXP (t, 0), insn);
1517 /* Don't let it cross a call after scheduling if it doesn't
1518 already cross one. */
1519 if (REG_N_CALLS_CROSSED (regno) == 0)
1521 if (ref == USE)
1522 deps->sched_before_next_call
1523 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
1524 else
1525 add_dependence_list (insn, deps->last_function_call, 1,
1526 REG_DEP_ANTI);
1531 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
1532 rtx, X, creating all dependencies generated by the write to the
1533 destination of X, and reads of everything mentioned. */
1535 static void
1536 sched_analyze_1 (struct deps *deps, rtx x, rtx insn)
1538 rtx dest = XEXP (x, 0);
1539 enum rtx_code code = GET_CODE (x);
1541 if (dest == 0)
1542 return;
1544 if (GET_CODE (dest) == PARALLEL)
1546 int i;
1548 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1549 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1550 sched_analyze_1 (deps,
1551 gen_rtx_CLOBBER (VOIDmode,
1552 XEXP (XVECEXP (dest, 0, i), 0)),
1553 insn);
1555 if (GET_CODE (x) == SET)
1556 sched_analyze_2 (deps, SET_SRC (x), insn);
1557 return;
1560 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
1561 || GET_CODE (dest) == ZERO_EXTRACT)
1563 if (GET_CODE (dest) == STRICT_LOW_PART
1564 || GET_CODE (dest) == ZERO_EXTRACT
1565 || df_read_modify_subreg_p (dest))
1567 /* These both read and modify the result. We must handle
1568 them as writes to get proper dependencies for following
1569 instructions. We must handle them as reads to get proper
1570 dependencies from this to previous instructions.
1571 Thus we need to call sched_analyze_2. */
1573 sched_analyze_2 (deps, XEXP (dest, 0), insn);
1575 if (GET_CODE (dest) == ZERO_EXTRACT)
1577 /* The second and third arguments are values read by this insn. */
1578 sched_analyze_2 (deps, XEXP (dest, 1), insn);
1579 sched_analyze_2 (deps, XEXP (dest, 2), insn);
1581 dest = XEXP (dest, 0);
1584 if (REG_P (dest))
1586 int regno = REGNO (dest);
1587 enum machine_mode mode = GET_MODE (dest);
1589 sched_analyze_reg (deps, regno, mode, code, insn);
1591 #ifdef STACK_REGS
1592 /* Treat all writes to a stack register as modifying the TOS. */
1593 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
1595 /* Avoid analyzing the same register twice. */
1596 if (regno != FIRST_STACK_REG)
1597 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
1598 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
1600 #endif
1602 else if (MEM_P (dest))
1604 /* Writing memory. */
1605 rtx t = dest;
1607 if (current_sched_info->use_cselib)
1609 t = shallow_copy_rtx (dest);
1610 cselib_lookup (XEXP (t, 0), Pmode, 1);
1611 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0));
1613 t = canon_rtx (t);
1615 if ((deps->pending_read_list_length + deps->pending_write_list_length)
1616 > MAX_PENDING_LIST_LENGTH)
1618 /* Flush all pending reads and writes to prevent the pending lists
1619 from getting any larger. Insn scheduling runs too slowly when
1620 these lists get long. When compiling GCC with itself,
1621 this flush occurs 8 times for sparc, and 10 times for m88k using
1622 the default value of 32. */
1623 flush_pending_lists (deps, insn, false, true);
1625 else
1627 rtx pending, pending_mem;
1629 pending = deps->pending_read_insns;
1630 pending_mem = deps->pending_read_mems;
1631 while (pending)
1633 if (anti_dependence (XEXP (pending_mem, 0), t)
1634 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
1635 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
1637 pending = XEXP (pending, 1);
1638 pending_mem = XEXP (pending_mem, 1);
1641 pending = deps->pending_write_insns;
1642 pending_mem = deps->pending_write_mems;
1643 while (pending)
1645 if (output_dependence (XEXP (pending_mem, 0), t)
1646 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
1647 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
1649 pending = XEXP (pending, 1);
1650 pending_mem = XEXP (pending_mem, 1);
1653 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
1654 REG_DEP_ANTI);
1656 add_insn_mem_dependence (deps, false, insn, dest);
1658 sched_analyze_2 (deps, XEXP (dest, 0), insn);
1661 /* Analyze reads. */
1662 if (GET_CODE (x) == SET)
1663 sched_analyze_2 (deps, SET_SRC (x), insn);
1666 /* Analyze the uses of memory and registers in rtx X in INSN. */
1668 static void
1669 sched_analyze_2 (struct deps *deps, rtx x, rtx insn)
1671 int i;
1672 int j;
1673 enum rtx_code code;
1674 const char *fmt;
1676 if (x == 0)
1677 return;
1679 code = GET_CODE (x);
1681 switch (code)
1683 case CONST_INT:
1684 case CONST_DOUBLE:
1685 case CONST_FIXED:
1686 case CONST_VECTOR:
1687 case SYMBOL_REF:
1688 case CONST:
1689 case LABEL_REF:
1690 /* Ignore constants. Note that we must handle CONST_DOUBLE here
1691 because it may have a cc0_rtx in its CONST_DOUBLE_CHAIN field, but
1692 this does not mean that this insn is using cc0. */
1693 return;
1695 #ifdef HAVE_cc0
1696 case CC0:
1697 /* User of CC0 depends on immediately preceding insn. */
1698 SCHED_GROUP_P (insn) = 1;
1699 /* Don't move CC0 setter to another block (it can set up the
1700 same flag for previous CC0 users which is safe). */
1701 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
1702 return;
1703 #endif
1705 case REG:
1707 int regno = REGNO (x);
1708 enum machine_mode mode = GET_MODE (x);
1710 sched_analyze_reg (deps, regno, mode, USE, insn);
1712 #ifdef STACK_REGS
1713 /* Treat all reads of a stack register as modifying the TOS. */
1714 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
1716 /* Avoid analyzing the same register twice. */
1717 if (regno != FIRST_STACK_REG)
1718 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
1719 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
1721 #endif
1722 return;
1725 case MEM:
1727 /* Reading memory. */
1728 rtx u;
1729 rtx pending, pending_mem;
1730 rtx t = x;
1732 if (current_sched_info->use_cselib)
1734 t = shallow_copy_rtx (t);
1735 cselib_lookup (XEXP (t, 0), Pmode, 1);
1736 XEXP (t, 0) = cselib_subst_to_values (XEXP (t, 0));
1738 t = canon_rtx (t);
1739 pending = deps->pending_read_insns;
1740 pending_mem = deps->pending_read_mems;
1741 while (pending)
1743 if (read_dependence (XEXP (pending_mem, 0), t)
1744 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
1745 add_dependence (insn, XEXP (pending, 0), REG_DEP_ANTI);
1747 pending = XEXP (pending, 1);
1748 pending_mem = XEXP (pending_mem, 1);
1751 pending = deps->pending_write_insns;
1752 pending_mem = deps->pending_write_mems;
1753 while (pending)
1755 if (true_dependence (XEXP (pending_mem, 0), VOIDmode,
1756 t, rtx_varies_p)
1757 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
1759 if ((current_sched_info->flags & DO_SPECULATION)
1760 && (spec_info->mask & BEGIN_DATA))
1761 /* Create a data-speculative dependence between producer
1762 and consumer. */
1764 dep_def _dep, *dep = &_dep;
1766 init_dep_1 (dep, XEXP (pending, 0), insn, REG_DEP_TRUE,
1767 BEGIN_DATA | DEP_TRUE);
1769 maybe_add_or_update_dep_1 (dep, false,
1770 XEXP (pending_mem, 0), t);
1772 else
1773 add_dependence (insn, XEXP (pending, 0), REG_DEP_TRUE);
1776 pending = XEXP (pending, 1);
1777 pending_mem = XEXP (pending_mem, 1);
1780 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
1781 if (! JUMP_P (XEXP (u, 0)) || deps_may_trap_p (x))
1782 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
1784 /* Always add these dependencies to pending_reads, since
1785 this insn may be followed by a write. */
1786 add_insn_mem_dependence (deps, true, insn, x);
1788 /* Take advantage of tail recursion here. */
1789 sched_analyze_2 (deps, XEXP (x, 0), insn);
1790 return;
1793 /* Force pending stores to memory in case a trap handler needs them. */
1794 case TRAP_IF:
1795 flush_pending_lists (deps, insn, true, false);
1796 break;
1798 case ASM_OPERANDS:
1799 case ASM_INPUT:
1800 case UNSPEC_VOLATILE:
1802 /* Traditional and volatile asm instructions must be considered to use
1803 and clobber all hard registers, all pseudo-registers and all of
1804 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
1806 Consider for instance a volatile asm that changes the fpu rounding
1807 mode. An insn should not be moved across this even if it only uses
1808 pseudo-regs because it might give an incorrectly rounded result. */
1809 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
1810 reg_pending_barrier = TRUE_BARRIER;
1812 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
1813 We can not just fall through here since then we would be confused
1814 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
1815 traditional asms unlike their normal usage. */
1817 if (code == ASM_OPERANDS)
1819 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
1820 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
1821 return;
1823 break;
1826 case PRE_DEC:
1827 case POST_DEC:
1828 case PRE_INC:
1829 case POST_INC:
1830 /* These both read and modify the result. We must handle them as writes
1831 to get proper dependencies for following instructions. We must handle
1832 them as reads to get proper dependencies from this to previous
1833 instructions. Thus we need to pass them to both sched_analyze_1
1834 and sched_analyze_2. We must call sched_analyze_2 first in order
1835 to get the proper antecedent for the read. */
1836 sched_analyze_2 (deps, XEXP (x, 0), insn);
1837 sched_analyze_1 (deps, x, insn);
1838 return;
1840 case POST_MODIFY:
1841 case PRE_MODIFY:
1842 /* op0 = op0 + op1 */
1843 sched_analyze_2 (deps, XEXP (x, 0), insn);
1844 sched_analyze_2 (deps, XEXP (x, 1), insn);
1845 sched_analyze_1 (deps, x, insn);
1846 return;
1848 default:
1849 break;
1852 /* Other cases: walk the insn. */
1853 fmt = GET_RTX_FORMAT (code);
1854 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1856 if (fmt[i] == 'e')
1857 sched_analyze_2 (deps, XEXP (x, i), insn);
1858 else if (fmt[i] == 'E')
1859 for (j = 0; j < XVECLEN (x, i); j++)
1860 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
1864 /* Analyze an INSN with pattern X to find all dependencies. */
1866 static void
1867 sched_analyze_insn (struct deps *deps, rtx x, rtx insn)
1869 RTX_CODE code = GET_CODE (x);
1870 rtx link;
1871 unsigned i;
1872 reg_set_iterator rsi;
1874 if (code == COND_EXEC)
1876 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
1878 /* ??? Should be recording conditions so we reduce the number of
1879 false dependencies. */
1880 x = COND_EXEC_CODE (x);
1881 code = GET_CODE (x);
1883 if (code == SET || code == CLOBBER)
1885 sched_analyze_1 (deps, x, insn);
1887 /* Bare clobber insns are used for letting life analysis, reg-stack
1888 and others know that a value is dead. Depend on the last call
1889 instruction so that reg-stack won't get confused. */
1890 if (code == CLOBBER)
1891 add_dependence_list (insn, deps->last_function_call, 1, REG_DEP_OUTPUT);
1893 else if (code == PARALLEL)
1895 for (i = XVECLEN (x, 0); i--;)
1897 rtx sub = XVECEXP (x, 0, i);
1898 code = GET_CODE (sub);
1900 if (code == COND_EXEC)
1902 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
1903 sub = COND_EXEC_CODE (sub);
1904 code = GET_CODE (sub);
1906 if (code == SET || code == CLOBBER)
1907 sched_analyze_1 (deps, sub, insn);
1908 else
1909 sched_analyze_2 (deps, sub, insn);
1912 else
1913 sched_analyze_2 (deps, x, insn);
1915 /* Mark registers CLOBBERED or used by called function. */
1916 if (CALL_P (insn))
1918 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1920 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1921 sched_analyze_1 (deps, XEXP (link, 0), insn);
1922 else
1923 sched_analyze_2 (deps, XEXP (link, 0), insn);
1925 if (find_reg_note (insn, REG_SETJMP, NULL))
1926 reg_pending_barrier = MOVE_BARRIER;
1929 if (JUMP_P (insn))
1931 rtx next;
1932 next = next_nonnote_insn (insn);
1933 if (next && BARRIER_P (next))
1934 reg_pending_barrier = TRUE_BARRIER;
1935 else
1937 rtx pending, pending_mem;
1938 regset_head tmp_uses, tmp_sets;
1939 INIT_REG_SET (&tmp_uses);
1940 INIT_REG_SET (&tmp_sets);
1942 (*current_sched_info->compute_jump_reg_dependencies)
1943 (insn, &deps->reg_conditional_sets, &tmp_uses, &tmp_sets);
1944 /* Make latency of jump equal to 0 by using anti-dependence. */
1945 EXECUTE_IF_SET_IN_REG_SET (&tmp_uses, 0, i, rsi)
1947 struct deps_reg *reg_last = &deps->reg_last[i];
1948 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI);
1949 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI);
1950 reg_last->uses_length++;
1951 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
1953 IOR_REG_SET (reg_pending_sets, &tmp_sets);
1955 CLEAR_REG_SET (&tmp_uses);
1956 CLEAR_REG_SET (&tmp_sets);
1958 /* All memory writes and volatile reads must happen before the
1959 jump. Non-volatile reads must happen before the jump iff
1960 the result is needed by the above register used mask. */
1962 pending = deps->pending_write_insns;
1963 pending_mem = deps->pending_write_mems;
1964 while (pending)
1966 if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
1967 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
1968 pending = XEXP (pending, 1);
1969 pending_mem = XEXP (pending_mem, 1);
1972 pending = deps->pending_read_insns;
1973 pending_mem = deps->pending_read_mems;
1974 while (pending)
1976 if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
1977 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
1978 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
1979 pending = XEXP (pending, 1);
1980 pending_mem = XEXP (pending_mem, 1);
1983 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
1984 REG_DEP_ANTI);
1988 /* If this instruction can throw an exception, then moving it changes
1989 where block boundaries fall. This is mighty confusing elsewhere.
1990 Therefore, prevent such an instruction from being moved. Same for
1991 non-jump instructions that define block boundaries.
1992 ??? Unclear whether this is still necessary in EBB mode. If not,
1993 add_branch_dependences should be adjusted for RGN mode instead. */
1994 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
1995 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
1996 reg_pending_barrier = MOVE_BARRIER;
1998 /* Add dependencies if a scheduling barrier was found. */
1999 if (reg_pending_barrier)
2001 /* In the case of barrier the most added dependencies are not
2002 real, so we use anti-dependence here. */
2003 if (sched_get_condition (insn))
2005 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
2007 struct deps_reg *reg_last = &deps->reg_last[i];
2008 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
2009 add_dependence_list
2010 (insn, reg_last->sets, 0,
2011 reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI);
2012 add_dependence_list
2013 (insn, reg_last->clobbers, 0,
2014 reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI);
2017 else
2019 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
2021 struct deps_reg *reg_last = &deps->reg_last[i];
2022 add_dependence_list_and_free (insn, &reg_last->uses, 0,
2023 REG_DEP_ANTI);
2024 add_dependence_list_and_free
2025 (insn, &reg_last->sets, 0,
2026 reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI);
2027 add_dependence_list_and_free
2028 (insn, &reg_last->clobbers, 0,
2029 reg_pending_barrier == TRUE_BARRIER ? REG_DEP_TRUE : REG_DEP_ANTI);
2030 reg_last->uses_length = 0;
2031 reg_last->clobbers_length = 0;
2035 for (i = 0; i < (unsigned)deps->max_reg; i++)
2037 struct deps_reg *reg_last = &deps->reg_last[i];
2038 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
2039 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
2042 flush_pending_lists (deps, insn, true, true);
2043 CLEAR_REG_SET (&deps->reg_conditional_sets);
2044 reg_pending_barrier = NOT_A_BARRIER;
2046 else
2048 /* If the current insn is conditional, we can't free any
2049 of the lists. */
2050 if (sched_get_condition (insn))
2052 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
2054 struct deps_reg *reg_last = &deps->reg_last[i];
2055 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
2056 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
2057 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
2058 reg_last->uses_length++;
2060 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
2062 struct deps_reg *reg_last = &deps->reg_last[i];
2063 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
2064 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
2065 reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers);
2066 reg_last->clobbers_length++;
2068 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
2070 struct deps_reg *reg_last = &deps->reg_last[i];
2071 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
2072 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT);
2073 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
2074 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
2075 SET_REGNO_REG_SET (&deps->reg_conditional_sets, i);
2078 else
2080 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
2082 struct deps_reg *reg_last = &deps->reg_last[i];
2083 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE);
2084 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE);
2085 reg_last->uses_length++;
2086 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
2088 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
2090 struct deps_reg *reg_last = &deps->reg_last[i];
2091 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
2092 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
2094 add_dependence_list_and_free (insn, &reg_last->sets, 0,
2095 REG_DEP_OUTPUT);
2096 add_dependence_list_and_free (insn, &reg_last->uses, 0,
2097 REG_DEP_ANTI);
2098 add_dependence_list_and_free (insn, &reg_last->clobbers, 0,
2099 REG_DEP_OUTPUT);
2100 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
2101 reg_last->clobbers_length = 0;
2102 reg_last->uses_length = 0;
2104 else
2106 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT);
2107 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI);
2109 reg_last->clobbers_length++;
2110 reg_last->clobbers = alloc_INSN_LIST (insn, reg_last->clobbers);
2112 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
2114 struct deps_reg *reg_last = &deps->reg_last[i];
2115 add_dependence_list_and_free (insn, &reg_last->sets, 0,
2116 REG_DEP_OUTPUT);
2117 add_dependence_list_and_free (insn, &reg_last->clobbers, 0,
2118 REG_DEP_OUTPUT);
2119 add_dependence_list_and_free (insn, &reg_last->uses, 0,
2120 REG_DEP_ANTI);
2121 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
2122 reg_last->uses_length = 0;
2123 reg_last->clobbers_length = 0;
2124 CLEAR_REGNO_REG_SET (&deps->reg_conditional_sets, i);
2128 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
2129 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
2130 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
2132 CLEAR_REG_SET (reg_pending_uses);
2133 CLEAR_REG_SET (reg_pending_clobbers);
2134 CLEAR_REG_SET (reg_pending_sets);
2136 /* If we are currently in a libcall scheduling group, then mark the
2137 current insn as being in a scheduling group and that it can not
2138 be moved into a different basic block. */
2140 if (deps->libcall_block_tail_insn)
2142 SCHED_GROUP_P (insn) = 1;
2143 CANT_MOVE (insn) = 1;
2146 /* If a post-call group is still open, see if it should remain so.
2147 This insn must be a simple move of a hard reg to a pseudo or
2148 vice-versa.
2150 We must avoid moving these insns for correctness on
2151 SMALL_REGISTER_CLASS machines, and for special registers like
2152 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
2153 hard regs for all targets. */
2155 if (deps->in_post_call_group_p)
2157 rtx tmp, set = single_set (insn);
2158 int src_regno, dest_regno;
2160 if (set == NULL)
2161 goto end_call_group;
2163 tmp = SET_DEST (set);
2164 if (GET_CODE (tmp) == SUBREG)
2165 tmp = SUBREG_REG (tmp);
2166 if (REG_P (tmp))
2167 dest_regno = REGNO (tmp);
2168 else
2169 goto end_call_group;
2171 tmp = SET_SRC (set);
2172 if (GET_CODE (tmp) == SUBREG)
2173 tmp = SUBREG_REG (tmp);
2174 if ((GET_CODE (tmp) == PLUS
2175 || GET_CODE (tmp) == MINUS)
2176 && REG_P (XEXP (tmp, 0))
2177 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
2178 && dest_regno == STACK_POINTER_REGNUM)
2179 src_regno = STACK_POINTER_REGNUM;
2180 else if (REG_P (tmp))
2181 src_regno = REGNO (tmp);
2182 else
2183 goto end_call_group;
2185 if (src_regno < FIRST_PSEUDO_REGISTER
2186 || dest_regno < FIRST_PSEUDO_REGISTER)
2188 if (deps->in_post_call_group_p == post_call_initial)
2189 deps->in_post_call_group_p = post_call;
2191 SCHED_GROUP_P (insn) = 1;
2192 CANT_MOVE (insn) = 1;
2194 else
2196 end_call_group:
2197 deps->in_post_call_group_p = not_post_call;
2201 /* Fixup the dependencies in the sched group. */
2202 if (SCHED_GROUP_P (insn))
2203 fixup_sched_groups (insn);
2205 #ifdef INSN_SCHEDULING
2206 if ((current_sched_info->flags & DO_SPECULATION)
2207 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
2208 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
2209 be speculated. */
2211 sd_iterator_def sd_it;
2212 dep_t dep;
2214 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
2215 sd_iterator_cond (&sd_it, &dep);)
2216 change_spec_dep_to_hard (sd_it);
2218 #endif
2221 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
2222 dependencies for each insn. */
2224 void
2225 sched_analyze (struct deps *deps, rtx head, rtx tail)
2227 rtx insn;
2229 if (current_sched_info->use_cselib)
2230 cselib_init (true);
2232 /* Before reload, if the previous block ended in a call, show that
2233 we are inside a post-call group, so as to keep the lifetimes of
2234 hard registers correct. */
2235 if (! reload_completed && !LABEL_P (head))
2237 insn = prev_nonnote_insn (head);
2238 if (insn && CALL_P (insn))
2239 deps->in_post_call_group_p = post_call_initial;
2241 for (insn = head;; insn = NEXT_INSN (insn))
2243 rtx link, end_seq, r0, set;
2245 if (INSN_P (insn))
2247 /* And initialize deps_lists. */
2248 sd_init_insn (insn);
2251 if (NONJUMP_INSN_P (insn) || JUMP_P (insn))
2253 /* Make each JUMP_INSN a scheduling barrier for memory
2254 references. */
2255 if (JUMP_P (insn))
2257 /* Keep the list a reasonable size. */
2258 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
2259 flush_pending_lists (deps, insn, true, true);
2260 else
2261 deps->last_pending_memory_flush
2262 = alloc_INSN_LIST (insn, deps->last_pending_memory_flush);
2264 sched_analyze_insn (deps, PATTERN (insn), insn);
2266 else if (CALL_P (insn))
2268 int i;
2270 CANT_MOVE (insn) = 1;
2272 if (find_reg_note (insn, REG_SETJMP, NULL))
2274 /* This is setjmp. Assume that all registers, not just
2275 hard registers, may be clobbered by this call. */
2276 reg_pending_barrier = MOVE_BARRIER;
2278 else
2280 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2281 /* A call may read and modify global register variables. */
2282 if (global_regs[i])
2284 SET_REGNO_REG_SET (reg_pending_sets, i);
2285 SET_REGNO_REG_SET (reg_pending_uses, i);
2287 /* Other call-clobbered hard regs may be clobbered.
2288 Since we only have a choice between 'might be clobbered'
2289 and 'definitely not clobbered', we must include all
2290 partly call-clobbered registers here. */
2291 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
2292 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
2293 SET_REGNO_REG_SET (reg_pending_clobbers, i);
2294 /* We don't know what set of fixed registers might be used
2295 by the function, but it is certain that the stack pointer
2296 is among them, but be conservative. */
2297 else if (fixed_regs[i])
2298 SET_REGNO_REG_SET (reg_pending_uses, i);
2299 /* The frame pointer is normally not used by the function
2300 itself, but by the debugger. */
2301 /* ??? MIPS o32 is an exception. It uses the frame pointer
2302 in the macro expansion of jal but does not represent this
2303 fact in the call_insn rtl. */
2304 else if (i == FRAME_POINTER_REGNUM
2305 || (i == HARD_FRAME_POINTER_REGNUM
2306 && (! reload_completed || frame_pointer_needed)))
2307 SET_REGNO_REG_SET (reg_pending_uses, i);
2310 /* For each insn which shouldn't cross a call, add a dependence
2311 between that insn and this call insn. */
2312 add_dependence_list_and_free (insn, &deps->sched_before_next_call, 1,
2313 REG_DEP_ANTI);
2315 sched_analyze_insn (deps, PATTERN (insn), insn);
2317 /* In the absence of interprocedural alias analysis, we must flush
2318 all pending reads and writes, and start new dependencies starting
2319 from here. But only flush writes for constant calls (which may
2320 be passed a pointer to something we haven't written yet). */
2321 flush_pending_lists (deps, insn, true, !CONST_OR_PURE_CALL_P (insn));
2323 /* Remember the last function call for limiting lifetimes. */
2324 free_INSN_LIST_list (&deps->last_function_call);
2325 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
2327 /* Before reload, begin a post-call group, so as to keep the
2328 lifetimes of hard registers correct. */
2329 if (! reload_completed)
2330 deps->in_post_call_group_p = post_call;
2333 /* EH_REGION insn notes can not appear until well after we complete
2334 scheduling. */
2335 if (NOTE_P (insn))
2336 gcc_assert (NOTE_KIND (insn) != NOTE_INSN_EH_REGION_BEG
2337 && NOTE_KIND (insn) != NOTE_INSN_EH_REGION_END);
2339 if (current_sched_info->use_cselib)
2340 cselib_process_insn (insn);
2342 /* Now that we have completed handling INSN, check and see if it is
2343 a CLOBBER beginning a libcall block. If it is, record the
2344 end of the libcall sequence.
2346 We want to schedule libcall blocks as a unit before reload. While
2347 this restricts scheduling, it preserves the meaning of a libcall
2348 block.
2350 As a side effect, we may get better code due to decreased register
2351 pressure as well as less chance of a foreign insn appearing in
2352 a libcall block. */
2353 if (!reload_completed
2354 /* Note we may have nested libcall sequences. We only care about
2355 the outermost libcall sequence. */
2356 && deps->libcall_block_tail_insn == 0
2357 /* The sequence must start with a clobber of a register. */
2358 && NONJUMP_INSN_P (insn)
2359 && GET_CODE (PATTERN (insn)) == CLOBBER
2360 && (r0 = XEXP (PATTERN (insn), 0), REG_P (r0))
2361 && REG_P (XEXP (PATTERN (insn), 0))
2362 /* The CLOBBER must also have a REG_LIBCALL note attached. */
2363 && (link = find_reg_note (insn, REG_LIBCALL, NULL_RTX)) != 0
2364 && (end_seq = XEXP (link, 0)) != 0
2365 /* The insn referenced by the REG_LIBCALL note must be a
2366 simple nop copy with the same destination as the register
2367 mentioned in the clobber. */
2368 && (set = single_set (end_seq)) != 0
2369 && SET_DEST (set) == r0 && SET_SRC (set) == r0
2370 /* And finally the insn referenced by the REG_LIBCALL must
2371 also contain a REG_EQUAL note and a REG_RETVAL note. */
2372 && find_reg_note (end_seq, REG_EQUAL, NULL_RTX) != 0
2373 && find_reg_note (end_seq, REG_RETVAL, NULL_RTX) != 0)
2374 deps->libcall_block_tail_insn = XEXP (link, 0);
2376 /* If we have reached the end of a libcall block, then close the
2377 block. */
2378 if (deps->libcall_block_tail_insn == insn)
2379 deps->libcall_block_tail_insn = 0;
2381 if (insn == tail)
2383 if (current_sched_info->use_cselib)
2384 cselib_finish ();
2385 return;
2388 gcc_unreachable ();
2391 /* Helper for sched_free_deps ().
2392 Delete INSN's (RESOLVED_P) backward dependencies. */
2393 static void
2394 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
2396 sd_iterator_def sd_it;
2397 dep_t dep;
2398 sd_list_types_def types;
2400 if (resolved_p)
2401 types = SD_LIST_RES_BACK;
2402 else
2403 types = SD_LIST_BACK;
2405 for (sd_it = sd_iterator_start (insn, types);
2406 sd_iterator_cond (&sd_it, &dep);)
2408 dep_link_t link = *sd_it.linkp;
2409 dep_node_t node = DEP_LINK_NODE (link);
2410 deps_list_t back_list;
2411 deps_list_t forw_list;
2413 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
2414 remove_from_deps_list (link, back_list);
2415 delete_dep_node (node);
2419 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
2420 deps_lists. */
2421 void
2422 sched_free_deps (rtx head, rtx tail, bool resolved_p)
2424 rtx insn;
2425 rtx next_tail = NEXT_INSN (tail);
2427 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2428 if (INSN_P (insn) && INSN_LUID (insn) > 0)
2430 /* Clear resolved back deps together with its dep_nodes. */
2431 delete_dep_nodes_in_back_deps (insn, resolved_p);
2433 /* Clear forward deps and leave the dep_nodes to the
2434 corresponding back_deps list. */
2435 if (resolved_p)
2436 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
2437 else
2438 clear_deps_list (INSN_FORW_DEPS (insn));
2440 sd_finish_insn (insn);
2444 /* Initialize variables for region data dependence analysis.
2445 n_bbs is the number of region blocks. */
2447 void
2448 init_deps (struct deps *deps)
2450 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
2452 deps->max_reg = max_reg;
2453 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
2454 INIT_REG_SET (&deps->reg_last_in_use);
2455 INIT_REG_SET (&deps->reg_conditional_sets);
2457 deps->pending_read_insns = 0;
2458 deps->pending_read_mems = 0;
2459 deps->pending_write_insns = 0;
2460 deps->pending_write_mems = 0;
2461 deps->pending_read_list_length = 0;
2462 deps->pending_write_list_length = 0;
2463 deps->pending_flush_length = 0;
2464 deps->last_pending_memory_flush = 0;
2465 deps->last_function_call = 0;
2466 deps->sched_before_next_call = 0;
2467 deps->in_post_call_group_p = not_post_call;
2468 deps->libcall_block_tail_insn = 0;
2471 /* Free insn lists found in DEPS. */
2473 void
2474 free_deps (struct deps *deps)
2476 unsigned i;
2477 reg_set_iterator rsi;
2479 free_INSN_LIST_list (&deps->pending_read_insns);
2480 free_EXPR_LIST_list (&deps->pending_read_mems);
2481 free_INSN_LIST_list (&deps->pending_write_insns);
2482 free_EXPR_LIST_list (&deps->pending_write_mems);
2483 free_INSN_LIST_list (&deps->last_pending_memory_flush);
2485 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
2486 times. For a testcase with 42000 regs and 8000 small basic blocks,
2487 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
2488 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
2490 struct deps_reg *reg_last = &deps->reg_last[i];
2491 if (reg_last->uses)
2492 free_INSN_LIST_list (&reg_last->uses);
2493 if (reg_last->sets)
2494 free_INSN_LIST_list (&reg_last->sets);
2495 if (reg_last->clobbers)
2496 free_INSN_LIST_list (&reg_last->clobbers);
2498 CLEAR_REG_SET (&deps->reg_last_in_use);
2499 CLEAR_REG_SET (&deps->reg_conditional_sets);
2501 free (deps->reg_last);
2504 /* If it is profitable to use them, initialize caches for tracking
2505 dependency information. LUID is the number of insns to be scheduled,
2506 it is used in the estimate of profitability. */
2508 void
2509 init_dependency_caches (int luid)
2511 /* Average number of insns in the basic block.
2512 '+ 1' is used to make it nonzero. */
2513 int insns_in_block = luid / n_basic_blocks + 1;
2515 /* ?!? We could save some memory by computing a per-region luid mapping
2516 which could reduce both the number of vectors in the cache and the size
2517 of each vector. Instead we just avoid the cache entirely unless the
2518 average number of instructions in a basic block is very high. See
2519 the comment before the declaration of true_dependency_cache for
2520 what we consider "very high". */
2521 if (insns_in_block > 100 * 5)
2523 cache_size = 0;
2524 extend_dependency_caches (luid, true);
2527 dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
2528 /* Allocate lists for one block at a time. */
2529 insns_in_block);
2531 dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
2532 /* Allocate nodes for one block at a time.
2533 We assume that average insn has
2534 5 producers. */
2535 5 * insns_in_block);
2538 /* Create or extend (depending on CREATE_P) dependency caches to
2539 size N. */
2540 void
2541 extend_dependency_caches (int n, bool create_p)
2543 if (create_p || true_dependency_cache)
2545 int i, luid = cache_size + n;
2547 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
2548 luid);
2549 output_dependency_cache = XRESIZEVEC (bitmap_head,
2550 output_dependency_cache, luid);
2551 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
2552 luid);
2554 if (current_sched_info->flags & DO_SPECULATION)
2555 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
2556 luid);
2558 for (i = cache_size; i < luid; i++)
2560 bitmap_initialize (&true_dependency_cache[i], 0);
2561 bitmap_initialize (&output_dependency_cache[i], 0);
2562 bitmap_initialize (&anti_dependency_cache[i], 0);
2564 if (current_sched_info->flags & DO_SPECULATION)
2565 bitmap_initialize (&spec_dependency_cache[i], 0);
2567 cache_size = luid;
2571 /* Free the caches allocated in init_dependency_caches. */
2573 void
2574 free_dependency_caches (void)
2576 gcc_assert (deps_pools_are_empty_p ());
2577 free_alloc_pool_if_empty (&dn_pool);
2578 free_alloc_pool_if_empty (&dl_pool);
2579 gcc_assert (dn_pool == NULL && dl_pool == NULL);
2581 if (true_dependency_cache)
2583 int i;
2585 for (i = 0; i < cache_size; i++)
2587 bitmap_clear (&true_dependency_cache[i]);
2588 bitmap_clear (&output_dependency_cache[i]);
2589 bitmap_clear (&anti_dependency_cache[i]);
2591 if (current_sched_info->flags & DO_SPECULATION)
2592 bitmap_clear (&spec_dependency_cache[i]);
2594 free (true_dependency_cache);
2595 true_dependency_cache = NULL;
2596 free (output_dependency_cache);
2597 output_dependency_cache = NULL;
2598 free (anti_dependency_cache);
2599 anti_dependency_cache = NULL;
2601 if (current_sched_info->flags & DO_SPECULATION)
2603 free (spec_dependency_cache);
2604 spec_dependency_cache = NULL;
2609 /* Initialize some global variables needed by the dependency analysis
2610 code. */
2612 void
2613 init_deps_global (void)
2615 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
2616 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
2617 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
2618 reg_pending_barrier = NOT_A_BARRIER;
2621 /* Free everything used by the dependency analysis code. */
2623 void
2624 finish_deps_global (void)
2626 FREE_REG_SET (reg_pending_sets);
2627 FREE_REG_SET (reg_pending_clobbers);
2628 FREE_REG_SET (reg_pending_uses);
2631 /* Estimate the weakness of dependence between MEM1 and MEM2. */
2632 static dw_t
2633 estimate_dep_weak (rtx mem1, rtx mem2)
2635 rtx r1, r2;
2637 if (mem1 == mem2)
2638 /* MEMs are the same - don't speculate. */
2639 return MIN_DEP_WEAK;
2641 r1 = XEXP (mem1, 0);
2642 r2 = XEXP (mem2, 0);
2644 if (r1 == r2
2645 || (REG_P (r1) && REG_P (r2)
2646 && REGNO (r1) == REGNO (r2)))
2647 /* Again, MEMs are the same. */
2648 return MIN_DEP_WEAK;
2649 else if ((REG_P (r1) && !REG_P (r2))
2650 || (!REG_P (r1) && REG_P (r2)))
2651 /* Different addressing modes - reason to be more speculative,
2652 than usual. */
2653 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
2654 else
2655 /* We can't say anything about the dependence. */
2656 return UNCERTAIN_DEP_WEAK;
2659 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
2660 This function can handle same INSN and ELEM (INSN == ELEM).
2661 It is a convenience wrapper. */
2662 void
2663 add_dependence (rtx insn, rtx elem, enum reg_note dep_type)
2665 dep_def _dep, *dep = &_dep;
2667 init_dep (dep, elem, insn, dep_type);
2668 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
2671 /* Return weakness of speculative type TYPE in the dep_status DS. */
2672 static dw_t
2673 get_dep_weak_1 (ds_t ds, ds_t type)
2675 ds = ds & type;
2676 switch (type)
2678 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
2679 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
2680 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
2681 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
2682 default: gcc_unreachable ();
2685 return (dw_t) ds;
2688 /* Return weakness of speculative type TYPE in the dep_status DS. */
2689 dw_t
2690 get_dep_weak (ds_t ds, ds_t type)
2692 dw_t dw = get_dep_weak_1 (ds, type);
2694 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
2696 return dw;
2699 /* Return the dep_status, which has the same parameters as DS, except for
2700 speculative type TYPE, that will have weakness DW. */
2701 ds_t
2702 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
2704 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
2706 ds &= ~type;
2707 switch (type)
2709 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
2710 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
2711 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
2712 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
2713 default: gcc_unreachable ();
2715 return ds;
2718 /* Return the join of two dep_statuses DS1 and DS2. */
2719 ds_t
2720 ds_merge (ds_t ds1, ds_t ds2)
2722 ds_t ds, t;
2724 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
2726 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
2728 t = FIRST_SPEC_TYPE;
2731 if ((ds1 & t) && !(ds2 & t))
2732 ds |= ds1 & t;
2733 else if (!(ds1 & t) && (ds2 & t))
2734 ds |= ds2 & t;
2735 else if ((ds1 & t) && (ds2 & t))
2737 ds_t dw;
2739 dw = ((ds_t) get_dep_weak (ds1, t)) * ((ds_t) get_dep_weak (ds2, t));
2740 dw /= MAX_DEP_WEAK;
2741 if (dw < MIN_DEP_WEAK)
2742 dw = MIN_DEP_WEAK;
2744 ds = set_dep_weak (ds, t, (dw_t) dw);
2747 if (t == LAST_SPEC_TYPE)
2748 break;
2749 t <<= SPEC_TYPE_SHIFT;
2751 while (1);
2753 return ds;
2756 /* Dump information about the dependence status S. */
2757 static void
2758 dump_ds (FILE *f, ds_t s)
2760 fprintf (f, "{");
2762 if (s & BEGIN_DATA)
2763 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
2764 if (s & BE_IN_DATA)
2765 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
2766 if (s & BEGIN_CONTROL)
2767 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
2768 if (s & BE_IN_CONTROL)
2769 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
2771 if (s & HARD_DEP)
2772 fprintf (f, "HARD_DEP; ");
2774 if (s & DEP_TRUE)
2775 fprintf (f, "DEP_TRUE; ");
2776 if (s & DEP_ANTI)
2777 fprintf (f, "DEP_ANTI; ");
2778 if (s & DEP_OUTPUT)
2779 fprintf (f, "DEP_OUTPUT; ");
2781 fprintf (f, "}");
2784 void
2785 debug_ds (ds_t s)
2787 dump_ds (stderr, s);
2788 fprintf (stderr, "\n");
2791 #ifdef INSN_SCHEDULING
2792 #ifdef ENABLE_CHECKING
2793 /* Verify that dependence type and status are consistent.
2794 If RELAXED_P is true, then skip dep_weakness checks. */
2795 static void
2796 check_dep (dep_t dep, bool relaxed_p)
2798 enum reg_note dt = DEP_TYPE (dep);
2799 ds_t ds = DEP_STATUS (dep);
2801 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
2803 if (!(current_sched_info->flags & USE_DEPS_LIST))
2805 gcc_assert (ds == -1);
2806 return;
2809 /* Check that dependence type contains the same bits as the status. */
2810 if (dt == REG_DEP_TRUE)
2811 gcc_assert (ds & DEP_TRUE);
2812 else if (dt == REG_DEP_OUTPUT)
2813 gcc_assert ((ds & DEP_OUTPUT)
2814 && !(ds & DEP_TRUE));
2815 else
2816 gcc_assert ((dt == REG_DEP_ANTI)
2817 && (ds & DEP_ANTI)
2818 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
2820 /* HARD_DEP can not appear in dep_status of a link. */
2821 gcc_assert (!(ds & HARD_DEP));
2823 /* Check that dependence status is set correctly when speculation is not
2824 supported. */
2825 if (!(current_sched_info->flags & DO_SPECULATION))
2826 gcc_assert (!(ds & SPECULATIVE));
2827 else if (ds & SPECULATIVE)
2829 if (!relaxed_p)
2831 ds_t type = FIRST_SPEC_TYPE;
2833 /* Check that dependence weakness is in proper range. */
2836 if (ds & type)
2837 get_dep_weak (ds, type);
2839 if (type == LAST_SPEC_TYPE)
2840 break;
2841 type <<= SPEC_TYPE_SHIFT;
2843 while (1);
2846 if (ds & BEGIN_SPEC)
2848 /* Only true dependence can be data speculative. */
2849 if (ds & BEGIN_DATA)
2850 gcc_assert (ds & DEP_TRUE);
2852 /* Control dependencies in the insn scheduler are represented by
2853 anti-dependencies, therefore only anti dependence can be
2854 control speculative. */
2855 if (ds & BEGIN_CONTROL)
2856 gcc_assert (ds & DEP_ANTI);
2858 else
2860 /* Subsequent speculations should resolve true dependencies. */
2861 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
2864 /* Check that true and anti dependencies can't have other speculative
2865 statuses. */
2866 if (ds & DEP_TRUE)
2867 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
2868 /* An output dependence can't be speculative at all. */
2869 gcc_assert (!(ds & DEP_OUTPUT));
2870 if (ds & DEP_ANTI)
2871 gcc_assert (ds & BEGIN_CONTROL);
2874 #endif
2875 #endif