hppa: Fix pr104869.C on hpux
[official-gcc.git] / gcc / function.cc
blob527ea4807b0cdf234b915b5a30c464b99dfb1fc3
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987-2023 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles the generation of rtl code from tree structure
21 at the level of the function as a whole.
22 It creates the rtl expressions for parameters and auto variables
23 and has full responsibility for allocating stack slots.
25 `expand_function_start' is called at the beginning of a function,
26 before the function body is parsed, and `expand_function_end' is
27 called after parsing the body.
29 Call `assign_stack_local' to allocate a stack slot for a local variable.
30 This is usually done during the RTL generation for the function body,
31 but it can also be done in the reload pass when a pseudo-register does
32 not get a hard register. */
34 #include "config.h"
35 #include "system.h"
36 #include "coretypes.h"
37 #include "backend.h"
38 #include "target.h"
39 #include "rtl.h"
40 #include "tree.h"
41 #include "gimple-expr.h"
42 #include "cfghooks.h"
43 #include "df.h"
44 #include "memmodel.h"
45 #include "tm_p.h"
46 #include "stringpool.h"
47 #include "expmed.h"
48 #include "optabs.h"
49 #include "opts.h"
50 #include "regs.h"
51 #include "emit-rtl.h"
52 #include "recog.h"
53 #include "rtl-error.h"
54 #include "hard-reg-set.h"
55 #include "alias.h"
56 #include "fold-const.h"
57 #include "stor-layout.h"
58 #include "varasm.h"
59 #include "except.h"
60 #include "dojump.h"
61 #include "explow.h"
62 #include "calls.h"
63 #include "expr.h"
64 #include "optabs-tree.h"
65 #include "output.h"
66 #include "langhooks.h"
67 #include "common/common-target.h"
68 #include "gimplify.h"
69 #include "tree-pass.h"
70 #include "cfgrtl.h"
71 #include "cfganal.h"
72 #include "cfgbuild.h"
73 #include "cfgcleanup.h"
74 #include "cfgexpand.h"
75 #include "shrink-wrap.h"
76 #include "toplev.h"
77 #include "rtl-iter.h"
78 #include "tree-dfa.h"
79 #include "tree-ssa.h"
80 #include "stringpool.h"
81 #include "attribs.h"
82 #include "gimple.h"
83 #include "options.h"
84 #include "function-abi.h"
85 #include "value-range.h"
86 #include "gimple-range.h"
88 /* So we can assign to cfun in this file. */
89 #undef cfun
91 #ifndef STACK_ALIGNMENT_NEEDED
92 #define STACK_ALIGNMENT_NEEDED 1
93 #endif
95 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
97 /* Round a value to the lowest integer less than it that is a multiple of
98 the required alignment. Avoid using division in case the value is
99 negative. Assume the alignment is a power of two. */
100 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
102 /* Similar, but round to the next highest integer that meets the
103 alignment. */
104 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
106 /* Nonzero once virtual register instantiation has been done.
107 assign_stack_local uses frame_pointer_rtx when this is nonzero.
108 calls.cc:emit_library_call_value_1 uses it to set up
109 post-instantiation libcalls. */
110 int virtuals_instantiated;
112 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
113 static GTY(()) int funcdef_no;
115 /* These variables hold pointers to functions to create and destroy
116 target specific, per-function data structures. */
117 struct machine_function * (*init_machine_status) (void);
119 /* The currently compiled function. */
120 struct function *cfun = 0;
122 /* These hashes record the prologue and epilogue insns. */
124 struct insn_cache_hasher : ggc_cache_ptr_hash<rtx_def>
126 static hashval_t hash (rtx x) { return htab_hash_pointer (x); }
127 static bool equal (rtx a, rtx b) { return a == b; }
130 static GTY((cache))
131 hash_table<insn_cache_hasher> *prologue_insn_hash;
132 static GTY((cache))
133 hash_table<insn_cache_hasher> *epilogue_insn_hash;
136 hash_table<used_type_hasher> *types_used_by_vars_hash = NULL;
137 vec<tree, va_gc> *types_used_by_cur_var_decl;
139 /* Forward declarations. */
141 static class temp_slot *find_temp_slot_from_address (rtx);
142 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
143 static void pad_below (struct args_size *, machine_mode, tree);
144 static void reorder_blocks_1 (rtx_insn *, tree, vec<tree> *);
145 static int all_blocks (tree, tree *);
146 static tree *get_block_vector (tree, int *);
147 extern tree debug_find_var_in_block_tree (tree, tree);
148 /* We always define `record_insns' even if it's not used so that we
149 can always export `prologue_epilogue_contains'. */
150 static void record_insns (rtx_insn *, rtx, hash_table<insn_cache_hasher> **)
151 ATTRIBUTE_UNUSED;
152 static bool contains (const rtx_insn *, hash_table<insn_cache_hasher> *);
153 static void prepare_function_start (void);
154 static void do_clobber_return_reg (rtx, void *);
155 static void do_use_return_reg (rtx, void *);
158 /* Stack of nested functions. */
159 /* Keep track of the cfun stack. */
161 static vec<function *> function_context_stack;
163 /* Save the current context for compilation of a nested function.
164 This is called from language-specific code. */
166 void
167 push_function_context (void)
169 if (cfun == 0)
170 allocate_struct_function (NULL, false);
172 function_context_stack.safe_push (cfun);
173 set_cfun (NULL);
176 /* Restore the last saved context, at the end of a nested function.
177 This function is called from language-specific code. */
179 void
180 pop_function_context (void)
182 struct function *p = function_context_stack.pop ();
183 set_cfun (p);
184 current_function_decl = p->decl;
186 /* Reset variables that have known state during rtx generation. */
187 virtuals_instantiated = 0;
188 generating_concat_p = 1;
191 /* Clear out all parts of the state in F that can safely be discarded
192 after the function has been parsed, but not compiled, to let
193 garbage collection reclaim the memory. */
195 void
196 free_after_parsing (struct function *f)
198 f->language = 0;
201 /* Clear out all parts of the state in F that can safely be discarded
202 after the function has been compiled, to let garbage collection
203 reclaim the memory. */
205 void
206 free_after_compilation (struct function *f)
208 prologue_insn_hash = NULL;
209 epilogue_insn_hash = NULL;
211 free (crtl->emit.regno_pointer_align);
213 memset (crtl, 0, sizeof (struct rtl_data));
214 f->eh = NULL;
215 f->machine = NULL;
216 f->cfg = NULL;
217 f->curr_properties &= ~PROP_cfg;
219 regno_reg_rtx = NULL;
222 /* Return size needed for stack frame based on slots so far allocated.
223 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
224 the caller may have to do that. */
226 poly_int64
227 get_frame_size (void)
229 if (FRAME_GROWS_DOWNWARD)
230 return -frame_offset;
231 else
232 return frame_offset;
235 /* Issue an error message and return TRUE if frame OFFSET overflows in
236 the signed target pointer arithmetics for function FUNC. Otherwise
237 return FALSE. */
239 bool
240 frame_offset_overflow (poly_int64 offset, tree func)
242 poly_uint64 size = FRAME_GROWS_DOWNWARD ? -offset : offset;
243 unsigned HOST_WIDE_INT limit
244 = ((HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (Pmode) - 1))
245 /* Leave room for the fixed part of the frame. */
246 - 64 * UNITS_PER_WORD);
248 if (!coeffs_in_range_p (size, 0U, limit))
250 unsigned HOST_WIDE_INT hwisize;
251 if (size.is_constant (&hwisize))
252 error_at (DECL_SOURCE_LOCATION (func),
253 "total size of local objects %wu exceeds maximum %wu",
254 hwisize, limit);
255 else
256 error_at (DECL_SOURCE_LOCATION (func),
257 "total size of local objects exceeds maximum %wu",
258 limit);
259 return true;
262 return false;
265 /* Return the minimum spill slot alignment for a register of mode MODE. */
267 unsigned int
268 spill_slot_alignment (machine_mode mode ATTRIBUTE_UNUSED)
270 return STACK_SLOT_ALIGNMENT (NULL_TREE, mode, GET_MODE_ALIGNMENT (mode));
273 /* Return stack slot alignment in bits for TYPE and MODE. */
275 static unsigned int
276 get_stack_local_alignment (tree type, machine_mode mode)
278 unsigned int alignment;
280 if (mode == BLKmode)
281 alignment = BIGGEST_ALIGNMENT;
282 else
283 alignment = GET_MODE_ALIGNMENT (mode);
285 /* Allow the frond-end to (possibly) increase the alignment of this
286 stack slot. */
287 if (! type)
288 type = lang_hooks.types.type_for_mode (mode, 0);
290 return STACK_SLOT_ALIGNMENT (type, mode, alignment);
293 /* Determine whether it is possible to fit a stack slot of size SIZE and
294 alignment ALIGNMENT into an area in the stack frame that starts at
295 frame offset START and has a length of LENGTH. If so, store the frame
296 offset to be used for the stack slot in *POFFSET and return true;
297 return false otherwise. This function will extend the frame size when
298 given a start/length pair that lies at the end of the frame. */
300 static bool
301 try_fit_stack_local (poly_int64 start, poly_int64 length,
302 poly_int64 size, unsigned int alignment,
303 poly_int64 *poffset)
305 poly_int64 this_frame_offset;
306 int frame_off, frame_alignment, frame_phase;
308 /* Calculate how many bytes the start of local variables is off from
309 stack alignment. */
310 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
311 frame_off = targetm.starting_frame_offset () % frame_alignment;
312 frame_phase = frame_off ? frame_alignment - frame_off : 0;
314 /* Round the frame offset to the specified alignment. */
316 if (FRAME_GROWS_DOWNWARD)
317 this_frame_offset
318 = (aligned_lower_bound (start + length - size - frame_phase, alignment)
319 + frame_phase);
320 else
321 this_frame_offset
322 = aligned_upper_bound (start - frame_phase, alignment) + frame_phase;
324 /* See if it fits. If this space is at the edge of the frame,
325 consider extending the frame to make it fit. Our caller relies on
326 this when allocating a new slot. */
327 if (maybe_lt (this_frame_offset, start))
329 if (known_eq (frame_offset, start))
330 frame_offset = this_frame_offset;
331 else
332 return false;
334 else if (maybe_gt (this_frame_offset + size, start + length))
336 if (known_eq (frame_offset, start + length))
337 frame_offset = this_frame_offset + size;
338 else
339 return false;
342 *poffset = this_frame_offset;
343 return true;
346 /* Create a new frame_space structure describing free space in the stack
347 frame beginning at START and ending at END, and chain it into the
348 function's frame_space_list. */
350 static void
351 add_frame_space (poly_int64 start, poly_int64 end)
353 class frame_space *space = ggc_alloc<frame_space> ();
354 space->next = crtl->frame_space_list;
355 crtl->frame_space_list = space;
356 space->start = start;
357 space->length = end - start;
360 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
361 with machine mode MODE.
363 ALIGN controls the amount of alignment for the address of the slot:
364 0 means according to MODE,
365 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
366 -2 means use BITS_PER_UNIT,
367 positive specifies alignment boundary in bits.
369 KIND has ASLK_REDUCE_ALIGN bit set if it is OK to reduce
370 alignment and ASLK_RECORD_PAD bit set if we should remember
371 extra space we allocated for alignment purposes. When we are
372 called from assign_stack_temp_for_type, it is not set so we don't
373 track the same stack slot in two independent lists.
375 We do not round to stack_boundary here. */
378 assign_stack_local_1 (machine_mode mode, poly_int64 size,
379 int align, int kind)
381 rtx x, addr;
382 poly_int64 bigend_correction = 0;
383 poly_int64 slot_offset = 0, old_frame_offset;
384 unsigned int alignment, alignment_in_bits;
386 if (align == 0)
388 alignment = get_stack_local_alignment (NULL, mode);
389 alignment /= BITS_PER_UNIT;
391 else if (align == -1)
393 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
394 size = aligned_upper_bound (size, alignment);
396 else if (align == -2)
397 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
398 else
399 alignment = align / BITS_PER_UNIT;
401 alignment_in_bits = alignment * BITS_PER_UNIT;
403 /* Ignore alignment if it exceeds MAX_SUPPORTED_STACK_ALIGNMENT. */
404 if (alignment_in_bits > MAX_SUPPORTED_STACK_ALIGNMENT)
406 alignment_in_bits = MAX_SUPPORTED_STACK_ALIGNMENT;
407 alignment = MAX_SUPPORTED_STACK_ALIGNMENT / BITS_PER_UNIT;
410 if (SUPPORTS_STACK_ALIGNMENT)
412 if (crtl->stack_alignment_estimated < alignment_in_bits)
414 if (!crtl->stack_realign_processed)
415 crtl->stack_alignment_estimated = alignment_in_bits;
416 else
418 /* If stack is realigned and stack alignment value
419 hasn't been finalized, it is OK not to increase
420 stack_alignment_estimated. The bigger alignment
421 requirement is recorded in stack_alignment_needed
422 below. */
423 gcc_assert (!crtl->stack_realign_finalized);
424 if (!crtl->stack_realign_needed)
426 /* It is OK to reduce the alignment as long as the
427 requested size is 0 or the estimated stack
428 alignment >= mode alignment. */
429 gcc_assert ((kind & ASLK_REDUCE_ALIGN)
430 || known_eq (size, 0)
431 || (crtl->stack_alignment_estimated
432 >= GET_MODE_ALIGNMENT (mode)));
433 alignment_in_bits = crtl->stack_alignment_estimated;
434 alignment = alignment_in_bits / BITS_PER_UNIT;
440 if (crtl->stack_alignment_needed < alignment_in_bits)
441 crtl->stack_alignment_needed = alignment_in_bits;
442 if (crtl->max_used_stack_slot_alignment < alignment_in_bits)
443 crtl->max_used_stack_slot_alignment = alignment_in_bits;
445 if (mode != BLKmode || maybe_ne (size, 0))
447 if (kind & ASLK_RECORD_PAD)
449 class frame_space **psp;
451 for (psp = &crtl->frame_space_list; *psp; psp = &(*psp)->next)
453 class frame_space *space = *psp;
454 if (!try_fit_stack_local (space->start, space->length, size,
455 alignment, &slot_offset))
456 continue;
457 *psp = space->next;
458 if (known_gt (slot_offset, space->start))
459 add_frame_space (space->start, slot_offset);
460 if (known_lt (slot_offset + size, space->start + space->length))
461 add_frame_space (slot_offset + size,
462 space->start + space->length);
463 goto found_space;
467 else if (!STACK_ALIGNMENT_NEEDED)
469 slot_offset = frame_offset;
470 goto found_space;
473 old_frame_offset = frame_offset;
475 if (FRAME_GROWS_DOWNWARD)
477 frame_offset -= size;
478 try_fit_stack_local (frame_offset, size, size, alignment, &slot_offset);
480 if (kind & ASLK_RECORD_PAD)
482 if (known_gt (slot_offset, frame_offset))
483 add_frame_space (frame_offset, slot_offset);
484 if (known_lt (slot_offset + size, old_frame_offset))
485 add_frame_space (slot_offset + size, old_frame_offset);
488 else
490 frame_offset += size;
491 try_fit_stack_local (old_frame_offset, size, size, alignment, &slot_offset);
493 if (kind & ASLK_RECORD_PAD)
495 if (known_gt (slot_offset, old_frame_offset))
496 add_frame_space (old_frame_offset, slot_offset);
497 if (known_lt (slot_offset + size, frame_offset))
498 add_frame_space (slot_offset + size, frame_offset);
502 found_space:
503 /* On a big-endian machine, if we are allocating more space than we will use,
504 use the least significant bytes of those that are allocated. */
505 if (mode != BLKmode)
507 /* The slot size can sometimes be smaller than the mode size;
508 e.g. the rs6000 port allocates slots with a vector mode
509 that have the size of only one element. However, the slot
510 size must always be ordered wrt to the mode size, in the
511 same way as for a subreg. */
512 gcc_checking_assert (ordered_p (GET_MODE_SIZE (mode), size));
513 if (BYTES_BIG_ENDIAN && maybe_lt (GET_MODE_SIZE (mode), size))
514 bigend_correction = size - GET_MODE_SIZE (mode);
517 /* If we have already instantiated virtual registers, return the actual
518 address relative to the frame pointer. */
519 if (virtuals_instantiated)
520 addr = plus_constant (Pmode, frame_pointer_rtx,
521 trunc_int_for_mode
522 (slot_offset + bigend_correction
523 + targetm.starting_frame_offset (), Pmode));
524 else
525 addr = plus_constant (Pmode, virtual_stack_vars_rtx,
526 trunc_int_for_mode
527 (slot_offset + bigend_correction,
528 Pmode));
530 x = gen_rtx_MEM (mode, addr);
531 set_mem_align (x, alignment_in_bits);
532 MEM_NOTRAP_P (x) = 1;
534 vec_safe_push (stack_slot_list, x);
536 if (frame_offset_overflow (frame_offset, current_function_decl))
537 frame_offset = 0;
539 return x;
542 /* Wrap up assign_stack_local_1 with last parameter as false. */
545 assign_stack_local (machine_mode mode, poly_int64 size, int align)
547 return assign_stack_local_1 (mode, size, align, ASLK_RECORD_PAD);
550 /* In order to evaluate some expressions, such as function calls returning
551 structures in memory, we need to temporarily allocate stack locations.
552 We record each allocated temporary in the following structure.
554 Associated with each temporary slot is a nesting level. When we pop up
555 one level, all temporaries associated with the previous level are freed.
556 Normally, all temporaries are freed after the execution of the statement
557 in which they were created. However, if we are inside a ({...}) grouping,
558 the result may be in a temporary and hence must be preserved. If the
559 result could be in a temporary, we preserve it if we can determine which
560 one it is in. If we cannot determine which temporary may contain the
561 result, all temporaries are preserved. A temporary is preserved by
562 pretending it was allocated at the previous nesting level. */
564 class GTY(()) temp_slot {
565 public:
566 /* Points to next temporary slot. */
567 class temp_slot *next;
568 /* Points to previous temporary slot. */
569 class temp_slot *prev;
570 /* The rtx to used to reference the slot. */
571 rtx slot;
572 /* The size, in units, of the slot. */
573 poly_int64 size;
574 /* The type of the object in the slot, or zero if it doesn't correspond
575 to a type. We use this to determine whether a slot can be reused.
576 It can be reused if objects of the type of the new slot will always
577 conflict with objects of the type of the old slot. */
578 tree type;
579 /* The alignment (in bits) of the slot. */
580 unsigned int align;
581 /* True if this temporary is currently in use. */
582 bool in_use;
583 /* Nesting level at which this slot is being used. */
584 int level;
585 /* The offset of the slot from the frame_pointer, including extra space
586 for alignment. This info is for combine_temp_slots. */
587 poly_int64 base_offset;
588 /* The size of the slot, including extra space for alignment. This
589 info is for combine_temp_slots. */
590 poly_int64 full_size;
593 /* Entry for the below hash table. */
594 struct GTY((for_user)) temp_slot_address_entry {
595 hashval_t hash;
596 rtx address;
597 class temp_slot *temp_slot;
600 struct temp_address_hasher : ggc_ptr_hash<temp_slot_address_entry>
602 static hashval_t hash (temp_slot_address_entry *);
603 static bool equal (temp_slot_address_entry *, temp_slot_address_entry *);
606 /* A table of addresses that represent a stack slot. The table is a mapping
607 from address RTXen to a temp slot. */
608 static GTY(()) hash_table<temp_address_hasher> *temp_slot_address_table;
609 static size_t n_temp_slots_in_use;
611 /* Removes temporary slot TEMP from LIST. */
613 static void
614 cut_slot_from_list (class temp_slot *temp, class temp_slot **list)
616 if (temp->next)
617 temp->next->prev = temp->prev;
618 if (temp->prev)
619 temp->prev->next = temp->next;
620 else
621 *list = temp->next;
623 temp->prev = temp->next = NULL;
626 /* Inserts temporary slot TEMP to LIST. */
628 static void
629 insert_slot_to_list (class temp_slot *temp, class temp_slot **list)
631 temp->next = *list;
632 if (*list)
633 (*list)->prev = temp;
634 temp->prev = NULL;
635 *list = temp;
638 /* Returns the list of used temp slots at LEVEL. */
640 static class temp_slot **
641 temp_slots_at_level (int level)
643 if (level >= (int) vec_safe_length (used_temp_slots))
644 vec_safe_grow_cleared (used_temp_slots, level + 1, true);
646 return &(*used_temp_slots)[level];
649 /* Returns the maximal temporary slot level. */
651 static int
652 max_slot_level (void)
654 if (!used_temp_slots)
655 return -1;
657 return used_temp_slots->length () - 1;
660 /* Moves temporary slot TEMP to LEVEL. */
662 static void
663 move_slot_to_level (class temp_slot *temp, int level)
665 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
666 insert_slot_to_list (temp, temp_slots_at_level (level));
667 temp->level = level;
670 /* Make temporary slot TEMP available. */
672 static void
673 make_slot_available (class temp_slot *temp)
675 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
676 insert_slot_to_list (temp, &avail_temp_slots);
677 temp->in_use = false;
678 temp->level = -1;
679 n_temp_slots_in_use--;
682 /* Compute the hash value for an address -> temp slot mapping.
683 The value is cached on the mapping entry. */
684 static hashval_t
685 temp_slot_address_compute_hash (struct temp_slot_address_entry *t)
687 int do_not_record = 0;
688 return hash_rtx (t->address, GET_MODE (t->address),
689 &do_not_record, NULL, false);
692 /* Return the hash value for an address -> temp slot mapping. */
693 hashval_t
694 temp_address_hasher::hash (temp_slot_address_entry *t)
696 return t->hash;
699 /* Compare two address -> temp slot mapping entries. */
700 bool
701 temp_address_hasher::equal (temp_slot_address_entry *t1,
702 temp_slot_address_entry *t2)
704 return exp_equiv_p (t1->address, t2->address, 0, true);
707 /* Add ADDRESS as an alias of TEMP_SLOT to the addess -> temp slot mapping. */
708 static void
709 insert_temp_slot_address (rtx address, class temp_slot *temp_slot)
711 struct temp_slot_address_entry *t = ggc_alloc<temp_slot_address_entry> ();
712 t->address = copy_rtx (address);
713 t->temp_slot = temp_slot;
714 t->hash = temp_slot_address_compute_hash (t);
715 *temp_slot_address_table->find_slot_with_hash (t, t->hash, INSERT) = t;
718 /* Remove an address -> temp slot mapping entry if the temp slot is
719 not in use anymore. Callback for remove_unused_temp_slot_addresses. */
721 remove_unused_temp_slot_addresses_1 (temp_slot_address_entry **slot, void *)
723 const struct temp_slot_address_entry *t = *slot;
724 if (! t->temp_slot->in_use)
725 temp_slot_address_table->clear_slot (slot);
726 return 1;
729 /* Remove all mappings of addresses to unused temp slots. */
730 static void
731 remove_unused_temp_slot_addresses (void)
733 /* Use quicker clearing if there aren't any active temp slots. */
734 if (n_temp_slots_in_use)
735 temp_slot_address_table->traverse
736 <void *, remove_unused_temp_slot_addresses_1> (NULL);
737 else
738 temp_slot_address_table->empty ();
741 /* Find the temp slot corresponding to the object at address X. */
743 static class temp_slot *
744 find_temp_slot_from_address (rtx x)
746 class temp_slot *p;
747 struct temp_slot_address_entry tmp, *t;
749 /* First try the easy way:
750 See if X exists in the address -> temp slot mapping. */
751 tmp.address = x;
752 tmp.temp_slot = NULL;
753 tmp.hash = temp_slot_address_compute_hash (&tmp);
754 t = temp_slot_address_table->find_with_hash (&tmp, tmp.hash);
755 if (t)
756 return t->temp_slot;
758 /* If we have a sum involving a register, see if it points to a temp
759 slot. */
760 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
761 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
762 return p;
763 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
764 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
765 return p;
767 /* Last resort: Address is a virtual stack var address. */
768 poly_int64 offset;
769 if (strip_offset (x, &offset) == virtual_stack_vars_rtx)
771 int i;
772 for (i = max_slot_level (); i >= 0; i--)
773 for (p = *temp_slots_at_level (i); p; p = p->next)
774 if (known_in_range_p (offset, p->base_offset, p->full_size))
775 return p;
778 return NULL;
781 /* Allocate a temporary stack slot and record it for possible later
782 reuse.
784 MODE is the machine mode to be given to the returned rtx.
786 SIZE is the size in units of the space required. We do no rounding here
787 since assign_stack_local will do any required rounding.
789 TYPE is the type that will be used for the stack slot. */
792 assign_stack_temp_for_type (machine_mode mode, poly_int64 size, tree type)
794 unsigned int align;
795 class temp_slot *p, *best_p = 0, *selected = NULL, **pp;
796 rtx slot;
798 gcc_assert (known_size_p (size));
800 align = get_stack_local_alignment (type, mode);
802 /* Try to find an available, already-allocated temporary of the proper
803 mode which meets the size and alignment requirements. Choose the
804 smallest one with the closest alignment.
806 If assign_stack_temp is called outside of the tree->rtl expansion,
807 we cannot reuse the stack slots (that may still refer to
808 VIRTUAL_STACK_VARS_REGNUM). */
809 if (!virtuals_instantiated)
811 for (p = avail_temp_slots; p; p = p->next)
813 if (p->align >= align
814 && known_ge (p->size, size)
815 && GET_MODE (p->slot) == mode
816 && objects_must_conflict_p (p->type, type)
817 && (best_p == 0
818 || (known_eq (best_p->size, p->size)
819 ? best_p->align > p->align
820 : known_ge (best_p->size, p->size))))
822 if (p->align == align && known_eq (p->size, size))
824 selected = p;
825 cut_slot_from_list (selected, &avail_temp_slots);
826 best_p = 0;
827 break;
829 best_p = p;
834 /* Make our best, if any, the one to use. */
835 if (best_p)
837 selected = best_p;
838 cut_slot_from_list (selected, &avail_temp_slots);
840 /* If there are enough aligned bytes left over, make them into a new
841 temp_slot so that the extra bytes don't get wasted. Do this only
842 for BLKmode slots, so that we can be sure of the alignment. */
843 if (GET_MODE (best_p->slot) == BLKmode)
845 int alignment = best_p->align / BITS_PER_UNIT;
846 poly_int64 rounded_size = aligned_upper_bound (size, alignment);
848 if (known_ge (best_p->size - rounded_size, alignment))
850 p = ggc_alloc<temp_slot> ();
851 p->in_use = false;
852 p->size = best_p->size - rounded_size;
853 p->base_offset = best_p->base_offset + rounded_size;
854 p->full_size = best_p->full_size - rounded_size;
855 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
856 p->align = best_p->align;
857 p->type = best_p->type;
858 insert_slot_to_list (p, &avail_temp_slots);
860 vec_safe_push (stack_slot_list, p->slot);
862 best_p->size = rounded_size;
863 best_p->full_size = rounded_size;
868 /* If we still didn't find one, make a new temporary. */
869 if (selected == 0)
871 poly_int64 frame_offset_old = frame_offset;
873 p = ggc_alloc<temp_slot> ();
875 /* We are passing an explicit alignment request to assign_stack_local.
876 One side effect of that is assign_stack_local will not round SIZE
877 to ensure the frame offset remains suitably aligned.
879 So for requests which depended on the rounding of SIZE, we go ahead
880 and round it now. We also make sure ALIGNMENT is at least
881 BIGGEST_ALIGNMENT. */
882 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
883 p->slot = assign_stack_local_1 (mode,
884 (mode == BLKmode
885 ? aligned_upper_bound (size,
886 (int) align
887 / BITS_PER_UNIT)
888 : size),
889 align, 0);
891 p->align = align;
893 /* The following slot size computation is necessary because we don't
894 know the actual size of the temporary slot until assign_stack_local
895 has performed all the frame alignment and size rounding for the
896 requested temporary. Note that extra space added for alignment
897 can be either above or below this stack slot depending on which
898 way the frame grows. We include the extra space if and only if it
899 is above this slot. */
900 if (FRAME_GROWS_DOWNWARD)
901 p->size = frame_offset_old - frame_offset;
902 else
903 p->size = size;
905 /* Now define the fields used by combine_temp_slots. */
906 if (FRAME_GROWS_DOWNWARD)
908 p->base_offset = frame_offset;
909 p->full_size = frame_offset_old - frame_offset;
911 else
913 p->base_offset = frame_offset_old;
914 p->full_size = frame_offset - frame_offset_old;
917 selected = p;
920 p = selected;
921 p->in_use = true;
922 p->type = type;
923 p->level = temp_slot_level;
924 n_temp_slots_in_use++;
926 pp = temp_slots_at_level (p->level);
927 insert_slot_to_list (p, pp);
928 insert_temp_slot_address (XEXP (p->slot, 0), p);
930 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
931 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
932 vec_safe_push (stack_slot_list, slot);
934 /* If we know the alias set for the memory that will be used, use
935 it. If there's no TYPE, then we don't know anything about the
936 alias set for the memory. */
937 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
938 set_mem_align (slot, align);
940 /* If a type is specified, set the relevant flags. */
941 if (type != 0)
942 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
943 MEM_NOTRAP_P (slot) = 1;
945 return slot;
948 /* Allocate a temporary stack slot and record it for possible later
949 reuse. First two arguments are same as in preceding function. */
952 assign_stack_temp (machine_mode mode, poly_int64 size)
954 return assign_stack_temp_for_type (mode, size, NULL_TREE);
957 /* Assign a temporary.
958 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
959 and so that should be used in error messages. In either case, we
960 allocate of the given type.
961 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
962 it is 0 if a register is OK.
963 DONT_PROMOTE is 1 if we should not promote values in register
964 to wider modes. */
967 assign_temp (tree type_or_decl, int memory_required,
968 int dont_promote ATTRIBUTE_UNUSED)
970 tree type, decl;
971 machine_mode mode;
972 #ifdef PROMOTE_MODE
973 int unsignedp;
974 #endif
976 if (DECL_P (type_or_decl))
977 decl = type_or_decl, type = TREE_TYPE (decl);
978 else
979 decl = NULL, type = type_or_decl;
981 mode = TYPE_MODE (type);
982 #ifdef PROMOTE_MODE
983 unsignedp = TYPE_UNSIGNED (type);
984 #endif
986 /* Allocating temporaries of TREE_ADDRESSABLE type must be done in the front
987 end. See also create_tmp_var for the gimplification-time check. */
988 gcc_assert (!TREE_ADDRESSABLE (type) && COMPLETE_TYPE_P (type));
990 if (mode == BLKmode || memory_required)
992 poly_int64 size;
993 rtx tmp;
995 /* Unfortunately, we don't yet know how to allocate variable-sized
996 temporaries. However, sometimes we can find a fixed upper limit on
997 the size, so try that instead. */
998 if (!poly_int_tree_p (TYPE_SIZE_UNIT (type), &size))
999 size = max_int_size_in_bytes (type);
1001 /* Zero sized arrays are a GNU C extension. Set size to 1 to avoid
1002 problems with allocating the stack space. */
1003 if (known_eq (size, 0))
1004 size = 1;
1006 /* The size of the temporary may be too large to fit into an integer. */
1007 /* ??? Not sure this should happen except for user silliness, so limit
1008 this to things that aren't compiler-generated temporaries. The
1009 rest of the time we'll die in assign_stack_temp_for_type. */
1010 if (decl
1011 && !known_size_p (size)
1012 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
1014 error ("size of variable %q+D is too large", decl);
1015 size = 1;
1018 tmp = assign_stack_temp_for_type (mode, size, type);
1019 return tmp;
1022 #ifdef PROMOTE_MODE
1023 if (! dont_promote)
1024 mode = promote_mode (type, mode, &unsignedp);
1025 #endif
1027 return gen_reg_rtx (mode);
1030 /* Combine temporary stack slots which are adjacent on the stack.
1032 This allows for better use of already allocated stack space. This is only
1033 done for BLKmode slots because we can be sure that we won't have alignment
1034 problems in this case. */
1036 static void
1037 combine_temp_slots (void)
1039 class temp_slot *p, *q, *next, *next_q;
1040 int num_slots;
1042 /* We can't combine slots, because the information about which slot
1043 is in which alias set will be lost. */
1044 if (flag_strict_aliasing)
1045 return;
1047 /* If there are a lot of temp slots, don't do anything unless
1048 high levels of optimization. */
1049 if (! flag_expensive_optimizations)
1050 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
1051 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
1052 return;
1054 for (p = avail_temp_slots; p; p = next)
1056 int delete_p = 0;
1058 next = p->next;
1060 if (GET_MODE (p->slot) != BLKmode)
1061 continue;
1063 for (q = p->next; q; q = next_q)
1065 int delete_q = 0;
1067 next_q = q->next;
1069 if (GET_MODE (q->slot) != BLKmode)
1070 continue;
1072 if (known_eq (p->base_offset + p->full_size, q->base_offset))
1074 /* Q comes after P; combine Q into P. */
1075 p->size += q->size;
1076 p->full_size += q->full_size;
1077 delete_q = 1;
1079 else if (known_eq (q->base_offset + q->full_size, p->base_offset))
1081 /* P comes after Q; combine P into Q. */
1082 q->size += p->size;
1083 q->full_size += p->full_size;
1084 delete_p = 1;
1085 break;
1087 if (delete_q)
1088 cut_slot_from_list (q, &avail_temp_slots);
1091 /* Either delete P or advance past it. */
1092 if (delete_p)
1093 cut_slot_from_list (p, &avail_temp_slots);
1097 /* Indicate that NEW_RTX is an alternate way of referring to the temp
1098 slot that previously was known by OLD_RTX. */
1100 void
1101 update_temp_slot_address (rtx old_rtx, rtx new_rtx)
1103 class temp_slot *p;
1105 if (rtx_equal_p (old_rtx, new_rtx))
1106 return;
1108 p = find_temp_slot_from_address (old_rtx);
1110 /* If we didn't find one, see if both OLD_RTX is a PLUS. If so, and
1111 NEW_RTX is a register, see if one operand of the PLUS is a
1112 temporary location. If so, NEW_RTX points into it. Otherwise,
1113 if both OLD_RTX and NEW_RTX are a PLUS and if there is a register
1114 in common between them. If so, try a recursive call on those
1115 values. */
1116 if (p == 0)
1118 if (GET_CODE (old_rtx) != PLUS)
1119 return;
1121 if (REG_P (new_rtx))
1123 update_temp_slot_address (XEXP (old_rtx, 0), new_rtx);
1124 update_temp_slot_address (XEXP (old_rtx, 1), new_rtx);
1125 return;
1127 else if (GET_CODE (new_rtx) != PLUS)
1128 return;
1130 if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 0)))
1131 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 1));
1132 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 0)))
1133 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 1));
1134 else if (rtx_equal_p (XEXP (old_rtx, 0), XEXP (new_rtx, 1)))
1135 update_temp_slot_address (XEXP (old_rtx, 1), XEXP (new_rtx, 0));
1136 else if (rtx_equal_p (XEXP (old_rtx, 1), XEXP (new_rtx, 1)))
1137 update_temp_slot_address (XEXP (old_rtx, 0), XEXP (new_rtx, 0));
1139 return;
1142 /* Otherwise add an alias for the temp's address. */
1143 insert_temp_slot_address (new_rtx, p);
1146 /* If X could be a reference to a temporary slot, mark that slot as
1147 belonging to the to one level higher than the current level. If X
1148 matched one of our slots, just mark that one. Otherwise, we can't
1149 easily predict which it is, so upgrade all of them.
1151 This is called when an ({...}) construct occurs and a statement
1152 returns a value in memory. */
1154 void
1155 preserve_temp_slots (rtx x)
1157 class temp_slot *p = 0, *next;
1159 if (x == 0)
1160 return;
1162 /* If X is a register that is being used as a pointer, see if we have
1163 a temporary slot we know it points to. */
1164 if (REG_P (x) && REG_POINTER (x))
1165 p = find_temp_slot_from_address (x);
1167 /* If X is not in memory or is at a constant address, it cannot be in
1168 a temporary slot. */
1169 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1170 return;
1172 /* First see if we can find a match. */
1173 if (p == 0)
1174 p = find_temp_slot_from_address (XEXP (x, 0));
1176 if (p != 0)
1178 if (p->level == temp_slot_level)
1179 move_slot_to_level (p, temp_slot_level - 1);
1180 return;
1183 /* Otherwise, preserve all non-kept slots at this level. */
1184 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1186 next = p->next;
1187 move_slot_to_level (p, temp_slot_level - 1);
1191 /* Free all temporaries used so far. This is normally called at the
1192 end of generating code for a statement. */
1194 void
1195 free_temp_slots (void)
1197 class temp_slot *p, *next;
1198 bool some_available = false;
1200 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1202 next = p->next;
1203 make_slot_available (p);
1204 some_available = true;
1207 if (some_available)
1209 remove_unused_temp_slot_addresses ();
1210 combine_temp_slots ();
1214 /* Push deeper into the nesting level for stack temporaries. */
1216 void
1217 push_temp_slots (void)
1219 temp_slot_level++;
1222 /* Pop a temporary nesting level. All slots in use in the current level
1223 are freed. */
1225 void
1226 pop_temp_slots (void)
1228 free_temp_slots ();
1229 temp_slot_level--;
1232 /* Initialize temporary slots. */
1234 void
1235 init_temp_slots (void)
1237 /* We have not allocated any temporaries yet. */
1238 avail_temp_slots = 0;
1239 vec_alloc (used_temp_slots, 0);
1240 temp_slot_level = 0;
1241 n_temp_slots_in_use = 0;
1243 /* Set up the table to map addresses to temp slots. */
1244 if (! temp_slot_address_table)
1245 temp_slot_address_table = hash_table<temp_address_hasher>::create_ggc (32);
1246 else
1247 temp_slot_address_table->empty ();
1250 /* Functions and data structures to keep track of the values hard regs
1251 had at the start of the function. */
1253 /* Private type used by get_hard_reg_initial_reg, get_hard_reg_initial_val,
1254 and has_hard_reg_initial_val.. */
1255 struct GTY(()) initial_value_pair {
1256 rtx hard_reg;
1257 rtx pseudo;
1259 /* ??? This could be a VEC but there is currently no way to define an
1260 opaque VEC type. This could be worked around by defining struct
1261 initial_value_pair in function.h. */
1262 struct GTY(()) initial_value_struct {
1263 int num_entries;
1264 int max_entries;
1265 initial_value_pair * GTY ((length ("%h.num_entries"))) entries;
1268 /* If a pseudo represents an initial hard reg (or expression), return
1269 it, else return NULL_RTX. */
1272 get_hard_reg_initial_reg (rtx reg)
1274 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1275 int i;
1277 if (ivs == 0)
1278 return NULL_RTX;
1280 for (i = 0; i < ivs->num_entries; i++)
1281 if (rtx_equal_p (ivs->entries[i].pseudo, reg))
1282 return ivs->entries[i].hard_reg;
1284 return NULL_RTX;
1287 /* Make sure that there's a pseudo register of mode MODE that stores the
1288 initial value of hard register REGNO. Return an rtx for such a pseudo. */
1291 get_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1293 struct initial_value_struct *ivs;
1294 rtx rv;
1296 rv = has_hard_reg_initial_val (mode, regno);
1297 if (rv)
1298 return rv;
1300 ivs = crtl->hard_reg_initial_vals;
1301 if (ivs == 0)
1303 ivs = ggc_alloc<initial_value_struct> ();
1304 ivs->num_entries = 0;
1305 ivs->max_entries = 5;
1306 ivs->entries = ggc_vec_alloc<initial_value_pair> (5);
1307 crtl->hard_reg_initial_vals = ivs;
1310 if (ivs->num_entries >= ivs->max_entries)
1312 ivs->max_entries += 5;
1313 ivs->entries = GGC_RESIZEVEC (initial_value_pair, ivs->entries,
1314 ivs->max_entries);
1317 ivs->entries[ivs->num_entries].hard_reg = gen_rtx_REG (mode, regno);
1318 ivs->entries[ivs->num_entries].pseudo = gen_reg_rtx (mode);
1320 return ivs->entries[ivs->num_entries++].pseudo;
1323 /* See if get_hard_reg_initial_val has been used to create a pseudo
1324 for the initial value of hard register REGNO in mode MODE. Return
1325 the associated pseudo if so, otherwise return NULL. */
1328 has_hard_reg_initial_val (machine_mode mode, unsigned int regno)
1330 struct initial_value_struct *ivs;
1331 int i;
1333 ivs = crtl->hard_reg_initial_vals;
1334 if (ivs != 0)
1335 for (i = 0; i < ivs->num_entries; i++)
1336 if (GET_MODE (ivs->entries[i].hard_reg) == mode
1337 && REGNO (ivs->entries[i].hard_reg) == regno)
1338 return ivs->entries[i].pseudo;
1340 return NULL_RTX;
1343 void
1344 emit_initial_value_sets (void)
1346 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1347 int i;
1348 rtx_insn *seq;
1350 if (ivs == 0)
1351 return;
1353 start_sequence ();
1354 for (i = 0; i < ivs->num_entries; i++)
1355 emit_move_insn (ivs->entries[i].pseudo, ivs->entries[i].hard_reg);
1356 seq = get_insns ();
1357 end_sequence ();
1359 emit_insn_at_entry (seq);
1362 /* Return the hardreg-pseudoreg initial values pair entry I and
1363 TRUE if I is a valid entry, or FALSE if I is not a valid entry. */
1364 bool
1365 initial_value_entry (int i, rtx *hreg, rtx *preg)
1367 struct initial_value_struct *ivs = crtl->hard_reg_initial_vals;
1368 if (!ivs || i >= ivs->num_entries)
1369 return false;
1371 *hreg = ivs->entries[i].hard_reg;
1372 *preg = ivs->entries[i].pseudo;
1373 return true;
1376 /* These routines are responsible for converting virtual register references
1377 to the actual hard register references once RTL generation is complete.
1379 The following four variables are used for communication between the
1380 routines. They contain the offsets of the virtual registers from their
1381 respective hard registers. */
1383 static poly_int64 in_arg_offset;
1384 static poly_int64 var_offset;
1385 static poly_int64 dynamic_offset;
1386 static poly_int64 out_arg_offset;
1387 static poly_int64 cfa_offset;
1389 /* In most machines, the stack pointer register is equivalent to the bottom
1390 of the stack. */
1392 #ifndef STACK_POINTER_OFFSET
1393 #define STACK_POINTER_OFFSET 0
1394 #endif
1396 #if defined (REG_PARM_STACK_SPACE) && !defined (INCOMING_REG_PARM_STACK_SPACE)
1397 #define INCOMING_REG_PARM_STACK_SPACE REG_PARM_STACK_SPACE
1398 #endif
1400 /* If not defined, pick an appropriate default for the offset of dynamically
1401 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1402 INCOMING_REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1404 #ifndef STACK_DYNAMIC_OFFSET
1406 /* The bottom of the stack points to the actual arguments. If
1407 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1408 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1409 stack space for register parameters is not pushed by the caller, but
1410 rather part of the fixed stack areas and hence not included in
1411 `crtl->outgoing_args_size'. Nevertheless, we must allow
1412 for it when allocating stack dynamic objects. */
1414 #ifdef INCOMING_REG_PARM_STACK_SPACE
1415 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1416 ((ACCUMULATE_OUTGOING_ARGS \
1417 ? (crtl->outgoing_args_size \
1418 + (OUTGOING_REG_PARM_STACK_SPACE ((!(FNDECL) ? NULL_TREE : TREE_TYPE (FNDECL))) ? 0 \
1419 : INCOMING_REG_PARM_STACK_SPACE (FNDECL))) \
1420 : 0) + (STACK_POINTER_OFFSET))
1421 #else
1422 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1423 ((ACCUMULATE_OUTGOING_ARGS ? crtl->outgoing_args_size : poly_int64 (0)) \
1424 + (STACK_POINTER_OFFSET))
1425 #endif
1426 #endif
1429 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1430 is a virtual register, return the equivalent hard register and set the
1431 offset indirectly through the pointer. Otherwise, return 0. */
1433 static rtx
1434 instantiate_new_reg (rtx x, poly_int64 *poffset)
1436 rtx new_rtx;
1437 poly_int64 offset;
1439 if (x == virtual_incoming_args_rtx)
1441 if (stack_realign_drap)
1443 /* Replace virtual_incoming_args_rtx with internal arg
1444 pointer if DRAP is used to realign stack. */
1445 new_rtx = crtl->args.internal_arg_pointer;
1446 offset = 0;
1448 else
1449 new_rtx = arg_pointer_rtx, offset = in_arg_offset;
1451 else if (x == virtual_stack_vars_rtx)
1452 new_rtx = frame_pointer_rtx, offset = var_offset;
1453 else if (x == virtual_stack_dynamic_rtx)
1454 new_rtx = stack_pointer_rtx, offset = dynamic_offset;
1455 else if (x == virtual_outgoing_args_rtx)
1456 new_rtx = stack_pointer_rtx, offset = out_arg_offset;
1457 else if (x == virtual_cfa_rtx)
1459 #ifdef FRAME_POINTER_CFA_OFFSET
1460 new_rtx = frame_pointer_rtx;
1461 #else
1462 new_rtx = arg_pointer_rtx;
1463 #endif
1464 offset = cfa_offset;
1466 else if (x == virtual_preferred_stack_boundary_rtx)
1468 new_rtx = GEN_INT (crtl->preferred_stack_boundary / BITS_PER_UNIT);
1469 offset = 0;
1471 else
1472 return NULL_RTX;
1474 *poffset = offset;
1475 return new_rtx;
1478 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1479 registers present inside of *LOC. The expression is simplified,
1480 as much as possible, but is not to be considered "valid" in any sense
1481 implied by the target. Return true if any change is made. */
1483 static bool
1484 instantiate_virtual_regs_in_rtx (rtx *loc)
1486 if (!*loc)
1487 return false;
1488 bool changed = false;
1489 subrtx_ptr_iterator::array_type array;
1490 FOR_EACH_SUBRTX_PTR (iter, array, loc, NONCONST)
1492 rtx *loc = *iter;
1493 if (rtx x = *loc)
1495 rtx new_rtx;
1496 poly_int64 offset;
1497 switch (GET_CODE (x))
1499 case REG:
1500 new_rtx = instantiate_new_reg (x, &offset);
1501 if (new_rtx)
1503 *loc = plus_constant (GET_MODE (x), new_rtx, offset);
1504 changed = true;
1506 iter.skip_subrtxes ();
1507 break;
1509 case PLUS:
1510 new_rtx = instantiate_new_reg (XEXP (x, 0), &offset);
1511 if (new_rtx)
1513 XEXP (x, 0) = new_rtx;
1514 *loc = plus_constant (GET_MODE (x), x, offset, true);
1515 changed = true;
1516 iter.skip_subrtxes ();
1517 break;
1520 /* FIXME -- from old code */
1521 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1522 we can commute the PLUS and SUBREG because pointers into the
1523 frame are well-behaved. */
1524 break;
1526 default:
1527 break;
1531 return changed;
1534 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1535 matches the predicate for insn CODE operand OPERAND. */
1537 static bool
1538 safe_insn_predicate (int code, int operand, rtx x)
1540 return code < 0 || insn_operand_matches ((enum insn_code) code, operand, x);
1543 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1544 registers present inside of insn. The result will be a valid insn. */
1546 static void
1547 instantiate_virtual_regs_in_insn (rtx_insn *insn)
1549 poly_int64 offset;
1550 int insn_code, i;
1551 bool any_change = false;
1552 rtx set, new_rtx, x;
1553 rtx_insn *seq;
1555 /* There are some special cases to be handled first. */
1556 set = single_set (insn);
1557 if (set)
1559 /* We're allowed to assign to a virtual register. This is interpreted
1560 to mean that the underlying register gets assigned the inverse
1561 transformation. This is used, for example, in the handling of
1562 non-local gotos. */
1563 new_rtx = instantiate_new_reg (SET_DEST (set), &offset);
1564 if (new_rtx)
1566 start_sequence ();
1568 instantiate_virtual_regs_in_rtx (&SET_SRC (set));
1569 x = simplify_gen_binary (PLUS, GET_MODE (new_rtx), SET_SRC (set),
1570 gen_int_mode (-offset, GET_MODE (new_rtx)));
1571 x = force_operand (x, new_rtx);
1572 if (x != new_rtx)
1573 emit_move_insn (new_rtx, x);
1575 seq = get_insns ();
1576 end_sequence ();
1578 emit_insn_before (seq, insn);
1579 delete_insn (insn);
1580 return;
1583 /* Handle a straight copy from a virtual register by generating a
1584 new add insn. The difference between this and falling through
1585 to the generic case is avoiding a new pseudo and eliminating a
1586 move insn in the initial rtl stream. */
1587 new_rtx = instantiate_new_reg (SET_SRC (set), &offset);
1588 if (new_rtx
1589 && maybe_ne (offset, 0)
1590 && REG_P (SET_DEST (set))
1591 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1593 start_sequence ();
1595 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS, new_rtx,
1596 gen_int_mode (offset,
1597 GET_MODE (SET_DEST (set))),
1598 SET_DEST (set), 1, OPTAB_LIB_WIDEN);
1599 if (x != SET_DEST (set))
1600 emit_move_insn (SET_DEST (set), x);
1602 seq = get_insns ();
1603 end_sequence ();
1605 emit_insn_before (seq, insn);
1606 delete_insn (insn);
1607 return;
1610 extract_insn (insn);
1611 insn_code = INSN_CODE (insn);
1613 /* Handle a plus involving a virtual register by determining if the
1614 operands remain valid if they're modified in place. */
1615 poly_int64 delta;
1616 if (GET_CODE (SET_SRC (set)) == PLUS
1617 && recog_data.n_operands >= 3
1618 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1619 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1620 && poly_int_rtx_p (recog_data.operand[2], &delta)
1621 && (new_rtx = instantiate_new_reg (recog_data.operand[1], &offset)))
1623 offset += delta;
1625 /* If the sum is zero, then replace with a plain move. */
1626 if (known_eq (offset, 0)
1627 && REG_P (SET_DEST (set))
1628 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1630 start_sequence ();
1631 emit_move_insn (SET_DEST (set), new_rtx);
1632 seq = get_insns ();
1633 end_sequence ();
1635 emit_insn_before (seq, insn);
1636 delete_insn (insn);
1637 return;
1640 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1642 /* Using validate_change and apply_change_group here leaves
1643 recog_data in an invalid state. Since we know exactly what
1644 we want to check, do those two by hand. */
1645 if (safe_insn_predicate (insn_code, 1, new_rtx)
1646 && safe_insn_predicate (insn_code, 2, x))
1648 *recog_data.operand_loc[1] = recog_data.operand[1] = new_rtx;
1649 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1650 any_change = true;
1652 /* Fall through into the regular operand fixup loop in
1653 order to take care of operands other than 1 and 2. */
1657 else
1659 extract_insn (insn);
1660 insn_code = INSN_CODE (insn);
1663 /* In the general case, we expect virtual registers to appear only in
1664 operands, and then only as either bare registers or inside memories. */
1665 for (i = 0; i < recog_data.n_operands; ++i)
1667 x = recog_data.operand[i];
1668 switch (GET_CODE (x))
1670 case MEM:
1672 rtx addr = XEXP (x, 0);
1674 if (!instantiate_virtual_regs_in_rtx (&addr))
1675 continue;
1677 start_sequence ();
1678 x = replace_equiv_address (x, addr, true);
1679 /* It may happen that the address with the virtual reg
1680 was valid (e.g. based on the virtual stack reg, which might
1681 be acceptable to the predicates with all offsets), whereas
1682 the address now isn't anymore, for instance when the address
1683 is still offsetted, but the base reg isn't virtual-stack-reg
1684 anymore. Below we would do a force_reg on the whole operand,
1685 but this insn might actually only accept memory. Hence,
1686 before doing that last resort, try to reload the address into
1687 a register, so this operand stays a MEM. */
1688 if (!safe_insn_predicate (insn_code, i, x))
1690 addr = force_reg (GET_MODE (addr), addr);
1691 x = replace_equiv_address (x, addr, true);
1693 seq = get_insns ();
1694 end_sequence ();
1695 if (seq)
1696 emit_insn_before (seq, insn);
1698 break;
1700 case REG:
1701 new_rtx = instantiate_new_reg (x, &offset);
1702 if (new_rtx == NULL)
1703 continue;
1704 if (known_eq (offset, 0))
1705 x = new_rtx;
1706 else
1708 start_sequence ();
1710 /* Careful, special mode predicates may have stuff in
1711 insn_data[insn_code].operand[i].mode that isn't useful
1712 to us for computing a new value. */
1713 /* ??? Recognize address_operand and/or "p" constraints
1714 to see if (plus new offset) is a valid before we put
1715 this through expand_simple_binop. */
1716 x = expand_simple_binop (GET_MODE (x), PLUS, new_rtx,
1717 gen_int_mode (offset, GET_MODE (x)),
1718 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1719 seq = get_insns ();
1720 end_sequence ();
1721 emit_insn_before (seq, insn);
1723 break;
1725 case SUBREG:
1726 new_rtx = instantiate_new_reg (SUBREG_REG (x), &offset);
1727 if (new_rtx == NULL)
1728 continue;
1729 if (maybe_ne (offset, 0))
1731 start_sequence ();
1732 new_rtx = expand_simple_binop
1733 (GET_MODE (new_rtx), PLUS, new_rtx,
1734 gen_int_mode (offset, GET_MODE (new_rtx)),
1735 NULL_RTX, 1, OPTAB_LIB_WIDEN);
1736 seq = get_insns ();
1737 end_sequence ();
1738 emit_insn_before (seq, insn);
1740 x = simplify_gen_subreg (recog_data.operand_mode[i], new_rtx,
1741 GET_MODE (new_rtx), SUBREG_BYTE (x));
1742 gcc_assert (x);
1743 break;
1745 default:
1746 continue;
1749 /* At this point, X contains the new value for the operand.
1750 Validate the new value vs the insn predicate. Note that
1751 asm insns will have insn_code -1 here. */
1752 if (!safe_insn_predicate (insn_code, i, x))
1754 start_sequence ();
1755 if (REG_P (x))
1757 gcc_assert (REGNO (x) <= LAST_VIRTUAL_REGISTER);
1758 x = copy_to_reg (x);
1760 else
1761 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1762 seq = get_insns ();
1763 end_sequence ();
1764 if (seq)
1765 emit_insn_before (seq, insn);
1768 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1769 any_change = true;
1772 if (any_change)
1774 /* Propagate operand changes into the duplicates. */
1775 for (i = 0; i < recog_data.n_dups; ++i)
1776 *recog_data.dup_loc[i]
1777 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1779 /* Force re-recognition of the instruction for validation. */
1780 INSN_CODE (insn) = -1;
1783 if (asm_noperands (PATTERN (insn)) >= 0)
1785 if (!check_asm_operands (PATTERN (insn)))
1787 error_for_asm (insn, "impossible constraint in %<asm%>");
1788 /* For asm goto, instead of fixing up all the edges
1789 just clear the template and clear input and output operands
1790 and strip away clobbers. */
1791 if (JUMP_P (insn))
1793 rtx asm_op = extract_asm_operands (PATTERN (insn));
1794 PATTERN (insn) = asm_op;
1795 PUT_MODE (asm_op, VOIDmode);
1796 ASM_OPERANDS_TEMPLATE (asm_op) = ggc_strdup ("");
1797 ASM_OPERANDS_OUTPUT_CONSTRAINT (asm_op) = "";
1798 ASM_OPERANDS_OUTPUT_IDX (asm_op) = 0;
1799 ASM_OPERANDS_INPUT_VEC (asm_op) = rtvec_alloc (0);
1800 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (asm_op) = rtvec_alloc (0);
1802 else
1803 delete_insn (insn);
1806 else
1808 if (recog_memoized (insn) < 0)
1809 fatal_insn_not_found (insn);
1813 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1814 do any instantiation required. */
1816 void
1817 instantiate_decl_rtl (rtx x)
1819 rtx addr;
1821 if (x == 0)
1822 return;
1824 /* If this is a CONCAT, recurse for the pieces. */
1825 if (GET_CODE (x) == CONCAT)
1827 instantiate_decl_rtl (XEXP (x, 0));
1828 instantiate_decl_rtl (XEXP (x, 1));
1829 return;
1832 /* If this is not a MEM, no need to do anything. Similarly if the
1833 address is a constant or a register that is not a virtual register. */
1834 if (!MEM_P (x))
1835 return;
1837 addr = XEXP (x, 0);
1838 if (CONSTANT_P (addr)
1839 || (REG_P (addr)
1840 && !VIRTUAL_REGISTER_P (addr)))
1841 return;
1843 instantiate_virtual_regs_in_rtx (&XEXP (x, 0));
1846 /* Helper for instantiate_decls called via walk_tree: Process all decls
1847 in the given DECL_VALUE_EXPR. */
1849 static tree
1850 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1852 tree t = *tp;
1853 if (! EXPR_P (t))
1855 *walk_subtrees = 0;
1856 if (DECL_P (t))
1858 if (DECL_RTL_SET_P (t))
1859 instantiate_decl_rtl (DECL_RTL (t));
1860 if (TREE_CODE (t) == PARM_DECL && DECL_NAMELESS (t)
1861 && DECL_INCOMING_RTL (t))
1862 instantiate_decl_rtl (DECL_INCOMING_RTL (t));
1863 if ((VAR_P (t) || TREE_CODE (t) == RESULT_DECL)
1864 && DECL_HAS_VALUE_EXPR_P (t))
1866 tree v = DECL_VALUE_EXPR (t);
1867 walk_tree (&v, instantiate_expr, NULL, NULL);
1871 return NULL;
1874 /* Subroutine of instantiate_decls: Process all decls in the given
1875 BLOCK node and all its subblocks. */
1877 static void
1878 instantiate_decls_1 (tree let)
1880 tree t;
1882 for (t = BLOCK_VARS (let); t; t = DECL_CHAIN (t))
1884 if (DECL_RTL_SET_P (t))
1885 instantiate_decl_rtl (DECL_RTL (t));
1886 if (VAR_P (t) && DECL_HAS_VALUE_EXPR_P (t))
1888 tree v = DECL_VALUE_EXPR (t);
1889 walk_tree (&v, instantiate_expr, NULL, NULL);
1893 /* Process all subblocks. */
1894 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1895 instantiate_decls_1 (t);
1898 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1899 all virtual registers in their DECL_RTL's. */
1901 static void
1902 instantiate_decls (tree fndecl)
1904 tree decl;
1905 unsigned ix;
1907 /* Process all parameters of the function. */
1908 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = DECL_CHAIN (decl))
1910 instantiate_decl_rtl (DECL_RTL (decl));
1911 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1912 if (DECL_HAS_VALUE_EXPR_P (decl))
1914 tree v = DECL_VALUE_EXPR (decl);
1915 walk_tree (&v, instantiate_expr, NULL, NULL);
1919 if ((decl = DECL_RESULT (fndecl))
1920 && TREE_CODE (decl) == RESULT_DECL)
1922 if (DECL_RTL_SET_P (decl))
1923 instantiate_decl_rtl (DECL_RTL (decl));
1924 if (DECL_HAS_VALUE_EXPR_P (decl))
1926 tree v = DECL_VALUE_EXPR (decl);
1927 walk_tree (&v, instantiate_expr, NULL, NULL);
1931 /* Process the saved static chain if it exists. */
1932 decl = DECL_STRUCT_FUNCTION (fndecl)->static_chain_decl;
1933 if (decl && DECL_HAS_VALUE_EXPR_P (decl))
1934 instantiate_decl_rtl (DECL_RTL (DECL_VALUE_EXPR (decl)));
1936 /* Now process all variables defined in the function or its subblocks. */
1937 if (DECL_INITIAL (fndecl))
1938 instantiate_decls_1 (DECL_INITIAL (fndecl));
1940 FOR_EACH_LOCAL_DECL (cfun, ix, decl)
1941 if (DECL_RTL_SET_P (decl))
1942 instantiate_decl_rtl (DECL_RTL (decl));
1943 vec_free (cfun->local_decls);
1946 /* Return the value of STACK_DYNAMIC_OFFSET for the current function.
1947 This is done through a function wrapper so that the macro sees a
1948 predictable set of included files. */
1950 poly_int64
1951 get_stack_dynamic_offset ()
1953 return STACK_DYNAMIC_OFFSET (current_function_decl);
1956 /* Pass through the INSNS of function FNDECL and convert virtual register
1957 references to hard register references. */
1959 static void
1960 instantiate_virtual_regs (void)
1962 rtx_insn *insn;
1964 /* Compute the offsets to use for this function. */
1965 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1966 var_offset = targetm.starting_frame_offset ();
1967 dynamic_offset = get_stack_dynamic_offset ();
1968 out_arg_offset = STACK_POINTER_OFFSET;
1969 #ifdef FRAME_POINTER_CFA_OFFSET
1970 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1971 #else
1972 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1973 #endif
1975 /* Initialize recognition, indicating that volatile is OK. */
1976 init_recog ();
1978 /* Scan through all the insns, instantiating every virtual register still
1979 present. */
1980 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1981 if (INSN_P (insn))
1983 /* These patterns in the instruction stream can never be recognized.
1984 Fortunately, they shouldn't contain virtual registers either. */
1985 if (GET_CODE (PATTERN (insn)) == USE
1986 || GET_CODE (PATTERN (insn)) == CLOBBER
1987 || GET_CODE (PATTERN (insn)) == ASM_INPUT
1988 || DEBUG_MARKER_INSN_P (insn))
1989 continue;
1990 else if (DEBUG_BIND_INSN_P (insn))
1991 instantiate_virtual_regs_in_rtx (INSN_VAR_LOCATION_PTR (insn));
1992 else
1993 instantiate_virtual_regs_in_insn (insn);
1995 if (insn->deleted ())
1996 continue;
1998 instantiate_virtual_regs_in_rtx (&REG_NOTES (insn));
2000 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
2001 if (CALL_P (insn))
2002 instantiate_virtual_regs_in_rtx (&CALL_INSN_FUNCTION_USAGE (insn));
2005 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
2006 instantiate_decls (current_function_decl);
2008 targetm.instantiate_decls ();
2010 /* Indicate that, from now on, assign_stack_local should use
2011 frame_pointer_rtx. */
2012 virtuals_instantiated = 1;
2015 namespace {
2017 const pass_data pass_data_instantiate_virtual_regs =
2019 RTL_PASS, /* type */
2020 "vregs", /* name */
2021 OPTGROUP_NONE, /* optinfo_flags */
2022 TV_NONE, /* tv_id */
2023 0, /* properties_required */
2024 0, /* properties_provided */
2025 0, /* properties_destroyed */
2026 0, /* todo_flags_start */
2027 0, /* todo_flags_finish */
2030 class pass_instantiate_virtual_regs : public rtl_opt_pass
2032 public:
2033 pass_instantiate_virtual_regs (gcc::context *ctxt)
2034 : rtl_opt_pass (pass_data_instantiate_virtual_regs, ctxt)
2037 /* opt_pass methods: */
2038 unsigned int execute (function *) final override
2040 instantiate_virtual_regs ();
2041 return 0;
2044 }; // class pass_instantiate_virtual_regs
2046 } // anon namespace
2048 rtl_opt_pass *
2049 make_pass_instantiate_virtual_regs (gcc::context *ctxt)
2051 return new pass_instantiate_virtual_regs (ctxt);
2055 /* Return true if EXP is an aggregate type (or a value with aggregate type).
2056 This means a type for which function calls must pass an address to the
2057 function or get an address back from the function.
2058 EXP may be a type node or an expression (whose type is tested). */
2060 bool
2061 aggregate_value_p (const_tree exp, const_tree fntype)
2063 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
2064 int i, regno, nregs;
2065 rtx reg;
2067 if (fntype)
2068 switch (TREE_CODE (fntype))
2070 case CALL_EXPR:
2072 tree fndecl = get_callee_fndecl (fntype);
2073 if (fndecl)
2074 fntype = TREE_TYPE (fndecl);
2075 else if (CALL_EXPR_FN (fntype))
2076 fntype = TREE_TYPE (TREE_TYPE (CALL_EXPR_FN (fntype)));
2077 else
2078 /* For internal functions, assume nothing needs to be
2079 returned in memory. */
2080 return false;
2082 break;
2083 case FUNCTION_DECL:
2084 fntype = TREE_TYPE (fntype);
2085 break;
2086 case FUNCTION_TYPE:
2087 case METHOD_TYPE:
2088 break;
2089 case IDENTIFIER_NODE:
2090 fntype = NULL_TREE;
2091 break;
2092 default:
2093 /* We don't expect other tree types here. */
2094 gcc_unreachable ();
2097 if (VOID_TYPE_P (type))
2098 return false;
2100 if (error_operand_p (fntype))
2101 return false;
2103 /* If a record should be passed the same as its first (and only) member
2104 don't pass it as an aggregate. */
2105 if (TREE_CODE (type) == RECORD_TYPE && TYPE_TRANSPARENT_AGGR (type))
2106 return aggregate_value_p (first_field (type), fntype);
2108 /* If the front end has decided that this needs to be passed by
2109 reference, do so. */
2110 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
2111 && DECL_BY_REFERENCE (exp))
2112 return true;
2114 /* Function types that are TREE_ADDRESSABLE force return in memory. */
2115 if (fntype && TREE_ADDRESSABLE (fntype))
2116 return true;
2118 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
2119 and thus can't be returned in registers. */
2120 if (TREE_ADDRESSABLE (type))
2121 return true;
2123 if (TYPE_EMPTY_P (type))
2124 return false;
2126 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
2127 return true;
2129 if (targetm.calls.return_in_memory (type, fntype))
2130 return true;
2132 /* Make sure we have suitable call-clobbered regs to return
2133 the value in; if not, we must return it in memory. */
2134 reg = hard_function_value (type, 0, fntype, 0);
2136 /* If we have something other than a REG (e.g. a PARALLEL), then assume
2137 it is OK. */
2138 if (!REG_P (reg))
2139 return false;
2141 /* Use the default ABI if the type of the function isn't known.
2142 The scheme for handling interoperability between different ABIs
2143 requires us to be able to tell when we're calling a function with
2144 a nondefault ABI. */
2145 const predefined_function_abi &abi = (fntype
2146 ? fntype_abi (fntype)
2147 : default_function_abi);
2148 regno = REGNO (reg);
2149 nregs = hard_regno_nregs (regno, TYPE_MODE (type));
2150 for (i = 0; i < nregs; i++)
2151 if (!fixed_regs[regno + i] && !abi.clobbers_full_reg_p (regno + i))
2152 return true;
2154 return false;
2157 /* Return true if we should assign DECL a pseudo register; false if it
2158 should live on the local stack. */
2160 bool
2161 use_register_for_decl (const_tree decl)
2163 if (TREE_CODE (decl) == SSA_NAME)
2165 /* We often try to use the SSA_NAME, instead of its underlying
2166 decl, to get type information and guide decisions, to avoid
2167 differences of behavior between anonymous and named
2168 variables, but in this one case we have to go for the actual
2169 variable if there is one. The main reason is that, at least
2170 at -O0, we want to place user variables on the stack, but we
2171 don't mind using pseudos for anonymous or ignored temps.
2172 Should we take the SSA_NAME, we'd conclude all SSA_NAMEs
2173 should go in pseudos, whereas their corresponding variables
2174 might have to go on the stack. So, disregarding the decl
2175 here would negatively impact debug info at -O0, enable
2176 coalescing between SSA_NAMEs that ought to get different
2177 stack/pseudo assignments, and get the incoming argument
2178 processing thoroughly confused by PARM_DECLs expected to live
2179 in stack slots but assigned to pseudos. */
2180 if (!SSA_NAME_VAR (decl))
2181 return TYPE_MODE (TREE_TYPE (decl)) != BLKmode
2182 && !(flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)));
2184 decl = SSA_NAME_VAR (decl);
2187 /* Honor volatile. */
2188 if (TREE_SIDE_EFFECTS (decl))
2189 return false;
2191 /* Honor addressability. */
2192 if (TREE_ADDRESSABLE (decl))
2193 return false;
2195 /* RESULT_DECLs are a bit special in that they're assigned without
2196 regard to use_register_for_decl, but we generally only store in
2197 them. If we coalesce their SSA NAMEs, we'd better return a
2198 result that matches the assignment in expand_function_start. */
2199 if (TREE_CODE (decl) == RESULT_DECL)
2201 /* If it's not an aggregate, we're going to use a REG or a
2202 PARALLEL containing a REG. */
2203 if (!aggregate_value_p (decl, current_function_decl))
2204 return true;
2206 /* If expand_function_start determines the return value, we'll
2207 use MEM if it's not by reference. */
2208 if (cfun->returns_pcc_struct
2209 || (targetm.calls.struct_value_rtx
2210 (TREE_TYPE (current_function_decl), 1)))
2211 return DECL_BY_REFERENCE (decl);
2213 /* Otherwise, we're taking an extra all.function_result_decl
2214 argument. It's set up in assign_parms_augmented_arg_list,
2215 under the (negated) conditions above, and then it's used to
2216 set up the RESULT_DECL rtl in assign_params, after looping
2217 over all parameters. Now, if the RESULT_DECL is not by
2218 reference, we'll use a MEM either way. */
2219 if (!DECL_BY_REFERENCE (decl))
2220 return false;
2222 /* Otherwise, if RESULT_DECL is DECL_BY_REFERENCE, it will take
2223 the function_result_decl's assignment. Since it's a pointer,
2224 we can short-circuit a number of the tests below, and we must
2225 duplicate them because we don't have the function_result_decl
2226 to test. */
2227 if (!targetm.calls.allocate_stack_slots_for_args ())
2228 return true;
2229 /* We don't set DECL_IGNORED_P for the function_result_decl. */
2230 if (optimize)
2231 return true;
2232 if (cfun->tail_call_marked)
2233 return true;
2234 /* We don't set DECL_REGISTER for the function_result_decl. */
2235 return false;
2238 /* Only register-like things go in registers. */
2239 if (DECL_MODE (decl) == BLKmode)
2240 return false;
2242 /* If -ffloat-store specified, don't put explicit float variables
2243 into registers. */
2244 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
2245 propagates values across these stores, and it probably shouldn't. */
2246 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
2247 return false;
2249 if (!targetm.calls.allocate_stack_slots_for_args ())
2250 return true;
2252 /* If we're not interested in tracking debugging information for
2253 this decl, then we can certainly put it in a register. */
2254 if (DECL_IGNORED_P (decl))
2255 return true;
2257 if (optimize)
2258 return true;
2260 /* Thunks force a tail call even at -O0 so we need to avoid creating a
2261 dangling reference in case the parameter is passed by reference. */
2262 if (TREE_CODE (decl) == PARM_DECL && cfun->tail_call_marked)
2263 return true;
2265 if (!DECL_REGISTER (decl))
2266 return false;
2268 /* When not optimizing, disregard register keyword for types that
2269 could have methods, otherwise the methods won't be callable from
2270 the debugger. */
2271 if (RECORD_OR_UNION_TYPE_P (TREE_TYPE (decl)))
2272 return false;
2274 return true;
2277 /* Structures to communicate between the subroutines of assign_parms.
2278 The first holds data persistent across all parameters, the second
2279 is cleared out for each parameter. */
2281 struct assign_parm_data_all
2283 /* When INIT_CUMULATIVE_ARGS gets revamped, allocating CUMULATIVE_ARGS
2284 should become a job of the target or otherwise encapsulated. */
2285 CUMULATIVE_ARGS args_so_far_v;
2286 cumulative_args_t args_so_far;
2287 struct args_size stack_args_size;
2288 tree function_result_decl;
2289 tree orig_fnargs;
2290 rtx_insn *first_conversion_insn;
2291 rtx_insn *last_conversion_insn;
2292 HOST_WIDE_INT pretend_args_size;
2293 HOST_WIDE_INT extra_pretend_bytes;
2294 int reg_parm_stack_space;
2297 struct assign_parm_data_one
2299 tree nominal_type;
2300 function_arg_info arg;
2301 rtx entry_parm;
2302 rtx stack_parm;
2303 machine_mode nominal_mode;
2304 machine_mode passed_mode;
2305 struct locate_and_pad_arg_data locate;
2306 int partial;
2309 /* A subroutine of assign_parms. Initialize ALL. */
2311 static void
2312 assign_parms_initialize_all (struct assign_parm_data_all *all)
2314 tree fntype ATTRIBUTE_UNUSED;
2316 memset (all, 0, sizeof (*all));
2318 fntype = TREE_TYPE (current_function_decl);
2320 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
2321 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far_v, fntype, NULL_RTX);
2322 #else
2323 INIT_CUMULATIVE_ARGS (all->args_so_far_v, fntype, NULL_RTX,
2324 current_function_decl, -1);
2325 #endif
2326 all->args_so_far = pack_cumulative_args (&all->args_so_far_v);
2328 #ifdef INCOMING_REG_PARM_STACK_SPACE
2329 all->reg_parm_stack_space
2330 = INCOMING_REG_PARM_STACK_SPACE (current_function_decl);
2331 #endif
2334 /* If ARGS contains entries with complex types, split the entry into two
2335 entries of the component type. Return a new list of substitutions are
2336 needed, else the old list. */
2338 static void
2339 split_complex_args (vec<tree> *args)
2341 unsigned i;
2342 tree p;
2344 FOR_EACH_VEC_ELT (*args, i, p)
2346 tree type = TREE_TYPE (p);
2347 if (TREE_CODE (type) == COMPLEX_TYPE
2348 && targetm.calls.split_complex_arg (type))
2350 tree decl;
2351 tree subtype = TREE_TYPE (type);
2352 bool addressable = TREE_ADDRESSABLE (p);
2354 /* Rewrite the PARM_DECL's type with its component. */
2355 p = copy_node (p);
2356 TREE_TYPE (p) = subtype;
2357 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
2358 SET_DECL_MODE (p, VOIDmode);
2359 DECL_SIZE (p) = NULL;
2360 DECL_SIZE_UNIT (p) = NULL;
2361 /* If this arg must go in memory, put it in a pseudo here.
2362 We can't allow it to go in memory as per normal parms,
2363 because the usual place might not have the imag part
2364 adjacent to the real part. */
2365 DECL_ARTIFICIAL (p) = addressable;
2366 DECL_IGNORED_P (p) = addressable;
2367 TREE_ADDRESSABLE (p) = 0;
2368 layout_decl (p, 0);
2369 (*args)[i] = p;
2371 /* Build a second synthetic decl. */
2372 decl = build_decl (EXPR_LOCATION (p),
2373 PARM_DECL, NULL_TREE, subtype);
2374 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2375 DECL_ARTIFICIAL (decl) = addressable;
2376 DECL_IGNORED_P (decl) = addressable;
2377 layout_decl (decl, 0);
2378 args->safe_insert (++i, decl);
2383 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2384 the hidden struct return argument, and (abi willing) complex args.
2385 Return the new parameter list. */
2387 static vec<tree>
2388 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2390 tree fndecl = current_function_decl;
2391 tree fntype = TREE_TYPE (fndecl);
2392 vec<tree> fnargs = vNULL;
2393 tree arg;
2395 for (arg = DECL_ARGUMENTS (fndecl); arg; arg = DECL_CHAIN (arg))
2396 fnargs.safe_push (arg);
2398 all->orig_fnargs = DECL_ARGUMENTS (fndecl);
2400 /* If struct value address is treated as the first argument, make it so. */
2401 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2402 && ! cfun->returns_pcc_struct
2403 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2405 tree type = build_pointer_type (TREE_TYPE (fntype));
2406 tree decl;
2408 decl = build_decl (DECL_SOURCE_LOCATION (fndecl),
2409 PARM_DECL, get_identifier (".result_ptr"), type);
2410 DECL_ARG_TYPE (decl) = type;
2411 DECL_ARTIFICIAL (decl) = 1;
2412 DECL_NAMELESS (decl) = 1;
2413 TREE_CONSTANT (decl) = 1;
2414 /* We don't set DECL_IGNORED_P or DECL_REGISTER here. If this
2415 changes, the end of the RESULT_DECL handling block in
2416 use_register_for_decl must be adjusted to match. */
2418 DECL_CHAIN (decl) = all->orig_fnargs;
2419 all->orig_fnargs = decl;
2420 fnargs.safe_insert (0, decl);
2422 all->function_result_decl = decl;
2425 /* If the target wants to split complex arguments into scalars, do so. */
2426 if (targetm.calls.split_complex_arg)
2427 split_complex_args (&fnargs);
2429 return fnargs;
2432 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2433 data for the parameter. Incorporate ABI specifics such as pass-by-
2434 reference and type promotion. */
2436 static void
2437 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2438 struct assign_parm_data_one *data)
2440 int unsignedp;
2442 *data = assign_parm_data_one ();
2444 /* NAMED_ARG is a misnomer. We really mean 'non-variadic'. */
2445 if (!cfun->stdarg)
2446 data->arg.named = 1; /* No variadic parms. */
2447 else if (DECL_CHAIN (parm))
2448 data->arg.named = 1; /* Not the last non-variadic parm. */
2449 else if (targetm.calls.strict_argument_naming (all->args_so_far))
2450 data->arg.named = 1; /* Only variadic ones are unnamed. */
2451 else
2452 data->arg.named = 0; /* Treat as variadic. */
2454 data->nominal_type = TREE_TYPE (parm);
2455 data->arg.type = DECL_ARG_TYPE (parm);
2457 /* Look out for errors propagating this far. Also, if the parameter's
2458 type is void then its value doesn't matter. */
2459 if (TREE_TYPE (parm) == error_mark_node
2460 /* This can happen after weird syntax errors
2461 or if an enum type is defined among the parms. */
2462 || TREE_CODE (parm) != PARM_DECL
2463 || data->arg.type == NULL
2464 || VOID_TYPE_P (data->nominal_type))
2466 data->nominal_type = data->arg.type = void_type_node;
2467 data->nominal_mode = data->passed_mode = data->arg.mode = VOIDmode;
2468 return;
2471 /* Find mode of arg as it is passed, and mode of arg as it should be
2472 during execution of this function. */
2473 data->passed_mode = data->arg.mode = TYPE_MODE (data->arg.type);
2474 data->nominal_mode = TYPE_MODE (data->nominal_type);
2476 /* If the parm is to be passed as a transparent union or record, use the
2477 type of the first field for the tests below. We have already verified
2478 that the modes are the same. */
2479 if (RECORD_OR_UNION_TYPE_P (data->arg.type)
2480 && TYPE_TRANSPARENT_AGGR (data->arg.type))
2481 data->arg.type = TREE_TYPE (first_field (data->arg.type));
2483 /* See if this arg was passed by invisible reference. */
2484 if (apply_pass_by_reference_rules (&all->args_so_far_v, data->arg))
2486 data->nominal_type = data->arg.type;
2487 data->passed_mode = data->nominal_mode = data->arg.mode;
2490 /* Find mode as it is passed by the ABI. */
2491 unsignedp = TYPE_UNSIGNED (data->arg.type);
2492 data->arg.mode
2493 = promote_function_mode (data->arg.type, data->arg.mode, &unsignedp,
2494 TREE_TYPE (current_function_decl), 0);
2497 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2499 static void
2500 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2501 struct assign_parm_data_one *data, bool no_rtl)
2503 int varargs_pretend_bytes = 0;
2505 function_arg_info last_named_arg = data->arg;
2506 last_named_arg.named = true;
2507 targetm.calls.setup_incoming_varargs (all->args_so_far, last_named_arg,
2508 &varargs_pretend_bytes, no_rtl);
2510 /* If the back-end has requested extra stack space, record how much is
2511 needed. Do not change pretend_args_size otherwise since it may be
2512 nonzero from an earlier partial argument. */
2513 if (varargs_pretend_bytes > 0)
2514 all->pretend_args_size = varargs_pretend_bytes;
2517 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2518 the incoming location of the current parameter. */
2520 static void
2521 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2522 struct assign_parm_data_one *data)
2524 HOST_WIDE_INT pretend_bytes = 0;
2525 rtx entry_parm;
2526 bool in_regs;
2528 if (data->arg.mode == VOIDmode)
2530 data->entry_parm = data->stack_parm = const0_rtx;
2531 return;
2534 targetm.calls.warn_parameter_passing_abi (all->args_so_far,
2535 data->arg.type);
2537 entry_parm = targetm.calls.function_incoming_arg (all->args_so_far,
2538 data->arg);
2539 if (entry_parm == 0)
2540 data->arg.mode = data->passed_mode;
2542 /* Determine parm's home in the stack, in case it arrives in the stack
2543 or we should pretend it did. Compute the stack position and rtx where
2544 the argument arrives and its size.
2546 There is one complexity here: If this was a parameter that would
2547 have been passed in registers, but wasn't only because it is
2548 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2549 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2550 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2551 as it was the previous time. */
2552 in_regs = (entry_parm != 0);
2553 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2554 in_regs = true;
2555 #endif
2556 if (!in_regs && !data->arg.named)
2558 if (targetm.calls.pretend_outgoing_varargs_named (all->args_so_far))
2560 rtx tem;
2561 function_arg_info named_arg = data->arg;
2562 named_arg.named = true;
2563 tem = targetm.calls.function_incoming_arg (all->args_so_far,
2564 named_arg);
2565 in_regs = tem != NULL;
2569 /* If this parameter was passed both in registers and in the stack, use
2570 the copy on the stack. */
2571 if (targetm.calls.must_pass_in_stack (data->arg))
2572 entry_parm = 0;
2574 if (entry_parm)
2576 int partial;
2578 partial = targetm.calls.arg_partial_bytes (all->args_so_far, data->arg);
2579 data->partial = partial;
2581 /* The caller might already have allocated stack space for the
2582 register parameters. */
2583 if (partial != 0 && all->reg_parm_stack_space == 0)
2585 /* Part of this argument is passed in registers and part
2586 is passed on the stack. Ask the prologue code to extend
2587 the stack part so that we can recreate the full value.
2589 PRETEND_BYTES is the size of the registers we need to store.
2590 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2591 stack space that the prologue should allocate.
2593 Internally, gcc assumes that the argument pointer is aligned
2594 to STACK_BOUNDARY bits. This is used both for alignment
2595 optimizations (see init_emit) and to locate arguments that are
2596 aligned to more than PARM_BOUNDARY bits. We must preserve this
2597 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2598 a stack boundary. */
2600 /* We assume at most one partial arg, and it must be the first
2601 argument on the stack. */
2602 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2604 pretend_bytes = partial;
2605 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2607 /* We want to align relative to the actual stack pointer, so
2608 don't include this in the stack size until later. */
2609 all->extra_pretend_bytes = all->pretend_args_size;
2613 locate_and_pad_parm (data->arg.mode, data->arg.type, in_regs,
2614 all->reg_parm_stack_space,
2615 entry_parm ? data->partial : 0, current_function_decl,
2616 &all->stack_args_size, &data->locate);
2618 /* Update parm_stack_boundary if this parameter is passed in the
2619 stack. */
2620 if (!in_regs && crtl->parm_stack_boundary < data->locate.boundary)
2621 crtl->parm_stack_boundary = data->locate.boundary;
2623 /* Adjust offsets to include the pretend args. */
2624 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2625 data->locate.slot_offset.constant += pretend_bytes;
2626 data->locate.offset.constant += pretend_bytes;
2628 data->entry_parm = entry_parm;
2631 /* A subroutine of assign_parms. If there is actually space on the stack
2632 for this parm, count it in stack_args_size and return true. */
2634 static bool
2635 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2636 struct assign_parm_data_one *data)
2638 /* Trivially true if we've no incoming register. */
2639 if (data->entry_parm == NULL)
2641 /* Also true if we're partially in registers and partially not,
2642 since we've arranged to drop the entire argument on the stack. */
2643 else if (data->partial != 0)
2645 /* Also true if the target says that it's passed in both registers
2646 and on the stack. */
2647 else if (GET_CODE (data->entry_parm) == PARALLEL
2648 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2650 /* Also true if the target says that there's stack allocated for
2651 all register parameters. */
2652 else if (all->reg_parm_stack_space > 0)
2654 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2655 else
2656 return false;
2658 all->stack_args_size.constant += data->locate.size.constant;
2659 if (data->locate.size.var)
2660 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2662 return true;
2665 /* A subroutine of assign_parms. Given that this parameter is allocated
2666 stack space by the ABI, find it. */
2668 static void
2669 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2671 rtx offset_rtx, stack_parm;
2672 unsigned int align, boundary;
2674 /* If we're passing this arg using a reg, make its stack home the
2675 aligned stack slot. */
2676 if (data->entry_parm)
2677 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2678 else
2679 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2681 stack_parm = crtl->args.internal_arg_pointer;
2682 if (offset_rtx != const0_rtx)
2683 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2684 stack_parm = gen_rtx_MEM (data->arg.mode, stack_parm);
2686 if (!data->arg.pass_by_reference)
2688 set_mem_attributes (stack_parm, parm, 1);
2689 /* set_mem_attributes could set MEM_SIZE to the passed mode's size,
2690 while promoted mode's size is needed. */
2691 if (data->arg.mode != BLKmode
2692 && data->arg.mode != DECL_MODE (parm))
2694 set_mem_size (stack_parm, GET_MODE_SIZE (data->arg.mode));
2695 if (MEM_EXPR (stack_parm) && MEM_OFFSET_KNOWN_P (stack_parm))
2697 poly_int64 offset = subreg_lowpart_offset (DECL_MODE (parm),
2698 data->arg.mode);
2699 if (maybe_ne (offset, 0))
2700 set_mem_offset (stack_parm, MEM_OFFSET (stack_parm) - offset);
2705 boundary = data->locate.boundary;
2706 align = BITS_PER_UNIT;
2708 /* If we're padding upward, we know that the alignment of the slot
2709 is TARGET_FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2710 intentionally forcing upward padding. Otherwise we have to come
2711 up with a guess at the alignment based on OFFSET_RTX. */
2712 poly_int64 offset;
2713 if (data->locate.where_pad == PAD_NONE || data->entry_parm)
2714 align = boundary;
2715 else if (data->locate.where_pad == PAD_UPWARD)
2717 align = boundary;
2718 /* If the argument offset is actually more aligned than the nominal
2719 stack slot boundary, take advantage of that excess alignment.
2720 Don't make any assumptions if STACK_POINTER_OFFSET is in use. */
2721 if (poly_int_rtx_p (offset_rtx, &offset)
2722 && known_eq (STACK_POINTER_OFFSET, 0))
2724 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2725 if (offset_align == 0 || offset_align > STACK_BOUNDARY)
2726 offset_align = STACK_BOUNDARY;
2727 align = MAX (align, offset_align);
2730 else if (poly_int_rtx_p (offset_rtx, &offset))
2732 align = least_bit_hwi (boundary);
2733 unsigned int offset_align = known_alignment (offset) * BITS_PER_UNIT;
2734 if (offset_align != 0)
2735 align = MIN (align, offset_align);
2737 set_mem_align (stack_parm, align);
2739 if (data->entry_parm)
2740 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2742 data->stack_parm = stack_parm;
2745 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2746 always valid and contiguous. */
2748 static void
2749 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2751 rtx entry_parm = data->entry_parm;
2752 rtx stack_parm = data->stack_parm;
2754 /* If this parm was passed part in regs and part in memory, pretend it
2755 arrived entirely in memory by pushing the register-part onto the stack.
2756 In the special case of a DImode or DFmode that is split, we could put
2757 it together in a pseudoreg directly, but for now that's not worth
2758 bothering with. */
2759 if (data->partial != 0)
2761 /* Handle calls that pass values in multiple non-contiguous
2762 locations. The Irix 6 ABI has examples of this. */
2763 if (GET_CODE (entry_parm) == PARALLEL)
2764 emit_group_store (validize_mem (copy_rtx (stack_parm)), entry_parm,
2765 data->arg.type, int_size_in_bytes (data->arg.type));
2766 else
2768 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2769 move_block_from_reg (REGNO (entry_parm),
2770 validize_mem (copy_rtx (stack_parm)),
2771 data->partial / UNITS_PER_WORD);
2774 entry_parm = stack_parm;
2777 /* If we didn't decide this parm came in a register, by default it came
2778 on the stack. */
2779 else if (entry_parm == NULL)
2780 entry_parm = stack_parm;
2782 /* When an argument is passed in multiple locations, we can't make use
2783 of this information, but we can save some copying if the whole argument
2784 is passed in a single register. */
2785 else if (GET_CODE (entry_parm) == PARALLEL
2786 && data->nominal_mode != BLKmode
2787 && data->passed_mode != BLKmode)
2789 size_t i, len = XVECLEN (entry_parm, 0);
2791 for (i = 0; i < len; i++)
2792 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2793 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2794 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2795 == data->passed_mode)
2796 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2798 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2799 break;
2803 data->entry_parm = entry_parm;
2806 /* A subroutine of assign_parms. Reconstitute any values which were
2807 passed in multiple registers and would fit in a single register. */
2809 static void
2810 assign_parm_remove_parallels (struct assign_parm_data_one *data)
2812 rtx entry_parm = data->entry_parm;
2814 /* Convert the PARALLEL to a REG of the same mode as the parallel.
2815 This can be done with register operations rather than on the
2816 stack, even if we will store the reconstituted parameter on the
2817 stack later. */
2818 if (GET_CODE (entry_parm) == PARALLEL && GET_MODE (entry_parm) != BLKmode)
2820 rtx parmreg = gen_reg_rtx (GET_MODE (entry_parm));
2821 emit_group_store (parmreg, entry_parm, data->arg.type,
2822 GET_MODE_SIZE (GET_MODE (entry_parm)));
2823 entry_parm = parmreg;
2826 data->entry_parm = entry_parm;
2829 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2830 always valid and properly aligned. */
2832 static void
2833 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2835 rtx stack_parm = data->stack_parm;
2837 /* If we can't trust the parm stack slot to be aligned enough for its
2838 ultimate type, don't use that slot after entry. We'll make another
2839 stack slot, if we need one. */
2840 if (stack_parm
2841 && ((GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm)
2842 && ((optab_handler (movmisalign_optab, data->nominal_mode)
2843 != CODE_FOR_nothing)
2844 || targetm.slow_unaligned_access (data->nominal_mode,
2845 MEM_ALIGN (stack_parm))))
2846 || (data->nominal_type
2847 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2848 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2849 stack_parm = NULL;
2851 /* If parm was passed in memory, and we need to convert it on entry,
2852 don't store it back in that same slot. */
2853 else if (data->entry_parm == stack_parm
2854 && data->nominal_mode != BLKmode
2855 && data->nominal_mode != data->passed_mode)
2856 stack_parm = NULL;
2858 /* If stack protection is in effect for this function, don't leave any
2859 pointers in their passed stack slots. */
2860 else if (crtl->stack_protect_guard
2861 && (flag_stack_protect == SPCT_FLAG_ALL
2862 || data->arg.pass_by_reference
2863 || POINTER_TYPE_P (data->nominal_type)))
2864 stack_parm = NULL;
2866 data->stack_parm = stack_parm;
2869 /* A subroutine of assign_parms. Return true if the current parameter
2870 should be stored as a BLKmode in the current frame. */
2872 static bool
2873 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2875 if (data->nominal_mode == BLKmode)
2876 return true;
2877 if (GET_MODE (data->entry_parm) == BLKmode)
2878 return true;
2880 #ifdef BLOCK_REG_PADDING
2881 /* Only assign_parm_setup_block knows how to deal with register arguments
2882 that are padded at the least significant end. */
2883 if (REG_P (data->entry_parm)
2884 && known_lt (GET_MODE_SIZE (data->arg.mode), UNITS_PER_WORD)
2885 && (BLOCK_REG_PADDING (data->passed_mode, data->arg.type, 1)
2886 == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
2887 return true;
2888 #endif
2890 return false;
2893 /* A subroutine of assign_parms. Arrange for the parameter to be
2894 present and valid in DATA->STACK_RTL. */
2896 static void
2897 assign_parm_setup_block (struct assign_parm_data_all *all,
2898 tree parm, struct assign_parm_data_one *data)
2900 rtx entry_parm = data->entry_parm;
2901 rtx stack_parm = data->stack_parm;
2902 rtx target_reg = NULL_RTX;
2903 bool in_conversion_seq = false;
2904 HOST_WIDE_INT size;
2905 HOST_WIDE_INT size_stored;
2907 if (GET_CODE (entry_parm) == PARALLEL)
2908 entry_parm = emit_group_move_into_temps (entry_parm);
2910 /* If we want the parameter in a pseudo, don't use a stack slot. */
2911 if (is_gimple_reg (parm) && use_register_for_decl (parm))
2913 tree def = ssa_default_def (cfun, parm);
2914 gcc_assert (def);
2915 machine_mode mode = promote_ssa_mode (def, NULL);
2916 rtx reg = gen_reg_rtx (mode);
2917 if (GET_CODE (reg) != CONCAT)
2918 stack_parm = reg;
2919 else
2921 target_reg = reg;
2922 /* Avoid allocating a stack slot, if there isn't one
2923 preallocated by the ABI. It might seem like we should
2924 always prefer a pseudo, but converting between
2925 floating-point and integer modes goes through the stack
2926 on various machines, so it's better to use the reserved
2927 stack slot than to risk wasting it and allocating more
2928 for the conversion. */
2929 if (stack_parm == NULL_RTX)
2931 int save = generating_concat_p;
2932 generating_concat_p = 0;
2933 stack_parm = gen_reg_rtx (mode);
2934 generating_concat_p = save;
2937 data->stack_parm = NULL;
2940 size = int_size_in_bytes (data->arg.type);
2941 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2942 if (stack_parm == 0)
2944 HOST_WIDE_INT parm_align
2945 = (STRICT_ALIGNMENT
2946 ? MAX (DECL_ALIGN (parm), BITS_PER_WORD) : DECL_ALIGN (parm));
2948 SET_DECL_ALIGN (parm, parm_align);
2949 if (DECL_ALIGN (parm) > MAX_SUPPORTED_STACK_ALIGNMENT)
2951 rtx allocsize = gen_int_mode (size_stored, Pmode);
2952 get_dynamic_stack_size (&allocsize, 0, DECL_ALIGN (parm), NULL);
2953 stack_parm = assign_stack_local (BLKmode, UINTVAL (allocsize),
2954 MAX_SUPPORTED_STACK_ALIGNMENT);
2955 rtx addr = align_dynamic_address (XEXP (stack_parm, 0),
2956 DECL_ALIGN (parm));
2957 mark_reg_pointer (addr, DECL_ALIGN (parm));
2958 stack_parm = gen_rtx_MEM (GET_MODE (stack_parm), addr);
2959 MEM_NOTRAP_P (stack_parm) = 1;
2961 else
2962 stack_parm = assign_stack_local (BLKmode, size_stored,
2963 DECL_ALIGN (parm));
2964 if (known_eq (GET_MODE_SIZE (GET_MODE (entry_parm)), size))
2965 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2966 set_mem_attributes (stack_parm, parm, 1);
2969 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2970 calls that pass values in multiple non-contiguous locations. */
2971 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2973 rtx mem;
2975 /* Note that we will be storing an integral number of words.
2976 So we have to be careful to ensure that we allocate an
2977 integral number of words. We do this above when we call
2978 assign_stack_local if space was not allocated in the argument
2979 list. If it was, this will not work if PARM_BOUNDARY is not
2980 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2981 if it becomes a problem. Exception is when BLKmode arrives
2982 with arguments not conforming to word_mode. */
2984 if (data->stack_parm == 0)
2986 else if (GET_CODE (entry_parm) == PARALLEL)
2988 else
2989 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2991 mem = validize_mem (copy_rtx (stack_parm));
2993 /* Handle values in multiple non-contiguous locations. */
2994 if (GET_CODE (entry_parm) == PARALLEL && !MEM_P (mem))
2995 emit_group_store (mem, entry_parm, data->arg.type, size);
2996 else if (GET_CODE (entry_parm) == PARALLEL)
2998 push_to_sequence2 (all->first_conversion_insn,
2999 all->last_conversion_insn);
3000 emit_group_store (mem, entry_parm, data->arg.type, size);
3001 all->first_conversion_insn = get_insns ();
3002 all->last_conversion_insn = get_last_insn ();
3003 end_sequence ();
3004 in_conversion_seq = true;
3007 else if (size == 0)
3010 /* If SIZE is that of a mode no bigger than a word, just use
3011 that mode's store operation. */
3012 else if (size <= UNITS_PER_WORD)
3014 unsigned int bits = size * BITS_PER_UNIT;
3015 machine_mode mode = int_mode_for_size (bits, 0).else_blk ();
3017 if (mode != BLKmode
3018 #ifdef BLOCK_REG_PADDING
3019 && (size == UNITS_PER_WORD
3020 || (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3021 != (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)))
3022 #endif
3025 rtx reg;
3027 /* We are really truncating a word_mode value containing
3028 SIZE bytes into a value of mode MODE. If such an
3029 operation requires no actual instructions, we can refer
3030 to the value directly in mode MODE, otherwise we must
3031 start with the register in word_mode and explicitly
3032 convert it. */
3033 if (mode == word_mode
3034 || TRULY_NOOP_TRUNCATION_MODES_P (mode, word_mode))
3035 reg = gen_rtx_REG (mode, REGNO (entry_parm));
3036 else
3038 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3039 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
3042 /* We use adjust_address to get a new MEM with the mode
3043 changed. adjust_address is better than change_address
3044 for this purpose because adjust_address does not lose
3045 the MEM_EXPR associated with the MEM.
3047 If the MEM_EXPR is lost, then optimizations like DSE
3048 assume the MEM escapes and thus is not subject to DSE. */
3049 emit_move_insn (adjust_address (mem, mode, 0), reg);
3052 #ifdef BLOCK_REG_PADDING
3053 /* Storing the register in memory as a full word, as
3054 move_block_from_reg below would do, and then using the
3055 MEM in a smaller mode, has the effect of shifting right
3056 if BYTES_BIG_ENDIAN. If we're bypassing memory, the
3057 shifting must be explicit. */
3058 else if (!MEM_P (mem))
3060 rtx x;
3062 /* If the assert below fails, we should have taken the
3063 mode != BLKmode path above, unless we have downward
3064 padding of smaller-than-word arguments on a machine
3065 with little-endian bytes, which would likely require
3066 additional changes to work correctly. */
3067 gcc_checking_assert (BYTES_BIG_ENDIAN
3068 && (BLOCK_REG_PADDING (mode,
3069 data->arg.type, 1)
3070 == PAD_UPWARD));
3072 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3074 x = gen_rtx_REG (word_mode, REGNO (entry_parm));
3075 x = expand_shift (RSHIFT_EXPR, word_mode, x, by,
3076 NULL_RTX, 1);
3077 x = force_reg (word_mode, x);
3078 x = gen_lowpart_SUBREG (GET_MODE (mem), x);
3080 emit_move_insn (mem, x);
3082 #endif
3084 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
3085 machine must be aligned to the left before storing
3086 to memory. Note that the previous test doesn't
3087 handle all cases (e.g. SIZE == 3). */
3088 else if (size != UNITS_PER_WORD
3089 #ifdef BLOCK_REG_PADDING
3090 && (BLOCK_REG_PADDING (mode, data->arg.type, 1)
3091 == PAD_DOWNWARD)
3092 #else
3093 && BYTES_BIG_ENDIAN
3094 #endif
3097 rtx tem, x;
3098 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
3099 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
3101 x = expand_shift (LSHIFT_EXPR, word_mode, reg, by, NULL_RTX, 1);
3102 tem = change_address (mem, word_mode, 0);
3103 emit_move_insn (tem, x);
3105 else
3106 move_block_from_reg (REGNO (entry_parm), mem,
3107 size_stored / UNITS_PER_WORD);
3109 else if (!MEM_P (mem))
3111 gcc_checking_assert (size > UNITS_PER_WORD);
3112 #ifdef BLOCK_REG_PADDING
3113 gcc_checking_assert (BLOCK_REG_PADDING (GET_MODE (mem),
3114 data->arg.type, 0)
3115 == PAD_UPWARD);
3116 #endif
3117 emit_move_insn (mem, entry_parm);
3119 else
3120 move_block_from_reg (REGNO (entry_parm), mem,
3121 size_stored / UNITS_PER_WORD);
3123 else if (data->stack_parm == 0 && !TYPE_EMPTY_P (data->arg.type))
3125 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3126 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
3127 BLOCK_OP_NORMAL);
3128 all->first_conversion_insn = get_insns ();
3129 all->last_conversion_insn = get_last_insn ();
3130 end_sequence ();
3131 in_conversion_seq = true;
3134 if (target_reg)
3136 if (!in_conversion_seq)
3137 emit_move_insn (target_reg, stack_parm);
3138 else
3140 push_to_sequence2 (all->first_conversion_insn,
3141 all->last_conversion_insn);
3142 emit_move_insn (target_reg, stack_parm);
3143 all->first_conversion_insn = get_insns ();
3144 all->last_conversion_insn = get_last_insn ();
3145 end_sequence ();
3147 stack_parm = target_reg;
3150 data->stack_parm = stack_parm;
3151 set_parm_rtl (parm, stack_parm);
3154 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
3155 parameter. Get it there. Perform all ABI specified conversions. */
3157 static void
3158 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
3159 struct assign_parm_data_one *data)
3161 rtx parmreg, validated_mem;
3162 rtx equiv_stack_parm;
3163 machine_mode promoted_nominal_mode;
3164 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
3165 bool did_conversion = false;
3166 bool need_conversion, moved;
3167 enum insn_code icode;
3168 rtx rtl;
3170 /* Store the parm in a pseudoregister during the function, but we may
3171 need to do it in a wider mode. Using 2 here makes the result
3172 consistent with promote_decl_mode and thus expand_expr_real_1. */
3173 promoted_nominal_mode
3174 = promote_function_mode (data->nominal_type, data->nominal_mode, &unsignedp,
3175 TREE_TYPE (current_function_decl), 2);
3177 parmreg = gen_reg_rtx (promoted_nominal_mode);
3178 if (!DECL_ARTIFICIAL (parm))
3179 mark_user_reg (parmreg);
3181 /* If this was an item that we received a pointer to,
3182 set rtl appropriately. */
3183 if (data->arg.pass_by_reference)
3185 rtl = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->arg.type)), parmreg);
3186 set_mem_attributes (rtl, parm, 1);
3188 else
3189 rtl = parmreg;
3191 assign_parm_remove_parallels (data);
3193 /* Copy the value into the register, thus bridging between
3194 assign_parm_find_data_types and expand_expr_real_1. */
3196 equiv_stack_parm = data->stack_parm;
3197 validated_mem = validize_mem (copy_rtx (data->entry_parm));
3199 need_conversion = (data->nominal_mode != data->passed_mode
3200 || promoted_nominal_mode != data->arg.mode);
3201 moved = false;
3203 if (need_conversion
3204 && GET_MODE_CLASS (data->nominal_mode) == MODE_INT
3205 && data->nominal_mode == data->passed_mode
3206 && data->nominal_mode == GET_MODE (data->entry_parm))
3208 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
3209 mode, by the caller. We now have to convert it to
3210 NOMINAL_MODE, if different. However, PARMREG may be in
3211 a different mode than NOMINAL_MODE if it is being stored
3212 promoted.
3214 If ENTRY_PARM is a hard register, it might be in a register
3215 not valid for operating in its mode (e.g., an odd-numbered
3216 register for a DFmode). In that case, moves are the only
3217 thing valid, so we can't do a convert from there. This
3218 occurs when the calling sequence allow such misaligned
3219 usages.
3221 In addition, the conversion may involve a call, which could
3222 clobber parameters which haven't been copied to pseudo
3223 registers yet.
3225 First, we try to emit an insn which performs the necessary
3226 conversion. We verify that this insn does not clobber any
3227 hard registers. */
3229 rtx op0, op1;
3231 icode = can_extend_p (promoted_nominal_mode, data->passed_mode,
3232 unsignedp);
3234 op0 = parmreg;
3235 op1 = validated_mem;
3236 if (icode != CODE_FOR_nothing
3237 && insn_operand_matches (icode, 0, op0)
3238 && insn_operand_matches (icode, 1, op1))
3240 enum rtx_code code = unsignedp ? ZERO_EXTEND : SIGN_EXTEND;
3241 rtx_insn *insn, *insns;
3242 rtx t = op1;
3243 HARD_REG_SET hardregs;
3245 start_sequence ();
3246 /* If op1 is a hard register that is likely spilled, first
3247 force it into a pseudo, otherwise combiner might extend
3248 its lifetime too much. */
3249 if (GET_CODE (t) == SUBREG)
3250 t = SUBREG_REG (t);
3251 if (REG_P (t)
3252 && HARD_REGISTER_P (t)
3253 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (t))
3254 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (t))))
3256 t = gen_reg_rtx (GET_MODE (op1));
3257 emit_move_insn (t, op1);
3259 else
3260 t = op1;
3261 rtx_insn *pat = gen_extend_insn (op0, t, promoted_nominal_mode,
3262 data->passed_mode, unsignedp);
3263 emit_insn (pat);
3264 insns = get_insns ();
3266 moved = true;
3267 CLEAR_HARD_REG_SET (hardregs);
3268 for (insn = insns; insn && moved; insn = NEXT_INSN (insn))
3270 if (INSN_P (insn))
3271 note_stores (insn, record_hard_reg_sets, &hardregs);
3272 if (!hard_reg_set_empty_p (hardregs))
3273 moved = false;
3276 end_sequence ();
3278 if (moved)
3280 emit_insn (insns);
3281 if (equiv_stack_parm != NULL_RTX)
3282 equiv_stack_parm = gen_rtx_fmt_e (code, GET_MODE (parmreg),
3283 equiv_stack_parm);
3288 if (moved)
3289 /* Nothing to do. */
3291 else if (need_conversion)
3293 /* We did not have an insn to convert directly, or the sequence
3294 generated appeared unsafe. We must first copy the parm to a
3295 pseudo reg, and save the conversion until after all
3296 parameters have been moved. */
3298 int save_tree_used;
3299 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3301 emit_move_insn (tempreg, validated_mem);
3303 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3304 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
3306 if (partial_subreg_p (tempreg)
3307 && GET_MODE (tempreg) == data->nominal_mode
3308 && REG_P (SUBREG_REG (tempreg))
3309 && data->nominal_mode == data->passed_mode
3310 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm))
3312 /* The argument is already sign/zero extended, so note it
3313 into the subreg. */
3314 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
3315 SUBREG_PROMOTED_SET (tempreg, unsignedp);
3318 /* TREE_USED gets set erroneously during expand_assignment. */
3319 save_tree_used = TREE_USED (parm);
3320 SET_DECL_RTL (parm, rtl);
3321 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
3322 SET_DECL_RTL (parm, NULL_RTX);
3323 TREE_USED (parm) = save_tree_used;
3324 all->first_conversion_insn = get_insns ();
3325 all->last_conversion_insn = get_last_insn ();
3326 end_sequence ();
3328 did_conversion = true;
3330 else if (MEM_P (data->entry_parm)
3331 && GET_MODE_ALIGNMENT (promoted_nominal_mode)
3332 > MEM_ALIGN (data->entry_parm)
3333 && (((icode = optab_handler (movmisalign_optab,
3334 promoted_nominal_mode))
3335 != CODE_FOR_nothing)
3336 || targetm.slow_unaligned_access (promoted_nominal_mode,
3337 MEM_ALIGN (data->entry_parm))))
3339 if (icode != CODE_FOR_nothing)
3340 emit_insn (GEN_FCN (icode) (parmreg, validated_mem));
3341 else
3342 rtl = parmreg = extract_bit_field (validated_mem,
3343 GET_MODE_BITSIZE (promoted_nominal_mode), 0,
3344 unsignedp, parmreg,
3345 promoted_nominal_mode, VOIDmode, false, NULL);
3347 else
3348 emit_move_insn (parmreg, validated_mem);
3350 /* If we were passed a pointer but the actual value can live in a register,
3351 retrieve it and use it directly. Note that we cannot use nominal_mode,
3352 because it will have been set to Pmode above, we must use the actual mode
3353 of the parameter instead. */
3354 if (data->arg.pass_by_reference && TYPE_MODE (TREE_TYPE (parm)) != BLKmode)
3356 /* Use a stack slot for debugging purposes if possible. */
3357 if (use_register_for_decl (parm))
3359 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
3360 mark_user_reg (parmreg);
3362 else
3364 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3365 TYPE_MODE (TREE_TYPE (parm)),
3366 TYPE_ALIGN (TREE_TYPE (parm)));
3367 parmreg
3368 = assign_stack_local (TYPE_MODE (TREE_TYPE (parm)),
3369 GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (parm))),
3370 align);
3371 set_mem_attributes (parmreg, parm, 1);
3374 /* We need to preserve an address based on VIRTUAL_STACK_VARS_REGNUM for
3375 the debug info in case it is not legitimate. */
3376 if (GET_MODE (parmreg) != GET_MODE (rtl))
3378 rtx tempreg = gen_reg_rtx (GET_MODE (rtl));
3379 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
3381 push_to_sequence2 (all->first_conversion_insn,
3382 all->last_conversion_insn);
3383 emit_move_insn (tempreg, rtl);
3384 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
3385 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg,
3386 tempreg);
3387 all->first_conversion_insn = get_insns ();
3388 all->last_conversion_insn = get_last_insn ();
3389 end_sequence ();
3391 did_conversion = true;
3393 else
3394 emit_move_insn (MEM_P (parmreg) ? copy_rtx (parmreg) : parmreg, rtl);
3396 rtl = parmreg;
3398 /* STACK_PARM is the pointer, not the parm, and PARMREG is
3399 now the parm. */
3400 data->stack_parm = NULL;
3403 set_parm_rtl (parm, rtl);
3405 /* Mark the register as eliminable if we did no conversion and it was
3406 copied from memory at a fixed offset, and the arg pointer was not
3407 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
3408 offset formed an invalid address, such memory-equivalences as we
3409 make here would screw up life analysis for it. */
3410 if (data->nominal_mode == data->passed_mode
3411 && !did_conversion
3412 && data->stack_parm != 0
3413 && MEM_P (data->stack_parm)
3414 && data->locate.offset.var == 0
3415 && reg_mentioned_p (virtual_incoming_args_rtx,
3416 XEXP (data->stack_parm, 0)))
3418 rtx_insn *linsn = get_last_insn ();
3419 rtx_insn *sinsn;
3420 rtx set;
3422 /* Mark complex types separately. */
3423 if (GET_CODE (parmreg) == CONCAT)
3425 scalar_mode submode = GET_MODE_INNER (GET_MODE (parmreg));
3426 int regnor = REGNO (XEXP (parmreg, 0));
3427 int regnoi = REGNO (XEXP (parmreg, 1));
3428 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
3429 rtx stacki = adjust_address_nv (data->stack_parm, submode,
3430 GET_MODE_SIZE (submode));
3432 /* Scan backwards for the set of the real and
3433 imaginary parts. */
3434 for (sinsn = linsn; sinsn != 0;
3435 sinsn = prev_nonnote_insn (sinsn))
3437 set = single_set (sinsn);
3438 if (set == 0)
3439 continue;
3441 if (SET_DEST (set) == regno_reg_rtx [regnoi])
3442 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
3443 else if (SET_DEST (set) == regno_reg_rtx [regnor])
3444 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
3447 else
3448 set_dst_reg_note (linsn, REG_EQUIV, equiv_stack_parm, parmreg);
3451 /* For pointer data type, suggest pointer register. */
3452 if (POINTER_TYPE_P (TREE_TYPE (parm)))
3453 mark_reg_pointer (parmreg,
3454 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
3457 /* A subroutine of assign_parms. Allocate stack space to hold the current
3458 parameter. Get it there. Perform all ABI specified conversions. */
3460 static void
3461 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
3462 struct assign_parm_data_one *data)
3464 /* Value must be stored in the stack slot STACK_PARM during function
3465 execution. */
3466 bool to_conversion = false;
3468 assign_parm_remove_parallels (data);
3470 if (data->arg.mode != data->nominal_mode)
3472 /* Conversion is required. */
3473 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
3475 emit_move_insn (tempreg, validize_mem (copy_rtx (data->entry_parm)));
3477 /* Some ABIs require scalar floating point modes to be passed
3478 in a wider scalar integer mode. We need to explicitly
3479 truncate to an integer mode of the correct precision before
3480 using a SUBREG to reinterpret as a floating point value. */
3481 if (SCALAR_FLOAT_MODE_P (data->nominal_mode)
3482 && SCALAR_INT_MODE_P (data->arg.mode)
3483 && known_lt (GET_MODE_SIZE (data->nominal_mode),
3484 GET_MODE_SIZE (data->arg.mode)))
3485 tempreg = convert_wider_int_to_float (data->nominal_mode,
3486 data->arg.mode, tempreg);
3488 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
3489 to_conversion = true;
3491 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
3492 TYPE_UNSIGNED (TREE_TYPE (parm)));
3494 if (data->stack_parm)
3496 poly_int64 offset
3497 = subreg_lowpart_offset (data->nominal_mode,
3498 GET_MODE (data->stack_parm));
3499 /* ??? This may need a big-endian conversion on sparc64. */
3500 data->stack_parm
3501 = adjust_address (data->stack_parm, data->nominal_mode, 0);
3502 if (maybe_ne (offset, 0) && MEM_OFFSET_KNOWN_P (data->stack_parm))
3503 set_mem_offset (data->stack_parm,
3504 MEM_OFFSET (data->stack_parm) + offset);
3508 if (data->entry_parm != data->stack_parm)
3510 rtx src, dest;
3512 if (data->stack_parm == 0)
3514 int align = STACK_SLOT_ALIGNMENT (data->arg.type,
3515 GET_MODE (data->entry_parm),
3516 TYPE_ALIGN (data->arg.type));
3517 if (align < (int)GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm))
3518 && ((optab_handler (movmisalign_optab,
3519 GET_MODE (data->entry_parm))
3520 != CODE_FOR_nothing)
3521 || targetm.slow_unaligned_access (GET_MODE (data->entry_parm),
3522 align)))
3523 align = GET_MODE_ALIGNMENT (GET_MODE (data->entry_parm));
3524 data->stack_parm
3525 = assign_stack_local (GET_MODE (data->entry_parm),
3526 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
3527 align);
3528 align = MEM_ALIGN (data->stack_parm);
3529 set_mem_attributes (data->stack_parm, parm, 1);
3530 set_mem_align (data->stack_parm, align);
3533 dest = validize_mem (copy_rtx (data->stack_parm));
3534 src = validize_mem (copy_rtx (data->entry_parm));
3536 if (TYPE_EMPTY_P (data->arg.type))
3537 /* Empty types don't really need to be copied. */;
3538 else if (MEM_P (src))
3540 /* Use a block move to handle potentially misaligned entry_parm. */
3541 if (!to_conversion)
3542 push_to_sequence2 (all->first_conversion_insn,
3543 all->last_conversion_insn);
3544 to_conversion = true;
3546 emit_block_move (dest, src,
3547 GEN_INT (int_size_in_bytes (data->arg.type)),
3548 BLOCK_OP_NORMAL);
3550 else
3552 if (!REG_P (src))
3553 src = force_reg (GET_MODE (src), src);
3554 emit_move_insn (dest, src);
3558 if (to_conversion)
3560 all->first_conversion_insn = get_insns ();
3561 all->last_conversion_insn = get_last_insn ();
3562 end_sequence ();
3565 set_parm_rtl (parm, data->stack_parm);
3568 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
3569 undo the frobbing that we did in assign_parms_augmented_arg_list. */
3571 static void
3572 assign_parms_unsplit_complex (struct assign_parm_data_all *all,
3573 vec<tree> fnargs)
3575 tree parm;
3576 tree orig_fnargs = all->orig_fnargs;
3577 unsigned i = 0;
3579 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm), ++i)
3581 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
3582 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
3584 rtx tmp, real, imag;
3585 scalar_mode inner = GET_MODE_INNER (DECL_MODE (parm));
3587 real = DECL_RTL (fnargs[i]);
3588 imag = DECL_RTL (fnargs[i + 1]);
3589 if (inner != GET_MODE (real))
3591 real = gen_lowpart_SUBREG (inner, real);
3592 imag = gen_lowpart_SUBREG (inner, imag);
3595 if (TREE_ADDRESSABLE (parm))
3597 rtx rmem, imem;
3598 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
3599 int align = STACK_SLOT_ALIGNMENT (TREE_TYPE (parm),
3600 DECL_MODE (parm),
3601 TYPE_ALIGN (TREE_TYPE (parm)));
3603 /* split_complex_arg put the real and imag parts in
3604 pseudos. Move them to memory. */
3605 tmp = assign_stack_local (DECL_MODE (parm), size, align);
3606 set_mem_attributes (tmp, parm, 1);
3607 rmem = adjust_address_nv (tmp, inner, 0);
3608 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
3609 push_to_sequence2 (all->first_conversion_insn,
3610 all->last_conversion_insn);
3611 emit_move_insn (rmem, real);
3612 emit_move_insn (imem, imag);
3613 all->first_conversion_insn = get_insns ();
3614 all->last_conversion_insn = get_last_insn ();
3615 end_sequence ();
3617 else
3618 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3619 set_parm_rtl (parm, tmp);
3621 real = DECL_INCOMING_RTL (fnargs[i]);
3622 imag = DECL_INCOMING_RTL (fnargs[i + 1]);
3623 if (inner != GET_MODE (real))
3625 real = gen_lowpart_SUBREG (inner, real);
3626 imag = gen_lowpart_SUBREG (inner, imag);
3628 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
3629 set_decl_incoming_rtl (parm, tmp, false);
3630 i++;
3635 /* Assign RTL expressions to the function's parameters. This may involve
3636 copying them into registers and using those registers as the DECL_RTL. */
3638 static void
3639 assign_parms (tree fndecl)
3641 struct assign_parm_data_all all;
3642 tree parm;
3643 vec<tree> fnargs;
3644 unsigned i;
3646 crtl->args.internal_arg_pointer
3647 = targetm.calls.internal_arg_pointer ();
3649 assign_parms_initialize_all (&all);
3650 fnargs = assign_parms_augmented_arg_list (&all);
3652 if (TYPE_NO_NAMED_ARGS_STDARG_P (TREE_TYPE (fndecl)))
3654 struct assign_parm_data_one data = {};
3655 assign_parms_setup_varargs (&all, &data, false);
3658 FOR_EACH_VEC_ELT (fnargs, i, parm)
3660 struct assign_parm_data_one data;
3662 /* Extract the type of PARM; adjust it according to ABI. */
3663 assign_parm_find_data_types (&all, parm, &data);
3665 /* Early out for errors and void parameters. */
3666 if (data.passed_mode == VOIDmode)
3668 SET_DECL_RTL (parm, const0_rtx);
3669 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3670 continue;
3673 /* Estimate stack alignment from parameter alignment. */
3674 if (SUPPORTS_STACK_ALIGNMENT)
3676 unsigned int align
3677 = targetm.calls.function_arg_boundary (data.arg.mode,
3678 data.arg.type);
3679 align = MINIMUM_ALIGNMENT (data.arg.type, data.arg.mode, align);
3680 if (TYPE_ALIGN (data.nominal_type) > align)
3681 align = MINIMUM_ALIGNMENT (data.nominal_type,
3682 TYPE_MODE (data.nominal_type),
3683 TYPE_ALIGN (data.nominal_type));
3684 if (crtl->stack_alignment_estimated < align)
3686 gcc_assert (!crtl->stack_realign_processed);
3687 crtl->stack_alignment_estimated = align;
3691 /* Find out where the parameter arrives in this function. */
3692 assign_parm_find_entry_rtl (&all, &data);
3694 /* Find out where stack space for this parameter might be. */
3695 if (assign_parm_is_stack_parm (&all, &data))
3697 assign_parm_find_stack_rtl (parm, &data);
3698 assign_parm_adjust_entry_rtl (&data);
3699 /* For arguments that occupy no space in the parameter
3700 passing area, have non-zero size and have address taken,
3701 force creation of a stack slot so that they have distinct
3702 address from other parameters. */
3703 if (TYPE_EMPTY_P (data.arg.type)
3704 && TREE_ADDRESSABLE (parm)
3705 && data.entry_parm == data.stack_parm
3706 && MEM_P (data.entry_parm)
3707 && int_size_in_bytes (data.arg.type))
3708 data.stack_parm = NULL_RTX;
3710 /* Record permanently how this parm was passed. */
3711 if (data.arg.pass_by_reference)
3713 rtx incoming_rtl
3714 = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data.arg.type)),
3715 data.entry_parm);
3716 set_decl_incoming_rtl (parm, incoming_rtl, true);
3718 else
3719 set_decl_incoming_rtl (parm, data.entry_parm, false);
3721 assign_parm_adjust_stack_rtl (&data);
3723 if (assign_parm_setup_block_p (&data))
3724 assign_parm_setup_block (&all, parm, &data);
3725 else if (data.arg.pass_by_reference || use_register_for_decl (parm))
3726 assign_parm_setup_reg (&all, parm, &data);
3727 else
3728 assign_parm_setup_stack (&all, parm, &data);
3730 if (cfun->stdarg && !DECL_CHAIN (parm))
3731 assign_parms_setup_varargs (&all, &data, false);
3733 /* Update info on where next arg arrives in registers. */
3734 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3737 if (targetm.calls.split_complex_arg)
3738 assign_parms_unsplit_complex (&all, fnargs);
3740 fnargs.release ();
3742 /* Output all parameter conversion instructions (possibly including calls)
3743 now that all parameters have been copied out of hard registers. */
3744 emit_insn (all.first_conversion_insn);
3746 /* Estimate reload stack alignment from scalar return mode. */
3747 if (SUPPORTS_STACK_ALIGNMENT)
3749 if (DECL_RESULT (fndecl))
3751 tree type = TREE_TYPE (DECL_RESULT (fndecl));
3752 machine_mode mode = TYPE_MODE (type);
3754 if (mode != BLKmode
3755 && mode != VOIDmode
3756 && !AGGREGATE_TYPE_P (type))
3758 unsigned int align = GET_MODE_ALIGNMENT (mode);
3759 if (crtl->stack_alignment_estimated < align)
3761 gcc_assert (!crtl->stack_realign_processed);
3762 crtl->stack_alignment_estimated = align;
3768 /* If we are receiving a struct value address as the first argument, set up
3769 the RTL for the function result. As this might require code to convert
3770 the transmitted address to Pmode, we do this here to ensure that possible
3771 preliminary conversions of the address have been emitted already. */
3772 if (all.function_result_decl)
3774 tree result = DECL_RESULT (current_function_decl);
3775 rtx addr = DECL_RTL (all.function_result_decl);
3776 rtx x;
3778 if (DECL_BY_REFERENCE (result))
3780 SET_DECL_VALUE_EXPR (result, all.function_result_decl);
3781 x = addr;
3783 else
3785 SET_DECL_VALUE_EXPR (result,
3786 build1 (INDIRECT_REF, TREE_TYPE (result),
3787 all.function_result_decl));
3788 addr = convert_memory_address (Pmode, addr);
3789 x = gen_rtx_MEM (DECL_MODE (result), addr);
3790 set_mem_attributes (x, result, 1);
3793 DECL_HAS_VALUE_EXPR_P (result) = 1;
3795 set_parm_rtl (result, x);
3798 /* We have aligned all the args, so add space for the pretend args. */
3799 crtl->args.pretend_args_size = all.pretend_args_size;
3800 all.stack_args_size.constant += all.extra_pretend_bytes;
3801 crtl->args.size = all.stack_args_size.constant;
3803 /* Adjust function incoming argument size for alignment and
3804 minimum length. */
3806 crtl->args.size = upper_bound (crtl->args.size, all.reg_parm_stack_space);
3807 crtl->args.size = aligned_upper_bound (crtl->args.size,
3808 PARM_BOUNDARY / BITS_PER_UNIT);
3810 if (ARGS_GROW_DOWNWARD)
3812 crtl->args.arg_offset_rtx
3813 = (all.stack_args_size.var == 0
3814 ? gen_int_mode (-all.stack_args_size.constant, Pmode)
3815 : expand_expr (size_diffop (all.stack_args_size.var,
3816 size_int (-all.stack_args_size.constant)),
3817 NULL_RTX, VOIDmode, EXPAND_NORMAL));
3819 else
3820 crtl->args.arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3822 /* See how many bytes, if any, of its args a function should try to pop
3823 on return. */
3825 crtl->args.pops_args = targetm.calls.return_pops_args (fndecl,
3826 TREE_TYPE (fndecl),
3827 crtl->args.size);
3829 /* For stdarg.h function, save info about
3830 regs and stack space used by the named args. */
3832 crtl->args.info = all.args_so_far_v;
3834 /* Set the rtx used for the function return value. Put this in its
3835 own variable so any optimizers that need this information don't have
3836 to include tree.h. Do this here so it gets done when an inlined
3837 function gets output. */
3839 crtl->return_rtx
3840 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3841 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3843 /* If scalar return value was computed in a pseudo-reg, or was a named
3844 return value that got dumped to the stack, copy that to the hard
3845 return register. */
3846 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3848 tree decl_result = DECL_RESULT (fndecl);
3849 rtx decl_rtl = DECL_RTL (decl_result);
3851 if (REG_P (decl_rtl)
3852 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3853 : DECL_REGISTER (decl_result))
3855 rtx real_decl_rtl;
3857 /* Unless the psABI says not to. */
3858 if (TYPE_EMPTY_P (TREE_TYPE (decl_result)))
3859 real_decl_rtl = NULL_RTX;
3860 else
3862 real_decl_rtl
3863 = targetm.calls.function_value (TREE_TYPE (decl_result),
3864 fndecl, true);
3865 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3867 /* The delay slot scheduler assumes that crtl->return_rtx
3868 holds the hard register containing the return value, not a
3869 temporary pseudo. */
3870 crtl->return_rtx = real_decl_rtl;
3875 /* Gimplify the parameter list for current_function_decl. This involves
3876 evaluating SAVE_EXPRs of variable sized parameters and generating code
3877 to implement callee-copies reference parameters. Returns a sequence of
3878 statements to add to the beginning of the function. */
3880 gimple_seq
3881 gimplify_parameters (gimple_seq *cleanup)
3883 struct assign_parm_data_all all;
3884 tree parm;
3885 gimple_seq stmts = NULL;
3886 vec<tree> fnargs;
3887 unsigned i;
3889 assign_parms_initialize_all (&all);
3890 fnargs = assign_parms_augmented_arg_list (&all);
3892 FOR_EACH_VEC_ELT (fnargs, i, parm)
3894 struct assign_parm_data_one data;
3896 /* Extract the type of PARM; adjust it according to ABI. */
3897 assign_parm_find_data_types (&all, parm, &data);
3899 /* Early out for errors and void parameters. */
3900 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3901 continue;
3903 /* Update info on where next arg arrives in registers. */
3904 targetm.calls.function_arg_advance (all.args_so_far, data.arg);
3906 /* ??? Once upon a time variable_size stuffed parameter list
3907 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3908 turned out to be less than manageable in the gimple world.
3909 Now we have to hunt them down ourselves. */
3910 gimplify_type_sizes (TREE_TYPE (parm), &stmts);
3912 if (TREE_CODE (DECL_SIZE_UNIT (parm)) != INTEGER_CST)
3914 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3915 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3918 if (data.arg.pass_by_reference)
3920 tree type = TREE_TYPE (data.arg.type);
3921 function_arg_info orig_arg (type, data.arg.named);
3922 if (reference_callee_copied (&all.args_so_far_v, orig_arg))
3924 tree local, t;
3926 /* For constant-sized objects, this is trivial; for
3927 variable-sized objects, we have to play games. */
3928 if (TREE_CODE (DECL_SIZE_UNIT (parm)) == INTEGER_CST
3929 && !(flag_stack_check == GENERIC_STACK_CHECK
3930 && compare_tree_int (DECL_SIZE_UNIT (parm),
3931 STACK_CHECK_MAX_VAR_SIZE) > 0))
3933 local = create_tmp_var (type, get_name (parm));
3934 DECL_IGNORED_P (local) = 0;
3935 /* If PARM was addressable, move that flag over
3936 to the local copy, as its address will be taken,
3937 not the PARMs. Keep the parms address taken
3938 as we'll query that flag during gimplification. */
3939 if (TREE_ADDRESSABLE (parm))
3940 TREE_ADDRESSABLE (local) = 1;
3941 if (DECL_NOT_GIMPLE_REG_P (parm))
3942 DECL_NOT_GIMPLE_REG_P (local) = 1;
3944 if (!is_gimple_reg (local)
3945 && flag_stack_reuse != SR_NONE)
3947 tree clobber = build_clobber (type);
3948 gimple *clobber_stmt;
3949 clobber_stmt = gimple_build_assign (local, clobber);
3950 gimple_seq_add_stmt (cleanup, clobber_stmt);
3953 else
3955 tree ptr_type, addr;
3957 ptr_type = build_pointer_type (type);
3958 addr = create_tmp_reg (ptr_type, get_name (parm));
3959 DECL_IGNORED_P (addr) = 0;
3960 local = build_fold_indirect_ref (addr);
3962 t = build_alloca_call_expr (DECL_SIZE_UNIT (parm),
3963 DECL_ALIGN (parm),
3964 max_int_size_in_bytes (type));
3965 /* The call has been built for a variable-sized object. */
3966 CALL_ALLOCA_FOR_VAR_P (t) = 1;
3967 t = fold_convert (ptr_type, t);
3968 t = build2 (MODIFY_EXPR, TREE_TYPE (addr), addr, t);
3969 gimplify_and_add (t, &stmts);
3972 gimplify_assign (local, parm, &stmts);
3974 SET_DECL_VALUE_EXPR (parm, local);
3975 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3980 fnargs.release ();
3982 return stmts;
3985 /* Compute the size and offset from the start of the stacked arguments for a
3986 parm passed in mode PASSED_MODE and with type TYPE.
3988 INITIAL_OFFSET_PTR points to the current offset into the stacked
3989 arguments.
3991 The starting offset and size for this parm are returned in
3992 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3993 nonzero, the offset is that of stack slot, which is returned in
3994 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3995 padding required from the initial offset ptr to the stack slot.
3997 IN_REGS is nonzero if the argument will be passed in registers. It will
3998 never be set if REG_PARM_STACK_SPACE is not defined.
4000 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
4001 for arguments which are passed in registers.
4003 FNDECL is the function in which the argument was defined.
4005 There are two types of rounding that are done. The first, controlled by
4006 TARGET_FUNCTION_ARG_BOUNDARY, forces the offset from the start of the
4007 argument list to be aligned to the specific boundary (in bits). This
4008 rounding affects the initial and starting offsets, but not the argument
4009 size.
4011 The second, controlled by TARGET_FUNCTION_ARG_PADDING and PARM_BOUNDARY,
4012 optionally rounds the size of the parm to PARM_BOUNDARY. The
4013 initial offset is not affected by this rounding, while the size always
4014 is and the starting offset may be. */
4016 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
4017 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
4018 callers pass in the total size of args so far as
4019 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
4021 void
4022 locate_and_pad_parm (machine_mode passed_mode, tree type, int in_regs,
4023 int reg_parm_stack_space, int partial,
4024 tree fndecl ATTRIBUTE_UNUSED,
4025 struct args_size *initial_offset_ptr,
4026 struct locate_and_pad_arg_data *locate)
4028 tree sizetree;
4029 pad_direction where_pad;
4030 unsigned int boundary, round_boundary;
4031 int part_size_in_regs;
4033 /* If we have found a stack parm before we reach the end of the
4034 area reserved for registers, skip that area. */
4035 if (! in_regs)
4037 if (reg_parm_stack_space > 0)
4039 if (initial_offset_ptr->var
4040 || !ordered_p (initial_offset_ptr->constant,
4041 reg_parm_stack_space))
4043 initial_offset_ptr->var
4044 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
4045 ssize_int (reg_parm_stack_space));
4046 initial_offset_ptr->constant = 0;
4048 else
4049 initial_offset_ptr->constant
4050 = ordered_max (initial_offset_ptr->constant,
4051 reg_parm_stack_space);
4055 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
4057 sizetree = (type
4058 ? arg_size_in_bytes (type)
4059 : size_int (GET_MODE_SIZE (passed_mode)));
4060 where_pad = targetm.calls.function_arg_padding (passed_mode, type);
4061 boundary = targetm.calls.function_arg_boundary (passed_mode, type);
4062 round_boundary = targetm.calls.function_arg_round_boundary (passed_mode,
4063 type);
4064 locate->where_pad = where_pad;
4066 /* Alignment can't exceed MAX_SUPPORTED_STACK_ALIGNMENT. */
4067 if (boundary > MAX_SUPPORTED_STACK_ALIGNMENT)
4068 boundary = MAX_SUPPORTED_STACK_ALIGNMENT;
4070 locate->boundary = boundary;
4072 if (SUPPORTS_STACK_ALIGNMENT)
4074 /* stack_alignment_estimated can't change after stack has been
4075 realigned. */
4076 if (crtl->stack_alignment_estimated < boundary)
4078 if (!crtl->stack_realign_processed)
4079 crtl->stack_alignment_estimated = boundary;
4080 else
4082 /* If stack is realigned and stack alignment value
4083 hasn't been finalized, it is OK not to increase
4084 stack_alignment_estimated. The bigger alignment
4085 requirement is recorded in stack_alignment_needed
4086 below. */
4087 gcc_assert (!crtl->stack_realign_finalized
4088 && crtl->stack_realign_needed);
4093 if (ARGS_GROW_DOWNWARD)
4095 locate->slot_offset.constant = -initial_offset_ptr->constant;
4096 if (initial_offset_ptr->var)
4097 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
4098 initial_offset_ptr->var);
4101 tree s2 = sizetree;
4102 if (where_pad != PAD_NONE
4103 && (!tree_fits_uhwi_p (sizetree)
4104 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4105 s2 = round_up (s2, round_boundary / BITS_PER_UNIT);
4106 SUB_PARM_SIZE (locate->slot_offset, s2);
4109 locate->slot_offset.constant += part_size_in_regs;
4111 if (!in_regs || reg_parm_stack_space > 0)
4112 pad_to_arg_alignment (&locate->slot_offset, boundary,
4113 &locate->alignment_pad);
4115 locate->size.constant = (-initial_offset_ptr->constant
4116 - locate->slot_offset.constant);
4117 if (initial_offset_ptr->var)
4118 locate->size.var = size_binop (MINUS_EXPR,
4119 size_binop (MINUS_EXPR,
4120 ssize_int (0),
4121 initial_offset_ptr->var),
4122 locate->slot_offset.var);
4124 /* Pad_below needs the pre-rounded size to know how much to pad
4125 below. */
4126 locate->offset = locate->slot_offset;
4127 if (where_pad == PAD_DOWNWARD)
4128 pad_below (&locate->offset, passed_mode, sizetree);
4131 else
4133 if (!in_regs || reg_parm_stack_space > 0)
4134 pad_to_arg_alignment (initial_offset_ptr, boundary,
4135 &locate->alignment_pad);
4136 locate->slot_offset = *initial_offset_ptr;
4138 #ifdef PUSH_ROUNDING
4139 if (passed_mode != BLKmode)
4140 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
4141 #endif
4143 /* Pad_below needs the pre-rounded size to know how much to pad below
4144 so this must be done before rounding up. */
4145 locate->offset = locate->slot_offset;
4146 if (where_pad == PAD_DOWNWARD)
4147 pad_below (&locate->offset, passed_mode, sizetree);
4149 if (where_pad != PAD_NONE
4150 && (!tree_fits_uhwi_p (sizetree)
4151 || (tree_to_uhwi (sizetree) * BITS_PER_UNIT) % round_boundary))
4152 sizetree = round_up (sizetree, round_boundary / BITS_PER_UNIT);
4154 ADD_PARM_SIZE (locate->size, sizetree);
4156 locate->size.constant -= part_size_in_regs;
4159 locate->offset.constant
4160 += targetm.calls.function_arg_offset (passed_mode, type);
4163 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
4164 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
4166 static void
4167 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
4168 struct args_size *alignment_pad)
4170 tree save_var = NULL_TREE;
4171 poly_int64 save_constant = 0;
4172 int boundary_in_bytes = boundary / BITS_PER_UNIT;
4173 poly_int64 sp_offset = STACK_POINTER_OFFSET;
4175 #ifdef SPARC_STACK_BOUNDARY_HACK
4176 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
4177 the real alignment of %sp. However, when it does this, the
4178 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
4179 if (SPARC_STACK_BOUNDARY_HACK)
4180 sp_offset = 0;
4181 #endif
4183 if (boundary > PARM_BOUNDARY)
4185 save_var = offset_ptr->var;
4186 save_constant = offset_ptr->constant;
4189 alignment_pad->var = NULL_TREE;
4190 alignment_pad->constant = 0;
4192 if (boundary > BITS_PER_UNIT)
4194 int misalign;
4195 if (offset_ptr->var
4196 || !known_misalignment (offset_ptr->constant + sp_offset,
4197 boundary_in_bytes, &misalign))
4199 tree sp_offset_tree = ssize_int (sp_offset);
4200 tree offset = size_binop (PLUS_EXPR,
4201 ARGS_SIZE_TREE (*offset_ptr),
4202 sp_offset_tree);
4203 tree rounded;
4204 if (ARGS_GROW_DOWNWARD)
4205 rounded = round_down (offset, boundary / BITS_PER_UNIT);
4206 else
4207 rounded = round_up (offset, boundary / BITS_PER_UNIT);
4209 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
4210 /* ARGS_SIZE_TREE includes constant term. */
4211 offset_ptr->constant = 0;
4212 if (boundary > PARM_BOUNDARY)
4213 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
4214 save_var);
4216 else
4218 if (ARGS_GROW_DOWNWARD)
4219 offset_ptr->constant -= misalign;
4220 else
4221 offset_ptr->constant += -misalign & (boundary_in_bytes - 1);
4223 if (boundary > PARM_BOUNDARY)
4224 alignment_pad->constant = offset_ptr->constant - save_constant;
4229 static void
4230 pad_below (struct args_size *offset_ptr, machine_mode passed_mode, tree sizetree)
4232 unsigned int align = PARM_BOUNDARY / BITS_PER_UNIT;
4233 int misalign;
4234 if (passed_mode != BLKmode
4235 && known_misalignment (GET_MODE_SIZE (passed_mode), align, &misalign))
4236 offset_ptr->constant += -misalign & (align - 1);
4237 else
4239 if (TREE_CODE (sizetree) != INTEGER_CST
4240 || (TREE_INT_CST_LOW (sizetree) & (align - 1)) != 0)
4242 /* Round the size up to multiple of PARM_BOUNDARY bits. */
4243 tree s2 = round_up (sizetree, align);
4244 /* Add it in. */
4245 ADD_PARM_SIZE (*offset_ptr, s2);
4246 SUB_PARM_SIZE (*offset_ptr, sizetree);
4252 /* True if register REGNO was alive at a place where `setjmp' was
4253 called and was set more than once or is an argument. Such regs may
4254 be clobbered by `longjmp'. */
4256 static bool
4257 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
4259 /* There appear to be cases where some local vars never reach the
4260 backend but have bogus regnos. */
4261 if (regno >= max_reg_num ())
4262 return false;
4264 return ((REG_N_SETS (regno) > 1
4265 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4266 regno))
4267 && REGNO_REG_SET_P (setjmp_crosses, regno));
4270 /* Walk the tree of blocks describing the binding levels within a
4271 function and warn about variables the might be killed by setjmp or
4272 vfork. This is done after calling flow_analysis before register
4273 allocation since that will clobber the pseudo-regs to hard
4274 regs. */
4276 static void
4277 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
4279 tree decl, sub;
4281 for (decl = BLOCK_VARS (block); decl; decl = DECL_CHAIN (decl))
4283 if (VAR_P (decl)
4284 && DECL_RTL_SET_P (decl)
4285 && REG_P (DECL_RTL (decl))
4286 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4287 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
4288 " %<longjmp%> or %<vfork%>", decl);
4291 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
4292 setjmp_vars_warning (setjmp_crosses, sub);
4295 /* Do the appropriate part of setjmp_vars_warning
4296 but for arguments instead of local variables. */
4298 static void
4299 setjmp_args_warning (bitmap setjmp_crosses)
4301 tree decl;
4302 for (decl = DECL_ARGUMENTS (current_function_decl);
4303 decl; decl = DECL_CHAIN (decl))
4304 if (DECL_RTL (decl) != 0
4305 && REG_P (DECL_RTL (decl))
4306 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
4307 warning (OPT_Wclobbered,
4308 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
4309 decl);
4312 /* Generate warning messages for variables live across setjmp. */
4314 void
4315 generate_setjmp_warnings (void)
4317 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
4319 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS
4320 || bitmap_empty_p (setjmp_crosses))
4321 return;
4323 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
4324 setjmp_args_warning (setjmp_crosses);
4328 /* Reverse the order of elements in the fragment chain T of blocks,
4329 and return the new head of the chain (old last element).
4330 In addition to that clear BLOCK_SAME_RANGE flags when needed
4331 and adjust BLOCK_SUPERCONTEXT from the super fragment to
4332 its super fragment origin. */
4334 static tree
4335 block_fragments_nreverse (tree t)
4337 tree prev = 0, block, next, prev_super = 0;
4338 tree super = BLOCK_SUPERCONTEXT (t);
4339 if (BLOCK_FRAGMENT_ORIGIN (super))
4340 super = BLOCK_FRAGMENT_ORIGIN (super);
4341 for (block = t; block; block = next)
4343 next = BLOCK_FRAGMENT_CHAIN (block);
4344 BLOCK_FRAGMENT_CHAIN (block) = prev;
4345 if ((prev && !BLOCK_SAME_RANGE (prev))
4346 || (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (block))
4347 != prev_super))
4348 BLOCK_SAME_RANGE (block) = 0;
4349 prev_super = BLOCK_SUPERCONTEXT (block);
4350 BLOCK_SUPERCONTEXT (block) = super;
4351 prev = block;
4353 t = BLOCK_FRAGMENT_ORIGIN (t);
4354 if (BLOCK_FRAGMENT_CHAIN (BLOCK_SUPERCONTEXT (t))
4355 != prev_super)
4356 BLOCK_SAME_RANGE (t) = 0;
4357 BLOCK_SUPERCONTEXT (t) = super;
4358 return prev;
4361 /* Reverse the order of elements in the chain T of blocks,
4362 and return the new head of the chain (old last element).
4363 Also do the same on subblocks and reverse the order of elements
4364 in BLOCK_FRAGMENT_CHAIN as well. */
4366 static tree
4367 blocks_nreverse_all (tree t)
4369 tree prev = 0, block, next;
4370 for (block = t; block; block = next)
4372 next = BLOCK_CHAIN (block);
4373 BLOCK_CHAIN (block) = prev;
4374 if (BLOCK_FRAGMENT_CHAIN (block)
4375 && BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE)
4377 BLOCK_FRAGMENT_CHAIN (block)
4378 = block_fragments_nreverse (BLOCK_FRAGMENT_CHAIN (block));
4379 if (!BLOCK_SAME_RANGE (BLOCK_FRAGMENT_CHAIN (block)))
4380 BLOCK_SAME_RANGE (block) = 0;
4382 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4383 prev = block;
4385 return prev;
4389 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
4390 and create duplicate blocks. */
4391 /* ??? Need an option to either create block fragments or to create
4392 abstract origin duplicates of a source block. It really depends
4393 on what optimization has been performed. */
4395 void
4396 reorder_blocks (void)
4398 tree block = DECL_INITIAL (current_function_decl);
4400 if (block == NULL_TREE)
4401 return;
4403 auto_vec<tree, 10> block_stack;
4405 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
4406 clear_block_marks (block);
4408 /* Prune the old trees away, so that they don't get in the way. */
4409 BLOCK_SUBBLOCKS (block) = NULL_TREE;
4410 BLOCK_CHAIN (block) = NULL_TREE;
4412 /* Recreate the block tree from the note nesting. */
4413 reorder_blocks_1 (get_insns (), block, &block_stack);
4414 BLOCK_SUBBLOCKS (block) = blocks_nreverse_all (BLOCK_SUBBLOCKS (block));
4417 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
4419 void
4420 clear_block_marks (tree block)
4422 while (block)
4424 TREE_ASM_WRITTEN (block) = 0;
4425 clear_block_marks (BLOCK_SUBBLOCKS (block));
4426 block = BLOCK_CHAIN (block);
4430 static void
4431 reorder_blocks_1 (rtx_insn *insns, tree current_block,
4432 vec<tree> *p_block_stack)
4434 rtx_insn *insn;
4435 tree prev_beg = NULL_TREE, prev_end = NULL_TREE;
4437 for (insn = insns; insn; insn = NEXT_INSN (insn))
4439 if (NOTE_P (insn))
4441 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
4443 tree block = NOTE_BLOCK (insn);
4444 tree origin;
4446 gcc_assert (BLOCK_FRAGMENT_ORIGIN (block) == NULL_TREE);
4447 origin = block;
4449 if (prev_end)
4450 BLOCK_SAME_RANGE (prev_end) = 0;
4451 prev_end = NULL_TREE;
4453 /* If we have seen this block before, that means it now
4454 spans multiple address regions. Create a new fragment. */
4455 if (TREE_ASM_WRITTEN (block))
4457 tree new_block = copy_node (block);
4459 BLOCK_SAME_RANGE (new_block) = 0;
4460 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
4461 BLOCK_FRAGMENT_CHAIN (new_block)
4462 = BLOCK_FRAGMENT_CHAIN (origin);
4463 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
4465 NOTE_BLOCK (insn) = new_block;
4466 block = new_block;
4469 if (prev_beg == current_block && prev_beg)
4470 BLOCK_SAME_RANGE (block) = 1;
4472 prev_beg = origin;
4474 BLOCK_SUBBLOCKS (block) = 0;
4475 TREE_ASM_WRITTEN (block) = 1;
4476 /* When there's only one block for the entire function,
4477 current_block == block and we mustn't do this, it
4478 will cause infinite recursion. */
4479 if (block != current_block)
4481 tree super;
4482 if (block != origin)
4483 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block
4484 || BLOCK_FRAGMENT_ORIGIN (BLOCK_SUPERCONTEXT
4485 (origin))
4486 == current_block);
4487 if (p_block_stack->is_empty ())
4488 super = current_block;
4489 else
4491 super = p_block_stack->last ();
4492 gcc_assert (super == current_block
4493 || BLOCK_FRAGMENT_ORIGIN (super)
4494 == current_block);
4496 BLOCK_SUPERCONTEXT (block) = super;
4497 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
4498 BLOCK_SUBBLOCKS (current_block) = block;
4499 current_block = origin;
4501 p_block_stack->safe_push (block);
4503 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
4505 NOTE_BLOCK (insn) = p_block_stack->pop ();
4506 current_block = BLOCK_SUPERCONTEXT (current_block);
4507 if (BLOCK_FRAGMENT_ORIGIN (current_block))
4508 current_block = BLOCK_FRAGMENT_ORIGIN (current_block);
4509 prev_beg = NULL_TREE;
4510 prev_end = BLOCK_SAME_RANGE (NOTE_BLOCK (insn))
4511 ? NOTE_BLOCK (insn) : NULL_TREE;
4514 else
4516 prev_beg = NULL_TREE;
4517 if (prev_end)
4518 BLOCK_SAME_RANGE (prev_end) = 0;
4519 prev_end = NULL_TREE;
4524 /* Reverse the order of elements in the chain T of blocks,
4525 and return the new head of the chain (old last element). */
4527 tree
4528 blocks_nreverse (tree t)
4530 tree prev = 0, block, next;
4531 for (block = t; block; block = next)
4533 next = BLOCK_CHAIN (block);
4534 BLOCK_CHAIN (block) = prev;
4535 prev = block;
4537 return prev;
4540 /* Concatenate two chains of blocks (chained through BLOCK_CHAIN)
4541 by modifying the last node in chain 1 to point to chain 2. */
4543 tree
4544 block_chainon (tree op1, tree op2)
4546 tree t1;
4548 if (!op1)
4549 return op2;
4550 if (!op2)
4551 return op1;
4553 for (t1 = op1; BLOCK_CHAIN (t1); t1 = BLOCK_CHAIN (t1))
4554 continue;
4555 BLOCK_CHAIN (t1) = op2;
4557 #ifdef ENABLE_TREE_CHECKING
4559 tree t2;
4560 for (t2 = op2; t2; t2 = BLOCK_CHAIN (t2))
4561 gcc_assert (t2 != t1);
4563 #endif
4565 return op1;
4568 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
4569 non-NULL, list them all into VECTOR, in a depth-first preorder
4570 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
4571 blocks. */
4573 static int
4574 all_blocks (tree block, tree *vector)
4576 int n_blocks = 0;
4578 while (block)
4580 TREE_ASM_WRITTEN (block) = 0;
4582 /* Record this block. */
4583 if (vector)
4584 vector[n_blocks] = block;
4586 ++n_blocks;
4588 /* Record the subblocks, and their subblocks... */
4589 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
4590 vector ? vector + n_blocks : 0);
4591 block = BLOCK_CHAIN (block);
4594 return n_blocks;
4597 /* Return a vector containing all the blocks rooted at BLOCK. The
4598 number of elements in the vector is stored in N_BLOCKS_P. The
4599 vector is dynamically allocated; it is the caller's responsibility
4600 to call `free' on the pointer returned. */
4602 static tree *
4603 get_block_vector (tree block, int *n_blocks_p)
4605 tree *block_vector;
4607 *n_blocks_p = all_blocks (block, NULL);
4608 block_vector = XNEWVEC (tree, *n_blocks_p);
4609 all_blocks (block, block_vector);
4611 return block_vector;
4614 static GTY(()) int next_block_index = 2;
4616 /* Set BLOCK_NUMBER for all the blocks in FN. */
4618 void
4619 number_blocks (tree fn)
4621 int i;
4622 int n_blocks;
4623 tree *block_vector;
4625 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
4627 /* The top-level BLOCK isn't numbered at all. */
4628 for (i = 1; i < n_blocks; ++i)
4629 /* We number the blocks from two. */
4630 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
4632 free (block_vector);
4634 return;
4637 /* If VAR is present in a subblock of BLOCK, return the subblock. */
4639 DEBUG_FUNCTION tree
4640 debug_find_var_in_block_tree (tree var, tree block)
4642 tree t;
4644 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
4645 if (t == var)
4646 return block;
4648 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
4650 tree ret = debug_find_var_in_block_tree (var, t);
4651 if (ret)
4652 return ret;
4655 return NULL_TREE;
4658 /* Keep track of whether we're in a dummy function context. If we are,
4659 we don't want to invoke the set_current_function hook, because we'll
4660 get into trouble if the hook calls target_reinit () recursively or
4661 when the initial initialization is not yet complete. */
4663 static bool in_dummy_function;
4665 /* Invoke the target hook when setting cfun. Update the optimization options
4666 if the function uses different options than the default. */
4668 static void
4669 invoke_set_current_function_hook (tree fndecl)
4671 if (!in_dummy_function)
4673 tree opts = ((fndecl)
4674 ? DECL_FUNCTION_SPECIFIC_OPTIMIZATION (fndecl)
4675 : optimization_default_node);
4677 if (!opts)
4678 opts = optimization_default_node;
4680 /* Change optimization options if needed. */
4681 if (optimization_current_node != opts)
4683 optimization_current_node = opts;
4684 cl_optimization_restore (&global_options, &global_options_set,
4685 TREE_OPTIMIZATION (opts));
4688 targetm.set_current_function (fndecl);
4689 this_fn_optabs = this_target_optabs;
4691 /* Initialize global alignment variables after op. */
4692 parse_alignment_opts ();
4694 if (opts != optimization_default_node)
4696 init_tree_optimization_optabs (opts);
4697 if (TREE_OPTIMIZATION_OPTABS (opts))
4698 this_fn_optabs = (struct target_optabs *)
4699 TREE_OPTIMIZATION_OPTABS (opts);
4704 /* cfun should never be set directly; use this function. */
4706 void
4707 set_cfun (struct function *new_cfun, bool force)
4709 if (cfun != new_cfun || force)
4711 cfun = new_cfun;
4712 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
4713 redirect_edge_var_map_empty ();
4717 /* Initialized with NOGC, making this poisonous to the garbage collector. */
4719 static vec<function *> cfun_stack;
4721 /* Push the current cfun onto the stack, and set cfun to new_cfun. Also set
4722 current_function_decl accordingly. */
4724 void
4725 push_cfun (struct function *new_cfun)
4727 gcc_assert ((!cfun && !current_function_decl)
4728 || (cfun && current_function_decl == cfun->decl));
4729 cfun_stack.safe_push (cfun);
4730 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4731 set_cfun (new_cfun);
4734 /* Pop cfun from the stack. Also set current_function_decl accordingly. */
4736 void
4737 pop_cfun (void)
4739 struct function *new_cfun = cfun_stack.pop ();
4740 /* When in_dummy_function, we do have a cfun but current_function_decl is
4741 NULL. We also allow pushing NULL cfun and subsequently changing
4742 current_function_decl to something else and have both restored by
4743 pop_cfun. */
4744 gcc_checking_assert (in_dummy_function
4745 || !cfun
4746 || current_function_decl == cfun->decl);
4747 set_cfun (new_cfun);
4748 current_function_decl = new_cfun ? new_cfun->decl : NULL_TREE;
4751 /* Return value of funcdef and increase it. */
4753 get_next_funcdef_no (void)
4755 return funcdef_no++;
4758 /* Return value of funcdef. */
4760 get_last_funcdef_no (void)
4762 return funcdef_no;
4765 /* Allocate and initialize the stack usage info data structure for the
4766 current function. */
4767 static void
4768 allocate_stack_usage_info (void)
4770 gcc_assert (!cfun->su);
4771 cfun->su = ggc_cleared_alloc<stack_usage> ();
4772 cfun->su->static_stack_size = -1;
4775 /* Allocate a function structure for FNDECL and set its contents
4776 to the defaults. Set cfun to the newly-allocated object.
4777 Some of the helper functions invoked during initialization assume
4778 that cfun has already been set. Therefore, assign the new object
4779 directly into cfun and invoke the back end hook explicitly at the
4780 very end, rather than initializing a temporary and calling set_cfun
4781 on it.
4783 ABSTRACT_P is true if this is a function that will never be seen by
4784 the middle-end. Such functions are front-end concepts (like C++
4785 function templates) that do not correspond directly to functions
4786 placed in object files. */
4788 void
4789 allocate_struct_function (tree fndecl, bool abstract_p)
4791 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
4793 cfun = ggc_cleared_alloc<function> ();
4795 init_eh_for_function ();
4797 if (init_machine_status)
4798 cfun->machine = (*init_machine_status) ();
4800 #ifdef OVERRIDE_ABI_FORMAT
4801 OVERRIDE_ABI_FORMAT (fndecl);
4802 #endif
4804 if (fndecl != NULL_TREE)
4806 DECL_STRUCT_FUNCTION (fndecl) = cfun;
4807 cfun->decl = fndecl;
4808 current_function_funcdef_no = get_next_funcdef_no ();
4811 invoke_set_current_function_hook (fndecl);
4813 if (fndecl != NULL_TREE)
4815 tree result = DECL_RESULT (fndecl);
4817 if (!abstract_p)
4819 /* Now that we have activated any function-specific attributes
4820 that might affect layout, particularly vector modes, relayout
4821 each of the parameters and the result. */
4822 relayout_decl (result);
4823 for (tree parm = DECL_ARGUMENTS (fndecl); parm;
4824 parm = DECL_CHAIN (parm))
4825 relayout_decl (parm);
4827 /* Similarly relayout the function decl. */
4828 targetm.target_option.relayout_function (fndecl);
4831 if (!abstract_p && aggregate_value_p (result, fndecl))
4833 #ifdef PCC_STATIC_STRUCT_RETURN
4834 cfun->returns_pcc_struct = 1;
4835 #endif
4836 cfun->returns_struct = 1;
4839 cfun->stdarg = stdarg_p (fntype);
4841 /* Assume all registers in stdarg functions need to be saved. */
4842 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
4843 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
4845 /* ??? This could be set on a per-function basis by the front-end
4846 but is this worth the hassle? */
4847 cfun->can_throw_non_call_exceptions = flag_non_call_exceptions;
4848 cfun->can_delete_dead_exceptions = flag_delete_dead_exceptions;
4850 if (!profile_flag && !flag_instrument_function_entry_exit)
4851 DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (fndecl) = 1;
4853 if (flag_callgraph_info)
4854 allocate_stack_usage_info ();
4857 /* Don't enable begin stmt markers if var-tracking at assignments is
4858 disabled. The markers make little sense without the variable
4859 binding annotations among them. */
4860 cfun->debug_nonbind_markers = lang_hooks.emits_begin_stmt
4861 && MAY_HAVE_DEBUG_MARKER_STMTS;
4864 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
4865 instead of just setting it. */
4867 void
4868 push_struct_function (tree fndecl, bool abstract_p)
4870 /* When in_dummy_function we might be in the middle of a pop_cfun and
4871 current_function_decl and cfun may not match. */
4872 gcc_assert (in_dummy_function
4873 || (!cfun && !current_function_decl)
4874 || (cfun && current_function_decl == cfun->decl));
4875 cfun_stack.safe_push (cfun);
4876 current_function_decl = fndecl;
4877 allocate_struct_function (fndecl, abstract_p);
4880 /* Reset crtl and other non-struct-function variables to defaults as
4881 appropriate for emitting rtl at the start of a function. */
4883 static void
4884 prepare_function_start (void)
4886 gcc_assert (!get_last_insn ());
4888 if (in_dummy_function)
4889 crtl->abi = &default_function_abi;
4890 else
4891 crtl->abi = &fndecl_abi (cfun->decl).base_abi ();
4893 init_temp_slots ();
4894 init_emit ();
4895 init_varasm_status ();
4896 init_expr ();
4897 default_rtl_profile ();
4899 if (flag_stack_usage_info && !flag_callgraph_info)
4900 allocate_stack_usage_info ();
4902 cse_not_expected = ! optimize;
4904 /* Caller save not needed yet. */
4905 caller_save_needed = 0;
4907 /* We haven't done register allocation yet. */
4908 reg_renumber = 0;
4910 /* Indicate that we have not instantiated virtual registers yet. */
4911 virtuals_instantiated = 0;
4913 /* Indicate that we want CONCATs now. */
4914 generating_concat_p = 1;
4916 /* Indicate we have no need of a frame pointer yet. */
4917 frame_pointer_needed = 0;
4920 void
4921 push_dummy_function (bool with_decl)
4923 tree fn_decl, fn_type, fn_result_decl;
4925 gcc_assert (!in_dummy_function);
4926 in_dummy_function = true;
4928 if (with_decl)
4930 fn_type = build_function_type_list (void_type_node, NULL_TREE);
4931 fn_decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL, NULL_TREE,
4932 fn_type);
4933 fn_result_decl = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
4934 NULL_TREE, void_type_node);
4935 DECL_RESULT (fn_decl) = fn_result_decl;
4936 DECL_ARTIFICIAL (fn_decl) = 1;
4937 tree fn_name = get_identifier (" ");
4938 SET_DECL_ASSEMBLER_NAME (fn_decl, fn_name);
4940 else
4941 fn_decl = NULL_TREE;
4943 push_struct_function (fn_decl);
4946 /* Initialize the rtl expansion mechanism so that we can do simple things
4947 like generate sequences. This is used to provide a context during global
4948 initialization of some passes. You must call expand_dummy_function_end
4949 to exit this context. */
4951 void
4952 init_dummy_function_start (void)
4954 push_dummy_function (false);
4955 prepare_function_start ();
4958 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
4959 and initialize static variables for generating RTL for the statements
4960 of the function. */
4962 void
4963 init_function_start (tree subr)
4965 /* Initialize backend, if needed. */
4966 initialize_rtl ();
4968 prepare_function_start ();
4969 decide_function_section (subr);
4971 /* Warn if this value is an aggregate type,
4972 regardless of which calling convention we are using for it. */
4973 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4974 warning_at (DECL_SOURCE_LOCATION (DECL_RESULT (subr)),
4975 OPT_Waggregate_return, "function returns an aggregate");
4978 /* Expand code to verify the stack_protect_guard. This is invoked at
4979 the end of a function to be protected. */
4981 void
4982 stack_protect_epilogue (void)
4984 tree guard_decl = crtl->stack_protect_guard_decl;
4985 rtx_code_label *label = gen_label_rtx ();
4986 rtx x, y;
4987 rtx_insn *seq = NULL;
4989 x = expand_normal (crtl->stack_protect_guard);
4991 if (targetm.have_stack_protect_combined_test () && guard_decl)
4993 gcc_assert (DECL_P (guard_decl));
4994 y = DECL_RTL (guard_decl);
4995 /* Allow the target to compute address of Y and compare it with X without
4996 leaking Y into a register. This combined address + compare pattern
4997 allows the target to prevent spilling of any intermediate results by
4998 splitting it after register allocator. */
4999 seq = targetm.gen_stack_protect_combined_test (x, y, label);
5001 else
5003 if (guard_decl)
5004 y = expand_normal (guard_decl);
5005 else
5006 y = const0_rtx;
5008 /* Allow the target to compare Y with X without leaking either into
5009 a register. */
5010 if (targetm.have_stack_protect_test ())
5011 seq = targetm.gen_stack_protect_test (x, y, label);
5014 if (seq)
5015 emit_insn (seq);
5016 else
5017 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
5019 /* The noreturn predictor has been moved to the tree level. The rtl-level
5020 predictors estimate this branch about 20%, which isn't enough to get
5021 things moved out of line. Since this is the only extant case of adding
5022 a noreturn function at the rtl level, it doesn't seem worth doing ought
5023 except adding the prediction by hand. */
5024 rtx_insn *tmp = get_last_insn ();
5025 if (JUMP_P (tmp))
5026 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
5028 expand_call (targetm.stack_protect_fail (), NULL_RTX, /*ignore=*/true);
5029 free_temp_slots ();
5030 emit_label (label);
5033 /* Start the RTL for a new function, and set variables used for
5034 emitting RTL.
5035 SUBR is the FUNCTION_DECL node.
5036 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
5037 the function's parameters, which must be run at any return statement. */
5039 bool currently_expanding_function_start;
5040 void
5041 expand_function_start (tree subr)
5043 currently_expanding_function_start = true;
5045 /* Make sure volatile mem refs aren't considered
5046 valid operands of arithmetic insns. */
5047 init_recog_no_volatile ();
5049 crtl->profile
5050 = (profile_flag
5051 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
5053 crtl->limit_stack
5054 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
5056 /* Make the label for return statements to jump to. Do not special
5057 case machines with special return instructions -- they will be
5058 handled later during jump, ifcvt, or epilogue creation. */
5059 return_label = gen_label_rtx ();
5061 /* Initialize rtx used to return the value. */
5062 /* Do this before assign_parms so that we copy the struct value address
5063 before any library calls that assign parms might generate. */
5065 /* Decide whether to return the value in memory or in a register. */
5066 tree res = DECL_RESULT (subr);
5067 if (aggregate_value_p (res, subr))
5069 /* Returning something that won't go in a register. */
5070 rtx value_address = 0;
5072 #ifdef PCC_STATIC_STRUCT_RETURN
5073 if (cfun->returns_pcc_struct)
5075 int size = int_size_in_bytes (TREE_TYPE (res));
5076 value_address = assemble_static_space (size);
5078 else
5079 #endif
5081 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
5082 /* Expect to be passed the address of a place to store the value.
5083 If it is passed as an argument, assign_parms will take care of
5084 it. */
5085 if (sv)
5087 value_address = gen_reg_rtx (Pmode);
5088 emit_move_insn (value_address, sv);
5091 if (value_address)
5093 rtx x = value_address;
5094 if (!DECL_BY_REFERENCE (res))
5096 x = gen_rtx_MEM (DECL_MODE (res), x);
5097 set_mem_attributes (x, res, 1);
5099 set_parm_rtl (res, x);
5102 else if (DECL_MODE (res) == VOIDmode)
5103 /* If return mode is void, this decl rtl should not be used. */
5104 set_parm_rtl (res, NULL_RTX);
5105 else
5107 /* Compute the return values into a pseudo reg, which we will copy
5108 into the true return register after the cleanups are done. */
5109 tree return_type = TREE_TYPE (res);
5111 /* If we may coalesce this result, make sure it has the expected mode
5112 in case it was promoted. But we need not bother about BLKmode. */
5113 machine_mode promoted_mode
5114 = flag_tree_coalesce_vars && is_gimple_reg (res)
5115 ? promote_ssa_mode (ssa_default_def (cfun, res), NULL)
5116 : BLKmode;
5118 if (promoted_mode != BLKmode)
5119 set_parm_rtl (res, gen_reg_rtx (promoted_mode));
5120 else if (TYPE_MODE (return_type) != BLKmode
5121 && targetm.calls.return_in_msb (return_type))
5122 /* expand_function_end will insert the appropriate padding in
5123 this case. Use the return value's natural (unpadded) mode
5124 within the function proper. */
5125 set_parm_rtl (res, gen_reg_rtx (TYPE_MODE (return_type)));
5126 else
5128 /* In order to figure out what mode to use for the pseudo, we
5129 figure out what the mode of the eventual return register will
5130 actually be, and use that. */
5131 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
5133 /* Structures that are returned in registers are not
5134 aggregate_value_p, so we may see a PARALLEL or a REG. */
5135 if (REG_P (hard_reg))
5136 set_parm_rtl (res, gen_reg_rtx (GET_MODE (hard_reg)));
5137 else
5139 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
5140 set_parm_rtl (res, gen_group_rtx (hard_reg));
5144 /* Set DECL_REGISTER flag so that expand_function_end will copy the
5145 result to the real return register(s). */
5146 DECL_REGISTER (res) = 1;
5149 /* Initialize rtx for parameters and local variables.
5150 In some cases this requires emitting insns. */
5151 assign_parms (subr);
5153 /* If function gets a static chain arg, store it. */
5154 if (cfun->static_chain_decl)
5156 tree parm = cfun->static_chain_decl;
5157 rtx local, chain;
5158 rtx_insn *insn;
5159 int unsignedp;
5161 local = gen_reg_rtx (promote_decl_mode (parm, &unsignedp));
5162 chain = targetm.calls.static_chain (current_function_decl, true);
5164 set_decl_incoming_rtl (parm, chain, false);
5165 set_parm_rtl (parm, local);
5166 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
5168 if (GET_MODE (local) != GET_MODE (chain))
5170 convert_move (local, chain, unsignedp);
5171 insn = get_last_insn ();
5173 else
5174 insn = emit_move_insn (local, chain);
5176 /* Mark the register as eliminable, similar to parameters. */
5177 if (MEM_P (chain)
5178 && reg_mentioned_p (arg_pointer_rtx, XEXP (chain, 0)))
5179 set_dst_reg_note (insn, REG_EQUIV, chain, local);
5181 /* If we aren't optimizing, save the static chain onto the stack. */
5182 if (!optimize)
5184 tree saved_static_chain_decl
5185 = build_decl (DECL_SOURCE_LOCATION (parm), VAR_DECL,
5186 DECL_NAME (parm), TREE_TYPE (parm));
5187 rtx saved_static_chain_rtx
5188 = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5189 SET_DECL_RTL (saved_static_chain_decl, saved_static_chain_rtx);
5190 emit_move_insn (saved_static_chain_rtx, chain);
5191 SET_DECL_VALUE_EXPR (parm, saved_static_chain_decl);
5192 DECL_HAS_VALUE_EXPR_P (parm) = 1;
5196 /* The following was moved from init_function_start.
5197 The move was supposed to make sdb output more accurate. */
5198 /* Indicate the beginning of the function body,
5199 as opposed to parm setup. */
5200 emit_note (NOTE_INSN_FUNCTION_BEG);
5202 gcc_assert (NOTE_P (get_last_insn ()));
5204 parm_birth_insn = get_last_insn ();
5206 /* If the function receives a non-local goto, then store the
5207 bits we need to restore the frame pointer. */
5208 if (cfun->nonlocal_goto_save_area)
5210 tree t_save;
5211 rtx r_save;
5213 tree var = TREE_OPERAND (cfun->nonlocal_goto_save_area, 0);
5214 gcc_assert (DECL_RTL_SET_P (var));
5216 t_save = build4 (ARRAY_REF,
5217 TREE_TYPE (TREE_TYPE (cfun->nonlocal_goto_save_area)),
5218 cfun->nonlocal_goto_save_area,
5219 integer_zero_node, NULL_TREE, NULL_TREE);
5220 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
5221 gcc_assert (GET_MODE (r_save) == Pmode);
5223 emit_move_insn (r_save, hard_frame_pointer_rtx);
5224 update_nonlocal_goto_save_area ();
5227 if (crtl->profile)
5229 #ifdef PROFILE_HOOK
5230 PROFILE_HOOK (current_function_funcdef_no);
5231 #endif
5234 /* If we are doing generic stack checking, the probe should go here. */
5235 if (flag_stack_check == GENERIC_STACK_CHECK)
5236 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
5238 currently_expanding_function_start = false;
5241 void
5242 pop_dummy_function (void)
5244 pop_cfun ();
5245 in_dummy_function = false;
5248 /* Undo the effects of init_dummy_function_start. */
5249 void
5250 expand_dummy_function_end (void)
5252 gcc_assert (in_dummy_function);
5254 /* End any sequences that failed to be closed due to syntax errors. */
5255 while (in_sequence_p ())
5256 end_sequence ();
5258 /* Outside function body, can't compute type's actual size
5259 until next function's body starts. */
5261 free_after_parsing (cfun);
5262 free_after_compilation (cfun);
5263 pop_dummy_function ();
5266 /* Helper for diddle_return_value. */
5268 void
5269 diddle_return_value_1 (void (*doit) (rtx, void *), void *arg, rtx outgoing)
5271 if (! outgoing)
5272 return;
5274 if (REG_P (outgoing))
5275 (*doit) (outgoing, arg);
5276 else if (GET_CODE (outgoing) == PARALLEL)
5278 int i;
5280 for (i = 0; i < XVECLEN (outgoing, 0); i++)
5282 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
5284 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
5285 (*doit) (x, arg);
5290 /* Call DOIT for each hard register used as a return value from
5291 the current function. */
5293 void
5294 diddle_return_value (void (*doit) (rtx, void *), void *arg)
5296 diddle_return_value_1 (doit, arg, crtl->return_rtx);
5299 static void
5300 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5302 emit_clobber (reg);
5305 void
5306 clobber_return_register (void)
5308 diddle_return_value (do_clobber_return_reg, NULL);
5310 /* In case we do use pseudo to return value, clobber it too. */
5311 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5313 tree decl_result = DECL_RESULT (current_function_decl);
5314 rtx decl_rtl = DECL_RTL (decl_result);
5315 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
5317 do_clobber_return_reg (decl_rtl, NULL);
5322 static void
5323 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
5325 emit_use (reg);
5328 static void
5329 use_return_register (void)
5331 diddle_return_value (do_use_return_reg, NULL);
5334 /* Generate RTL for the end of the current function. */
5336 void
5337 expand_function_end (void)
5339 /* If arg_pointer_save_area was referenced only from a nested
5340 function, we will not have initialized it yet. Do that now. */
5341 if (arg_pointer_save_area && ! crtl->arg_pointer_save_area_init)
5342 get_arg_pointer_save_area ();
5344 /* If we are doing generic stack checking and this function makes calls,
5345 do a stack probe at the start of the function to ensure we have enough
5346 space for another stack frame. */
5347 if (flag_stack_check == GENERIC_STACK_CHECK)
5349 rtx_insn *insn, *seq;
5351 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5352 if (CALL_P (insn))
5354 rtx max_frame_size = GEN_INT (STACK_CHECK_MAX_FRAME_SIZE);
5355 start_sequence ();
5356 if (STACK_CHECK_MOVING_SP)
5357 anti_adjust_stack_and_probe (max_frame_size, true);
5358 else
5359 probe_stack_range (STACK_OLD_CHECK_PROTECT, max_frame_size);
5360 seq = get_insns ();
5361 end_sequence ();
5362 set_insn_locations (seq, prologue_location);
5363 emit_insn_before (seq, stack_check_probe_note);
5364 break;
5368 /* End any sequences that failed to be closed due to syntax errors. */
5369 while (in_sequence_p ())
5370 end_sequence ();
5372 clear_pending_stack_adjust ();
5373 do_pending_stack_adjust ();
5375 /* Output a linenumber for the end of the function.
5376 SDB depended on this. */
5377 set_curr_insn_location (input_location);
5379 /* Before the return label (if any), clobber the return
5380 registers so that they are not propagated live to the rest of
5381 the function. This can only happen with functions that drop
5382 through; if there had been a return statement, there would
5383 have either been a return rtx, or a jump to the return label.
5385 We delay actual code generation after the current_function_value_rtx
5386 is computed. */
5387 rtx_insn *clobber_after = get_last_insn ();
5389 /* Output the label for the actual return from the function. */
5390 emit_label (return_label);
5392 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ)
5394 /* Let except.cc know where it should emit the call to unregister
5395 the function context for sjlj exceptions. */
5396 if (flag_exceptions)
5397 sjlj_emit_function_exit_after (get_last_insn ());
5400 /* If this is an implementation of throw, do what's necessary to
5401 communicate between __builtin_eh_return and the epilogue. */
5402 expand_eh_return ();
5404 /* If stack protection is enabled for this function, check the guard. */
5405 if (crtl->stack_protect_guard
5406 && targetm.stack_protect_runtime_enabled_p ()
5407 && naked_return_label == NULL_RTX)
5408 stack_protect_epilogue ();
5410 /* If scalar return value was computed in a pseudo-reg, or was a named
5411 return value that got dumped to the stack, copy that to the hard
5412 return register. */
5413 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
5415 tree decl_result = DECL_RESULT (current_function_decl);
5416 rtx decl_rtl = DECL_RTL (decl_result);
5418 if ((REG_P (decl_rtl)
5419 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
5420 : DECL_REGISTER (decl_result))
5421 /* Unless the psABI says not to. */
5422 && !TYPE_EMPTY_P (TREE_TYPE (decl_result)))
5424 rtx real_decl_rtl = crtl->return_rtx;
5425 complex_mode cmode;
5427 /* This should be set in assign_parms. */
5428 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
5430 /* If this is a BLKmode structure being returned in registers,
5431 then use the mode computed in expand_return. Note that if
5432 decl_rtl is memory, then its mode may have been changed,
5433 but that crtl->return_rtx has not. */
5434 if (GET_MODE (real_decl_rtl) == BLKmode)
5435 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
5437 /* If a non-BLKmode return value should be padded at the least
5438 significant end of the register, shift it left by the appropriate
5439 amount. BLKmode results are handled using the group load/store
5440 machinery. */
5441 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
5442 && REG_P (real_decl_rtl)
5443 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
5445 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
5446 REGNO (real_decl_rtl)),
5447 decl_rtl);
5448 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
5450 else if (GET_CODE (real_decl_rtl) == PARALLEL)
5452 /* If expand_function_start has created a PARALLEL for decl_rtl,
5453 move the result to the real return registers. Otherwise, do
5454 a group load from decl_rtl for a named return. */
5455 if (GET_CODE (decl_rtl) == PARALLEL)
5456 emit_group_move (real_decl_rtl, decl_rtl);
5457 else
5458 emit_group_load (real_decl_rtl, decl_rtl,
5459 TREE_TYPE (decl_result),
5460 int_size_in_bytes (TREE_TYPE (decl_result)));
5462 /* In the case of complex integer modes smaller than a word, we'll
5463 need to generate some non-trivial bitfield insertions. Do that
5464 on a pseudo and not the hard register. */
5465 else if (GET_CODE (decl_rtl) == CONCAT
5466 && is_complex_int_mode (GET_MODE (decl_rtl), &cmode)
5467 && GET_MODE_BITSIZE (cmode) <= BITS_PER_WORD)
5469 int old_generating_concat_p;
5470 rtx tmp;
5472 old_generating_concat_p = generating_concat_p;
5473 generating_concat_p = 0;
5474 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
5475 generating_concat_p = old_generating_concat_p;
5477 emit_move_insn (tmp, decl_rtl);
5478 emit_move_insn (real_decl_rtl, tmp);
5480 /* If a named return value dumped decl_return to memory, then
5481 we may need to re-do the PROMOTE_MODE signed/unsigned
5482 extension. */
5483 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
5485 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
5486 promote_function_mode (TREE_TYPE (decl_result),
5487 GET_MODE (decl_rtl), &unsignedp,
5488 TREE_TYPE (current_function_decl), 1);
5490 convert_move (real_decl_rtl, decl_rtl, unsignedp);
5492 else
5493 emit_move_insn (real_decl_rtl, decl_rtl);
5497 /* If returning a structure, arrange to return the address of the value
5498 in a place where debuggers expect to find it.
5500 If returning a structure PCC style,
5501 the caller also depends on this value.
5502 And cfun->returns_pcc_struct is not necessarily set. */
5503 if ((cfun->returns_struct || cfun->returns_pcc_struct)
5504 && !targetm.calls.omit_struct_return_reg)
5506 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
5507 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
5508 rtx outgoing;
5510 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
5511 type = TREE_TYPE (type);
5512 else
5513 value_address = XEXP (value_address, 0);
5515 outgoing = targetm.calls.function_value (build_pointer_type (type),
5516 current_function_decl, true);
5518 /* Mark this as a function return value so integrate will delete the
5519 assignment and USE below when inlining this function. */
5520 REG_FUNCTION_VALUE_P (outgoing) = 1;
5522 /* The address may be ptr_mode and OUTGOING may be Pmode. */
5523 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (outgoing));
5524 value_address = convert_memory_address (mode, value_address);
5526 emit_move_insn (outgoing, value_address);
5528 /* Show return register used to hold result (in this case the address
5529 of the result. */
5530 crtl->return_rtx = outgoing;
5533 /* Emit the actual code to clobber return register. Don't emit
5534 it if clobber_after is a barrier, then the previous basic block
5535 certainly doesn't fall thru into the exit block. */
5536 if (!BARRIER_P (clobber_after))
5538 start_sequence ();
5539 clobber_return_register ();
5540 rtx_insn *seq = get_insns ();
5541 end_sequence ();
5543 emit_insn_after (seq, clobber_after);
5546 /* Output the label for the naked return from the function. */
5547 if (naked_return_label)
5548 emit_label (naked_return_label);
5550 /* @@@ This is a kludge. We want to ensure that instructions that
5551 may trap are not moved into the epilogue by scheduling, because
5552 we don't always emit unwind information for the epilogue. */
5553 if (cfun->can_throw_non_call_exceptions
5554 && targetm_common.except_unwind_info (&global_options) != UI_SJLJ)
5555 emit_insn (gen_blockage ());
5557 /* If stack protection is enabled for this function, check the guard. */
5558 if (crtl->stack_protect_guard
5559 && targetm.stack_protect_runtime_enabled_p ()
5560 && naked_return_label)
5561 stack_protect_epilogue ();
5563 /* If we had calls to alloca, and this machine needs
5564 an accurate stack pointer to exit the function,
5565 insert some code to save and restore the stack pointer. */
5566 if (! EXIT_IGNORE_STACK
5567 && cfun->calls_alloca)
5569 rtx tem = 0;
5571 start_sequence ();
5572 emit_stack_save (SAVE_FUNCTION, &tem);
5573 rtx_insn *seq = get_insns ();
5574 end_sequence ();
5575 emit_insn_before (seq, parm_birth_insn);
5577 emit_stack_restore (SAVE_FUNCTION, tem);
5580 /* ??? This should no longer be necessary since stupid is no longer with
5581 us, but there are some parts of the compiler (eg reload_combine, and
5582 sh mach_dep_reorg) that still try and compute their own lifetime info
5583 instead of using the general framework. */
5584 use_return_register ();
5588 get_arg_pointer_save_area (void)
5590 rtx ret = arg_pointer_save_area;
5592 if (! ret)
5594 ret = assign_stack_local (Pmode, GET_MODE_SIZE (Pmode), 0);
5595 arg_pointer_save_area = ret;
5598 if (! crtl->arg_pointer_save_area_init)
5600 /* Save the arg pointer at the beginning of the function. The
5601 generated stack slot may not be a valid memory address, so we
5602 have to check it and fix it if necessary. */
5603 start_sequence ();
5604 emit_move_insn (validize_mem (copy_rtx (ret)),
5605 crtl->args.internal_arg_pointer);
5606 rtx_insn *seq = get_insns ();
5607 end_sequence ();
5609 push_topmost_sequence ();
5610 emit_insn_after (seq, entry_of_function ());
5611 pop_topmost_sequence ();
5613 crtl->arg_pointer_save_area_init = true;
5616 return ret;
5620 /* If debugging dumps are requested, dump information about how the
5621 target handled -fstack-check=clash for the prologue.
5623 PROBES describes what if any probes were emitted.
5625 RESIDUALS indicates if the prologue had any residual allocation
5626 (i.e. total allocation was not a multiple of PROBE_INTERVAL). */
5628 void
5629 dump_stack_clash_frame_info (enum stack_clash_probes probes, bool residuals)
5631 if (!dump_file)
5632 return;
5634 switch (probes)
5636 case NO_PROBE_NO_FRAME:
5637 fprintf (dump_file,
5638 "Stack clash no probe no stack adjustment in prologue.\n");
5639 break;
5640 case NO_PROBE_SMALL_FRAME:
5641 fprintf (dump_file,
5642 "Stack clash no probe small stack adjustment in prologue.\n");
5643 break;
5644 case PROBE_INLINE:
5645 fprintf (dump_file, "Stack clash inline probes in prologue.\n");
5646 break;
5647 case PROBE_LOOP:
5648 fprintf (dump_file, "Stack clash probe loop in prologue.\n");
5649 break;
5652 if (residuals)
5653 fprintf (dump_file, "Stack clash residual allocation in prologue.\n");
5654 else
5655 fprintf (dump_file, "Stack clash no residual allocation in prologue.\n");
5657 if (frame_pointer_needed)
5658 fprintf (dump_file, "Stack clash frame pointer needed.\n");
5659 else
5660 fprintf (dump_file, "Stack clash no frame pointer needed.\n");
5662 if (TREE_THIS_VOLATILE (cfun->decl))
5663 fprintf (dump_file,
5664 "Stack clash noreturn prologue, assuming no implicit"
5665 " probes in caller.\n");
5666 else
5667 fprintf (dump_file,
5668 "Stack clash not noreturn prologue.\n");
5671 /* Add a list of INSNS to the hash HASHP, possibly allocating HASHP
5672 for the first time. */
5674 static void
5675 record_insns (rtx_insn *insns, rtx end, hash_table<insn_cache_hasher> **hashp)
5677 rtx_insn *tmp;
5678 hash_table<insn_cache_hasher> *hash = *hashp;
5680 if (hash == NULL)
5681 *hashp = hash = hash_table<insn_cache_hasher>::create_ggc (17);
5683 for (tmp = insns; tmp != end; tmp = NEXT_INSN (tmp))
5685 rtx *slot = hash->find_slot (tmp, INSERT);
5686 gcc_assert (*slot == NULL);
5687 *slot = tmp;
5691 /* INSN has been duplicated or replaced by as COPY, perhaps by duplicating a
5692 basic block, splitting or peepholes. If INSN is a prologue or epilogue
5693 insn, then record COPY as well. */
5695 void
5696 maybe_copy_prologue_epilogue_insn (rtx insn, rtx copy)
5698 hash_table<insn_cache_hasher> *hash;
5699 rtx *slot;
5701 hash = epilogue_insn_hash;
5702 if (!hash || !hash->find (insn))
5704 hash = prologue_insn_hash;
5705 if (!hash || !hash->find (insn))
5706 return;
5709 slot = hash->find_slot (copy, INSERT);
5710 gcc_assert (*slot == NULL);
5711 *slot = copy;
5714 /* Determine if any INSNs in HASH are, or are part of, INSN. Because
5715 we can be running after reorg, SEQUENCE rtl is possible. */
5717 static bool
5718 contains (const rtx_insn *insn, hash_table<insn_cache_hasher> *hash)
5720 if (hash == NULL)
5721 return false;
5723 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
5725 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (insn));
5726 int i;
5727 for (i = seq->len () - 1; i >= 0; i--)
5728 if (hash->find (seq->element (i)))
5729 return true;
5730 return false;
5733 return hash->find (const_cast<rtx_insn *> (insn)) != NULL;
5736 bool
5737 prologue_contains (const rtx_insn *insn)
5739 return contains (insn, prologue_insn_hash);
5742 bool
5743 epilogue_contains (const rtx_insn *insn)
5745 return contains (insn, epilogue_insn_hash);
5748 bool
5749 prologue_epilogue_contains (const rtx_insn *insn)
5751 if (contains (insn, prologue_insn_hash))
5752 return true;
5753 if (contains (insn, epilogue_insn_hash))
5754 return true;
5755 return false;
5758 void
5759 record_prologue_seq (rtx_insn *seq)
5761 record_insns (seq, NULL, &prologue_insn_hash);
5764 void
5765 record_epilogue_seq (rtx_insn *seq)
5767 record_insns (seq, NULL, &epilogue_insn_hash);
5770 /* Set JUMP_LABEL for a return insn. */
5772 void
5773 set_return_jump_label (rtx_insn *returnjump)
5775 rtx pat = PATTERN (returnjump);
5776 if (GET_CODE (pat) == PARALLEL)
5777 pat = XVECEXP (pat, 0, 0);
5778 if (ANY_RETURN_P (pat))
5779 JUMP_LABEL (returnjump) = pat;
5780 else
5781 JUMP_LABEL (returnjump) = ret_rtx;
5784 /* Return a sequence to be used as the split prologue for the current
5785 function, or NULL. */
5787 static rtx_insn *
5788 make_split_prologue_seq (void)
5790 if (!flag_split_stack
5791 || lookup_attribute ("no_split_stack", DECL_ATTRIBUTES (cfun->decl)))
5792 return NULL;
5794 start_sequence ();
5795 emit_insn (targetm.gen_split_stack_prologue ());
5796 rtx_insn *seq = get_insns ();
5797 end_sequence ();
5799 record_insns (seq, NULL, &prologue_insn_hash);
5800 set_insn_locations (seq, prologue_location);
5802 return seq;
5805 /* Return a sequence to be used as the prologue for the current function,
5806 or NULL. */
5808 static rtx_insn *
5809 make_prologue_seq (void)
5811 if (!targetm.have_prologue ())
5812 return NULL;
5814 start_sequence ();
5815 rtx_insn *seq = targetm.gen_prologue ();
5816 emit_insn (seq);
5818 /* Insert an explicit USE for the frame pointer
5819 if the profiling is on and the frame pointer is required. */
5820 if (crtl->profile && frame_pointer_needed)
5821 emit_use (hard_frame_pointer_rtx);
5823 /* Retain a map of the prologue insns. */
5824 record_insns (seq, NULL, &prologue_insn_hash);
5825 emit_note (NOTE_INSN_PROLOGUE_END);
5827 /* Ensure that instructions are not moved into the prologue when
5828 profiling is on. The call to the profiling routine can be
5829 emitted within the live range of a call-clobbered register. */
5830 if (!targetm.profile_before_prologue () && crtl->profile)
5831 emit_insn (gen_blockage ());
5833 seq = get_insns ();
5834 end_sequence ();
5835 set_insn_locations (seq, prologue_location);
5837 return seq;
5840 /* Emit a sequence of insns to zero the call-used registers before RET
5841 according to ZERO_REGS_TYPE. */
5843 static void
5844 gen_call_used_regs_seq (rtx_insn *ret, unsigned int zero_regs_type)
5846 bool only_gpr = true;
5847 bool only_used = true;
5848 bool only_arg = true;
5850 /* No need to zero call-used-regs in main (). */
5851 if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
5852 return;
5854 /* No need to zero call-used-regs if __builtin_eh_return is called
5855 since it isn't a normal function return. */
5856 if (crtl->calls_eh_return)
5857 return;
5859 /* If only_gpr is true, only zero call-used registers that are
5860 general-purpose registers; if only_used is true, only zero
5861 call-used registers that are used in the current function;
5862 if only_arg is true, only zero call-used registers that pass
5863 parameters defined by the flatform's calling conversion. */
5865 using namespace zero_regs_flags;
5867 only_gpr = zero_regs_type & ONLY_GPR;
5868 only_used = zero_regs_type & ONLY_USED;
5869 only_arg = zero_regs_type & ONLY_ARG;
5871 if ((zero_regs_type & LEAFY_MODE) && leaf_function_p ())
5872 only_used = true;
5874 /* For each of the hard registers, we should zero it if:
5875 1. it is a call-used register;
5876 and 2. it is not a fixed register;
5877 and 3. it is not live at the return of the routine;
5878 and 4. it is general registor if only_gpr is true;
5879 and 5. it is used in the routine if only_used is true;
5880 and 6. it is a register that passes parameter if only_arg is true. */
5882 /* First, prepare the data flow information. */
5883 basic_block bb = BLOCK_FOR_INSN (ret);
5884 auto_bitmap live_out;
5885 bitmap_copy (live_out, df_get_live_out (bb));
5886 df_simulate_initialize_backwards (bb, live_out);
5887 df_simulate_one_insn_backwards (bb, ret, live_out);
5889 HARD_REG_SET selected_hardregs;
5890 HARD_REG_SET all_call_used_regs;
5891 CLEAR_HARD_REG_SET (selected_hardregs);
5892 CLEAR_HARD_REG_SET (all_call_used_regs);
5893 for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
5895 if (!crtl->abi->clobbers_full_reg_p (regno))
5896 continue;
5897 if (fixed_regs[regno])
5898 continue;
5899 if (REGNO_REG_SET_P (live_out, regno))
5900 continue;
5901 #ifdef LEAF_REG_REMAP
5902 if (crtl->uses_only_leaf_regs && LEAF_REG_REMAP (regno) < 0)
5903 continue;
5904 #endif
5905 /* This is a call used register that is dead at return. */
5906 SET_HARD_REG_BIT (all_call_used_regs, regno);
5908 if (only_gpr
5909 && !TEST_HARD_REG_BIT (reg_class_contents[GENERAL_REGS], regno))
5910 continue;
5911 if (only_used && !df_regs_ever_live_p (regno))
5912 continue;
5913 if (only_arg && !FUNCTION_ARG_REGNO_P (regno))
5914 continue;
5916 /* Now this is a register that we might want to zero. */
5917 SET_HARD_REG_BIT (selected_hardregs, regno);
5920 if (hard_reg_set_empty_p (selected_hardregs))
5921 return;
5923 /* Now that we have a hard register set that needs to be zeroed, pass it to
5924 target to generate zeroing sequence. */
5925 HARD_REG_SET zeroed_hardregs;
5926 start_sequence ();
5927 zeroed_hardregs = targetm.calls.zero_call_used_regs (selected_hardregs);
5929 /* For most targets, the returned set of registers is a subset of
5930 selected_hardregs, however, for some of the targets (for example MIPS),
5931 clearing some registers that are in selected_hardregs requires clearing
5932 other call used registers that are not in the selected_hardregs, under
5933 such situation, the returned set of registers must be a subset of
5934 all call used registers. */
5935 gcc_assert (hard_reg_set_subset_p (zeroed_hardregs, all_call_used_regs));
5937 rtx_insn *seq = get_insns ();
5938 end_sequence ();
5939 if (seq)
5941 /* Emit the memory blockage and register clobber asm volatile before
5942 the whole sequence. */
5943 start_sequence ();
5944 expand_asm_reg_clobber_mem_blockage (zeroed_hardregs);
5945 rtx_insn *seq_barrier = get_insns ();
5946 end_sequence ();
5948 emit_insn_before (seq_barrier, ret);
5949 emit_insn_before (seq, ret);
5951 /* Update the data flow information. */
5952 crtl->must_be_zero_on_return |= zeroed_hardregs;
5953 df_update_exit_block_uses ();
5958 /* Return a sequence to be used as the epilogue for the current function,
5959 or NULL. */
5961 static rtx_insn *
5962 make_epilogue_seq (void)
5964 if (!targetm.have_epilogue ())
5965 return NULL;
5967 start_sequence ();
5968 emit_note (NOTE_INSN_EPILOGUE_BEG);
5969 rtx_insn *seq = targetm.gen_epilogue ();
5970 if (seq)
5971 emit_jump_insn (seq);
5973 /* Retain a map of the epilogue insns. */
5974 record_insns (seq, NULL, &epilogue_insn_hash);
5975 set_insn_locations (seq, epilogue_location);
5977 seq = get_insns ();
5978 rtx_insn *returnjump = get_last_insn ();
5979 end_sequence ();
5981 if (JUMP_P (returnjump))
5982 set_return_jump_label (returnjump);
5984 return seq;
5988 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5989 this into place with notes indicating where the prologue ends and where
5990 the epilogue begins. Update the basic block information when possible.
5992 Notes on epilogue placement:
5993 There are several kinds of edges to the exit block:
5994 * a single fallthru edge from LAST_BB
5995 * possibly, edges from blocks containing sibcalls
5996 * possibly, fake edges from infinite loops
5998 The epilogue is always emitted on the fallthru edge from the last basic
5999 block in the function, LAST_BB, into the exit block.
6001 If LAST_BB is empty except for a label, it is the target of every
6002 other basic block in the function that ends in a return. If a
6003 target has a return or simple_return pattern (possibly with
6004 conditional variants), these basic blocks can be changed so that a
6005 return insn is emitted into them, and their target is adjusted to
6006 the real exit block.
6008 Notes on shrink wrapping: We implement a fairly conservative
6009 version of shrink-wrapping rather than the textbook one. We only
6010 generate a single prologue and a single epilogue. This is
6011 sufficient to catch a number of interesting cases involving early
6012 exits.
6014 First, we identify the blocks that require the prologue to occur before
6015 them. These are the ones that modify a call-saved register, or reference
6016 any of the stack or frame pointer registers. To simplify things, we then
6017 mark everything reachable from these blocks as also requiring a prologue.
6018 This takes care of loops automatically, and avoids the need to examine
6019 whether MEMs reference the frame, since it is sufficient to check for
6020 occurrences of the stack or frame pointer.
6022 We then compute the set of blocks for which the need for a prologue
6023 is anticipatable (borrowing terminology from the shrink-wrapping
6024 description in Muchnick's book). These are the blocks which either
6025 require a prologue themselves, or those that have only successors
6026 where the prologue is anticipatable. The prologue needs to be
6027 inserted on all edges from BB1->BB2 where BB2 is in ANTIC and BB1
6028 is not. For the moment, we ensure that only one such edge exists.
6030 The epilogue is placed as described above, but we make a
6031 distinction between inserting return and simple_return patterns
6032 when modifying other blocks that end in a return. Blocks that end
6033 in a sibcall omit the sibcall_epilogue if the block is not in
6034 ANTIC. */
6036 void
6037 thread_prologue_and_epilogue_insns (void)
6039 df_analyze ();
6041 /* Can't deal with multiple successors of the entry block at the
6042 moment. Function should always have at least one entry
6043 point. */
6044 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
6046 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6047 edge orig_entry_edge = entry_edge;
6049 rtx_insn *split_prologue_seq = make_split_prologue_seq ();
6050 rtx_insn *prologue_seq = make_prologue_seq ();
6051 rtx_insn *epilogue_seq = make_epilogue_seq ();
6053 /* Try to perform a kind of shrink-wrapping, making sure the
6054 prologue/epilogue is emitted only around those parts of the
6055 function that require it. */
6056 try_shrink_wrapping (&entry_edge, prologue_seq);
6058 /* If the target can handle splitting the prologue/epilogue into separate
6059 components, try to shrink-wrap these components separately. */
6060 try_shrink_wrapping_separate (entry_edge->dest);
6062 /* If that did anything for any component we now need the generate the
6063 "main" prologue again. Because some targets require some of these
6064 to be called in a specific order (i386 requires the split prologue
6065 to be first, for example), we create all three sequences again here.
6066 If this does not work for some target, that target should not enable
6067 separate shrink-wrapping. */
6068 if (crtl->shrink_wrapped_separate)
6070 split_prologue_seq = make_split_prologue_seq ();
6071 prologue_seq = make_prologue_seq ();
6072 epilogue_seq = make_epilogue_seq ();
6075 rtl_profile_for_bb (EXIT_BLOCK_PTR_FOR_FN (cfun));
6077 /* A small fib -- epilogue is not yet completed, but we wish to re-use
6078 this marker for the splits of EH_RETURN patterns, and nothing else
6079 uses the flag in the meantime. */
6080 epilogue_completed = 1;
6082 /* Find non-fallthru edges that end with EH_RETURN instructions. On
6083 some targets, these get split to a special version of the epilogue
6084 code. In order to be able to properly annotate these with unwind
6085 info, try to split them now. If we get a valid split, drop an
6086 EPILOGUE_BEG note and mark the insns as epilogue insns. */
6087 edge e;
6088 edge_iterator ei;
6089 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6091 rtx_insn *prev, *last, *trial;
6093 if (e->flags & EDGE_FALLTHRU)
6094 continue;
6095 last = BB_END (e->src);
6096 if (!eh_returnjump_p (last))
6097 continue;
6099 prev = PREV_INSN (last);
6100 trial = try_split (PATTERN (last), last, 1);
6101 if (trial == last)
6102 continue;
6104 record_insns (NEXT_INSN (prev), NEXT_INSN (trial), &epilogue_insn_hash);
6105 emit_note_after (NOTE_INSN_EPILOGUE_BEG, prev);
6108 edge exit_fallthru_edge = find_fallthru_edge (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6110 if (exit_fallthru_edge)
6112 if (epilogue_seq)
6114 insert_insn_on_edge (epilogue_seq, exit_fallthru_edge);
6115 commit_edge_insertions ();
6117 /* The epilogue insns we inserted may cause the exit edge to no longer
6118 be fallthru. */
6119 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6121 if (((e->flags & EDGE_FALLTHRU) != 0)
6122 && returnjump_p (BB_END (e->src)))
6123 e->flags &= ~EDGE_FALLTHRU;
6126 find_sub_basic_blocks (BLOCK_FOR_INSN (epilogue_seq));
6128 else if (next_active_insn (BB_END (exit_fallthru_edge->src)))
6130 /* We have a fall-through edge to the exit block, the source is not
6131 at the end of the function, and there will be an assembler epilogue
6132 at the end of the function.
6133 We can't use force_nonfallthru here, because that would try to
6134 use return. Inserting a jump 'by hand' is extremely messy, so
6135 we take advantage of cfg_layout_finalize using
6136 fixup_fallthru_exit_predecessor. */
6137 cfg_layout_initialize (0);
6138 basic_block cur_bb;
6139 FOR_EACH_BB_FN (cur_bb, cfun)
6140 if (cur_bb->index >= NUM_FIXED_BLOCKS
6141 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
6142 cur_bb->aux = cur_bb->next_bb;
6143 cfg_layout_finalize ();
6147 /* Insert the prologue. */
6149 rtl_profile_for_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
6151 if (split_prologue_seq || prologue_seq)
6153 rtx_insn *split_prologue_insn = split_prologue_seq;
6154 if (split_prologue_seq)
6156 while (split_prologue_insn && !NONDEBUG_INSN_P (split_prologue_insn))
6157 split_prologue_insn = NEXT_INSN (split_prologue_insn);
6158 insert_insn_on_edge (split_prologue_seq, orig_entry_edge);
6161 rtx_insn *prologue_insn = prologue_seq;
6162 if (prologue_seq)
6164 while (prologue_insn && !NONDEBUG_INSN_P (prologue_insn))
6165 prologue_insn = NEXT_INSN (prologue_insn);
6166 insert_insn_on_edge (prologue_seq, entry_edge);
6169 commit_edge_insertions ();
6171 /* Look for basic blocks within the prologue insns. */
6172 if (split_prologue_insn
6173 && BLOCK_FOR_INSN (split_prologue_insn) == NULL)
6174 split_prologue_insn = NULL;
6175 if (prologue_insn
6176 && BLOCK_FOR_INSN (prologue_insn) == NULL)
6177 prologue_insn = NULL;
6178 if (split_prologue_insn || prologue_insn)
6180 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
6181 bitmap_clear (blocks);
6182 if (split_prologue_insn)
6183 bitmap_set_bit (blocks,
6184 BLOCK_FOR_INSN (split_prologue_insn)->index);
6185 if (prologue_insn)
6186 bitmap_set_bit (blocks, BLOCK_FOR_INSN (prologue_insn)->index);
6187 find_many_sub_basic_blocks (blocks);
6191 default_rtl_profile ();
6193 /* Emit sibling epilogues before any sibling call sites. */
6194 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
6195 (e = ei_safe_edge (ei));
6196 ei_next (&ei))
6198 /* Skip those already handled, the ones that run without prologue. */
6199 if (e->flags & EDGE_IGNORE)
6201 e->flags &= ~EDGE_IGNORE;
6202 continue;
6205 rtx_insn *insn = BB_END (e->src);
6207 if (!(CALL_P (insn) && SIBLING_CALL_P (insn)))
6208 continue;
6210 if (rtx_insn *ep_seq = targetm.gen_sibcall_epilogue ())
6212 start_sequence ();
6213 emit_note (NOTE_INSN_EPILOGUE_BEG);
6214 emit_insn (ep_seq);
6215 rtx_insn *seq = get_insns ();
6216 end_sequence ();
6218 /* Retain a map of the epilogue insns. Used in life analysis to
6219 avoid getting rid of sibcall epilogue insns. Do this before we
6220 actually emit the sequence. */
6221 record_insns (seq, NULL, &epilogue_insn_hash);
6222 set_insn_locations (seq, epilogue_location);
6224 emit_insn_before (seq, insn);
6226 find_sub_basic_blocks (BLOCK_FOR_INSN (insn));
6230 if (epilogue_seq)
6232 rtx_insn *insn, *next;
6234 /* Similarly, move any line notes that appear after the epilogue.
6235 There is no need, however, to be quite so anal about the existence
6236 of such a note. Also possibly move
6237 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
6238 info generation. */
6239 for (insn = epilogue_seq; insn; insn = next)
6241 next = NEXT_INSN (insn);
6242 if (NOTE_P (insn)
6243 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
6244 reorder_insns (insn, insn, PREV_INSN (epilogue_seq));
6248 /* Threading the prologue and epilogue changes the artificial refs in the
6249 entry and exit blocks, and may invalidate DF info for tail calls. */
6250 if (optimize
6251 || flag_optimize_sibling_calls
6252 || flag_ipa_icf_functions
6253 || in_lto_p)
6254 df_update_entry_exit_and_calls ();
6255 else
6257 df_update_entry_block_defs ();
6258 df_update_exit_block_uses ();
6262 /* Reposition the prologue-end and epilogue-begin notes after
6263 instruction scheduling. */
6265 void
6266 reposition_prologue_and_epilogue_notes (void)
6268 if (!targetm.have_prologue ()
6269 && !targetm.have_epilogue ()
6270 && !targetm.have_sibcall_epilogue ())
6271 return;
6273 /* Since the hash table is created on demand, the fact that it is
6274 non-null is a signal that it is non-empty. */
6275 if (prologue_insn_hash != NULL)
6277 size_t len = prologue_insn_hash->elements ();
6278 rtx_insn *insn, *last = NULL, *note = NULL;
6280 /* Scan from the beginning until we reach the last prologue insn. */
6281 /* ??? While we do have the CFG intact, there are two problems:
6282 (1) The prologue can contain loops (typically probing the stack),
6283 which means that the end of the prologue isn't in the first bb.
6284 (2) Sometimes the PROLOGUE_END note gets pushed into the next bb. */
6285 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
6287 if (NOTE_P (insn))
6289 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
6290 note = insn;
6292 else if (contains (insn, prologue_insn_hash))
6294 last = insn;
6295 if (--len == 0)
6296 break;
6300 if (last)
6302 if (note == NULL)
6304 /* Scan forward looking for the PROLOGUE_END note. It should
6305 be right at the beginning of the block, possibly with other
6306 insn notes that got moved there. */
6307 for (note = NEXT_INSN (last); ; note = NEXT_INSN (note))
6309 if (NOTE_P (note)
6310 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
6311 break;
6315 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
6316 if (LABEL_P (last))
6317 last = NEXT_INSN (last);
6318 reorder_insns (note, note, last);
6322 if (epilogue_insn_hash != NULL)
6324 edge_iterator ei;
6325 edge e;
6327 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6329 rtx_insn *insn, *first = NULL, *note = NULL;
6330 basic_block bb = e->src;
6332 /* Scan from the beginning until we reach the first epilogue insn. */
6333 FOR_BB_INSNS (bb, insn)
6335 if (NOTE_P (insn))
6337 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
6339 note = insn;
6340 if (first != NULL)
6341 break;
6344 else if (first == NULL && contains (insn, epilogue_insn_hash))
6346 first = insn;
6347 if (note != NULL)
6348 break;
6352 if (note)
6354 /* If the function has a single basic block, and no real
6355 epilogue insns (e.g. sibcall with no cleanup), the
6356 epilogue note can get scheduled before the prologue
6357 note. If we have frame related prologue insns, having
6358 them scanned during the epilogue will result in a crash.
6359 In this case re-order the epilogue note to just before
6360 the last insn in the block. */
6361 if (first == NULL)
6362 first = BB_END (bb);
6364 if (PREV_INSN (first) != note)
6365 reorder_insns (note, note, PREV_INSN (first));
6371 /* Returns the name of function declared by FNDECL. */
6372 const char *
6373 fndecl_name (tree fndecl)
6375 if (fndecl == NULL)
6376 return "(nofn)";
6377 return lang_hooks.decl_printable_name (fndecl, 1);
6380 /* Returns the name of function FN. */
6381 const char *
6382 function_name (struct function *fn)
6384 tree fndecl = (fn == NULL) ? NULL : fn->decl;
6385 return fndecl_name (fndecl);
6388 /* Returns the name of the current function. */
6389 const char *
6390 current_function_name (void)
6392 return function_name (cfun);
6396 static void
6397 rest_of_handle_check_leaf_regs (void)
6399 #ifdef LEAF_REGISTERS
6400 crtl->uses_only_leaf_regs
6401 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
6402 #endif
6405 /* Insert a TYPE into the used types hash table of CFUN. */
6407 static void
6408 used_types_insert_helper (tree type, struct function *func)
6410 if (type != NULL && func != NULL)
6412 if (func->used_types_hash == NULL)
6413 func->used_types_hash = hash_set<tree>::create_ggc (37);
6415 func->used_types_hash->add (type);
6419 /* Given a type, insert it into the used hash table in cfun. */
6420 void
6421 used_types_insert (tree t)
6423 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
6424 if (TYPE_NAME (t))
6425 break;
6426 else
6427 t = TREE_TYPE (t);
6428 if (TREE_CODE (t) == ERROR_MARK)
6429 return;
6430 if (TYPE_NAME (t) == NULL_TREE
6431 || TYPE_NAME (t) == TYPE_NAME (TYPE_MAIN_VARIANT (t)))
6432 t = TYPE_MAIN_VARIANT (t);
6433 if (debug_info_level > DINFO_LEVEL_NONE)
6435 if (cfun)
6436 used_types_insert_helper (t, cfun);
6437 else
6439 /* So this might be a type referenced by a global variable.
6440 Record that type so that we can later decide to emit its
6441 debug information. */
6442 vec_safe_push (types_used_by_cur_var_decl, t);
6447 /* Helper to Hash a struct types_used_by_vars_entry. */
6449 static hashval_t
6450 hash_types_used_by_vars_entry (const struct types_used_by_vars_entry *entry)
6452 gcc_assert (entry && entry->var_decl && entry->type);
6454 return iterative_hash_object (entry->type,
6455 iterative_hash_object (entry->var_decl, 0));
6458 /* Hash function of the types_used_by_vars_entry hash table. */
6460 hashval_t
6461 used_type_hasher::hash (types_used_by_vars_entry *entry)
6463 return hash_types_used_by_vars_entry (entry);
6466 /*Equality function of the types_used_by_vars_entry hash table. */
6468 bool
6469 used_type_hasher::equal (types_used_by_vars_entry *e1,
6470 types_used_by_vars_entry *e2)
6472 return (e1->var_decl == e2->var_decl && e1->type == e2->type);
6475 /* Inserts an entry into the types_used_by_vars_hash hash table. */
6477 void
6478 types_used_by_var_decl_insert (tree type, tree var_decl)
6480 if (type != NULL && var_decl != NULL)
6482 types_used_by_vars_entry **slot;
6483 struct types_used_by_vars_entry e;
6484 e.var_decl = var_decl;
6485 e.type = type;
6486 if (types_used_by_vars_hash == NULL)
6487 types_used_by_vars_hash
6488 = hash_table<used_type_hasher>::create_ggc (37);
6490 slot = types_used_by_vars_hash->find_slot (&e, INSERT);
6491 if (*slot == NULL)
6493 struct types_used_by_vars_entry *entry;
6494 entry = ggc_alloc<types_used_by_vars_entry> ();
6495 entry->type = type;
6496 entry->var_decl = var_decl;
6497 *slot = entry;
6502 namespace {
6504 const pass_data pass_data_leaf_regs =
6506 RTL_PASS, /* type */
6507 "*leaf_regs", /* name */
6508 OPTGROUP_NONE, /* optinfo_flags */
6509 TV_NONE, /* tv_id */
6510 0, /* properties_required */
6511 0, /* properties_provided */
6512 0, /* properties_destroyed */
6513 0, /* todo_flags_start */
6514 0, /* todo_flags_finish */
6517 class pass_leaf_regs : public rtl_opt_pass
6519 public:
6520 pass_leaf_regs (gcc::context *ctxt)
6521 : rtl_opt_pass (pass_data_leaf_regs, ctxt)
6524 /* opt_pass methods: */
6525 unsigned int execute (function *) final override
6527 rest_of_handle_check_leaf_regs ();
6528 return 0;
6531 }; // class pass_leaf_regs
6533 } // anon namespace
6535 rtl_opt_pass *
6536 make_pass_leaf_regs (gcc::context *ctxt)
6538 return new pass_leaf_regs (ctxt);
6541 static void
6542 rest_of_handle_thread_prologue_and_epilogue (function *fun)
6544 /* prepare_shrink_wrap is sensitive to the block structure of the control
6545 flow graph, so clean it up first. */
6546 if (optimize)
6547 cleanup_cfg (0);
6549 /* On some machines, the prologue and epilogue code, or parts thereof,
6550 can be represented as RTL. Doing so lets us schedule insns between
6551 it and the rest of the code and also allows delayed branch
6552 scheduling to operate in the epilogue. */
6553 thread_prologue_and_epilogue_insns ();
6555 /* Some non-cold blocks may now be only reachable from cold blocks.
6556 Fix that up. */
6557 fixup_partitions ();
6559 /* After prologue and epilogue generation, the judgement on whether
6560 one memory access onto stack frame may trap or not could change,
6561 since we get more exact stack information by now. So try to
6562 remove any EH edges here, see PR90259. */
6563 if (fun->can_throw_non_call_exceptions)
6564 purge_all_dead_edges ();
6566 /* Shrink-wrapping can result in unreachable edges in the epilogue,
6567 see PR57320. */
6568 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
6570 /* The stack usage info is finalized during prologue expansion. */
6571 if (flag_stack_usage_info || flag_callgraph_info)
6572 output_stack_usage ();
6575 /* Record a final call to CALLEE at LOCATION. */
6577 void
6578 record_final_call (tree callee, location_t location)
6580 struct callinfo_callee datum = { location, callee };
6581 vec_safe_push (cfun->su->callees, datum);
6584 /* Record a dynamic allocation made for DECL_OR_EXP. */
6586 void
6587 record_dynamic_alloc (tree decl_or_exp)
6589 struct callinfo_dalloc datum;
6591 if (DECL_P (decl_or_exp))
6593 datum.location = DECL_SOURCE_LOCATION (decl_or_exp);
6594 const char *name = lang_hooks.decl_printable_name (decl_or_exp, 2);
6595 const char *dot = strrchr (name, '.');
6596 if (dot)
6597 name = dot + 1;
6598 datum.name = ggc_strdup (name);
6600 else
6602 datum.location = EXPR_LOCATION (decl_or_exp);
6603 datum.name = NULL;
6606 vec_safe_push (cfun->su->dallocs, datum);
6609 namespace {
6611 const pass_data pass_data_thread_prologue_and_epilogue =
6613 RTL_PASS, /* type */
6614 "pro_and_epilogue", /* name */
6615 OPTGROUP_NONE, /* optinfo_flags */
6616 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
6617 0, /* properties_required */
6618 0, /* properties_provided */
6619 0, /* properties_destroyed */
6620 0, /* todo_flags_start */
6621 ( TODO_df_verify | TODO_df_finish ), /* todo_flags_finish */
6624 class pass_thread_prologue_and_epilogue : public rtl_opt_pass
6626 public:
6627 pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6628 : rtl_opt_pass (pass_data_thread_prologue_and_epilogue, ctxt)
6631 /* opt_pass methods: */
6632 unsigned int execute (function * fun) final override
6634 rest_of_handle_thread_prologue_and_epilogue (fun);
6635 return 0;
6638 }; // class pass_thread_prologue_and_epilogue
6640 } // anon namespace
6642 rtl_opt_pass *
6643 make_pass_thread_prologue_and_epilogue (gcc::context *ctxt)
6645 return new pass_thread_prologue_and_epilogue (ctxt);
6648 namespace {
6650 const pass_data pass_data_zero_call_used_regs =
6652 RTL_PASS, /* type */
6653 "zero_call_used_regs", /* name */
6654 OPTGROUP_NONE, /* optinfo_flags */
6655 TV_NONE, /* tv_id */
6656 0, /* properties_required */
6657 0, /* properties_provided */
6658 0, /* properties_destroyed */
6659 0, /* todo_flags_start */
6660 0, /* todo_flags_finish */
6663 class pass_zero_call_used_regs: public rtl_opt_pass
6665 public:
6666 pass_zero_call_used_regs (gcc::context *ctxt)
6667 : rtl_opt_pass (pass_data_zero_call_used_regs, ctxt)
6670 /* opt_pass methods: */
6671 unsigned int execute (function *) final override;
6673 }; // class pass_zero_call_used_regs
6675 unsigned int
6676 pass_zero_call_used_regs::execute (function *fun)
6678 using namespace zero_regs_flags;
6679 unsigned int zero_regs_type = UNSET;
6681 tree attr_zero_regs = lookup_attribute ("zero_call_used_regs",
6682 DECL_ATTRIBUTES (fun->decl));
6684 /* Get the type of zero_call_used_regs from function attribute.
6685 We have filtered out invalid attribute values already at this point. */
6686 if (attr_zero_regs)
6688 /* The TREE_VALUE of an attribute is a TREE_LIST whose TREE_VALUE
6689 is the attribute argument's value. */
6690 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6691 gcc_assert (TREE_CODE (attr_zero_regs) == TREE_LIST);
6692 attr_zero_regs = TREE_VALUE (attr_zero_regs);
6693 gcc_assert (TREE_CODE (attr_zero_regs) == STRING_CST);
6695 for (unsigned int i = 0; zero_call_used_regs_opts[i].name != NULL; ++i)
6696 if (strcmp (TREE_STRING_POINTER (attr_zero_regs),
6697 zero_call_used_regs_opts[i].name) == 0)
6699 zero_regs_type = zero_call_used_regs_opts[i].flag;
6700 break;
6704 if (!zero_regs_type)
6705 zero_regs_type = flag_zero_call_used_regs;
6707 /* No need to zero call-used-regs when no user request is present. */
6708 if (!(zero_regs_type & ENABLED))
6709 return 0;
6711 edge_iterator ei;
6712 edge e;
6714 /* This pass needs data flow information. */
6715 df_analyze ();
6717 /* Iterate over the function's return instructions and insert any
6718 register zeroing required by the -fzero-call-used-regs command-line
6719 option or the "zero_call_used_regs" function attribute. */
6720 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
6722 rtx_insn *insn = BB_END (e->src);
6723 if (JUMP_P (insn) && ANY_RETURN_P (JUMP_LABEL (insn)))
6724 gen_call_used_regs_seq (insn, zero_regs_type);
6727 return 0;
6730 } // anon namespace
6732 rtl_opt_pass *
6733 make_pass_zero_call_used_regs (gcc::context *ctxt)
6735 return new pass_zero_call_used_regs (ctxt);
6738 /* If CONSTRAINT is a matching constraint, then return its number.
6739 Otherwise, return -1. */
6741 static int
6742 matching_constraint_num (const char *constraint)
6744 if (*constraint == '%')
6745 constraint++;
6747 if (IN_RANGE (*constraint, '0', '9'))
6748 return strtoul (constraint, NULL, 10);
6750 return -1;
6753 /* This mini-pass fixes fall-out from SSA in asm statements that have
6754 in-out constraints. Say you start with
6756 orig = inout;
6757 asm ("": "+mr" (inout));
6758 use (orig);
6760 which is transformed very early to use explicit output and match operands:
6762 orig = inout;
6763 asm ("": "=mr" (inout) : "0" (inout));
6764 use (orig);
6766 Or, after SSA and copyprop,
6768 asm ("": "=mr" (inout_2) : "0" (inout_1));
6769 use (inout_1);
6771 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
6772 they represent two separate values, so they will get different pseudo
6773 registers during expansion. Then, since the two operands need to match
6774 per the constraints, but use different pseudo registers, reload can
6775 only register a reload for these operands. But reloads can only be
6776 satisfied by hardregs, not by memory, so we need a register for this
6777 reload, just because we are presented with non-matching operands.
6778 So, even though we allow memory for this operand, no memory can be
6779 used for it, just because the two operands don't match. This can
6780 cause reload failures on register-starved targets.
6782 So it's a symptom of reload not being able to use memory for reloads
6783 or, alternatively it's also a symptom of both operands not coming into
6784 reload as matching (in which case the pseudo could go to memory just
6785 fine, as the alternative allows it, and no reload would be necessary).
6786 We fix the latter problem here, by transforming
6788 asm ("": "=mr" (inout_2) : "0" (inout_1));
6790 back to
6792 inout_2 = inout_1;
6793 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
6795 static void
6796 match_asm_constraints_1 (rtx_insn *insn, rtx *p_sets, int noutputs)
6798 int i;
6799 bool changed = false;
6800 rtx op = SET_SRC (p_sets[0]);
6801 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
6802 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
6803 bool *output_matched = XALLOCAVEC (bool, noutputs);
6805 memset (output_matched, 0, noutputs * sizeof (bool));
6806 for (i = 0; i < ninputs; i++)
6808 rtx input, output;
6809 rtx_insn *insns;
6810 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
6811 int match, j;
6813 match = matching_constraint_num (constraint);
6814 if (match < 0)
6815 continue;
6817 gcc_assert (match < noutputs);
6818 output = SET_DEST (p_sets[match]);
6819 input = RTVEC_ELT (inputs, i);
6820 /* Only do the transformation for pseudos. */
6821 if (! REG_P (output)
6822 || rtx_equal_p (output, input)
6823 || !(REG_P (input) || SUBREG_P (input)
6824 || MEM_P (input) || CONSTANT_P (input))
6825 || !general_operand (input, GET_MODE (output)))
6826 continue;
6828 /* We can't do anything if the output is also used as input,
6829 as we're going to overwrite it. */
6830 for (j = 0; j < ninputs; j++)
6831 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
6832 break;
6833 if (j != ninputs)
6834 continue;
6836 /* Avoid changing the same input several times. For
6837 asm ("" : "=mr" (out1), "=mr" (out2) : "0" (in), "1" (in));
6838 only change it once (to out1), rather than changing it
6839 first to out1 and afterwards to out2. */
6840 if (i > 0)
6842 for (j = 0; j < noutputs; j++)
6843 if (output_matched[j] && input == SET_DEST (p_sets[j]))
6844 break;
6845 if (j != noutputs)
6846 continue;
6848 output_matched[match] = true;
6850 start_sequence ();
6851 emit_move_insn (output, copy_rtx (input));
6852 insns = get_insns ();
6853 end_sequence ();
6854 emit_insn_before (insns, insn);
6856 constraint = ASM_OPERANDS_OUTPUT_CONSTRAINT(SET_SRC(p_sets[match]));
6857 bool early_clobber_p = strchr (constraint, '&') != NULL;
6859 /* Now replace all mentions of the input with output. We can't
6860 just replace the occurrence in inputs[i], as the register might
6861 also be used in some other input (or even in an address of an
6862 output), which would mean possibly increasing the number of
6863 inputs by one (namely 'output' in addition), which might pose
6864 a too complicated problem for reload to solve. E.g. this situation:
6866 asm ("" : "=r" (output), "=m" (input) : "0" (input))
6868 Here 'input' is used in two occurrences as input (once for the
6869 input operand, once for the address in the second output operand).
6870 If we would replace only the occurrence of the input operand (to
6871 make the matching) we would be left with this:
6873 output = input
6874 asm ("" : "=r" (output), "=m" (input) : "0" (output))
6876 Now we suddenly have two different input values (containing the same
6877 value, but different pseudos) where we formerly had only one.
6878 With more complicated asms this might lead to reload failures
6879 which wouldn't have happen without this pass. So, iterate over
6880 all operands and replace all occurrences of the register used.
6882 However, if one or more of the 'input' uses have a non-matching
6883 constraint and the matched output operand is an early clobber
6884 operand, then do not replace the input operand, since by definition
6885 it conflicts with the output operand and cannot share the same
6886 register. See PR89313 for details. */
6888 for (j = 0; j < noutputs; j++)
6889 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
6890 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
6891 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
6892 input, output);
6893 for (j = 0; j < ninputs; j++)
6894 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
6896 if (!early_clobber_p
6897 || match == matching_constraint_num
6898 (ASM_OPERANDS_INPUT_CONSTRAINT (op, j)))
6899 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
6900 input, output);
6903 changed = true;
6906 if (changed)
6907 df_insn_rescan (insn);
6910 /* Add the decl D to the local_decls list of FUN. */
6912 void
6913 add_local_decl (struct function *fun, tree d)
6915 gcc_assert (VAR_P (d));
6916 vec_safe_push (fun->local_decls, d);
6919 namespace {
6921 const pass_data pass_data_match_asm_constraints =
6923 RTL_PASS, /* type */
6924 "asmcons", /* name */
6925 OPTGROUP_NONE, /* optinfo_flags */
6926 TV_NONE, /* tv_id */
6927 0, /* properties_required */
6928 0, /* properties_provided */
6929 0, /* properties_destroyed */
6930 0, /* todo_flags_start */
6931 0, /* todo_flags_finish */
6934 class pass_match_asm_constraints : public rtl_opt_pass
6936 public:
6937 pass_match_asm_constraints (gcc::context *ctxt)
6938 : rtl_opt_pass (pass_data_match_asm_constraints, ctxt)
6941 /* opt_pass methods: */
6942 unsigned int execute (function *) final override;
6944 }; // class pass_match_asm_constraints
6946 unsigned
6947 pass_match_asm_constraints::execute (function *fun)
6949 basic_block bb;
6950 rtx_insn *insn;
6951 rtx pat, *p_sets;
6952 int noutputs;
6954 if (!crtl->has_asm_statement)
6955 return 0;
6957 df_set_flags (DF_DEFER_INSN_RESCAN);
6958 FOR_EACH_BB_FN (bb, fun)
6960 FOR_BB_INSNS (bb, insn)
6962 if (!INSN_P (insn))
6963 continue;
6965 pat = PATTERN (insn);
6966 if (GET_CODE (pat) == PARALLEL)
6967 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
6968 else if (GET_CODE (pat) == SET)
6969 p_sets = &PATTERN (insn), noutputs = 1;
6970 else
6971 continue;
6973 if (GET_CODE (*p_sets) == SET
6974 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
6975 match_asm_constraints_1 (insn, p_sets, noutputs);
6979 return TODO_df_finish;
6982 } // anon namespace
6984 rtl_opt_pass *
6985 make_pass_match_asm_constraints (gcc::context *ctxt)
6987 return new pass_match_asm_constraints (ctxt);
6991 #include "gt-function.h"