EnumSet*.class: Regenerate
[official-gcc.git] / gcc / resource.c
blob7cb4d2ae490c02be67da4bab881e071e5e0ae8bf
1 /* Definitions for computing resource usage of specific insns.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "toplev.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "function.h"
30 #include "regs.h"
31 #include "flags.h"
32 #include "output.h"
33 #include "resource.h"
34 #include "except.h"
35 #include "insn-attr.h"
36 #include "params.h"
37 #include "df.h"
39 /* This structure is used to record liveness information at the targets or
40 fallthrough insns of branches. We will most likely need the information
41 at targets again, so save them in a hash table rather than recomputing them
42 each time. */
44 struct target_info
46 int uid; /* INSN_UID of target. */
47 struct target_info *next; /* Next info for same hash bucket. */
48 HARD_REG_SET live_regs; /* Registers live at target. */
49 int block; /* Basic block number containing target. */
50 int bb_tick; /* Generation count of basic block info. */
53 #define TARGET_HASH_PRIME 257
55 /* Indicates what resources are required at the beginning of the epilogue. */
56 static struct resources start_of_epilogue_needs;
58 /* Indicates what resources are required at function end. */
59 static struct resources end_of_function_needs;
61 /* Define the hash table itself. */
62 static struct target_info **target_hash_table = NULL;
64 /* For each basic block, we maintain a generation number of its basic
65 block info, which is updated each time we move an insn from the
66 target of a jump. This is the generation number indexed by block
67 number. */
69 static int *bb_ticks;
71 /* Marks registers possibly live at the current place being scanned by
72 mark_target_live_regs. Also used by update_live_status. */
74 static HARD_REG_SET current_live_regs;
76 /* Marks registers for which we have seen a REG_DEAD note but no assignment.
77 Also only used by the next two functions. */
79 static HARD_REG_SET pending_dead_regs;
81 static void update_live_status (rtx, const_rtx, void *);
82 static int find_basic_block (rtx, int);
83 static rtx next_insn_no_annul (rtx);
84 static rtx find_dead_or_set_registers (rtx, struct resources*,
85 rtx*, int, struct resources,
86 struct resources);
88 /* Utility function called from mark_target_live_regs via note_stores.
89 It deadens any CLOBBERed registers and livens any SET registers. */
91 static void
92 update_live_status (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
94 int first_regno, last_regno;
95 int i;
97 if (!REG_P (dest)
98 && (GET_CODE (dest) != SUBREG || !REG_P (SUBREG_REG (dest))))
99 return;
101 if (GET_CODE (dest) == SUBREG)
103 first_regno = subreg_regno (dest);
104 last_regno = first_regno + subreg_nregs (dest);
107 else
109 first_regno = REGNO (dest);
110 last_regno = END_HARD_REGNO (dest);
113 if (GET_CODE (x) == CLOBBER)
114 for (i = first_regno; i < last_regno; i++)
115 CLEAR_HARD_REG_BIT (current_live_regs, i);
116 else
117 for (i = first_regno; i < last_regno; i++)
119 SET_HARD_REG_BIT (current_live_regs, i);
120 CLEAR_HARD_REG_BIT (pending_dead_regs, i);
124 /* Find the number of the basic block with correct live register
125 information that starts closest to INSN. Return -1 if we couldn't
126 find such a basic block or the beginning is more than
127 SEARCH_LIMIT instructions before INSN. Use SEARCH_LIMIT = -1 for
128 an unlimited search.
130 The delay slot filling code destroys the control-flow graph so,
131 instead of finding the basic block containing INSN, we search
132 backwards toward a BARRIER where the live register information is
133 correct. */
135 static int
136 find_basic_block (rtx insn, int search_limit)
138 basic_block bb;
140 /* Scan backwards to the previous BARRIER. Then see if we can find a
141 label that starts a basic block. Return the basic block number. */
142 for (insn = prev_nonnote_insn (insn);
143 insn && !BARRIER_P (insn) && search_limit != 0;
144 insn = prev_nonnote_insn (insn), --search_limit)
147 /* The closest BARRIER is too far away. */
148 if (search_limit == 0)
149 return -1;
151 /* The start of the function. */
152 else if (insn == 0)
153 return ENTRY_BLOCK_PTR->next_bb->index;
155 /* See if any of the upcoming CODE_LABELs start a basic block. If we reach
156 anything other than a CODE_LABEL or note, we can't find this code. */
157 for (insn = next_nonnote_insn (insn);
158 insn && LABEL_P (insn);
159 insn = next_nonnote_insn (insn))
161 FOR_EACH_BB (bb)
162 if (insn == BB_HEAD (bb))
163 return bb->index;
166 return -1;
169 /* Similar to next_insn, but ignores insns in the delay slots of
170 an annulled branch. */
172 static rtx
173 next_insn_no_annul (rtx insn)
175 if (insn)
177 /* If INSN is an annulled branch, skip any insns from the target
178 of the branch. */
179 if (INSN_P (insn)
180 && INSN_ANNULLED_BRANCH_P (insn)
181 && NEXT_INSN (PREV_INSN (insn)) != insn)
183 rtx next = NEXT_INSN (insn);
184 enum rtx_code code = GET_CODE (next);
186 while ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
187 && INSN_FROM_TARGET_P (next))
189 insn = next;
190 next = NEXT_INSN (insn);
191 code = GET_CODE (next);
195 insn = NEXT_INSN (insn);
196 if (insn && NONJUMP_INSN_P (insn)
197 && GET_CODE (PATTERN (insn)) == SEQUENCE)
198 insn = XVECEXP (PATTERN (insn), 0, 0);
201 return insn;
204 /* Given X, some rtl, and RES, a pointer to a `struct resource', mark
205 which resources are referenced by the insn. If INCLUDE_DELAYED_EFFECTS
206 is TRUE, resources used by the called routine will be included for
207 CALL_INSNs. */
209 void
210 mark_referenced_resources (rtx x, struct resources *res,
211 int include_delayed_effects)
213 enum rtx_code code = GET_CODE (x);
214 int i, j;
215 unsigned int r;
216 const char *format_ptr;
218 /* Handle leaf items for which we set resource flags. Also, special-case
219 CALL, SET and CLOBBER operators. */
220 switch (code)
222 case CONST:
223 case CONST_INT:
224 case CONST_DOUBLE:
225 case CONST_FIXED:
226 case CONST_VECTOR:
227 case PC:
228 case SYMBOL_REF:
229 case LABEL_REF:
230 return;
232 case SUBREG:
233 if (!REG_P (SUBREG_REG (x)))
234 mark_referenced_resources (SUBREG_REG (x), res, 0);
235 else
237 unsigned int regno = subreg_regno (x);
238 unsigned int last_regno = regno + subreg_nregs (x);
240 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
241 for (r = regno; r < last_regno; r++)
242 SET_HARD_REG_BIT (res->regs, r);
244 return;
246 case REG:
247 gcc_assert (HARD_REGISTER_P (x));
248 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
249 return;
251 case MEM:
252 /* If this memory shouldn't change, it really isn't referencing
253 memory. */
254 if (MEM_READONLY_P (x))
255 res->unch_memory = 1;
256 else
257 res->memory = 1;
258 res->volatil |= MEM_VOLATILE_P (x);
260 /* Mark registers used to access memory. */
261 mark_referenced_resources (XEXP (x, 0), res, 0);
262 return;
264 case CC0:
265 res->cc = 1;
266 return;
268 case UNSPEC_VOLATILE:
269 case ASM_INPUT:
270 /* Traditional asm's are always volatile. */
271 res->volatil = 1;
272 return;
274 case TRAP_IF:
275 res->volatil = 1;
276 break;
278 case ASM_OPERANDS:
279 res->volatil |= MEM_VOLATILE_P (x);
281 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
282 We can not just fall through here since then we would be confused
283 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
284 traditional asms unlike their normal usage. */
286 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
287 mark_referenced_resources (ASM_OPERANDS_INPUT (x, i), res, 0);
288 return;
290 case CALL:
291 /* The first operand will be a (MEM (xxx)) but doesn't really reference
292 memory. The second operand may be referenced, though. */
293 mark_referenced_resources (XEXP (XEXP (x, 0), 0), res, 0);
294 mark_referenced_resources (XEXP (x, 1), res, 0);
295 return;
297 case SET:
298 /* Usually, the first operand of SET is set, not referenced. But
299 registers used to access memory are referenced. SET_DEST is
300 also referenced if it is a ZERO_EXTRACT. */
302 mark_referenced_resources (SET_SRC (x), res, 0);
304 x = SET_DEST (x);
305 if (GET_CODE (x) == ZERO_EXTRACT
306 || GET_CODE (x) == STRICT_LOW_PART)
307 mark_referenced_resources (x, res, 0);
308 else if (GET_CODE (x) == SUBREG)
309 x = SUBREG_REG (x);
310 if (MEM_P (x))
311 mark_referenced_resources (XEXP (x, 0), res, 0);
312 return;
314 case CLOBBER:
315 return;
317 case CALL_INSN:
318 if (include_delayed_effects)
320 /* A CALL references memory, the frame pointer if it exists, the
321 stack pointer, any global registers and any registers given in
322 USE insns immediately in front of the CALL.
324 However, we may have moved some of the parameter loading insns
325 into the delay slot of this CALL. If so, the USE's for them
326 don't count and should be skipped. */
327 rtx insn = PREV_INSN (x);
328 rtx sequence = 0;
329 int seq_size = 0;
330 int i;
332 /* If we are part of a delay slot sequence, point at the SEQUENCE. */
333 if (NEXT_INSN (insn) != x)
335 sequence = PATTERN (NEXT_INSN (insn));
336 seq_size = XVECLEN (sequence, 0);
337 gcc_assert (GET_CODE (sequence) == SEQUENCE);
340 res->memory = 1;
341 SET_HARD_REG_BIT (res->regs, STACK_POINTER_REGNUM);
342 if (frame_pointer_needed)
344 SET_HARD_REG_BIT (res->regs, FRAME_POINTER_REGNUM);
345 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
346 SET_HARD_REG_BIT (res->regs, HARD_FRAME_POINTER_REGNUM);
347 #endif
350 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
351 if (global_regs[i])
352 SET_HARD_REG_BIT (res->regs, i);
354 /* Check for a REG_SETJMP. If it exists, then we must
355 assume that this call can need any register.
357 This is done to be more conservative about how we handle setjmp.
358 We assume that they both use and set all registers. Using all
359 registers ensures that a register will not be considered dead
360 just because it crosses a setjmp call. A register should be
361 considered dead only if the setjmp call returns nonzero. */
362 if (find_reg_note (x, REG_SETJMP, NULL))
363 SET_HARD_REG_SET (res->regs);
366 rtx link;
368 for (link = CALL_INSN_FUNCTION_USAGE (x);
369 link;
370 link = XEXP (link, 1))
371 if (GET_CODE (XEXP (link, 0)) == USE)
373 for (i = 1; i < seq_size; i++)
375 rtx slot_pat = PATTERN (XVECEXP (sequence, 0, i));
376 if (GET_CODE (slot_pat) == SET
377 && rtx_equal_p (SET_DEST (slot_pat),
378 XEXP (XEXP (link, 0), 0)))
379 break;
381 if (i >= seq_size)
382 mark_referenced_resources (XEXP (XEXP (link, 0), 0),
383 res, 0);
388 /* ... fall through to other INSN processing ... */
390 case INSN:
391 case JUMP_INSN:
393 #ifdef INSN_REFERENCES_ARE_DELAYED
394 if (! include_delayed_effects
395 && INSN_REFERENCES_ARE_DELAYED (x))
396 return;
397 #endif
399 /* No special processing, just speed up. */
400 mark_referenced_resources (PATTERN (x), res, include_delayed_effects);
401 return;
403 default:
404 break;
407 /* Process each sub-expression and flag what it needs. */
408 format_ptr = GET_RTX_FORMAT (code);
409 for (i = 0; i < GET_RTX_LENGTH (code); i++)
410 switch (*format_ptr++)
412 case 'e':
413 mark_referenced_resources (XEXP (x, i), res, include_delayed_effects);
414 break;
416 case 'E':
417 for (j = 0; j < XVECLEN (x, i); j++)
418 mark_referenced_resources (XVECEXP (x, i, j), res,
419 include_delayed_effects);
420 break;
424 /* A subroutine of mark_target_live_regs. Search forward from TARGET
425 looking for registers that are set before they are used. These are dead.
426 Stop after passing a few conditional jumps, and/or a small
427 number of unconditional branches. */
429 static rtx
430 find_dead_or_set_registers (rtx target, struct resources *res,
431 rtx *jump_target, int jump_count,
432 struct resources set, struct resources needed)
434 HARD_REG_SET scratch;
435 rtx insn, next;
436 rtx jump_insn = 0;
437 int i;
439 for (insn = target; insn; insn = next)
441 rtx this_jump_insn = insn;
443 next = NEXT_INSN (insn);
445 /* If this instruction can throw an exception, then we don't
446 know where we might end up next. That means that we have to
447 assume that whatever we have already marked as live really is
448 live. */
449 if (can_throw_internal (insn))
450 break;
452 switch (GET_CODE (insn))
454 case CODE_LABEL:
455 /* After a label, any pending dead registers that weren't yet
456 used can be made dead. */
457 AND_COMPL_HARD_REG_SET (pending_dead_regs, needed.regs);
458 AND_COMPL_HARD_REG_SET (res->regs, pending_dead_regs);
459 CLEAR_HARD_REG_SET (pending_dead_regs);
461 continue;
463 case BARRIER:
464 case NOTE:
465 continue;
467 case INSN:
468 if (GET_CODE (PATTERN (insn)) == USE)
470 /* If INSN is a USE made by update_block, we care about the
471 underlying insn. Any registers set by the underlying insn
472 are live since the insn is being done somewhere else. */
473 if (INSN_P (XEXP (PATTERN (insn), 0)))
474 mark_set_resources (XEXP (PATTERN (insn), 0), res, 0,
475 MARK_SRC_DEST_CALL);
477 /* All other USE insns are to be ignored. */
478 continue;
480 else if (GET_CODE (PATTERN (insn)) == CLOBBER)
481 continue;
482 else if (GET_CODE (PATTERN (insn)) == SEQUENCE)
484 /* An unconditional jump can be used to fill the delay slot
485 of a call, so search for a JUMP_INSN in any position. */
486 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
488 this_jump_insn = XVECEXP (PATTERN (insn), 0, i);
489 if (JUMP_P (this_jump_insn))
490 break;
494 default:
495 break;
498 if (JUMP_P (this_jump_insn))
500 if (jump_count++ < 10)
502 if (any_uncondjump_p (this_jump_insn)
503 || GET_CODE (PATTERN (this_jump_insn)) == RETURN)
505 next = JUMP_LABEL (this_jump_insn);
506 if (jump_insn == 0)
508 jump_insn = insn;
509 if (jump_target)
510 *jump_target = JUMP_LABEL (this_jump_insn);
513 else if (any_condjump_p (this_jump_insn))
515 struct resources target_set, target_res;
516 struct resources fallthrough_res;
518 /* We can handle conditional branches here by following
519 both paths, and then IOR the results of the two paths
520 together, which will give us registers that are dead
521 on both paths. Since this is expensive, we give it
522 a much higher cost than unconditional branches. The
523 cost was chosen so that we will follow at most 1
524 conditional branch. */
526 jump_count += 4;
527 if (jump_count >= 10)
528 break;
530 mark_referenced_resources (insn, &needed, 1);
532 /* For an annulled branch, mark_set_resources ignores slots
533 filled by instructions from the target. This is correct
534 if the branch is not taken. Since we are following both
535 paths from the branch, we must also compute correct info
536 if the branch is taken. We do this by inverting all of
537 the INSN_FROM_TARGET_P bits, calling mark_set_resources,
538 and then inverting the INSN_FROM_TARGET_P bits again. */
540 if (GET_CODE (PATTERN (insn)) == SEQUENCE
541 && INSN_ANNULLED_BRANCH_P (this_jump_insn))
543 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
544 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
545 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
547 target_set = set;
548 mark_set_resources (insn, &target_set, 0,
549 MARK_SRC_DEST_CALL);
551 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
552 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i))
553 = ! INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i));
555 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
557 else
559 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
560 target_set = set;
563 target_res = *res;
564 COPY_HARD_REG_SET (scratch, target_set.regs);
565 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
566 AND_COMPL_HARD_REG_SET (target_res.regs, scratch);
568 fallthrough_res = *res;
569 COPY_HARD_REG_SET (scratch, set.regs);
570 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
571 AND_COMPL_HARD_REG_SET (fallthrough_res.regs, scratch);
573 find_dead_or_set_registers (JUMP_LABEL (this_jump_insn),
574 &target_res, 0, jump_count,
575 target_set, needed);
576 find_dead_or_set_registers (next,
577 &fallthrough_res, 0, jump_count,
578 set, needed);
579 IOR_HARD_REG_SET (fallthrough_res.regs, target_res.regs);
580 AND_HARD_REG_SET (res->regs, fallthrough_res.regs);
581 break;
583 else
584 break;
586 else
588 /* Don't try this optimization if we expired our jump count
589 above, since that would mean there may be an infinite loop
590 in the function being compiled. */
591 jump_insn = 0;
592 break;
596 mark_referenced_resources (insn, &needed, 1);
597 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
599 COPY_HARD_REG_SET (scratch, set.regs);
600 AND_COMPL_HARD_REG_SET (scratch, needed.regs);
601 AND_COMPL_HARD_REG_SET (res->regs, scratch);
604 return jump_insn;
607 /* Given X, a part of an insn, and a pointer to a `struct resource',
608 RES, indicate which resources are modified by the insn. If
609 MARK_TYPE is MARK_SRC_DEST_CALL, also mark resources potentially
610 set by the called routine.
612 If IN_DEST is nonzero, it means we are inside a SET. Otherwise,
613 objects are being referenced instead of set.
615 We never mark the insn as modifying the condition code unless it explicitly
616 SETs CC0 even though this is not totally correct. The reason for this is
617 that we require a SET of CC0 to immediately precede the reference to CC0.
618 So if some other insn sets CC0 as a side-effect, we know it cannot affect
619 our computation and thus may be placed in a delay slot. */
621 void
622 mark_set_resources (rtx x, struct resources *res, int in_dest,
623 enum mark_resource_type mark_type)
625 enum rtx_code code;
626 int i, j;
627 unsigned int r;
628 const char *format_ptr;
630 restart:
632 code = GET_CODE (x);
634 switch (code)
636 case NOTE:
637 case BARRIER:
638 case CODE_LABEL:
639 case USE:
640 case CONST_INT:
641 case CONST_DOUBLE:
642 case CONST_FIXED:
643 case CONST_VECTOR:
644 case LABEL_REF:
645 case SYMBOL_REF:
646 case CONST:
647 case PC:
648 /* These don't set any resources. */
649 return;
651 case CC0:
652 if (in_dest)
653 res->cc = 1;
654 return;
656 case CALL_INSN:
657 /* Called routine modifies the condition code, memory, any registers
658 that aren't saved across calls, global registers and anything
659 explicitly CLOBBERed immediately after the CALL_INSN. */
661 if (mark_type == MARK_SRC_DEST_CALL)
663 rtx link;
665 res->cc = res->memory = 1;
666 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
667 if (call_used_regs[r] || global_regs[r])
668 SET_HARD_REG_BIT (res->regs, r);
670 for (link = CALL_INSN_FUNCTION_USAGE (x);
671 link; link = XEXP (link, 1))
672 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
673 mark_set_resources (SET_DEST (XEXP (link, 0)), res, 1,
674 MARK_SRC_DEST);
676 /* Check for a REG_SETJMP. If it exists, then we must
677 assume that this call can clobber any register. */
678 if (find_reg_note (x, REG_SETJMP, NULL))
679 SET_HARD_REG_SET (res->regs);
682 /* ... and also what its RTL says it modifies, if anything. */
684 case JUMP_INSN:
685 case INSN:
687 /* An insn consisting of just a CLOBBER (or USE) is just for flow
688 and doesn't actually do anything, so we ignore it. */
690 #ifdef INSN_SETS_ARE_DELAYED
691 if (mark_type != MARK_SRC_DEST_CALL
692 && INSN_SETS_ARE_DELAYED (x))
693 return;
694 #endif
696 x = PATTERN (x);
697 if (GET_CODE (x) != USE && GET_CODE (x) != CLOBBER)
698 goto restart;
699 return;
701 case SET:
702 /* If the source of a SET is a CALL, this is actually done by
703 the called routine. So only include it if we are to include the
704 effects of the calling routine. */
706 mark_set_resources (SET_DEST (x), res,
707 (mark_type == MARK_SRC_DEST_CALL
708 || GET_CODE (SET_SRC (x)) != CALL),
709 mark_type);
711 mark_set_resources (SET_SRC (x), res, 0, MARK_SRC_DEST);
712 return;
714 case CLOBBER:
715 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
716 return;
718 case SEQUENCE:
719 for (i = 0; i < XVECLEN (x, 0); i++)
720 if (! (INSN_ANNULLED_BRANCH_P (XVECEXP (x, 0, 0))
721 && INSN_FROM_TARGET_P (XVECEXP (x, 0, i))))
722 mark_set_resources (XVECEXP (x, 0, i), res, 0, mark_type);
723 return;
725 case POST_INC:
726 case PRE_INC:
727 case POST_DEC:
728 case PRE_DEC:
729 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
730 return;
732 case PRE_MODIFY:
733 case POST_MODIFY:
734 mark_set_resources (XEXP (x, 0), res, 1, MARK_SRC_DEST);
735 mark_set_resources (XEXP (XEXP (x, 1), 0), res, 0, MARK_SRC_DEST);
736 mark_set_resources (XEXP (XEXP (x, 1), 1), res, 0, MARK_SRC_DEST);
737 return;
739 case SIGN_EXTRACT:
740 case ZERO_EXTRACT:
741 mark_set_resources (XEXP (x, 0), res, in_dest, MARK_SRC_DEST);
742 mark_set_resources (XEXP (x, 1), res, 0, MARK_SRC_DEST);
743 mark_set_resources (XEXP (x, 2), res, 0, MARK_SRC_DEST);
744 return;
746 case MEM:
747 if (in_dest)
749 res->memory = 1;
750 res->unch_memory |= MEM_READONLY_P (x);
751 res->volatil |= MEM_VOLATILE_P (x);
754 mark_set_resources (XEXP (x, 0), res, 0, MARK_SRC_DEST);
755 return;
757 case SUBREG:
758 if (in_dest)
760 if (!REG_P (SUBREG_REG (x)))
761 mark_set_resources (SUBREG_REG (x), res, in_dest, mark_type);
762 else
764 unsigned int regno = subreg_regno (x);
765 unsigned int last_regno = regno + subreg_nregs (x);
767 gcc_assert (last_regno <= FIRST_PSEUDO_REGISTER);
768 for (r = regno; r < last_regno; r++)
769 SET_HARD_REG_BIT (res->regs, r);
772 return;
774 case REG:
775 if (in_dest)
777 gcc_assert (HARD_REGISTER_P (x));
778 add_to_hard_reg_set (&res->regs, GET_MODE (x), REGNO (x));
780 return;
782 case UNSPEC_VOLATILE:
783 case ASM_INPUT:
784 /* Traditional asm's are always volatile. */
785 res->volatil = 1;
786 return;
788 case TRAP_IF:
789 res->volatil = 1;
790 break;
792 case ASM_OPERANDS:
793 res->volatil |= MEM_VOLATILE_P (x);
795 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
796 We can not just fall through here since then we would be confused
797 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
798 traditional asms unlike their normal usage. */
800 for (i = 0; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
801 mark_set_resources (ASM_OPERANDS_INPUT (x, i), res, in_dest,
802 MARK_SRC_DEST);
803 return;
805 default:
806 break;
809 /* Process each sub-expression and flag what it needs. */
810 format_ptr = GET_RTX_FORMAT (code);
811 for (i = 0; i < GET_RTX_LENGTH (code); i++)
812 switch (*format_ptr++)
814 case 'e':
815 mark_set_resources (XEXP (x, i), res, in_dest, mark_type);
816 break;
818 case 'E':
819 for (j = 0; j < XVECLEN (x, i); j++)
820 mark_set_resources (XVECEXP (x, i, j), res, in_dest, mark_type);
821 break;
825 /* Return TRUE if INSN is a return, possibly with a filled delay slot. */
827 static bool
828 return_insn_p (const_rtx insn)
830 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
831 return true;
833 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
834 return return_insn_p (XVECEXP (PATTERN (insn), 0, 0));
836 return false;
839 /* Set the resources that are live at TARGET.
841 If TARGET is zero, we refer to the end of the current function and can
842 return our precomputed value.
844 Otherwise, we try to find out what is live by consulting the basic block
845 information. This is tricky, because we must consider the actions of
846 reload and jump optimization, which occur after the basic block information
847 has been computed.
849 Accordingly, we proceed as follows::
851 We find the previous BARRIER and look at all immediately following labels
852 (with no intervening active insns) to see if any of them start a basic
853 block. If we hit the start of the function first, we use block 0.
855 Once we have found a basic block and a corresponding first insns, we can
856 accurately compute the live status from basic_block_live_regs and
857 reg_renumber. (By starting at a label following a BARRIER, we are immune
858 to actions taken by reload and jump.) Then we scan all insns between
859 that point and our target. For each CLOBBER (or for call-clobbered regs
860 when we pass a CALL_INSN), mark the appropriate registers are dead. For
861 a SET, mark them as live.
863 We have to be careful when using REG_DEAD notes because they are not
864 updated by such things as find_equiv_reg. So keep track of registers
865 marked as dead that haven't been assigned to, and mark them dead at the
866 next CODE_LABEL since reload and jump won't propagate values across labels.
868 If we cannot find the start of a basic block (should be a very rare
869 case, if it can happen at all), mark everything as potentially live.
871 Next, scan forward from TARGET looking for things set or clobbered
872 before they are used. These are not live.
874 Because we can be called many times on the same target, save our results
875 in a hash table indexed by INSN_UID. This is only done if the function
876 init_resource_info () was invoked before we are called. */
878 void
879 mark_target_live_regs (rtx insns, rtx target, struct resources *res)
881 int b = -1;
882 unsigned int i;
883 struct target_info *tinfo = NULL;
884 rtx insn;
885 rtx jump_insn = 0;
886 rtx jump_target;
887 HARD_REG_SET scratch;
888 struct resources set, needed;
890 /* Handle end of function. */
891 if (target == 0)
893 *res = end_of_function_needs;
894 return;
897 /* Handle return insn. */
898 else if (return_insn_p (target))
900 *res = end_of_function_needs;
901 mark_referenced_resources (target, res, 0);
902 return;
905 /* We have to assume memory is needed, but the CC isn't. */
906 res->memory = 1;
907 res->volatil = res->unch_memory = 0;
908 res->cc = 0;
910 /* See if we have computed this value already. */
911 if (target_hash_table != NULL)
913 for (tinfo = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
914 tinfo; tinfo = tinfo->next)
915 if (tinfo->uid == INSN_UID (target))
916 break;
918 /* Start by getting the basic block number. If we have saved
919 information, we can get it from there unless the insn at the
920 start of the basic block has been deleted. */
921 if (tinfo && tinfo->block != -1
922 && ! INSN_DELETED_P (BB_HEAD (BASIC_BLOCK (tinfo->block))))
923 b = tinfo->block;
926 if (b == -1)
927 b = find_basic_block (target, MAX_DELAY_SLOT_LIVE_SEARCH);
929 if (target_hash_table != NULL)
931 if (tinfo)
933 /* If the information is up-to-date, use it. Otherwise, we will
934 update it below. */
935 if (b == tinfo->block && b != -1 && tinfo->bb_tick == bb_ticks[b])
937 COPY_HARD_REG_SET (res->regs, tinfo->live_regs);
938 return;
941 else
943 /* Allocate a place to put our results and chain it into the
944 hash table. */
945 tinfo = XNEW (struct target_info);
946 tinfo->uid = INSN_UID (target);
947 tinfo->block = b;
948 tinfo->next
949 = target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME];
950 target_hash_table[INSN_UID (target) % TARGET_HASH_PRIME] = tinfo;
954 CLEAR_HARD_REG_SET (pending_dead_regs);
956 /* If we found a basic block, get the live registers from it and update
957 them with anything set or killed between its start and the insn before
958 TARGET. Otherwise, we must assume everything is live. */
959 if (b != -1)
961 regset regs_live = df_get_live_in (BASIC_BLOCK (b));
962 rtx start_insn, stop_insn;
963 reg_set_iterator rsi;
965 /* Compute hard regs live at start of block -- this is the real hard regs
966 marked live, plus live pseudo regs that have been renumbered to
967 hard regs. */
969 REG_SET_TO_HARD_REG_SET (current_live_regs, regs_live);
971 EXECUTE_IF_SET_IN_REG_SET (regs_live, FIRST_PSEUDO_REGISTER, i, rsi)
973 if (reg_renumber[i] >= 0)
974 add_to_hard_reg_set (&current_live_regs, PSEUDO_REGNO_MODE (i),
975 reg_renumber[i]);
978 /* Get starting and ending insn, handling the case where each might
979 be a SEQUENCE. */
980 start_insn = (b == ENTRY_BLOCK_PTR->next_bb->index ?
981 insns : BB_HEAD (BASIC_BLOCK (b)));
982 stop_insn = target;
984 if (NONJUMP_INSN_P (start_insn)
985 && GET_CODE (PATTERN (start_insn)) == SEQUENCE)
986 start_insn = XVECEXP (PATTERN (start_insn), 0, 0);
988 if (NONJUMP_INSN_P (stop_insn)
989 && GET_CODE (PATTERN (stop_insn)) == SEQUENCE)
990 stop_insn = next_insn (PREV_INSN (stop_insn));
992 for (insn = start_insn; insn != stop_insn;
993 insn = next_insn_no_annul (insn))
995 rtx link;
996 rtx real_insn = insn;
997 enum rtx_code code = GET_CODE (insn);
999 /* If this insn is from the target of a branch, it isn't going to
1000 be used in the sequel. If it is used in both cases, this
1001 test will not be true. */
1002 if ((code == INSN || code == JUMP_INSN || code == CALL_INSN)
1003 && INSN_FROM_TARGET_P (insn))
1004 continue;
1006 /* If this insn is a USE made by update_block, we care about the
1007 underlying insn. */
1008 if (code == INSN && GET_CODE (PATTERN (insn)) == USE
1009 && INSN_P (XEXP (PATTERN (insn), 0)))
1010 real_insn = XEXP (PATTERN (insn), 0);
1012 if (CALL_P (real_insn))
1014 /* CALL clobbers all call-used regs that aren't fixed except
1015 sp, ap, and fp. Do this before setting the result of the
1016 call live. */
1017 AND_COMPL_HARD_REG_SET (current_live_regs,
1018 regs_invalidated_by_call);
1020 /* A CALL_INSN sets any global register live, since it may
1021 have been modified by the call. */
1022 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1023 if (global_regs[i])
1024 SET_HARD_REG_BIT (current_live_regs, i);
1027 /* Mark anything killed in an insn to be deadened at the next
1028 label. Ignore USE insns; the only REG_DEAD notes will be for
1029 parameters. But they might be early. A CALL_INSN will usually
1030 clobber registers used for parameters. It isn't worth bothering
1031 with the unlikely case when it won't. */
1032 if ((NONJUMP_INSN_P (real_insn)
1033 && GET_CODE (PATTERN (real_insn)) != USE
1034 && GET_CODE (PATTERN (real_insn)) != CLOBBER)
1035 || JUMP_P (real_insn)
1036 || CALL_P (real_insn))
1038 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1039 if (REG_NOTE_KIND (link) == REG_DEAD
1040 && REG_P (XEXP (link, 0))
1041 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1042 add_to_hard_reg_set (&pending_dead_regs,
1043 GET_MODE (XEXP (link, 0)),
1044 REGNO (XEXP (link, 0)));
1046 note_stores (PATTERN (real_insn), update_live_status, NULL);
1048 /* If any registers were unused after this insn, kill them.
1049 These notes will always be accurate. */
1050 for (link = REG_NOTES (real_insn); link; link = XEXP (link, 1))
1051 if (REG_NOTE_KIND (link) == REG_UNUSED
1052 && REG_P (XEXP (link, 0))
1053 && REGNO (XEXP (link, 0)) < FIRST_PSEUDO_REGISTER)
1054 remove_from_hard_reg_set (&current_live_regs,
1055 GET_MODE (XEXP (link, 0)),
1056 REGNO (XEXP (link, 0)));
1059 else if (LABEL_P (real_insn))
1061 /* A label clobbers the pending dead registers since neither
1062 reload nor jump will propagate a value across a label. */
1063 AND_COMPL_HARD_REG_SET (current_live_regs, pending_dead_regs);
1064 CLEAR_HARD_REG_SET (pending_dead_regs);
1067 /* The beginning of the epilogue corresponds to the end of the
1068 RTL chain when there are no epilogue insns. Certain resources
1069 are implicitly required at that point. */
1070 else if (NOTE_P (real_insn)
1071 && NOTE_KIND (real_insn) == NOTE_INSN_EPILOGUE_BEG)
1072 IOR_HARD_REG_SET (current_live_regs, start_of_epilogue_needs.regs);
1075 COPY_HARD_REG_SET (res->regs, current_live_regs);
1076 if (tinfo != NULL)
1078 tinfo->block = b;
1079 tinfo->bb_tick = bb_ticks[b];
1082 else
1083 /* We didn't find the start of a basic block. Assume everything
1084 in use. This should happen only extremely rarely. */
1085 SET_HARD_REG_SET (res->regs);
1087 CLEAR_RESOURCE (&set);
1088 CLEAR_RESOURCE (&needed);
1090 jump_insn = find_dead_or_set_registers (target, res, &jump_target, 0,
1091 set, needed);
1093 /* If we hit an unconditional branch, we have another way of finding out
1094 what is live: we can see what is live at the branch target and include
1095 anything used but not set before the branch. We add the live
1096 resources found using the test below to those found until now. */
1098 if (jump_insn)
1100 struct resources new_resources;
1101 rtx stop_insn = next_active_insn (jump_insn);
1103 mark_target_live_regs (insns, next_active_insn (jump_target),
1104 &new_resources);
1105 CLEAR_RESOURCE (&set);
1106 CLEAR_RESOURCE (&needed);
1108 /* Include JUMP_INSN in the needed registers. */
1109 for (insn = target; insn != stop_insn; insn = next_active_insn (insn))
1111 mark_referenced_resources (insn, &needed, 1);
1113 COPY_HARD_REG_SET (scratch, needed.regs);
1114 AND_COMPL_HARD_REG_SET (scratch, set.regs);
1115 IOR_HARD_REG_SET (new_resources.regs, scratch);
1117 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1120 IOR_HARD_REG_SET (res->regs, new_resources.regs);
1123 if (tinfo != NULL)
1125 COPY_HARD_REG_SET (tinfo->live_regs, res->regs);
1129 /* Initialize the resources required by mark_target_live_regs ().
1130 This should be invoked before the first call to mark_target_live_regs. */
1132 void
1133 init_resource_info (rtx epilogue_insn)
1135 int i;
1137 /* Indicate what resources are required to be valid at the end of the current
1138 function. The condition code never is and memory always is. If the
1139 frame pointer is needed, it is and so is the stack pointer unless
1140 EXIT_IGNORE_STACK is nonzero. If the frame pointer is not needed, the
1141 stack pointer is. Registers used to return the function value are
1142 needed. Registers holding global variables are needed. */
1144 end_of_function_needs.cc = 0;
1145 end_of_function_needs.memory = 1;
1146 end_of_function_needs.unch_memory = 0;
1147 CLEAR_HARD_REG_SET (end_of_function_needs.regs);
1149 if (frame_pointer_needed)
1151 SET_HARD_REG_BIT (end_of_function_needs.regs, FRAME_POINTER_REGNUM);
1152 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1153 SET_HARD_REG_BIT (end_of_function_needs.regs, HARD_FRAME_POINTER_REGNUM);
1154 #endif
1155 if (! EXIT_IGNORE_STACK
1156 || current_function_sp_is_unchanging)
1157 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1159 else
1160 SET_HARD_REG_BIT (end_of_function_needs.regs, STACK_POINTER_REGNUM);
1162 if (current_function_return_rtx != 0)
1163 mark_referenced_resources (current_function_return_rtx,
1164 &end_of_function_needs, 1);
1166 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1167 if (global_regs[i]
1168 #ifdef EPILOGUE_USES
1169 || EPILOGUE_USES (i)
1170 #endif
1172 SET_HARD_REG_BIT (end_of_function_needs.regs, i);
1174 /* The registers required to be live at the end of the function are
1175 represented in the flow information as being dead just prior to
1176 reaching the end of the function. For example, the return of a value
1177 might be represented by a USE of the return register immediately
1178 followed by an unconditional jump to the return label where the
1179 return label is the end of the RTL chain. The end of the RTL chain
1180 is then taken to mean that the return register is live.
1182 This sequence is no longer maintained when epilogue instructions are
1183 added to the RTL chain. To reconstruct the original meaning, the
1184 start of the epilogue (NOTE_INSN_EPILOGUE_BEG) is regarded as the
1185 point where these registers become live (start_of_epilogue_needs).
1186 If epilogue instructions are present, the registers set by those
1187 instructions won't have been processed by flow. Thus, those
1188 registers are additionally required at the end of the RTL chain
1189 (end_of_function_needs). */
1191 start_of_epilogue_needs = end_of_function_needs;
1193 while ((epilogue_insn = next_nonnote_insn (epilogue_insn)))
1195 mark_set_resources (epilogue_insn, &end_of_function_needs, 0,
1196 MARK_SRC_DEST_CALL);
1197 if (return_insn_p (epilogue_insn))
1198 break;
1201 /* Allocate and initialize the tables used by mark_target_live_regs. */
1202 target_hash_table = XCNEWVEC (struct target_info *, TARGET_HASH_PRIME);
1203 bb_ticks = XCNEWVEC (int, last_basic_block);
1206 /* Free up the resources allocated to mark_target_live_regs (). This
1207 should be invoked after the last call to mark_target_live_regs (). */
1209 void
1210 free_resource_info (void)
1212 if (target_hash_table != NULL)
1214 int i;
1216 for (i = 0; i < TARGET_HASH_PRIME; ++i)
1218 struct target_info *ti = target_hash_table[i];
1220 while (ti)
1222 struct target_info *next = ti->next;
1223 free (ti);
1224 ti = next;
1228 free (target_hash_table);
1229 target_hash_table = NULL;
1232 if (bb_ticks != NULL)
1234 free (bb_ticks);
1235 bb_ticks = NULL;
1239 /* Clear any hashed information that we have stored for INSN. */
1241 void
1242 clear_hashed_info_for_insn (rtx insn)
1244 struct target_info *tinfo;
1246 if (target_hash_table != NULL)
1248 for (tinfo = target_hash_table[INSN_UID (insn) % TARGET_HASH_PRIME];
1249 tinfo; tinfo = tinfo->next)
1250 if (tinfo->uid == INSN_UID (insn))
1251 break;
1253 if (tinfo)
1254 tinfo->block = -1;
1258 /* Increment the tick count for the basic block that contains INSN. */
1260 void
1261 incr_ticks_for_insn (rtx insn)
1263 int b = find_basic_block (insn, MAX_DELAY_SLOT_LIVE_SEARCH);
1265 if (b != -1)
1266 bb_ticks[b]++;
1269 /* Add TRIAL to the set of resources used at the end of the current
1270 function. */
1271 void
1272 mark_end_of_function_resources (rtx trial, int include_delayed_effects)
1274 mark_referenced_resources (trial, &end_of_function_needs,
1275 include_delayed_effects);