EnumSet*.class: Regenerate
[official-gcc.git] / gcc / cse.c
blobc2b4d182bd0c324c2ea506ec85ebb59ba43c7099
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
50 /* The basic idea of common subexpression elimination is to go
51 through the code, keeping a record of expressions that would
52 have the same value at the current scan point, and replacing
53 expressions encountered with the cheapest equivalent expression.
55 It is too complicated to keep track of the different possibilities
56 when control paths merge in this code; so, at each label, we forget all
57 that is known and start fresh. This can be described as processing each
58 extended basic block separately. We have a separate pass to perform
59 global CSE.
61 Note CSE can turn a conditional or computed jump into a nop or
62 an unconditional jump. When this occurs we arrange to run the jump
63 optimizer after CSE to delete the unreachable code.
65 We use two data structures to record the equivalent expressions:
66 a hash table for most expressions, and a vector of "quantity
67 numbers" to record equivalent (pseudo) registers.
69 The use of the special data structure for registers is desirable
70 because it is faster. It is possible because registers references
71 contain a fairly small number, the register number, taken from
72 a contiguously allocated series, and two register references are
73 identical if they have the same number. General expressions
74 do not have any such thing, so the only way to retrieve the
75 information recorded on an expression other than a register
76 is to keep it in a hash table.
78 Registers and "quantity numbers":
80 At the start of each basic block, all of the (hardware and pseudo)
81 registers used in the function are given distinct quantity
82 numbers to indicate their contents. During scan, when the code
83 copies one register into another, we copy the quantity number.
84 When a register is loaded in any other way, we allocate a new
85 quantity number to describe the value generated by this operation.
86 `REG_QTY (N)' records what quantity register N is currently thought
87 of as containing.
89 All real quantity numbers are greater than or equal to zero.
90 If register N has not been assigned a quantity, `REG_QTY (N)' will
91 equal -N - 1, which is always negative.
93 Quantity numbers below zero do not exist and none of the `qty_table'
94 entries should be referenced with a negative index.
96 We also maintain a bidirectional chain of registers for each
97 quantity number. The `qty_table` members `first_reg' and `last_reg',
98 and `reg_eqv_table' members `next' and `prev' hold these chains.
100 The first register in a chain is the one whose lifespan is least local.
101 Among equals, it is the one that was seen first.
102 We replace any equivalent register with that one.
104 If two registers have the same quantity number, it must be true that
105 REG expressions with qty_table `mode' must be in the hash table for both
106 registers and must be in the same class.
108 The converse is not true. Since hard registers may be referenced in
109 any mode, two REG expressions might be equivalent in the hash table
110 but not have the same quantity number if the quantity number of one
111 of the registers is not the same mode as those expressions.
113 Constants and quantity numbers
115 When a quantity has a known constant value, that value is stored
116 in the appropriate qty_table `const_rtx'. This is in addition to
117 putting the constant in the hash table as is usual for non-regs.
119 Whether a reg or a constant is preferred is determined by the configuration
120 macro CONST_COSTS and will often depend on the constant value. In any
121 event, expressions containing constants can be simplified, by fold_rtx.
123 When a quantity has a known nearly constant value (such as an address
124 of a stack slot), that value is stored in the appropriate qty_table
125 `const_rtx'.
127 Integer constants don't have a machine mode. However, cse
128 determines the intended machine mode from the destination
129 of the instruction that moves the constant. The machine mode
130 is recorded in the hash table along with the actual RTL
131 constant expression so that different modes are kept separate.
133 Other expressions:
135 To record known equivalences among expressions in general
136 we use a hash table called `table'. It has a fixed number of buckets
137 that contain chains of `struct table_elt' elements for expressions.
138 These chains connect the elements whose expressions have the same
139 hash codes.
141 Other chains through the same elements connect the elements which
142 currently have equivalent values.
144 Register references in an expression are canonicalized before hashing
145 the expression. This is done using `reg_qty' and qty_table `first_reg'.
146 The hash code of a register reference is computed using the quantity
147 number, not the register number.
149 When the value of an expression changes, it is necessary to remove from the
150 hash table not just that expression but all expressions whose values
151 could be different as a result.
153 1. If the value changing is in memory, except in special cases
154 ANYTHING referring to memory could be changed. That is because
155 nobody knows where a pointer does not point.
156 The function `invalidate_memory' removes what is necessary.
158 The special cases are when the address is constant or is
159 a constant plus a fixed register such as the frame pointer
160 or a static chain pointer. When such addresses are stored in,
161 we can tell exactly which other such addresses must be invalidated
162 due to overlap. `invalidate' does this.
163 All expressions that refer to non-constant
164 memory addresses are also invalidated. `invalidate_memory' does this.
166 2. If the value changing is a register, all expressions
167 containing references to that register, and only those,
168 must be removed.
170 Because searching the entire hash table for expressions that contain
171 a register is very slow, we try to figure out when it isn't necessary.
172 Precisely, this is necessary only when expressions have been
173 entered in the hash table using this register, and then the value has
174 changed, and then another expression wants to be added to refer to
175 the register's new value. This sequence of circumstances is rare
176 within any one basic block.
178 `REG_TICK' and `REG_IN_TABLE', accessors for members of
179 cse_reg_info, are used to detect this case. REG_TICK (i) is
180 incremented whenever a value is stored in register i.
181 REG_IN_TABLE (i) holds -1 if no references to register i have been
182 entered in the table; otherwise, it contains the value REG_TICK (i)
183 had when the references were entered. If we want to enter a
184 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185 remove old references. Until we want to enter a new entry, the
186 mere fact that the two vectors don't match makes the entries be
187 ignored if anyone tries to match them.
189 Registers themselves are entered in the hash table as well as in
190 the equivalent-register chains. However, `REG_TICK' and
191 `REG_IN_TABLE' do not apply to expressions which are simple
192 register references. These expressions are removed from the table
193 immediately when they become invalid, and this can be done even if
194 we do not immediately search for all the expressions that refer to
195 the register.
197 A CLOBBER rtx in an instruction invalidates its operand for further
198 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
199 invalidates everything that resides in memory.
201 Related expressions:
203 Constant expressions that differ only by an additive integer
204 are called related. When a constant expression is put in
205 the table, the related expression with no constant term
206 is also entered. These are made to point at each other
207 so that it is possible to find out if there exists any
208 register equivalent to an expression related to a given expression. */
210 /* Length of qty_table vector. We know in advance we will not need
211 a quantity number this big. */
213 static int max_qty;
215 /* Next quantity number to be allocated.
216 This is 1 + the largest number needed so far. */
218 static int next_qty;
220 /* Per-qty information tracking.
222 `first_reg' and `last_reg' track the head and tail of the
223 chain of registers which currently contain this quantity.
225 `mode' contains the machine mode of this quantity.
227 `const_rtx' holds the rtx of the constant value of this
228 quantity, if known. A summations of the frame/arg pointer
229 and a constant can also be entered here. When this holds
230 a known value, `const_insn' is the insn which stored the
231 constant value.
233 `comparison_{code,const,qty}' are used to track when a
234 comparison between a quantity and some constant or register has
235 been passed. In such a case, we know the results of the comparison
236 in case we see it again. These members record a comparison that
237 is known to be true. `comparison_code' holds the rtx code of such
238 a comparison, else it is set to UNKNOWN and the other two
239 comparison members are undefined. `comparison_const' holds
240 the constant being compared against, or zero if the comparison
241 is not against a constant. `comparison_qty' holds the quantity
242 being compared against when the result is known. If the comparison
243 is not with a register, `comparison_qty' is -1. */
245 struct qty_table_elem
247 rtx const_rtx;
248 rtx const_insn;
249 rtx comparison_const;
250 int comparison_qty;
251 unsigned int first_reg, last_reg;
252 /* The sizes of these fields should match the sizes of the
253 code and mode fields of struct rtx_def (see rtl.h). */
254 ENUM_BITFIELD(rtx_code) comparison_code : 16;
255 ENUM_BITFIELD(machine_mode) mode : 8;
258 /* The table of all qtys, indexed by qty number. */
259 static struct qty_table_elem *qty_table;
261 /* Structure used to pass arguments via for_each_rtx to function
262 cse_change_cc_mode. */
263 struct change_cc_mode_args
265 rtx insn;
266 rtx newreg;
269 #ifdef HAVE_cc0
270 /* For machines that have a CC0, we do not record its value in the hash
271 table since its use is guaranteed to be the insn immediately following
272 its definition and any other insn is presumed to invalidate it.
274 Instead, we store below the current and last value assigned to CC0.
275 If it should happen to be a constant, it is stored in preference
276 to the actual assigned value. In case it is a constant, we store
277 the mode in which the constant should be interpreted. */
279 static rtx this_insn_cc0, prev_insn_cc0;
280 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
281 #endif
283 /* Insn being scanned. */
285 static rtx this_insn;
287 /* Index by register number, gives the number of the next (or
288 previous) register in the chain of registers sharing the same
289 value.
291 Or -1 if this register is at the end of the chain.
293 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
295 /* Per-register equivalence chain. */
296 struct reg_eqv_elem
298 int next, prev;
301 /* The table of all register equivalence chains. */
302 static struct reg_eqv_elem *reg_eqv_table;
304 struct cse_reg_info
306 /* The timestamp at which this register is initialized. */
307 unsigned int timestamp;
309 /* The quantity number of the register's current contents. */
310 int reg_qty;
312 /* The number of times the register has been altered in the current
313 basic block. */
314 int reg_tick;
316 /* The REG_TICK value at which rtx's containing this register are
317 valid in the hash table. If this does not equal the current
318 reg_tick value, such expressions existing in the hash table are
319 invalid. */
320 int reg_in_table;
322 /* The SUBREG that was set when REG_TICK was last incremented. Set
323 to -1 if the last store was to the whole register, not a subreg. */
324 unsigned int subreg_ticked;
327 /* A table of cse_reg_info indexed by register numbers. */
328 static struct cse_reg_info *cse_reg_info_table;
330 /* The size of the above table. */
331 static unsigned int cse_reg_info_table_size;
333 /* The index of the first entry that has not been initialized. */
334 static unsigned int cse_reg_info_table_first_uninitialized;
336 /* The timestamp at the beginning of the current run of
337 cse_extended_basic_block. We increment this variable at the beginning of
338 the current run of cse_extended_basic_block. The timestamp field of a
339 cse_reg_info entry matches the value of this variable if and only
340 if the entry has been initialized during the current run of
341 cse_extended_basic_block. */
342 static unsigned int cse_reg_info_timestamp;
344 /* A HARD_REG_SET containing all the hard registers for which there is
345 currently a REG expression in the hash table. Note the difference
346 from the above variables, which indicate if the REG is mentioned in some
347 expression in the table. */
349 static HARD_REG_SET hard_regs_in_table;
351 /* Nonzero if cse has altered conditional jump insns
352 in such a way that jump optimization should be redone. */
354 static int cse_jumps_altered;
356 /* Nonzero if we put a LABEL_REF into the hash table for an INSN without a
357 REG_LABEL, we have to rerun jump after CSE to put in the note. */
358 static int recorded_label_ref;
360 /* canon_hash stores 1 in do_not_record
361 if it notices a reference to CC0, PC, or some other volatile
362 subexpression. */
364 static int do_not_record;
366 /* canon_hash stores 1 in hash_arg_in_memory
367 if it notices a reference to memory within the expression being hashed. */
369 static int hash_arg_in_memory;
371 /* The hash table contains buckets which are chains of `struct table_elt's,
372 each recording one expression's information.
373 That expression is in the `exp' field.
375 The canon_exp field contains a canonical (from the point of view of
376 alias analysis) version of the `exp' field.
378 Those elements with the same hash code are chained in both directions
379 through the `next_same_hash' and `prev_same_hash' fields.
381 Each set of expressions with equivalent values
382 are on a two-way chain through the `next_same_value'
383 and `prev_same_value' fields, and all point with
384 the `first_same_value' field at the first element in
385 that chain. The chain is in order of increasing cost.
386 Each element's cost value is in its `cost' field.
388 The `in_memory' field is nonzero for elements that
389 involve any reference to memory. These elements are removed
390 whenever a write is done to an unidentified location in memory.
391 To be safe, we assume that a memory address is unidentified unless
392 the address is either a symbol constant or a constant plus
393 the frame pointer or argument pointer.
395 The `related_value' field is used to connect related expressions
396 (that differ by adding an integer).
397 The related expressions are chained in a circular fashion.
398 `related_value' is zero for expressions for which this
399 chain is not useful.
401 The `cost' field stores the cost of this element's expression.
402 The `regcost' field stores the value returned by approx_reg_cost for
403 this element's expression.
405 The `is_const' flag is set if the element is a constant (including
406 a fixed address).
408 The `flag' field is used as a temporary during some search routines.
410 The `mode' field is usually the same as GET_MODE (`exp'), but
411 if `exp' is a CONST_INT and has no machine mode then the `mode'
412 field is the mode it was being used as. Each constant is
413 recorded separately for each mode it is used with. */
415 struct table_elt
417 rtx exp;
418 rtx canon_exp;
419 struct table_elt *next_same_hash;
420 struct table_elt *prev_same_hash;
421 struct table_elt *next_same_value;
422 struct table_elt *prev_same_value;
423 struct table_elt *first_same_value;
424 struct table_elt *related_value;
425 int cost;
426 int regcost;
427 /* The size of this field should match the size
428 of the mode field of struct rtx_def (see rtl.h). */
429 ENUM_BITFIELD(machine_mode) mode : 8;
430 char in_memory;
431 char is_const;
432 char flag;
435 /* We don't want a lot of buckets, because we rarely have very many
436 things stored in the hash table, and a lot of buckets slows
437 down a lot of loops that happen frequently. */
438 #define HASH_SHIFT 5
439 #define HASH_SIZE (1 << HASH_SHIFT)
440 #define HASH_MASK (HASH_SIZE - 1)
442 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
443 register (hard registers may require `do_not_record' to be set). */
445 #define HASH(X, M) \
446 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
447 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
448 : canon_hash (X, M)) & HASH_MASK)
450 /* Like HASH, but without side-effects. */
451 #define SAFE_HASH(X, M) \
452 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
453 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
454 : safe_hash (X, M)) & HASH_MASK)
456 /* Determine whether register number N is considered a fixed register for the
457 purpose of approximating register costs.
458 It is desirable to replace other regs with fixed regs, to reduce need for
459 non-fixed hard regs.
460 A reg wins if it is either the frame pointer or designated as fixed. */
461 #define FIXED_REGNO_P(N) \
462 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
463 || fixed_regs[N] || global_regs[N])
465 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
466 hard registers and pointers into the frame are the cheapest with a cost
467 of 0. Next come pseudos with a cost of one and other hard registers with
468 a cost of 2. Aside from these special cases, call `rtx_cost'. */
470 #define CHEAP_REGNO(N) \
471 (REGNO_PTR_FRAME_P(N) \
472 || (HARD_REGISTER_NUM_P (N) \
473 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
475 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
476 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
478 /* Get the number of times this register has been updated in this
479 basic block. */
481 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
483 /* Get the point at which REG was recorded in the table. */
485 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
487 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
488 SUBREG). */
490 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
492 /* Get the quantity number for REG. */
494 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
496 /* Determine if the quantity number for register X represents a valid index
497 into the qty_table. */
499 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
501 static struct table_elt *table[HASH_SIZE];
503 /* Chain of `struct table_elt's made so far for this function
504 but currently removed from the table. */
506 static struct table_elt *free_element_chain;
508 /* Set to the cost of a constant pool reference if one was found for a
509 symbolic constant. If this was found, it means we should try to
510 convert constants into constant pool entries if they don't fit in
511 the insn. */
513 static int constant_pool_entries_cost;
514 static int constant_pool_entries_regcost;
516 /* This data describes a block that will be processed by
517 cse_extended_basic_block. */
519 struct cse_basic_block_data
521 /* Total number of SETs in block. */
522 int nsets;
523 /* Size of current branch path, if any. */
524 int path_size;
525 /* Current path, indicating which basic_blocks will be processed. */
526 struct branch_path
528 /* The basic block for this path entry. */
529 basic_block bb;
530 } *path;
534 /* Pointers to the live in/live out bitmaps for the boundaries of the
535 current EBB. */
536 static bitmap cse_ebb_live_in, cse_ebb_live_out;
538 /* A simple bitmap to track which basic blocks have been visited
539 already as part of an already processed extended basic block. */
540 static sbitmap cse_visited_basic_blocks;
542 static bool fixed_base_plus_p (rtx x);
543 static int notreg_cost (rtx, enum rtx_code);
544 static int approx_reg_cost_1 (rtx *, void *);
545 static int approx_reg_cost (rtx);
546 static int preferable (int, int, int, int);
547 static void new_basic_block (void);
548 static void make_new_qty (unsigned int, enum machine_mode);
549 static void make_regs_eqv (unsigned int, unsigned int);
550 static void delete_reg_equiv (unsigned int);
551 static int mention_regs (rtx);
552 static int insert_regs (rtx, struct table_elt *, int);
553 static void remove_from_table (struct table_elt *, unsigned);
554 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
555 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
556 static rtx lookup_as_function (rtx, enum rtx_code);
557 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
558 enum machine_mode);
559 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
560 static void invalidate (rtx, enum machine_mode);
561 static bool cse_rtx_varies_p (const_rtx, bool);
562 static void remove_invalid_refs (unsigned int);
563 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
564 enum machine_mode);
565 static void rehash_using_reg (rtx);
566 static void invalidate_memory (void);
567 static void invalidate_for_call (void);
568 static rtx use_related_value (rtx, struct table_elt *);
570 static inline unsigned canon_hash (rtx, enum machine_mode);
571 static inline unsigned safe_hash (rtx, enum machine_mode);
572 static unsigned hash_rtx_string (const char *);
574 static rtx canon_reg (rtx, rtx);
575 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
576 enum machine_mode *,
577 enum machine_mode *);
578 static rtx fold_rtx (rtx, rtx);
579 static rtx equiv_constant (rtx);
580 static void record_jump_equiv (rtx, bool);
581 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
582 int);
583 static void cse_insn (rtx, rtx);
584 static void cse_prescan_path (struct cse_basic_block_data *);
585 static void invalidate_from_clobbers (rtx);
586 static rtx cse_process_notes (rtx, rtx, bool *);
587 static void cse_extended_basic_block (struct cse_basic_block_data *);
588 static void count_reg_usage (rtx, int *, rtx, int);
589 static int check_for_label_ref (rtx *, void *);
590 extern void dump_class (struct table_elt*);
591 static void get_cse_reg_info_1 (unsigned int regno);
592 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
593 static int check_dependence (rtx *, void *);
595 static void flush_hash_table (void);
596 static bool insn_live_p (rtx, int *);
597 static bool set_live_p (rtx, rtx, int *);
598 static bool dead_libcall_p (rtx, int *);
599 static int cse_change_cc_mode (rtx *, void *);
600 static void cse_change_cc_mode_insn (rtx, rtx);
601 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
602 static enum machine_mode cse_cc_succs (basic_block, rtx, rtx, bool);
605 #undef RTL_HOOKS_GEN_LOWPART
606 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
608 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
610 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
611 virtual regs here because the simplify_*_operation routines are called
612 by integrate.c, which is called before virtual register instantiation. */
614 static bool
615 fixed_base_plus_p (rtx x)
617 switch (GET_CODE (x))
619 case REG:
620 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
621 return true;
622 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
623 return true;
624 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
625 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
626 return true;
627 return false;
629 case PLUS:
630 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
631 return false;
632 return fixed_base_plus_p (XEXP (x, 0));
634 default:
635 return false;
639 /* Dump the expressions in the equivalence class indicated by CLASSP.
640 This function is used only for debugging. */
641 void
642 dump_class (struct table_elt *classp)
644 struct table_elt *elt;
646 fprintf (stderr, "Equivalence chain for ");
647 print_rtl (stderr, classp->exp);
648 fprintf (stderr, ": \n");
650 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
652 print_rtl (stderr, elt->exp);
653 fprintf (stderr, "\n");
657 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
659 static int
660 approx_reg_cost_1 (rtx *xp, void *data)
662 rtx x = *xp;
663 int *cost_p = data;
665 if (x && REG_P (x))
667 unsigned int regno = REGNO (x);
669 if (! CHEAP_REGNO (regno))
671 if (regno < FIRST_PSEUDO_REGISTER)
673 if (SMALL_REGISTER_CLASSES)
674 return 1;
675 *cost_p += 2;
677 else
678 *cost_p += 1;
682 return 0;
685 /* Return an estimate of the cost of the registers used in an rtx.
686 This is mostly the number of different REG expressions in the rtx;
687 however for some exceptions like fixed registers we use a cost of
688 0. If any other hard register reference occurs, return MAX_COST. */
690 static int
691 approx_reg_cost (rtx x)
693 int cost = 0;
695 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
696 return MAX_COST;
698 return cost;
701 /* Return a negative value if an rtx A, whose costs are given by COST_A
702 and REGCOST_A, is more desirable than an rtx B.
703 Return a positive value if A is less desirable, or 0 if the two are
704 equally good. */
705 static int
706 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
708 /* First, get rid of cases involving expressions that are entirely
709 unwanted. */
710 if (cost_a != cost_b)
712 if (cost_a == MAX_COST)
713 return 1;
714 if (cost_b == MAX_COST)
715 return -1;
718 /* Avoid extending lifetimes of hardregs. */
719 if (regcost_a != regcost_b)
721 if (regcost_a == MAX_COST)
722 return 1;
723 if (regcost_b == MAX_COST)
724 return -1;
727 /* Normal operation costs take precedence. */
728 if (cost_a != cost_b)
729 return cost_a - cost_b;
730 /* Only if these are identical consider effects on register pressure. */
731 if (regcost_a != regcost_b)
732 return regcost_a - regcost_b;
733 return 0;
736 /* Internal function, to compute cost when X is not a register; called
737 from COST macro to keep it simple. */
739 static int
740 notreg_cost (rtx x, enum rtx_code outer)
742 return ((GET_CODE (x) == SUBREG
743 && REG_P (SUBREG_REG (x))
744 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
745 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
746 && (GET_MODE_SIZE (GET_MODE (x))
747 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
748 && subreg_lowpart_p (x)
749 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
750 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
752 : rtx_cost (x, outer) * 2);
756 /* Initialize CSE_REG_INFO_TABLE. */
758 static void
759 init_cse_reg_info (unsigned int nregs)
761 /* Do we need to grow the table? */
762 if (nregs > cse_reg_info_table_size)
764 unsigned int new_size;
766 if (cse_reg_info_table_size < 2048)
768 /* Compute a new size that is a power of 2 and no smaller
769 than the large of NREGS and 64. */
770 new_size = (cse_reg_info_table_size
771 ? cse_reg_info_table_size : 64);
773 while (new_size < nregs)
774 new_size *= 2;
776 else
778 /* If we need a big table, allocate just enough to hold
779 NREGS registers. */
780 new_size = nregs;
783 /* Reallocate the table with NEW_SIZE entries. */
784 if (cse_reg_info_table)
785 free (cse_reg_info_table);
786 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
787 cse_reg_info_table_size = new_size;
788 cse_reg_info_table_first_uninitialized = 0;
791 /* Do we have all of the first NREGS entries initialized? */
792 if (cse_reg_info_table_first_uninitialized < nregs)
794 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
795 unsigned int i;
797 /* Put the old timestamp on newly allocated entries so that they
798 will all be considered out of date. We do not touch those
799 entries beyond the first NREGS entries to be nice to the
800 virtual memory. */
801 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
802 cse_reg_info_table[i].timestamp = old_timestamp;
804 cse_reg_info_table_first_uninitialized = nregs;
808 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
810 static void
811 get_cse_reg_info_1 (unsigned int regno)
813 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
814 entry will be considered to have been initialized. */
815 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
817 /* Initialize the rest of the entry. */
818 cse_reg_info_table[regno].reg_tick = 1;
819 cse_reg_info_table[regno].reg_in_table = -1;
820 cse_reg_info_table[regno].subreg_ticked = -1;
821 cse_reg_info_table[regno].reg_qty = -regno - 1;
824 /* Find a cse_reg_info entry for REGNO. */
826 static inline struct cse_reg_info *
827 get_cse_reg_info (unsigned int regno)
829 struct cse_reg_info *p = &cse_reg_info_table[regno];
831 /* If this entry has not been initialized, go ahead and initialize
832 it. */
833 if (p->timestamp != cse_reg_info_timestamp)
834 get_cse_reg_info_1 (regno);
836 return p;
839 /* Clear the hash table and initialize each register with its own quantity,
840 for a new basic block. */
842 static void
843 new_basic_block (void)
845 int i;
847 next_qty = 0;
849 /* Invalidate cse_reg_info_table. */
850 cse_reg_info_timestamp++;
852 /* Clear out hash table state for this pass. */
853 CLEAR_HARD_REG_SET (hard_regs_in_table);
855 /* The per-quantity values used to be initialized here, but it is
856 much faster to initialize each as it is made in `make_new_qty'. */
858 for (i = 0; i < HASH_SIZE; i++)
860 struct table_elt *first;
862 first = table[i];
863 if (first != NULL)
865 struct table_elt *last = first;
867 table[i] = NULL;
869 while (last->next_same_hash != NULL)
870 last = last->next_same_hash;
872 /* Now relink this hash entire chain into
873 the free element list. */
875 last->next_same_hash = free_element_chain;
876 free_element_chain = first;
880 #ifdef HAVE_cc0
881 prev_insn_cc0 = 0;
882 #endif
885 /* Say that register REG contains a quantity in mode MODE not in any
886 register before and initialize that quantity. */
888 static void
889 make_new_qty (unsigned int reg, enum machine_mode mode)
891 int q;
892 struct qty_table_elem *ent;
893 struct reg_eqv_elem *eqv;
895 gcc_assert (next_qty < max_qty);
897 q = REG_QTY (reg) = next_qty++;
898 ent = &qty_table[q];
899 ent->first_reg = reg;
900 ent->last_reg = reg;
901 ent->mode = mode;
902 ent->const_rtx = ent->const_insn = NULL_RTX;
903 ent->comparison_code = UNKNOWN;
905 eqv = &reg_eqv_table[reg];
906 eqv->next = eqv->prev = -1;
909 /* Make reg NEW equivalent to reg OLD.
910 OLD is not changing; NEW is. */
912 static void
913 make_regs_eqv (unsigned int new, unsigned int old)
915 unsigned int lastr, firstr;
916 int q = REG_QTY (old);
917 struct qty_table_elem *ent;
919 ent = &qty_table[q];
921 /* Nothing should become eqv until it has a "non-invalid" qty number. */
922 gcc_assert (REGNO_QTY_VALID_P (old));
924 REG_QTY (new) = q;
925 firstr = ent->first_reg;
926 lastr = ent->last_reg;
928 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
929 hard regs. Among pseudos, if NEW will live longer than any other reg
930 of the same qty, and that is beyond the current basic block,
931 make it the new canonical replacement for this qty. */
932 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
933 /* Certain fixed registers might be of the class NO_REGS. This means
934 that not only can they not be allocated by the compiler, but
935 they cannot be used in substitutions or canonicalizations
936 either. */
937 && (new >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new) != NO_REGS)
938 && ((new < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new))
939 || (new >= FIRST_PSEUDO_REGISTER
940 && (firstr < FIRST_PSEUDO_REGISTER
941 || (bitmap_bit_p (cse_ebb_live_out, new)
942 && !bitmap_bit_p (cse_ebb_live_out, firstr))
943 || (bitmap_bit_p (cse_ebb_live_in, new)
944 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
946 reg_eqv_table[firstr].prev = new;
947 reg_eqv_table[new].next = firstr;
948 reg_eqv_table[new].prev = -1;
949 ent->first_reg = new;
951 else
953 /* If NEW is a hard reg (known to be non-fixed), insert at end.
954 Otherwise, insert before any non-fixed hard regs that are at the
955 end. Registers of class NO_REGS cannot be used as an
956 equivalent for anything. */
957 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
958 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
959 && new >= FIRST_PSEUDO_REGISTER)
960 lastr = reg_eqv_table[lastr].prev;
961 reg_eqv_table[new].next = reg_eqv_table[lastr].next;
962 if (reg_eqv_table[lastr].next >= 0)
963 reg_eqv_table[reg_eqv_table[lastr].next].prev = new;
964 else
965 qty_table[q].last_reg = new;
966 reg_eqv_table[lastr].next = new;
967 reg_eqv_table[new].prev = lastr;
971 /* Remove REG from its equivalence class. */
973 static void
974 delete_reg_equiv (unsigned int reg)
976 struct qty_table_elem *ent;
977 int q = REG_QTY (reg);
978 int p, n;
980 /* If invalid, do nothing. */
981 if (! REGNO_QTY_VALID_P (reg))
982 return;
984 ent = &qty_table[q];
986 p = reg_eqv_table[reg].prev;
987 n = reg_eqv_table[reg].next;
989 if (n != -1)
990 reg_eqv_table[n].prev = p;
991 else
992 ent->last_reg = p;
993 if (p != -1)
994 reg_eqv_table[p].next = n;
995 else
996 ent->first_reg = n;
998 REG_QTY (reg) = -reg - 1;
1001 /* Remove any invalid expressions from the hash table
1002 that refer to any of the registers contained in expression X.
1004 Make sure that newly inserted references to those registers
1005 as subexpressions will be considered valid.
1007 mention_regs is not called when a register itself
1008 is being stored in the table.
1010 Return 1 if we have done something that may have changed the hash code
1011 of X. */
1013 static int
1014 mention_regs (rtx x)
1016 enum rtx_code code;
1017 int i, j;
1018 const char *fmt;
1019 int changed = 0;
1021 if (x == 0)
1022 return 0;
1024 code = GET_CODE (x);
1025 if (code == REG)
1027 unsigned int regno = REGNO (x);
1028 unsigned int endregno = END_REGNO (x);
1029 unsigned int i;
1031 for (i = regno; i < endregno; i++)
1033 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1034 remove_invalid_refs (i);
1036 REG_IN_TABLE (i) = REG_TICK (i);
1037 SUBREG_TICKED (i) = -1;
1040 return 0;
1043 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1044 pseudo if they don't use overlapping words. We handle only pseudos
1045 here for simplicity. */
1046 if (code == SUBREG && REG_P (SUBREG_REG (x))
1047 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1049 unsigned int i = REGNO (SUBREG_REG (x));
1051 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1053 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1054 the last store to this register really stored into this
1055 subreg, then remove the memory of this subreg.
1056 Otherwise, remove any memory of the entire register and
1057 all its subregs from the table. */
1058 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1059 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1060 remove_invalid_refs (i);
1061 else
1062 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1065 REG_IN_TABLE (i) = REG_TICK (i);
1066 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1067 return 0;
1070 /* If X is a comparison or a COMPARE and either operand is a register
1071 that does not have a quantity, give it one. This is so that a later
1072 call to record_jump_equiv won't cause X to be assigned a different
1073 hash code and not found in the table after that call.
1075 It is not necessary to do this here, since rehash_using_reg can
1076 fix up the table later, but doing this here eliminates the need to
1077 call that expensive function in the most common case where the only
1078 use of the register is in the comparison. */
1080 if (code == COMPARE || COMPARISON_P (x))
1082 if (REG_P (XEXP (x, 0))
1083 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1084 if (insert_regs (XEXP (x, 0), NULL, 0))
1086 rehash_using_reg (XEXP (x, 0));
1087 changed = 1;
1090 if (REG_P (XEXP (x, 1))
1091 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1092 if (insert_regs (XEXP (x, 1), NULL, 0))
1094 rehash_using_reg (XEXP (x, 1));
1095 changed = 1;
1099 fmt = GET_RTX_FORMAT (code);
1100 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1101 if (fmt[i] == 'e')
1102 changed |= mention_regs (XEXP (x, i));
1103 else if (fmt[i] == 'E')
1104 for (j = 0; j < XVECLEN (x, i); j++)
1105 changed |= mention_regs (XVECEXP (x, i, j));
1107 return changed;
1110 /* Update the register quantities for inserting X into the hash table
1111 with a value equivalent to CLASSP.
1112 (If the class does not contain a REG, it is irrelevant.)
1113 If MODIFIED is nonzero, X is a destination; it is being modified.
1114 Note that delete_reg_equiv should be called on a register
1115 before insert_regs is done on that register with MODIFIED != 0.
1117 Nonzero value means that elements of reg_qty have changed
1118 so X's hash code may be different. */
1120 static int
1121 insert_regs (rtx x, struct table_elt *classp, int modified)
1123 if (REG_P (x))
1125 unsigned int regno = REGNO (x);
1126 int qty_valid;
1128 /* If REGNO is in the equivalence table already but is of the
1129 wrong mode for that equivalence, don't do anything here. */
1131 qty_valid = REGNO_QTY_VALID_P (regno);
1132 if (qty_valid)
1134 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1136 if (ent->mode != GET_MODE (x))
1137 return 0;
1140 if (modified || ! qty_valid)
1142 if (classp)
1143 for (classp = classp->first_same_value;
1144 classp != 0;
1145 classp = classp->next_same_value)
1146 if (REG_P (classp->exp)
1147 && GET_MODE (classp->exp) == GET_MODE (x))
1149 unsigned c_regno = REGNO (classp->exp);
1151 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1153 /* Suppose that 5 is hard reg and 100 and 101 are
1154 pseudos. Consider
1156 (set (reg:si 100) (reg:si 5))
1157 (set (reg:si 5) (reg:si 100))
1158 (set (reg:di 101) (reg:di 5))
1160 We would now set REG_QTY (101) = REG_QTY (5), but the
1161 entry for 5 is in SImode. When we use this later in
1162 copy propagation, we get the register in wrong mode. */
1163 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1164 continue;
1166 make_regs_eqv (regno, c_regno);
1167 return 1;
1170 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1171 than REG_IN_TABLE to find out if there was only a single preceding
1172 invalidation - for the SUBREG - or another one, which would be
1173 for the full register. However, if we find here that REG_TICK
1174 indicates that the register is invalid, it means that it has
1175 been invalidated in a separate operation. The SUBREG might be used
1176 now (then this is a recursive call), or we might use the full REG
1177 now and a SUBREG of it later. So bump up REG_TICK so that
1178 mention_regs will do the right thing. */
1179 if (! modified
1180 && REG_IN_TABLE (regno) >= 0
1181 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1182 REG_TICK (regno)++;
1183 make_new_qty (regno, GET_MODE (x));
1184 return 1;
1187 return 0;
1190 /* If X is a SUBREG, we will likely be inserting the inner register in the
1191 table. If that register doesn't have an assigned quantity number at
1192 this point but does later, the insertion that we will be doing now will
1193 not be accessible because its hash code will have changed. So assign
1194 a quantity number now. */
1196 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1197 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1199 insert_regs (SUBREG_REG (x), NULL, 0);
1200 mention_regs (x);
1201 return 1;
1203 else
1204 return mention_regs (x);
1207 /* Look in or update the hash table. */
1209 /* Remove table element ELT from use in the table.
1210 HASH is its hash code, made using the HASH macro.
1211 It's an argument because often that is known in advance
1212 and we save much time not recomputing it. */
1214 static void
1215 remove_from_table (struct table_elt *elt, unsigned int hash)
1217 if (elt == 0)
1218 return;
1220 /* Mark this element as removed. See cse_insn. */
1221 elt->first_same_value = 0;
1223 /* Remove the table element from its equivalence class. */
1226 struct table_elt *prev = elt->prev_same_value;
1227 struct table_elt *next = elt->next_same_value;
1229 if (next)
1230 next->prev_same_value = prev;
1232 if (prev)
1233 prev->next_same_value = next;
1234 else
1236 struct table_elt *newfirst = next;
1237 while (next)
1239 next->first_same_value = newfirst;
1240 next = next->next_same_value;
1245 /* Remove the table element from its hash bucket. */
1248 struct table_elt *prev = elt->prev_same_hash;
1249 struct table_elt *next = elt->next_same_hash;
1251 if (next)
1252 next->prev_same_hash = prev;
1254 if (prev)
1255 prev->next_same_hash = next;
1256 else if (table[hash] == elt)
1257 table[hash] = next;
1258 else
1260 /* This entry is not in the proper hash bucket. This can happen
1261 when two classes were merged by `merge_equiv_classes'. Search
1262 for the hash bucket that it heads. This happens only very
1263 rarely, so the cost is acceptable. */
1264 for (hash = 0; hash < HASH_SIZE; hash++)
1265 if (table[hash] == elt)
1266 table[hash] = next;
1270 /* Remove the table element from its related-value circular chain. */
1272 if (elt->related_value != 0 && elt->related_value != elt)
1274 struct table_elt *p = elt->related_value;
1276 while (p->related_value != elt)
1277 p = p->related_value;
1278 p->related_value = elt->related_value;
1279 if (p->related_value == p)
1280 p->related_value = 0;
1283 /* Now add it to the free element chain. */
1284 elt->next_same_hash = free_element_chain;
1285 free_element_chain = elt;
1288 /* Look up X in the hash table and return its table element,
1289 or 0 if X is not in the table.
1291 MODE is the machine-mode of X, or if X is an integer constant
1292 with VOIDmode then MODE is the mode with which X will be used.
1294 Here we are satisfied to find an expression whose tree structure
1295 looks like X. */
1297 static struct table_elt *
1298 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1300 struct table_elt *p;
1302 for (p = table[hash]; p; p = p->next_same_hash)
1303 if (mode == p->mode && ((x == p->exp && REG_P (x))
1304 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1305 return p;
1307 return 0;
1310 /* Like `lookup' but don't care whether the table element uses invalid regs.
1311 Also ignore discrepancies in the machine mode of a register. */
1313 static struct table_elt *
1314 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1316 struct table_elt *p;
1318 if (REG_P (x))
1320 unsigned int regno = REGNO (x);
1322 /* Don't check the machine mode when comparing registers;
1323 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1324 for (p = table[hash]; p; p = p->next_same_hash)
1325 if (REG_P (p->exp)
1326 && REGNO (p->exp) == regno)
1327 return p;
1329 else
1331 for (p = table[hash]; p; p = p->next_same_hash)
1332 if (mode == p->mode
1333 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1334 return p;
1337 return 0;
1340 /* Look for an expression equivalent to X and with code CODE.
1341 If one is found, return that expression. */
1343 static rtx
1344 lookup_as_function (rtx x, enum rtx_code code)
1346 struct table_elt *p
1347 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1349 /* If we are looking for a CONST_INT, the mode doesn't really matter, as
1350 long as we are narrowing. So if we looked in vain for a mode narrower
1351 than word_mode before, look for word_mode now. */
1352 if (p == 0 && code == CONST_INT
1353 && GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (word_mode))
1355 x = copy_rtx (x);
1356 PUT_MODE (x, word_mode);
1357 p = lookup (x, SAFE_HASH (x, VOIDmode), word_mode);
1360 if (p == 0)
1361 return 0;
1363 for (p = p->first_same_value; p; p = p->next_same_value)
1364 if (GET_CODE (p->exp) == code
1365 /* Make sure this is a valid entry in the table. */
1366 && exp_equiv_p (p->exp, p->exp, 1, false))
1367 return p->exp;
1369 return 0;
1372 /* Insert X in the hash table, assuming HASH is its hash code
1373 and CLASSP is an element of the class it should go in
1374 (or 0 if a new class should be made).
1375 It is inserted at the proper position to keep the class in
1376 the order cheapest first.
1378 MODE is the machine-mode of X, or if X is an integer constant
1379 with VOIDmode then MODE is the mode with which X will be used.
1381 For elements of equal cheapness, the most recent one
1382 goes in front, except that the first element in the list
1383 remains first unless a cheaper element is added. The order of
1384 pseudo-registers does not matter, as canon_reg will be called to
1385 find the cheapest when a register is retrieved from the table.
1387 The in_memory field in the hash table element is set to 0.
1388 The caller must set it nonzero if appropriate.
1390 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1391 and if insert_regs returns a nonzero value
1392 you must then recompute its hash code before calling here.
1394 If necessary, update table showing constant values of quantities. */
1396 #define CHEAPER(X, Y) \
1397 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1399 static struct table_elt *
1400 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1402 struct table_elt *elt;
1404 /* If X is a register and we haven't made a quantity for it,
1405 something is wrong. */
1406 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1408 /* If X is a hard register, show it is being put in the table. */
1409 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1410 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1412 /* Put an element for X into the right hash bucket. */
1414 elt = free_element_chain;
1415 if (elt)
1416 free_element_chain = elt->next_same_hash;
1417 else
1418 elt = XNEW (struct table_elt);
1420 elt->exp = x;
1421 elt->canon_exp = NULL_RTX;
1422 elt->cost = COST (x);
1423 elt->regcost = approx_reg_cost (x);
1424 elt->next_same_value = 0;
1425 elt->prev_same_value = 0;
1426 elt->next_same_hash = table[hash];
1427 elt->prev_same_hash = 0;
1428 elt->related_value = 0;
1429 elt->in_memory = 0;
1430 elt->mode = mode;
1431 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1433 if (table[hash])
1434 table[hash]->prev_same_hash = elt;
1435 table[hash] = elt;
1437 /* Put it into the proper value-class. */
1438 if (classp)
1440 classp = classp->first_same_value;
1441 if (CHEAPER (elt, classp))
1442 /* Insert at the head of the class. */
1444 struct table_elt *p;
1445 elt->next_same_value = classp;
1446 classp->prev_same_value = elt;
1447 elt->first_same_value = elt;
1449 for (p = classp; p; p = p->next_same_value)
1450 p->first_same_value = elt;
1452 else
1454 /* Insert not at head of the class. */
1455 /* Put it after the last element cheaper than X. */
1456 struct table_elt *p, *next;
1458 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1459 p = next);
1461 /* Put it after P and before NEXT. */
1462 elt->next_same_value = next;
1463 if (next)
1464 next->prev_same_value = elt;
1466 elt->prev_same_value = p;
1467 p->next_same_value = elt;
1468 elt->first_same_value = classp;
1471 else
1472 elt->first_same_value = elt;
1474 /* If this is a constant being set equivalent to a register or a register
1475 being set equivalent to a constant, note the constant equivalence.
1477 If this is a constant, it cannot be equivalent to a different constant,
1478 and a constant is the only thing that can be cheaper than a register. So
1479 we know the register is the head of the class (before the constant was
1480 inserted).
1482 If this is a register that is not already known equivalent to a
1483 constant, we must check the entire class.
1485 If this is a register that is already known equivalent to an insn,
1486 update the qtys `const_insn' to show that `this_insn' is the latest
1487 insn making that quantity equivalent to the constant. */
1489 if (elt->is_const && classp && REG_P (classp->exp)
1490 && !REG_P (x))
1492 int exp_q = REG_QTY (REGNO (classp->exp));
1493 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1495 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1496 exp_ent->const_insn = this_insn;
1499 else if (REG_P (x)
1500 && classp
1501 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1502 && ! elt->is_const)
1504 struct table_elt *p;
1506 for (p = classp; p != 0; p = p->next_same_value)
1508 if (p->is_const && !REG_P (p->exp))
1510 int x_q = REG_QTY (REGNO (x));
1511 struct qty_table_elem *x_ent = &qty_table[x_q];
1513 x_ent->const_rtx
1514 = gen_lowpart (GET_MODE (x), p->exp);
1515 x_ent->const_insn = this_insn;
1516 break;
1521 else if (REG_P (x)
1522 && qty_table[REG_QTY (REGNO (x))].const_rtx
1523 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1524 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1526 /* If this is a constant with symbolic value,
1527 and it has a term with an explicit integer value,
1528 link it up with related expressions. */
1529 if (GET_CODE (x) == CONST)
1531 rtx subexp = get_related_value (x);
1532 unsigned subhash;
1533 struct table_elt *subelt, *subelt_prev;
1535 if (subexp != 0)
1537 /* Get the integer-free subexpression in the hash table. */
1538 subhash = SAFE_HASH (subexp, mode);
1539 subelt = lookup (subexp, subhash, mode);
1540 if (subelt == 0)
1541 subelt = insert (subexp, NULL, subhash, mode);
1542 /* Initialize SUBELT's circular chain if it has none. */
1543 if (subelt->related_value == 0)
1544 subelt->related_value = subelt;
1545 /* Find the element in the circular chain that precedes SUBELT. */
1546 subelt_prev = subelt;
1547 while (subelt_prev->related_value != subelt)
1548 subelt_prev = subelt_prev->related_value;
1549 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1550 This way the element that follows SUBELT is the oldest one. */
1551 elt->related_value = subelt_prev->related_value;
1552 subelt_prev->related_value = elt;
1556 return elt;
1559 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1560 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1561 the two classes equivalent.
1563 CLASS1 will be the surviving class; CLASS2 should not be used after this
1564 call.
1566 Any invalid entries in CLASS2 will not be copied. */
1568 static void
1569 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1571 struct table_elt *elt, *next, *new;
1573 /* Ensure we start with the head of the classes. */
1574 class1 = class1->first_same_value;
1575 class2 = class2->first_same_value;
1577 /* If they were already equal, forget it. */
1578 if (class1 == class2)
1579 return;
1581 for (elt = class2; elt; elt = next)
1583 unsigned int hash;
1584 rtx exp = elt->exp;
1585 enum machine_mode mode = elt->mode;
1587 next = elt->next_same_value;
1589 /* Remove old entry, make a new one in CLASS1's class.
1590 Don't do this for invalid entries as we cannot find their
1591 hash code (it also isn't necessary). */
1592 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1594 bool need_rehash = false;
1596 hash_arg_in_memory = 0;
1597 hash = HASH (exp, mode);
1599 if (REG_P (exp))
1601 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1602 delete_reg_equiv (REGNO (exp));
1605 remove_from_table (elt, hash);
1607 if (insert_regs (exp, class1, 0) || need_rehash)
1609 rehash_using_reg (exp);
1610 hash = HASH (exp, mode);
1612 new = insert (exp, class1, hash, mode);
1613 new->in_memory = hash_arg_in_memory;
1618 /* Flush the entire hash table. */
1620 static void
1621 flush_hash_table (void)
1623 int i;
1624 struct table_elt *p;
1626 for (i = 0; i < HASH_SIZE; i++)
1627 for (p = table[i]; p; p = table[i])
1629 /* Note that invalidate can remove elements
1630 after P in the current hash chain. */
1631 if (REG_P (p->exp))
1632 invalidate (p->exp, VOIDmode);
1633 else
1634 remove_from_table (p, i);
1638 /* Function called for each rtx to check whether true dependence exist. */
1639 struct check_dependence_data
1641 enum machine_mode mode;
1642 rtx exp;
1643 rtx addr;
1646 static int
1647 check_dependence (rtx *x, void *data)
1649 struct check_dependence_data *d = (struct check_dependence_data *) data;
1650 if (*x && MEM_P (*x))
1651 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1652 cse_rtx_varies_p);
1653 else
1654 return 0;
1657 /* Remove from the hash table, or mark as invalid, all expressions whose
1658 values could be altered by storing in X. X is a register, a subreg, or
1659 a memory reference with nonvarying address (because, when a memory
1660 reference with a varying address is stored in, all memory references are
1661 removed by invalidate_memory so specific invalidation is superfluous).
1662 FULL_MODE, if not VOIDmode, indicates that this much should be
1663 invalidated instead of just the amount indicated by the mode of X. This
1664 is only used for bitfield stores into memory.
1666 A nonvarying address may be just a register or just a symbol reference,
1667 or it may be either of those plus a numeric offset. */
1669 static void
1670 invalidate (rtx x, enum machine_mode full_mode)
1672 int i;
1673 struct table_elt *p;
1674 rtx addr;
1676 switch (GET_CODE (x))
1678 case REG:
1680 /* If X is a register, dependencies on its contents are recorded
1681 through the qty number mechanism. Just change the qty number of
1682 the register, mark it as invalid for expressions that refer to it,
1683 and remove it itself. */
1684 unsigned int regno = REGNO (x);
1685 unsigned int hash = HASH (x, GET_MODE (x));
1687 /* Remove REGNO from any quantity list it might be on and indicate
1688 that its value might have changed. If it is a pseudo, remove its
1689 entry from the hash table.
1691 For a hard register, we do the first two actions above for any
1692 additional hard registers corresponding to X. Then, if any of these
1693 registers are in the table, we must remove any REG entries that
1694 overlap these registers. */
1696 delete_reg_equiv (regno);
1697 REG_TICK (regno)++;
1698 SUBREG_TICKED (regno) = -1;
1700 if (regno >= FIRST_PSEUDO_REGISTER)
1702 /* Because a register can be referenced in more than one mode,
1703 we might have to remove more than one table entry. */
1704 struct table_elt *elt;
1706 while ((elt = lookup_for_remove (x, hash, GET_MODE (x))))
1707 remove_from_table (elt, hash);
1709 else
1711 HOST_WIDE_INT in_table
1712 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1713 unsigned int endregno = END_HARD_REGNO (x);
1714 unsigned int tregno, tendregno, rn;
1715 struct table_elt *p, *next;
1717 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1719 for (rn = regno + 1; rn < endregno; rn++)
1721 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1722 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1723 delete_reg_equiv (rn);
1724 REG_TICK (rn)++;
1725 SUBREG_TICKED (rn) = -1;
1728 if (in_table)
1729 for (hash = 0; hash < HASH_SIZE; hash++)
1730 for (p = table[hash]; p; p = next)
1732 next = p->next_same_hash;
1734 if (!REG_P (p->exp)
1735 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1736 continue;
1738 tregno = REGNO (p->exp);
1739 tendregno = END_HARD_REGNO (p->exp);
1740 if (tendregno > regno && tregno < endregno)
1741 remove_from_table (p, hash);
1745 return;
1747 case SUBREG:
1748 invalidate (SUBREG_REG (x), VOIDmode);
1749 return;
1751 case PARALLEL:
1752 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1753 invalidate (XVECEXP (x, 0, i), VOIDmode);
1754 return;
1756 case EXPR_LIST:
1757 /* This is part of a disjoint return value; extract the location in
1758 question ignoring the offset. */
1759 invalidate (XEXP (x, 0), VOIDmode);
1760 return;
1762 case MEM:
1763 addr = canon_rtx (get_addr (XEXP (x, 0)));
1764 /* Calculate the canonical version of X here so that
1765 true_dependence doesn't generate new RTL for X on each call. */
1766 x = canon_rtx (x);
1768 /* Remove all hash table elements that refer to overlapping pieces of
1769 memory. */
1770 if (full_mode == VOIDmode)
1771 full_mode = GET_MODE (x);
1773 for (i = 0; i < HASH_SIZE; i++)
1775 struct table_elt *next;
1777 for (p = table[i]; p; p = next)
1779 next = p->next_same_hash;
1780 if (p->in_memory)
1782 struct check_dependence_data d;
1784 /* Just canonicalize the expression once;
1785 otherwise each time we call invalidate
1786 true_dependence will canonicalize the
1787 expression again. */
1788 if (!p->canon_exp)
1789 p->canon_exp = canon_rtx (p->exp);
1790 d.exp = x;
1791 d.addr = addr;
1792 d.mode = full_mode;
1793 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1794 remove_from_table (p, i);
1798 return;
1800 default:
1801 gcc_unreachable ();
1805 /* Remove all expressions that refer to register REGNO,
1806 since they are already invalid, and we are about to
1807 mark that register valid again and don't want the old
1808 expressions to reappear as valid. */
1810 static void
1811 remove_invalid_refs (unsigned int regno)
1813 unsigned int i;
1814 struct table_elt *p, *next;
1816 for (i = 0; i < HASH_SIZE; i++)
1817 for (p = table[i]; p; p = next)
1819 next = p->next_same_hash;
1820 if (!REG_P (p->exp)
1821 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1822 remove_from_table (p, i);
1826 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1827 and mode MODE. */
1828 static void
1829 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1830 enum machine_mode mode)
1832 unsigned int i;
1833 struct table_elt *p, *next;
1834 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1836 for (i = 0; i < HASH_SIZE; i++)
1837 for (p = table[i]; p; p = next)
1839 rtx exp = p->exp;
1840 next = p->next_same_hash;
1842 if (!REG_P (exp)
1843 && (GET_CODE (exp) != SUBREG
1844 || !REG_P (SUBREG_REG (exp))
1845 || REGNO (SUBREG_REG (exp)) != regno
1846 || (((SUBREG_BYTE (exp)
1847 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1848 && SUBREG_BYTE (exp) <= end))
1849 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1850 remove_from_table (p, i);
1854 /* Recompute the hash codes of any valid entries in the hash table that
1855 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1857 This is called when we make a jump equivalence. */
1859 static void
1860 rehash_using_reg (rtx x)
1862 unsigned int i;
1863 struct table_elt *p, *next;
1864 unsigned hash;
1866 if (GET_CODE (x) == SUBREG)
1867 x = SUBREG_REG (x);
1869 /* If X is not a register or if the register is known not to be in any
1870 valid entries in the table, we have no work to do. */
1872 if (!REG_P (x)
1873 || REG_IN_TABLE (REGNO (x)) < 0
1874 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1875 return;
1877 /* Scan all hash chains looking for valid entries that mention X.
1878 If we find one and it is in the wrong hash chain, move it. */
1880 for (i = 0; i < HASH_SIZE; i++)
1881 for (p = table[i]; p; p = next)
1883 next = p->next_same_hash;
1884 if (reg_mentioned_p (x, p->exp)
1885 && exp_equiv_p (p->exp, p->exp, 1, false)
1886 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1888 if (p->next_same_hash)
1889 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1891 if (p->prev_same_hash)
1892 p->prev_same_hash->next_same_hash = p->next_same_hash;
1893 else
1894 table[i] = p->next_same_hash;
1896 p->next_same_hash = table[hash];
1897 p->prev_same_hash = 0;
1898 if (table[hash])
1899 table[hash]->prev_same_hash = p;
1900 table[hash] = p;
1905 /* Remove from the hash table any expression that is a call-clobbered
1906 register. Also update their TICK values. */
1908 static void
1909 invalidate_for_call (void)
1911 unsigned int regno, endregno;
1912 unsigned int i;
1913 unsigned hash;
1914 struct table_elt *p, *next;
1915 int in_table = 0;
1917 /* Go through all the hard registers. For each that is clobbered in
1918 a CALL_INSN, remove the register from quantity chains and update
1919 reg_tick if defined. Also see if any of these registers is currently
1920 in the table. */
1922 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1923 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1925 delete_reg_equiv (regno);
1926 if (REG_TICK (regno) >= 0)
1928 REG_TICK (regno)++;
1929 SUBREG_TICKED (regno) = -1;
1932 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1935 /* In the case where we have no call-clobbered hard registers in the
1936 table, we are done. Otherwise, scan the table and remove any
1937 entry that overlaps a call-clobbered register. */
1939 if (in_table)
1940 for (hash = 0; hash < HASH_SIZE; hash++)
1941 for (p = table[hash]; p; p = next)
1943 next = p->next_same_hash;
1945 if (!REG_P (p->exp)
1946 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1947 continue;
1949 regno = REGNO (p->exp);
1950 endregno = END_HARD_REGNO (p->exp);
1952 for (i = regno; i < endregno; i++)
1953 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1955 remove_from_table (p, hash);
1956 break;
1961 /* Given an expression X of type CONST,
1962 and ELT which is its table entry (or 0 if it
1963 is not in the hash table),
1964 return an alternate expression for X as a register plus integer.
1965 If none can be found, return 0. */
1967 static rtx
1968 use_related_value (rtx x, struct table_elt *elt)
1970 struct table_elt *relt = 0;
1971 struct table_elt *p, *q;
1972 HOST_WIDE_INT offset;
1974 /* First, is there anything related known?
1975 If we have a table element, we can tell from that.
1976 Otherwise, must look it up. */
1978 if (elt != 0 && elt->related_value != 0)
1979 relt = elt;
1980 else if (elt == 0 && GET_CODE (x) == CONST)
1982 rtx subexp = get_related_value (x);
1983 if (subexp != 0)
1984 relt = lookup (subexp,
1985 SAFE_HASH (subexp, GET_MODE (subexp)),
1986 GET_MODE (subexp));
1989 if (relt == 0)
1990 return 0;
1992 /* Search all related table entries for one that has an
1993 equivalent register. */
1995 p = relt;
1996 while (1)
1998 /* This loop is strange in that it is executed in two different cases.
1999 The first is when X is already in the table. Then it is searching
2000 the RELATED_VALUE list of X's class (RELT). The second case is when
2001 X is not in the table. Then RELT points to a class for the related
2002 value.
2004 Ensure that, whatever case we are in, that we ignore classes that have
2005 the same value as X. */
2007 if (rtx_equal_p (x, p->exp))
2008 q = 0;
2009 else
2010 for (q = p->first_same_value; q; q = q->next_same_value)
2011 if (REG_P (q->exp))
2012 break;
2014 if (q)
2015 break;
2017 p = p->related_value;
2019 /* We went all the way around, so there is nothing to be found.
2020 Alternatively, perhaps RELT was in the table for some other reason
2021 and it has no related values recorded. */
2022 if (p == relt || p == 0)
2023 break;
2026 if (q == 0)
2027 return 0;
2029 offset = (get_integer_term (x) - get_integer_term (p->exp));
2030 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2031 return plus_constant (q->exp, offset);
2034 /* Hash a string. Just add its bytes up. */
2035 static inline unsigned
2036 hash_rtx_string (const char *ps)
2038 unsigned hash = 0;
2039 const unsigned char *p = (const unsigned char *) ps;
2041 if (p)
2042 while (*p)
2043 hash += *p++;
2045 return hash;
2048 /* Hash an rtx. We are careful to make sure the value is never negative.
2049 Equivalent registers hash identically.
2050 MODE is used in hashing for CONST_INTs only;
2051 otherwise the mode of X is used.
2053 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2055 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2056 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2058 Note that cse_insn knows that the hash code of a MEM expression
2059 is just (int) MEM plus the hash code of the address. */
2061 unsigned
2062 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2063 int *hash_arg_in_memory_p, bool have_reg_qty)
2065 int i, j;
2066 unsigned hash = 0;
2067 enum rtx_code code;
2068 const char *fmt;
2070 /* Used to turn recursion into iteration. We can't rely on GCC's
2071 tail-recursion elimination since we need to keep accumulating values
2072 in HASH. */
2073 repeat:
2074 if (x == 0)
2075 return hash;
2077 code = GET_CODE (x);
2078 switch (code)
2080 case REG:
2082 unsigned int regno = REGNO (x);
2084 if (!reload_completed)
2086 /* On some machines, we can't record any non-fixed hard register,
2087 because extending its life will cause reload problems. We
2088 consider ap, fp, sp, gp to be fixed for this purpose.
2090 We also consider CCmode registers to be fixed for this purpose;
2091 failure to do so leads to failure to simplify 0<100 type of
2092 conditionals.
2094 On all machines, we can't record any global registers.
2095 Nor should we record any register that is in a small
2096 class, as defined by CLASS_LIKELY_SPILLED_P. */
2097 bool record;
2099 if (regno >= FIRST_PSEUDO_REGISTER)
2100 record = true;
2101 else if (x == frame_pointer_rtx
2102 || x == hard_frame_pointer_rtx
2103 || x == arg_pointer_rtx
2104 || x == stack_pointer_rtx
2105 || x == pic_offset_table_rtx)
2106 record = true;
2107 else if (global_regs[regno])
2108 record = false;
2109 else if (fixed_regs[regno])
2110 record = true;
2111 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2112 record = true;
2113 else if (SMALL_REGISTER_CLASSES)
2114 record = false;
2115 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2116 record = false;
2117 else
2118 record = true;
2120 if (!record)
2122 *do_not_record_p = 1;
2123 return 0;
2127 hash += ((unsigned int) REG << 7);
2128 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2129 return hash;
2132 /* We handle SUBREG of a REG specially because the underlying
2133 reg changes its hash value with every value change; we don't
2134 want to have to forget unrelated subregs when one subreg changes. */
2135 case SUBREG:
2137 if (REG_P (SUBREG_REG (x)))
2139 hash += (((unsigned int) SUBREG << 7)
2140 + REGNO (SUBREG_REG (x))
2141 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2142 return hash;
2144 break;
2147 case CONST_INT:
2148 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2149 + (unsigned int) INTVAL (x));
2150 return hash;
2152 case CONST_DOUBLE:
2153 /* This is like the general case, except that it only counts
2154 the integers representing the constant. */
2155 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2156 if (GET_MODE (x) != VOIDmode)
2157 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2158 else
2159 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2160 + (unsigned int) CONST_DOUBLE_HIGH (x));
2161 return hash;
2163 case CONST_FIXED:
2164 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2165 hash += fixed_hash (CONST_FIXED_VALUE (x));
2166 return hash;
2168 case CONST_VECTOR:
2170 int units;
2171 rtx elt;
2173 units = CONST_VECTOR_NUNITS (x);
2175 for (i = 0; i < units; ++i)
2177 elt = CONST_VECTOR_ELT (x, i);
2178 hash += hash_rtx (elt, GET_MODE (elt), do_not_record_p,
2179 hash_arg_in_memory_p, have_reg_qty);
2182 return hash;
2185 /* Assume there is only one rtx object for any given label. */
2186 case LABEL_REF:
2187 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2188 differences and differences between each stage's debugging dumps. */
2189 hash += (((unsigned int) LABEL_REF << 7)
2190 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2191 return hash;
2193 case SYMBOL_REF:
2195 /* Don't hash on the symbol's address to avoid bootstrap differences.
2196 Different hash values may cause expressions to be recorded in
2197 different orders and thus different registers to be used in the
2198 final assembler. This also avoids differences in the dump files
2199 between various stages. */
2200 unsigned int h = 0;
2201 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2203 while (*p)
2204 h += (h << 7) + *p++; /* ??? revisit */
2206 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2207 return hash;
2210 case MEM:
2211 /* We don't record if marked volatile or if BLKmode since we don't
2212 know the size of the move. */
2213 if (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode)
2215 *do_not_record_p = 1;
2216 return 0;
2218 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2219 *hash_arg_in_memory_p = 1;
2221 /* Now that we have already found this special case,
2222 might as well speed it up as much as possible. */
2223 hash += (unsigned) MEM;
2224 x = XEXP (x, 0);
2225 goto repeat;
2227 case USE:
2228 /* A USE that mentions non-volatile memory needs special
2229 handling since the MEM may be BLKmode which normally
2230 prevents an entry from being made. Pure calls are
2231 marked by a USE which mentions BLKmode memory.
2232 See calls.c:emit_call_1. */
2233 if (MEM_P (XEXP (x, 0))
2234 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2236 hash += (unsigned) USE;
2237 x = XEXP (x, 0);
2239 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2240 *hash_arg_in_memory_p = 1;
2242 /* Now that we have already found this special case,
2243 might as well speed it up as much as possible. */
2244 hash += (unsigned) MEM;
2245 x = XEXP (x, 0);
2246 goto repeat;
2248 break;
2250 case PRE_DEC:
2251 case PRE_INC:
2252 case POST_DEC:
2253 case POST_INC:
2254 case PRE_MODIFY:
2255 case POST_MODIFY:
2256 case PC:
2257 case CC0:
2258 case CALL:
2259 case UNSPEC_VOLATILE:
2260 *do_not_record_p = 1;
2261 return 0;
2263 case ASM_OPERANDS:
2264 if (MEM_VOLATILE_P (x))
2266 *do_not_record_p = 1;
2267 return 0;
2269 else
2271 /* We don't want to take the filename and line into account. */
2272 hash += (unsigned) code + (unsigned) GET_MODE (x)
2273 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2274 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2275 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2277 if (ASM_OPERANDS_INPUT_LENGTH (x))
2279 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2281 hash += (hash_rtx (ASM_OPERANDS_INPUT (x, i),
2282 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2283 do_not_record_p, hash_arg_in_memory_p,
2284 have_reg_qty)
2285 + hash_rtx_string
2286 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2289 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2290 x = ASM_OPERANDS_INPUT (x, 0);
2291 mode = GET_MODE (x);
2292 goto repeat;
2295 return hash;
2297 break;
2299 default:
2300 break;
2303 i = GET_RTX_LENGTH (code) - 1;
2304 hash += (unsigned) code + (unsigned) GET_MODE (x);
2305 fmt = GET_RTX_FORMAT (code);
2306 for (; i >= 0; i--)
2308 switch (fmt[i])
2310 case 'e':
2311 /* If we are about to do the last recursive call
2312 needed at this level, change it into iteration.
2313 This function is called enough to be worth it. */
2314 if (i == 0)
2316 x = XEXP (x, i);
2317 goto repeat;
2320 hash += hash_rtx (XEXP (x, i), 0, do_not_record_p,
2321 hash_arg_in_memory_p, have_reg_qty);
2322 break;
2324 case 'E':
2325 for (j = 0; j < XVECLEN (x, i); j++)
2326 hash += hash_rtx (XVECEXP (x, i, j), 0, do_not_record_p,
2327 hash_arg_in_memory_p, have_reg_qty);
2328 break;
2330 case 's':
2331 hash += hash_rtx_string (XSTR (x, i));
2332 break;
2334 case 'i':
2335 hash += (unsigned int) XINT (x, i);
2336 break;
2338 case '0': case 't':
2339 /* Unused. */
2340 break;
2342 default:
2343 gcc_unreachable ();
2347 return hash;
2350 /* Hash an rtx X for cse via hash_rtx.
2351 Stores 1 in do_not_record if any subexpression is volatile.
2352 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2353 does not have the RTX_UNCHANGING_P bit set. */
2355 static inline unsigned
2356 canon_hash (rtx x, enum machine_mode mode)
2358 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2361 /* Like canon_hash but with no side effects, i.e. do_not_record
2362 and hash_arg_in_memory are not changed. */
2364 static inline unsigned
2365 safe_hash (rtx x, enum machine_mode mode)
2367 int dummy_do_not_record;
2368 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2371 /* Return 1 iff X and Y would canonicalize into the same thing,
2372 without actually constructing the canonicalization of either one.
2373 If VALIDATE is nonzero,
2374 we assume X is an expression being processed from the rtl
2375 and Y was found in the hash table. We check register refs
2376 in Y for being marked as valid.
2378 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2381 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2383 int i, j;
2384 enum rtx_code code;
2385 const char *fmt;
2387 /* Note: it is incorrect to assume an expression is equivalent to itself
2388 if VALIDATE is nonzero. */
2389 if (x == y && !validate)
2390 return 1;
2392 if (x == 0 || y == 0)
2393 return x == y;
2395 code = GET_CODE (x);
2396 if (code != GET_CODE (y))
2397 return 0;
2399 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2400 if (GET_MODE (x) != GET_MODE (y))
2401 return 0;
2403 switch (code)
2405 case PC:
2406 case CC0:
2407 case CONST_INT:
2408 case CONST_DOUBLE:
2409 case CONST_FIXED:
2410 return x == y;
2412 case LABEL_REF:
2413 return XEXP (x, 0) == XEXP (y, 0);
2415 case SYMBOL_REF:
2416 return XSTR (x, 0) == XSTR (y, 0);
2418 case REG:
2419 if (for_gcse)
2420 return REGNO (x) == REGNO (y);
2421 else
2423 unsigned int regno = REGNO (y);
2424 unsigned int i;
2425 unsigned int endregno = END_REGNO (y);
2427 /* If the quantities are not the same, the expressions are not
2428 equivalent. If there are and we are not to validate, they
2429 are equivalent. Otherwise, ensure all regs are up-to-date. */
2431 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2432 return 0;
2434 if (! validate)
2435 return 1;
2437 for (i = regno; i < endregno; i++)
2438 if (REG_IN_TABLE (i) != REG_TICK (i))
2439 return 0;
2441 return 1;
2444 case MEM:
2445 if (for_gcse)
2447 /* A volatile mem should not be considered equivalent to any
2448 other. */
2449 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2450 return 0;
2452 /* Can't merge two expressions in different alias sets, since we
2453 can decide that the expression is transparent in a block when
2454 it isn't, due to it being set with the different alias set.
2456 Also, can't merge two expressions with different MEM_ATTRS.
2457 They could e.g. be two different entities allocated into the
2458 same space on the stack (see e.g. PR25130). In that case, the
2459 MEM addresses can be the same, even though the two MEMs are
2460 absolutely not equivalent.
2462 But because really all MEM attributes should be the same for
2463 equivalent MEMs, we just use the invariant that MEMs that have
2464 the same attributes share the same mem_attrs data structure. */
2465 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2466 return 0;
2468 break;
2470 /* For commutative operations, check both orders. */
2471 case PLUS:
2472 case MULT:
2473 case AND:
2474 case IOR:
2475 case XOR:
2476 case NE:
2477 case EQ:
2478 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2479 validate, for_gcse)
2480 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2481 validate, for_gcse))
2482 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2483 validate, for_gcse)
2484 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2485 validate, for_gcse)));
2487 case ASM_OPERANDS:
2488 /* We don't use the generic code below because we want to
2489 disregard filename and line numbers. */
2491 /* A volatile asm isn't equivalent to any other. */
2492 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2493 return 0;
2495 if (GET_MODE (x) != GET_MODE (y)
2496 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2497 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2498 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2499 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2500 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2501 return 0;
2503 if (ASM_OPERANDS_INPUT_LENGTH (x))
2505 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2506 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2507 ASM_OPERANDS_INPUT (y, i),
2508 validate, for_gcse)
2509 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2510 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2511 return 0;
2514 return 1;
2516 default:
2517 break;
2520 /* Compare the elements. If any pair of corresponding elements
2521 fail to match, return 0 for the whole thing. */
2523 fmt = GET_RTX_FORMAT (code);
2524 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2526 switch (fmt[i])
2528 case 'e':
2529 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2530 validate, for_gcse))
2531 return 0;
2532 break;
2534 case 'E':
2535 if (XVECLEN (x, i) != XVECLEN (y, i))
2536 return 0;
2537 for (j = 0; j < XVECLEN (x, i); j++)
2538 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2539 validate, for_gcse))
2540 return 0;
2541 break;
2543 case 's':
2544 if (strcmp (XSTR (x, i), XSTR (y, i)))
2545 return 0;
2546 break;
2548 case 'i':
2549 if (XINT (x, i) != XINT (y, i))
2550 return 0;
2551 break;
2553 case 'w':
2554 if (XWINT (x, i) != XWINT (y, i))
2555 return 0;
2556 break;
2558 case '0':
2559 case 't':
2560 break;
2562 default:
2563 gcc_unreachable ();
2567 return 1;
2570 /* Return 1 if X has a value that can vary even between two
2571 executions of the program. 0 means X can be compared reliably
2572 against certain constants or near-constants. */
2574 static bool
2575 cse_rtx_varies_p (const_rtx x, bool from_alias)
2577 /* We need not check for X and the equivalence class being of the same
2578 mode because if X is equivalent to a constant in some mode, it
2579 doesn't vary in any mode. */
2581 if (REG_P (x)
2582 && REGNO_QTY_VALID_P (REGNO (x)))
2584 int x_q = REG_QTY (REGNO (x));
2585 struct qty_table_elem *x_ent = &qty_table[x_q];
2587 if (GET_MODE (x) == x_ent->mode
2588 && x_ent->const_rtx != NULL_RTX)
2589 return 0;
2592 if (GET_CODE (x) == PLUS
2593 && GET_CODE (XEXP (x, 1)) == CONST_INT
2594 && REG_P (XEXP (x, 0))
2595 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2597 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2598 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2600 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2601 && x0_ent->const_rtx != NULL_RTX)
2602 return 0;
2605 /* This can happen as the result of virtual register instantiation, if
2606 the initial constant is too large to be a valid address. This gives
2607 us a three instruction sequence, load large offset into a register,
2608 load fp minus a constant into a register, then a MEM which is the
2609 sum of the two `constant' registers. */
2610 if (GET_CODE (x) == PLUS
2611 && REG_P (XEXP (x, 0))
2612 && REG_P (XEXP (x, 1))
2613 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2614 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2616 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2617 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2618 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2619 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2621 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2622 && x0_ent->const_rtx != NULL_RTX
2623 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2624 && x1_ent->const_rtx != NULL_RTX)
2625 return 0;
2628 return rtx_varies_p (x, from_alias);
2631 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2632 the result if necessary. INSN is as for canon_reg. */
2634 static void
2635 validate_canon_reg (rtx *xloc, rtx insn)
2637 if (*xloc)
2639 rtx new = canon_reg (*xloc, insn);
2641 /* If replacing pseudo with hard reg or vice versa, ensure the
2642 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2643 gcc_assert (insn && new);
2644 validate_change (insn, xloc, new, 1);
2648 /* Canonicalize an expression:
2649 replace each register reference inside it
2650 with the "oldest" equivalent register.
2652 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2653 after we make our substitution. The calls are made with IN_GROUP nonzero
2654 so apply_change_group must be called upon the outermost return from this
2655 function (unless INSN is zero). The result of apply_change_group can
2656 generally be discarded since the changes we are making are optional. */
2658 static rtx
2659 canon_reg (rtx x, rtx insn)
2661 int i;
2662 enum rtx_code code;
2663 const char *fmt;
2665 if (x == 0)
2666 return x;
2668 code = GET_CODE (x);
2669 switch (code)
2671 case PC:
2672 case CC0:
2673 case CONST:
2674 case CONST_INT:
2675 case CONST_DOUBLE:
2676 case CONST_FIXED:
2677 case CONST_VECTOR:
2678 case SYMBOL_REF:
2679 case LABEL_REF:
2680 case ADDR_VEC:
2681 case ADDR_DIFF_VEC:
2682 return x;
2684 case REG:
2686 int first;
2687 int q;
2688 struct qty_table_elem *ent;
2690 /* Never replace a hard reg, because hard regs can appear
2691 in more than one machine mode, and we must preserve the mode
2692 of each occurrence. Also, some hard regs appear in
2693 MEMs that are shared and mustn't be altered. Don't try to
2694 replace any reg that maps to a reg of class NO_REGS. */
2695 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2696 || ! REGNO_QTY_VALID_P (REGNO (x)))
2697 return x;
2699 q = REG_QTY (REGNO (x));
2700 ent = &qty_table[q];
2701 first = ent->first_reg;
2702 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2703 : REGNO_REG_CLASS (first) == NO_REGS ? x
2704 : gen_rtx_REG (ent->mode, first));
2707 default:
2708 break;
2711 fmt = GET_RTX_FORMAT (code);
2712 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2714 int j;
2716 if (fmt[i] == 'e')
2717 validate_canon_reg (&XEXP (x, i), insn);
2718 else if (fmt[i] == 'E')
2719 for (j = 0; j < XVECLEN (x, i); j++)
2720 validate_canon_reg (&XVECEXP (x, i, j), insn);
2723 return x;
2726 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2727 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2728 what values are being compared.
2730 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2731 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2732 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2733 compared to produce cc0.
2735 The return value is the comparison operator and is either the code of
2736 A or the code corresponding to the inverse of the comparison. */
2738 static enum rtx_code
2739 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2740 enum machine_mode *pmode1, enum machine_mode *pmode2)
2742 rtx arg1, arg2;
2744 arg1 = *parg1, arg2 = *parg2;
2746 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2748 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2750 /* Set nonzero when we find something of interest. */
2751 rtx x = 0;
2752 int reverse_code = 0;
2753 struct table_elt *p = 0;
2755 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2756 On machines with CC0, this is the only case that can occur, since
2757 fold_rtx will return the COMPARE or item being compared with zero
2758 when given CC0. */
2760 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2761 x = arg1;
2763 /* If ARG1 is a comparison operator and CODE is testing for
2764 STORE_FLAG_VALUE, get the inner arguments. */
2766 else if (COMPARISON_P (arg1))
2768 #ifdef FLOAT_STORE_FLAG_VALUE
2769 REAL_VALUE_TYPE fsfv;
2770 #endif
2772 if (code == NE
2773 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2774 && code == LT && STORE_FLAG_VALUE == -1)
2775 #ifdef FLOAT_STORE_FLAG_VALUE
2776 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2777 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2778 REAL_VALUE_NEGATIVE (fsfv)))
2779 #endif
2781 x = arg1;
2782 else if (code == EQ
2783 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2784 && code == GE && STORE_FLAG_VALUE == -1)
2785 #ifdef FLOAT_STORE_FLAG_VALUE
2786 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2787 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2788 REAL_VALUE_NEGATIVE (fsfv)))
2789 #endif
2791 x = arg1, reverse_code = 1;
2794 /* ??? We could also check for
2796 (ne (and (eq (...) (const_int 1))) (const_int 0))
2798 and related forms, but let's wait until we see them occurring. */
2800 if (x == 0)
2801 /* Look up ARG1 in the hash table and see if it has an equivalence
2802 that lets us see what is being compared. */
2803 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2804 if (p)
2806 p = p->first_same_value;
2808 /* If what we compare is already known to be constant, that is as
2809 good as it gets.
2810 We need to break the loop in this case, because otherwise we
2811 can have an infinite loop when looking at a reg that is known
2812 to be a constant which is the same as a comparison of a reg
2813 against zero which appears later in the insn stream, which in
2814 turn is constant and the same as the comparison of the first reg
2815 against zero... */
2816 if (p->is_const)
2817 break;
2820 for (; p; p = p->next_same_value)
2822 enum machine_mode inner_mode = GET_MODE (p->exp);
2823 #ifdef FLOAT_STORE_FLAG_VALUE
2824 REAL_VALUE_TYPE fsfv;
2825 #endif
2827 /* If the entry isn't valid, skip it. */
2828 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2829 continue;
2831 if (GET_CODE (p->exp) == COMPARE
2832 /* Another possibility is that this machine has a compare insn
2833 that includes the comparison code. In that case, ARG1 would
2834 be equivalent to a comparison operation that would set ARG1 to
2835 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2836 ORIG_CODE is the actual comparison being done; if it is an EQ,
2837 we must reverse ORIG_CODE. On machine with a negative value
2838 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2839 || ((code == NE
2840 || (code == LT
2841 && GET_MODE_CLASS (inner_mode) == MODE_INT
2842 && (GET_MODE_BITSIZE (inner_mode)
2843 <= HOST_BITS_PER_WIDE_INT)
2844 && (STORE_FLAG_VALUE
2845 & ((HOST_WIDE_INT) 1
2846 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2847 #ifdef FLOAT_STORE_FLAG_VALUE
2848 || (code == LT
2849 && SCALAR_FLOAT_MODE_P (inner_mode)
2850 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2851 REAL_VALUE_NEGATIVE (fsfv)))
2852 #endif
2854 && COMPARISON_P (p->exp)))
2856 x = p->exp;
2857 break;
2859 else if ((code == EQ
2860 || (code == GE
2861 && GET_MODE_CLASS (inner_mode) == MODE_INT
2862 && (GET_MODE_BITSIZE (inner_mode)
2863 <= HOST_BITS_PER_WIDE_INT)
2864 && (STORE_FLAG_VALUE
2865 & ((HOST_WIDE_INT) 1
2866 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2867 #ifdef FLOAT_STORE_FLAG_VALUE
2868 || (code == GE
2869 && SCALAR_FLOAT_MODE_P (inner_mode)
2870 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2871 REAL_VALUE_NEGATIVE (fsfv)))
2872 #endif
2874 && COMPARISON_P (p->exp))
2876 reverse_code = 1;
2877 x = p->exp;
2878 break;
2881 /* If this non-trapping address, e.g. fp + constant, the
2882 equivalent is a better operand since it may let us predict
2883 the value of the comparison. */
2884 else if (!rtx_addr_can_trap_p (p->exp))
2886 arg1 = p->exp;
2887 continue;
2891 /* If we didn't find a useful equivalence for ARG1, we are done.
2892 Otherwise, set up for the next iteration. */
2893 if (x == 0)
2894 break;
2896 /* If we need to reverse the comparison, make sure that that is
2897 possible -- we can't necessarily infer the value of GE from LT
2898 with floating-point operands. */
2899 if (reverse_code)
2901 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2902 if (reversed == UNKNOWN)
2903 break;
2904 else
2905 code = reversed;
2907 else if (COMPARISON_P (x))
2908 code = GET_CODE (x);
2909 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2912 /* Return our results. Return the modes from before fold_rtx
2913 because fold_rtx might produce const_int, and then it's too late. */
2914 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2915 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2917 return code;
2920 /* If X is a nontrivial arithmetic operation on an argument for which
2921 a constant value can be determined, return the result of operating
2922 on that value, as a constant. Otherwise, return X, possibly with
2923 one or more operands changed to a forward-propagated constant.
2925 If X is a register whose contents are known, we do NOT return
2926 those contents here; equiv_constant is called to perform that task.
2927 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2929 INSN is the insn that we may be modifying. If it is 0, make a copy
2930 of X before modifying it. */
2932 static rtx
2933 fold_rtx (rtx x, rtx insn)
2935 enum rtx_code code;
2936 enum machine_mode mode;
2937 const char *fmt;
2938 int i;
2939 rtx new = 0;
2940 int changed = 0;
2942 /* Operands of X. */
2943 rtx folded_arg0;
2944 rtx folded_arg1;
2946 /* Constant equivalents of first three operands of X;
2947 0 when no such equivalent is known. */
2948 rtx const_arg0;
2949 rtx const_arg1;
2950 rtx const_arg2;
2952 /* The mode of the first operand of X. We need this for sign and zero
2953 extends. */
2954 enum machine_mode mode_arg0;
2956 if (x == 0)
2957 return x;
2959 /* Try to perform some initial simplifications on X. */
2960 code = GET_CODE (x);
2961 switch (code)
2963 case MEM:
2964 case SUBREG:
2965 if ((new = equiv_constant (x)) != NULL_RTX)
2966 return new;
2967 return x;
2969 case CONST:
2970 case CONST_INT:
2971 case CONST_DOUBLE:
2972 case CONST_FIXED:
2973 case CONST_VECTOR:
2974 case SYMBOL_REF:
2975 case LABEL_REF:
2976 case REG:
2977 case PC:
2978 /* No use simplifying an EXPR_LIST
2979 since they are used only for lists of args
2980 in a function call's REG_EQUAL note. */
2981 case EXPR_LIST:
2982 return x;
2984 #ifdef HAVE_cc0
2985 case CC0:
2986 return prev_insn_cc0;
2987 #endif
2989 case ASM_OPERANDS:
2990 if (insn)
2992 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2993 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
2994 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
2996 return x;
2998 #ifdef NO_FUNCTION_CSE
2999 case CALL:
3000 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3001 return x;
3002 break;
3003 #endif
3005 /* Anything else goes through the loop below. */
3006 default:
3007 break;
3010 mode = GET_MODE (x);
3011 const_arg0 = 0;
3012 const_arg1 = 0;
3013 const_arg2 = 0;
3014 mode_arg0 = VOIDmode;
3016 /* Try folding our operands.
3017 Then see which ones have constant values known. */
3019 fmt = GET_RTX_FORMAT (code);
3020 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3021 if (fmt[i] == 'e')
3023 rtx folded_arg = XEXP (x, i), const_arg;
3024 enum machine_mode mode_arg = GET_MODE (folded_arg);
3026 switch (GET_CODE (folded_arg))
3028 case MEM:
3029 case REG:
3030 case SUBREG:
3031 const_arg = equiv_constant (folded_arg);
3032 break;
3034 case CONST:
3035 case CONST_INT:
3036 case SYMBOL_REF:
3037 case LABEL_REF:
3038 case CONST_DOUBLE:
3039 case CONST_FIXED:
3040 case CONST_VECTOR:
3041 const_arg = folded_arg;
3042 break;
3044 #ifdef HAVE_cc0
3045 case CC0:
3046 folded_arg = prev_insn_cc0;
3047 mode_arg = prev_insn_cc0_mode;
3048 const_arg = equiv_constant (folded_arg);
3049 break;
3050 #endif
3052 default:
3053 folded_arg = fold_rtx (folded_arg, insn);
3054 const_arg = equiv_constant (folded_arg);
3055 break;
3058 /* For the first three operands, see if the operand
3059 is constant or equivalent to a constant. */
3060 switch (i)
3062 case 0:
3063 folded_arg0 = folded_arg;
3064 const_arg0 = const_arg;
3065 mode_arg0 = mode_arg;
3066 break;
3067 case 1:
3068 folded_arg1 = folded_arg;
3069 const_arg1 = const_arg;
3070 break;
3071 case 2:
3072 const_arg2 = const_arg;
3073 break;
3076 /* Pick the least expensive of the argument and an equivalent constant
3077 argument. */
3078 if (const_arg != 0
3079 && const_arg != folded_arg
3080 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3082 /* It's not safe to substitute the operand of a conversion
3083 operator with a constant, as the conversion's identity
3084 depends upon the mode of its operand. This optimization
3085 is handled by the call to simplify_unary_operation. */
3086 && (GET_RTX_CLASS (code) != RTX_UNARY
3087 || GET_MODE (const_arg) == mode_arg0
3088 || (code != ZERO_EXTEND
3089 && code != SIGN_EXTEND
3090 && code != TRUNCATE
3091 && code != FLOAT_TRUNCATE
3092 && code != FLOAT_EXTEND
3093 && code != FLOAT
3094 && code != FIX
3095 && code != UNSIGNED_FLOAT
3096 && code != UNSIGNED_FIX)))
3097 folded_arg = const_arg;
3099 if (folded_arg == XEXP (x, i))
3100 continue;
3102 if (insn == NULL_RTX && !changed)
3103 x = copy_rtx (x);
3104 changed = 1;
3105 validate_change (insn, &XEXP (x, i), folded_arg, 1);
3108 if (changed)
3110 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3111 consistent with the order in X. */
3112 if (canonicalize_change_group (insn, x))
3114 rtx tem;
3115 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3116 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3119 apply_change_group ();
3122 /* If X is an arithmetic operation, see if we can simplify it. */
3124 switch (GET_RTX_CLASS (code))
3126 case RTX_UNARY:
3128 int is_const = 0;
3130 /* We can't simplify extension ops unless we know the
3131 original mode. */
3132 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3133 && mode_arg0 == VOIDmode)
3134 break;
3136 /* If we had a CONST, strip it off and put it back later if we
3137 fold. */
3138 if (const_arg0 != 0 && GET_CODE (const_arg0) == CONST)
3139 is_const = 1, const_arg0 = XEXP (const_arg0, 0);
3141 new = simplify_unary_operation (code, mode,
3142 const_arg0 ? const_arg0 : folded_arg0,
3143 mode_arg0);
3144 /* NEG of PLUS could be converted into MINUS, but that causes
3145 expressions of the form
3146 (CONST (MINUS (CONST_INT) (SYMBOL_REF)))
3147 which many ports mistakenly treat as LEGITIMATE_CONSTANT_P.
3148 FIXME: those ports should be fixed. */
3149 if (new != 0 && is_const
3150 && GET_CODE (new) == PLUS
3151 && (GET_CODE (XEXP (new, 0)) == SYMBOL_REF
3152 || GET_CODE (XEXP (new, 0)) == LABEL_REF)
3153 && GET_CODE (XEXP (new, 1)) == CONST_INT)
3154 new = gen_rtx_CONST (mode, new);
3156 break;
3158 case RTX_COMPARE:
3159 case RTX_COMM_COMPARE:
3160 /* See what items are actually being compared and set FOLDED_ARG[01]
3161 to those values and CODE to the actual comparison code. If any are
3162 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3163 do anything if both operands are already known to be constant. */
3165 /* ??? Vector mode comparisons are not supported yet. */
3166 if (VECTOR_MODE_P (mode))
3167 break;
3169 if (const_arg0 == 0 || const_arg1 == 0)
3171 struct table_elt *p0, *p1;
3172 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3173 enum machine_mode mode_arg1;
3175 #ifdef FLOAT_STORE_FLAG_VALUE
3176 if (SCALAR_FLOAT_MODE_P (mode))
3178 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3179 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3180 false_rtx = CONST0_RTX (mode);
3182 #endif
3184 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3185 &mode_arg0, &mode_arg1);
3187 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3188 what kinds of things are being compared, so we can't do
3189 anything with this comparison. */
3191 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3192 break;
3194 const_arg0 = equiv_constant (folded_arg0);
3195 const_arg1 = equiv_constant (folded_arg1);
3197 /* If we do not now have two constants being compared, see
3198 if we can nevertheless deduce some things about the
3199 comparison. */
3200 if (const_arg0 == 0 || const_arg1 == 0)
3202 if (const_arg1 != NULL)
3204 rtx cheapest_simplification;
3205 int cheapest_cost;
3206 rtx simp_result;
3207 struct table_elt *p;
3209 /* See if we can find an equivalent of folded_arg0
3210 that gets us a cheaper expression, possibly a
3211 constant through simplifications. */
3212 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3213 mode_arg0);
3215 if (p != NULL)
3217 cheapest_simplification = x;
3218 cheapest_cost = COST (x);
3220 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3222 int cost;
3224 /* If the entry isn't valid, skip it. */
3225 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3226 continue;
3228 /* Try to simplify using this equivalence. */
3229 simp_result
3230 = simplify_relational_operation (code, mode,
3231 mode_arg0,
3232 p->exp,
3233 const_arg1);
3235 if (simp_result == NULL)
3236 continue;
3238 cost = COST (simp_result);
3239 if (cost < cheapest_cost)
3241 cheapest_cost = cost;
3242 cheapest_simplification = simp_result;
3246 /* If we have a cheaper expression now, use that
3247 and try folding it further, from the top. */
3248 if (cheapest_simplification != x)
3249 return fold_rtx (cheapest_simplification, insn);
3253 /* Some addresses are known to be nonzero. We don't know
3254 their sign, but equality comparisons are known. */
3255 if (const_arg1 == const0_rtx
3256 && nonzero_address_p (folded_arg0))
3258 if (code == EQ)
3259 return false_rtx;
3260 else if (code == NE)
3261 return true_rtx;
3264 /* See if the two operands are the same. */
3266 if (folded_arg0 == folded_arg1
3267 || (REG_P (folded_arg0)
3268 && REG_P (folded_arg1)
3269 && (REG_QTY (REGNO (folded_arg0))
3270 == REG_QTY (REGNO (folded_arg1))))
3271 || ((p0 = lookup (folded_arg0,
3272 SAFE_HASH (folded_arg0, mode_arg0),
3273 mode_arg0))
3274 && (p1 = lookup (folded_arg1,
3275 SAFE_HASH (folded_arg1, mode_arg0),
3276 mode_arg0))
3277 && p0->first_same_value == p1->first_same_value))
3279 /* Sadly two equal NaNs are not equivalent. */
3280 if (!HONOR_NANS (mode_arg0))
3281 return ((code == EQ || code == LE || code == GE
3282 || code == LEU || code == GEU || code == UNEQ
3283 || code == UNLE || code == UNGE
3284 || code == ORDERED)
3285 ? true_rtx : false_rtx);
3286 /* Take care for the FP compares we can resolve. */
3287 if (code == UNEQ || code == UNLE || code == UNGE)
3288 return true_rtx;
3289 if (code == LTGT || code == LT || code == GT)
3290 return false_rtx;
3293 /* If FOLDED_ARG0 is a register, see if the comparison we are
3294 doing now is either the same as we did before or the reverse
3295 (we only check the reverse if not floating-point). */
3296 else if (REG_P (folded_arg0))
3298 int qty = REG_QTY (REGNO (folded_arg0));
3300 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3302 struct qty_table_elem *ent = &qty_table[qty];
3304 if ((comparison_dominates_p (ent->comparison_code, code)
3305 || (! FLOAT_MODE_P (mode_arg0)
3306 && comparison_dominates_p (ent->comparison_code,
3307 reverse_condition (code))))
3308 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3309 || (const_arg1
3310 && rtx_equal_p (ent->comparison_const,
3311 const_arg1))
3312 || (REG_P (folded_arg1)
3313 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3314 return (comparison_dominates_p (ent->comparison_code, code)
3315 ? true_rtx : false_rtx);
3321 /* If we are comparing against zero, see if the first operand is
3322 equivalent to an IOR with a constant. If so, we may be able to
3323 determine the result of this comparison. */
3325 if (const_arg1 == const0_rtx)
3327 rtx y = lookup_as_function (folded_arg0, IOR);
3328 rtx inner_const;
3330 if (y != 0
3331 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3332 && GET_CODE (inner_const) == CONST_INT
3333 && INTVAL (inner_const) != 0)
3335 int sign_bitnum = GET_MODE_BITSIZE (mode_arg0) - 1;
3336 int has_sign = (HOST_BITS_PER_WIDE_INT >= sign_bitnum
3337 && (INTVAL (inner_const)
3338 & ((HOST_WIDE_INT) 1 << sign_bitnum)));
3339 rtx true_rtx = const_true_rtx, false_rtx = const0_rtx;
3341 #ifdef FLOAT_STORE_FLAG_VALUE
3342 if (SCALAR_FLOAT_MODE_P (mode))
3344 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3345 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3346 false_rtx = CONST0_RTX (mode);
3348 #endif
3350 switch (code)
3352 case EQ:
3353 return false_rtx;
3354 case NE:
3355 return true_rtx;
3356 case LT: case LE:
3357 if (has_sign)
3358 return true_rtx;
3359 break;
3360 case GT: case GE:
3361 if (has_sign)
3362 return false_rtx;
3363 break;
3364 default:
3365 break;
3371 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3372 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3373 new = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3375 break;
3377 case RTX_BIN_ARITH:
3378 case RTX_COMM_ARITH:
3379 switch (code)
3381 case PLUS:
3382 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3383 with that LABEL_REF as its second operand. If so, the result is
3384 the first operand of that MINUS. This handles switches with an
3385 ADDR_DIFF_VEC table. */
3386 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3388 rtx y
3389 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3390 : lookup_as_function (folded_arg0, MINUS);
3392 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3393 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3394 return XEXP (y, 0);
3396 /* Now try for a CONST of a MINUS like the above. */
3397 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3398 : lookup_as_function (folded_arg0, CONST))) != 0
3399 && GET_CODE (XEXP (y, 0)) == MINUS
3400 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3401 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3402 return XEXP (XEXP (y, 0), 0);
3405 /* Likewise if the operands are in the other order. */
3406 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3408 rtx y
3409 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3410 : lookup_as_function (folded_arg1, MINUS);
3412 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3413 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3414 return XEXP (y, 0);
3416 /* Now try for a CONST of a MINUS like the above. */
3417 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3418 : lookup_as_function (folded_arg1, CONST))) != 0
3419 && GET_CODE (XEXP (y, 0)) == MINUS
3420 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3421 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3422 return XEXP (XEXP (y, 0), 0);
3425 /* If second operand is a register equivalent to a negative
3426 CONST_INT, see if we can find a register equivalent to the
3427 positive constant. Make a MINUS if so. Don't do this for
3428 a non-negative constant since we might then alternate between
3429 choosing positive and negative constants. Having the positive
3430 constant previously-used is the more common case. Be sure
3431 the resulting constant is non-negative; if const_arg1 were
3432 the smallest negative number this would overflow: depending
3433 on the mode, this would either just be the same value (and
3434 hence not save anything) or be incorrect. */
3435 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3436 && INTVAL (const_arg1) < 0
3437 /* This used to test
3439 -INTVAL (const_arg1) >= 0
3441 But The Sun V5.0 compilers mis-compiled that test. So
3442 instead we test for the problematic value in a more direct
3443 manner and hope the Sun compilers get it correct. */
3444 && INTVAL (const_arg1) !=
3445 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3446 && REG_P (folded_arg1))
3448 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3449 struct table_elt *p
3450 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3452 if (p)
3453 for (p = p->first_same_value; p; p = p->next_same_value)
3454 if (REG_P (p->exp))
3455 return simplify_gen_binary (MINUS, mode, folded_arg0,
3456 canon_reg (p->exp, NULL_RTX));
3458 goto from_plus;
3460 case MINUS:
3461 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3462 If so, produce (PLUS Z C2-C). */
3463 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3465 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3466 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3467 return fold_rtx (plus_constant (copy_rtx (y),
3468 -INTVAL (const_arg1)),
3469 NULL_RTX);
3472 /* Fall through. */
3474 from_plus:
3475 case SMIN: case SMAX: case UMIN: case UMAX:
3476 case IOR: case AND: case XOR:
3477 case MULT:
3478 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3479 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3480 is known to be of similar form, we may be able to replace the
3481 operation with a combined operation. This may eliminate the
3482 intermediate operation if every use is simplified in this way.
3483 Note that the similar optimization done by combine.c only works
3484 if the intermediate operation's result has only one reference. */
3486 if (REG_P (folded_arg0)
3487 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3489 int is_shift
3490 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3491 rtx y, inner_const, new_const;
3492 enum rtx_code associate_code;
3494 if (is_shift
3495 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3496 || INTVAL (const_arg1) < 0))
3498 if (SHIFT_COUNT_TRUNCATED)
3499 const_arg1 = GEN_INT (INTVAL (const_arg1)
3500 & (GET_MODE_BITSIZE (mode) - 1));
3501 else
3502 break;
3505 y = lookup_as_function (folded_arg0, code);
3506 if (y == 0)
3507 break;
3509 /* If we have compiled a statement like
3510 "if (x == (x & mask1))", and now are looking at
3511 "x & mask2", we will have a case where the first operand
3512 of Y is the same as our first operand. Unless we detect
3513 this case, an infinite loop will result. */
3514 if (XEXP (y, 0) == folded_arg0)
3515 break;
3517 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3518 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3519 break;
3521 /* Don't associate these operations if they are a PLUS with the
3522 same constant and it is a power of two. These might be doable
3523 with a pre- or post-increment. Similarly for two subtracts of
3524 identical powers of two with post decrement. */
3526 if (code == PLUS && const_arg1 == inner_const
3527 && ((HAVE_PRE_INCREMENT
3528 && exact_log2 (INTVAL (const_arg1)) >= 0)
3529 || (HAVE_POST_INCREMENT
3530 && exact_log2 (INTVAL (const_arg1)) >= 0)
3531 || (HAVE_PRE_DECREMENT
3532 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3533 || (HAVE_POST_DECREMENT
3534 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3535 break;
3537 if (is_shift
3538 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3539 || INTVAL (inner_const) < 0))
3541 if (SHIFT_COUNT_TRUNCATED)
3542 inner_const = GEN_INT (INTVAL (inner_const)
3543 & (GET_MODE_BITSIZE (mode) - 1));
3544 else
3545 break;
3548 /* Compute the code used to compose the constants. For example,
3549 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3551 associate_code = (is_shift || code == MINUS ? PLUS : code);
3553 new_const = simplify_binary_operation (associate_code, mode,
3554 const_arg1, inner_const);
3556 if (new_const == 0)
3557 break;
3559 /* If we are associating shift operations, don't let this
3560 produce a shift of the size of the object or larger.
3561 This could occur when we follow a sign-extend by a right
3562 shift on a machine that does a sign-extend as a pair
3563 of shifts. */
3565 if (is_shift
3566 && GET_CODE (new_const) == CONST_INT
3567 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3569 /* As an exception, we can turn an ASHIFTRT of this
3570 form into a shift of the number of bits - 1. */
3571 if (code == ASHIFTRT)
3572 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3573 else if (!side_effects_p (XEXP (y, 0)))
3574 return CONST0_RTX (mode);
3575 else
3576 break;
3579 y = copy_rtx (XEXP (y, 0));
3581 /* If Y contains our first operand (the most common way this
3582 can happen is if Y is a MEM), we would do into an infinite
3583 loop if we tried to fold it. So don't in that case. */
3585 if (! reg_mentioned_p (folded_arg0, y))
3586 y = fold_rtx (y, insn);
3588 return simplify_gen_binary (code, mode, y, new_const);
3590 break;
3592 case DIV: case UDIV:
3593 /* ??? The associative optimization performed immediately above is
3594 also possible for DIV and UDIV using associate_code of MULT.
3595 However, we would need extra code to verify that the
3596 multiplication does not overflow, that is, there is no overflow
3597 in the calculation of new_const. */
3598 break;
3600 default:
3601 break;
3604 new = simplify_binary_operation (code, mode,
3605 const_arg0 ? const_arg0 : folded_arg0,
3606 const_arg1 ? const_arg1 : folded_arg1);
3607 break;
3609 case RTX_OBJ:
3610 /* (lo_sum (high X) X) is simply X. */
3611 if (code == LO_SUM && const_arg0 != 0
3612 && GET_CODE (const_arg0) == HIGH
3613 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3614 return const_arg1;
3615 break;
3617 case RTX_TERNARY:
3618 case RTX_BITFIELD_OPS:
3619 new = simplify_ternary_operation (code, mode, mode_arg0,
3620 const_arg0 ? const_arg0 : folded_arg0,
3621 const_arg1 ? const_arg1 : folded_arg1,
3622 const_arg2 ? const_arg2 : XEXP (x, 2));
3623 break;
3625 default:
3626 break;
3629 return new ? new : x;
3632 /* Return a constant value currently equivalent to X.
3633 Return 0 if we don't know one. */
3635 static rtx
3636 equiv_constant (rtx x)
3638 if (REG_P (x)
3639 && REGNO_QTY_VALID_P (REGNO (x)))
3641 int x_q = REG_QTY (REGNO (x));
3642 struct qty_table_elem *x_ent = &qty_table[x_q];
3644 if (x_ent->const_rtx)
3645 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3648 if (x == 0 || CONSTANT_P (x))
3649 return x;
3651 if (GET_CODE (x) == SUBREG)
3653 rtx new;
3655 /* See if we previously assigned a constant value to this SUBREG. */
3656 if ((new = lookup_as_function (x, CONST_INT)) != 0
3657 || (new = lookup_as_function (x, CONST_DOUBLE)) != 0
3658 || (new = lookup_as_function (x, CONST_FIXED)) != 0)
3659 return new;
3661 if (REG_P (SUBREG_REG (x))
3662 && (new = equiv_constant (SUBREG_REG (x))) != 0)
3663 return simplify_subreg (GET_MODE (x), SUBREG_REG (x),
3664 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
3666 return 0;
3669 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3670 the hash table in case its value was seen before. */
3672 if (MEM_P (x))
3674 struct table_elt *elt;
3676 x = avoid_constant_pool_reference (x);
3677 if (CONSTANT_P (x))
3678 return x;
3680 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3681 if (elt == 0)
3682 return 0;
3684 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3685 if (elt->is_const && CONSTANT_P (elt->exp))
3686 return elt->exp;
3689 return 0;
3692 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3693 "taken" branch.
3695 In certain cases, this can cause us to add an equivalence. For example,
3696 if we are following the taken case of
3697 if (i == 2)
3698 we can add the fact that `i' and '2' are now equivalent.
3700 In any case, we can record that this comparison was passed. If the same
3701 comparison is seen later, we will know its value. */
3703 static void
3704 record_jump_equiv (rtx insn, bool taken)
3706 int cond_known_true;
3707 rtx op0, op1;
3708 rtx set;
3709 enum machine_mode mode, mode0, mode1;
3710 int reversed_nonequality = 0;
3711 enum rtx_code code;
3713 /* Ensure this is the right kind of insn. */
3714 gcc_assert (any_condjump_p (insn));
3716 set = pc_set (insn);
3718 /* See if this jump condition is known true or false. */
3719 if (taken)
3720 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3721 else
3722 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3724 /* Get the type of comparison being done and the operands being compared.
3725 If we had to reverse a non-equality condition, record that fact so we
3726 know that it isn't valid for floating-point. */
3727 code = GET_CODE (XEXP (SET_SRC (set), 0));
3728 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3729 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3731 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3732 if (! cond_known_true)
3734 code = reversed_comparison_code_parts (code, op0, op1, insn);
3736 /* Don't remember if we can't find the inverse. */
3737 if (code == UNKNOWN)
3738 return;
3741 /* The mode is the mode of the non-constant. */
3742 mode = mode0;
3743 if (mode1 != VOIDmode)
3744 mode = mode1;
3746 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3749 /* Yet another form of subreg creation. In this case, we want something in
3750 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3752 static rtx
3753 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3755 enum machine_mode op_mode = GET_MODE (op);
3756 if (op_mode == mode || op_mode == VOIDmode)
3757 return op;
3758 return lowpart_subreg (mode, op, op_mode);
3761 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3762 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3763 Make any useful entries we can with that information. Called from
3764 above function and called recursively. */
3766 static void
3767 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3768 rtx op1, int reversed_nonequality)
3770 unsigned op0_hash, op1_hash;
3771 int op0_in_memory, op1_in_memory;
3772 struct table_elt *op0_elt, *op1_elt;
3774 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3775 we know that they are also equal in the smaller mode (this is also
3776 true for all smaller modes whether or not there is a SUBREG, but
3777 is not worth testing for with no SUBREG). */
3779 /* Note that GET_MODE (op0) may not equal MODE. */
3780 if (code == EQ && GET_CODE (op0) == SUBREG
3781 && (GET_MODE_SIZE (GET_MODE (op0))
3782 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3784 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3785 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3786 if (tem)
3787 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3788 reversed_nonequality);
3791 if (code == EQ && GET_CODE (op1) == SUBREG
3792 && (GET_MODE_SIZE (GET_MODE (op1))
3793 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3795 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3796 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3797 if (tem)
3798 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3799 reversed_nonequality);
3802 /* Similarly, if this is an NE comparison, and either is a SUBREG
3803 making a smaller mode, we know the whole thing is also NE. */
3805 /* Note that GET_MODE (op0) may not equal MODE;
3806 if we test MODE instead, we can get an infinite recursion
3807 alternating between two modes each wider than MODE. */
3809 if (code == NE && GET_CODE (op0) == SUBREG
3810 && subreg_lowpart_p (op0)
3811 && (GET_MODE_SIZE (GET_MODE (op0))
3812 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3814 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3815 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3816 if (tem)
3817 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3818 reversed_nonequality);
3821 if (code == NE && GET_CODE (op1) == SUBREG
3822 && subreg_lowpart_p (op1)
3823 && (GET_MODE_SIZE (GET_MODE (op1))
3824 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3826 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3827 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3828 if (tem)
3829 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3830 reversed_nonequality);
3833 /* Hash both operands. */
3835 do_not_record = 0;
3836 hash_arg_in_memory = 0;
3837 op0_hash = HASH (op0, mode);
3838 op0_in_memory = hash_arg_in_memory;
3840 if (do_not_record)
3841 return;
3843 do_not_record = 0;
3844 hash_arg_in_memory = 0;
3845 op1_hash = HASH (op1, mode);
3846 op1_in_memory = hash_arg_in_memory;
3848 if (do_not_record)
3849 return;
3851 /* Look up both operands. */
3852 op0_elt = lookup (op0, op0_hash, mode);
3853 op1_elt = lookup (op1, op1_hash, mode);
3855 /* If both operands are already equivalent or if they are not in the
3856 table but are identical, do nothing. */
3857 if ((op0_elt != 0 && op1_elt != 0
3858 && op0_elt->first_same_value == op1_elt->first_same_value)
3859 || op0 == op1 || rtx_equal_p (op0, op1))
3860 return;
3862 /* If we aren't setting two things equal all we can do is save this
3863 comparison. Similarly if this is floating-point. In the latter
3864 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3865 If we record the equality, we might inadvertently delete code
3866 whose intent was to change -0 to +0. */
3868 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3870 struct qty_table_elem *ent;
3871 int qty;
3873 /* If we reversed a floating-point comparison, if OP0 is not a
3874 register, or if OP1 is neither a register or constant, we can't
3875 do anything. */
3877 if (!REG_P (op1))
3878 op1 = equiv_constant (op1);
3880 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3881 || !REG_P (op0) || op1 == 0)
3882 return;
3884 /* Put OP0 in the hash table if it isn't already. This gives it a
3885 new quantity number. */
3886 if (op0_elt == 0)
3888 if (insert_regs (op0, NULL, 0))
3890 rehash_using_reg (op0);
3891 op0_hash = HASH (op0, mode);
3893 /* If OP0 is contained in OP1, this changes its hash code
3894 as well. Faster to rehash than to check, except
3895 for the simple case of a constant. */
3896 if (! CONSTANT_P (op1))
3897 op1_hash = HASH (op1,mode);
3900 op0_elt = insert (op0, NULL, op0_hash, mode);
3901 op0_elt->in_memory = op0_in_memory;
3904 qty = REG_QTY (REGNO (op0));
3905 ent = &qty_table[qty];
3907 ent->comparison_code = code;
3908 if (REG_P (op1))
3910 /* Look it up again--in case op0 and op1 are the same. */
3911 op1_elt = lookup (op1, op1_hash, mode);
3913 /* Put OP1 in the hash table so it gets a new quantity number. */
3914 if (op1_elt == 0)
3916 if (insert_regs (op1, NULL, 0))
3918 rehash_using_reg (op1);
3919 op1_hash = HASH (op1, mode);
3922 op1_elt = insert (op1, NULL, op1_hash, mode);
3923 op1_elt->in_memory = op1_in_memory;
3926 ent->comparison_const = NULL_RTX;
3927 ent->comparison_qty = REG_QTY (REGNO (op1));
3929 else
3931 ent->comparison_const = op1;
3932 ent->comparison_qty = -1;
3935 return;
3938 /* If either side is still missing an equivalence, make it now,
3939 then merge the equivalences. */
3941 if (op0_elt == 0)
3943 if (insert_regs (op0, NULL, 0))
3945 rehash_using_reg (op0);
3946 op0_hash = HASH (op0, mode);
3949 op0_elt = insert (op0, NULL, op0_hash, mode);
3950 op0_elt->in_memory = op0_in_memory;
3953 if (op1_elt == 0)
3955 if (insert_regs (op1, NULL, 0))
3957 rehash_using_reg (op1);
3958 op1_hash = HASH (op1, mode);
3961 op1_elt = insert (op1, NULL, op1_hash, mode);
3962 op1_elt->in_memory = op1_in_memory;
3965 merge_equiv_classes (op0_elt, op1_elt);
3968 /* CSE processing for one instruction.
3969 First simplify sources and addresses of all assignments
3970 in the instruction, using previously-computed equivalents values.
3971 Then install the new sources and destinations in the table
3972 of available values.
3974 If LIBCALL_INSN is nonzero, don't record any equivalence made in
3975 the insn. It means that INSN is inside libcall block. In this
3976 case LIBCALL_INSN is the corresponding insn with REG_LIBCALL. */
3978 /* Data on one SET contained in the instruction. */
3980 struct set
3982 /* The SET rtx itself. */
3983 rtx rtl;
3984 /* The SET_SRC of the rtx (the original value, if it is changing). */
3985 rtx src;
3986 /* The hash-table element for the SET_SRC of the SET. */
3987 struct table_elt *src_elt;
3988 /* Hash value for the SET_SRC. */
3989 unsigned src_hash;
3990 /* Hash value for the SET_DEST. */
3991 unsigned dest_hash;
3992 /* The SET_DEST, with SUBREG, etc., stripped. */
3993 rtx inner_dest;
3994 /* Nonzero if the SET_SRC is in memory. */
3995 char src_in_memory;
3996 /* Nonzero if the SET_SRC contains something
3997 whose value cannot be predicted and understood. */
3998 char src_volatile;
3999 /* Original machine mode, in case it becomes a CONST_INT.
4000 The size of this field should match the size of the mode
4001 field of struct rtx_def (see rtl.h). */
4002 ENUM_BITFIELD(machine_mode) mode : 8;
4003 /* A constant equivalent for SET_SRC, if any. */
4004 rtx src_const;
4005 /* Original SET_SRC value used for libcall notes. */
4006 rtx orig_src;
4007 /* Hash value of constant equivalent for SET_SRC. */
4008 unsigned src_const_hash;
4009 /* Table entry for constant equivalent for SET_SRC, if any. */
4010 struct table_elt *src_const_elt;
4011 /* Table entry for the destination address. */
4012 struct table_elt *dest_addr_elt;
4015 static void
4016 cse_insn (rtx insn, rtx libcall_insn)
4018 rtx x = PATTERN (insn);
4019 int i;
4020 rtx tem;
4021 int n_sets = 0;
4023 rtx src_eqv = 0;
4024 struct table_elt *src_eqv_elt = 0;
4025 int src_eqv_volatile = 0;
4026 int src_eqv_in_memory = 0;
4027 unsigned src_eqv_hash = 0;
4029 struct set *sets = (struct set *) 0;
4031 this_insn = insn;
4032 #ifdef HAVE_cc0
4033 /* Records what this insn does to set CC0. */
4034 this_insn_cc0 = 0;
4035 this_insn_cc0_mode = VOIDmode;
4036 #endif
4038 /* Find all the SETs and CLOBBERs in this instruction.
4039 Record all the SETs in the array `set' and count them.
4040 Also determine whether there is a CLOBBER that invalidates
4041 all memory references, or all references at varying addresses. */
4043 if (CALL_P (insn))
4045 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4047 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4048 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4049 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4053 if (GET_CODE (x) == SET)
4055 sets = alloca (sizeof (struct set));
4056 sets[0].rtl = x;
4058 /* Ignore SETs that are unconditional jumps.
4059 They never need cse processing, so this does not hurt.
4060 The reason is not efficiency but rather
4061 so that we can test at the end for instructions
4062 that have been simplified to unconditional jumps
4063 and not be misled by unchanged instructions
4064 that were unconditional jumps to begin with. */
4065 if (SET_DEST (x) == pc_rtx
4066 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4069 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4070 The hard function value register is used only once, to copy to
4071 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4072 Ensure we invalidate the destination register. On the 80386 no
4073 other code would invalidate it since it is a fixed_reg.
4074 We need not check the return of apply_change_group; see canon_reg. */
4076 else if (GET_CODE (SET_SRC (x)) == CALL)
4078 canon_reg (SET_SRC (x), insn);
4079 apply_change_group ();
4080 fold_rtx (SET_SRC (x), insn);
4081 invalidate (SET_DEST (x), VOIDmode);
4083 else
4084 n_sets = 1;
4086 else if (GET_CODE (x) == PARALLEL)
4088 int lim = XVECLEN (x, 0);
4090 sets = alloca (lim * sizeof (struct set));
4092 /* Find all regs explicitly clobbered in this insn,
4093 and ensure they are not replaced with any other regs
4094 elsewhere in this insn.
4095 When a reg that is clobbered is also used for input,
4096 we should presume that that is for a reason,
4097 and we should not substitute some other register
4098 which is not supposed to be clobbered.
4099 Therefore, this loop cannot be merged into the one below
4100 because a CALL may precede a CLOBBER and refer to the
4101 value clobbered. We must not let a canonicalization do
4102 anything in that case. */
4103 for (i = 0; i < lim; i++)
4105 rtx y = XVECEXP (x, 0, i);
4106 if (GET_CODE (y) == CLOBBER)
4108 rtx clobbered = XEXP (y, 0);
4110 if (REG_P (clobbered)
4111 || GET_CODE (clobbered) == SUBREG)
4112 invalidate (clobbered, VOIDmode);
4113 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4114 || GET_CODE (clobbered) == ZERO_EXTRACT)
4115 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4119 for (i = 0; i < lim; i++)
4121 rtx y = XVECEXP (x, 0, i);
4122 if (GET_CODE (y) == SET)
4124 /* As above, we ignore unconditional jumps and call-insns and
4125 ignore the result of apply_change_group. */
4126 if (GET_CODE (SET_SRC (y)) == CALL)
4128 canon_reg (SET_SRC (y), insn);
4129 apply_change_group ();
4130 fold_rtx (SET_SRC (y), insn);
4131 invalidate (SET_DEST (y), VOIDmode);
4133 else if (SET_DEST (y) == pc_rtx
4134 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4136 else
4137 sets[n_sets++].rtl = y;
4139 else if (GET_CODE (y) == CLOBBER)
4141 /* If we clobber memory, canon the address.
4142 This does nothing when a register is clobbered
4143 because we have already invalidated the reg. */
4144 if (MEM_P (XEXP (y, 0)))
4145 canon_reg (XEXP (y, 0), insn);
4147 else if (GET_CODE (y) == USE
4148 && ! (REG_P (XEXP (y, 0))
4149 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4150 canon_reg (y, insn);
4151 else if (GET_CODE (y) == CALL)
4153 /* The result of apply_change_group can be ignored; see
4154 canon_reg. */
4155 canon_reg (y, insn);
4156 apply_change_group ();
4157 fold_rtx (y, insn);
4161 else if (GET_CODE (x) == CLOBBER)
4163 if (MEM_P (XEXP (x, 0)))
4164 canon_reg (XEXP (x, 0), insn);
4167 /* Canonicalize a USE of a pseudo register or memory location. */
4168 else if (GET_CODE (x) == USE
4169 && ! (REG_P (XEXP (x, 0))
4170 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4171 canon_reg (XEXP (x, 0), insn);
4172 else if (GET_CODE (x) == CALL)
4174 /* The result of apply_change_group can be ignored; see canon_reg. */
4175 canon_reg (x, insn);
4176 apply_change_group ();
4177 fold_rtx (x, insn);
4180 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4181 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4182 is handled specially for this case, and if it isn't set, then there will
4183 be no equivalence for the destination. */
4184 if (n_sets == 1 && REG_NOTES (insn) != 0
4185 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4186 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4187 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4189 /* The result of apply_change_group can be ignored; see canon_reg. */
4190 canon_reg (XEXP (tem, 0), insn);
4191 apply_change_group ();
4192 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4193 XEXP (tem, 0) = copy_rtx (src_eqv);
4194 df_notes_rescan (insn);
4197 /* Canonicalize sources and addresses of destinations.
4198 We do this in a separate pass to avoid problems when a MATCH_DUP is
4199 present in the insn pattern. In that case, we want to ensure that
4200 we don't break the duplicate nature of the pattern. So we will replace
4201 both operands at the same time. Otherwise, we would fail to find an
4202 equivalent substitution in the loop calling validate_change below.
4204 We used to suppress canonicalization of DEST if it appears in SRC,
4205 but we don't do this any more. */
4207 for (i = 0; i < n_sets; i++)
4209 rtx dest = SET_DEST (sets[i].rtl);
4210 rtx src = SET_SRC (sets[i].rtl);
4211 rtx new = canon_reg (src, insn);
4213 sets[i].orig_src = src;
4214 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4216 if (GET_CODE (dest) == ZERO_EXTRACT)
4218 validate_change (insn, &XEXP (dest, 1),
4219 canon_reg (XEXP (dest, 1), insn), 1);
4220 validate_change (insn, &XEXP (dest, 2),
4221 canon_reg (XEXP (dest, 2), insn), 1);
4224 while (GET_CODE (dest) == SUBREG
4225 || GET_CODE (dest) == ZERO_EXTRACT
4226 || GET_CODE (dest) == STRICT_LOW_PART)
4227 dest = XEXP (dest, 0);
4229 if (MEM_P (dest))
4230 canon_reg (dest, insn);
4233 /* Now that we have done all the replacements, we can apply the change
4234 group and see if they all work. Note that this will cause some
4235 canonicalizations that would have worked individually not to be applied
4236 because some other canonicalization didn't work, but this should not
4237 occur often.
4239 The result of apply_change_group can be ignored; see canon_reg. */
4241 apply_change_group ();
4243 /* Set sets[i].src_elt to the class each source belongs to.
4244 Detect assignments from or to volatile things
4245 and set set[i] to zero so they will be ignored
4246 in the rest of this function.
4248 Nothing in this loop changes the hash table or the register chains. */
4250 for (i = 0; i < n_sets; i++)
4252 rtx src, dest;
4253 rtx src_folded;
4254 struct table_elt *elt = 0, *p;
4255 enum machine_mode mode;
4256 rtx src_eqv_here;
4257 rtx src_const = 0;
4258 rtx src_related = 0;
4259 struct table_elt *src_const_elt = 0;
4260 int src_cost = MAX_COST;
4261 int src_eqv_cost = MAX_COST;
4262 int src_folded_cost = MAX_COST;
4263 int src_related_cost = MAX_COST;
4264 int src_elt_cost = MAX_COST;
4265 int src_regcost = MAX_COST;
4266 int src_eqv_regcost = MAX_COST;
4267 int src_folded_regcost = MAX_COST;
4268 int src_related_regcost = MAX_COST;
4269 int src_elt_regcost = MAX_COST;
4270 /* Set nonzero if we need to call force_const_mem on with the
4271 contents of src_folded before using it. */
4272 int src_folded_force_flag = 0;
4274 dest = SET_DEST (sets[i].rtl);
4275 src = SET_SRC (sets[i].rtl);
4277 /* If SRC is a constant that has no machine mode,
4278 hash it with the destination's machine mode.
4279 This way we can keep different modes separate. */
4281 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4282 sets[i].mode = mode;
4284 if (src_eqv)
4286 enum machine_mode eqvmode = mode;
4287 if (GET_CODE (dest) == STRICT_LOW_PART)
4288 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4289 do_not_record = 0;
4290 hash_arg_in_memory = 0;
4291 src_eqv_hash = HASH (src_eqv, eqvmode);
4293 /* Find the equivalence class for the equivalent expression. */
4295 if (!do_not_record)
4296 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4298 src_eqv_volatile = do_not_record;
4299 src_eqv_in_memory = hash_arg_in_memory;
4302 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4303 value of the INNER register, not the destination. So it is not
4304 a valid substitution for the source. But save it for later. */
4305 if (GET_CODE (dest) == STRICT_LOW_PART)
4306 src_eqv_here = 0;
4307 else
4308 src_eqv_here = src_eqv;
4310 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4311 simplified result, which may not necessarily be valid. */
4312 src_folded = fold_rtx (src, insn);
4314 #if 0
4315 /* ??? This caused bad code to be generated for the m68k port with -O2.
4316 Suppose src is (CONST_INT -1), and that after truncation src_folded
4317 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4318 At the end we will add src and src_const to the same equivalence
4319 class. We now have 3 and -1 on the same equivalence class. This
4320 causes later instructions to be mis-optimized. */
4321 /* If storing a constant in a bitfield, pre-truncate the constant
4322 so we will be able to record it later. */
4323 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4325 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4327 if (GET_CODE (src) == CONST_INT
4328 && GET_CODE (width) == CONST_INT
4329 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4330 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4331 src_folded
4332 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4333 << INTVAL (width)) - 1));
4335 #endif
4337 /* Compute SRC's hash code, and also notice if it
4338 should not be recorded at all. In that case,
4339 prevent any further processing of this assignment. */
4340 do_not_record = 0;
4341 hash_arg_in_memory = 0;
4343 sets[i].src = src;
4344 sets[i].src_hash = HASH (src, mode);
4345 sets[i].src_volatile = do_not_record;
4346 sets[i].src_in_memory = hash_arg_in_memory;
4348 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4349 a pseudo, do not record SRC. Using SRC as a replacement for
4350 anything else will be incorrect in that situation. Note that
4351 this usually occurs only for stack slots, in which case all the
4352 RTL would be referring to SRC, so we don't lose any optimization
4353 opportunities by not having SRC in the hash table. */
4355 if (MEM_P (src)
4356 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4357 && REG_P (dest)
4358 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4359 sets[i].src_volatile = 1;
4361 #if 0
4362 /* It is no longer clear why we used to do this, but it doesn't
4363 appear to still be needed. So let's try without it since this
4364 code hurts cse'ing widened ops. */
4365 /* If source is a paradoxical subreg (such as QI treated as an SI),
4366 treat it as volatile. It may do the work of an SI in one context
4367 where the extra bits are not being used, but cannot replace an SI
4368 in general. */
4369 if (GET_CODE (src) == SUBREG
4370 && (GET_MODE_SIZE (GET_MODE (src))
4371 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4372 sets[i].src_volatile = 1;
4373 #endif
4375 /* Locate all possible equivalent forms for SRC. Try to replace
4376 SRC in the insn with each cheaper equivalent.
4378 We have the following types of equivalents: SRC itself, a folded
4379 version, a value given in a REG_EQUAL note, or a value related
4380 to a constant.
4382 Each of these equivalents may be part of an additional class
4383 of equivalents (if more than one is in the table, they must be in
4384 the same class; we check for this).
4386 If the source is volatile, we don't do any table lookups.
4388 We note any constant equivalent for possible later use in a
4389 REG_NOTE. */
4391 if (!sets[i].src_volatile)
4392 elt = lookup (src, sets[i].src_hash, mode);
4394 sets[i].src_elt = elt;
4396 if (elt && src_eqv_here && src_eqv_elt)
4398 if (elt->first_same_value != src_eqv_elt->first_same_value)
4400 /* The REG_EQUAL is indicating that two formerly distinct
4401 classes are now equivalent. So merge them. */
4402 merge_equiv_classes (elt, src_eqv_elt);
4403 src_eqv_hash = HASH (src_eqv, elt->mode);
4404 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4407 src_eqv_here = 0;
4410 else if (src_eqv_elt)
4411 elt = src_eqv_elt;
4413 /* Try to find a constant somewhere and record it in `src_const'.
4414 Record its table element, if any, in `src_const_elt'. Look in
4415 any known equivalences first. (If the constant is not in the
4416 table, also set `sets[i].src_const_hash'). */
4417 if (elt)
4418 for (p = elt->first_same_value; p; p = p->next_same_value)
4419 if (p->is_const)
4421 src_const = p->exp;
4422 src_const_elt = elt;
4423 break;
4426 if (src_const == 0
4427 && (CONSTANT_P (src_folded)
4428 /* Consider (minus (label_ref L1) (label_ref L2)) as
4429 "constant" here so we will record it. This allows us
4430 to fold switch statements when an ADDR_DIFF_VEC is used. */
4431 || (GET_CODE (src_folded) == MINUS
4432 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4433 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4434 src_const = src_folded, src_const_elt = elt;
4435 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4436 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4438 /* If we don't know if the constant is in the table, get its
4439 hash code and look it up. */
4440 if (src_const && src_const_elt == 0)
4442 sets[i].src_const_hash = HASH (src_const, mode);
4443 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4446 sets[i].src_const = src_const;
4447 sets[i].src_const_elt = src_const_elt;
4449 /* If the constant and our source are both in the table, mark them as
4450 equivalent. Otherwise, if a constant is in the table but the source
4451 isn't, set ELT to it. */
4452 if (src_const_elt && elt
4453 && src_const_elt->first_same_value != elt->first_same_value)
4454 merge_equiv_classes (elt, src_const_elt);
4455 else if (src_const_elt && elt == 0)
4456 elt = src_const_elt;
4458 /* See if there is a register linearly related to a constant
4459 equivalent of SRC. */
4460 if (src_const
4461 && (GET_CODE (src_const) == CONST
4462 || (src_const_elt && src_const_elt->related_value != 0)))
4464 src_related = use_related_value (src_const, src_const_elt);
4465 if (src_related)
4467 struct table_elt *src_related_elt
4468 = lookup (src_related, HASH (src_related, mode), mode);
4469 if (src_related_elt && elt)
4471 if (elt->first_same_value
4472 != src_related_elt->first_same_value)
4473 /* This can occur when we previously saw a CONST
4474 involving a SYMBOL_REF and then see the SYMBOL_REF
4475 twice. Merge the involved classes. */
4476 merge_equiv_classes (elt, src_related_elt);
4478 src_related = 0;
4479 src_related_elt = 0;
4481 else if (src_related_elt && elt == 0)
4482 elt = src_related_elt;
4486 /* See if we have a CONST_INT that is already in a register in a
4487 wider mode. */
4489 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4490 && GET_MODE_CLASS (mode) == MODE_INT
4491 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4493 enum machine_mode wider_mode;
4495 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4496 GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4497 && src_related == 0;
4498 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4500 struct table_elt *const_elt
4501 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4503 if (const_elt == 0)
4504 continue;
4506 for (const_elt = const_elt->first_same_value;
4507 const_elt; const_elt = const_elt->next_same_value)
4508 if (REG_P (const_elt->exp))
4510 src_related = gen_lowpart (mode, const_elt->exp);
4511 break;
4516 /* Another possibility is that we have an AND with a constant in
4517 a mode narrower than a word. If so, it might have been generated
4518 as part of an "if" which would narrow the AND. If we already
4519 have done the AND in a wider mode, we can use a SUBREG of that
4520 value. */
4522 if (flag_expensive_optimizations && ! src_related
4523 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4524 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4526 enum machine_mode tmode;
4527 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4529 for (tmode = GET_MODE_WIDER_MODE (mode);
4530 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4531 tmode = GET_MODE_WIDER_MODE (tmode))
4533 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4534 struct table_elt *larger_elt;
4536 if (inner)
4538 PUT_MODE (new_and, tmode);
4539 XEXP (new_and, 0) = inner;
4540 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4541 if (larger_elt == 0)
4542 continue;
4544 for (larger_elt = larger_elt->first_same_value;
4545 larger_elt; larger_elt = larger_elt->next_same_value)
4546 if (REG_P (larger_elt->exp))
4548 src_related
4549 = gen_lowpart (mode, larger_elt->exp);
4550 break;
4553 if (src_related)
4554 break;
4559 #ifdef LOAD_EXTEND_OP
4560 /* See if a MEM has already been loaded with a widening operation;
4561 if it has, we can use a subreg of that. Many CISC machines
4562 also have such operations, but this is only likely to be
4563 beneficial on these machines. */
4565 if (flag_expensive_optimizations && src_related == 0
4566 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4567 && GET_MODE_CLASS (mode) == MODE_INT
4568 && MEM_P (src) && ! do_not_record
4569 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4571 struct rtx_def memory_extend_buf;
4572 rtx memory_extend_rtx = &memory_extend_buf;
4573 enum machine_mode tmode;
4575 /* Set what we are trying to extend and the operation it might
4576 have been extended with. */
4577 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4578 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4579 XEXP (memory_extend_rtx, 0) = src;
4581 for (tmode = GET_MODE_WIDER_MODE (mode);
4582 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4583 tmode = GET_MODE_WIDER_MODE (tmode))
4585 struct table_elt *larger_elt;
4587 PUT_MODE (memory_extend_rtx, tmode);
4588 larger_elt = lookup (memory_extend_rtx,
4589 HASH (memory_extend_rtx, tmode), tmode);
4590 if (larger_elt == 0)
4591 continue;
4593 for (larger_elt = larger_elt->first_same_value;
4594 larger_elt; larger_elt = larger_elt->next_same_value)
4595 if (REG_P (larger_elt->exp))
4597 src_related = gen_lowpart (mode, larger_elt->exp);
4598 break;
4601 if (src_related)
4602 break;
4605 #endif /* LOAD_EXTEND_OP */
4607 if (src == src_folded)
4608 src_folded = 0;
4610 /* At this point, ELT, if nonzero, points to a class of expressions
4611 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4612 and SRC_RELATED, if nonzero, each contain additional equivalent
4613 expressions. Prune these latter expressions by deleting expressions
4614 already in the equivalence class.
4616 Check for an equivalent identical to the destination. If found,
4617 this is the preferred equivalent since it will likely lead to
4618 elimination of the insn. Indicate this by placing it in
4619 `src_related'. */
4621 if (elt)
4622 elt = elt->first_same_value;
4623 for (p = elt; p; p = p->next_same_value)
4625 enum rtx_code code = GET_CODE (p->exp);
4627 /* If the expression is not valid, ignore it. Then we do not
4628 have to check for validity below. In most cases, we can use
4629 `rtx_equal_p', since canonicalization has already been done. */
4630 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4631 continue;
4633 /* Also skip paradoxical subregs, unless that's what we're
4634 looking for. */
4635 if (code == SUBREG
4636 && (GET_MODE_SIZE (GET_MODE (p->exp))
4637 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4638 && ! (src != 0
4639 && GET_CODE (src) == SUBREG
4640 && GET_MODE (src) == GET_MODE (p->exp)
4641 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4642 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4643 continue;
4645 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4646 src = 0;
4647 else if (src_folded && GET_CODE (src_folded) == code
4648 && rtx_equal_p (src_folded, p->exp))
4649 src_folded = 0;
4650 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4651 && rtx_equal_p (src_eqv_here, p->exp))
4652 src_eqv_here = 0;
4653 else if (src_related && GET_CODE (src_related) == code
4654 && rtx_equal_p (src_related, p->exp))
4655 src_related = 0;
4657 /* This is the same as the destination of the insns, we want
4658 to prefer it. Copy it to src_related. The code below will
4659 then give it a negative cost. */
4660 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4661 src_related = dest;
4664 /* Find the cheapest valid equivalent, trying all the available
4665 possibilities. Prefer items not in the hash table to ones
4666 that are when they are equal cost. Note that we can never
4667 worsen an insn as the current contents will also succeed.
4668 If we find an equivalent identical to the destination, use it as best,
4669 since this insn will probably be eliminated in that case. */
4670 if (src)
4672 if (rtx_equal_p (src, dest))
4673 src_cost = src_regcost = -1;
4674 else
4676 src_cost = COST (src);
4677 src_regcost = approx_reg_cost (src);
4681 if (src_eqv_here)
4683 if (rtx_equal_p (src_eqv_here, dest))
4684 src_eqv_cost = src_eqv_regcost = -1;
4685 else
4687 src_eqv_cost = COST (src_eqv_here);
4688 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4692 if (src_folded)
4694 if (rtx_equal_p (src_folded, dest))
4695 src_folded_cost = src_folded_regcost = -1;
4696 else
4698 src_folded_cost = COST (src_folded);
4699 src_folded_regcost = approx_reg_cost (src_folded);
4703 if (src_related)
4705 if (rtx_equal_p (src_related, dest))
4706 src_related_cost = src_related_regcost = -1;
4707 else
4709 src_related_cost = COST (src_related);
4710 src_related_regcost = approx_reg_cost (src_related);
4714 /* If this was an indirect jump insn, a known label will really be
4715 cheaper even though it looks more expensive. */
4716 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4717 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4719 /* Terminate loop when replacement made. This must terminate since
4720 the current contents will be tested and will always be valid. */
4721 while (1)
4723 rtx trial;
4725 /* Skip invalid entries. */
4726 while (elt && !REG_P (elt->exp)
4727 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4728 elt = elt->next_same_value;
4730 /* A paradoxical subreg would be bad here: it'll be the right
4731 size, but later may be adjusted so that the upper bits aren't
4732 what we want. So reject it. */
4733 if (elt != 0
4734 && GET_CODE (elt->exp) == SUBREG
4735 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4736 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4737 /* It is okay, though, if the rtx we're trying to match
4738 will ignore any of the bits we can't predict. */
4739 && ! (src != 0
4740 && GET_CODE (src) == SUBREG
4741 && GET_MODE (src) == GET_MODE (elt->exp)
4742 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4743 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4745 elt = elt->next_same_value;
4746 continue;
4749 if (elt)
4751 src_elt_cost = elt->cost;
4752 src_elt_regcost = elt->regcost;
4755 /* Find cheapest and skip it for the next time. For items
4756 of equal cost, use this order:
4757 src_folded, src, src_eqv, src_related and hash table entry. */
4758 if (src_folded
4759 && preferable (src_folded_cost, src_folded_regcost,
4760 src_cost, src_regcost) <= 0
4761 && preferable (src_folded_cost, src_folded_regcost,
4762 src_eqv_cost, src_eqv_regcost) <= 0
4763 && preferable (src_folded_cost, src_folded_regcost,
4764 src_related_cost, src_related_regcost) <= 0
4765 && preferable (src_folded_cost, src_folded_regcost,
4766 src_elt_cost, src_elt_regcost) <= 0)
4768 trial = src_folded, src_folded_cost = MAX_COST;
4769 if (src_folded_force_flag)
4771 rtx forced = force_const_mem (mode, trial);
4772 if (forced)
4773 trial = forced;
4776 else if (src
4777 && preferable (src_cost, src_regcost,
4778 src_eqv_cost, src_eqv_regcost) <= 0
4779 && preferable (src_cost, src_regcost,
4780 src_related_cost, src_related_regcost) <= 0
4781 && preferable (src_cost, src_regcost,
4782 src_elt_cost, src_elt_regcost) <= 0)
4783 trial = src, src_cost = MAX_COST;
4784 else if (src_eqv_here
4785 && preferable (src_eqv_cost, src_eqv_regcost,
4786 src_related_cost, src_related_regcost) <= 0
4787 && preferable (src_eqv_cost, src_eqv_regcost,
4788 src_elt_cost, src_elt_regcost) <= 0)
4789 trial = copy_rtx (src_eqv_here), src_eqv_cost = MAX_COST;
4790 else if (src_related
4791 && preferable (src_related_cost, src_related_regcost,
4792 src_elt_cost, src_elt_regcost) <= 0)
4793 trial = copy_rtx (src_related), src_related_cost = MAX_COST;
4794 else
4796 trial = copy_rtx (elt->exp);
4797 elt = elt->next_same_value;
4798 src_elt_cost = MAX_COST;
4801 /* We don't normally have an insn matching (set (pc) (pc)), so
4802 check for this separately here. We will delete such an
4803 insn below.
4805 For other cases such as a table jump or conditional jump
4806 where we know the ultimate target, go ahead and replace the
4807 operand. While that may not make a valid insn, we will
4808 reemit the jump below (and also insert any necessary
4809 barriers). */
4810 if (n_sets == 1 && dest == pc_rtx
4811 && (trial == pc_rtx
4812 || (GET_CODE (trial) == LABEL_REF
4813 && ! condjump_p (insn))))
4815 /* Don't substitute non-local labels, this confuses CFG. */
4816 if (GET_CODE (trial) == LABEL_REF
4817 && LABEL_REF_NONLOCAL_P (trial))
4818 continue;
4820 SET_SRC (sets[i].rtl) = trial;
4821 cse_jumps_altered = 1;
4822 break;
4825 /* Reject certain invalid forms of CONST that we create. */
4826 else if (CONSTANT_P (trial)
4827 && GET_CODE (trial) == CONST
4828 /* Reject cases that will cause decode_rtx_const to
4829 die. On the alpha when simplifying a switch, we
4830 get (const (truncate (minus (label_ref)
4831 (label_ref)))). */
4832 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4833 /* Likewise on IA-64, except without the
4834 truncate. */
4835 || (GET_CODE (XEXP (trial, 0)) == MINUS
4836 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4837 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4838 /* Do nothing for this case. */
4841 /* Look for a substitution that makes a valid insn. */
4842 else if (validate_unshare_change
4843 (insn, &SET_SRC (sets[i].rtl), trial, 0))
4845 rtx new = canon_reg (SET_SRC (sets[i].rtl), insn);
4847 /* If we just made a substitution inside a libcall, then we
4848 need to make the same substitution in any notes attached
4849 to the RETVAL insn. */
4850 if (libcall_insn
4851 && (REG_P (sets[i].orig_src)
4852 || GET_CODE (sets[i].orig_src) == SUBREG
4853 || MEM_P (sets[i].orig_src)))
4855 rtx note = find_reg_equal_equiv_note (libcall_insn);
4856 if (note != 0)
4857 XEXP (note, 0) = simplify_replace_rtx (XEXP (note, 0),
4858 sets[i].orig_src,
4859 copy_rtx (new));
4860 df_notes_rescan (libcall_insn);
4863 /* The result of apply_change_group can be ignored; see
4864 canon_reg. */
4866 validate_change (insn, &SET_SRC (sets[i].rtl), new, 1);
4867 apply_change_group ();
4869 break;
4872 /* If we previously found constant pool entries for
4873 constants and this is a constant, try making a
4874 pool entry. Put it in src_folded unless we already have done
4875 this since that is where it likely came from. */
4877 else if (constant_pool_entries_cost
4878 && CONSTANT_P (trial)
4879 && (src_folded == 0
4880 || (!MEM_P (src_folded)
4881 && ! src_folded_force_flag))
4882 && GET_MODE_CLASS (mode) != MODE_CC
4883 && mode != VOIDmode)
4885 src_folded_force_flag = 1;
4886 src_folded = trial;
4887 src_folded_cost = constant_pool_entries_cost;
4888 src_folded_regcost = constant_pool_entries_regcost;
4892 src = SET_SRC (sets[i].rtl);
4894 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4895 However, there is an important exception: If both are registers
4896 that are not the head of their equivalence class, replace SET_SRC
4897 with the head of the class. If we do not do this, we will have
4898 both registers live over a portion of the basic block. This way,
4899 their lifetimes will likely abut instead of overlapping. */
4900 if (REG_P (dest)
4901 && REGNO_QTY_VALID_P (REGNO (dest)))
4903 int dest_q = REG_QTY (REGNO (dest));
4904 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4906 if (dest_ent->mode == GET_MODE (dest)
4907 && dest_ent->first_reg != REGNO (dest)
4908 && REG_P (src) && REGNO (src) == REGNO (dest)
4909 /* Don't do this if the original insn had a hard reg as
4910 SET_SRC or SET_DEST. */
4911 && (!REG_P (sets[i].src)
4912 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4913 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4914 /* We can't call canon_reg here because it won't do anything if
4915 SRC is a hard register. */
4917 int src_q = REG_QTY (REGNO (src));
4918 struct qty_table_elem *src_ent = &qty_table[src_q];
4919 int first = src_ent->first_reg;
4920 rtx new_src
4921 = (first >= FIRST_PSEUDO_REGISTER
4922 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4924 /* We must use validate-change even for this, because this
4925 might be a special no-op instruction, suitable only to
4926 tag notes onto. */
4927 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4929 src = new_src;
4930 /* If we had a constant that is cheaper than what we are now
4931 setting SRC to, use that constant. We ignored it when we
4932 thought we could make this into a no-op. */
4933 if (src_const && COST (src_const) < COST (src)
4934 && validate_change (insn, &SET_SRC (sets[i].rtl),
4935 src_const, 0))
4936 src = src_const;
4941 /* If we made a change, recompute SRC values. */
4942 if (src != sets[i].src)
4944 do_not_record = 0;
4945 hash_arg_in_memory = 0;
4946 sets[i].src = src;
4947 sets[i].src_hash = HASH (src, mode);
4948 sets[i].src_volatile = do_not_record;
4949 sets[i].src_in_memory = hash_arg_in_memory;
4950 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4953 /* If this is a single SET, we are setting a register, and we have an
4954 equivalent constant, we want to add a REG_NOTE. We don't want
4955 to write a REG_EQUAL note for a constant pseudo since verifying that
4956 that pseudo hasn't been eliminated is a pain. Such a note also
4957 won't help anything.
4959 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4960 which can be created for a reference to a compile time computable
4961 entry in a jump table. */
4963 if (n_sets == 1 && src_const && REG_P (dest)
4964 && !REG_P (src_const)
4965 && ! (GET_CODE (src_const) == CONST
4966 && GET_CODE (XEXP (src_const, 0)) == MINUS
4967 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4968 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4970 /* We only want a REG_EQUAL note if src_const != src. */
4971 if (! rtx_equal_p (src, src_const))
4973 /* Make sure that the rtx is not shared. */
4974 src_const = copy_rtx (src_const);
4976 /* Record the actual constant value in a REG_EQUAL note,
4977 making a new one if one does not already exist. */
4978 set_unique_reg_note (insn, REG_EQUAL, src_const);
4979 df_notes_rescan (insn);
4983 /* Now deal with the destination. */
4984 do_not_record = 0;
4986 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4987 while (GET_CODE (dest) == SUBREG
4988 || GET_CODE (dest) == ZERO_EXTRACT
4989 || GET_CODE (dest) == STRICT_LOW_PART)
4990 dest = XEXP (dest, 0);
4992 sets[i].inner_dest = dest;
4994 if (MEM_P (dest))
4996 #ifdef PUSH_ROUNDING
4997 /* Stack pushes invalidate the stack pointer. */
4998 rtx addr = XEXP (dest, 0);
4999 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
5000 && XEXP (addr, 0) == stack_pointer_rtx)
5001 invalidate (stack_pointer_rtx, VOIDmode);
5002 #endif
5003 dest = fold_rtx (dest, insn);
5006 /* Compute the hash code of the destination now,
5007 before the effects of this instruction are recorded,
5008 since the register values used in the address computation
5009 are those before this instruction. */
5010 sets[i].dest_hash = HASH (dest, mode);
5012 /* Don't enter a bit-field in the hash table
5013 because the value in it after the store
5014 may not equal what was stored, due to truncation. */
5016 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5018 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5020 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5021 && GET_CODE (width) == CONST_INT
5022 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5023 && ! (INTVAL (src_const)
5024 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5025 /* Exception: if the value is constant,
5026 and it won't be truncated, record it. */
5028 else
5030 /* This is chosen so that the destination will be invalidated
5031 but no new value will be recorded.
5032 We must invalidate because sometimes constant
5033 values can be recorded for bitfields. */
5034 sets[i].src_elt = 0;
5035 sets[i].src_volatile = 1;
5036 src_eqv = 0;
5037 src_eqv_elt = 0;
5041 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5042 the insn. */
5043 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5045 /* One less use of the label this insn used to jump to. */
5046 delete_insn_and_edges (insn);
5047 cse_jumps_altered = 1;
5048 /* No more processing for this set. */
5049 sets[i].rtl = 0;
5052 /* If this SET is now setting PC to a label, we know it used to
5053 be a conditional or computed branch. */
5054 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5055 && !LABEL_REF_NONLOCAL_P (src))
5057 /* We reemit the jump in as many cases as possible just in
5058 case the form of an unconditional jump is significantly
5059 different than a computed jump or conditional jump.
5061 If this insn has multiple sets, then reemitting the
5062 jump is nontrivial. So instead we just force rerecognition
5063 and hope for the best. */
5064 if (n_sets == 1)
5066 rtx new, note;
5068 new = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5069 JUMP_LABEL (new) = XEXP (src, 0);
5070 LABEL_NUSES (XEXP (src, 0))++;
5072 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5073 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5074 if (note)
5076 XEXP (note, 1) = NULL_RTX;
5077 REG_NOTES (new) = note;
5080 delete_insn_and_edges (insn);
5081 insn = new;
5083 else
5084 INSN_CODE (insn) = -1;
5086 /* Do not bother deleting any unreachable code,
5087 let jump/flow do that. */
5089 cse_jumps_altered = 1;
5090 sets[i].rtl = 0;
5093 /* If destination is volatile, invalidate it and then do no further
5094 processing for this assignment. */
5096 else if (do_not_record)
5098 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5099 invalidate (dest, VOIDmode);
5100 else if (MEM_P (dest))
5101 invalidate (dest, VOIDmode);
5102 else if (GET_CODE (dest) == STRICT_LOW_PART
5103 || GET_CODE (dest) == ZERO_EXTRACT)
5104 invalidate (XEXP (dest, 0), GET_MODE (dest));
5105 sets[i].rtl = 0;
5108 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5109 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5111 #ifdef HAVE_cc0
5112 /* If setting CC0, record what it was set to, or a constant, if it
5113 is equivalent to a constant. If it is being set to a floating-point
5114 value, make a COMPARE with the appropriate constant of 0. If we
5115 don't do this, later code can interpret this as a test against
5116 const0_rtx, which can cause problems if we try to put it into an
5117 insn as a floating-point operand. */
5118 if (dest == cc0_rtx)
5120 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5121 this_insn_cc0_mode = mode;
5122 if (FLOAT_MODE_P (mode))
5123 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5124 CONST0_RTX (mode));
5126 #endif
5129 /* Now enter all non-volatile source expressions in the hash table
5130 if they are not already present.
5131 Record their equivalence classes in src_elt.
5132 This way we can insert the corresponding destinations into
5133 the same classes even if the actual sources are no longer in them
5134 (having been invalidated). */
5136 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5137 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5139 struct table_elt *elt;
5140 struct table_elt *classp = sets[0].src_elt;
5141 rtx dest = SET_DEST (sets[0].rtl);
5142 enum machine_mode eqvmode = GET_MODE (dest);
5144 if (GET_CODE (dest) == STRICT_LOW_PART)
5146 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5147 classp = 0;
5149 if (insert_regs (src_eqv, classp, 0))
5151 rehash_using_reg (src_eqv);
5152 src_eqv_hash = HASH (src_eqv, eqvmode);
5154 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5155 elt->in_memory = src_eqv_in_memory;
5156 src_eqv_elt = elt;
5158 /* Check to see if src_eqv_elt is the same as a set source which
5159 does not yet have an elt, and if so set the elt of the set source
5160 to src_eqv_elt. */
5161 for (i = 0; i < n_sets; i++)
5162 if (sets[i].rtl && sets[i].src_elt == 0
5163 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5164 sets[i].src_elt = src_eqv_elt;
5167 for (i = 0; i < n_sets; i++)
5168 if (sets[i].rtl && ! sets[i].src_volatile
5169 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5171 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5173 /* REG_EQUAL in setting a STRICT_LOW_PART
5174 gives an equivalent for the entire destination register,
5175 not just for the subreg being stored in now.
5176 This is a more interesting equivalence, so we arrange later
5177 to treat the entire reg as the destination. */
5178 sets[i].src_elt = src_eqv_elt;
5179 sets[i].src_hash = src_eqv_hash;
5181 else
5183 /* Insert source and constant equivalent into hash table, if not
5184 already present. */
5185 struct table_elt *classp = src_eqv_elt;
5186 rtx src = sets[i].src;
5187 rtx dest = SET_DEST (sets[i].rtl);
5188 enum machine_mode mode
5189 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5191 /* It's possible that we have a source value known to be
5192 constant but don't have a REG_EQUAL note on the insn.
5193 Lack of a note will mean src_eqv_elt will be NULL. This
5194 can happen where we've generated a SUBREG to access a
5195 CONST_INT that is already in a register in a wider mode.
5196 Ensure that the source expression is put in the proper
5197 constant class. */
5198 if (!classp)
5199 classp = sets[i].src_const_elt;
5201 if (sets[i].src_elt == 0)
5203 /* Don't put a hard register source into the table if this is
5204 the last insn of a libcall. In this case, we only need
5205 to put src_eqv_elt in src_elt. */
5206 if (! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5208 struct table_elt *elt;
5210 /* Note that these insert_regs calls cannot remove
5211 any of the src_elt's, because they would have failed to
5212 match if not still valid. */
5213 if (insert_regs (src, classp, 0))
5215 rehash_using_reg (src);
5216 sets[i].src_hash = HASH (src, mode);
5218 elt = insert (src, classp, sets[i].src_hash, mode);
5219 elt->in_memory = sets[i].src_in_memory;
5220 sets[i].src_elt = classp = elt;
5222 else
5223 sets[i].src_elt = classp;
5225 if (sets[i].src_const && sets[i].src_const_elt == 0
5226 && src != sets[i].src_const
5227 && ! rtx_equal_p (sets[i].src_const, src))
5228 sets[i].src_elt = insert (sets[i].src_const, classp,
5229 sets[i].src_const_hash, mode);
5232 else if (sets[i].src_elt == 0)
5233 /* If we did not insert the source into the hash table (e.g., it was
5234 volatile), note the equivalence class for the REG_EQUAL value, if any,
5235 so that the destination goes into that class. */
5236 sets[i].src_elt = src_eqv_elt;
5238 /* Record destination addresses in the hash table. This allows us to
5239 check if they are invalidated by other sets. */
5240 for (i = 0; i < n_sets; i++)
5242 if (sets[i].rtl)
5244 rtx x = sets[i].inner_dest;
5245 struct table_elt *elt;
5246 enum machine_mode mode;
5247 unsigned hash;
5249 if (MEM_P (x))
5251 x = XEXP (x, 0);
5252 mode = GET_MODE (x);
5253 hash = HASH (x, mode);
5254 elt = lookup (x, hash, mode);
5255 if (!elt)
5257 if (insert_regs (x, NULL, 0))
5259 rtx dest = SET_DEST (sets[i].rtl);
5261 rehash_using_reg (x);
5262 hash = HASH (x, mode);
5263 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5265 elt = insert (x, NULL, hash, mode);
5268 sets[i].dest_addr_elt = elt;
5270 else
5271 sets[i].dest_addr_elt = NULL;
5275 invalidate_from_clobbers (x);
5277 /* Some registers are invalidated by subroutine calls. Memory is
5278 invalidated by non-constant calls. */
5280 if (CALL_P (insn))
5282 if (! CONST_OR_PURE_CALL_P (insn))
5283 invalidate_memory ();
5284 invalidate_for_call ();
5287 /* Now invalidate everything set by this instruction.
5288 If a SUBREG or other funny destination is being set,
5289 sets[i].rtl is still nonzero, so here we invalidate the reg
5290 a part of which is being set. */
5292 for (i = 0; i < n_sets; i++)
5293 if (sets[i].rtl)
5295 /* We can't use the inner dest, because the mode associated with
5296 a ZERO_EXTRACT is significant. */
5297 rtx dest = SET_DEST (sets[i].rtl);
5299 /* Needed for registers to remove the register from its
5300 previous quantity's chain.
5301 Needed for memory if this is a nonvarying address, unless
5302 we have just done an invalidate_memory that covers even those. */
5303 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5304 invalidate (dest, VOIDmode);
5305 else if (MEM_P (dest))
5306 invalidate (dest, VOIDmode);
5307 else if (GET_CODE (dest) == STRICT_LOW_PART
5308 || GET_CODE (dest) == ZERO_EXTRACT)
5309 invalidate (XEXP (dest, 0), GET_MODE (dest));
5312 /* A volatile ASM invalidates everything. */
5313 if (NONJUMP_INSN_P (insn)
5314 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5315 && MEM_VOLATILE_P (PATTERN (insn)))
5316 flush_hash_table ();
5318 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5319 the regs restored by the longjmp come from a later time
5320 than the setjmp. */
5321 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5323 flush_hash_table ();
5324 goto done;
5327 /* Make sure registers mentioned in destinations
5328 are safe for use in an expression to be inserted.
5329 This removes from the hash table
5330 any invalid entry that refers to one of these registers.
5332 We don't care about the return value from mention_regs because
5333 we are going to hash the SET_DEST values unconditionally. */
5335 for (i = 0; i < n_sets; i++)
5337 if (sets[i].rtl)
5339 rtx x = SET_DEST (sets[i].rtl);
5341 if (!REG_P (x))
5342 mention_regs (x);
5343 else
5345 /* We used to rely on all references to a register becoming
5346 inaccessible when a register changes to a new quantity,
5347 since that changes the hash code. However, that is not
5348 safe, since after HASH_SIZE new quantities we get a
5349 hash 'collision' of a register with its own invalid
5350 entries. And since SUBREGs have been changed not to
5351 change their hash code with the hash code of the register,
5352 it wouldn't work any longer at all. So we have to check
5353 for any invalid references lying around now.
5354 This code is similar to the REG case in mention_regs,
5355 but it knows that reg_tick has been incremented, and
5356 it leaves reg_in_table as -1 . */
5357 unsigned int regno = REGNO (x);
5358 unsigned int endregno = END_REGNO (x);
5359 unsigned int i;
5361 for (i = regno; i < endregno; i++)
5363 if (REG_IN_TABLE (i) >= 0)
5365 remove_invalid_refs (i);
5366 REG_IN_TABLE (i) = -1;
5373 /* We may have just removed some of the src_elt's from the hash table.
5374 So replace each one with the current head of the same class.
5375 Also check if destination addresses have been removed. */
5377 for (i = 0; i < n_sets; i++)
5378 if (sets[i].rtl)
5380 if (sets[i].dest_addr_elt
5381 && sets[i].dest_addr_elt->first_same_value == 0)
5383 /* The elt was removed, which means this destination is not
5384 valid after this instruction. */
5385 sets[i].rtl = NULL_RTX;
5387 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5388 /* If elt was removed, find current head of same class,
5389 or 0 if nothing remains of that class. */
5391 struct table_elt *elt = sets[i].src_elt;
5393 while (elt && elt->prev_same_value)
5394 elt = elt->prev_same_value;
5396 while (elt && elt->first_same_value == 0)
5397 elt = elt->next_same_value;
5398 sets[i].src_elt = elt ? elt->first_same_value : 0;
5402 /* Now insert the destinations into their equivalence classes. */
5404 for (i = 0; i < n_sets; i++)
5405 if (sets[i].rtl)
5407 rtx dest = SET_DEST (sets[i].rtl);
5408 struct table_elt *elt;
5410 /* Don't record value if we are not supposed to risk allocating
5411 floating-point values in registers that might be wider than
5412 memory. */
5413 if ((flag_float_store
5414 && MEM_P (dest)
5415 && FLOAT_MODE_P (GET_MODE (dest)))
5416 /* Don't record BLKmode values, because we don't know the
5417 size of it, and can't be sure that other BLKmode values
5418 have the same or smaller size. */
5419 || GET_MODE (dest) == BLKmode
5420 /* Don't record values of destinations set inside a libcall block
5421 since we might delete the libcall. Things should have been set
5422 up so we won't want to reuse such a value, but we play it safe
5423 here. */
5424 || libcall_insn
5425 /* If we didn't put a REG_EQUAL value or a source into the hash
5426 table, there is no point is recording DEST. */
5427 || sets[i].src_elt == 0
5428 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5429 or SIGN_EXTEND, don't record DEST since it can cause
5430 some tracking to be wrong.
5432 ??? Think about this more later. */
5433 || (GET_CODE (dest) == SUBREG
5434 && (GET_MODE_SIZE (GET_MODE (dest))
5435 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5436 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5437 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5438 continue;
5440 /* STRICT_LOW_PART isn't part of the value BEING set,
5441 and neither is the SUBREG inside it.
5442 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5443 if (GET_CODE (dest) == STRICT_LOW_PART)
5444 dest = SUBREG_REG (XEXP (dest, 0));
5446 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5447 /* Registers must also be inserted into chains for quantities. */
5448 if (insert_regs (dest, sets[i].src_elt, 1))
5450 /* If `insert_regs' changes something, the hash code must be
5451 recalculated. */
5452 rehash_using_reg (dest);
5453 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5456 elt = insert (dest, sets[i].src_elt,
5457 sets[i].dest_hash, GET_MODE (dest));
5459 elt->in_memory = (MEM_P (sets[i].inner_dest)
5460 && !MEM_READONLY_P (sets[i].inner_dest));
5462 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5463 narrower than M2, and both M1 and M2 are the same number of words,
5464 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5465 make that equivalence as well.
5467 However, BAR may have equivalences for which gen_lowpart
5468 will produce a simpler value than gen_lowpart applied to
5469 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5470 BAR's equivalences. If we don't get a simplified form, make
5471 the SUBREG. It will not be used in an equivalence, but will
5472 cause two similar assignments to be detected.
5474 Note the loop below will find SUBREG_REG (DEST) since we have
5475 already entered SRC and DEST of the SET in the table. */
5477 if (GET_CODE (dest) == SUBREG
5478 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5479 / UNITS_PER_WORD)
5480 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5481 && (GET_MODE_SIZE (GET_MODE (dest))
5482 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5483 && sets[i].src_elt != 0)
5485 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5486 struct table_elt *elt, *classp = 0;
5488 for (elt = sets[i].src_elt->first_same_value; elt;
5489 elt = elt->next_same_value)
5491 rtx new_src = 0;
5492 unsigned src_hash;
5493 struct table_elt *src_elt;
5494 int byte = 0;
5496 /* Ignore invalid entries. */
5497 if (!REG_P (elt->exp)
5498 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5499 continue;
5501 /* We may have already been playing subreg games. If the
5502 mode is already correct for the destination, use it. */
5503 if (GET_MODE (elt->exp) == new_mode)
5504 new_src = elt->exp;
5505 else
5507 /* Calculate big endian correction for the SUBREG_BYTE.
5508 We have already checked that M1 (GET_MODE (dest))
5509 is not narrower than M2 (new_mode). */
5510 if (BYTES_BIG_ENDIAN)
5511 byte = (GET_MODE_SIZE (GET_MODE (dest))
5512 - GET_MODE_SIZE (new_mode));
5514 new_src = simplify_gen_subreg (new_mode, elt->exp,
5515 GET_MODE (dest), byte);
5518 /* The call to simplify_gen_subreg fails if the value
5519 is VOIDmode, yet we can't do any simplification, e.g.
5520 for EXPR_LISTs denoting function call results.
5521 It is invalid to construct a SUBREG with a VOIDmode
5522 SUBREG_REG, hence a zero new_src means we can't do
5523 this substitution. */
5524 if (! new_src)
5525 continue;
5527 src_hash = HASH (new_src, new_mode);
5528 src_elt = lookup (new_src, src_hash, new_mode);
5530 /* Put the new source in the hash table is if isn't
5531 already. */
5532 if (src_elt == 0)
5534 if (insert_regs (new_src, classp, 0))
5536 rehash_using_reg (new_src);
5537 src_hash = HASH (new_src, new_mode);
5539 src_elt = insert (new_src, classp, src_hash, new_mode);
5540 src_elt->in_memory = elt->in_memory;
5542 else if (classp && classp != src_elt->first_same_value)
5543 /* Show that two things that we've seen before are
5544 actually the same. */
5545 merge_equiv_classes (src_elt, classp);
5547 classp = src_elt->first_same_value;
5548 /* Ignore invalid entries. */
5549 while (classp
5550 && !REG_P (classp->exp)
5551 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5552 classp = classp->next_same_value;
5557 /* Special handling for (set REG0 REG1) where REG0 is the
5558 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5559 be used in the sequel, so (if easily done) change this insn to
5560 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5561 that computed their value. Then REG1 will become a dead store
5562 and won't cloud the situation for later optimizations.
5564 Do not make this change if REG1 is a hard register, because it will
5565 then be used in the sequel and we may be changing a two-operand insn
5566 into a three-operand insn.
5568 Also do not do this if we are operating on a copy of INSN.
5570 Also don't do this if INSN ends a libcall; this would cause an unrelated
5571 register to be set in the middle of a libcall, and we then get bad code
5572 if the libcall is deleted. */
5574 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5575 && NEXT_INSN (PREV_INSN (insn)) == insn
5576 && REG_P (SET_SRC (sets[0].rtl))
5577 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5578 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5580 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5581 struct qty_table_elem *src_ent = &qty_table[src_q];
5583 if ((src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5584 && ! find_reg_note (insn, REG_RETVAL, NULL_RTX))
5586 /* Scan for the previous nonnote insn, but stop at a basic
5587 block boundary. */
5588 rtx prev = insn;
5589 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5592 prev = PREV_INSN (prev);
5594 while (prev != bb_head && NOTE_P (prev));
5596 /* Do not swap the registers around if the previous instruction
5597 attaches a REG_EQUIV note to REG1.
5599 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5600 from the pseudo that originally shadowed an incoming argument
5601 to another register. Some uses of REG_EQUIV might rely on it
5602 being attached to REG1 rather than REG2.
5604 This section previously turned the REG_EQUIV into a REG_EQUAL
5605 note. We cannot do that because REG_EQUIV may provide an
5606 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5607 if (NONJUMP_INSN_P (prev)
5608 && GET_CODE (PATTERN (prev)) == SET
5609 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5610 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5612 rtx dest = SET_DEST (sets[0].rtl);
5613 rtx src = SET_SRC (sets[0].rtl);
5614 rtx note;
5616 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5617 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5618 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5619 apply_change_group ();
5621 /* If INSN has a REG_EQUAL note, and this note mentions
5622 REG0, then we must delete it, because the value in
5623 REG0 has changed. If the note's value is REG1, we must
5624 also delete it because that is now this insn's dest. */
5625 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5626 if (note != 0
5627 && (reg_mentioned_p (dest, XEXP (note, 0))
5628 || rtx_equal_p (src, XEXP (note, 0))))
5629 remove_note (insn, note);
5634 done:;
5637 /* Remove from the hash table all expressions that reference memory. */
5639 static void
5640 invalidate_memory (void)
5642 int i;
5643 struct table_elt *p, *next;
5645 for (i = 0; i < HASH_SIZE; i++)
5646 for (p = table[i]; p; p = next)
5648 next = p->next_same_hash;
5649 if (p->in_memory)
5650 remove_from_table (p, i);
5654 /* Perform invalidation on the basis of everything about an insn
5655 except for invalidating the actual places that are SET in it.
5656 This includes the places CLOBBERed, and anything that might
5657 alias with something that is SET or CLOBBERed.
5659 X is the pattern of the insn. */
5661 static void
5662 invalidate_from_clobbers (rtx x)
5664 if (GET_CODE (x) == CLOBBER)
5666 rtx ref = XEXP (x, 0);
5667 if (ref)
5669 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5670 || MEM_P (ref))
5671 invalidate (ref, VOIDmode);
5672 else if (GET_CODE (ref) == STRICT_LOW_PART
5673 || GET_CODE (ref) == ZERO_EXTRACT)
5674 invalidate (XEXP (ref, 0), GET_MODE (ref));
5677 else if (GET_CODE (x) == PARALLEL)
5679 int i;
5680 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5682 rtx y = XVECEXP (x, 0, i);
5683 if (GET_CODE (y) == CLOBBER)
5685 rtx ref = XEXP (y, 0);
5686 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5687 || MEM_P (ref))
5688 invalidate (ref, VOIDmode);
5689 else if (GET_CODE (ref) == STRICT_LOW_PART
5690 || GET_CODE (ref) == ZERO_EXTRACT)
5691 invalidate (XEXP (ref, 0), GET_MODE (ref));
5697 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5698 and replace any registers in them with either an equivalent constant
5699 or the canonical form of the register. If we are inside an address,
5700 only do this if the address remains valid.
5702 OBJECT is 0 except when within a MEM in which case it is the MEM.
5704 Return the replacement for X. */
5706 static rtx
5707 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5709 enum rtx_code code = GET_CODE (x);
5710 const char *fmt = GET_RTX_FORMAT (code);
5711 int i;
5713 switch (code)
5715 case CONST_INT:
5716 case CONST:
5717 case SYMBOL_REF:
5718 case LABEL_REF:
5719 case CONST_DOUBLE:
5720 case CONST_FIXED:
5721 case CONST_VECTOR:
5722 case PC:
5723 case CC0:
5724 case LO_SUM:
5725 return x;
5727 case MEM:
5728 validate_change (x, &XEXP (x, 0),
5729 cse_process_notes (XEXP (x, 0), x, changed), 0);
5730 return x;
5732 case EXPR_LIST:
5733 case INSN_LIST:
5734 if (REG_NOTE_KIND (x) == REG_EQUAL)
5735 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
5736 if (XEXP (x, 1))
5737 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
5738 return x;
5740 case SIGN_EXTEND:
5741 case ZERO_EXTEND:
5742 case SUBREG:
5744 rtx new = cse_process_notes (XEXP (x, 0), object, changed);
5745 /* We don't substitute VOIDmode constants into these rtx,
5746 since they would impede folding. */
5747 if (GET_MODE (new) != VOIDmode)
5748 validate_change (object, &XEXP (x, 0), new, 0);
5749 return x;
5752 case REG:
5753 i = REG_QTY (REGNO (x));
5755 /* Return a constant or a constant register. */
5756 if (REGNO_QTY_VALID_P (REGNO (x)))
5758 struct qty_table_elem *ent = &qty_table[i];
5760 if (ent->const_rtx != NULL_RTX
5761 && (CONSTANT_P (ent->const_rtx)
5762 || REG_P (ent->const_rtx)))
5764 rtx new = gen_lowpart (GET_MODE (x), ent->const_rtx);
5765 if (new)
5766 return copy_rtx (new);
5770 /* Otherwise, canonicalize this register. */
5771 return canon_reg (x, NULL_RTX);
5773 default:
5774 break;
5777 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5778 if (fmt[i] == 'e')
5779 validate_change (object, &XEXP (x, i),
5780 cse_process_notes (XEXP (x, i), object, changed), 0);
5782 return x;
5785 static rtx
5786 cse_process_notes (rtx x, rtx object, bool *changed)
5788 rtx new = cse_process_notes_1 (x, object, changed);
5789 if (new != x)
5790 *changed = true;
5791 return new;
5795 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5797 DATA is a pointer to a struct cse_basic_block_data, that is used to
5798 describe the path.
5799 It is filled with a queue of basic blocks, starting with FIRST_BB
5800 and following a trace through the CFG.
5802 If all paths starting at FIRST_BB have been followed, or no new path
5803 starting at FIRST_BB can be constructed, this function returns FALSE.
5804 Otherwise, DATA->path is filled and the function returns TRUE indicating
5805 that a path to follow was found.
5807 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5808 block in the path will be FIRST_BB. */
5810 static bool
5811 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5812 int follow_jumps)
5814 basic_block bb;
5815 edge e;
5816 int path_size;
5818 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5820 /* See if there is a previous path. */
5821 path_size = data->path_size;
5823 /* There is a previous path. Make sure it started with FIRST_BB. */
5824 if (path_size)
5825 gcc_assert (data->path[0].bb == first_bb);
5827 /* There was only one basic block in the last path. Clear the path and
5828 return, so that paths starting at another basic block can be tried. */
5829 if (path_size == 1)
5831 path_size = 0;
5832 goto done;
5835 /* If the path was empty from the beginning, construct a new path. */
5836 if (path_size == 0)
5837 data->path[path_size++].bb = first_bb;
5838 else
5840 /* Otherwise, path_size must be equal to or greater than 2, because
5841 a previous path exists that is at least two basic blocks long.
5843 Update the previous branch path, if any. If the last branch was
5844 previously along the branch edge, take the fallthrough edge now. */
5845 while (path_size >= 2)
5847 basic_block last_bb_in_path, previous_bb_in_path;
5848 edge e;
5850 --path_size;
5851 last_bb_in_path = data->path[path_size].bb;
5852 previous_bb_in_path = data->path[path_size - 1].bb;
5854 /* If we previously followed a path along the branch edge, try
5855 the fallthru edge now. */
5856 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5857 && any_condjump_p (BB_END (previous_bb_in_path))
5858 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5859 && e == BRANCH_EDGE (previous_bb_in_path))
5861 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5862 if (bb != EXIT_BLOCK_PTR
5863 && single_pred_p (bb)
5864 /* We used to assert here that we would only see blocks
5865 that we have not visited yet. But we may end up
5866 visiting basic blocks twice if the CFG has changed
5867 in this run of cse_main, because when the CFG changes
5868 the topological sort of the CFG also changes. A basic
5869 blocks that previously had more than two predecessors
5870 may now have a single predecessor, and become part of
5871 a path that starts at another basic block.
5873 We still want to visit each basic block only once, so
5874 halt the path here if we have already visited BB. */
5875 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5877 SET_BIT (cse_visited_basic_blocks, bb->index);
5878 data->path[path_size++].bb = bb;
5879 break;
5883 data->path[path_size].bb = NULL;
5886 /* If only one block remains in the path, bail. */
5887 if (path_size == 1)
5889 path_size = 0;
5890 goto done;
5894 /* Extend the path if possible. */
5895 if (follow_jumps)
5897 bb = data->path[path_size - 1].bb;
5898 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5900 if (single_succ_p (bb))
5901 e = single_succ_edge (bb);
5902 else if (EDGE_COUNT (bb->succs) == 2
5903 && any_condjump_p (BB_END (bb)))
5905 /* First try to follow the branch. If that doesn't lead
5906 to a useful path, follow the fallthru edge. */
5907 e = BRANCH_EDGE (bb);
5908 if (!single_pred_p (e->dest))
5909 e = FALLTHRU_EDGE (bb);
5911 else
5912 e = NULL;
5914 if (e && e->dest != EXIT_BLOCK_PTR
5915 && single_pred_p (e->dest)
5916 /* Avoid visiting basic blocks twice. The large comment
5917 above explains why this can happen. */
5918 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5920 basic_block bb2 = e->dest;
5921 SET_BIT (cse_visited_basic_blocks, bb2->index);
5922 data->path[path_size++].bb = bb2;
5923 bb = bb2;
5925 else
5926 bb = NULL;
5930 done:
5931 data->path_size = path_size;
5932 return path_size != 0;
5935 /* Dump the path in DATA to file F. NSETS is the number of sets
5936 in the path. */
5938 static void
5939 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5941 int path_entry;
5943 fprintf (f, ";; Following path with %d sets: ", nsets);
5944 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5945 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5946 fputc ('\n', dump_file);
5947 fflush (f);
5951 /* Return true if BB has exception handling successor edges. */
5953 static bool
5954 have_eh_succ_edges (basic_block bb)
5956 edge e;
5957 edge_iterator ei;
5959 FOR_EACH_EDGE (e, ei, bb->succs)
5960 if (e->flags & EDGE_EH)
5961 return true;
5963 return false;
5967 /* Scan to the end of the path described by DATA. Return an estimate of
5968 the total number of SETs of all insns in the path. */
5970 static void
5971 cse_prescan_path (struct cse_basic_block_data *data)
5973 int nsets = 0;
5974 int path_size = data->path_size;
5975 int path_entry;
5977 /* Scan to end of each basic block in the path. */
5978 for (path_entry = 0; path_entry < path_size; path_entry++)
5980 basic_block bb;
5981 rtx insn;
5983 bb = data->path[path_entry].bb;
5985 FOR_BB_INSNS (bb, insn)
5987 if (!INSN_P (insn))
5988 continue;
5990 /* A PARALLEL can have lots of SETs in it,
5991 especially if it is really an ASM_OPERANDS. */
5992 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5993 nsets += XVECLEN (PATTERN (insn), 0);
5994 else
5995 nsets += 1;
5999 data->nsets = nsets;
6002 /* Process a single extended basic block described by EBB_DATA. */
6004 static void
6005 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
6007 int path_size = ebb_data->path_size;
6008 int path_entry;
6009 int num_insns = 0;
6011 /* Allocate the space needed by qty_table. */
6012 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
6014 new_basic_block ();
6015 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
6016 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
6017 for (path_entry = 0; path_entry < path_size; path_entry++)
6019 basic_block bb;
6020 rtx insn;
6021 rtx libcall_insn = NULL_RTX;
6022 int no_conflict = 0;
6024 bb = ebb_data->path[path_entry].bb;
6025 FOR_BB_INSNS (bb, insn)
6027 /* If we have processed 1,000 insns, flush the hash table to
6028 avoid extreme quadratic behavior. We must not include NOTEs
6029 in the count since there may be more of them when generating
6030 debugging information. If we clear the table at different
6031 times, code generated with -g -O might be different than code
6032 generated with -O but not -g.
6034 FIXME: This is a real kludge and needs to be done some other
6035 way. */
6036 if (INSN_P (insn)
6037 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6039 flush_hash_table ();
6040 num_insns = 0;
6043 if (INSN_P (insn))
6045 /* Process notes first so we have all notes in canonical forms
6046 when looking for duplicate operations. */
6047 if (REG_NOTES (insn))
6049 bool changed = false;
6050 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6051 NULL_RTX, &changed);
6052 if (changed)
6053 df_notes_rescan (insn);
6056 /* Track when we are inside in LIBCALL block. Inside such
6057 a block we do not want to record destinations. The last
6058 insn of a LIBCALL block is not considered to be part of
6059 the block, since its destination is the result of the
6060 block and hence should be recorded. */
6061 if (REG_NOTES (insn) != 0)
6063 rtx p;
6065 if ((p = find_reg_note (insn, REG_LIBCALL, NULL_RTX)))
6066 libcall_insn = XEXP (p, 0);
6067 else if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6069 /* Keep libcall_insn for the last SET insn of
6070 a no-conflict block to prevent changing the
6071 destination. */
6072 if (!no_conflict)
6073 libcall_insn = NULL_RTX;
6074 else
6075 no_conflict = -1;
6077 else if (find_reg_note (insn, REG_NO_CONFLICT, NULL_RTX))
6078 no_conflict = 1;
6081 cse_insn (insn, libcall_insn);
6083 /* If we kept libcall_insn for a no-conflict bock,
6084 clear it here. */
6085 if (no_conflict == -1)
6087 libcall_insn = NULL_RTX;
6088 no_conflict = 0;
6091 /* If we haven't already found an insn where we added a LABEL_REF,
6092 check this one. */
6093 if (NONJUMP_INSN_P (insn) && ! recorded_label_ref
6094 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6095 (void *) insn))
6096 recorded_label_ref = 1;
6098 #ifdef HAVE_cc0
6099 /* If the previous insn set CC0 and this insn no longer
6100 references CC0, delete the previous insn. Here we use
6101 fact that nothing expects CC0 to be valid over an insn,
6102 which is true until the final pass. */
6104 rtx prev_insn, tem;
6106 prev_insn = PREV_INSN (insn);
6107 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6108 && (tem = single_set (prev_insn)) != 0
6109 && SET_DEST (tem) == cc0_rtx
6110 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6111 delete_insn (prev_insn);
6114 /* If this insn is not the last insn in the basic block,
6115 it will be PREV_INSN(insn) in the next iteration. If
6116 we recorded any CC0-related information for this insn,
6117 remember it. */
6118 if (insn != BB_END (bb))
6120 prev_insn_cc0 = this_insn_cc0;
6121 prev_insn_cc0_mode = this_insn_cc0_mode;
6123 #endif
6127 /* Make sure that libcalls don't span multiple basic blocks. */
6128 gcc_assert (libcall_insn == NULL_RTX);
6130 /* With non-call exceptions, we are not always able to update
6131 the CFG properly inside cse_insn. So clean up possibly
6132 redundant EH edges here. */
6133 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6134 purge_dead_edges (bb);
6136 /* If we changed a conditional jump, we may have terminated
6137 the path we are following. Check that by verifying that
6138 the edge we would take still exists. If the edge does
6139 not exist anymore, purge the remainder of the path.
6140 Note that this will cause us to return to the caller. */
6141 if (path_entry < path_size - 1)
6143 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6144 if (!find_edge (bb, next_bb))
6148 path_size--;
6150 /* If we truncate the path, we must also reset the
6151 visited bit on the remaining blocks in the path,
6152 or we will never visit them at all. */
6153 RESET_BIT (cse_visited_basic_blocks,
6154 ebb_data->path[path_size].bb->index);
6155 ebb_data->path[path_size].bb = NULL;
6157 while (path_size - 1 != path_entry);
6158 ebb_data->path_size = path_size;
6162 /* If this is a conditional jump insn, record any known
6163 equivalences due to the condition being tested. */
6164 insn = BB_END (bb);
6165 if (path_entry < path_size - 1
6166 && JUMP_P (insn)
6167 && single_set (insn)
6168 && any_condjump_p (insn))
6170 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6171 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6172 record_jump_equiv (insn, taken);
6175 #ifdef HAVE_cc0
6176 /* Clear the CC0-tracking related insns, they can't provide
6177 useful information across basic block boundaries. */
6178 prev_insn_cc0 = 0;
6179 #endif
6182 gcc_assert (next_qty <= max_qty);
6184 free (qty_table);
6188 /* Perform cse on the instructions of a function.
6189 F is the first instruction.
6190 NREGS is one plus the highest pseudo-reg number used in the instruction.
6192 Returns 1 if jump_optimize should be redone due to simplifications
6193 in conditional jump instructions. */
6196 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6198 struct cse_basic_block_data ebb_data;
6199 basic_block bb;
6200 int *rc_order = XNEWVEC (int, last_basic_block);
6201 int i, n_blocks;
6203 df_set_flags (DF_LR_RUN_DCE);
6204 df_analyze ();
6205 df_set_flags (DF_DEFER_INSN_RESCAN);
6207 reg_scan (get_insns (), max_reg_num ());
6208 init_cse_reg_info (nregs);
6210 ebb_data.path = XNEWVEC (struct branch_path,
6211 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6213 cse_jumps_altered = 0;
6214 recorded_label_ref = 0;
6215 constant_pool_entries_cost = 0;
6216 constant_pool_entries_regcost = 0;
6217 ebb_data.path_size = 0;
6218 ebb_data.nsets = 0;
6219 rtl_hooks = cse_rtl_hooks;
6221 init_recog ();
6222 init_alias_analysis ();
6224 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6226 /* Set up the table of already visited basic blocks. */
6227 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6228 sbitmap_zero (cse_visited_basic_blocks);
6230 /* Loop over basic blocks in reverse completion order (RPO),
6231 excluding the ENTRY and EXIT blocks. */
6232 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6233 i = 0;
6234 while (i < n_blocks)
6236 /* Find the first block in the RPO queue that we have not yet
6237 processed before. */
6240 bb = BASIC_BLOCK (rc_order[i++]);
6242 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6243 && i < n_blocks);
6245 /* Find all paths starting with BB, and process them. */
6246 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6248 /* Pre-scan the path. */
6249 cse_prescan_path (&ebb_data);
6251 /* If this basic block has no sets, skip it. */
6252 if (ebb_data.nsets == 0)
6253 continue;
6255 /* Get a reasonable estimate for the maximum number of qty's
6256 needed for this path. For this, we take the number of sets
6257 and multiply that by MAX_RECOG_OPERANDS. */
6258 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6260 /* Dump the path we're about to process. */
6261 if (dump_file)
6262 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6264 cse_extended_basic_block (&ebb_data);
6268 /* Clean up. */
6269 end_alias_analysis ();
6270 free (reg_eqv_table);
6271 free (ebb_data.path);
6272 sbitmap_free (cse_visited_basic_blocks);
6273 free (rc_order);
6274 rtl_hooks = general_rtl_hooks;
6276 return cse_jumps_altered || recorded_label_ref;
6279 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for which
6280 there isn't a REG_LABEL note. Return one if so. DATA is the insn. */
6282 static int
6283 check_for_label_ref (rtx *rtl, void *data)
6285 rtx insn = (rtx) data;
6287 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL note for it,
6288 we must rerun jump since it needs to place the note. If this is a
6289 LABEL_REF for a CODE_LABEL that isn't in the insn chain, don't do this
6290 since no REG_LABEL will be added. */
6291 return (GET_CODE (*rtl) == LABEL_REF
6292 && ! LABEL_REF_NONLOCAL_P (*rtl)
6293 && LABEL_P (XEXP (*rtl, 0))
6294 && INSN_UID (XEXP (*rtl, 0)) != 0
6295 && ! find_reg_note (insn, REG_LABEL, XEXP (*rtl, 0)));
6298 /* Count the number of times registers are used (not set) in X.
6299 COUNTS is an array in which we accumulate the count, INCR is how much
6300 we count each register usage.
6302 Don't count a usage of DEST, which is the SET_DEST of a SET which
6303 contains X in its SET_SRC. This is because such a SET does not
6304 modify the liveness of DEST.
6305 DEST is set to pc_rtx for a trapping insn, which means that we must count
6306 uses of a SET_DEST regardless because the insn can't be deleted here. */
6308 static void
6309 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6311 enum rtx_code code;
6312 rtx note;
6313 const char *fmt;
6314 int i, j;
6316 if (x == 0)
6317 return;
6319 switch (code = GET_CODE (x))
6321 case REG:
6322 if (x != dest)
6323 counts[REGNO (x)] += incr;
6324 return;
6326 case PC:
6327 case CC0:
6328 case CONST:
6329 case CONST_INT:
6330 case CONST_DOUBLE:
6331 case CONST_FIXED:
6332 case CONST_VECTOR:
6333 case SYMBOL_REF:
6334 case LABEL_REF:
6335 return;
6337 case CLOBBER:
6338 /* If we are clobbering a MEM, mark any registers inside the address
6339 as being used. */
6340 if (MEM_P (XEXP (x, 0)))
6341 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6342 return;
6344 case SET:
6345 /* Unless we are setting a REG, count everything in SET_DEST. */
6346 if (!REG_P (SET_DEST (x)))
6347 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6348 count_reg_usage (SET_SRC (x), counts,
6349 dest ? dest : SET_DEST (x),
6350 incr);
6351 return;
6353 case CALL_INSN:
6354 case INSN:
6355 case JUMP_INSN:
6356 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6357 this fact by setting DEST to pc_rtx. */
6358 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6359 dest = pc_rtx;
6360 if (code == CALL_INSN)
6361 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6362 count_reg_usage (PATTERN (x), counts, dest, incr);
6364 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6365 use them. */
6367 note = find_reg_equal_equiv_note (x);
6368 if (note)
6370 rtx eqv = XEXP (note, 0);
6372 if (GET_CODE (eqv) == EXPR_LIST)
6373 /* This REG_EQUAL note describes the result of a function call.
6374 Process all the arguments. */
6377 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6378 eqv = XEXP (eqv, 1);
6380 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6381 else
6382 count_reg_usage (eqv, counts, dest, incr);
6384 return;
6386 case EXPR_LIST:
6387 if (REG_NOTE_KIND (x) == REG_EQUAL
6388 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6389 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6390 involving registers in the address. */
6391 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6392 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6394 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6395 return;
6397 case ASM_OPERANDS:
6398 /* If the asm is volatile, then this insn cannot be deleted,
6399 and so the inputs *must* be live. */
6400 if (MEM_VOLATILE_P (x))
6401 dest = NULL_RTX;
6402 /* Iterate over just the inputs, not the constraints as well. */
6403 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6404 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6405 return;
6407 case INSN_LIST:
6408 gcc_unreachable ();
6410 default:
6411 break;
6414 fmt = GET_RTX_FORMAT (code);
6415 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6417 if (fmt[i] == 'e')
6418 count_reg_usage (XEXP (x, i), counts, dest, incr);
6419 else if (fmt[i] == 'E')
6420 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6421 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6425 /* Return true if set is live. */
6426 static bool
6427 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6428 int *counts)
6430 #ifdef HAVE_cc0
6431 rtx tem;
6432 #endif
6434 if (set_noop_p (set))
6437 #ifdef HAVE_cc0
6438 else if (GET_CODE (SET_DEST (set)) == CC0
6439 && !side_effects_p (SET_SRC (set))
6440 && ((tem = next_nonnote_insn (insn)) == 0
6441 || !INSN_P (tem)
6442 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6443 return false;
6444 #endif
6445 else if (!REG_P (SET_DEST (set))
6446 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6447 || counts[REGNO (SET_DEST (set))] != 0
6448 || side_effects_p (SET_SRC (set)))
6449 return true;
6450 return false;
6453 /* Return true if insn is live. */
6455 static bool
6456 insn_live_p (rtx insn, int *counts)
6458 int i;
6459 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6460 return true;
6461 else if (GET_CODE (PATTERN (insn)) == SET)
6462 return set_live_p (PATTERN (insn), insn, counts);
6463 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6465 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6467 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6469 if (GET_CODE (elt) == SET)
6471 if (set_live_p (elt, insn, counts))
6472 return true;
6474 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6475 return true;
6477 return false;
6479 else
6480 return true;
6483 /* Return true if libcall is dead as a whole. */
6485 static bool
6486 dead_libcall_p (rtx insn, int *counts)
6488 rtx note, set, new;
6490 /* See if there's a REG_EQUAL note on this insn and try to
6491 replace the source with the REG_EQUAL expression.
6493 We assume that insns with REG_RETVALs can only be reg->reg
6494 copies at this point. */
6495 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
6496 if (!note)
6497 return false;
6499 set = single_set (insn);
6500 if (!set)
6501 return false;
6503 new = simplify_rtx (XEXP (note, 0));
6504 if (!new)
6505 new = XEXP (note, 0);
6507 /* While changing insn, we must update the counts accordingly. */
6508 count_reg_usage (insn, counts, NULL_RTX, -1);
6510 if (validate_change (insn, &SET_SRC (set), new, 0))
6512 count_reg_usage (insn, counts, NULL_RTX, 1);
6513 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6514 remove_note (insn, note);
6515 return true;
6518 if (CONSTANT_P (new))
6520 new = force_const_mem (GET_MODE (SET_DEST (set)), new);
6521 if (new && validate_change (insn, &SET_SRC (set), new, 0))
6523 count_reg_usage (insn, counts, NULL_RTX, 1);
6524 remove_note (insn, find_reg_note (insn, REG_RETVAL, NULL_RTX));
6525 remove_note (insn, note);
6526 return true;
6530 count_reg_usage (insn, counts, NULL_RTX, 1);
6531 return false;
6534 /* Scan all the insns and delete any that are dead; i.e., they store a register
6535 that is never used or they copy a register to itself.
6537 This is used to remove insns made obviously dead by cse, loop or other
6538 optimizations. It improves the heuristics in loop since it won't try to
6539 move dead invariants out of loops or make givs for dead quantities. The
6540 remaining passes of the compilation are also sped up. */
6543 delete_trivially_dead_insns (rtx insns, int nreg)
6545 int *counts;
6546 rtx insn, prev;
6547 int in_libcall = 0, dead_libcall = 0;
6548 int ndead = 0;
6550 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6551 /* First count the number of times each register is used. */
6552 counts = XCNEWVEC (int, nreg);
6553 for (insn = insns; insn; insn = NEXT_INSN (insn))
6554 if (INSN_P (insn))
6555 count_reg_usage (insn, counts, NULL_RTX, 1);
6557 /* Go from the last insn to the first and delete insns that only set unused
6558 registers or copy a register to itself. As we delete an insn, remove
6559 usage counts for registers it uses.
6561 The first jump optimization pass may leave a real insn as the last
6562 insn in the function. We must not skip that insn or we may end
6563 up deleting code that is not really dead. */
6564 for (insn = get_last_insn (); insn; insn = prev)
6566 int live_insn = 0;
6568 prev = PREV_INSN (insn);
6569 if (!INSN_P (insn))
6570 continue;
6572 /* Don't delete any insns that are part of a libcall block unless
6573 we can delete the whole libcall block.
6575 Flow or loop might get confused if we did that. Remember
6576 that we are scanning backwards. */
6577 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
6579 in_libcall = 1;
6580 live_insn = 1;
6581 dead_libcall = dead_libcall_p (insn, counts);
6583 else if (in_libcall)
6584 live_insn = ! dead_libcall;
6585 else
6586 live_insn = insn_live_p (insn, counts);
6588 /* If this is a dead insn, delete it and show registers in it aren't
6589 being used. */
6591 if (! live_insn && dbg_cnt (delete_trivial_dead))
6593 count_reg_usage (insn, counts, NULL_RTX, -1);
6594 delete_insn_and_edges (insn);
6595 ndead++;
6598 if (in_libcall && find_reg_note (insn, REG_LIBCALL, NULL_RTX))
6600 in_libcall = 0;
6601 dead_libcall = 0;
6605 if (dump_file && ndead)
6606 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6607 ndead);
6608 /* Clean up. */
6609 free (counts);
6610 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6611 return ndead;
6614 /* This function is called via for_each_rtx. The argument, NEWREG, is
6615 a condition code register with the desired mode. If we are looking
6616 at the same register in a different mode, replace it with
6617 NEWREG. */
6619 static int
6620 cse_change_cc_mode (rtx *loc, void *data)
6622 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6624 if (*loc
6625 && REG_P (*loc)
6626 && REGNO (*loc) == REGNO (args->newreg)
6627 && GET_MODE (*loc) != GET_MODE (args->newreg))
6629 validate_change (args->insn, loc, args->newreg, 1);
6631 return -1;
6633 return 0;
6636 /* Change the mode of any reference to the register REGNO (NEWREG) to
6637 GET_MODE (NEWREG) in INSN. */
6639 static void
6640 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6642 struct change_cc_mode_args args;
6643 int success;
6645 if (!INSN_P (insn))
6646 return;
6648 args.insn = insn;
6649 args.newreg = newreg;
6651 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6652 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6654 /* If the following assertion was triggered, there is most probably
6655 something wrong with the cc_modes_compatible back end function.
6656 CC modes only can be considered compatible if the insn - with the mode
6657 replaced by any of the compatible modes - can still be recognized. */
6658 success = apply_change_group ();
6659 gcc_assert (success);
6662 /* Change the mode of any reference to the register REGNO (NEWREG) to
6663 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6664 any instruction which modifies NEWREG. */
6666 static void
6667 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6669 rtx insn;
6671 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6673 if (! INSN_P (insn))
6674 continue;
6676 if (reg_set_p (newreg, insn))
6677 return;
6679 cse_change_cc_mode_insn (insn, newreg);
6683 /* BB is a basic block which finishes with CC_REG as a condition code
6684 register which is set to CC_SRC. Look through the successors of BB
6685 to find blocks which have a single predecessor (i.e., this one),
6686 and look through those blocks for an assignment to CC_REG which is
6687 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6688 permitted to change the mode of CC_SRC to a compatible mode. This
6689 returns VOIDmode if no equivalent assignments were found.
6690 Otherwise it returns the mode which CC_SRC should wind up with.
6692 The main complexity in this function is handling the mode issues.
6693 We may have more than one duplicate which we can eliminate, and we
6694 try to find a mode which will work for multiple duplicates. */
6696 static enum machine_mode
6697 cse_cc_succs (basic_block bb, rtx cc_reg, rtx cc_src, bool can_change_mode)
6699 bool found_equiv;
6700 enum machine_mode mode;
6701 unsigned int insn_count;
6702 edge e;
6703 rtx insns[2];
6704 enum machine_mode modes[2];
6705 rtx last_insns[2];
6706 unsigned int i;
6707 rtx newreg;
6708 edge_iterator ei;
6710 /* We expect to have two successors. Look at both before picking
6711 the final mode for the comparison. If we have more successors
6712 (i.e., some sort of table jump, although that seems unlikely),
6713 then we require all beyond the first two to use the same
6714 mode. */
6716 found_equiv = false;
6717 mode = GET_MODE (cc_src);
6718 insn_count = 0;
6719 FOR_EACH_EDGE (e, ei, bb->succs)
6721 rtx insn;
6722 rtx end;
6724 if (e->flags & EDGE_COMPLEX)
6725 continue;
6727 if (EDGE_COUNT (e->dest->preds) != 1
6728 || e->dest == EXIT_BLOCK_PTR)
6729 continue;
6731 end = NEXT_INSN (BB_END (e->dest));
6732 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6734 rtx set;
6736 if (! INSN_P (insn))
6737 continue;
6739 /* If CC_SRC is modified, we have to stop looking for
6740 something which uses it. */
6741 if (modified_in_p (cc_src, insn))
6742 break;
6744 /* Check whether INSN sets CC_REG to CC_SRC. */
6745 set = single_set (insn);
6746 if (set
6747 && REG_P (SET_DEST (set))
6748 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6750 bool found;
6751 enum machine_mode set_mode;
6752 enum machine_mode comp_mode;
6754 found = false;
6755 set_mode = GET_MODE (SET_SRC (set));
6756 comp_mode = set_mode;
6757 if (rtx_equal_p (cc_src, SET_SRC (set)))
6758 found = true;
6759 else if (GET_CODE (cc_src) == COMPARE
6760 && GET_CODE (SET_SRC (set)) == COMPARE
6761 && mode != set_mode
6762 && rtx_equal_p (XEXP (cc_src, 0),
6763 XEXP (SET_SRC (set), 0))
6764 && rtx_equal_p (XEXP (cc_src, 1),
6765 XEXP (SET_SRC (set), 1)))
6768 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6769 if (comp_mode != VOIDmode
6770 && (can_change_mode || comp_mode == mode))
6771 found = true;
6774 if (found)
6776 found_equiv = true;
6777 if (insn_count < ARRAY_SIZE (insns))
6779 insns[insn_count] = insn;
6780 modes[insn_count] = set_mode;
6781 last_insns[insn_count] = end;
6782 ++insn_count;
6784 if (mode != comp_mode)
6786 gcc_assert (can_change_mode);
6787 mode = comp_mode;
6789 /* The modified insn will be re-recognized later. */
6790 PUT_MODE (cc_src, mode);
6793 else
6795 if (set_mode != mode)
6797 /* We found a matching expression in the
6798 wrong mode, but we don't have room to
6799 store it in the array. Punt. This case
6800 should be rare. */
6801 break;
6803 /* INSN sets CC_REG to a value equal to CC_SRC
6804 with the right mode. We can simply delete
6805 it. */
6806 delete_insn (insn);
6809 /* We found an instruction to delete. Keep looking,
6810 in the hopes of finding a three-way jump. */
6811 continue;
6814 /* We found an instruction which sets the condition
6815 code, so don't look any farther. */
6816 break;
6819 /* If INSN sets CC_REG in some other way, don't look any
6820 farther. */
6821 if (reg_set_p (cc_reg, insn))
6822 break;
6825 /* If we fell off the bottom of the block, we can keep looking
6826 through successors. We pass CAN_CHANGE_MODE as false because
6827 we aren't prepared to handle compatibility between the
6828 further blocks and this block. */
6829 if (insn == end)
6831 enum machine_mode submode;
6833 submode = cse_cc_succs (e->dest, cc_reg, cc_src, false);
6834 if (submode != VOIDmode)
6836 gcc_assert (submode == mode);
6837 found_equiv = true;
6838 can_change_mode = false;
6843 if (! found_equiv)
6844 return VOIDmode;
6846 /* Now INSN_COUNT is the number of instructions we found which set
6847 CC_REG to a value equivalent to CC_SRC. The instructions are in
6848 INSNS. The modes used by those instructions are in MODES. */
6850 newreg = NULL_RTX;
6851 for (i = 0; i < insn_count; ++i)
6853 if (modes[i] != mode)
6855 /* We need to change the mode of CC_REG in INSNS[i] and
6856 subsequent instructions. */
6857 if (! newreg)
6859 if (GET_MODE (cc_reg) == mode)
6860 newreg = cc_reg;
6861 else
6862 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6864 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6865 newreg);
6868 delete_insn (insns[i]);
6871 return mode;
6874 /* If we have a fixed condition code register (or two), walk through
6875 the instructions and try to eliminate duplicate assignments. */
6877 static void
6878 cse_condition_code_reg (void)
6880 unsigned int cc_regno_1;
6881 unsigned int cc_regno_2;
6882 rtx cc_reg_1;
6883 rtx cc_reg_2;
6884 basic_block bb;
6886 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6887 return;
6889 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6890 if (cc_regno_2 != INVALID_REGNUM)
6891 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6892 else
6893 cc_reg_2 = NULL_RTX;
6895 FOR_EACH_BB (bb)
6897 rtx last_insn;
6898 rtx cc_reg;
6899 rtx insn;
6900 rtx cc_src_insn;
6901 rtx cc_src;
6902 enum machine_mode mode;
6903 enum machine_mode orig_mode;
6905 /* Look for blocks which end with a conditional jump based on a
6906 condition code register. Then look for the instruction which
6907 sets the condition code register. Then look through the
6908 successor blocks for instructions which set the condition
6909 code register to the same value. There are other possible
6910 uses of the condition code register, but these are by far the
6911 most common and the ones which we are most likely to be able
6912 to optimize. */
6914 last_insn = BB_END (bb);
6915 if (!JUMP_P (last_insn))
6916 continue;
6918 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6919 cc_reg = cc_reg_1;
6920 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6921 cc_reg = cc_reg_2;
6922 else
6923 continue;
6925 cc_src_insn = NULL_RTX;
6926 cc_src = NULL_RTX;
6927 for (insn = PREV_INSN (last_insn);
6928 insn && insn != PREV_INSN (BB_HEAD (bb));
6929 insn = PREV_INSN (insn))
6931 rtx set;
6933 if (! INSN_P (insn))
6934 continue;
6935 set = single_set (insn);
6936 if (set
6937 && REG_P (SET_DEST (set))
6938 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6940 cc_src_insn = insn;
6941 cc_src = SET_SRC (set);
6942 break;
6944 else if (reg_set_p (cc_reg, insn))
6945 break;
6948 if (! cc_src_insn)
6949 continue;
6951 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6952 continue;
6954 /* Now CC_REG is a condition code register used for a
6955 conditional jump at the end of the block, and CC_SRC, in
6956 CC_SRC_INSN, is the value to which that condition code
6957 register is set, and CC_SRC is still meaningful at the end of
6958 the basic block. */
6960 orig_mode = GET_MODE (cc_src);
6961 mode = cse_cc_succs (bb, cc_reg, cc_src, true);
6962 if (mode != VOIDmode)
6964 gcc_assert (mode == GET_MODE (cc_src));
6965 if (mode != orig_mode)
6967 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6969 cse_change_cc_mode_insn (cc_src_insn, newreg);
6971 /* Do the same in the following insns that use the
6972 current value of CC_REG within BB. */
6973 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6974 NEXT_INSN (last_insn),
6975 newreg);
6982 /* Perform common subexpression elimination. Nonzero value from
6983 `cse_main' means that jumps were simplified and some code may now
6984 be unreachable, so do jump optimization again. */
6985 static bool
6986 gate_handle_cse (void)
6988 return optimize > 0;
6991 static unsigned int
6992 rest_of_handle_cse (void)
6994 int tem;
6996 if (dump_file)
6997 dump_flow_info (dump_file, dump_flags);
6999 tem = cse_main (get_insns (), max_reg_num ());
7001 /* If we are not running more CSE passes, then we are no longer
7002 expecting CSE to be run. But always rerun it in a cheap mode. */
7003 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
7005 if (tem)
7006 rebuild_jump_labels (get_insns ());
7008 if (tem || optimize > 1)
7009 cleanup_cfg (0);
7011 return 0;
7014 struct tree_opt_pass pass_cse =
7016 "cse1", /* name */
7017 gate_handle_cse, /* gate */
7018 rest_of_handle_cse, /* execute */
7019 NULL, /* sub */
7020 NULL, /* next */
7021 0, /* static_pass_number */
7022 TV_CSE, /* tv_id */
7023 0, /* properties_required */
7024 0, /* properties_provided */
7025 0, /* properties_destroyed */
7026 0, /* todo_flags_start */
7027 TODO_df_finish |
7028 TODO_dump_func |
7029 TODO_ggc_collect |
7030 TODO_verify_flow, /* todo_flags_finish */
7031 's' /* letter */
7035 static bool
7036 gate_handle_cse2 (void)
7038 return optimize > 0 && flag_rerun_cse_after_loop;
7041 /* Run second CSE pass after loop optimizations. */
7042 static unsigned int
7043 rest_of_handle_cse2 (void)
7045 int tem;
7047 if (dump_file)
7048 dump_flow_info (dump_file, dump_flags);
7050 tem = cse_main (get_insns (), max_reg_num ());
7052 /* Run a pass to eliminate duplicated assignments to condition code
7053 registers. We have to run this after bypass_jumps, because it
7054 makes it harder for that pass to determine whether a jump can be
7055 bypassed safely. */
7056 cse_condition_code_reg ();
7058 delete_trivially_dead_insns (get_insns (), max_reg_num ());
7060 if (tem)
7062 timevar_push (TV_JUMP);
7063 rebuild_jump_labels (get_insns ());
7064 cleanup_cfg (0);
7065 timevar_pop (TV_JUMP);
7067 cse_not_expected = 1;
7068 return 0;
7072 struct tree_opt_pass pass_cse2 =
7074 "cse2", /* name */
7075 gate_handle_cse2, /* gate */
7076 rest_of_handle_cse2, /* execute */
7077 NULL, /* sub */
7078 NULL, /* next */
7079 0, /* static_pass_number */
7080 TV_CSE2, /* tv_id */
7081 0, /* properties_required */
7082 0, /* properties_provided */
7083 0, /* properties_destroyed */
7084 0, /* todo_flags_start */
7085 TODO_df_finish |
7086 TODO_dump_func |
7087 TODO_ggc_collect |
7088 TODO_verify_flow, /* todo_flags_finish */
7089 't' /* letter */