EnumSet*.class: Regenerate
[official-gcc.git] / gcc / rtlanal.c
blob4a4a62904b547ccc429adcb21c941822d3f018dc
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
4 Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
54 /* Forward declarations */
55 static void set_of_1 (rtx, const_rtx, void *);
56 static bool covers_regno_p (const_rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (const_rtx);
60 static void parms_set (rtx, const_rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
66 const_rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
69 const_rtx, enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
75 enum machine_mode, unsigned int);
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
85 int target_flags;
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
109 rtx_unstable_p (const_rtx x)
111 const RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
115 switch (code)
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_FIXED:
124 case CONST_VECTOR:
125 case SYMBOL_REF:
126 case LABEL_REF:
127 return 0;
129 case REG:
130 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
131 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
132 /* The arg pointer varies if it is not a fixed register. */
133 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
134 return 0;
135 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
136 /* ??? When call-clobbered, the value is stable modulo the restore
137 that must happen after a call. This currently screws up local-alloc
138 into believing that the restore is not needed. */
139 if (x == pic_offset_table_rtx)
140 return 0;
141 #endif
142 return 1;
144 case ASM_OPERANDS:
145 if (MEM_VOLATILE_P (x))
146 return 1;
148 /* Fall through. */
150 default:
151 break;
154 fmt = GET_RTX_FORMAT (code);
155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
156 if (fmt[i] == 'e')
158 if (rtx_unstable_p (XEXP (x, i)))
159 return 1;
161 else if (fmt[i] == 'E')
163 int j;
164 for (j = 0; j < XVECLEN (x, i); j++)
165 if (rtx_unstable_p (XVECEXP (x, i, j)))
166 return 1;
169 return 0;
172 /* Return 1 if X has a value that can vary even between two
173 executions of the program. 0 means X can be compared reliably
174 against certain constants or near-constants.
175 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
176 zero, we are slightly more conservative.
177 The frame pointer and the arg pointer are considered constant. */
179 bool
180 rtx_varies_p (const_rtx x, bool for_alias)
182 RTX_CODE code;
183 int i;
184 const char *fmt;
186 if (!x)
187 return 0;
189 code = GET_CODE (x);
190 switch (code)
192 case MEM:
193 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
195 case CONST:
196 case CONST_INT:
197 case CONST_DOUBLE:
198 case CONST_FIXED:
199 case CONST_VECTOR:
200 case SYMBOL_REF:
201 case LABEL_REF:
202 return 0;
204 case REG:
205 /* Note that we have to test for the actual rtx used for the frame
206 and arg pointers and not just the register number in case we have
207 eliminated the frame and/or arg pointer and are using it
208 for pseudos. */
209 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
210 /* The arg pointer varies if it is not a fixed register. */
211 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
212 return 0;
213 if (x == pic_offset_table_rtx
214 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
215 /* ??? When call-clobbered, the value is stable modulo the restore
216 that must happen after a call. This currently screws up
217 local-alloc into believing that the restore is not needed, so we
218 must return 0 only if we are called from alias analysis. */
219 && for_alias
220 #endif
222 return 0;
223 return 1;
225 case LO_SUM:
226 /* The operand 0 of a LO_SUM is considered constant
227 (in fact it is related specifically to operand 1)
228 during alias analysis. */
229 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
230 || rtx_varies_p (XEXP (x, 1), for_alias);
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
236 /* Fall through. */
238 default:
239 break;
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
246 if (rtx_varies_p (XEXP (x, i), for_alias))
247 return 1;
249 else if (fmt[i] == 'E')
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
254 return 1;
257 return 0;
260 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
261 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
262 whether nonzero is returned for unaligned memory accesses on strict
263 alignment machines. */
265 static int
266 rtx_addr_can_trap_p_1 (const_rtx x, enum machine_mode mode, bool unaligned_mems)
268 enum rtx_code code = GET_CODE (x);
270 switch (code)
272 case SYMBOL_REF:
273 return SYMBOL_REF_WEAK (x);
275 case LABEL_REF:
276 return 0;
278 case REG:
279 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
280 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
281 || x == stack_pointer_rtx
282 /* The arg pointer varies if it is not a fixed register. */
283 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
284 return 0;
285 /* All of the virtual frame registers are stack references. */
286 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
287 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
288 return 0;
289 return 1;
291 case CONST:
292 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
294 case PLUS:
295 /* An address is assumed not to trap if:
296 - it is an address that can't trap plus a constant integer,
297 with the proper remainder modulo the mode size if we are
298 considering unaligned memory references. */
299 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
300 && GET_CODE (XEXP (x, 1)) == CONST_INT)
302 HOST_WIDE_INT offset;
304 if (!STRICT_ALIGNMENT
305 || !unaligned_mems
306 || GET_MODE_SIZE (mode) == 0)
307 return 0;
309 offset = INTVAL (XEXP (x, 1));
311 #ifdef SPARC_STACK_BOUNDARY_HACK
312 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
313 the real alignment of %sp. However, when it does this, the
314 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
315 if (SPARC_STACK_BOUNDARY_HACK
316 && (XEXP (x, 0) == stack_pointer_rtx
317 || XEXP (x, 0) == hard_frame_pointer_rtx))
318 offset -= STACK_POINTER_OFFSET;
319 #endif
321 return offset % GET_MODE_SIZE (mode) != 0;
324 /* - or it is the pic register plus a constant. */
325 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
326 return 0;
328 return 1;
330 case LO_SUM:
331 case PRE_MODIFY:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
334 case PRE_DEC:
335 case PRE_INC:
336 case POST_DEC:
337 case POST_INC:
338 case POST_MODIFY:
339 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
341 default:
342 break;
345 /* If it isn't one of the case above, it can cause a trap. */
346 return 1;
349 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
352 rtx_addr_can_trap_p (const_rtx x)
354 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
357 /* Return true if X is an address that is known to not be zero. */
359 bool
360 nonzero_address_p (const_rtx x)
362 const enum rtx_code code = GET_CODE (x);
364 switch (code)
366 case SYMBOL_REF:
367 return !SYMBOL_REF_WEAK (x);
369 case LABEL_REF:
370 return true;
372 case REG:
373 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
374 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
375 || x == stack_pointer_rtx
376 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
377 return true;
378 /* All of the virtual frame registers are stack references. */
379 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
380 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
381 return true;
382 return false;
384 case CONST:
385 return nonzero_address_p (XEXP (x, 0));
387 case PLUS:
388 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
389 return nonzero_address_p (XEXP (x, 0));
390 /* Handle PIC references. */
391 else if (XEXP (x, 0) == pic_offset_table_rtx
392 && CONSTANT_P (XEXP (x, 1)))
393 return true;
394 return false;
396 case PRE_MODIFY:
397 /* Similar to the above; allow positive offsets. Further, since
398 auto-inc is only allowed in memories, the register must be a
399 pointer. */
400 if (GET_CODE (XEXP (x, 1)) == CONST_INT
401 && INTVAL (XEXP (x, 1)) > 0)
402 return true;
403 return nonzero_address_p (XEXP (x, 0));
405 case PRE_INC:
406 /* Similarly. Further, the offset is always positive. */
407 return true;
409 case PRE_DEC:
410 case POST_DEC:
411 case POST_INC:
412 case POST_MODIFY:
413 return nonzero_address_p (XEXP (x, 0));
415 case LO_SUM:
416 return nonzero_address_p (XEXP (x, 1));
418 default:
419 break;
422 /* If it isn't one of the case above, might be zero. */
423 return false;
426 /* Return 1 if X refers to a memory location whose address
427 cannot be compared reliably with constant addresses,
428 or if X refers to a BLKmode memory object.
429 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
430 zero, we are slightly more conservative. */
432 bool
433 rtx_addr_varies_p (const_rtx x, bool for_alias)
435 enum rtx_code code;
436 int i;
437 const char *fmt;
439 if (x == 0)
440 return 0;
442 code = GET_CODE (x);
443 if (code == MEM)
444 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
446 fmt = GET_RTX_FORMAT (code);
447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
448 if (fmt[i] == 'e')
450 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
451 return 1;
453 else if (fmt[i] == 'E')
455 int j;
456 for (j = 0; j < XVECLEN (x, i); j++)
457 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
458 return 1;
460 return 0;
463 /* Return the value of the integer term in X, if one is apparent;
464 otherwise return 0.
465 Only obvious integer terms are detected.
466 This is used in cse.c with the `related_value' field. */
468 HOST_WIDE_INT
469 get_integer_term (const_rtx x)
471 if (GET_CODE (x) == CONST)
472 x = XEXP (x, 0);
474 if (GET_CODE (x) == MINUS
475 && GET_CODE (XEXP (x, 1)) == CONST_INT)
476 return - INTVAL (XEXP (x, 1));
477 if (GET_CODE (x) == PLUS
478 && GET_CODE (XEXP (x, 1)) == CONST_INT)
479 return INTVAL (XEXP (x, 1));
480 return 0;
483 /* If X is a constant, return the value sans apparent integer term;
484 otherwise return 0.
485 Only obvious integer terms are detected. */
488 get_related_value (const_rtx x)
490 if (GET_CODE (x) != CONST)
491 return 0;
492 x = XEXP (x, 0);
493 if (GET_CODE (x) == PLUS
494 && GET_CODE (XEXP (x, 1)) == CONST_INT)
495 return XEXP (x, 0);
496 else if (GET_CODE (x) == MINUS
497 && GET_CODE (XEXP (x, 1)) == CONST_INT)
498 return XEXP (x, 0);
499 return 0;
502 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
503 to somewhere in the same object or object_block as SYMBOL. */
505 bool
506 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
508 tree decl;
510 if (GET_CODE (symbol) != SYMBOL_REF)
511 return false;
513 if (offset == 0)
514 return true;
516 if (offset > 0)
518 if (CONSTANT_POOL_ADDRESS_P (symbol)
519 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
520 return true;
522 decl = SYMBOL_REF_DECL (symbol);
523 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
524 return true;
527 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
528 && SYMBOL_REF_BLOCK (symbol)
529 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
530 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
531 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
532 return true;
534 return false;
537 /* Split X into a base and a constant offset, storing them in *BASE_OUT
538 and *OFFSET_OUT respectively. */
540 void
541 split_const (rtx x, rtx *base_out, rtx *offset_out)
543 if (GET_CODE (x) == CONST)
545 x = XEXP (x, 0);
546 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
548 *base_out = XEXP (x, 0);
549 *offset_out = XEXP (x, 1);
550 return;
553 *base_out = x;
554 *offset_out = const0_rtx;
557 /* Return the number of places FIND appears within X. If COUNT_DEST is
558 zero, we do not count occurrences inside the destination of a SET. */
561 count_occurrences (const_rtx x, const_rtx find, int count_dest)
563 int i, j;
564 enum rtx_code code;
565 const char *format_ptr;
566 int count;
568 if (x == find)
569 return 1;
571 code = GET_CODE (x);
573 switch (code)
575 case REG:
576 case CONST_INT:
577 case CONST_DOUBLE:
578 case CONST_FIXED:
579 case CONST_VECTOR:
580 case SYMBOL_REF:
581 case CODE_LABEL:
582 case PC:
583 case CC0:
584 return 0;
586 case EXPR_LIST:
587 count = count_occurrences (XEXP (x, 0), find, count_dest);
588 if (XEXP (x, 1))
589 count += count_occurrences (XEXP (x, 1), find, count_dest);
590 return count;
592 case MEM:
593 if (MEM_P (find) && rtx_equal_p (x, find))
594 return 1;
595 break;
597 case SET:
598 if (SET_DEST (x) == find && ! count_dest)
599 return count_occurrences (SET_SRC (x), find, count_dest);
600 break;
602 default:
603 break;
606 format_ptr = GET_RTX_FORMAT (code);
607 count = 0;
609 for (i = 0; i < GET_RTX_LENGTH (code); i++)
611 switch (*format_ptr++)
613 case 'e':
614 count += count_occurrences (XEXP (x, i), find, count_dest);
615 break;
617 case 'E':
618 for (j = 0; j < XVECLEN (x, i); j++)
619 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
620 break;
623 return count;
627 /* Nonzero if register REG appears somewhere within IN.
628 Also works if REG is not a register; in this case it checks
629 for a subexpression of IN that is Lisp "equal" to REG. */
632 reg_mentioned_p (const_rtx reg, const_rtx in)
634 const char *fmt;
635 int i;
636 enum rtx_code code;
638 if (in == 0)
639 return 0;
641 if (reg == in)
642 return 1;
644 if (GET_CODE (in) == LABEL_REF)
645 return reg == XEXP (in, 0);
647 code = GET_CODE (in);
649 switch (code)
651 /* Compare registers by number. */
652 case REG:
653 return REG_P (reg) && REGNO (in) == REGNO (reg);
655 /* These codes have no constituent expressions
656 and are unique. */
657 case SCRATCH:
658 case CC0:
659 case PC:
660 return 0;
662 case CONST_INT:
663 case CONST_VECTOR:
664 case CONST_DOUBLE:
665 case CONST_FIXED:
666 /* These are kept unique for a given value. */
667 return 0;
669 default:
670 break;
673 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
674 return 1;
676 fmt = GET_RTX_FORMAT (code);
678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
680 if (fmt[i] == 'E')
682 int j;
683 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
684 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
685 return 1;
687 else if (fmt[i] == 'e'
688 && reg_mentioned_p (reg, XEXP (in, i)))
689 return 1;
691 return 0;
694 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
695 no CODE_LABEL insn. */
698 no_labels_between_p (const_rtx beg, const_rtx end)
700 rtx p;
701 if (beg == end)
702 return 0;
703 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
704 if (LABEL_P (p))
705 return 0;
706 return 1;
709 /* Nonzero if register REG is used in an insn between
710 FROM_INSN and TO_INSN (exclusive of those two). */
713 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
715 rtx insn;
717 if (from_insn == to_insn)
718 return 0;
720 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
721 if (INSN_P (insn)
722 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
723 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
724 return 1;
725 return 0;
728 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
729 is entirely replaced by a new value and the only use is as a SET_DEST,
730 we do not consider it a reference. */
733 reg_referenced_p (const_rtx x, const_rtx body)
735 int i;
737 switch (GET_CODE (body))
739 case SET:
740 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
741 return 1;
743 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
744 of a REG that occupies all of the REG, the insn references X if
745 it is mentioned in the destination. */
746 if (GET_CODE (SET_DEST (body)) != CC0
747 && GET_CODE (SET_DEST (body)) != PC
748 && !REG_P (SET_DEST (body))
749 && ! (GET_CODE (SET_DEST (body)) == SUBREG
750 && REG_P (SUBREG_REG (SET_DEST (body)))
751 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
752 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
753 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
754 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
755 && reg_overlap_mentioned_p (x, SET_DEST (body)))
756 return 1;
757 return 0;
759 case ASM_OPERANDS:
760 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
761 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
762 return 1;
763 return 0;
765 case CALL:
766 case USE:
767 case IF_THEN_ELSE:
768 return reg_overlap_mentioned_p (x, body);
770 case TRAP_IF:
771 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
773 case PREFETCH:
774 return reg_overlap_mentioned_p (x, XEXP (body, 0));
776 case UNSPEC:
777 case UNSPEC_VOLATILE:
778 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
779 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
780 return 1;
781 return 0;
783 case PARALLEL:
784 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
785 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
786 return 1;
787 return 0;
789 case CLOBBER:
790 if (MEM_P (XEXP (body, 0)))
791 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
792 return 1;
793 return 0;
795 case COND_EXEC:
796 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
797 return 1;
798 return reg_referenced_p (x, COND_EXEC_CODE (body));
800 default:
801 return 0;
805 /* Nonzero if register REG is set or clobbered in an insn between
806 FROM_INSN and TO_INSN (exclusive of those two). */
809 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
811 const_rtx insn;
813 if (from_insn == to_insn)
814 return 0;
816 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
817 if (INSN_P (insn) && reg_set_p (reg, insn))
818 return 1;
819 return 0;
822 /* Internals of reg_set_between_p. */
824 reg_set_p (const_rtx reg, const_rtx insn)
826 /* We can be passed an insn or part of one. If we are passed an insn,
827 check if a side-effect of the insn clobbers REG. */
828 if (INSN_P (insn)
829 && (FIND_REG_INC_NOTE (insn, reg)
830 || (CALL_P (insn)
831 && ((REG_P (reg)
832 && REGNO (reg) < FIRST_PSEUDO_REGISTER
833 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
834 GET_MODE (reg), REGNO (reg)))
835 || MEM_P (reg)
836 || find_reg_fusage (insn, CLOBBER, reg)))))
837 return 1;
839 return set_of (reg, insn) != NULL_RTX;
842 /* Similar to reg_set_between_p, but check all registers in X. Return 0
843 only if none of them are modified between START and END. Return 1 if
844 X contains a MEM; this routine does usememory aliasing. */
847 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
849 const enum rtx_code code = GET_CODE (x);
850 const char *fmt;
851 int i, j;
852 rtx insn;
854 if (start == end)
855 return 0;
857 switch (code)
859 case CONST_INT:
860 case CONST_DOUBLE:
861 case CONST_FIXED:
862 case CONST_VECTOR:
863 case CONST:
864 case SYMBOL_REF:
865 case LABEL_REF:
866 return 0;
868 case PC:
869 case CC0:
870 return 1;
872 case MEM:
873 if (modified_between_p (XEXP (x, 0), start, end))
874 return 1;
875 if (MEM_READONLY_P (x))
876 return 0;
877 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
878 if (memory_modified_in_insn_p (x, insn))
879 return 1;
880 return 0;
881 break;
883 case REG:
884 return reg_set_between_p (x, start, end);
886 default:
887 break;
890 fmt = GET_RTX_FORMAT (code);
891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
893 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
894 return 1;
896 else if (fmt[i] == 'E')
897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
898 if (modified_between_p (XVECEXP (x, i, j), start, end))
899 return 1;
902 return 0;
905 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
906 of them are modified in INSN. Return 1 if X contains a MEM; this routine
907 does use memory aliasing. */
910 modified_in_p (const_rtx x, const_rtx insn)
912 const enum rtx_code code = GET_CODE (x);
913 const char *fmt;
914 int i, j;
916 switch (code)
918 case CONST_INT:
919 case CONST_DOUBLE:
920 case CONST_FIXED:
921 case CONST_VECTOR:
922 case CONST:
923 case SYMBOL_REF:
924 case LABEL_REF:
925 return 0;
927 case PC:
928 case CC0:
929 return 1;
931 case MEM:
932 if (modified_in_p (XEXP (x, 0), insn))
933 return 1;
934 if (MEM_READONLY_P (x))
935 return 0;
936 if (memory_modified_in_insn_p (x, insn))
937 return 1;
938 return 0;
939 break;
941 case REG:
942 return reg_set_p (x, insn);
944 default:
945 break;
948 fmt = GET_RTX_FORMAT (code);
949 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
951 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
952 return 1;
954 else if (fmt[i] == 'E')
955 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
956 if (modified_in_p (XVECEXP (x, i, j), insn))
957 return 1;
960 return 0;
963 /* Helper function for set_of. */
964 struct set_of_data
966 const_rtx found;
967 const_rtx pat;
970 static void
971 set_of_1 (rtx x, const_rtx pat, void *data1)
973 struct set_of_data *const data = (struct set_of_data *) (data1);
974 if (rtx_equal_p (x, data->pat)
975 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
976 data->found = pat;
979 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
980 (either directly or via STRICT_LOW_PART and similar modifiers). */
981 const_rtx
982 set_of (const_rtx pat, const_rtx insn)
984 struct set_of_data data;
985 data.found = NULL_RTX;
986 data.pat = pat;
987 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
988 return data.found;
991 /* Given an INSN, return a SET expression if this insn has only a single SET.
992 It may also have CLOBBERs, USEs, or SET whose output
993 will not be used, which we ignore. */
996 single_set_2 (const_rtx insn, const_rtx pat)
998 rtx set = NULL;
999 int set_verified = 1;
1000 int i;
1002 if (GET_CODE (pat) == PARALLEL)
1004 for (i = 0; i < XVECLEN (pat, 0); i++)
1006 rtx sub = XVECEXP (pat, 0, i);
1007 switch (GET_CODE (sub))
1009 case USE:
1010 case CLOBBER:
1011 break;
1013 case SET:
1014 /* We can consider insns having multiple sets, where all
1015 but one are dead as single set insns. In common case
1016 only single set is present in the pattern so we want
1017 to avoid checking for REG_UNUSED notes unless necessary.
1019 When we reach set first time, we just expect this is
1020 the single set we are looking for and only when more
1021 sets are found in the insn, we check them. */
1022 if (!set_verified)
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1025 && !side_effects_p (set))
1026 set = NULL;
1027 else
1028 set_verified = 1;
1030 if (!set)
1031 set = sub, set_verified = 0;
1032 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1033 || side_effects_p (sub))
1034 return NULL_RTX;
1035 break;
1037 default:
1038 return NULL_RTX;
1042 return set;
1045 /* Given an INSN, return nonzero if it has more than one SET, else return
1046 zero. */
1049 multiple_sets (const_rtx insn)
1051 int found;
1052 int i;
1054 /* INSN must be an insn. */
1055 if (! INSN_P (insn))
1056 return 0;
1058 /* Only a PARALLEL can have multiple SETs. */
1059 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1061 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1062 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1064 /* If we have already found a SET, then return now. */
1065 if (found)
1066 return 1;
1067 else
1068 found = 1;
1072 /* Either zero or one SET. */
1073 return 0;
1076 /* Return nonzero if the destination of SET equals the source
1077 and there are no side effects. */
1080 set_noop_p (const_rtx set)
1082 rtx src = SET_SRC (set);
1083 rtx dst = SET_DEST (set);
1085 if (dst == pc_rtx && src == pc_rtx)
1086 return 1;
1088 if (MEM_P (dst) && MEM_P (src))
1089 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1091 if (GET_CODE (dst) == ZERO_EXTRACT)
1092 return rtx_equal_p (XEXP (dst, 0), src)
1093 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1094 && !side_effects_p (src);
1096 if (GET_CODE (dst) == STRICT_LOW_PART)
1097 dst = XEXP (dst, 0);
1099 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1101 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1102 return 0;
1103 src = SUBREG_REG (src);
1104 dst = SUBREG_REG (dst);
1107 return (REG_P (src) && REG_P (dst)
1108 && REGNO (src) == REGNO (dst));
1111 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1112 value to itself. */
1115 noop_move_p (const_rtx insn)
1117 rtx pat = PATTERN (insn);
1119 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1120 return 1;
1122 /* Insns carrying these notes are useful later on. */
1123 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1124 return 0;
1126 /* For now treat an insn with a REG_RETVAL note as a
1127 a special insn which should not be considered a no-op. */
1128 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1129 return 0;
1131 if (GET_CODE (pat) == SET && set_noop_p (pat))
1132 return 1;
1134 if (GET_CODE (pat) == PARALLEL)
1136 int i;
1137 /* If nothing but SETs of registers to themselves,
1138 this insn can also be deleted. */
1139 for (i = 0; i < XVECLEN (pat, 0); i++)
1141 rtx tem = XVECEXP (pat, 0, i);
1143 if (GET_CODE (tem) == USE
1144 || GET_CODE (tem) == CLOBBER)
1145 continue;
1147 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1148 return 0;
1151 return 1;
1153 return 0;
1157 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1158 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1159 If the object was modified, if we hit a partial assignment to X, or hit a
1160 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1161 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1162 be the src. */
1165 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1167 rtx p;
1169 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1170 p = PREV_INSN (p))
1171 if (INSN_P (p))
1173 rtx set = single_set (p);
1174 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1176 if (set && rtx_equal_p (x, SET_DEST (set)))
1178 rtx src = SET_SRC (set);
1180 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1181 src = XEXP (note, 0);
1183 if ((valid_to == NULL_RTX
1184 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1185 /* Reject hard registers because we don't usually want
1186 to use them; we'd rather use a pseudo. */
1187 && (! (REG_P (src)
1188 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1190 *pinsn = p;
1191 return src;
1195 /* If set in non-simple way, we don't have a value. */
1196 if (reg_set_p (x, p))
1197 break;
1200 return x;
1203 /* Return nonzero if register in range [REGNO, ENDREGNO)
1204 appears either explicitly or implicitly in X
1205 other than being stored into.
1207 References contained within the substructure at LOC do not count.
1208 LOC may be zero, meaning don't ignore anything. */
1211 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1212 rtx *loc)
1214 int i;
1215 unsigned int x_regno;
1216 RTX_CODE code;
1217 const char *fmt;
1219 repeat:
1220 /* The contents of a REG_NONNEG note is always zero, so we must come here
1221 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1222 if (x == 0)
1223 return 0;
1225 code = GET_CODE (x);
1227 switch (code)
1229 case REG:
1230 x_regno = REGNO (x);
1232 /* If we modifying the stack, frame, or argument pointer, it will
1233 clobber a virtual register. In fact, we could be more precise,
1234 but it isn't worth it. */
1235 if ((x_regno == STACK_POINTER_REGNUM
1236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1237 || x_regno == ARG_POINTER_REGNUM
1238 #endif
1239 || x_regno == FRAME_POINTER_REGNUM)
1240 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1241 return 1;
1243 return endregno > x_regno && regno < END_REGNO (x);
1245 case SUBREG:
1246 /* If this is a SUBREG of a hard reg, we can see exactly which
1247 registers are being modified. Otherwise, handle normally. */
1248 if (REG_P (SUBREG_REG (x))
1249 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1251 unsigned int inner_regno = subreg_regno (x);
1252 unsigned int inner_endregno
1253 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1254 ? subreg_nregs (x) : 1);
1256 return endregno > inner_regno && regno < inner_endregno;
1258 break;
1260 case CLOBBER:
1261 case SET:
1262 if (&SET_DEST (x) != loc
1263 /* Note setting a SUBREG counts as referring to the REG it is in for
1264 a pseudo but not for hard registers since we can
1265 treat each word individually. */
1266 && ((GET_CODE (SET_DEST (x)) == SUBREG
1267 && loc != &SUBREG_REG (SET_DEST (x))
1268 && REG_P (SUBREG_REG (SET_DEST (x)))
1269 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1270 && refers_to_regno_p (regno, endregno,
1271 SUBREG_REG (SET_DEST (x)), loc))
1272 || (!REG_P (SET_DEST (x))
1273 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1274 return 1;
1276 if (code == CLOBBER || loc == &SET_SRC (x))
1277 return 0;
1278 x = SET_SRC (x);
1279 goto repeat;
1281 default:
1282 break;
1285 /* X does not match, so try its subexpressions. */
1287 fmt = GET_RTX_FORMAT (code);
1288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1290 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1292 if (i == 0)
1294 x = XEXP (x, 0);
1295 goto repeat;
1297 else
1298 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1299 return 1;
1301 else if (fmt[i] == 'E')
1303 int j;
1304 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1305 if (loc != &XVECEXP (x, i, j)
1306 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1307 return 1;
1310 return 0;
1313 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1314 we check if any register number in X conflicts with the relevant register
1315 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1316 contains a MEM (we don't bother checking for memory addresses that can't
1317 conflict because we expect this to be a rare case. */
1320 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1322 unsigned int regno, endregno;
1324 /* If either argument is a constant, then modifying X can not
1325 affect IN. Here we look at IN, we can profitably combine
1326 CONSTANT_P (x) with the switch statement below. */
1327 if (CONSTANT_P (in))
1328 return 0;
1330 recurse:
1331 switch (GET_CODE (x))
1333 case STRICT_LOW_PART:
1334 case ZERO_EXTRACT:
1335 case SIGN_EXTRACT:
1336 /* Overly conservative. */
1337 x = XEXP (x, 0);
1338 goto recurse;
1340 case SUBREG:
1341 regno = REGNO (SUBREG_REG (x));
1342 if (regno < FIRST_PSEUDO_REGISTER)
1343 regno = subreg_regno (x);
1344 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1345 ? subreg_nregs (x) : 1);
1346 goto do_reg;
1348 case REG:
1349 regno = REGNO (x);
1350 endregno = END_REGNO (x);
1351 do_reg:
1352 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1354 case MEM:
1356 const char *fmt;
1357 int i;
1359 if (MEM_P (in))
1360 return 1;
1362 fmt = GET_RTX_FORMAT (GET_CODE (in));
1363 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1364 if (fmt[i] == 'e')
1366 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1367 return 1;
1369 else if (fmt[i] == 'E')
1371 int j;
1372 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1373 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1374 return 1;
1377 return 0;
1380 case SCRATCH:
1381 case PC:
1382 case CC0:
1383 return reg_mentioned_p (x, in);
1385 case PARALLEL:
1387 int i;
1389 /* If any register in here refers to it we return true. */
1390 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1391 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1392 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1393 return 1;
1394 return 0;
1397 default:
1398 gcc_assert (CONSTANT_P (x));
1399 return 0;
1403 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1404 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1405 ignored by note_stores, but passed to FUN.
1407 FUN receives three arguments:
1408 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1409 2. the SET or CLOBBER rtx that does the store,
1410 3. the pointer DATA provided to note_stores.
1412 If the item being stored in or clobbered is a SUBREG of a hard register,
1413 the SUBREG will be passed. */
1415 #define NOTE_STORES_BODY(NOTE_STORES_FN) do { \
1416 int i; \
1417 if (GET_CODE (x) == COND_EXEC) \
1418 x = COND_EXEC_CODE (x); \
1419 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER) \
1421 rtx dest = SET_DEST (x); \
1422 while ((GET_CODE (dest) == SUBREG \
1423 && (!REG_P (SUBREG_REG (dest)) \
1424 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER)) \
1425 || GET_CODE (dest) == ZERO_EXTRACT \
1426 || GET_CODE (dest) == STRICT_LOW_PART) \
1427 dest = XEXP (dest, 0); \
1428 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions, \
1429 each of whose first operand is a register. */ \
1430 if (GET_CODE (dest) == PARALLEL) \
1432 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--) \
1433 if (XEXP (XVECEXP (dest, 0, i), 0) != 0) \
1434 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data); \
1436 else \
1437 (*fun) (dest, x, data); \
1439 else if (GET_CODE (x) == PARALLEL) \
1440 for (i = XVECLEN (x, 0) - 1; i >= 0; i--) \
1441 NOTE_STORES_FN (XVECEXP (x, 0, i), fun, data); \
1442 } while (0)
1444 void
1445 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1447 NOTE_STORES_BODY(note_stores);
1450 void
1451 const_note_stores (const_rtx x, void (*fun) (const_rtx, const_rtx, const void *), const void *data)
1453 NOTE_STORES_BODY(const_note_stores);
1456 #undef NOTE_STORES_BODY
1459 /* Like notes_stores, but call FUN for each expression that is being
1460 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1461 FUN for each expression, not any interior subexpressions. FUN receives a
1462 pointer to the expression and the DATA passed to this function.
1464 Note that this is not quite the same test as that done in reg_referenced_p
1465 since that considers something as being referenced if it is being
1466 partially set, while we do not. */
1468 void
1469 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1471 rtx body = *pbody;
1472 int i;
1474 switch (GET_CODE (body))
1476 case COND_EXEC:
1477 (*fun) (&COND_EXEC_TEST (body), data);
1478 note_uses (&COND_EXEC_CODE (body), fun, data);
1479 return;
1481 case PARALLEL:
1482 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1483 note_uses (&XVECEXP (body, 0, i), fun, data);
1484 return;
1486 case SEQUENCE:
1487 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1488 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1489 return;
1491 case USE:
1492 (*fun) (&XEXP (body, 0), data);
1493 return;
1495 case ASM_OPERANDS:
1496 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1497 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1498 return;
1500 case TRAP_IF:
1501 (*fun) (&TRAP_CONDITION (body), data);
1502 return;
1504 case PREFETCH:
1505 (*fun) (&XEXP (body, 0), data);
1506 return;
1508 case UNSPEC:
1509 case UNSPEC_VOLATILE:
1510 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1511 (*fun) (&XVECEXP (body, 0, i), data);
1512 return;
1514 case CLOBBER:
1515 if (MEM_P (XEXP (body, 0)))
1516 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1517 return;
1519 case SET:
1521 rtx dest = SET_DEST (body);
1523 /* For sets we replace everything in source plus registers in memory
1524 expression in store and operands of a ZERO_EXTRACT. */
1525 (*fun) (&SET_SRC (body), data);
1527 if (GET_CODE (dest) == ZERO_EXTRACT)
1529 (*fun) (&XEXP (dest, 1), data);
1530 (*fun) (&XEXP (dest, 2), data);
1533 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1534 dest = XEXP (dest, 0);
1536 if (MEM_P (dest))
1537 (*fun) (&XEXP (dest, 0), data);
1539 return;
1541 default:
1542 /* All the other possibilities never store. */
1543 (*fun) (pbody, data);
1544 return;
1548 /* Return nonzero if X's old contents don't survive after INSN.
1549 This will be true if X is (cc0) or if X is a register and
1550 X dies in INSN or because INSN entirely sets X.
1552 "Entirely set" means set directly and not through a SUBREG, or
1553 ZERO_EXTRACT, so no trace of the old contents remains.
1554 Likewise, REG_INC does not count.
1556 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1557 but for this use that makes no difference, since regs don't overlap
1558 during their lifetimes. Therefore, this function may be used
1559 at any time after deaths have been computed.
1561 If REG is a hard reg that occupies multiple machine registers, this
1562 function will only return 1 if each of those registers will be replaced
1563 by INSN. */
1566 dead_or_set_p (const_rtx insn, const_rtx x)
1568 unsigned int regno, end_regno;
1569 unsigned int i;
1571 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1572 if (GET_CODE (x) == CC0)
1573 return 1;
1575 gcc_assert (REG_P (x));
1577 regno = REGNO (x);
1578 end_regno = END_REGNO (x);
1579 for (i = regno; i < end_regno; i++)
1580 if (! dead_or_set_regno_p (insn, i))
1581 return 0;
1583 return 1;
1586 /* Return TRUE iff DEST is a register or subreg of a register and
1587 doesn't change the number of words of the inner register, and any
1588 part of the register is TEST_REGNO. */
1590 static bool
1591 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1593 unsigned int regno, endregno;
1595 if (GET_CODE (dest) == SUBREG
1596 && (((GET_MODE_SIZE (GET_MODE (dest))
1597 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1598 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1599 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1600 dest = SUBREG_REG (dest);
1602 if (!REG_P (dest))
1603 return false;
1605 regno = REGNO (dest);
1606 endregno = END_REGNO (dest);
1607 return (test_regno >= regno && test_regno < endregno);
1610 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1611 any member matches the covers_regno_no_parallel_p criteria. */
1613 static bool
1614 covers_regno_p (const_rtx dest, unsigned int test_regno)
1616 if (GET_CODE (dest) == PARALLEL)
1618 /* Some targets place small structures in registers for return
1619 values of functions, and those registers are wrapped in
1620 PARALLELs that we may see as the destination of a SET. */
1621 int i;
1623 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1625 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1626 if (inner != NULL_RTX
1627 && covers_regno_no_parallel_p (inner, test_regno))
1628 return true;
1631 return false;
1633 else
1634 return covers_regno_no_parallel_p (dest, test_regno);
1637 /* Utility function for dead_or_set_p to check an individual register. */
1640 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1642 const_rtx pattern;
1644 /* See if there is a death note for something that includes TEST_REGNO. */
1645 if (find_regno_note (insn, REG_DEAD, test_regno))
1646 return 1;
1648 if (CALL_P (insn)
1649 && find_regno_fusage (insn, CLOBBER, test_regno))
1650 return 1;
1652 pattern = PATTERN (insn);
1654 if (GET_CODE (pattern) == COND_EXEC)
1655 pattern = COND_EXEC_CODE (pattern);
1657 if (GET_CODE (pattern) == SET)
1658 return covers_regno_p (SET_DEST (pattern), test_regno);
1659 else if (GET_CODE (pattern) == PARALLEL)
1661 int i;
1663 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1665 rtx body = XVECEXP (pattern, 0, i);
1667 if (GET_CODE (body) == COND_EXEC)
1668 body = COND_EXEC_CODE (body);
1670 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1671 && covers_regno_p (SET_DEST (body), test_regno))
1672 return 1;
1676 return 0;
1679 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1680 If DATUM is nonzero, look for one whose datum is DATUM. */
1683 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1685 rtx link;
1687 gcc_assert (insn);
1689 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1690 if (! INSN_P (insn))
1691 return 0;
1692 if (datum == 0)
1694 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1695 if (REG_NOTE_KIND (link) == kind)
1696 return link;
1697 return 0;
1700 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1701 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1702 return link;
1703 return 0;
1706 /* Return the reg-note of kind KIND in insn INSN which applies to register
1707 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1708 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1709 it might be the case that the note overlaps REGNO. */
1712 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1714 rtx link;
1716 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1717 if (! INSN_P (insn))
1718 return 0;
1720 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1721 if (REG_NOTE_KIND (link) == kind
1722 /* Verify that it is a register, so that scratch and MEM won't cause a
1723 problem here. */
1724 && REG_P (XEXP (link, 0))
1725 && REGNO (XEXP (link, 0)) <= regno
1726 && END_REGNO (XEXP (link, 0)) > regno)
1727 return link;
1728 return 0;
1731 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1732 has such a note. */
1735 find_reg_equal_equiv_note (const_rtx insn)
1737 rtx link;
1739 if (!INSN_P (insn))
1740 return 0;
1742 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1743 if (REG_NOTE_KIND (link) == REG_EQUAL
1744 || REG_NOTE_KIND (link) == REG_EQUIV)
1746 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1747 insns that have multiple sets. Checking single_set to
1748 make sure of this is not the proper check, as explained
1749 in the comment in set_unique_reg_note.
1751 This should be changed into an assert. */
1752 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1753 return 0;
1754 return link;
1756 return NULL;
1759 /* Check whether INSN is a single_set whose source is known to be
1760 equivalent to a constant. Return that constant if so, otherwise
1761 return null. */
1764 find_constant_src (const_rtx insn)
1766 rtx note, set, x;
1768 set = single_set (insn);
1769 if (set)
1771 x = avoid_constant_pool_reference (SET_SRC (set));
1772 if (CONSTANT_P (x))
1773 return x;
1776 note = find_reg_equal_equiv_note (insn);
1777 if (note && CONSTANT_P (XEXP (note, 0)))
1778 return XEXP (note, 0);
1780 return NULL_RTX;
1783 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1784 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1787 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1789 /* If it's not a CALL_INSN, it can't possibly have a
1790 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1791 if (!CALL_P (insn))
1792 return 0;
1794 gcc_assert (datum);
1796 if (!REG_P (datum))
1798 rtx link;
1800 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1801 link;
1802 link = XEXP (link, 1))
1803 if (GET_CODE (XEXP (link, 0)) == code
1804 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1805 return 1;
1807 else
1809 unsigned int regno = REGNO (datum);
1811 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1812 to pseudo registers, so don't bother checking. */
1814 if (regno < FIRST_PSEUDO_REGISTER)
1816 unsigned int end_regno = END_HARD_REGNO (datum);
1817 unsigned int i;
1819 for (i = regno; i < end_regno; i++)
1820 if (find_regno_fusage (insn, code, i))
1821 return 1;
1825 return 0;
1828 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1829 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1832 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1834 rtx link;
1836 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1837 to pseudo registers, so don't bother checking. */
1839 if (regno >= FIRST_PSEUDO_REGISTER
1840 || !CALL_P (insn) )
1841 return 0;
1843 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1845 rtx op, reg;
1847 if (GET_CODE (op = XEXP (link, 0)) == code
1848 && REG_P (reg = XEXP (op, 0))
1849 && REGNO (reg) <= regno
1850 && END_HARD_REGNO (reg) > regno)
1851 return 1;
1854 return 0;
1857 /* Return true if INSN is a call to a pure function. */
1860 pure_call_p (const_rtx insn)
1862 const_rtx link;
1864 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1865 return 0;
1867 /* Look for the note that differentiates const and pure functions. */
1868 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1870 rtx u, m;
1872 if (GET_CODE (u = XEXP (link, 0)) == USE
1873 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1874 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1875 return 1;
1878 return 0;
1881 /* Remove register note NOTE from the REG_NOTES of INSN. */
1883 void
1884 remove_note (rtx insn, const_rtx note)
1886 rtx link;
1888 if (note == NULL_RTX)
1889 return;
1891 if (REG_NOTES (insn) == note)
1892 REG_NOTES (insn) = XEXP (note, 1);
1893 else
1894 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1895 if (XEXP (link, 1) == note)
1897 XEXP (link, 1) = XEXP (note, 1);
1898 break;
1901 switch (REG_NOTE_KIND (note))
1903 case REG_EQUAL:
1904 case REG_EQUIV:
1905 df_notes_rescan (insn);
1906 break;
1907 default:
1908 break;
1912 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1914 void
1915 remove_reg_equal_equiv_notes (rtx insn)
1917 rtx *loc;
1919 loc = &REG_NOTES (insn);
1920 while (*loc)
1922 enum reg_note kind = REG_NOTE_KIND (*loc);
1923 if (kind == REG_EQUAL || kind == REG_EQUIV)
1924 *loc = XEXP (*loc, 1);
1925 else
1926 loc = &XEXP (*loc, 1);
1930 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1931 return 1 if it is found. A simple equality test is used to determine if
1932 NODE matches. */
1935 in_expr_list_p (const_rtx listp, const_rtx node)
1937 const_rtx x;
1939 for (x = listp; x; x = XEXP (x, 1))
1940 if (node == XEXP (x, 0))
1941 return 1;
1943 return 0;
1946 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1947 remove that entry from the list if it is found.
1949 A simple equality test is used to determine if NODE matches. */
1951 void
1952 remove_node_from_expr_list (const_rtx node, rtx *listp)
1954 rtx temp = *listp;
1955 rtx prev = NULL_RTX;
1957 while (temp)
1959 if (node == XEXP (temp, 0))
1961 /* Splice the node out of the list. */
1962 if (prev)
1963 XEXP (prev, 1) = XEXP (temp, 1);
1964 else
1965 *listp = XEXP (temp, 1);
1967 return;
1970 prev = temp;
1971 temp = XEXP (temp, 1);
1975 /* Nonzero if X contains any volatile instructions. These are instructions
1976 which may cause unpredictable machine state instructions, and thus no
1977 instructions should be moved or combined across them. This includes
1978 only volatile asms and UNSPEC_VOLATILE instructions. */
1981 volatile_insn_p (const_rtx x)
1983 const RTX_CODE code = GET_CODE (x);
1984 switch (code)
1986 case LABEL_REF:
1987 case SYMBOL_REF:
1988 case CONST_INT:
1989 case CONST:
1990 case CONST_DOUBLE:
1991 case CONST_FIXED:
1992 case CONST_VECTOR:
1993 case CC0:
1994 case PC:
1995 case REG:
1996 case SCRATCH:
1997 case CLOBBER:
1998 case ADDR_VEC:
1999 case ADDR_DIFF_VEC:
2000 case CALL:
2001 case MEM:
2002 return 0;
2004 case UNSPEC_VOLATILE:
2005 /* case TRAP_IF: This isn't clear yet. */
2006 return 1;
2008 case ASM_INPUT:
2009 case ASM_OPERANDS:
2010 if (MEM_VOLATILE_P (x))
2011 return 1;
2013 default:
2014 break;
2017 /* Recursively scan the operands of this expression. */
2020 const char *const fmt = GET_RTX_FORMAT (code);
2021 int i;
2023 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2025 if (fmt[i] == 'e')
2027 if (volatile_insn_p (XEXP (x, i)))
2028 return 1;
2030 else if (fmt[i] == 'E')
2032 int j;
2033 for (j = 0; j < XVECLEN (x, i); j++)
2034 if (volatile_insn_p (XVECEXP (x, i, j)))
2035 return 1;
2039 return 0;
2042 /* Nonzero if X contains any volatile memory references
2043 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2046 volatile_refs_p (const_rtx x)
2048 const RTX_CODE code = GET_CODE (x);
2049 switch (code)
2051 case LABEL_REF:
2052 case SYMBOL_REF:
2053 case CONST_INT:
2054 case CONST:
2055 case CONST_DOUBLE:
2056 case CONST_FIXED:
2057 case CONST_VECTOR:
2058 case CC0:
2059 case PC:
2060 case REG:
2061 case SCRATCH:
2062 case CLOBBER:
2063 case ADDR_VEC:
2064 case ADDR_DIFF_VEC:
2065 return 0;
2067 case UNSPEC_VOLATILE:
2068 return 1;
2070 case MEM:
2071 case ASM_INPUT:
2072 case ASM_OPERANDS:
2073 if (MEM_VOLATILE_P (x))
2074 return 1;
2076 default:
2077 break;
2080 /* Recursively scan the operands of this expression. */
2083 const char *const fmt = GET_RTX_FORMAT (code);
2084 int i;
2086 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2088 if (fmt[i] == 'e')
2090 if (volatile_refs_p (XEXP (x, i)))
2091 return 1;
2093 else if (fmt[i] == 'E')
2095 int j;
2096 for (j = 0; j < XVECLEN (x, i); j++)
2097 if (volatile_refs_p (XVECEXP (x, i, j)))
2098 return 1;
2102 return 0;
2105 /* Similar to above, except that it also rejects register pre- and post-
2106 incrementing. */
2109 side_effects_p (const_rtx x)
2111 const RTX_CODE code = GET_CODE (x);
2112 switch (code)
2114 case LABEL_REF:
2115 case SYMBOL_REF:
2116 case CONST_INT:
2117 case CONST:
2118 case CONST_DOUBLE:
2119 case CONST_FIXED:
2120 case CONST_VECTOR:
2121 case CC0:
2122 case PC:
2123 case REG:
2124 case SCRATCH:
2125 case ADDR_VEC:
2126 case ADDR_DIFF_VEC:
2127 return 0;
2129 case CLOBBER:
2130 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2131 when some combination can't be done. If we see one, don't think
2132 that we can simplify the expression. */
2133 return (GET_MODE (x) != VOIDmode);
2135 case PRE_INC:
2136 case PRE_DEC:
2137 case POST_INC:
2138 case POST_DEC:
2139 case PRE_MODIFY:
2140 case POST_MODIFY:
2141 case CALL:
2142 case UNSPEC_VOLATILE:
2143 /* case TRAP_IF: This isn't clear yet. */
2144 return 1;
2146 case MEM:
2147 case ASM_INPUT:
2148 case ASM_OPERANDS:
2149 if (MEM_VOLATILE_P (x))
2150 return 1;
2152 default:
2153 break;
2156 /* Recursively scan the operands of this expression. */
2159 const char *fmt = GET_RTX_FORMAT (code);
2160 int i;
2162 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2164 if (fmt[i] == 'e')
2166 if (side_effects_p (XEXP (x, i)))
2167 return 1;
2169 else if (fmt[i] == 'E')
2171 int j;
2172 for (j = 0; j < XVECLEN (x, i); j++)
2173 if (side_effects_p (XVECEXP (x, i, j)))
2174 return 1;
2178 return 0;
2181 enum may_trap_p_flags
2183 MTP_UNALIGNED_MEMS = 1,
2184 MTP_AFTER_MOVE = 2
2186 /* Return nonzero if evaluating rtx X might cause a trap.
2187 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2188 unaligned memory accesses on strict alignment machines. If
2189 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2190 cannot trap at its current location, but it might become trapping if moved
2191 elsewhere. */
2193 static int
2194 may_trap_p_1 (const_rtx x, unsigned flags)
2196 int i;
2197 enum rtx_code code;
2198 const char *fmt;
2199 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2201 if (x == 0)
2202 return 0;
2203 code = GET_CODE (x);
2204 switch (code)
2206 /* Handle these cases quickly. */
2207 case CONST_INT:
2208 case CONST_DOUBLE:
2209 case CONST_FIXED:
2210 case CONST_VECTOR:
2211 case SYMBOL_REF:
2212 case LABEL_REF:
2213 case CONST:
2214 case PC:
2215 case CC0:
2216 case REG:
2217 case SCRATCH:
2218 return 0;
2220 case ASM_INPUT:
2221 case UNSPEC_VOLATILE:
2222 case TRAP_IF:
2223 return 1;
2225 case ASM_OPERANDS:
2226 return MEM_VOLATILE_P (x);
2228 /* Memory ref can trap unless it's a static var or a stack slot. */
2229 case MEM:
2230 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2231 reference; moving it out of condition might cause its address
2232 become invalid. */
2233 !(flags & MTP_AFTER_MOVE)
2234 && MEM_NOTRAP_P (x)
2235 && (!STRICT_ALIGNMENT || !unaligned_mems))
2236 return 0;
2237 return
2238 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2240 /* Division by a non-constant might trap. */
2241 case DIV:
2242 case MOD:
2243 case UDIV:
2244 case UMOD:
2245 if (HONOR_SNANS (GET_MODE (x)))
2246 return 1;
2247 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2248 return flag_trapping_math;
2249 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2250 return 1;
2251 break;
2253 case EXPR_LIST:
2254 /* An EXPR_LIST is used to represent a function call. This
2255 certainly may trap. */
2256 return 1;
2258 case GE:
2259 case GT:
2260 case LE:
2261 case LT:
2262 case LTGT:
2263 case COMPARE:
2264 /* Some floating point comparisons may trap. */
2265 if (!flag_trapping_math)
2266 break;
2267 /* ??? There is no machine independent way to check for tests that trap
2268 when COMPARE is used, though many targets do make this distinction.
2269 For instance, sparc uses CCFPE for compares which generate exceptions
2270 and CCFP for compares which do not generate exceptions. */
2271 if (HONOR_NANS (GET_MODE (x)))
2272 return 1;
2273 /* But often the compare has some CC mode, so check operand
2274 modes as well. */
2275 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2276 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2277 return 1;
2278 break;
2280 case EQ:
2281 case NE:
2282 if (HONOR_SNANS (GET_MODE (x)))
2283 return 1;
2284 /* Often comparison is CC mode, so check operand modes. */
2285 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2286 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2287 return 1;
2288 break;
2290 case FIX:
2291 /* Conversion of floating point might trap. */
2292 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2293 return 1;
2294 break;
2296 case NEG:
2297 case ABS:
2298 case SUBREG:
2299 /* These operations don't trap even with floating point. */
2300 break;
2302 default:
2303 /* Any floating arithmetic may trap. */
2304 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2305 && flag_trapping_math)
2306 return 1;
2309 fmt = GET_RTX_FORMAT (code);
2310 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2312 if (fmt[i] == 'e')
2314 if (may_trap_p_1 (XEXP (x, i), flags))
2315 return 1;
2317 else if (fmt[i] == 'E')
2319 int j;
2320 for (j = 0; j < XVECLEN (x, i); j++)
2321 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2322 return 1;
2325 return 0;
2328 /* Return nonzero if evaluating rtx X might cause a trap. */
2331 may_trap_p (const_rtx x)
2333 return may_trap_p_1 (x, 0);
2336 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2337 is moved from its current location by some optimization. */
2340 may_trap_after_code_motion_p (const_rtx x)
2342 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2345 /* Same as above, but additionally return nonzero if evaluating rtx X might
2346 cause a fault. We define a fault for the purpose of this function as a
2347 erroneous execution condition that cannot be encountered during the normal
2348 execution of a valid program; the typical example is an unaligned memory
2349 access on a strict alignment machine. The compiler guarantees that it
2350 doesn't generate code that will fault from a valid program, but this
2351 guarantee doesn't mean anything for individual instructions. Consider
2352 the following example:
2354 struct S { int d; union { char *cp; int *ip; }; };
2356 int foo(struct S *s)
2358 if (s->d == 1)
2359 return *s->ip;
2360 else
2361 return *s->cp;
2364 on a strict alignment machine. In a valid program, foo will never be
2365 invoked on a structure for which d is equal to 1 and the underlying
2366 unique field of the union not aligned on a 4-byte boundary, but the
2367 expression *s->ip might cause a fault if considered individually.
2369 At the RTL level, potentially problematic expressions will almost always
2370 verify may_trap_p; for example, the above dereference can be emitted as
2371 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2372 However, suppose that foo is inlined in a caller that causes s->cp to
2373 point to a local character variable and guarantees that s->d is not set
2374 to 1; foo may have been effectively translated into pseudo-RTL as:
2376 if ((reg:SI) == 1)
2377 (set (reg:SI) (mem:SI (%fp - 7)))
2378 else
2379 (set (reg:QI) (mem:QI (%fp - 7)))
2381 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2382 memory reference to a stack slot, but it will certainly cause a fault
2383 on a strict alignment machine. */
2386 may_trap_or_fault_p (const_rtx x)
2388 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2391 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2392 i.e., an inequality. */
2395 inequality_comparisons_p (const_rtx x)
2397 const char *fmt;
2398 int len, i;
2399 const enum rtx_code code = GET_CODE (x);
2401 switch (code)
2403 case REG:
2404 case SCRATCH:
2405 case PC:
2406 case CC0:
2407 case CONST_INT:
2408 case CONST_DOUBLE:
2409 case CONST_FIXED:
2410 case CONST_VECTOR:
2411 case CONST:
2412 case LABEL_REF:
2413 case SYMBOL_REF:
2414 return 0;
2416 case LT:
2417 case LTU:
2418 case GT:
2419 case GTU:
2420 case LE:
2421 case LEU:
2422 case GE:
2423 case GEU:
2424 return 1;
2426 default:
2427 break;
2430 len = GET_RTX_LENGTH (code);
2431 fmt = GET_RTX_FORMAT (code);
2433 for (i = 0; i < len; i++)
2435 if (fmt[i] == 'e')
2437 if (inequality_comparisons_p (XEXP (x, i)))
2438 return 1;
2440 else if (fmt[i] == 'E')
2442 int j;
2443 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2444 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2445 return 1;
2449 return 0;
2452 /* Replace any occurrence of FROM in X with TO. The function does
2453 not enter into CONST_DOUBLE for the replace.
2455 Note that copying is not done so X must not be shared unless all copies
2456 are to be modified. */
2459 replace_rtx (rtx x, rtx from, rtx to)
2461 int i, j;
2462 const char *fmt;
2464 /* The following prevents loops occurrence when we change MEM in
2465 CONST_DOUBLE onto the same CONST_DOUBLE. */
2466 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2467 return x;
2469 if (x == from)
2470 return to;
2472 /* Allow this function to make replacements in EXPR_LISTs. */
2473 if (x == 0)
2474 return 0;
2476 if (GET_CODE (x) == SUBREG)
2478 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2480 if (GET_CODE (new) == CONST_INT)
2482 x = simplify_subreg (GET_MODE (x), new,
2483 GET_MODE (SUBREG_REG (x)),
2484 SUBREG_BYTE (x));
2485 gcc_assert (x);
2487 else
2488 SUBREG_REG (x) = new;
2490 return x;
2492 else if (GET_CODE (x) == ZERO_EXTEND)
2494 rtx new = replace_rtx (XEXP (x, 0), from, to);
2496 if (GET_CODE (new) == CONST_INT)
2498 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2499 new, GET_MODE (XEXP (x, 0)));
2500 gcc_assert (x);
2502 else
2503 XEXP (x, 0) = new;
2505 return x;
2508 fmt = GET_RTX_FORMAT (GET_CODE (x));
2509 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2511 if (fmt[i] == 'e')
2512 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2513 else if (fmt[i] == 'E')
2514 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2515 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2518 return x;
2521 /* Replace occurrences of the old label in *X with the new one.
2522 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2525 replace_label (rtx *x, void *data)
2527 rtx l = *x;
2528 rtx old_label = ((replace_label_data *) data)->r1;
2529 rtx new_label = ((replace_label_data *) data)->r2;
2530 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2532 if (l == NULL_RTX)
2533 return 0;
2535 if (GET_CODE (l) == SYMBOL_REF
2536 && CONSTANT_POOL_ADDRESS_P (l))
2538 rtx c = get_pool_constant (l);
2539 if (rtx_referenced_p (old_label, c))
2541 rtx new_c, new_l;
2542 replace_label_data *d = (replace_label_data *) data;
2544 /* Create a copy of constant C; replace the label inside
2545 but do not update LABEL_NUSES because uses in constant pool
2546 are not counted. */
2547 new_c = copy_rtx (c);
2548 d->update_label_nuses = false;
2549 for_each_rtx (&new_c, replace_label, data);
2550 d->update_label_nuses = update_label_nuses;
2552 /* Add the new constant NEW_C to constant pool and replace
2553 the old reference to constant by new reference. */
2554 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2555 *x = replace_rtx (l, l, new_l);
2557 return 0;
2560 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2561 field. This is not handled by for_each_rtx because it doesn't
2562 handle unprinted ('0') fields. */
2563 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2564 JUMP_LABEL (l) = new_label;
2566 if ((GET_CODE (l) == LABEL_REF
2567 || GET_CODE (l) == INSN_LIST)
2568 && XEXP (l, 0) == old_label)
2570 XEXP (l, 0) = new_label;
2571 if (update_label_nuses)
2573 ++LABEL_NUSES (new_label);
2574 --LABEL_NUSES (old_label);
2576 return 0;
2579 return 0;
2582 /* When *BODY is equal to X or X is directly referenced by *BODY
2583 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2584 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2586 static int
2587 rtx_referenced_p_1 (rtx *body, void *x)
2589 rtx y = (rtx) x;
2591 if (*body == NULL_RTX)
2592 return y == NULL_RTX;
2594 /* Return true if a label_ref *BODY refers to label Y. */
2595 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2596 return XEXP (*body, 0) == y;
2598 /* If *BODY is a reference to pool constant traverse the constant. */
2599 if (GET_CODE (*body) == SYMBOL_REF
2600 && CONSTANT_POOL_ADDRESS_P (*body))
2601 return rtx_referenced_p (y, get_pool_constant (*body));
2603 /* By default, compare the RTL expressions. */
2604 return rtx_equal_p (*body, y);
2607 /* Return true if X is referenced in BODY. */
2610 rtx_referenced_p (rtx x, rtx body)
2612 return for_each_rtx (&body, rtx_referenced_p_1, x);
2615 /* If INSN is a tablejump return true and store the label (before jump table) to
2616 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2618 bool
2619 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2621 rtx label, table;
2623 if (JUMP_P (insn)
2624 && (label = JUMP_LABEL (insn)) != NULL_RTX
2625 && (table = next_active_insn (label)) != NULL_RTX
2626 && JUMP_P (table)
2627 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2628 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2630 if (labelp)
2631 *labelp = label;
2632 if (tablep)
2633 *tablep = table;
2634 return true;
2636 return false;
2639 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2640 constant that is not in the constant pool and not in the condition
2641 of an IF_THEN_ELSE. */
2643 static int
2644 computed_jump_p_1 (const_rtx x)
2646 const enum rtx_code code = GET_CODE (x);
2647 int i, j;
2648 const char *fmt;
2650 switch (code)
2652 case LABEL_REF:
2653 case PC:
2654 return 0;
2656 case CONST:
2657 case CONST_INT:
2658 case CONST_DOUBLE:
2659 case CONST_FIXED:
2660 case CONST_VECTOR:
2661 case SYMBOL_REF:
2662 case REG:
2663 return 1;
2665 case MEM:
2666 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2667 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2669 case IF_THEN_ELSE:
2670 return (computed_jump_p_1 (XEXP (x, 1))
2671 || computed_jump_p_1 (XEXP (x, 2)));
2673 default:
2674 break;
2677 fmt = GET_RTX_FORMAT (code);
2678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2680 if (fmt[i] == 'e'
2681 && computed_jump_p_1 (XEXP (x, i)))
2682 return 1;
2684 else if (fmt[i] == 'E')
2685 for (j = 0; j < XVECLEN (x, i); j++)
2686 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2687 return 1;
2690 return 0;
2693 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2695 Tablejumps and casesi insns are not considered indirect jumps;
2696 we can recognize them by a (use (label_ref)). */
2699 computed_jump_p (const_rtx insn)
2701 int i;
2702 if (JUMP_P (insn))
2704 rtx pat = PATTERN (insn);
2706 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2707 return 0;
2708 else if (GET_CODE (pat) == PARALLEL)
2710 int len = XVECLEN (pat, 0);
2711 int has_use_labelref = 0;
2713 for (i = len - 1; i >= 0; i--)
2714 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2715 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2716 == LABEL_REF))
2717 has_use_labelref = 1;
2719 if (! has_use_labelref)
2720 for (i = len - 1; i >= 0; i--)
2721 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2722 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2723 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2724 return 1;
2726 else if (GET_CODE (pat) == SET
2727 && SET_DEST (pat) == pc_rtx
2728 && computed_jump_p_1 (SET_SRC (pat)))
2729 return 1;
2731 return 0;
2734 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2735 calls. Processes the subexpressions of EXP and passes them to F. */
2736 static int
2737 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2739 int result, i, j;
2740 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2741 rtx *x;
2743 for (; format[n] != '\0'; n++)
2745 switch (format[n])
2747 case 'e':
2748 /* Call F on X. */
2749 x = &XEXP (exp, n);
2750 result = (*f) (x, data);
2751 if (result == -1)
2752 /* Do not traverse sub-expressions. */
2753 continue;
2754 else if (result != 0)
2755 /* Stop the traversal. */
2756 return result;
2758 if (*x == NULL_RTX)
2759 /* There are no sub-expressions. */
2760 continue;
2762 i = non_rtx_starting_operands[GET_CODE (*x)];
2763 if (i >= 0)
2765 result = for_each_rtx_1 (*x, i, f, data);
2766 if (result != 0)
2767 return result;
2769 break;
2771 case 'V':
2772 case 'E':
2773 if (XVEC (exp, n) == 0)
2774 continue;
2775 for (j = 0; j < XVECLEN (exp, n); ++j)
2777 /* Call F on X. */
2778 x = &XVECEXP (exp, n, j);
2779 result = (*f) (x, data);
2780 if (result == -1)
2781 /* Do not traverse sub-expressions. */
2782 continue;
2783 else if (result != 0)
2784 /* Stop the traversal. */
2785 return result;
2787 if (*x == NULL_RTX)
2788 /* There are no sub-expressions. */
2789 continue;
2791 i = non_rtx_starting_operands[GET_CODE (*x)];
2792 if (i >= 0)
2794 result = for_each_rtx_1 (*x, i, f, data);
2795 if (result != 0)
2796 return result;
2799 break;
2801 default:
2802 /* Nothing to do. */
2803 break;
2807 return 0;
2810 /* Traverse X via depth-first search, calling F for each
2811 sub-expression (including X itself). F is also passed the DATA.
2812 If F returns -1, do not traverse sub-expressions, but continue
2813 traversing the rest of the tree. If F ever returns any other
2814 nonzero value, stop the traversal, and return the value returned
2815 by F. Otherwise, return 0. This function does not traverse inside
2816 tree structure that contains RTX_EXPRs, or into sub-expressions
2817 whose format code is `0' since it is not known whether or not those
2818 codes are actually RTL.
2820 This routine is very general, and could (should?) be used to
2821 implement many of the other routines in this file. */
2824 for_each_rtx (rtx *x, rtx_function f, void *data)
2826 int result;
2827 int i;
2829 /* Call F on X. */
2830 result = (*f) (x, data);
2831 if (result == -1)
2832 /* Do not traverse sub-expressions. */
2833 return 0;
2834 else if (result != 0)
2835 /* Stop the traversal. */
2836 return result;
2838 if (*x == NULL_RTX)
2839 /* There are no sub-expressions. */
2840 return 0;
2842 i = non_rtx_starting_operands[GET_CODE (*x)];
2843 if (i < 0)
2844 return 0;
2846 return for_each_rtx_1 (*x, i, f, data);
2850 /* Searches X for any reference to REGNO, returning the rtx of the
2851 reference found if any. Otherwise, returns NULL_RTX. */
2854 regno_use_in (unsigned int regno, rtx x)
2856 const char *fmt;
2857 int i, j;
2858 rtx tem;
2860 if (REG_P (x) && REGNO (x) == regno)
2861 return x;
2863 fmt = GET_RTX_FORMAT (GET_CODE (x));
2864 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2866 if (fmt[i] == 'e')
2868 if ((tem = regno_use_in (regno, XEXP (x, i))))
2869 return tem;
2871 else if (fmt[i] == 'E')
2872 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2873 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2874 return tem;
2877 return NULL_RTX;
2880 /* Return a value indicating whether OP, an operand of a commutative
2881 operation, is preferred as the first or second operand. The higher
2882 the value, the stronger the preference for being the first operand.
2883 We use negative values to indicate a preference for the first operand
2884 and positive values for the second operand. */
2887 commutative_operand_precedence (rtx op)
2889 enum rtx_code code = GET_CODE (op);
2891 /* Constants always come the second operand. Prefer "nice" constants. */
2892 if (code == CONST_INT)
2893 return -8;
2894 if (code == CONST_DOUBLE)
2895 return -7;
2896 if (code == CONST_FIXED)
2897 return -7;
2898 op = avoid_constant_pool_reference (op);
2899 code = GET_CODE (op);
2901 switch (GET_RTX_CLASS (code))
2903 case RTX_CONST_OBJ:
2904 if (code == CONST_INT)
2905 return -6;
2906 if (code == CONST_DOUBLE)
2907 return -5;
2908 if (code == CONST_FIXED)
2909 return -5;
2910 return -4;
2912 case RTX_EXTRA:
2913 /* SUBREGs of objects should come second. */
2914 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2915 return -3;
2916 return 0;
2918 case RTX_OBJ:
2919 /* Complex expressions should be the first, so decrease priority
2920 of objects. Prefer pointer objects over non pointer objects. */
2921 if ((REG_P (op) && REG_POINTER (op))
2922 || (MEM_P (op) && MEM_POINTER (op)))
2923 return -1;
2924 return -2;
2926 case RTX_COMM_ARITH:
2927 /* Prefer operands that are themselves commutative to be first.
2928 This helps to make things linear. In particular,
2929 (and (and (reg) (reg)) (not (reg))) is canonical. */
2930 return 4;
2932 case RTX_BIN_ARITH:
2933 /* If only one operand is a binary expression, it will be the first
2934 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2935 is canonical, although it will usually be further simplified. */
2936 return 2;
2938 case RTX_UNARY:
2939 /* Then prefer NEG and NOT. */
2940 if (code == NEG || code == NOT)
2941 return 1;
2943 default:
2944 return 0;
2948 /* Return 1 iff it is necessary to swap operands of commutative operation
2949 in order to canonicalize expression. */
2951 bool
2952 swap_commutative_operands_p (rtx x, rtx y)
2954 return (commutative_operand_precedence (x)
2955 < commutative_operand_precedence (y));
2958 /* Return 1 if X is an autoincrement side effect and the register is
2959 not the stack pointer. */
2961 auto_inc_p (const_rtx x)
2963 switch (GET_CODE (x))
2965 case PRE_INC:
2966 case POST_INC:
2967 case PRE_DEC:
2968 case POST_DEC:
2969 case PRE_MODIFY:
2970 case POST_MODIFY:
2971 /* There are no REG_INC notes for SP. */
2972 if (XEXP (x, 0) != stack_pointer_rtx)
2973 return 1;
2974 default:
2975 break;
2977 return 0;
2980 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2982 loc_mentioned_in_p (rtx *loc, const_rtx in)
2984 enum rtx_code code;
2985 const char *fmt;
2986 int i, j;
2988 if (!in)
2989 return 0;
2991 code = GET_CODE (in);
2992 fmt = GET_RTX_FORMAT (code);
2993 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2995 if (loc == &in->u.fld[i].rt_rtx)
2996 return 1;
2997 if (fmt[i] == 'e')
2999 if (loc_mentioned_in_p (loc, XEXP (in, i)))
3000 return 1;
3002 else if (fmt[i] == 'E')
3003 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3004 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3005 return 1;
3007 return 0;
3010 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3011 and SUBREG_BYTE, return the bit offset where the subreg begins
3012 (counting from the least significant bit of the operand). */
3014 unsigned int
3015 subreg_lsb_1 (enum machine_mode outer_mode,
3016 enum machine_mode inner_mode,
3017 unsigned int subreg_byte)
3019 unsigned int bitpos;
3020 unsigned int byte;
3021 unsigned int word;
3023 /* A paradoxical subreg begins at bit position 0. */
3024 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3025 return 0;
3027 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3028 /* If the subreg crosses a word boundary ensure that
3029 it also begins and ends on a word boundary. */
3030 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3031 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3032 && (subreg_byte % UNITS_PER_WORD
3033 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3035 if (WORDS_BIG_ENDIAN)
3036 word = (GET_MODE_SIZE (inner_mode)
3037 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3038 else
3039 word = subreg_byte / UNITS_PER_WORD;
3040 bitpos = word * BITS_PER_WORD;
3042 if (BYTES_BIG_ENDIAN)
3043 byte = (GET_MODE_SIZE (inner_mode)
3044 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3045 else
3046 byte = subreg_byte % UNITS_PER_WORD;
3047 bitpos += byte * BITS_PER_UNIT;
3049 return bitpos;
3052 /* Given a subreg X, return the bit offset where the subreg begins
3053 (counting from the least significant bit of the reg). */
3055 unsigned int
3056 subreg_lsb (const_rtx x)
3058 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3059 SUBREG_BYTE (x));
3062 /* Fill in information about a subreg of a hard register.
3063 xregno - A regno of an inner hard subreg_reg (or what will become one).
3064 xmode - The mode of xregno.
3065 offset - The byte offset.
3066 ymode - The mode of a top level SUBREG (or what may become one).
3067 info - Pointer to structure to fill in. */
3068 static void
3069 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3070 unsigned int offset, enum machine_mode ymode,
3071 struct subreg_info *info)
3073 int nregs_xmode, nregs_ymode;
3074 int mode_multiple, nregs_multiple;
3075 int offset_adj, y_offset, y_offset_adj;
3076 int regsize_xmode, regsize_ymode;
3077 bool rknown;
3079 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3081 rknown = false;
3083 /* If there are holes in a non-scalar mode in registers, we expect
3084 that it is made up of its units concatenated together. */
3085 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3087 enum machine_mode xmode_unit;
3089 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3090 if (GET_MODE_INNER (xmode) == VOIDmode)
3091 xmode_unit = xmode;
3092 else
3093 xmode_unit = GET_MODE_INNER (xmode);
3094 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3095 gcc_assert (nregs_xmode
3096 == (GET_MODE_NUNITS (xmode)
3097 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3098 gcc_assert (hard_regno_nregs[xregno][xmode]
3099 == (hard_regno_nregs[xregno][xmode_unit]
3100 * GET_MODE_NUNITS (xmode)));
3102 /* You can only ask for a SUBREG of a value with holes in the middle
3103 if you don't cross the holes. (Such a SUBREG should be done by
3104 picking a different register class, or doing it in memory if
3105 necessary.) An example of a value with holes is XCmode on 32-bit
3106 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3107 3 for each part, but in memory it's two 128-bit parts.
3108 Padding is assumed to be at the end (not necessarily the 'high part')
3109 of each unit. */
3110 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3111 < GET_MODE_NUNITS (xmode))
3112 && (offset / GET_MODE_SIZE (xmode_unit)
3113 != ((offset + GET_MODE_SIZE (ymode) - 1)
3114 / GET_MODE_SIZE (xmode_unit))))
3116 info->representable_p = false;
3117 rknown = true;
3120 else
3121 nregs_xmode = hard_regno_nregs[xregno][xmode];
3123 nregs_ymode = hard_regno_nregs[xregno][ymode];
3125 /* Paradoxical subregs are otherwise valid. */
3126 if (!rknown
3127 && offset == 0
3128 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3130 info->representable_p = true;
3131 /* If this is a big endian paradoxical subreg, which uses more
3132 actual hard registers than the original register, we must
3133 return a negative offset so that we find the proper highpart
3134 of the register. */
3135 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3136 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3137 info->offset = nregs_xmode - nregs_ymode;
3138 else
3139 info->offset = 0;
3140 info->nregs = nregs_ymode;
3141 return;
3144 /* If registers store different numbers of bits in the different
3145 modes, we cannot generally form this subreg. */
3146 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3147 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3148 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3149 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3151 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3152 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3153 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3155 info->representable_p = false;
3156 info->nregs
3157 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3158 info->offset = offset / regsize_xmode;
3159 return;
3161 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3163 info->representable_p = false;
3164 info->nregs
3165 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3166 info->offset = offset / regsize_xmode;
3167 return;
3171 /* Lowpart subregs are otherwise valid. */
3172 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3174 info->representable_p = true;
3175 rknown = true;
3177 if (offset == 0 || nregs_xmode == nregs_ymode)
3179 info->offset = 0;
3180 info->nregs = nregs_ymode;
3181 return;
3185 /* This should always pass, otherwise we don't know how to verify
3186 the constraint. These conditions may be relaxed but
3187 subreg_regno_offset would need to be redesigned. */
3188 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3189 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3191 /* The XMODE value can be seen as a vector of NREGS_XMODE
3192 values. The subreg must represent a lowpart of given field.
3193 Compute what field it is. */
3194 offset_adj = offset;
3195 offset_adj -= subreg_lowpart_offset (ymode,
3196 mode_for_size (GET_MODE_BITSIZE (xmode)
3197 / nregs_xmode,
3198 MODE_INT, 0));
3200 /* Size of ymode must not be greater than the size of xmode. */
3201 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3202 gcc_assert (mode_multiple != 0);
3204 y_offset = offset / GET_MODE_SIZE (ymode);
3205 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3206 nregs_multiple = nregs_xmode / nregs_ymode;
3208 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3209 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3211 if (!rknown)
3213 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3214 rknown = true;
3216 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3217 info->nregs = nregs_ymode;
3220 /* This function returns the regno offset of a subreg expression.
3221 xregno - A regno of an inner hard subreg_reg (or what will become one).
3222 xmode - The mode of xregno.
3223 offset - The byte offset.
3224 ymode - The mode of a top level SUBREG (or what may become one).
3225 RETURN - The regno offset which would be used. */
3226 unsigned int
3227 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3228 unsigned int offset, enum machine_mode ymode)
3230 struct subreg_info info;
3231 subreg_get_info (xregno, xmode, offset, ymode, &info);
3232 return info.offset;
3235 /* This function returns true when the offset is representable via
3236 subreg_offset in the given regno.
3237 xregno - A regno of an inner hard subreg_reg (or what will become one).
3238 xmode - The mode of xregno.
3239 offset - The byte offset.
3240 ymode - The mode of a top level SUBREG (or what may become one).
3241 RETURN - Whether the offset is representable. */
3242 bool
3243 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3244 unsigned int offset, enum machine_mode ymode)
3246 struct subreg_info info;
3247 subreg_get_info (xregno, xmode, offset, ymode, &info);
3248 return info.representable_p;
3251 /* Return the final regno that a subreg expression refers to. */
3252 unsigned int
3253 subreg_regno (const_rtx x)
3255 unsigned int ret;
3256 rtx subreg = SUBREG_REG (x);
3257 int regno = REGNO (subreg);
3259 ret = regno + subreg_regno_offset (regno,
3260 GET_MODE (subreg),
3261 SUBREG_BYTE (x),
3262 GET_MODE (x));
3263 return ret;
3267 /* Return the number of registers that a subreg expression refers
3268 to. */
3269 unsigned int
3270 subreg_nregs (const_rtx x)
3272 struct subreg_info info;
3273 rtx subreg = SUBREG_REG (x);
3274 int regno = REGNO (subreg);
3276 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3277 &info);
3278 return info.nregs;
3281 struct parms_set_data
3283 int nregs;
3284 HARD_REG_SET regs;
3287 /* Helper function for noticing stores to parameter registers. */
3288 static void
3289 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3291 struct parms_set_data *d = data;
3292 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3293 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3295 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3296 d->nregs--;
3300 /* Look backward for first parameter to be loaded.
3301 Note that loads of all parameters will not necessarily be
3302 found if CSE has eliminated some of them (e.g., an argument
3303 to the outer function is passed down as a parameter).
3304 Do not skip BOUNDARY. */
3306 find_first_parameter_load (rtx call_insn, rtx boundary)
3308 struct parms_set_data parm;
3309 rtx p, before, first_set;
3311 /* Since different machines initialize their parameter registers
3312 in different orders, assume nothing. Collect the set of all
3313 parameter registers. */
3314 CLEAR_HARD_REG_SET (parm.regs);
3315 parm.nregs = 0;
3316 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3317 if (GET_CODE (XEXP (p, 0)) == USE
3318 && REG_P (XEXP (XEXP (p, 0), 0)))
3320 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3322 /* We only care about registers which can hold function
3323 arguments. */
3324 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3325 continue;
3327 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3328 parm.nregs++;
3330 before = call_insn;
3331 first_set = call_insn;
3333 /* Search backward for the first set of a register in this set. */
3334 while (parm.nregs && before != boundary)
3336 before = PREV_INSN (before);
3338 /* It is possible that some loads got CSEed from one call to
3339 another. Stop in that case. */
3340 if (CALL_P (before))
3341 break;
3343 /* Our caller needs either ensure that we will find all sets
3344 (in case code has not been optimized yet), or take care
3345 for possible labels in a way by setting boundary to preceding
3346 CODE_LABEL. */
3347 if (LABEL_P (before))
3349 gcc_assert (before == boundary);
3350 break;
3353 if (INSN_P (before))
3355 int nregs_old = parm.nregs;
3356 note_stores (PATTERN (before), parms_set, &parm);
3357 /* If we found something that did not set a parameter reg,
3358 we're done. Do not keep going, as that might result
3359 in hoisting an insn before the setting of a pseudo
3360 that is used by the hoisted insn. */
3361 if (nregs_old != parm.nregs)
3362 first_set = before;
3363 else
3364 break;
3367 return first_set;
3370 /* Return true if we should avoid inserting code between INSN and preceding
3371 call instruction. */
3373 bool
3374 keep_with_call_p (const_rtx insn)
3376 rtx set;
3378 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3380 if (REG_P (SET_DEST (set))
3381 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3382 && fixed_regs[REGNO (SET_DEST (set))]
3383 && general_operand (SET_SRC (set), VOIDmode))
3384 return true;
3385 if (REG_P (SET_SRC (set))
3386 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3387 && REG_P (SET_DEST (set))
3388 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3389 return true;
3390 /* There may be a stack pop just after the call and before the store
3391 of the return register. Search for the actual store when deciding
3392 if we can break or not. */
3393 if (SET_DEST (set) == stack_pointer_rtx)
3395 const_rtx i2 = const_next_nonnote_insn (insn);
3396 if (i2 && keep_with_call_p (i2))
3397 return true;
3400 return false;
3403 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3404 to non-complex jumps. That is, direct unconditional, conditional,
3405 and tablejumps, but not computed jumps or returns. It also does
3406 not apply to the fallthru case of a conditional jump. */
3408 bool
3409 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3411 rtx tmp = JUMP_LABEL (jump_insn);
3413 if (label == tmp)
3414 return true;
3416 if (tablejump_p (jump_insn, NULL, &tmp))
3418 rtvec vec = XVEC (PATTERN (tmp),
3419 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3420 int i, veclen = GET_NUM_ELEM (vec);
3422 for (i = 0; i < veclen; ++i)
3423 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3424 return true;
3427 return false;
3431 /* Return an estimate of the cost of computing rtx X.
3432 One use is in cse, to decide which expression to keep in the hash table.
3433 Another is in rtl generation, to pick the cheapest way to multiply.
3434 Other uses like the latter are expected in the future. */
3437 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3439 int i, j;
3440 enum rtx_code code;
3441 const char *fmt;
3442 int total;
3444 if (x == 0)
3445 return 0;
3447 /* Compute the default costs of certain things.
3448 Note that targetm.rtx_costs can override the defaults. */
3450 code = GET_CODE (x);
3451 switch (code)
3453 case MULT:
3454 total = COSTS_N_INSNS (5);
3455 break;
3456 case DIV:
3457 case UDIV:
3458 case MOD:
3459 case UMOD:
3460 total = COSTS_N_INSNS (7);
3461 break;
3462 case USE:
3463 /* Used in combine.c as a marker. */
3464 total = 0;
3465 break;
3466 default:
3467 total = COSTS_N_INSNS (1);
3470 switch (code)
3472 case REG:
3473 return 0;
3475 case SUBREG:
3476 total = 0;
3477 /* If we can't tie these modes, make this expensive. The larger
3478 the mode, the more expensive it is. */
3479 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3480 return COSTS_N_INSNS (2
3481 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3482 break;
3484 default:
3485 if (targetm.rtx_costs (x, code, outer_code, &total))
3486 return total;
3487 break;
3490 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3491 which is already in total. */
3493 fmt = GET_RTX_FORMAT (code);
3494 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3495 if (fmt[i] == 'e')
3496 total += rtx_cost (XEXP (x, i), code);
3497 else if (fmt[i] == 'E')
3498 for (j = 0; j < XVECLEN (x, i); j++)
3499 total += rtx_cost (XVECEXP (x, i, j), code);
3501 return total;
3504 /* Return cost of address expression X.
3505 Expect that X is properly formed address reference. */
3508 address_cost (rtx x, enum machine_mode mode)
3510 /* We may be asked for cost of various unusual addresses, such as operands
3511 of push instruction. It is not worthwhile to complicate writing
3512 of the target hook by such cases. */
3514 if (!memory_address_p (mode, x))
3515 return 1000;
3517 return targetm.address_cost (x);
3520 /* If the target doesn't override, compute the cost as with arithmetic. */
3523 default_address_cost (rtx x)
3525 return rtx_cost (x, MEM);
3529 unsigned HOST_WIDE_INT
3530 nonzero_bits (const_rtx x, enum machine_mode mode)
3532 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3535 unsigned int
3536 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3538 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3541 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3542 It avoids exponential behavior in nonzero_bits1 when X has
3543 identical subexpressions on the first or the second level. */
3545 static unsigned HOST_WIDE_INT
3546 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3547 enum machine_mode known_mode,
3548 unsigned HOST_WIDE_INT known_ret)
3550 if (x == known_x && mode == known_mode)
3551 return known_ret;
3553 /* Try to find identical subexpressions. If found call
3554 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3555 precomputed value for the subexpression as KNOWN_RET. */
3557 if (ARITHMETIC_P (x))
3559 rtx x0 = XEXP (x, 0);
3560 rtx x1 = XEXP (x, 1);
3562 /* Check the first level. */
3563 if (x0 == x1)
3564 return nonzero_bits1 (x, mode, x0, mode,
3565 cached_nonzero_bits (x0, mode, known_x,
3566 known_mode, known_ret));
3568 /* Check the second level. */
3569 if (ARITHMETIC_P (x0)
3570 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3571 return nonzero_bits1 (x, mode, x1, mode,
3572 cached_nonzero_bits (x1, mode, known_x,
3573 known_mode, known_ret));
3575 if (ARITHMETIC_P (x1)
3576 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3577 return nonzero_bits1 (x, mode, x0, mode,
3578 cached_nonzero_bits (x0, mode, known_x,
3579 known_mode, known_ret));
3582 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3585 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3586 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3587 is less useful. We can't allow both, because that results in exponential
3588 run time recursion. There is a nullstone testcase that triggered
3589 this. This macro avoids accidental uses of num_sign_bit_copies. */
3590 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3592 /* Given an expression, X, compute which bits in X can be nonzero.
3593 We don't care about bits outside of those defined in MODE.
3595 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3596 an arithmetic operation, we can do better. */
3598 static unsigned HOST_WIDE_INT
3599 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3600 enum machine_mode known_mode,
3601 unsigned HOST_WIDE_INT known_ret)
3603 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3604 unsigned HOST_WIDE_INT inner_nz;
3605 enum rtx_code code;
3606 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3608 /* For floating-point values, assume all bits are needed. */
3609 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3610 return nonzero;
3612 /* If X is wider than MODE, use its mode instead. */
3613 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3615 mode = GET_MODE (x);
3616 nonzero = GET_MODE_MASK (mode);
3617 mode_width = GET_MODE_BITSIZE (mode);
3620 if (mode_width > HOST_BITS_PER_WIDE_INT)
3621 /* Our only callers in this case look for single bit values. So
3622 just return the mode mask. Those tests will then be false. */
3623 return nonzero;
3625 #ifndef WORD_REGISTER_OPERATIONS
3626 /* If MODE is wider than X, but both are a single word for both the host
3627 and target machines, we can compute this from which bits of the
3628 object might be nonzero in its own mode, taking into account the fact
3629 that on many CISC machines, accessing an object in a wider mode
3630 causes the high-order bits to become undefined. So they are
3631 not known to be zero. */
3633 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3634 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3635 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3636 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3638 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3639 known_x, known_mode, known_ret);
3640 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3641 return nonzero;
3643 #endif
3645 code = GET_CODE (x);
3646 switch (code)
3648 case REG:
3649 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3650 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3651 all the bits above ptr_mode are known to be zero. */
3652 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3653 && REG_POINTER (x))
3654 nonzero &= GET_MODE_MASK (ptr_mode);
3655 #endif
3657 /* Include declared information about alignment of pointers. */
3658 /* ??? We don't properly preserve REG_POINTER changes across
3659 pointer-to-integer casts, so we can't trust it except for
3660 things that we know must be pointers. See execute/960116-1.c. */
3661 if ((x == stack_pointer_rtx
3662 || x == frame_pointer_rtx
3663 || x == arg_pointer_rtx)
3664 && REGNO_POINTER_ALIGN (REGNO (x)))
3666 unsigned HOST_WIDE_INT alignment
3667 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3669 #ifdef PUSH_ROUNDING
3670 /* If PUSH_ROUNDING is defined, it is possible for the
3671 stack to be momentarily aligned only to that amount,
3672 so we pick the least alignment. */
3673 if (x == stack_pointer_rtx && PUSH_ARGS)
3674 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3675 alignment);
3676 #endif
3678 nonzero &= ~(alignment - 1);
3682 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3683 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3684 known_mode, known_ret,
3685 &nonzero_for_hook);
3687 if (new)
3688 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3689 known_mode, known_ret);
3691 return nonzero_for_hook;
3694 case CONST_INT:
3695 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3696 /* If X is negative in MODE, sign-extend the value. */
3697 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3698 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3699 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3700 #endif
3702 return INTVAL (x);
3704 case MEM:
3705 #ifdef LOAD_EXTEND_OP
3706 /* In many, if not most, RISC machines, reading a byte from memory
3707 zeros the rest of the register. Noticing that fact saves a lot
3708 of extra zero-extends. */
3709 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3710 nonzero &= GET_MODE_MASK (GET_MODE (x));
3711 #endif
3712 break;
3714 case EQ: case NE:
3715 case UNEQ: case LTGT:
3716 case GT: case GTU: case UNGT:
3717 case LT: case LTU: case UNLT:
3718 case GE: case GEU: case UNGE:
3719 case LE: case LEU: case UNLE:
3720 case UNORDERED: case ORDERED:
3721 /* If this produces an integer result, we know which bits are set.
3722 Code here used to clear bits outside the mode of X, but that is
3723 now done above. */
3724 /* Mind that MODE is the mode the caller wants to look at this
3725 operation in, and not the actual operation mode. We can wind
3726 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3727 that describes the results of a vector compare. */
3728 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3729 && mode_width <= HOST_BITS_PER_WIDE_INT)
3730 nonzero = STORE_FLAG_VALUE;
3731 break;
3733 case NEG:
3734 #if 0
3735 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3736 and num_sign_bit_copies. */
3737 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3738 == GET_MODE_BITSIZE (GET_MODE (x)))
3739 nonzero = 1;
3740 #endif
3742 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3743 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3744 break;
3746 case ABS:
3747 #if 0
3748 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3749 and num_sign_bit_copies. */
3750 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3751 == GET_MODE_BITSIZE (GET_MODE (x)))
3752 nonzero = 1;
3753 #endif
3754 break;
3756 case TRUNCATE:
3757 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3758 known_x, known_mode, known_ret)
3759 & GET_MODE_MASK (mode));
3760 break;
3762 case ZERO_EXTEND:
3763 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3764 known_x, known_mode, known_ret);
3765 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3766 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3767 break;
3769 case SIGN_EXTEND:
3770 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3771 Otherwise, show all the bits in the outer mode but not the inner
3772 may be nonzero. */
3773 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3774 known_x, known_mode, known_ret);
3775 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3777 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3778 if (inner_nz
3779 & (((HOST_WIDE_INT) 1
3780 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3781 inner_nz |= (GET_MODE_MASK (mode)
3782 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3785 nonzero &= inner_nz;
3786 break;
3788 case AND:
3789 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3790 known_x, known_mode, known_ret)
3791 & cached_nonzero_bits (XEXP (x, 1), mode,
3792 known_x, known_mode, known_ret);
3793 break;
3795 case XOR: case IOR:
3796 case UMIN: case UMAX: case SMIN: case SMAX:
3798 unsigned HOST_WIDE_INT nonzero0 =
3799 cached_nonzero_bits (XEXP (x, 0), mode,
3800 known_x, known_mode, known_ret);
3802 /* Don't call nonzero_bits for the second time if it cannot change
3803 anything. */
3804 if ((nonzero & nonzero0) != nonzero)
3805 nonzero &= nonzero0
3806 | cached_nonzero_bits (XEXP (x, 1), mode,
3807 known_x, known_mode, known_ret);
3809 break;
3811 case PLUS: case MINUS:
3812 case MULT:
3813 case DIV: case UDIV:
3814 case MOD: case UMOD:
3815 /* We can apply the rules of arithmetic to compute the number of
3816 high- and low-order zero bits of these operations. We start by
3817 computing the width (position of the highest-order nonzero bit)
3818 and the number of low-order zero bits for each value. */
3820 unsigned HOST_WIDE_INT nz0 =
3821 cached_nonzero_bits (XEXP (x, 0), mode,
3822 known_x, known_mode, known_ret);
3823 unsigned HOST_WIDE_INT nz1 =
3824 cached_nonzero_bits (XEXP (x, 1), mode,
3825 known_x, known_mode, known_ret);
3826 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3827 int width0 = floor_log2 (nz0) + 1;
3828 int width1 = floor_log2 (nz1) + 1;
3829 int low0 = floor_log2 (nz0 & -nz0);
3830 int low1 = floor_log2 (nz1 & -nz1);
3831 HOST_WIDE_INT op0_maybe_minusp
3832 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3833 HOST_WIDE_INT op1_maybe_minusp
3834 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3835 unsigned int result_width = mode_width;
3836 int result_low = 0;
3838 switch (code)
3840 case PLUS:
3841 result_width = MAX (width0, width1) + 1;
3842 result_low = MIN (low0, low1);
3843 break;
3844 case MINUS:
3845 result_low = MIN (low0, low1);
3846 break;
3847 case MULT:
3848 result_width = width0 + width1;
3849 result_low = low0 + low1;
3850 break;
3851 case DIV:
3852 if (width1 == 0)
3853 break;
3854 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3855 result_width = width0;
3856 break;
3857 case UDIV:
3858 if (width1 == 0)
3859 break;
3860 result_width = width0;
3861 break;
3862 case MOD:
3863 if (width1 == 0)
3864 break;
3865 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3866 result_width = MIN (width0, width1);
3867 result_low = MIN (low0, low1);
3868 break;
3869 case UMOD:
3870 if (width1 == 0)
3871 break;
3872 result_width = MIN (width0, width1);
3873 result_low = MIN (low0, low1);
3874 break;
3875 default:
3876 gcc_unreachable ();
3879 if (result_width < mode_width)
3880 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3882 if (result_low > 0)
3883 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3885 #ifdef POINTERS_EXTEND_UNSIGNED
3886 /* If pointers extend unsigned and this is an addition or subtraction
3887 to a pointer in Pmode, all the bits above ptr_mode are known to be
3888 zero. */
3889 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3890 && (code == PLUS || code == MINUS)
3891 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3892 nonzero &= GET_MODE_MASK (ptr_mode);
3893 #endif
3895 break;
3897 case ZERO_EXTRACT:
3898 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3899 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3900 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3901 break;
3903 case SUBREG:
3904 /* If this is a SUBREG formed for a promoted variable that has
3905 been zero-extended, we know that at least the high-order bits
3906 are zero, though others might be too. */
3908 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3909 nonzero = GET_MODE_MASK (GET_MODE (x))
3910 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3911 known_x, known_mode, known_ret);
3913 /* If the inner mode is a single word for both the host and target
3914 machines, we can compute this from which bits of the inner
3915 object might be nonzero. */
3916 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3917 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3918 <= HOST_BITS_PER_WIDE_INT))
3920 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3921 known_x, known_mode, known_ret);
3923 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3924 /* If this is a typical RISC machine, we only have to worry
3925 about the way loads are extended. */
3926 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3927 ? (((nonzero
3928 & (((unsigned HOST_WIDE_INT) 1
3929 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3930 != 0))
3931 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3932 || !MEM_P (SUBREG_REG (x)))
3933 #endif
3935 /* On many CISC machines, accessing an object in a wider mode
3936 causes the high-order bits to become undefined. So they are
3937 not known to be zero. */
3938 if (GET_MODE_SIZE (GET_MODE (x))
3939 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3940 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3941 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3944 break;
3946 case ASHIFTRT:
3947 case LSHIFTRT:
3948 case ASHIFT:
3949 case ROTATE:
3950 /* The nonzero bits are in two classes: any bits within MODE
3951 that aren't in GET_MODE (x) are always significant. The rest of the
3952 nonzero bits are those that are significant in the operand of
3953 the shift when shifted the appropriate number of bits. This
3954 shows that high-order bits are cleared by the right shift and
3955 low-order bits by left shifts. */
3956 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3957 && INTVAL (XEXP (x, 1)) >= 0
3958 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3960 enum machine_mode inner_mode = GET_MODE (x);
3961 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3962 int count = INTVAL (XEXP (x, 1));
3963 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3964 unsigned HOST_WIDE_INT op_nonzero =
3965 cached_nonzero_bits (XEXP (x, 0), mode,
3966 known_x, known_mode, known_ret);
3967 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3968 unsigned HOST_WIDE_INT outer = 0;
3970 if (mode_width > width)
3971 outer = (op_nonzero & nonzero & ~mode_mask);
3973 if (code == LSHIFTRT)
3974 inner >>= count;
3975 else if (code == ASHIFTRT)
3977 inner >>= count;
3979 /* If the sign bit may have been nonzero before the shift, we
3980 need to mark all the places it could have been copied to
3981 by the shift as possibly nonzero. */
3982 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3983 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3985 else if (code == ASHIFT)
3986 inner <<= count;
3987 else
3988 inner = ((inner << (count % width)
3989 | (inner >> (width - (count % width)))) & mode_mask);
3991 nonzero &= (outer | inner);
3993 break;
3995 case FFS:
3996 case POPCOUNT:
3997 /* This is at most the number of bits in the mode. */
3998 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3999 break;
4001 case CLZ:
4002 /* If CLZ has a known value at zero, then the nonzero bits are
4003 that value, plus the number of bits in the mode minus one. */
4004 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4005 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4006 else
4007 nonzero = -1;
4008 break;
4010 case CTZ:
4011 /* If CTZ has a known value at zero, then the nonzero bits are
4012 that value, plus the number of bits in the mode minus one. */
4013 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4014 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4015 else
4016 nonzero = -1;
4017 break;
4019 case PARITY:
4020 nonzero = 1;
4021 break;
4023 case IF_THEN_ELSE:
4025 unsigned HOST_WIDE_INT nonzero_true =
4026 cached_nonzero_bits (XEXP (x, 1), mode,
4027 known_x, known_mode, known_ret);
4029 /* Don't call nonzero_bits for the second time if it cannot change
4030 anything. */
4031 if ((nonzero & nonzero_true) != nonzero)
4032 nonzero &= nonzero_true
4033 | cached_nonzero_bits (XEXP (x, 2), mode,
4034 known_x, known_mode, known_ret);
4036 break;
4038 default:
4039 break;
4042 return nonzero;
4045 /* See the macro definition above. */
4046 #undef cached_num_sign_bit_copies
4049 /* The function cached_num_sign_bit_copies is a wrapper around
4050 num_sign_bit_copies1. It avoids exponential behavior in
4051 num_sign_bit_copies1 when X has identical subexpressions on the
4052 first or the second level. */
4054 static unsigned int
4055 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4056 enum machine_mode known_mode,
4057 unsigned int known_ret)
4059 if (x == known_x && mode == known_mode)
4060 return known_ret;
4062 /* Try to find identical subexpressions. If found call
4063 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4064 the precomputed value for the subexpression as KNOWN_RET. */
4066 if (ARITHMETIC_P (x))
4068 rtx x0 = XEXP (x, 0);
4069 rtx x1 = XEXP (x, 1);
4071 /* Check the first level. */
4072 if (x0 == x1)
4073 return
4074 num_sign_bit_copies1 (x, mode, x0, mode,
4075 cached_num_sign_bit_copies (x0, mode, known_x,
4076 known_mode,
4077 known_ret));
4079 /* Check the second level. */
4080 if (ARITHMETIC_P (x0)
4081 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4082 return
4083 num_sign_bit_copies1 (x, mode, x1, mode,
4084 cached_num_sign_bit_copies (x1, mode, known_x,
4085 known_mode,
4086 known_ret));
4088 if (ARITHMETIC_P (x1)
4089 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4090 return
4091 num_sign_bit_copies1 (x, mode, x0, mode,
4092 cached_num_sign_bit_copies (x0, mode, known_x,
4093 known_mode,
4094 known_ret));
4097 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4100 /* Return the number of bits at the high-order end of X that are known to
4101 be equal to the sign bit. X will be used in mode MODE; if MODE is
4102 VOIDmode, X will be used in its own mode. The returned value will always
4103 be between 1 and the number of bits in MODE. */
4105 static unsigned int
4106 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4107 enum machine_mode known_mode,
4108 unsigned int known_ret)
4110 enum rtx_code code = GET_CODE (x);
4111 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4112 int num0, num1, result;
4113 unsigned HOST_WIDE_INT nonzero;
4115 /* If we weren't given a mode, use the mode of X. If the mode is still
4116 VOIDmode, we don't know anything. Likewise if one of the modes is
4117 floating-point. */
4119 if (mode == VOIDmode)
4120 mode = GET_MODE (x);
4122 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4123 return 1;
4125 /* For a smaller object, just ignore the high bits. */
4126 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4128 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4129 known_x, known_mode, known_ret);
4130 return MAX (1,
4131 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4134 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4136 #ifndef WORD_REGISTER_OPERATIONS
4137 /* If this machine does not do all register operations on the entire
4138 register and MODE is wider than the mode of X, we can say nothing
4139 at all about the high-order bits. */
4140 return 1;
4141 #else
4142 /* Likewise on machines that do, if the mode of the object is smaller
4143 than a word and loads of that size don't sign extend, we can say
4144 nothing about the high order bits. */
4145 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4146 #ifdef LOAD_EXTEND_OP
4147 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4148 #endif
4150 return 1;
4151 #endif
4154 switch (code)
4156 case REG:
4158 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4159 /* If pointers extend signed and this is a pointer in Pmode, say that
4160 all the bits above ptr_mode are known to be sign bit copies. */
4161 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4162 && REG_POINTER (x))
4163 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4164 #endif
4167 unsigned int copies_for_hook = 1, copies = 1;
4168 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4169 known_mode, known_ret,
4170 &copies_for_hook);
4172 if (new)
4173 copies = cached_num_sign_bit_copies (new, mode, known_x,
4174 known_mode, known_ret);
4176 if (copies > 1 || copies_for_hook > 1)
4177 return MAX (copies, copies_for_hook);
4179 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4181 break;
4183 case MEM:
4184 #ifdef LOAD_EXTEND_OP
4185 /* Some RISC machines sign-extend all loads of smaller than a word. */
4186 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4187 return MAX (1, ((int) bitwidth
4188 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4189 #endif
4190 break;
4192 case CONST_INT:
4193 /* If the constant is negative, take its 1's complement and remask.
4194 Then see how many zero bits we have. */
4195 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4196 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4197 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4198 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4200 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4202 case SUBREG:
4203 /* If this is a SUBREG for a promoted object that is sign-extended
4204 and we are looking at it in a wider mode, we know that at least the
4205 high-order bits are known to be sign bit copies. */
4207 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4209 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4210 known_x, known_mode, known_ret);
4211 return MAX ((int) bitwidth
4212 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4213 num0);
4216 /* For a smaller object, just ignore the high bits. */
4217 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4219 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4220 known_x, known_mode, known_ret);
4221 return MAX (1, (num0
4222 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4223 - bitwidth)));
4226 #ifdef WORD_REGISTER_OPERATIONS
4227 #ifdef LOAD_EXTEND_OP
4228 /* For paradoxical SUBREGs on machines where all register operations
4229 affect the entire register, just look inside. Note that we are
4230 passing MODE to the recursive call, so the number of sign bit copies
4231 will remain relative to that mode, not the inner mode. */
4233 /* This works only if loads sign extend. Otherwise, if we get a
4234 reload for the inner part, it may be loaded from the stack, and
4235 then we lose all sign bit copies that existed before the store
4236 to the stack. */
4238 if ((GET_MODE_SIZE (GET_MODE (x))
4239 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4240 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4241 && MEM_P (SUBREG_REG (x)))
4242 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4243 known_x, known_mode, known_ret);
4244 #endif
4245 #endif
4246 break;
4248 case SIGN_EXTRACT:
4249 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4250 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4251 break;
4253 case SIGN_EXTEND:
4254 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4255 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4256 known_x, known_mode, known_ret));
4258 case TRUNCATE:
4259 /* For a smaller object, just ignore the high bits. */
4260 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4261 known_x, known_mode, known_ret);
4262 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4263 - bitwidth)));
4265 case NOT:
4266 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4267 known_x, known_mode, known_ret);
4269 case ROTATE: case ROTATERT:
4270 /* If we are rotating left by a number of bits less than the number
4271 of sign bit copies, we can just subtract that amount from the
4272 number. */
4273 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4274 && INTVAL (XEXP (x, 1)) >= 0
4275 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4277 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4278 known_x, known_mode, known_ret);
4279 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4280 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4282 break;
4284 case NEG:
4285 /* In general, this subtracts one sign bit copy. But if the value
4286 is known to be positive, the number of sign bit copies is the
4287 same as that of the input. Finally, if the input has just one bit
4288 that might be nonzero, all the bits are copies of the sign bit. */
4289 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4290 known_x, known_mode, known_ret);
4291 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4292 return num0 > 1 ? num0 - 1 : 1;
4294 nonzero = nonzero_bits (XEXP (x, 0), mode);
4295 if (nonzero == 1)
4296 return bitwidth;
4298 if (num0 > 1
4299 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4300 num0--;
4302 return num0;
4304 case IOR: case AND: case XOR:
4305 case SMIN: case SMAX: case UMIN: case UMAX:
4306 /* Logical operations will preserve the number of sign-bit copies.
4307 MIN and MAX operations always return one of the operands. */
4308 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4309 known_x, known_mode, known_ret);
4310 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4311 known_x, known_mode, known_ret);
4313 /* If num1 is clearing some of the top bits then regardless of
4314 the other term, we are guaranteed to have at least that many
4315 high-order zero bits. */
4316 if (code == AND
4317 && num1 > 1
4318 && bitwidth <= HOST_BITS_PER_WIDE_INT
4319 && GET_CODE (XEXP (x, 1)) == CONST_INT
4320 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4321 return num1;
4323 /* Similarly for IOR when setting high-order bits. */
4324 if (code == IOR
4325 && num1 > 1
4326 && bitwidth <= HOST_BITS_PER_WIDE_INT
4327 && GET_CODE (XEXP (x, 1)) == CONST_INT
4328 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4329 return num1;
4331 return MIN (num0, num1);
4333 case PLUS: case MINUS:
4334 /* For addition and subtraction, we can have a 1-bit carry. However,
4335 if we are subtracting 1 from a positive number, there will not
4336 be such a carry. Furthermore, if the positive number is known to
4337 be 0 or 1, we know the result is either -1 or 0. */
4339 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4340 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4342 nonzero = nonzero_bits (XEXP (x, 0), mode);
4343 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4344 return (nonzero == 1 || nonzero == 0 ? bitwidth
4345 : bitwidth - floor_log2 (nonzero) - 1);
4348 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4349 known_x, known_mode, known_ret);
4350 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4351 known_x, known_mode, known_ret);
4352 result = MAX (1, MIN (num0, num1) - 1);
4354 #ifdef POINTERS_EXTEND_UNSIGNED
4355 /* If pointers extend signed and this is an addition or subtraction
4356 to a pointer in Pmode, all the bits above ptr_mode are known to be
4357 sign bit copies. */
4358 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4359 && (code == PLUS || code == MINUS)
4360 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4361 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4362 - GET_MODE_BITSIZE (ptr_mode) + 1),
4363 result);
4364 #endif
4365 return result;
4367 case MULT:
4368 /* The number of bits of the product is the sum of the number of
4369 bits of both terms. However, unless one of the terms if known
4370 to be positive, we must allow for an additional bit since negating
4371 a negative number can remove one sign bit copy. */
4373 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4374 known_x, known_mode, known_ret);
4375 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4376 known_x, known_mode, known_ret);
4378 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4379 if (result > 0
4380 && (bitwidth > HOST_BITS_PER_WIDE_INT
4381 || (((nonzero_bits (XEXP (x, 0), mode)
4382 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4383 && ((nonzero_bits (XEXP (x, 1), mode)
4384 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4385 result--;
4387 return MAX (1, result);
4389 case UDIV:
4390 /* The result must be <= the first operand. If the first operand
4391 has the high bit set, we know nothing about the number of sign
4392 bit copies. */
4393 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4394 return 1;
4395 else if ((nonzero_bits (XEXP (x, 0), mode)
4396 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4397 return 1;
4398 else
4399 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4400 known_x, known_mode, known_ret);
4402 case UMOD:
4403 /* The result must be <= the second operand. */
4404 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4405 known_x, known_mode, known_ret);
4407 case DIV:
4408 /* Similar to unsigned division, except that we have to worry about
4409 the case where the divisor is negative, in which case we have
4410 to add 1. */
4411 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4412 known_x, known_mode, known_ret);
4413 if (result > 1
4414 && (bitwidth > HOST_BITS_PER_WIDE_INT
4415 || (nonzero_bits (XEXP (x, 1), mode)
4416 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4417 result--;
4419 return result;
4421 case MOD:
4422 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4423 known_x, known_mode, known_ret);
4424 if (result > 1
4425 && (bitwidth > HOST_BITS_PER_WIDE_INT
4426 || (nonzero_bits (XEXP (x, 1), mode)
4427 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4428 result--;
4430 return result;
4432 case ASHIFTRT:
4433 /* Shifts by a constant add to the number of bits equal to the
4434 sign bit. */
4435 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4436 known_x, known_mode, known_ret);
4437 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4438 && INTVAL (XEXP (x, 1)) > 0)
4439 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4441 return num0;
4443 case ASHIFT:
4444 /* Left shifts destroy copies. */
4445 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4446 || INTVAL (XEXP (x, 1)) < 0
4447 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4448 return 1;
4450 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4451 known_x, known_mode, known_ret);
4452 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4454 case IF_THEN_ELSE:
4455 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4456 known_x, known_mode, known_ret);
4457 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4458 known_x, known_mode, known_ret);
4459 return MIN (num0, num1);
4461 case EQ: case NE: case GE: case GT: case LE: case LT:
4462 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4463 case GEU: case GTU: case LEU: case LTU:
4464 case UNORDERED: case ORDERED:
4465 /* If the constant is negative, take its 1's complement and remask.
4466 Then see how many zero bits we have. */
4467 nonzero = STORE_FLAG_VALUE;
4468 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4469 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4470 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4472 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4474 default:
4475 break;
4478 /* If we haven't been able to figure it out by one of the above rules,
4479 see if some of the high-order bits are known to be zero. If so,
4480 count those bits and return one less than that amount. If we can't
4481 safely compute the mask for this mode, always return BITWIDTH. */
4483 bitwidth = GET_MODE_BITSIZE (mode);
4484 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4485 return 1;
4487 nonzero = nonzero_bits (x, mode);
4488 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4489 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4492 /* Calculate the rtx_cost of a single instruction. A return value of
4493 zero indicates an instruction pattern without a known cost. */
4496 insn_rtx_cost (rtx pat)
4498 int i, cost;
4499 rtx set;
4501 /* Extract the single set rtx from the instruction pattern.
4502 We can't use single_set since we only have the pattern. */
4503 if (GET_CODE (pat) == SET)
4504 set = pat;
4505 else if (GET_CODE (pat) == PARALLEL)
4507 set = NULL_RTX;
4508 for (i = 0; i < XVECLEN (pat, 0); i++)
4510 rtx x = XVECEXP (pat, 0, i);
4511 if (GET_CODE (x) == SET)
4513 if (set)
4514 return 0;
4515 set = x;
4518 if (!set)
4519 return 0;
4521 else
4522 return 0;
4524 cost = rtx_cost (SET_SRC (set), SET);
4525 return cost > 0 ? cost : COSTS_N_INSNS (1);
4528 /* Given an insn INSN and condition COND, return the condition in a
4529 canonical form to simplify testing by callers. Specifically:
4531 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4532 (2) Both operands will be machine operands; (cc0) will have been replaced.
4533 (3) If an operand is a constant, it will be the second operand.
4534 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4535 for GE, GEU, and LEU.
4537 If the condition cannot be understood, or is an inequality floating-point
4538 comparison which needs to be reversed, 0 will be returned.
4540 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4542 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4543 insn used in locating the condition was found. If a replacement test
4544 of the condition is desired, it should be placed in front of that
4545 insn and we will be sure that the inputs are still valid.
4547 If WANT_REG is nonzero, we wish the condition to be relative to that
4548 register, if possible. Therefore, do not canonicalize the condition
4549 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4550 to be a compare to a CC mode register.
4552 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4553 and at INSN. */
4556 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4557 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4559 enum rtx_code code;
4560 rtx prev = insn;
4561 const_rtx set;
4562 rtx tem;
4563 rtx op0, op1;
4564 int reverse_code = 0;
4565 enum machine_mode mode;
4566 basic_block bb = BLOCK_FOR_INSN (insn);
4568 code = GET_CODE (cond);
4569 mode = GET_MODE (cond);
4570 op0 = XEXP (cond, 0);
4571 op1 = XEXP (cond, 1);
4573 if (reverse)
4574 code = reversed_comparison_code (cond, insn);
4575 if (code == UNKNOWN)
4576 return 0;
4578 if (earliest)
4579 *earliest = insn;
4581 /* If we are comparing a register with zero, see if the register is set
4582 in the previous insn to a COMPARE or a comparison operation. Perform
4583 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4584 in cse.c */
4586 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4587 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4588 && op1 == CONST0_RTX (GET_MODE (op0))
4589 && op0 != want_reg)
4591 /* Set nonzero when we find something of interest. */
4592 rtx x = 0;
4594 #ifdef HAVE_cc0
4595 /* If comparison with cc0, import actual comparison from compare
4596 insn. */
4597 if (op0 == cc0_rtx)
4599 if ((prev = prev_nonnote_insn (prev)) == 0
4600 || !NONJUMP_INSN_P (prev)
4601 || (set = single_set (prev)) == 0
4602 || SET_DEST (set) != cc0_rtx)
4603 return 0;
4605 op0 = SET_SRC (set);
4606 op1 = CONST0_RTX (GET_MODE (op0));
4607 if (earliest)
4608 *earliest = prev;
4610 #endif
4612 /* If this is a COMPARE, pick up the two things being compared. */
4613 if (GET_CODE (op0) == COMPARE)
4615 op1 = XEXP (op0, 1);
4616 op0 = XEXP (op0, 0);
4617 continue;
4619 else if (!REG_P (op0))
4620 break;
4622 /* Go back to the previous insn. Stop if it is not an INSN. We also
4623 stop if it isn't a single set or if it has a REG_INC note because
4624 we don't want to bother dealing with it. */
4626 if ((prev = prev_nonnote_insn (prev)) == 0
4627 || !NONJUMP_INSN_P (prev)
4628 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4629 /* In cfglayout mode, there do not have to be labels at the
4630 beginning of a block, or jumps at the end, so the previous
4631 conditions would not stop us when we reach bb boundary. */
4632 || BLOCK_FOR_INSN (prev) != bb)
4633 break;
4635 set = set_of (op0, prev);
4637 if (set
4638 && (GET_CODE (set) != SET
4639 || !rtx_equal_p (SET_DEST (set), op0)))
4640 break;
4642 /* If this is setting OP0, get what it sets it to if it looks
4643 relevant. */
4644 if (set)
4646 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4647 #ifdef FLOAT_STORE_FLAG_VALUE
4648 REAL_VALUE_TYPE fsfv;
4649 #endif
4651 /* ??? We may not combine comparisons done in a CCmode with
4652 comparisons not done in a CCmode. This is to aid targets
4653 like Alpha that have an IEEE compliant EQ instruction, and
4654 a non-IEEE compliant BEQ instruction. The use of CCmode is
4655 actually artificial, simply to prevent the combination, but
4656 should not affect other platforms.
4658 However, we must allow VOIDmode comparisons to match either
4659 CCmode or non-CCmode comparison, because some ports have
4660 modeless comparisons inside branch patterns.
4662 ??? This mode check should perhaps look more like the mode check
4663 in simplify_comparison in combine. */
4665 if ((GET_CODE (SET_SRC (set)) == COMPARE
4666 || (((code == NE
4667 || (code == LT
4668 && GET_MODE_CLASS (inner_mode) == MODE_INT
4669 && (GET_MODE_BITSIZE (inner_mode)
4670 <= HOST_BITS_PER_WIDE_INT)
4671 && (STORE_FLAG_VALUE
4672 & ((HOST_WIDE_INT) 1
4673 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4674 #ifdef FLOAT_STORE_FLAG_VALUE
4675 || (code == LT
4676 && SCALAR_FLOAT_MODE_P (inner_mode)
4677 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4678 REAL_VALUE_NEGATIVE (fsfv)))
4679 #endif
4681 && COMPARISON_P (SET_SRC (set))))
4682 && (((GET_MODE_CLASS (mode) == MODE_CC)
4683 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4684 || mode == VOIDmode || inner_mode == VOIDmode))
4685 x = SET_SRC (set);
4686 else if (((code == EQ
4687 || (code == GE
4688 && (GET_MODE_BITSIZE (inner_mode)
4689 <= HOST_BITS_PER_WIDE_INT)
4690 && GET_MODE_CLASS (inner_mode) == MODE_INT
4691 && (STORE_FLAG_VALUE
4692 & ((HOST_WIDE_INT) 1
4693 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4694 #ifdef FLOAT_STORE_FLAG_VALUE
4695 || (code == GE
4696 && SCALAR_FLOAT_MODE_P (inner_mode)
4697 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4698 REAL_VALUE_NEGATIVE (fsfv)))
4699 #endif
4701 && COMPARISON_P (SET_SRC (set))
4702 && (((GET_MODE_CLASS (mode) == MODE_CC)
4703 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4704 || mode == VOIDmode || inner_mode == VOIDmode))
4707 reverse_code = 1;
4708 x = SET_SRC (set);
4710 else
4711 break;
4714 else if (reg_set_p (op0, prev))
4715 /* If this sets OP0, but not directly, we have to give up. */
4716 break;
4718 if (x)
4720 /* If the caller is expecting the condition to be valid at INSN,
4721 make sure X doesn't change before INSN. */
4722 if (valid_at_insn_p)
4723 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4724 break;
4725 if (COMPARISON_P (x))
4726 code = GET_CODE (x);
4727 if (reverse_code)
4729 code = reversed_comparison_code (x, prev);
4730 if (code == UNKNOWN)
4731 return 0;
4732 reverse_code = 0;
4735 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4736 if (earliest)
4737 *earliest = prev;
4741 /* If constant is first, put it last. */
4742 if (CONSTANT_P (op0))
4743 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4745 /* If OP0 is the result of a comparison, we weren't able to find what
4746 was really being compared, so fail. */
4747 if (!allow_cc_mode
4748 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4749 return 0;
4751 /* Canonicalize any ordered comparison with integers involving equality
4752 if we can do computations in the relevant mode and we do not
4753 overflow. */
4755 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4756 && GET_CODE (op1) == CONST_INT
4757 && GET_MODE (op0) != VOIDmode
4758 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4760 HOST_WIDE_INT const_val = INTVAL (op1);
4761 unsigned HOST_WIDE_INT uconst_val = const_val;
4762 unsigned HOST_WIDE_INT max_val
4763 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4765 switch (code)
4767 case LE:
4768 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4769 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4770 break;
4772 /* When cross-compiling, const_val might be sign-extended from
4773 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4774 case GE:
4775 if ((HOST_WIDE_INT) (const_val & max_val)
4776 != (((HOST_WIDE_INT) 1
4777 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4778 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4779 break;
4781 case LEU:
4782 if (uconst_val < max_val)
4783 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4784 break;
4786 case GEU:
4787 if (uconst_val != 0)
4788 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4789 break;
4791 default:
4792 break;
4796 /* Never return CC0; return zero instead. */
4797 if (CC0_P (op0))
4798 return 0;
4800 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4803 /* Given a jump insn JUMP, return the condition that will cause it to branch
4804 to its JUMP_LABEL. If the condition cannot be understood, or is an
4805 inequality floating-point comparison which needs to be reversed, 0 will
4806 be returned.
4808 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4809 insn used in locating the condition was found. If a replacement test
4810 of the condition is desired, it should be placed in front of that
4811 insn and we will be sure that the inputs are still valid. If EARLIEST
4812 is null, the returned condition will be valid at INSN.
4814 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4815 compare CC mode register.
4817 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4820 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4822 rtx cond;
4823 int reverse;
4824 rtx set;
4826 /* If this is not a standard conditional jump, we can't parse it. */
4827 if (!JUMP_P (jump)
4828 || ! any_condjump_p (jump))
4829 return 0;
4830 set = pc_set (jump);
4832 cond = XEXP (SET_SRC (set), 0);
4834 /* If this branches to JUMP_LABEL when the condition is false, reverse
4835 the condition. */
4836 reverse
4837 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4838 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4840 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4841 allow_cc_mode, valid_at_insn_p);
4844 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4845 TARGET_MODE_REP_EXTENDED.
4847 Note that we assume that the property of
4848 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4849 narrower than mode B. I.e., if A is a mode narrower than B then in
4850 order to be able to operate on it in mode B, mode A needs to
4851 satisfy the requirements set by the representation of mode B. */
4853 static void
4854 init_num_sign_bit_copies_in_rep (void)
4856 enum machine_mode mode, in_mode;
4858 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4859 in_mode = GET_MODE_WIDER_MODE (mode))
4860 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4861 mode = GET_MODE_WIDER_MODE (mode))
4863 enum machine_mode i;
4865 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4866 extends to the next widest mode. */
4867 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4868 || GET_MODE_WIDER_MODE (mode) == in_mode);
4870 /* We are in in_mode. Count how many bits outside of mode
4871 have to be copies of the sign-bit. */
4872 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4874 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4876 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4877 /* We can only check sign-bit copies starting from the
4878 top-bit. In order to be able to check the bits we
4879 have already seen we pretend that subsequent bits
4880 have to be sign-bit copies too. */
4881 || num_sign_bit_copies_in_rep [in_mode][mode])
4882 num_sign_bit_copies_in_rep [in_mode][mode]
4883 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4888 /* Suppose that truncation from the machine mode of X to MODE is not a
4889 no-op. See if there is anything special about X so that we can
4890 assume it already contains a truncated value of MODE. */
4892 bool
4893 truncated_to_mode (enum machine_mode mode, const_rtx x)
4895 /* This register has already been used in MODE without explicit
4896 truncation. */
4897 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4898 return true;
4900 /* See if we already satisfy the requirements of MODE. If yes we
4901 can just switch to MODE. */
4902 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4903 && (num_sign_bit_copies (x, GET_MODE (x))
4904 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4905 return true;
4907 return false;
4910 /* Initialize non_rtx_starting_operands, which is used to speed up
4911 for_each_rtx. */
4912 void
4913 init_rtlanal (void)
4915 int i;
4916 for (i = 0; i < NUM_RTX_CODE; i++)
4918 const char *format = GET_RTX_FORMAT (i);
4919 const char *first = strpbrk (format, "eEV");
4920 non_rtx_starting_operands[i] = first ? first - format : -1;
4923 init_num_sign_bit_copies_in_rep ();
4926 /* Check whether this is a constant pool constant. */
4927 bool
4928 constant_pool_constant_p (rtx x)
4930 x = avoid_constant_pool_reference (x);
4931 return GET_CODE (x) == CONST_DOUBLE;