Fix dot dump bug
[official-gcc.git] / gcc / mode-switching.c
blobc06f113328da35242339de64c2ef8c97099d2d66
1 /* CPU mode switching
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "regs.h"
27 #include "hard-reg-set.h"
28 #include "flags.h"
29 #include "insn-config.h"
30 #include "recog.h"
31 #include "basic-block.h"
32 #include "tm_p.h"
33 #include "function.h"
34 #include "tree-pass.h"
35 #include "df.h"
36 #include "emit-rtl.h"
38 /* We want target macros for the mode switching code to be able to refer
39 to instruction attribute values. */
40 #include "insn-attr.h"
42 #ifdef OPTIMIZE_MODE_SWITCHING
44 /* The algorithm for setting the modes consists of scanning the insn list
45 and finding all the insns which require a specific mode. Each insn gets
46 a unique struct seginfo element. These structures are inserted into a list
47 for each basic block. For each entity, there is an array of bb_info over
48 the flow graph basic blocks (local var 'bb_info'), which contains a list
49 of all insns within that basic block, in the order they are encountered.
51 For each entity, any basic block WITHOUT any insns requiring a specific
52 mode are given a single entry without a mode (each basic block in the
53 flow graph must have at least one entry in the segment table).
55 The LCM algorithm is then run over the flow graph to determine where to
56 place the sets to the highest-priority mode with respect to the first
57 insn in any one block. Any adjustments required to the transparency
58 vectors are made, then the next iteration starts for the next-lower
59 priority mode, till for each entity all modes are exhausted.
61 More details can be found in the code of optimize_mode_switching. */
63 /* This structure contains the information for each insn which requires
64 either single or double mode to be set.
65 MODE is the mode this insn must be executed in.
66 INSN_PTR is the insn to be executed (may be the note that marks the
67 beginning of a basic block).
68 BBNUM is the flow graph basic block this insn occurs in.
69 NEXT is the next insn in the same basic block. */
70 struct seginfo
72 int mode;
73 rtx insn_ptr;
74 int bbnum;
75 struct seginfo *next;
76 HARD_REG_SET regs_live;
79 struct bb_info
81 struct seginfo *seginfo;
82 int computing;
85 /* These bitmaps are used for the LCM algorithm. */
87 static sbitmap *antic;
88 static sbitmap *transp;
89 static sbitmap *comp;
91 static struct seginfo * new_seginfo (int, rtx, int, HARD_REG_SET);
92 static void add_seginfo (struct bb_info *, struct seginfo *);
93 static void reg_dies (rtx, HARD_REG_SET *);
94 static void reg_becomes_live (rtx, const_rtx, void *);
95 static void make_preds_opaque (basic_block, int);
98 /* This function will allocate a new BBINFO structure, initialized
99 with the MODE, INSN, and basic block BB parameters.
100 INSN may not be a NOTE_INSN_BASIC_BLOCK, unless it is an empty
101 basic block; that allows us later to insert instructions in a FIFO-like
102 manner. */
104 static struct seginfo *
105 new_seginfo (int mode, rtx insn, int bb, HARD_REG_SET regs_live)
107 struct seginfo *ptr;
109 gcc_assert (!NOTE_INSN_BASIC_BLOCK_P (insn)
110 || insn == BB_END (NOTE_BASIC_BLOCK (insn)));
111 ptr = XNEW (struct seginfo);
112 ptr->mode = mode;
113 ptr->insn_ptr = insn;
114 ptr->bbnum = bb;
115 ptr->next = NULL;
116 COPY_HARD_REG_SET (ptr->regs_live, regs_live);
117 return ptr;
120 /* Add a seginfo element to the end of a list.
121 HEAD is a pointer to the list beginning.
122 INFO is the structure to be linked in. */
124 static void
125 add_seginfo (struct bb_info *head, struct seginfo *info)
127 struct seginfo *ptr;
129 if (head->seginfo == NULL)
130 head->seginfo = info;
131 else
133 ptr = head->seginfo;
134 while (ptr->next != NULL)
135 ptr = ptr->next;
136 ptr->next = info;
140 /* Make all predecessors of basic block B opaque, recursively, till we hit
141 some that are already non-transparent, or an edge where aux is set; that
142 denotes that a mode set is to be done on that edge.
143 J is the bit number in the bitmaps that corresponds to the entity that
144 we are currently handling mode-switching for. */
146 static void
147 make_preds_opaque (basic_block b, int j)
149 edge e;
150 edge_iterator ei;
152 FOR_EACH_EDGE (e, ei, b->preds)
154 basic_block pb = e->src;
156 if (e->aux || ! bitmap_bit_p (transp[pb->index], j))
157 continue;
159 bitmap_clear_bit (transp[pb->index], j);
160 make_preds_opaque (pb, j);
164 /* Record in LIVE that register REG died. */
166 static void
167 reg_dies (rtx reg, HARD_REG_SET *live)
169 int regno;
171 if (!REG_P (reg))
172 return;
174 regno = REGNO (reg);
175 if (regno < FIRST_PSEUDO_REGISTER)
176 remove_from_hard_reg_set (live, GET_MODE (reg), regno);
179 /* Record in LIVE that register REG became live.
180 This is called via note_stores. */
182 static void
183 reg_becomes_live (rtx reg, const_rtx setter ATTRIBUTE_UNUSED, void *live)
185 int regno;
187 if (GET_CODE (reg) == SUBREG)
188 reg = SUBREG_REG (reg);
190 if (!REG_P (reg))
191 return;
193 regno = REGNO (reg);
194 if (regno < FIRST_PSEUDO_REGISTER)
195 add_to_hard_reg_set ((HARD_REG_SET *) live, GET_MODE (reg), regno);
198 /* Split the fallthrough edge to the exit block, so that we can note
199 that there NORMAL_MODE is required. Return the new block if it's
200 inserted before the exit block. Otherwise return null. */
202 static basic_block
203 create_pre_exit (int n_entities, int *entity_map, const int *num_modes)
205 edge eg;
206 edge_iterator ei;
207 basic_block pre_exit;
209 /* The only non-call predecessor at this stage is a block with a
210 fallthrough edge; there can be at most one, but there could be
211 none at all, e.g. when exit is called. */
212 pre_exit = 0;
213 FOR_EACH_EDGE (eg, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
214 if (eg->flags & EDGE_FALLTHRU)
216 basic_block src_bb = eg->src;
217 rtx last_insn, ret_reg;
219 gcc_assert (!pre_exit);
220 /* If this function returns a value at the end, we have to
221 insert the final mode switch before the return value copy
222 to its hard register. */
223 if (EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds) == 1
224 && NONJUMP_INSN_P ((last_insn = BB_END (src_bb)))
225 && GET_CODE (PATTERN (last_insn)) == USE
226 && GET_CODE ((ret_reg = XEXP (PATTERN (last_insn), 0))) == REG)
228 int ret_start = REGNO (ret_reg);
229 int nregs = hard_regno_nregs[ret_start][GET_MODE (ret_reg)];
230 int ret_end = ret_start + nregs;
231 bool short_block = false;
232 bool multi_reg_return = false;
233 bool forced_late_switch = false;
234 rtx before_return_copy;
238 rtx return_copy = PREV_INSN (last_insn);
239 rtx return_copy_pat, copy_reg;
240 int copy_start, copy_num;
241 int j;
243 if (NONDEBUG_INSN_P (return_copy))
245 /* When using SJLJ exceptions, the call to the
246 unregister function is inserted between the
247 clobber of the return value and the copy.
248 We do not want to split the block before this
249 or any other call; if we have not found the
250 copy yet, the copy must have been deleted. */
251 if (CALL_P (return_copy))
253 short_block = true;
254 break;
256 return_copy_pat = PATTERN (return_copy);
257 switch (GET_CODE (return_copy_pat))
259 case USE:
260 /* Skip USEs of multiple return registers.
261 __builtin_apply pattern is also handled here. */
262 if (GET_CODE (XEXP (return_copy_pat, 0)) == REG
263 && (targetm.calls.function_value_regno_p
264 (REGNO (XEXP (return_copy_pat, 0)))))
266 multi_reg_return = true;
267 last_insn = return_copy;
268 continue;
270 break;
272 case ASM_OPERANDS:
273 /* Skip barrier insns. */
274 if (!MEM_VOLATILE_P (return_copy_pat))
275 break;
277 /* Fall through. */
279 case ASM_INPUT:
280 case UNSPEC_VOLATILE:
281 last_insn = return_copy;
282 continue;
284 default:
285 break;
288 /* If the return register is not (in its entirety)
289 likely spilled, the return copy might be
290 partially or completely optimized away. */
291 return_copy_pat = single_set (return_copy);
292 if (!return_copy_pat)
294 return_copy_pat = PATTERN (return_copy);
295 if (GET_CODE (return_copy_pat) != CLOBBER)
296 break;
297 else if (!optimize)
299 /* This might be (clobber (reg [<result>]))
300 when not optimizing. Then check if
301 the previous insn is the clobber for
302 the return register. */
303 copy_reg = SET_DEST (return_copy_pat);
304 if (GET_CODE (copy_reg) == REG
305 && !HARD_REGISTER_NUM_P (REGNO (copy_reg)))
307 if (INSN_P (PREV_INSN (return_copy)))
309 return_copy = PREV_INSN (return_copy);
310 return_copy_pat = PATTERN (return_copy);
311 if (GET_CODE (return_copy_pat) != CLOBBER)
312 break;
317 copy_reg = SET_DEST (return_copy_pat);
318 if (GET_CODE (copy_reg) == REG)
319 copy_start = REGNO (copy_reg);
320 else if (GET_CODE (copy_reg) == SUBREG
321 && GET_CODE (SUBREG_REG (copy_reg)) == REG)
322 copy_start = REGNO (SUBREG_REG (copy_reg));
323 else
325 /* When control reaches end of non-void function,
326 there are no return copy insns at all. This
327 avoids an ice on that invalid function. */
328 if (ret_start + nregs == ret_end)
329 short_block = true;
330 break;
332 if (!targetm.calls.function_value_regno_p (copy_start))
333 copy_num = 0;
334 else
335 copy_num
336 = hard_regno_nregs[copy_start][GET_MODE (copy_reg)];
338 /* If the return register is not likely spilled, - as is
339 the case for floating point on SH4 - then it might
340 be set by an arithmetic operation that needs a
341 different mode than the exit block. */
342 for (j = n_entities - 1; j >= 0; j--)
344 int e = entity_map[j];
345 int mode =
346 targetm.mode_switching.needed (e, return_copy);
348 if (mode != num_modes[e]
349 && mode != targetm.mode_switching.exit (e))
350 break;
352 if (j >= 0)
354 /* __builtin_return emits a sequence of loads to all
355 return registers. One of them might require
356 another mode than MODE_EXIT, even if it is
357 unrelated to the return value, so we want to put
358 the final mode switch after it. */
359 if (multi_reg_return
360 && targetm.calls.function_value_regno_p
361 (copy_start))
362 forced_late_switch = true;
364 /* For the SH4, floating point loads depend on fpscr,
365 thus we might need to put the final mode switch
366 after the return value copy. That is still OK,
367 because a floating point return value does not
368 conflict with address reloads. */
369 if (copy_start >= ret_start
370 && copy_start + copy_num <= ret_end
371 && OBJECT_P (SET_SRC (return_copy_pat)))
372 forced_late_switch = true;
373 break;
375 if (copy_num == 0)
377 last_insn = return_copy;
378 continue;
381 if (copy_start >= ret_start
382 && copy_start + copy_num <= ret_end)
383 nregs -= copy_num;
384 else if (!multi_reg_return
385 || !targetm.calls.function_value_regno_p
386 (copy_start))
387 break;
388 last_insn = return_copy;
390 /* ??? Exception handling can lead to the return value
391 copy being already separated from the return value use,
392 as in unwind-dw2.c .
393 Similarly, conditionally returning without a value,
394 and conditionally using builtin_return can lead to an
395 isolated use. */
396 if (return_copy == BB_HEAD (src_bb))
398 short_block = true;
399 break;
401 last_insn = return_copy;
403 while (nregs);
405 /* If we didn't see a full return value copy, verify that there
406 is a plausible reason for this. If some, but not all of the
407 return register is likely spilled, we can expect that there
408 is a copy for the likely spilled part. */
409 gcc_assert (!nregs
410 || forced_late_switch
411 || short_block
412 || !(targetm.class_likely_spilled_p
413 (REGNO_REG_CLASS (ret_start)))
414 || (nregs
415 != hard_regno_nregs[ret_start][GET_MODE (ret_reg)])
416 /* For multi-hard-register floating point
417 values, sometimes the likely-spilled part
418 is ordinarily copied first, then the other
419 part is set with an arithmetic operation.
420 This doesn't actually cause reload
421 failures, so let it pass. */
422 || (GET_MODE_CLASS (GET_MODE (ret_reg)) != MODE_INT
423 && nregs != 1));
425 if (!NOTE_INSN_BASIC_BLOCK_P (last_insn))
427 before_return_copy
428 = emit_note_before (NOTE_INSN_DELETED, last_insn);
429 /* Instructions preceding LAST_INSN in the same block might
430 require a different mode than MODE_EXIT, so if we might
431 have such instructions, keep them in a separate block
432 from pre_exit. */
433 src_bb = split_block (src_bb,
434 PREV_INSN (before_return_copy))->dest;
436 else
437 before_return_copy = last_insn;
438 pre_exit = split_block (src_bb, before_return_copy)->src;
440 else
442 pre_exit = split_edge (eg);
446 return pre_exit;
449 /* Find all insns that need a particular mode setting, and insert the
450 necessary mode switches. Return true if we did work. */
452 static int
453 optimize_mode_switching (void)
455 rtx insn;
456 int e;
457 basic_block bb;
458 int need_commit = 0;
459 sbitmap *kill;
460 struct edge_list *edge_list;
461 static const int num_modes[] = NUM_MODES_FOR_MODE_SWITCHING;
462 #define N_ENTITIES ARRAY_SIZE (num_modes)
463 int entity_map[N_ENTITIES];
464 struct bb_info *bb_info[N_ENTITIES];
465 int i, j;
466 int n_entities;
467 int max_num_modes = 0;
468 bool emitted ATTRIBUTE_UNUSED = false;
469 basic_block post_entry = 0;
470 basic_block pre_exit = 0;
472 for (e = N_ENTITIES - 1, n_entities = 0; e >= 0; e--)
473 if (OPTIMIZE_MODE_SWITCHING (e))
475 int entry_exit_extra = 0;
477 /* Create the list of segments within each basic block.
478 If NORMAL_MODE is defined, allow for two extra
479 blocks split from the entry and exit block. */
480 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
481 entry_exit_extra = 3;
483 bb_info[n_entities]
484 = XCNEWVEC (struct bb_info,
485 last_basic_block_for_fn (cfun) + entry_exit_extra);
486 entity_map[n_entities++] = e;
487 if (num_modes[e] > max_num_modes)
488 max_num_modes = num_modes[e];
491 if (! n_entities)
492 return 0;
494 /* Make sure if MODE_ENTRY is defined the MODE_EXIT is defined and vice versa. */
495 gcc_assert ((targetm.mode_switching.entry && targetm.mode_switching.exit)
496 || (!targetm.mode_switching.entry && !targetm.mode_switching.exit));
498 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
500 /* Split the edge from the entry block, so that we can note that
501 there NORMAL_MODE is supplied. */
502 post_entry = split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
503 pre_exit = create_pre_exit (n_entities, entity_map, num_modes);
506 df_analyze ();
508 /* Create the bitmap vectors. */
510 antic = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_entities);
511 transp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_entities);
512 comp = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_entities);
514 bitmap_vector_ones (transp, last_basic_block_for_fn (cfun));
516 for (j = n_entities - 1; j >= 0; j--)
518 int e = entity_map[j];
519 int no_mode = num_modes[e];
520 struct bb_info *info = bb_info[j];
522 /* Determine what the first use (if any) need for a mode of entity E is.
523 This will be the mode that is anticipatable for this block.
524 Also compute the initial transparency settings. */
525 FOR_EACH_BB_FN (bb, cfun)
527 struct seginfo *ptr;
528 int last_mode = no_mode;
529 bool any_set_required = false;
530 HARD_REG_SET live_now;
532 REG_SET_TO_HARD_REG_SET (live_now, df_get_live_in (bb));
534 /* Pretend the mode is clobbered across abnormal edges. */
536 edge_iterator ei;
537 edge e;
538 FOR_EACH_EDGE (e, ei, bb->preds)
539 if (e->flags & EDGE_COMPLEX)
540 break;
541 if (e)
543 rtx ins_pos = BB_HEAD (bb);
544 if (LABEL_P (ins_pos))
545 ins_pos = NEXT_INSN (ins_pos);
546 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (ins_pos));
547 if (ins_pos != BB_END (bb))
548 ins_pos = NEXT_INSN (ins_pos);
549 ptr = new_seginfo (no_mode, ins_pos, bb->index, live_now);
550 add_seginfo (info + bb->index, ptr);
551 bitmap_clear_bit (transp[bb->index], j);
555 FOR_BB_INSNS (bb, insn)
557 if (INSN_P (insn))
559 int mode = targetm.mode_switching.needed (e, insn);
560 rtx link;
562 if (mode != no_mode && mode != last_mode)
564 any_set_required = true;
565 last_mode = mode;
566 ptr = new_seginfo (mode, insn, bb->index, live_now);
567 add_seginfo (info + bb->index, ptr);
568 bitmap_clear_bit (transp[bb->index], j);
571 if (targetm.mode_switching.after)
572 last_mode = targetm.mode_switching.after (e, last_mode, insn);
574 /* Update LIVE_NOW. */
575 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
576 if (REG_NOTE_KIND (link) == REG_DEAD)
577 reg_dies (XEXP (link, 0), &live_now);
579 note_stores (PATTERN (insn), reg_becomes_live, &live_now);
580 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
581 if (REG_NOTE_KIND (link) == REG_UNUSED)
582 reg_dies (XEXP (link, 0), &live_now);
586 info[bb->index].computing = last_mode;
587 /* Check for blocks without ANY mode requirements.
588 N.B. because of MODE_AFTER, last_mode might still
589 be different from no_mode, in which case we need to
590 mark the block as nontransparent. */
591 if (!any_set_required)
593 ptr = new_seginfo (no_mode, BB_END (bb), bb->index, live_now);
594 add_seginfo (info + bb->index, ptr);
595 if (last_mode != no_mode)
596 bitmap_clear_bit (transp[bb->index], j);
599 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
601 int mode = targetm.mode_switching.entry (e);
603 if (mode != no_mode)
605 bb = post_entry;
607 /* By always making this nontransparent, we save
608 an extra check in make_preds_opaque. We also
609 need this to avoid confusing pre_edge_lcm when
610 antic is cleared but transp and comp are set. */
611 bitmap_clear_bit (transp[bb->index], j);
613 /* Insert a fake computing definition of MODE into entry
614 blocks which compute no mode. This represents the mode on
615 entry. */
616 info[bb->index].computing = mode;
618 if (pre_exit)
619 info[pre_exit->index].seginfo->mode =
620 targetm.mode_switching.exit (e);
625 kill = sbitmap_vector_alloc (last_basic_block_for_fn (cfun), n_entities);
626 for (i = 0; i < max_num_modes; i++)
628 int current_mode[N_ENTITIES];
629 sbitmap *del;
630 sbitmap *insert;
632 /* Set the anticipatable and computing arrays. */
633 bitmap_vector_clear (antic, last_basic_block_for_fn (cfun));
634 bitmap_vector_clear (comp, last_basic_block_for_fn (cfun));
635 for (j = n_entities - 1; j >= 0; j--)
637 int m = current_mode[j] =
638 targetm.mode_switching.priority (entity_map[j], i);
639 struct bb_info *info = bb_info[j];
641 FOR_EACH_BB_FN (bb, cfun)
643 if (info[bb->index].seginfo->mode == m)
644 bitmap_set_bit (antic[bb->index], j);
646 if (info[bb->index].computing == m)
647 bitmap_set_bit (comp[bb->index], j);
651 /* Calculate the optimal locations for the
652 placement mode switches to modes with priority I. */
654 FOR_EACH_BB_FN (bb, cfun)
655 bitmap_not (kill[bb->index], transp[bb->index]);
656 edge_list = pre_edge_lcm (n_entities, transp, comp, antic,
657 kill, &insert, &del);
659 for (j = n_entities - 1; j >= 0; j--)
661 /* Insert all mode sets that have been inserted by lcm. */
662 int no_mode = num_modes[entity_map[j]];
664 /* Wherever we have moved a mode setting upwards in the flow graph,
665 the blocks between the new setting site and the now redundant
666 computation ceases to be transparent for any lower-priority
667 mode of the same entity. First set the aux field of each
668 insertion site edge non-transparent, then propagate the new
669 non-transparency from the redundant computation upwards till
670 we hit an insertion site or an already non-transparent block. */
671 for (e = NUM_EDGES (edge_list) - 1; e >= 0; e--)
673 edge eg = INDEX_EDGE (edge_list, e);
674 int mode;
675 basic_block src_bb;
676 HARD_REG_SET live_at_edge;
677 rtx mode_set;
679 eg->aux = 0;
681 if (! bitmap_bit_p (insert[e], j))
682 continue;
684 eg->aux = (void *)1;
686 mode = current_mode[j];
687 src_bb = eg->src;
689 REG_SET_TO_HARD_REG_SET (live_at_edge, df_get_live_out (src_bb));
691 rtl_profile_for_edge (eg);
692 start_sequence ();
693 targetm.mode_switching.emit (entity_map[j], mode, live_at_edge);
694 mode_set = get_insns ();
695 end_sequence ();
696 default_rtl_profile ();
698 /* Do not bother to insert empty sequence. */
699 if (mode_set == NULL_RTX)
700 continue;
702 /* We should not get an abnormal edge here. */
703 gcc_assert (! (eg->flags & EDGE_ABNORMAL));
705 need_commit = 1;
706 insert_insn_on_edge (mode_set, eg);
709 FOR_EACH_BB_REVERSE_FN (bb, cfun)
710 if (bitmap_bit_p (del[bb->index], j))
712 make_preds_opaque (bb, j);
713 /* Cancel the 'deleted' mode set. */
714 bb_info[j][bb->index].seginfo->mode = no_mode;
718 sbitmap_vector_free (del);
719 sbitmap_vector_free (insert);
720 clear_aux_for_edges ();
721 free_edge_list (edge_list);
724 /* Now output the remaining mode sets in all the segments. */
725 for (j = n_entities - 1; j >= 0; j--)
727 int no_mode = num_modes[entity_map[j]];
729 FOR_EACH_BB_REVERSE_FN (bb, cfun)
731 struct seginfo *ptr, *next;
732 for (ptr = bb_info[j][bb->index].seginfo; ptr; ptr = next)
734 next = ptr->next;
735 if (ptr->mode != no_mode)
737 rtx mode_set;
739 rtl_profile_for_bb (bb);
740 start_sequence ();
741 targetm.mode_switching.emit (entity_map[j],
742 ptr->mode,
743 ptr->regs_live);
744 mode_set = get_insns ();
745 end_sequence ();
747 /* Insert MODE_SET only if it is nonempty. */
748 if (mode_set != NULL_RTX)
750 emitted = true;
751 if (NOTE_INSN_BASIC_BLOCK_P (ptr->insn_ptr))
752 /* We need to emit the insns in a FIFO-like manner,
753 i.e. the first to be emitted at our insertion
754 point ends up first in the instruction steam.
755 Because we made sure that NOTE_INSN_BASIC_BLOCK is
756 only used for initially empty basic blocks, we
757 can achieve this by appending at the end of
758 the block. */
759 emit_insn_after
760 (mode_set, BB_END (NOTE_BASIC_BLOCK (ptr->insn_ptr)));
761 else
762 emit_insn_before (mode_set, ptr->insn_ptr);
765 default_rtl_profile ();
768 free (ptr);
772 free (bb_info[j]);
775 /* Finished. Free up all the things we've allocated. */
776 sbitmap_vector_free (kill);
777 sbitmap_vector_free (antic);
778 sbitmap_vector_free (transp);
779 sbitmap_vector_free (comp);
781 if (need_commit)
782 commit_edge_insertions ();
784 if (targetm.mode_switching.entry && targetm.mode_switching.exit)
785 cleanup_cfg (CLEANUP_NO_INSN_DEL);
786 else if (!need_commit && !emitted)
787 return 0;
789 return 1;
792 #endif /* OPTIMIZE_MODE_SWITCHING */
794 namespace {
796 const pass_data pass_data_mode_switching =
798 RTL_PASS, /* type */
799 "mode_sw", /* name */
800 OPTGROUP_NONE, /* optinfo_flags */
801 true, /* has_execute */
802 TV_MODE_SWITCH, /* tv_id */
803 0, /* properties_required */
804 0, /* properties_provided */
805 0, /* properties_destroyed */
806 0, /* todo_flags_start */
807 TODO_df_finish, /* todo_flags_finish */
810 class pass_mode_switching : public rtl_opt_pass
812 public:
813 pass_mode_switching (gcc::context *ctxt)
814 : rtl_opt_pass (pass_data_mode_switching, ctxt)
817 /* opt_pass methods: */
818 /* The epiphany backend creates a second instance of this pass, so we need
819 a clone method. */
820 opt_pass * clone () { return new pass_mode_switching (m_ctxt); }
821 virtual bool gate (function *)
823 #ifdef OPTIMIZE_MODE_SWITCHING
824 return true;
825 #else
826 return false;
827 #endif
830 virtual unsigned int execute (function *)
832 #ifdef OPTIMIZE_MODE_SWITCHING
833 optimize_mode_switching ();
834 #endif /* OPTIMIZE_MODE_SWITCHING */
835 return 0;
838 }; // class pass_mode_switching
840 } // anon namespace
842 rtl_opt_pass *
843 make_pass_mode_switching (gcc::context *ctxt)
845 return new pass_mode_switching (ctxt);