EnumSet*.class: Regenerate
[official-gcc.git] / gcc / ddg.c
blobf1ec8fdb121e0c89bd7df541a31adceab8b20c07
1 /* DDG - Data Dependence Graph implementation.
2 Copyright (C) 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4 Contributed by Ayal Zaks and Mustafa Hagog <zaks,mustafa@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "tm_p.h"
30 #include "hard-reg-set.h"
31 #include "regs.h"
32 #include "function.h"
33 #include "flags.h"
34 #include "insn-config.h"
35 #include "insn-attr.h"
36 #include "except.h"
37 #include "recog.h"
38 #include "sched-int.h"
39 #include "target.h"
40 #include "cfglayout.h"
41 #include "cfgloop.h"
42 #include "sbitmap.h"
43 #include "expr.h"
44 #include "bitmap.h"
45 #include "ddg.h"
47 /* A flag indicating that a ddg edge belongs to an SCC or not. */
48 enum edge_flag {NOT_IN_SCC = 0, IN_SCC};
50 /* Forward declarations. */
51 static void add_backarc_to_ddg (ddg_ptr, ddg_edge_ptr);
52 static void add_backarc_to_scc (ddg_scc_ptr, ddg_edge_ptr);
53 static void add_scc_to_ddg (ddg_all_sccs_ptr, ddg_scc_ptr);
54 static void create_ddg_dep_from_intra_loop_link (ddg_ptr, ddg_node_ptr,
55 ddg_node_ptr, dep_t);
56 static void create_ddg_dep_no_link (ddg_ptr, ddg_node_ptr, ddg_node_ptr,
57 dep_type, dep_data_type, int);
58 static ddg_edge_ptr create_ddg_edge (ddg_node_ptr, ddg_node_ptr, dep_type,
59 dep_data_type, int, int);
60 static void add_edge_to_ddg (ddg_ptr g, ddg_edge_ptr);
62 /* Auxiliary variable for mem_read_insn_p/mem_write_insn_p. */
63 static bool mem_ref_p;
65 /* Auxiliary function for mem_read_insn_p. */
66 static int
67 mark_mem_use (rtx *x, void *data ATTRIBUTE_UNUSED)
69 if (MEM_P (*x))
70 mem_ref_p = true;
71 return 0;
74 /* Auxiliary function for mem_read_insn_p. */
75 static void
76 mark_mem_use_1 (rtx *x, void *data)
78 for_each_rtx (x, mark_mem_use, data);
81 /* Returns nonzero if INSN reads from memory. */
82 static bool
83 mem_read_insn_p (rtx insn)
85 mem_ref_p = false;
86 note_uses (&PATTERN (insn), mark_mem_use_1, NULL);
87 return mem_ref_p;
90 static void
91 mark_mem_store (rtx loc, const_rtx setter ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
93 if (MEM_P (loc))
94 mem_ref_p = true;
97 /* Returns nonzero if INSN writes to memory. */
98 static bool
99 mem_write_insn_p (rtx insn)
101 mem_ref_p = false;
102 note_stores (PATTERN (insn), mark_mem_store, NULL);
103 return mem_ref_p;
106 /* Returns nonzero if X has access to memory. */
107 static bool
108 rtx_mem_access_p (rtx x)
110 int i, j;
111 const char *fmt;
112 enum rtx_code code;
114 if (x == 0)
115 return false;
117 if (MEM_P (x))
118 return true;
120 code = GET_CODE (x);
121 fmt = GET_RTX_FORMAT (code);
122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
124 if (fmt[i] == 'e')
126 if (rtx_mem_access_p (XEXP (x, i)))
127 return true;
129 else if (fmt[i] == 'E')
130 for (j = 0; j < XVECLEN (x, i); j++)
132 if (rtx_mem_access_p (XVECEXP (x, i, j)))
133 return true;
136 return false;
139 /* Returns nonzero if INSN reads to or writes from memory. */
140 static bool
141 mem_access_insn_p (rtx insn)
143 return rtx_mem_access_p (PATTERN (insn));
146 /* Computes the dependence parameters (latency, distance etc.), creates
147 a ddg_edge and adds it to the given DDG. */
148 static void
149 create_ddg_dep_from_intra_loop_link (ddg_ptr g, ddg_node_ptr src_node,
150 ddg_node_ptr dest_node, dep_t link)
152 ddg_edge_ptr e;
153 int latency, distance = 0;
154 dep_type t = TRUE_DEP;
155 dep_data_type dt = (mem_access_insn_p (src_node->insn)
156 && mem_access_insn_p (dest_node->insn) ? MEM_DEP
157 : REG_DEP);
158 gcc_assert (src_node->cuid < dest_node->cuid);
159 gcc_assert (link);
161 /* Note: REG_DEP_ANTI applies to MEM ANTI_DEP as well!! */
162 if (DEP_TYPE (link) == REG_DEP_ANTI)
163 t = ANTI_DEP;
164 else if (DEP_TYPE (link) == REG_DEP_OUTPUT)
165 t = OUTPUT_DEP;
167 /* We currently choose not to create certain anti-deps edges and
168 compensate for that by generating reg-moves based on the life-range
169 analysis. The anti-deps that will be deleted are the ones which
170 have true-deps edges in the opposite direction (in other words
171 the kernel has only one def of the relevant register). TODO:
172 support the removal of all anti-deps edges, i.e. including those
173 whose register has multiple defs in the loop. */
174 if (flag_modulo_sched_allow_regmoves && (t == ANTI_DEP && dt == REG_DEP))
176 rtx set;
178 set = single_set (dest_node->insn);
179 /* TODO: Handle registers that REG_P is not true for them, i.e.
180 subregs and special registers. */
181 if (set && REG_P (SET_DEST (set)))
183 int regno = REGNO (SET_DEST (set));
184 struct df_ref *first_def;
185 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
187 first_def = df_bb_regno_first_def_find (g->bb, regno);
188 gcc_assert (first_def);
190 if (bitmap_bit_p (bb_info->gen, first_def->id))
191 return;
195 latency = dep_cost (link);
196 e = create_ddg_edge (src_node, dest_node, t, dt, latency, distance);
197 add_edge_to_ddg (g, e);
200 /* The same as the above function, but it doesn't require a link parameter. */
201 static void
202 create_ddg_dep_no_link (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to,
203 dep_type d_t, dep_data_type d_dt, int distance)
205 ddg_edge_ptr e;
206 int l;
207 enum reg_note dep_kind;
208 struct _dep _dep, *dep = &_dep;
210 if (d_t == ANTI_DEP)
211 dep_kind = REG_DEP_ANTI;
212 else if (d_t == OUTPUT_DEP)
213 dep_kind = REG_DEP_OUTPUT;
214 else
216 gcc_assert (d_t == TRUE_DEP);
218 dep_kind = REG_DEP_TRUE;
221 init_dep (dep, from->insn, to->insn, dep_kind);
223 l = dep_cost (dep);
225 e = create_ddg_edge (from, to, d_t, d_dt, l, distance);
226 if (distance > 0)
227 add_backarc_to_ddg (g, e);
228 else
229 add_edge_to_ddg (g, e);
233 /* Given a downwards exposed register def LAST_DEF (which is the last
234 definition of that register in the bb), add inter-loop true dependences
235 to all its uses in the next iteration, an output dependence to the
236 first def of the same register (possibly itself) in the next iteration
237 and anti-dependences from its uses in the current iteration to the
238 first definition in the next iteration. */
239 static void
240 add_cross_iteration_register_deps (ddg_ptr g, struct df_ref *last_def)
242 int regno = DF_REF_REGNO (last_def);
243 struct df_link *r_use;
244 int has_use_in_bb_p = false;
245 rtx def_insn = DF_REF_INSN (last_def);
246 ddg_node_ptr last_def_node = get_node_of_insn (g, def_insn);
247 ddg_node_ptr use_node;
248 #ifdef ENABLE_CHECKING
249 struct df_rd_bb_info *bb_info = DF_RD_BB_INFO (g->bb);
250 #endif
251 struct df_ref *first_def = df_bb_regno_first_def_find (g->bb, regno);
253 gcc_assert (last_def_node);
254 gcc_assert (first_def);
256 #ifdef ENABLE_CHECKING
257 if (last_def->id != first_def->id)
258 gcc_assert (!bitmap_bit_p (bb_info->gen, first_def->id));
259 #endif
261 /* Create inter-loop true dependences and anti dependences. */
262 for (r_use = DF_REF_CHAIN (last_def); r_use != NULL; r_use = r_use->next)
264 rtx use_insn = DF_REF_INSN (r_use->ref);
266 if (BLOCK_FOR_INSN (use_insn) != g->bb)
267 continue;
269 /* ??? Do not handle uses with DF_REF_IN_NOTE notes. */
270 use_node = get_node_of_insn (g, use_insn);
271 gcc_assert (use_node);
272 has_use_in_bb_p = true;
273 if (use_node->cuid <= last_def_node->cuid)
275 /* Add true deps from last_def to it's uses in the next
276 iteration. Any such upwards exposed use appears before
277 the last_def def. */
278 create_ddg_dep_no_link (g, last_def_node, use_node, TRUE_DEP,
279 REG_DEP, 1);
281 else
283 /* Add anti deps from last_def's uses in the current iteration
284 to the first def in the next iteration. We do not add ANTI
285 dep when there is an intra-loop TRUE dep in the opposite
286 direction, but use regmoves to fix such disregarded ANTI
287 deps when broken. If the first_def reaches the USE then
288 there is such a dep. */
289 ddg_node_ptr first_def_node = get_node_of_insn (g,
290 first_def->insn);
292 gcc_assert (first_def_node);
294 if (last_def->id != first_def->id
295 || !flag_modulo_sched_allow_regmoves)
296 create_ddg_dep_no_link (g, use_node, first_def_node, ANTI_DEP,
297 REG_DEP, 1);
301 /* Create an inter-loop output dependence between LAST_DEF (which is the
302 last def in its block, being downwards exposed) and the first def in
303 its block. Avoid creating a self output dependence. Avoid creating
304 an output dependence if there is a dependence path between the two
305 defs starting with a true dependence to a use which can be in the
306 next iteration; followed by an anti dependence of that use to the
307 first def (i.e. if there is a use between the two defs.) */
308 if (!has_use_in_bb_p)
310 ddg_node_ptr dest_node;
312 if (last_def->id == first_def->id)
313 return;
315 dest_node = get_node_of_insn (g, first_def->insn);
316 gcc_assert (dest_node);
317 create_ddg_dep_no_link (g, last_def_node, dest_node,
318 OUTPUT_DEP, REG_DEP, 1);
321 /* Build inter-loop dependencies, by looking at DF analysis backwards. */
322 static void
323 build_inter_loop_deps (ddg_ptr g)
325 unsigned rd_num;
326 struct df_rd_bb_info *rd_bb_info;
327 bitmap_iterator bi;
329 rd_bb_info = DF_RD_BB_INFO (g->bb);
331 /* Find inter-loop register output, true and anti deps. */
332 EXECUTE_IF_SET_IN_BITMAP (rd_bb_info->gen, 0, rd_num, bi)
334 struct df_ref *rd = DF_DEFS_GET (rd_num);
336 add_cross_iteration_register_deps (g, rd);
341 /* Given two nodes, analyze their RTL insns and add inter-loop mem deps
342 to ddg G. */
343 static void
344 add_inter_loop_mem_dep (ddg_ptr g, ddg_node_ptr from, ddg_node_ptr to)
346 if (mem_write_insn_p (from->insn))
348 if (mem_read_insn_p (to->insn))
349 create_ddg_dep_no_link (g, from, to, TRUE_DEP, MEM_DEP, 1);
350 else if (from->cuid != to->cuid)
351 create_ddg_dep_no_link (g, from, to, OUTPUT_DEP, MEM_DEP, 1);
353 else
355 if (mem_read_insn_p (to->insn))
356 return;
357 else if (from->cuid != to->cuid)
359 create_ddg_dep_no_link (g, from, to, ANTI_DEP, MEM_DEP, 1);
360 create_ddg_dep_no_link (g, to, from, TRUE_DEP, MEM_DEP, 1);
366 /* Perform intra-block Data Dependency analysis and connect the nodes in
367 the DDG. We assume the loop has a single basic block. */
368 static void
369 build_intra_loop_deps (ddg_ptr g)
371 int i;
372 /* Hold the dependency analysis state during dependency calculations. */
373 struct deps tmp_deps;
374 rtx head, tail;
376 /* Build the dependence information, using the sched_analyze function. */
377 init_deps_global ();
378 init_deps (&tmp_deps);
380 /* Do the intra-block data dependence analysis for the given block. */
381 get_ebb_head_tail (g->bb, g->bb, &head, &tail);
382 sched_analyze (&tmp_deps, head, tail);
384 /* Build intra-loop data dependencies using the scheduler dependency
385 analysis. */
386 for (i = 0; i < g->num_nodes; i++)
388 ddg_node_ptr dest_node = &g->nodes[i];
389 sd_iterator_def sd_it;
390 dep_t dep;
392 if (! INSN_P (dest_node->insn))
393 continue;
395 FOR_EACH_DEP (dest_node->insn, SD_LIST_BACK, sd_it, dep)
397 ddg_node_ptr src_node = get_node_of_insn (g, DEP_PRO (dep));
399 if (!src_node)
400 continue;
402 create_ddg_dep_from_intra_loop_link (g, src_node, dest_node, dep);
405 /* If this insn modifies memory, add an edge to all insns that access
406 memory. */
407 if (mem_access_insn_p (dest_node->insn))
409 int j;
411 for (j = 0; j <= i; j++)
413 ddg_node_ptr j_node = &g->nodes[j];
414 if (mem_access_insn_p (j_node->insn))
415 /* Don't bother calculating inter-loop dep if an intra-loop dep
416 already exists. */
417 if (! TEST_BIT (dest_node->successors, j))
418 add_inter_loop_mem_dep (g, dest_node, j_node);
423 /* Free the INSN_LISTs. */
424 finish_deps_global ();
425 free_deps (&tmp_deps);
427 /* Free dependencies. */
428 sched_free_deps (head, tail, false);
432 /* Given a basic block, create its DDG and return a pointer to a variable
433 of ddg type that represents it.
434 Initialize the ddg structure fields to the appropriate values. */
435 ddg_ptr
436 create_ddg (basic_block bb, int closing_branch_deps)
438 ddg_ptr g;
439 rtx insn, first_note;
440 int i;
441 int num_nodes = 0;
443 g = (ddg_ptr) xcalloc (1, sizeof (struct ddg));
445 g->bb = bb;
446 g->closing_branch_deps = closing_branch_deps;
448 /* Count the number of insns in the BB. */
449 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
450 insn = NEXT_INSN (insn))
452 if (! INSN_P (insn) || GET_CODE (PATTERN (insn)) == USE)
453 continue;
455 if (mem_read_insn_p (insn))
456 g->num_loads++;
457 if (mem_write_insn_p (insn))
458 g->num_stores++;
459 num_nodes++;
462 /* There is nothing to do for this BB. */
463 if (num_nodes <= 1)
465 free (g);
466 return NULL;
469 /* Allocate the nodes array, and initialize the nodes. */
470 g->num_nodes = num_nodes;
471 g->nodes = (ddg_node_ptr) xcalloc (num_nodes, sizeof (struct ddg_node));
472 g->closing_branch = NULL;
473 i = 0;
474 first_note = NULL_RTX;
475 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
476 insn = NEXT_INSN (insn))
478 if (! INSN_P (insn))
480 if (! first_note && NOTE_P (insn)
481 && NOTE_KIND (insn) != NOTE_INSN_BASIC_BLOCK)
482 first_note = insn;
483 continue;
485 if (JUMP_P (insn))
487 gcc_assert (!g->closing_branch);
488 g->closing_branch = &g->nodes[i];
490 else if (GET_CODE (PATTERN (insn)) == USE)
492 if (! first_note)
493 first_note = insn;
494 continue;
497 g->nodes[i].cuid = i;
498 g->nodes[i].successors = sbitmap_alloc (num_nodes);
499 sbitmap_zero (g->nodes[i].successors);
500 g->nodes[i].predecessors = sbitmap_alloc (num_nodes);
501 sbitmap_zero (g->nodes[i].predecessors);
502 g->nodes[i].first_note = (first_note ? first_note : insn);
503 g->nodes[i++].insn = insn;
504 first_note = NULL_RTX;
507 /* We must have found a branch in DDG. */
508 gcc_assert (g->closing_branch);
511 /* Build the data dependency graph. */
512 build_intra_loop_deps (g);
513 build_inter_loop_deps (g);
514 return g;
517 /* Free all the memory allocated for the DDG. */
518 void
519 free_ddg (ddg_ptr g)
521 int i;
523 if (!g)
524 return;
526 for (i = 0; i < g->num_nodes; i++)
528 ddg_edge_ptr e = g->nodes[i].out;
530 while (e)
532 ddg_edge_ptr next = e->next_out;
534 free (e);
535 e = next;
537 sbitmap_free (g->nodes[i].successors);
538 sbitmap_free (g->nodes[i].predecessors);
540 if (g->num_backarcs > 0)
541 free (g->backarcs);
542 free (g->nodes);
543 free (g);
546 void
547 print_ddg_edge (FILE *file, ddg_edge_ptr e)
549 char dep_c;
551 switch (e->type)
553 case OUTPUT_DEP :
554 dep_c = 'O';
555 break;
556 case ANTI_DEP :
557 dep_c = 'A';
558 break;
559 default:
560 dep_c = 'T';
563 fprintf (file, " [%d -(%c,%d,%d)-> %d] ", INSN_UID (e->src->insn),
564 dep_c, e->latency, e->distance, INSN_UID (e->dest->insn));
567 /* Print the DDG nodes with there in/out edges to the dump file. */
568 void
569 print_ddg (FILE *file, ddg_ptr g)
571 int i;
573 for (i = 0; i < g->num_nodes; i++)
575 ddg_edge_ptr e;
577 fprintf (file, "Node num: %d\n", g->nodes[i].cuid);
578 print_rtl_single (file, g->nodes[i].insn);
579 fprintf (file, "OUT ARCS: ");
580 for (e = g->nodes[i].out; e; e = e->next_out)
581 print_ddg_edge (file, e);
583 fprintf (file, "\nIN ARCS: ");
584 for (e = g->nodes[i].in; e; e = e->next_in)
585 print_ddg_edge (file, e);
587 fprintf (file, "\n");
591 /* Print the given DDG in VCG format. */
592 void
593 vcg_print_ddg (FILE *file, ddg_ptr g)
595 int src_cuid;
597 fprintf (file, "graph: {\n");
598 for (src_cuid = 0; src_cuid < g->num_nodes; src_cuid++)
600 ddg_edge_ptr e;
601 int src_uid = INSN_UID (g->nodes[src_cuid].insn);
603 fprintf (file, "node: {title: \"%d_%d\" info1: \"", src_cuid, src_uid);
604 print_rtl_single (file, g->nodes[src_cuid].insn);
605 fprintf (file, "\"}\n");
606 for (e = g->nodes[src_cuid].out; e; e = e->next_out)
608 int dst_uid = INSN_UID (e->dest->insn);
609 int dst_cuid = e->dest->cuid;
611 /* Give the backarcs a different color. */
612 if (e->distance > 0)
613 fprintf (file, "backedge: {color: red ");
614 else
615 fprintf (file, "edge: { ");
617 fprintf (file, "sourcename: \"%d_%d\" ", src_cuid, src_uid);
618 fprintf (file, "targetname: \"%d_%d\" ", dst_cuid, dst_uid);
619 fprintf (file, "label: \"%d_%d\"}\n", e->latency, e->distance);
622 fprintf (file, "}\n");
625 /* Dump the sccs in SCCS. */
626 void
627 print_sccs (FILE *file, ddg_all_sccs_ptr sccs, ddg_ptr g)
629 unsigned int u = 0;
630 sbitmap_iterator sbi;
631 int i;
633 if (!file)
634 return;
636 fprintf (file, "\n;; Number of SCC nodes - %d\n", sccs->num_sccs);
637 for (i = 0; i < sccs->num_sccs; i++)
639 fprintf (file, "SCC number: %d\n", i);
640 EXECUTE_IF_SET_IN_SBITMAP (sccs->sccs[i]->nodes, 0, u, sbi)
642 fprintf (file, "insn num %d\n", u);
643 print_rtl_single (file, g->nodes[u].insn);
646 fprintf (file, "\n");
649 /* Create an edge and initialize it with given values. */
650 static ddg_edge_ptr
651 create_ddg_edge (ddg_node_ptr src, ddg_node_ptr dest,
652 dep_type t, dep_data_type dt, int l, int d)
654 ddg_edge_ptr e = (ddg_edge_ptr) xmalloc (sizeof (struct ddg_edge));
656 e->src = src;
657 e->dest = dest;
658 e->type = t;
659 e->data_type = dt;
660 e->latency = l;
661 e->distance = d;
662 e->next_in = e->next_out = NULL;
663 e->aux.info = 0;
664 return e;
667 /* Add the given edge to the in/out linked lists of the DDG nodes. */
668 static void
669 add_edge_to_ddg (ddg_ptr g ATTRIBUTE_UNUSED, ddg_edge_ptr e)
671 ddg_node_ptr src = e->src;
672 ddg_node_ptr dest = e->dest;
674 /* Should have allocated the sbitmaps. */
675 gcc_assert (src->successors && dest->predecessors);
677 SET_BIT (src->successors, dest->cuid);
678 SET_BIT (dest->predecessors, src->cuid);
679 e->next_in = dest->in;
680 dest->in = e;
681 e->next_out = src->out;
682 src->out = e;
687 /* Algorithm for computing the recurrence_length of an scc. We assume at
688 for now that cycles in the data dependence graph contain a single backarc.
689 This simplifies the algorithm, and can be generalized later. */
690 static void
691 set_recurrence_length (ddg_scc_ptr scc, ddg_ptr g)
693 int j;
694 int result = -1;
696 for (j = 0; j < scc->num_backarcs; j++)
698 ddg_edge_ptr backarc = scc->backarcs[j];
699 int length;
700 int distance = backarc->distance;
701 ddg_node_ptr src = backarc->dest;
702 ddg_node_ptr dest = backarc->src;
704 length = longest_simple_path (g, src->cuid, dest->cuid, scc->nodes);
705 if (length < 0 )
707 /* fprintf (stderr, "Backarc not on simple cycle in SCC.\n"); */
708 continue;
710 length += backarc->latency;
711 result = MAX (result, (length / distance));
713 scc->recurrence_length = result;
716 /* Create a new SCC given the set of its nodes. Compute its recurrence_length
717 and mark edges that belong to this scc as IN_SCC. */
718 static ddg_scc_ptr
719 create_scc (ddg_ptr g, sbitmap nodes)
721 ddg_scc_ptr scc;
722 unsigned int u = 0;
723 sbitmap_iterator sbi;
725 scc = (ddg_scc_ptr) xmalloc (sizeof (struct ddg_scc));
726 scc->backarcs = NULL;
727 scc->num_backarcs = 0;
728 scc->nodes = sbitmap_alloc (g->num_nodes);
729 sbitmap_copy (scc->nodes, nodes);
731 /* Mark the backarcs that belong to this SCC. */
732 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, u, sbi)
734 ddg_edge_ptr e;
735 ddg_node_ptr n = &g->nodes[u];
737 for (e = n->out; e; e = e->next_out)
738 if (TEST_BIT (nodes, e->dest->cuid))
740 e->aux.count = IN_SCC;
741 if (e->distance > 0)
742 add_backarc_to_scc (scc, e);
746 set_recurrence_length (scc, g);
747 return scc;
750 /* Cleans the memory allocation of a given SCC. */
751 static void
752 free_scc (ddg_scc_ptr scc)
754 if (!scc)
755 return;
757 sbitmap_free (scc->nodes);
758 if (scc->num_backarcs > 0)
759 free (scc->backarcs);
760 free (scc);
764 /* Add a given edge known to be a backarc to the given DDG. */
765 static void
766 add_backarc_to_ddg (ddg_ptr g, ddg_edge_ptr e)
768 int size = (g->num_backarcs + 1) * sizeof (ddg_edge_ptr);
770 add_edge_to_ddg (g, e);
771 g->backarcs = (ddg_edge_ptr *) xrealloc (g->backarcs, size);
772 g->backarcs[g->num_backarcs++] = e;
775 /* Add backarc to an SCC. */
776 static void
777 add_backarc_to_scc (ddg_scc_ptr scc, ddg_edge_ptr e)
779 int size = (scc->num_backarcs + 1) * sizeof (ddg_edge_ptr);
781 scc->backarcs = (ddg_edge_ptr *) xrealloc (scc->backarcs, size);
782 scc->backarcs[scc->num_backarcs++] = e;
785 /* Add the given SCC to the DDG. */
786 static void
787 add_scc_to_ddg (ddg_all_sccs_ptr g, ddg_scc_ptr scc)
789 int size = (g->num_sccs + 1) * sizeof (ddg_scc_ptr);
791 g->sccs = (ddg_scc_ptr *) xrealloc (g->sccs, size);
792 g->sccs[g->num_sccs++] = scc;
795 /* Given the instruction INSN return the node that represents it. */
796 ddg_node_ptr
797 get_node_of_insn (ddg_ptr g, rtx insn)
799 int i;
801 for (i = 0; i < g->num_nodes; i++)
802 if (insn == g->nodes[i].insn)
803 return &g->nodes[i];
804 return NULL;
807 /* Given a set OPS of nodes in the DDG, find the set of their successors
808 which are not in OPS, and set their bits in SUCC. Bits corresponding to
809 OPS are cleared from SUCC. Leaves the other bits in SUCC unchanged. */
810 void
811 find_successors (sbitmap succ, ddg_ptr g, sbitmap ops)
813 unsigned int i = 0;
814 sbitmap_iterator sbi;
816 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
818 const sbitmap node_succ = NODE_SUCCESSORS (&g->nodes[i]);
819 sbitmap_a_or_b (succ, succ, node_succ);
822 /* We want those that are not in ops. */
823 sbitmap_difference (succ, succ, ops);
826 /* Given a set OPS of nodes in the DDG, find the set of their predecessors
827 which are not in OPS, and set their bits in PREDS. Bits corresponding to
828 OPS are cleared from PREDS. Leaves the other bits in PREDS unchanged. */
829 void
830 find_predecessors (sbitmap preds, ddg_ptr g, sbitmap ops)
832 unsigned int i = 0;
833 sbitmap_iterator sbi;
835 EXECUTE_IF_SET_IN_SBITMAP (ops, 0, i, sbi)
837 const sbitmap node_preds = NODE_PREDECESSORS (&g->nodes[i]);
838 sbitmap_a_or_b (preds, preds, node_preds);
841 /* We want those that are not in ops. */
842 sbitmap_difference (preds, preds, ops);
846 /* Compare function to be passed to qsort to order the backarcs in descending
847 recMII order. */
848 static int
849 compare_sccs (const void *s1, const void *s2)
851 const int rec_l1 = (*(const ddg_scc_ptr *)s1)->recurrence_length;
852 const int rec_l2 = (*(const ddg_scc_ptr *)s2)->recurrence_length;
853 return ((rec_l2 > rec_l1) - (rec_l2 < rec_l1));
857 /* Order the backarcs in descending recMII order using compare_sccs. */
858 static void
859 order_sccs (ddg_all_sccs_ptr g)
861 qsort (g->sccs, g->num_sccs, sizeof (ddg_scc_ptr),
862 (int (*) (const void *, const void *)) compare_sccs);
865 #ifdef ENABLE_CHECKING
866 /* Check that every node in SCCS belongs to exactly one strongly connected
867 component and that no element of SCCS is empty. */
868 static void
869 check_sccs (ddg_all_sccs_ptr sccs, int num_nodes)
871 int i = 0;
872 sbitmap tmp = sbitmap_alloc (num_nodes);
874 sbitmap_zero (tmp);
875 for (i = 0; i < sccs->num_sccs; i++)
877 gcc_assert (!sbitmap_empty_p (sccs->sccs[i]->nodes));
878 /* Verify that every node in sccs is in exactly one strongly
879 connected component. */
880 gcc_assert (!sbitmap_any_common_bits (tmp, sccs->sccs[i]->nodes));
881 sbitmap_a_or_b (tmp, tmp, sccs->sccs[i]->nodes);
883 sbitmap_free (tmp);
885 #endif
887 /* Perform the Strongly Connected Components decomposing algorithm on the
888 DDG and return DDG_ALL_SCCS structure that contains them. */
889 ddg_all_sccs_ptr
890 create_ddg_all_sccs (ddg_ptr g)
892 int i;
893 int num_nodes = g->num_nodes;
894 sbitmap from = sbitmap_alloc (num_nodes);
895 sbitmap to = sbitmap_alloc (num_nodes);
896 sbitmap scc_nodes = sbitmap_alloc (num_nodes);
897 ddg_all_sccs_ptr sccs = (ddg_all_sccs_ptr)
898 xmalloc (sizeof (struct ddg_all_sccs));
900 sccs->ddg = g;
901 sccs->sccs = NULL;
902 sccs->num_sccs = 0;
904 for (i = 0; i < g->num_backarcs; i++)
906 ddg_scc_ptr scc;
907 ddg_edge_ptr backarc = g->backarcs[i];
908 ddg_node_ptr src = backarc->src;
909 ddg_node_ptr dest = backarc->dest;
911 /* If the backarc already belongs to an SCC, continue. */
912 if (backarc->aux.count == IN_SCC)
913 continue;
915 sbitmap_zero (scc_nodes);
916 sbitmap_zero (from);
917 sbitmap_zero (to);
918 SET_BIT (from, dest->cuid);
919 SET_BIT (to, src->cuid);
921 if (find_nodes_on_paths (scc_nodes, g, from, to))
923 scc = create_scc (g, scc_nodes);
924 add_scc_to_ddg (sccs, scc);
927 order_sccs (sccs);
928 sbitmap_free (from);
929 sbitmap_free (to);
930 sbitmap_free (scc_nodes);
931 #ifdef ENABLE_CHECKING
932 check_sccs (sccs, num_nodes);
933 #endif
934 return sccs;
937 /* Frees the memory allocated for all SCCs of the DDG, but keeps the DDG. */
938 void
939 free_ddg_all_sccs (ddg_all_sccs_ptr all_sccs)
941 int i;
943 if (!all_sccs)
944 return;
946 for (i = 0; i < all_sccs->num_sccs; i++)
947 free_scc (all_sccs->sccs[i]);
949 free (all_sccs);
953 /* Given FROM - a bitmap of source nodes - and TO - a bitmap of destination
954 nodes - find all nodes that lie on paths from FROM to TO (not excluding
955 nodes from FROM and TO). Return nonzero if nodes exist. */
957 find_nodes_on_paths (sbitmap result, ddg_ptr g, sbitmap from, sbitmap to)
959 int answer;
960 int change;
961 unsigned int u = 0;
962 int num_nodes = g->num_nodes;
963 sbitmap_iterator sbi;
965 sbitmap workset = sbitmap_alloc (num_nodes);
966 sbitmap reachable_from = sbitmap_alloc (num_nodes);
967 sbitmap reach_to = sbitmap_alloc (num_nodes);
968 sbitmap tmp = sbitmap_alloc (num_nodes);
970 sbitmap_copy (reachable_from, from);
971 sbitmap_copy (tmp, from);
973 change = 1;
974 while (change)
976 change = 0;
977 sbitmap_copy (workset, tmp);
978 sbitmap_zero (tmp);
979 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
981 ddg_edge_ptr e;
982 ddg_node_ptr u_node = &g->nodes[u];
984 for (e = u_node->out; e != (ddg_edge_ptr) 0; e = e->next_out)
986 ddg_node_ptr v_node = e->dest;
987 int v = v_node->cuid;
989 if (!TEST_BIT (reachable_from, v))
991 SET_BIT (reachable_from, v);
992 SET_BIT (tmp, v);
993 change = 1;
999 sbitmap_copy (reach_to, to);
1000 sbitmap_copy (tmp, to);
1002 change = 1;
1003 while (change)
1005 change = 0;
1006 sbitmap_copy (workset, tmp);
1007 sbitmap_zero (tmp);
1008 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1010 ddg_edge_ptr e;
1011 ddg_node_ptr u_node = &g->nodes[u];
1013 for (e = u_node->in; e != (ddg_edge_ptr) 0; e = e->next_in)
1015 ddg_node_ptr v_node = e->src;
1016 int v = v_node->cuid;
1018 if (!TEST_BIT (reach_to, v))
1020 SET_BIT (reach_to, v);
1021 SET_BIT (tmp, v);
1022 change = 1;
1028 answer = sbitmap_a_and_b_cg (result, reachable_from, reach_to);
1029 sbitmap_free (workset);
1030 sbitmap_free (reachable_from);
1031 sbitmap_free (reach_to);
1032 sbitmap_free (tmp);
1033 return answer;
1037 /* Updates the counts of U_NODE's successors (that belong to NODES) to be
1038 at-least as large as the count of U_NODE plus the latency between them.
1039 Sets a bit in TMP for each successor whose count was changed (increased).
1040 Returns nonzero if any count was changed. */
1041 static int
1042 update_dist_to_successors (ddg_node_ptr u_node, sbitmap nodes, sbitmap tmp)
1044 ddg_edge_ptr e;
1045 int result = 0;
1047 for (e = u_node->out; e; e = e->next_out)
1049 ddg_node_ptr v_node = e->dest;
1050 int v = v_node->cuid;
1052 if (TEST_BIT (nodes, v)
1053 && (e->distance == 0)
1054 && (v_node->aux.count < u_node->aux.count + e->latency))
1056 v_node->aux.count = u_node->aux.count + e->latency;
1057 SET_BIT (tmp, v);
1058 result = 1;
1061 return result;
1065 /* Find the length of a longest path from SRC to DEST in G,
1066 going only through NODES, and disregarding backarcs. */
1068 longest_simple_path (struct ddg * g, int src, int dest, sbitmap nodes)
1070 int i;
1071 unsigned int u = 0;
1072 int change = 1;
1073 int result;
1074 int num_nodes = g->num_nodes;
1075 sbitmap workset = sbitmap_alloc (num_nodes);
1076 sbitmap tmp = sbitmap_alloc (num_nodes);
1079 /* Data will hold the distance of the longest path found so far from
1080 src to each node. Initialize to -1 = less than minimum. */
1081 for (i = 0; i < g->num_nodes; i++)
1082 g->nodes[i].aux.count = -1;
1083 g->nodes[src].aux.count = 0;
1085 sbitmap_zero (tmp);
1086 SET_BIT (tmp, src);
1088 while (change)
1090 sbitmap_iterator sbi;
1092 change = 0;
1093 sbitmap_copy (workset, tmp);
1094 sbitmap_zero (tmp);
1095 EXECUTE_IF_SET_IN_SBITMAP (workset, 0, u, sbi)
1097 ddg_node_ptr u_node = &g->nodes[u];
1099 change |= update_dist_to_successors (u_node, nodes, tmp);
1102 result = g->nodes[dest].aux.count;
1103 sbitmap_free (workset);
1104 sbitmap_free (tmp);
1105 return result;