EnumSet*.class: Regenerate
[official-gcc.git] / gcc / lower-subreg.c
blob4354640a701538a68f96567f707d00d665e61e41
1 /* Decompose multiword subregs.
2 Copyright (C) 2007 Free Software Foundation, Inc.
3 Contributed by Richard Henderson <rth@redhat.com>
4 Ian Lance Taylor <iant@google.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "machmode.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "timevar.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "obstack.h"
33 #include "basic-block.h"
34 #include "recog.h"
35 #include "bitmap.h"
36 #include "expr.h"
37 #include "except.h"
38 #include "regs.h"
39 #include "tree-pass.h"
40 #include "df.h"
42 #ifdef STACK_GROWS_DOWNWARD
43 # undef STACK_GROWS_DOWNWARD
44 # define STACK_GROWS_DOWNWARD 1
45 #else
46 # define STACK_GROWS_DOWNWARD 0
47 #endif
49 DEF_VEC_P (bitmap);
50 DEF_VEC_ALLOC_P (bitmap,heap);
52 /* Decompose multi-word pseudo-registers into individual
53 pseudo-registers when possible. This is possible when all the uses
54 of a multi-word register are via SUBREG, or are copies of the
55 register to another location. Breaking apart the register permits
56 more CSE and permits better register allocation. */
58 /* Bit N in this bitmap is set if regno N is used in a context in
59 which we can decompose it. */
60 static bitmap decomposable_context;
62 /* Bit N in this bitmap is set if regno N is used in a context in
63 which it can not be decomposed. */
64 static bitmap non_decomposable_context;
66 /* Bit N in the bitmap in element M of this array is set if there is a
67 copy from reg M to reg N. */
68 static VEC(bitmap,heap) *reg_copy_graph;
70 /* Return whether X is a simple object which we can take a word_mode
71 subreg of. */
73 static bool
74 simple_move_operand (rtx x)
76 if (GET_CODE (x) == SUBREG)
77 x = SUBREG_REG (x);
79 if (!OBJECT_P (x))
80 return false;
82 if (GET_CODE (x) == LABEL_REF
83 || GET_CODE (x) == SYMBOL_REF
84 || GET_CODE (x) == HIGH
85 || GET_CODE (x) == CONST)
86 return false;
88 if (MEM_P (x)
89 && (MEM_VOLATILE_P (x)
90 || mode_dependent_address_p (XEXP (x, 0))))
91 return false;
93 return true;
96 /* If INSN is a single set between two objects, return the single set.
97 Such an insn can always be decomposed. INSN should have been
98 passed to recog and extract_insn before this is called. */
100 static rtx
101 simple_move (rtx insn)
103 rtx x;
104 rtx set;
105 enum machine_mode mode;
107 if (recog_data.n_operands != 2)
108 return NULL_RTX;
110 set = single_set (insn);
111 if (!set)
112 return NULL_RTX;
114 x = SET_DEST (set);
115 if (x != recog_data.operand[0] && x != recog_data.operand[1])
116 return NULL_RTX;
117 if (!simple_move_operand (x))
118 return NULL_RTX;
120 x = SET_SRC (set);
121 if (x != recog_data.operand[0] && x != recog_data.operand[1])
122 return NULL_RTX;
123 /* For the src we can handle ASM_OPERANDS, and it is beneficial for
124 things like x86 rdtsc which returns a DImode value. */
125 if (GET_CODE (x) != ASM_OPERANDS
126 && !simple_move_operand (x))
127 return NULL_RTX;
129 /* We try to decompose in integer modes, to avoid generating
130 inefficient code copying between integer and floating point
131 registers. That means that we can't decompose if this is a
132 non-integer mode for which there is no integer mode of the same
133 size. */
134 mode = GET_MODE (SET_SRC (set));
135 if (!SCALAR_INT_MODE_P (mode)
136 && (mode_for_size (GET_MODE_SIZE (mode) * BITS_PER_UNIT, MODE_INT, 0)
137 == BLKmode))
138 return NULL_RTX;
140 /* Reject PARTIAL_INT modes. They are used for processor specific
141 purposes and it's probably best not to tamper with them. */
142 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
143 return NULL_RTX;
145 return set;
148 /* If SET is a copy from one multi-word pseudo-register to another,
149 record that in reg_copy_graph. Return whether it is such a
150 copy. */
152 static bool
153 find_pseudo_copy (rtx set)
155 rtx dest = SET_DEST (set);
156 rtx src = SET_SRC (set);
157 unsigned int rd, rs;
158 bitmap b;
160 if (!REG_P (dest) || !REG_P (src))
161 return false;
163 rd = REGNO (dest);
164 rs = REGNO (src);
165 if (HARD_REGISTER_NUM_P (rd) || HARD_REGISTER_NUM_P (rs))
166 return false;
168 if (GET_MODE_SIZE (GET_MODE (dest)) <= UNITS_PER_WORD)
169 return false;
171 b = VEC_index (bitmap, reg_copy_graph, rs);
172 if (b == NULL)
174 b = BITMAP_ALLOC (NULL);
175 VEC_replace (bitmap, reg_copy_graph, rs, b);
178 bitmap_set_bit (b, rd);
180 return true;
183 /* Look through the registers in DECOMPOSABLE_CONTEXT. For each case
184 where they are copied to another register, add the register to
185 which they are copied to DECOMPOSABLE_CONTEXT. Use
186 NON_DECOMPOSABLE_CONTEXT to limit this--we don't bother to track
187 copies of registers which are in NON_DECOMPOSABLE_CONTEXT. */
189 static void
190 propagate_pseudo_copies (void)
192 bitmap queue, propagate;
194 queue = BITMAP_ALLOC (NULL);
195 propagate = BITMAP_ALLOC (NULL);
197 bitmap_copy (queue, decomposable_context);
200 bitmap_iterator iter;
201 unsigned int i;
203 bitmap_clear (propagate);
205 EXECUTE_IF_SET_IN_BITMAP (queue, 0, i, iter)
207 bitmap b = VEC_index (bitmap, reg_copy_graph, i);
208 if (b)
209 bitmap_ior_and_compl_into (propagate, b, non_decomposable_context);
212 bitmap_and_compl (queue, propagate, decomposable_context);
213 bitmap_ior_into (decomposable_context, propagate);
215 while (!bitmap_empty_p (queue));
217 BITMAP_FREE (queue);
218 BITMAP_FREE (propagate);
221 /* A pointer to one of these values is passed to
222 find_decomposable_subregs via for_each_rtx. */
224 enum classify_move_insn
226 /* Not a simple move from one location to another. */
227 NOT_SIMPLE_MOVE,
228 /* A simple move from one pseudo-register to another with no
229 REG_RETVAL note. */
230 SIMPLE_PSEUDO_REG_MOVE,
231 /* A simple move involving a non-pseudo-register, or from one
232 pseudo-register to another with a REG_RETVAL note. */
233 SIMPLE_MOVE
236 /* This is called via for_each_rtx. If we find a SUBREG which we
237 could use to decompose a pseudo-register, set a bit in
238 DECOMPOSABLE_CONTEXT. If we find an unadorned register which is
239 not a simple pseudo-register copy, DATA will point at the type of
240 move, and we set a bit in DECOMPOSABLE_CONTEXT or
241 NON_DECOMPOSABLE_CONTEXT as appropriate. */
243 static int
244 find_decomposable_subregs (rtx *px, void *data)
246 enum classify_move_insn *pcmi = (enum classify_move_insn *) data;
247 rtx x = *px;
249 if (x == NULL_RTX)
250 return 0;
252 if (GET_CODE (x) == SUBREG)
254 rtx inner = SUBREG_REG (x);
255 unsigned int regno, outer_size, inner_size, outer_words, inner_words;
257 if (!REG_P (inner))
258 return 0;
260 regno = REGNO (inner);
261 if (HARD_REGISTER_NUM_P (regno))
262 return -1;
264 outer_size = GET_MODE_SIZE (GET_MODE (x));
265 inner_size = GET_MODE_SIZE (GET_MODE (inner));
266 outer_words = (outer_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
267 inner_words = (inner_size + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
269 /* We only try to decompose single word subregs of multi-word
270 registers. When we find one, we return -1 to avoid iterating
271 over the inner register.
273 ??? This doesn't allow, e.g., DImode subregs of TImode values
274 on 32-bit targets. We would need to record the way the
275 pseudo-register was used, and only decompose if all the uses
276 were the same number and size of pieces. Hopefully this
277 doesn't happen much. */
279 if (outer_words == 1 && inner_words > 1)
281 bitmap_set_bit (decomposable_context, regno);
282 return -1;
285 /* If this is a cast from one mode to another, where the modes
286 have the same size, and they are not tieable, then mark this
287 register as non-decomposable. If we decompose it we are
288 likely to mess up whatever the backend is trying to do. */
289 if (outer_words > 1
290 && outer_size == inner_size
291 && !MODES_TIEABLE_P (GET_MODE (x), GET_MODE (inner)))
293 bitmap_set_bit (non_decomposable_context, regno);
294 return -1;
297 else if (REG_P (x))
299 unsigned int regno;
301 /* We will see an outer SUBREG before we see the inner REG, so
302 when we see a plain REG here it means a direct reference to
303 the register.
305 If this is not a simple copy from one location to another,
306 then we can not decompose this register. If this is a simple
307 copy from one pseudo-register to another, with no REG_RETVAL
308 note, and the mode is right, then we mark the register as
309 decomposable. Otherwise we don't say anything about this
310 register--it could be decomposed, but whether that would be
311 profitable depends upon how it is used elsewhere.
313 We only set bits in the bitmap for multi-word
314 pseudo-registers, since those are the only ones we care about
315 and it keeps the size of the bitmaps down. */
317 regno = REGNO (x);
318 if (!HARD_REGISTER_NUM_P (regno)
319 && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD)
321 switch (*pcmi)
323 case NOT_SIMPLE_MOVE:
324 bitmap_set_bit (non_decomposable_context, regno);
325 break;
326 case SIMPLE_PSEUDO_REG_MOVE:
327 if (MODES_TIEABLE_P (GET_MODE (x), word_mode))
328 bitmap_set_bit (decomposable_context, regno);
329 break;
330 case SIMPLE_MOVE:
331 break;
332 default:
333 gcc_unreachable ();
337 else if (MEM_P (x))
339 enum classify_move_insn cmi_mem = NOT_SIMPLE_MOVE;
341 /* Any registers used in a MEM do not participate in a
342 SIMPLE_MOVE or SIMPLE_PSEUDO_REG_MOVE. Do our own recursion
343 here, and return -1 to block the parent's recursion. */
344 for_each_rtx (&XEXP (x, 0), find_decomposable_subregs, &cmi_mem);
345 return -1;
348 return 0;
351 /* Decompose REGNO into word-sized components. We smash the REG node
352 in place. This ensures that (1) something goes wrong quickly if we
353 fail to make some replacement, and (2) the debug information inside
354 the symbol table is automatically kept up to date. */
356 static void
357 decompose_register (unsigned int regno)
359 rtx reg;
360 unsigned int words, i;
361 rtvec v;
363 reg = regno_reg_rtx[regno];
365 regno_reg_rtx[regno] = NULL_RTX;
367 words = GET_MODE_SIZE (GET_MODE (reg));
368 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
370 v = rtvec_alloc (words);
371 for (i = 0; i < words; ++i)
372 RTVEC_ELT (v, i) = gen_reg_rtx_offset (reg, word_mode, i * UNITS_PER_WORD);
374 PUT_CODE (reg, CONCATN);
375 XVEC (reg, 0) = v;
377 if (dump_file)
379 fprintf (dump_file, "; Splitting reg %u ->", regno);
380 for (i = 0; i < words; ++i)
381 fprintf (dump_file, " %u", REGNO (XVECEXP (reg, 0, i)));
382 fputc ('\n', dump_file);
386 /* Get a SUBREG of a CONCATN. */
388 static rtx
389 simplify_subreg_concatn (enum machine_mode outermode, rtx op,
390 unsigned int byte)
392 unsigned int inner_size;
393 enum machine_mode innermode;
394 rtx part;
395 unsigned int final_offset;
397 gcc_assert (GET_CODE (op) == CONCATN);
398 gcc_assert (byte % GET_MODE_SIZE (outermode) == 0);
400 innermode = GET_MODE (op);
401 gcc_assert (byte < GET_MODE_SIZE (innermode));
402 gcc_assert (GET_MODE_SIZE (outermode) <= GET_MODE_SIZE (innermode));
404 inner_size = GET_MODE_SIZE (innermode) / XVECLEN (op, 0);
405 part = XVECEXP (op, 0, byte / inner_size);
406 final_offset = byte % inner_size;
407 if (final_offset + GET_MODE_SIZE (outermode) > inner_size)
408 return NULL_RTX;
410 return simplify_gen_subreg (outermode, part, GET_MODE (part), final_offset);
413 /* Wrapper around simplify_gen_subreg which handles CONCATN. */
415 static rtx
416 simplify_gen_subreg_concatn (enum machine_mode outermode, rtx op,
417 enum machine_mode innermode, unsigned int byte)
419 rtx ret;
421 /* We have to handle generating a SUBREG of a SUBREG of a CONCATN.
422 If OP is a SUBREG of a CONCATN, then it must be a simple mode
423 change with the same size and offset 0, or it must extract a
424 part. We shouldn't see anything else here. */
425 if (GET_CODE (op) == SUBREG && GET_CODE (SUBREG_REG (op)) == CONCATN)
427 rtx op2;
429 if ((GET_MODE_SIZE (GET_MODE (op))
430 == GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))))
431 && SUBREG_BYTE (op) == 0)
432 return simplify_gen_subreg_concatn (outermode, SUBREG_REG (op),
433 GET_MODE (SUBREG_REG (op)), byte);
435 op2 = simplify_subreg_concatn (GET_MODE (op), SUBREG_REG (op),
436 SUBREG_BYTE (op));
437 if (op2 == NULL_RTX)
439 /* We don't handle paradoxical subregs here. */
440 gcc_assert (GET_MODE_SIZE (outermode)
441 <= GET_MODE_SIZE (GET_MODE (op)));
442 gcc_assert (GET_MODE_SIZE (GET_MODE (op))
443 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (op))));
444 op2 = simplify_subreg_concatn (outermode, SUBREG_REG (op),
445 byte + SUBREG_BYTE (op));
446 gcc_assert (op2 != NULL_RTX);
447 return op2;
450 op = op2;
451 gcc_assert (op != NULL_RTX);
452 gcc_assert (innermode == GET_MODE (op));
455 if (GET_CODE (op) == CONCATN)
456 return simplify_subreg_concatn (outermode, op, byte);
458 ret = simplify_gen_subreg (outermode, op, innermode, byte);
460 /* If we see an insn like (set (reg:DI) (subreg:DI (reg:SI) 0)) then
461 resolve_simple_move will ask for the high part of the paradoxical
462 subreg, which does not have a value. Just return a zero. */
463 if (ret == NULL_RTX
464 && GET_CODE (op) == SUBREG
465 && SUBREG_BYTE (op) == 0
466 && (GET_MODE_SIZE (innermode)
467 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op)))))
468 return CONST0_RTX (outermode);
470 gcc_assert (ret != NULL_RTX);
471 return ret;
474 /* Return whether we should resolve X into the registers into which it
475 was decomposed. */
477 static bool
478 resolve_reg_p (rtx x)
480 return GET_CODE (x) == CONCATN;
483 /* Return whether X is a SUBREG of a register which we need to
484 resolve. */
486 static bool
487 resolve_subreg_p (rtx x)
489 if (GET_CODE (x) != SUBREG)
490 return false;
491 return resolve_reg_p (SUBREG_REG (x));
494 /* This is called via for_each_rtx. Look for SUBREGs which need to be
495 decomposed. */
497 static int
498 resolve_subreg_use (rtx *px, void *data)
500 rtx insn = (rtx) data;
501 rtx x = *px;
503 if (x == NULL_RTX)
504 return 0;
506 if (resolve_subreg_p (x))
508 x = simplify_subreg_concatn (GET_MODE (x), SUBREG_REG (x),
509 SUBREG_BYTE (x));
511 /* It is possible for a note to contain a reference which we can
512 decompose. In this case, return 1 to the caller to indicate
513 that the note must be removed. */
514 if (!x)
516 gcc_assert (!insn);
517 return 1;
520 validate_change (insn, px, x, 1);
521 return -1;
524 if (resolve_reg_p (x))
526 /* Return 1 to the caller to indicate that we found a direct
527 reference to a register which is being decomposed. This can
528 happen inside notes, multiword shift or zero-extend
529 instructions. */
530 return 1;
533 return 0;
536 /* We are deleting INSN. Move any EH_REGION notes to INSNS. */
538 static void
539 move_eh_region_note (rtx insn, rtx insns)
541 rtx note, p;
543 note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
544 if (note == NULL_RTX)
545 return;
547 gcc_assert (CALL_P (insn)
548 || (flag_non_call_exceptions && may_trap_p (PATTERN (insn))));
550 for (p = insns; p != NULL_RTX; p = NEXT_INSN (p))
552 if (CALL_P (p)
553 || (flag_non_call_exceptions
554 && INSN_P (p)
555 && may_trap_p (PATTERN (p))))
556 REG_NOTES (p) = gen_rtx_EXPR_LIST (REG_EH_REGION, XEXP (note, 0),
557 REG_NOTES (p));
561 /* If there is a REG_LIBCALL note on OLD_START, move it to NEW_START,
562 and link the corresponding REG_RETVAL note to NEW_START. */
564 static void
565 move_libcall_note (rtx old_start, rtx new_start)
567 rtx note0, note1, end;
569 note0 = find_reg_note (old_start, REG_LIBCALL, NULL);
570 if (note0 == NULL_RTX)
571 return;
573 remove_note (old_start, note0);
574 end = XEXP (note0, 0);
575 note1 = find_reg_note (end, REG_RETVAL, NULL);
577 XEXP (note0, 1) = REG_NOTES (new_start);
578 REG_NOTES (new_start) = note0;
579 XEXP (note1, 0) = new_start;
582 /* Remove any REG_RETVAL note, the corresponding REG_LIBCALL note, and
583 any markers for a no-conflict block. We have decomposed the
584 registers so the non-conflict is now obvious. */
586 static void
587 remove_retval_note (rtx insn1)
589 rtx note0, insn0, note1, insn;
591 note1 = find_reg_note (insn1, REG_RETVAL, NULL);
592 if (note1 == NULL_RTX)
593 return;
595 insn0 = XEXP (note1, 0);
596 note0 = find_reg_note (insn0, REG_LIBCALL, NULL);
598 remove_note (insn0, note0);
599 remove_note (insn1, note1);
601 for (insn = insn0; insn != insn1; insn = NEXT_INSN (insn))
603 while (1)
605 rtx note;
607 note = find_reg_note (insn, REG_NO_CONFLICT, NULL);
608 if (note == NULL_RTX)
609 break;
610 remove_note (insn, note);
615 /* Resolve any decomposed registers which appear in register notes on
616 INSN. */
618 static void
619 resolve_reg_notes (rtx insn)
621 rtx *pnote, note;
623 note = find_reg_equal_equiv_note (insn);
624 if (note)
626 int old_count = num_validated_changes ();
627 if (for_each_rtx (&XEXP (note, 0), resolve_subreg_use, NULL))
629 remove_note (insn, note);
630 remove_retval_note (insn);
632 else
633 if (old_count != num_validated_changes ())
634 df_notes_rescan (insn);
637 pnote = &REG_NOTES (insn);
638 while (*pnote != NULL_RTX)
640 bool delete = false;
642 note = *pnote;
643 switch (REG_NOTE_KIND (note))
645 case REG_NO_CONFLICT:
646 case REG_DEAD:
647 case REG_UNUSED:
648 if (resolve_reg_p (XEXP (note, 0)))
649 delete = true;
650 break;
652 default:
653 break;
656 if (delete)
657 *pnote = XEXP (note, 1);
658 else
659 pnote = &XEXP (note, 1);
663 /* Return whether X can be decomposed into subwords. */
665 static bool
666 can_decompose_p (rtx x)
668 if (REG_P (x))
670 unsigned int regno = REGNO (x);
672 if (HARD_REGISTER_NUM_P (regno))
673 return (validate_subreg (word_mode, GET_MODE (x), x, UNITS_PER_WORD)
674 && HARD_REGNO_MODE_OK (regno, word_mode));
675 else
676 return !bitmap_bit_p (non_decomposable_context, regno);
679 return true;
682 /* Decompose the registers used in a simple move SET within INSN. If
683 we don't change anything, return INSN, otherwise return the start
684 of the sequence of moves. */
686 static rtx
687 resolve_simple_move (rtx set, rtx insn)
689 rtx src, dest, real_dest, insns;
690 enum machine_mode orig_mode, dest_mode;
691 unsigned int words;
692 bool pushing;
694 src = SET_SRC (set);
695 dest = SET_DEST (set);
696 orig_mode = GET_MODE (dest);
698 words = (GET_MODE_SIZE (orig_mode) + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
699 if (words <= 1)
700 return insn;
702 start_sequence ();
704 /* We have to handle copying from a SUBREG of a decomposed reg where
705 the SUBREG is larger than word size. Rather than assume that we
706 can take a word_mode SUBREG of the destination, we copy to a new
707 register and then copy that to the destination. */
709 real_dest = NULL_RTX;
711 if (GET_CODE (src) == SUBREG
712 && resolve_reg_p (SUBREG_REG (src))
713 && (SUBREG_BYTE (src) != 0
714 || (GET_MODE_SIZE (orig_mode)
715 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))))
717 real_dest = dest;
718 dest = gen_reg_rtx (orig_mode);
719 if (REG_P (real_dest))
720 REG_ATTRS (dest) = REG_ATTRS (real_dest);
723 /* Similarly if we are copying to a SUBREG of a decomposed reg where
724 the SUBREG is larger than word size. */
726 if (GET_CODE (dest) == SUBREG
727 && resolve_reg_p (SUBREG_REG (dest))
728 && (SUBREG_BYTE (dest) != 0
729 || (GET_MODE_SIZE (orig_mode)
730 != GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))))
732 rtx reg, minsn, smove;
734 reg = gen_reg_rtx (orig_mode);
735 minsn = emit_move_insn (reg, src);
736 smove = single_set (minsn);
737 gcc_assert (smove != NULL_RTX);
738 resolve_simple_move (smove, minsn);
739 src = reg;
742 /* If we didn't have any big SUBREGS of decomposed registers, and
743 neither side of the move is a register we are decomposing, then
744 we don't have to do anything here. */
746 if (src == SET_SRC (set)
747 && dest == SET_DEST (set)
748 && !resolve_reg_p (src)
749 && !resolve_subreg_p (src)
750 && !resolve_reg_p (dest)
751 && !resolve_subreg_p (dest))
753 end_sequence ();
754 return insn;
757 /* It's possible for the code to use a subreg of a decomposed
758 register while forming an address. We need to handle that before
759 passing the address to emit_move_insn. We pass NULL_RTX as the
760 insn parameter to resolve_subreg_use because we can not validate
761 the insn yet. */
762 if (MEM_P (src) || MEM_P (dest))
764 int acg;
766 if (MEM_P (src))
767 for_each_rtx (&XEXP (src, 0), resolve_subreg_use, NULL_RTX);
768 if (MEM_P (dest))
769 for_each_rtx (&XEXP (dest, 0), resolve_subreg_use, NULL_RTX);
770 acg = apply_change_group ();
771 gcc_assert (acg);
774 /* If SRC is a register which we can't decompose, or has side
775 effects, we need to move via a temporary register. */
777 if (!can_decompose_p (src)
778 || side_effects_p (src)
779 || GET_CODE (src) == ASM_OPERANDS)
781 rtx reg;
783 reg = gen_reg_rtx (orig_mode);
784 emit_move_insn (reg, src);
785 src = reg;
788 /* If DEST is a register which we can't decompose, or has side
789 effects, we need to first move to a temporary register. We
790 handle the common case of pushing an operand directly. We also
791 go through a temporary register if it holds a floating point
792 value. This gives us better code on systems which can't move
793 data easily between integer and floating point registers. */
795 dest_mode = orig_mode;
796 pushing = push_operand (dest, dest_mode);
797 if (!can_decompose_p (dest)
798 || (side_effects_p (dest) && !pushing)
799 || (!SCALAR_INT_MODE_P (dest_mode)
800 && !resolve_reg_p (dest)
801 && !resolve_subreg_p (dest)))
803 if (real_dest == NULL_RTX)
804 real_dest = dest;
805 if (!SCALAR_INT_MODE_P (dest_mode))
807 dest_mode = mode_for_size (GET_MODE_SIZE (dest_mode) * BITS_PER_UNIT,
808 MODE_INT, 0);
809 gcc_assert (dest_mode != BLKmode);
811 dest = gen_reg_rtx (dest_mode);
812 if (REG_P (real_dest))
813 REG_ATTRS (dest) = REG_ATTRS (real_dest);
816 if (pushing)
818 unsigned int i, j, jinc;
820 gcc_assert (GET_MODE_SIZE (orig_mode) % UNITS_PER_WORD == 0);
821 gcc_assert (GET_CODE (XEXP (dest, 0)) != PRE_MODIFY);
822 gcc_assert (GET_CODE (XEXP (dest, 0)) != POST_MODIFY);
824 if (WORDS_BIG_ENDIAN == STACK_GROWS_DOWNWARD)
826 j = 0;
827 jinc = 1;
829 else
831 j = words - 1;
832 jinc = -1;
835 for (i = 0; i < words; ++i, j += jinc)
837 rtx temp;
839 temp = copy_rtx (XEXP (dest, 0));
840 temp = adjust_automodify_address_nv (dest, word_mode, temp,
841 j * UNITS_PER_WORD);
842 emit_move_insn (temp,
843 simplify_gen_subreg_concatn (word_mode, src,
844 orig_mode,
845 j * UNITS_PER_WORD));
848 else
850 unsigned int i;
852 if (REG_P (dest) && !HARD_REGISTER_NUM_P (REGNO (dest)))
853 emit_insn (gen_rtx_CLOBBER (VOIDmode, dest));
855 for (i = 0; i < words; ++i)
856 emit_move_insn (simplify_gen_subreg_concatn (word_mode, dest,
857 dest_mode,
858 i * UNITS_PER_WORD),
859 simplify_gen_subreg_concatn (word_mode, src,
860 orig_mode,
861 i * UNITS_PER_WORD));
864 if (real_dest != NULL_RTX)
866 rtx mdest, minsn, smove;
868 if (dest_mode == orig_mode)
869 mdest = dest;
870 else
871 mdest = simplify_gen_subreg (orig_mode, dest, GET_MODE (dest), 0);
872 minsn = emit_move_insn (real_dest, mdest);
874 smove = single_set (minsn);
875 gcc_assert (smove != NULL_RTX);
877 resolve_simple_move (smove, minsn);
880 insns = get_insns ();
881 end_sequence ();
883 move_eh_region_note (insn, insns);
885 emit_insn_before (insns, insn);
887 move_libcall_note (insn, insns);
888 remove_retval_note (insn);
889 delete_insn (insn);
891 return insns;
894 /* Change a CLOBBER of a decomposed register into a CLOBBER of the
895 component registers. Return whether we changed something. */
897 static bool
898 resolve_clobber (rtx pat, rtx insn)
900 rtx reg;
901 enum machine_mode orig_mode;
902 unsigned int words, i;
903 int ret;
905 reg = XEXP (pat, 0);
906 if (!resolve_reg_p (reg) && !resolve_subreg_p (reg))
907 return false;
909 /* If this clobber has a REG_LIBCALL note, then it is the initial
910 clobber added by emit_no_conflict_block. We were able to
911 decompose the register, so we no longer need the clobber. */
912 if (find_reg_note (insn, REG_LIBCALL, NULL_RTX) != NULL_RTX)
914 delete_insn (insn);
915 return true;
918 orig_mode = GET_MODE (reg);
919 words = GET_MODE_SIZE (orig_mode);
920 words = (words + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
922 ret = validate_change (NULL_RTX, &XEXP (pat, 0),
923 simplify_gen_subreg_concatn (word_mode, reg,
924 orig_mode, 0),
926 df_insn_rescan (insn);
927 gcc_assert (ret != 0);
929 for (i = words - 1; i > 0; --i)
931 rtx x;
933 x = simplify_gen_subreg_concatn (word_mode, reg, orig_mode,
934 i * UNITS_PER_WORD);
935 x = gen_rtx_CLOBBER (VOIDmode, x);
936 emit_insn_after (x, insn);
939 resolve_reg_notes (insn);
941 return true;
944 /* A USE of a decomposed register is no longer meaningful. Return
945 whether we changed something. */
947 static bool
948 resolve_use (rtx pat, rtx insn)
950 if (resolve_reg_p (XEXP (pat, 0)) || resolve_subreg_p (XEXP (pat, 0)))
952 delete_insn (insn);
953 return true;
956 resolve_reg_notes (insn);
958 return false;
961 /* Checks if INSN is a decomposable multiword-shift or zero-extend and
962 sets the decomposable_context bitmap accordingly. A non-zero value
963 is returned if a decomposable insn has been found. */
965 static int
966 find_decomposable_shift_zext (rtx insn)
968 rtx set;
969 rtx op;
970 rtx op_operand;
972 set = single_set (insn);
973 if (!set)
974 return 0;
976 op = SET_SRC (set);
977 if (GET_CODE (op) != ASHIFT
978 && GET_CODE (op) != LSHIFTRT
979 && GET_CODE (op) != ZERO_EXTEND)
980 return 0;
982 op_operand = XEXP (op, 0);
983 if (!REG_P (SET_DEST (set)) || !REG_P (op_operand)
984 || HARD_REGISTER_NUM_P (REGNO (SET_DEST (set)))
985 || HARD_REGISTER_NUM_P (REGNO (op_operand))
986 || !SCALAR_INT_MODE_P (GET_MODE (op)))
987 return 0;
989 if (GET_CODE (op) == ZERO_EXTEND)
991 if (GET_MODE (op_operand) != word_mode
992 || GET_MODE_BITSIZE (GET_MODE (op)) != 2 * BITS_PER_WORD)
993 return 0;
995 else /* left or right shift */
997 if (GET_CODE (XEXP (op, 1)) != CONST_INT
998 || INTVAL (XEXP (op, 1)) < BITS_PER_WORD
999 || GET_MODE_BITSIZE (GET_MODE (op_operand)) != 2 * BITS_PER_WORD)
1000 return 0;
1003 bitmap_set_bit (decomposable_context, REGNO (SET_DEST (set)));
1005 if (GET_CODE (op) != ZERO_EXTEND)
1006 bitmap_set_bit (decomposable_context, REGNO (op_operand));
1008 return 1;
1011 /* Decompose a more than word wide shift (in INSN) of a multiword
1012 pseudo or a multiword zero-extend of a wordmode pseudo into a move
1013 and 'set to zero' insn. Return a pointer to the new insn when a
1014 replacement was done. */
1016 static rtx
1017 resolve_shift_zext (rtx insn)
1019 rtx set;
1020 rtx op;
1021 rtx op_operand;
1022 rtx insns;
1023 rtx src_reg, dest_reg, dest_zero;
1024 int src_reg_num, dest_reg_num, offset1, offset2, src_offset;
1026 set = single_set (insn);
1027 if (!set)
1028 return NULL_RTX;
1030 op = SET_SRC (set);
1031 if (GET_CODE (op) != ASHIFT
1032 && GET_CODE (op) != LSHIFTRT
1033 && GET_CODE (op) != ZERO_EXTEND)
1034 return NULL_RTX;
1036 op_operand = XEXP (op, 0);
1038 if (!resolve_reg_p (SET_DEST (set)) && !resolve_reg_p (op_operand))
1039 return NULL_RTX;
1041 /* src_reg_num is the number of the word mode register which we
1042 are operating on. For a left shift and a zero_extend on little
1043 endian machines this is register 0. */
1044 src_reg_num = GET_CODE (op) == LSHIFTRT ? 1 : 0;
1046 if (WORDS_BIG_ENDIAN
1047 && GET_MODE_SIZE (GET_MODE (op_operand)) > UNITS_PER_WORD)
1048 src_reg_num = 1 - src_reg_num;
1050 if (GET_CODE (op) == ZERO_EXTEND)
1051 dest_reg_num = WORDS_BIG_ENDIAN ? 1 : 0;
1052 else
1053 dest_reg_num = 1 - src_reg_num;
1055 offset1 = UNITS_PER_WORD * dest_reg_num;
1056 offset2 = UNITS_PER_WORD * (1 - dest_reg_num);
1057 src_offset = UNITS_PER_WORD * src_reg_num;
1059 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
1061 offset1 += UNITS_PER_WORD - 1;
1062 offset2 += UNITS_PER_WORD - 1;
1063 src_offset += UNITS_PER_WORD - 1;
1066 start_sequence ();
1068 dest_reg = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1069 GET_MODE (SET_DEST (set)),
1070 offset1);
1071 dest_zero = simplify_gen_subreg_concatn (word_mode, SET_DEST (set),
1072 GET_MODE (SET_DEST (set)),
1073 offset2);
1074 src_reg = simplify_gen_subreg_concatn (word_mode, op_operand,
1075 GET_MODE (op_operand),
1076 src_offset);
1077 if (GET_CODE (op) != ZERO_EXTEND)
1079 int shift_count = INTVAL (XEXP (op, 1));
1080 if (shift_count > BITS_PER_WORD)
1081 src_reg = expand_shift (GET_CODE (op) == ASHIFT ?
1082 LSHIFT_EXPR : RSHIFT_EXPR,
1083 word_mode, src_reg,
1084 build_int_cst (NULL_TREE,
1085 shift_count - BITS_PER_WORD),
1086 dest_reg, 1);
1089 if (dest_reg != src_reg)
1090 emit_move_insn (dest_reg, src_reg);
1091 emit_move_insn (dest_zero, CONST0_RTX (word_mode));
1092 insns = get_insns ();
1094 end_sequence ();
1096 emit_insn_before (insns, insn);
1098 if (dump_file)
1100 rtx in;
1101 fprintf (dump_file, "; Replacing insn: %d with insns: ", INSN_UID (insn));
1102 for (in = insns; in != insn; in = NEXT_INSN (in))
1103 fprintf (dump_file, "%d ", INSN_UID (in));
1104 fprintf (dump_file, "\n");
1107 delete_insn (insn);
1108 return insns;
1111 /* Look for registers which are always accessed via word-sized SUBREGs
1112 or via copies. Decompose these registers into several word-sized
1113 pseudo-registers. */
1115 static void
1116 decompose_multiword_subregs (void)
1118 unsigned int max;
1119 basic_block bb;
1121 if (df)
1122 df_set_flags (DF_DEFER_INSN_RESCAN);
1124 max = max_reg_num ();
1126 /* First see if there are any multi-word pseudo-registers. If there
1127 aren't, there is nothing we can do. This should speed up this
1128 pass in the normal case, since it should be faster than scanning
1129 all the insns. */
1131 unsigned int i;
1133 for (i = FIRST_PSEUDO_REGISTER; i < max; ++i)
1135 if (regno_reg_rtx[i] != NULL
1136 && GET_MODE_SIZE (GET_MODE (regno_reg_rtx[i])) > UNITS_PER_WORD)
1137 break;
1139 if (i == max)
1140 return;
1143 /* FIXME: When the dataflow branch is merged, we can change this
1144 code to look for each multi-word pseudo-register and to find each
1145 insn which sets or uses that register. That should be faster
1146 than scanning all the insns. */
1148 decomposable_context = BITMAP_ALLOC (NULL);
1149 non_decomposable_context = BITMAP_ALLOC (NULL);
1151 reg_copy_graph = VEC_alloc (bitmap, heap, max);
1152 VEC_safe_grow (bitmap, heap, reg_copy_graph, max);
1153 memset (VEC_address (bitmap, reg_copy_graph), 0, sizeof (bitmap) * max);
1155 FOR_EACH_BB (bb)
1157 rtx insn;
1159 FOR_BB_INSNS (bb, insn)
1161 rtx set;
1162 enum classify_move_insn cmi;
1163 int i, n;
1165 if (!INSN_P (insn)
1166 || GET_CODE (PATTERN (insn)) == CLOBBER
1167 || GET_CODE (PATTERN (insn)) == USE)
1168 continue;
1170 if (find_decomposable_shift_zext (insn))
1171 continue;
1173 recog_memoized (insn);
1174 extract_insn (insn);
1176 set = simple_move (insn);
1178 if (!set)
1179 cmi = NOT_SIMPLE_MOVE;
1180 else
1182 bool retval;
1184 retval = find_reg_note (insn, REG_RETVAL, NULL_RTX) != NULL_RTX;
1186 if (find_pseudo_copy (set) && !retval)
1187 cmi = SIMPLE_PSEUDO_REG_MOVE;
1188 else if (retval
1189 && REG_P (SET_SRC (set))
1190 && HARD_REGISTER_P (SET_SRC (set)))
1192 rtx note;
1194 /* We don't want to decompose an assignment which
1195 copies the value returned by a libcall to a
1196 pseudo-register. Doing that will lose the RETVAL
1197 note with no real gain. */
1198 cmi = NOT_SIMPLE_MOVE;
1200 /* If we have a RETVAL note, there should be an
1201 EQUAL note. We don't want to decompose any
1202 registers which that EQUAL note refers to
1203 directly. If we do, we will no longer know the
1204 value of the libcall. */
1205 note = find_reg_equal_equiv_note (insn);
1206 if (note != NULL_RTX)
1207 for_each_rtx (&XEXP (note, 0), find_decomposable_subregs,
1208 &cmi);
1210 else
1211 cmi = SIMPLE_MOVE;
1214 n = recog_data.n_operands;
1215 for (i = 0; i < n; ++i)
1217 for_each_rtx (&recog_data.operand[i],
1218 find_decomposable_subregs,
1219 &cmi);
1221 /* We handle ASM_OPERANDS as a special case to support
1222 things like x86 rdtsc which returns a DImode value.
1223 We can decompose the output, which will certainly be
1224 operand 0, but not the inputs. */
1226 if (cmi == SIMPLE_MOVE
1227 && GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1229 gcc_assert (i == 0);
1230 cmi = NOT_SIMPLE_MOVE;
1236 bitmap_and_compl_into (decomposable_context, non_decomposable_context);
1237 if (!bitmap_empty_p (decomposable_context))
1239 sbitmap sub_blocks;
1240 unsigned int i;
1241 sbitmap_iterator sbi;
1242 bitmap_iterator iter;
1243 unsigned int regno;
1245 propagate_pseudo_copies ();
1247 sub_blocks = sbitmap_alloc (last_basic_block);
1248 sbitmap_zero (sub_blocks);
1250 EXECUTE_IF_SET_IN_BITMAP (decomposable_context, 0, regno, iter)
1251 decompose_register (regno);
1253 FOR_EACH_BB (bb)
1255 rtx insn;
1257 FOR_BB_INSNS (bb, insn)
1259 rtx next, pat;
1261 if (!INSN_P (insn))
1262 continue;
1264 next = NEXT_INSN (insn);
1266 pat = PATTERN (insn);
1267 if (GET_CODE (pat) == CLOBBER)
1268 resolve_clobber (pat, insn);
1269 else if (GET_CODE (pat) == USE)
1270 resolve_use (pat, insn);
1271 else
1273 rtx set;
1274 int i;
1276 recog_memoized (insn);
1277 extract_insn (insn);
1279 set = simple_move (insn);
1280 if (set)
1282 rtx orig_insn = insn;
1283 bool cfi = control_flow_insn_p (insn);
1285 /* We can end up splitting loads to multi-word pseudos
1286 into separate loads to machine word size pseudos.
1287 When this happens, we first had one load that can
1288 throw, and after resolve_simple_move we'll have a
1289 bunch of loads (at least two). All those loads may
1290 trap if we can have non-call exceptions, so they
1291 all will end the current basic block. We split the
1292 block after the outer loop over all insns, but we
1293 make sure here that we will be able to split the
1294 basic block and still produce the correct control
1295 flow graph for it. */
1296 gcc_assert (!cfi
1297 || (flag_non_call_exceptions
1298 && can_throw_internal (insn)));
1300 insn = resolve_simple_move (set, insn);
1301 if (insn != orig_insn)
1303 remove_retval_note (insn);
1305 recog_memoized (insn);
1306 extract_insn (insn);
1308 if (cfi)
1309 SET_BIT (sub_blocks, bb->index);
1312 else
1314 rtx decomposed_shift;
1316 decomposed_shift = resolve_shift_zext (insn);
1317 if (decomposed_shift != NULL_RTX)
1319 insn = decomposed_shift;
1320 recog_memoized (insn);
1321 extract_insn (insn);
1325 for (i = recog_data.n_operands - 1; i >= 0; --i)
1326 for_each_rtx (recog_data.operand_loc[i],
1327 resolve_subreg_use,
1328 insn);
1330 resolve_reg_notes (insn);
1332 if (num_validated_changes () > 0)
1334 for (i = recog_data.n_dups - 1; i >= 0; --i)
1336 rtx *pl = recog_data.dup_loc[i];
1337 int dup_num = recog_data.dup_num[i];
1338 rtx *px = recog_data.operand_loc[dup_num];
1340 validate_change (insn, pl, *px, 1);
1343 i = apply_change_group ();
1344 gcc_assert (i);
1346 remove_retval_note (insn);
1352 /* If we had insns to split that caused control flow insns in the middle
1353 of a basic block, split those blocks now. Note that we only handle
1354 the case where splitting a load has caused multiple possibly trapping
1355 loads to appear. */
1356 EXECUTE_IF_SET_IN_SBITMAP (sub_blocks, 0, i, sbi)
1358 rtx insn, end;
1359 edge fallthru;
1361 bb = BASIC_BLOCK (i);
1362 insn = BB_HEAD (bb);
1363 end = BB_END (bb);
1365 while (insn != end)
1367 if (control_flow_insn_p (insn))
1369 /* Split the block after insn. There will be a fallthru
1370 edge, which is OK so we keep it. We have to create the
1371 exception edges ourselves. */
1372 fallthru = split_block (bb, insn);
1373 rtl_make_eh_edge (NULL, bb, BB_END (bb));
1374 bb = fallthru->dest;
1375 insn = BB_HEAD (bb);
1377 else
1378 insn = NEXT_INSN (insn);
1382 sbitmap_free (sub_blocks);
1386 unsigned int i;
1387 bitmap b;
1389 for (i = 0; VEC_iterate (bitmap, reg_copy_graph, i, b); ++i)
1390 if (b)
1391 BITMAP_FREE (b);
1394 VEC_free (bitmap, heap, reg_copy_graph);
1396 BITMAP_FREE (decomposable_context);
1397 BITMAP_FREE (non_decomposable_context);
1400 /* Gate function for lower subreg pass. */
1402 static bool
1403 gate_handle_lower_subreg (void)
1405 return flag_split_wide_types != 0;
1408 /* Implement first lower subreg pass. */
1410 static unsigned int
1411 rest_of_handle_lower_subreg (void)
1413 decompose_multiword_subregs ();
1414 return 0;
1417 /* Implement second lower subreg pass. */
1419 static unsigned int
1420 rest_of_handle_lower_subreg2 (void)
1422 decompose_multiword_subregs ();
1423 return 0;
1426 struct tree_opt_pass pass_lower_subreg =
1428 "subreg", /* name */
1429 gate_handle_lower_subreg, /* gate */
1430 rest_of_handle_lower_subreg, /* execute */
1431 NULL, /* sub */
1432 NULL, /* next */
1433 0, /* static_pass_number */
1434 TV_LOWER_SUBREG, /* tv_id */
1435 0, /* properties_required */
1436 0, /* properties_provided */
1437 0, /* properties_destroyed */
1438 0, /* todo_flags_start */
1439 TODO_dump_func |
1440 TODO_ggc_collect |
1441 TODO_verify_flow, /* todo_flags_finish */
1442 'u' /* letter */
1445 struct tree_opt_pass pass_lower_subreg2 =
1447 "subreg2", /* name */
1448 gate_handle_lower_subreg, /* gate */
1449 rest_of_handle_lower_subreg2, /* execute */
1450 NULL, /* sub */
1451 NULL, /* next */
1452 0, /* static_pass_number */
1453 TV_LOWER_SUBREG, /* tv_id */
1454 0, /* properties_required */
1455 0, /* properties_provided */
1456 0, /* properties_destroyed */
1457 0, /* todo_flags_start */
1458 TODO_df_finish |
1459 TODO_dump_func |
1460 TODO_ggc_collect |
1461 TODO_verify_flow, /* todo_flags_finish */
1462 'U' /* letter */