2017-11-29 Vladimir Makarov <vmakarov@redhat.com>
[official-gcc.git] / gcc / combine.c
blob0ce07511a3e351fd01d8f80ad6fe55298defc227
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This module is essentially the "combiner" phase of the U. of Arizona
21 Portable Optimizer, but redone to work on our list-structured
22 representation for RTL instead of their string representation.
24 The LOG_LINKS of each insn identify the most recent assignment
25 to each REG used in the insn. It is a list of previous insns,
26 each of which contains a SET for a REG that is used in this insn
27 and not used or set in between. LOG_LINKs never cross basic blocks.
28 They were set up by the preceding pass (lifetime analysis).
30 We try to combine each pair of insns joined by a logical link.
31 We also try to combine triplets of insns A, B and C when C has
32 a link back to B and B has a link back to A. Likewise for a
33 small number of quadruplets of insns A, B, C and D for which
34 there's high likelihood of success.
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "backend.h"
82 #include "target.h"
83 #include "rtl.h"
84 #include "tree.h"
85 #include "cfghooks.h"
86 #include "predict.h"
87 #include "df.h"
88 #include "memmodel.h"
89 #include "tm_p.h"
90 #include "optabs.h"
91 #include "regs.h"
92 #include "emit-rtl.h"
93 #include "recog.h"
94 #include "cgraph.h"
95 #include "stor-layout.h"
96 #include "cfgrtl.h"
97 #include "cfgcleanup.h"
98 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
99 #include "explow.h"
100 #include "insn-attr.h"
101 #include "rtlhooks-def.h"
102 #include "params.h"
103 #include "tree-pass.h"
104 #include "valtrack.h"
105 #include "rtl-iter.h"
106 #include "print-rtl.h"
108 /* Number of attempts to combine instructions in this function. */
110 static int combine_attempts;
112 /* Number of attempts that got as far as substitution in this function. */
114 static int combine_merges;
116 /* Number of instructions combined with added SETs in this function. */
118 static int combine_extras;
120 /* Number of instructions combined in this function. */
122 static int combine_successes;
124 /* Totals over entire compilation. */
126 static int total_attempts, total_merges, total_extras, total_successes;
128 /* combine_instructions may try to replace the right hand side of the
129 second instruction with the value of an associated REG_EQUAL note
130 before throwing it at try_combine. That is problematic when there
131 is a REG_DEAD note for a register used in the old right hand side
132 and can cause distribute_notes to do wrong things. This is the
133 second instruction if it has been so modified, null otherwise. */
135 static rtx_insn *i2mod;
137 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139 static rtx i2mod_old_rhs;
141 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143 static rtx i2mod_new_rhs;
145 struct reg_stat_type {
146 /* Record last point of death of (hard or pseudo) register n. */
147 rtx_insn *last_death;
149 /* Record last point of modification of (hard or pseudo) register n. */
150 rtx_insn *last_set;
152 /* The next group of fields allows the recording of the last value assigned
153 to (hard or pseudo) register n. We use this information to see if an
154 operation being processed is redundant given a prior operation performed
155 on the register. For example, an `and' with a constant is redundant if
156 all the zero bits are already known to be turned off.
158 We use an approach similar to that used by cse, but change it in the
159 following ways:
161 (1) We do not want to reinitialize at each label.
162 (2) It is useful, but not critical, to know the actual value assigned
163 to a register. Often just its form is helpful.
165 Therefore, we maintain the following fields:
167 last_set_value the last value assigned
168 last_set_label records the value of label_tick when the
169 register was assigned
170 last_set_table_tick records the value of label_tick when a
171 value using the register is assigned
172 last_set_invalid set to nonzero when it is not valid
173 to use the value of this register in some
174 register's value
176 To understand the usage of these tables, it is important to understand
177 the distinction between the value in last_set_value being valid and
178 the register being validly contained in some other expression in the
179 table.
181 (The next two parameters are out of date).
183 reg_stat[i].last_set_value is valid if it is nonzero, and either
184 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186 Register I may validly appear in any expression returned for the value
187 of another register if reg_n_sets[i] is 1. It may also appear in the
188 value for register J if reg_stat[j].last_set_invalid is zero, or
189 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191 If an expression is found in the table containing a register which may
192 not validly appear in an expression, the register is replaced by
193 something that won't match, (clobber (const_int 0)). */
195 /* Record last value assigned to (hard or pseudo) register n. */
197 rtx last_set_value;
199 /* Record the value of label_tick when an expression involving register n
200 is placed in last_set_value. */
202 int last_set_table_tick;
204 /* Record the value of label_tick when the value for register n is placed in
205 last_set_value. */
207 int last_set_label;
209 /* These fields are maintained in parallel with last_set_value and are
210 used to store the mode in which the register was last set, the bits
211 that were known to be zero when it was last set, and the number of
212 sign bits copies it was known to have when it was last set. */
214 unsigned HOST_WIDE_INT last_set_nonzero_bits;
215 char last_set_sign_bit_copies;
216 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218 /* Set nonzero if references to register n in expressions should not be
219 used. last_set_invalid is set nonzero when this register is being
220 assigned to and last_set_table_tick == label_tick. */
222 char last_set_invalid;
224 /* Some registers that are set more than once and used in more than one
225 basic block are nevertheless always set in similar ways. For example,
226 a QImode register may be loaded from memory in two places on a machine
227 where byte loads zero extend.
229 We record in the following fields if a register has some leading bits
230 that are always equal to the sign bit, and what we know about the
231 nonzero bits of a register, specifically which bits are known to be
232 zero.
234 If an entry is zero, it means that we don't know anything special. */
236 unsigned char sign_bit_copies;
238 unsigned HOST_WIDE_INT nonzero_bits;
240 /* Record the value of the label_tick when the last truncation
241 happened. The field truncated_to_mode is only valid if
242 truncation_label == label_tick. */
244 int truncation_label;
246 /* Record the last truncation seen for this register. If truncation
247 is not a nop to this mode we might be able to save an explicit
248 truncation if we know that value already contains a truncated
249 value. */
251 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
255 static vec<reg_stat_type> reg_stat;
257 /* One plus the highest pseudo for which we track REG_N_SETS.
258 regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
259 but during combine_split_insns new pseudos can be created. As we don't have
260 updated DF information in that case, it is hard to initialize the array
261 after growing. The combiner only cares about REG_N_SETS (regno) == 1,
262 so instead of growing the arrays, just assume all newly created pseudos
263 during combine might be set multiple times. */
265 static unsigned int reg_n_sets_max;
267 /* Record the luid of the last insn that invalidated memory
268 (anything that writes memory, and subroutine calls, but not pushes). */
270 static int mem_last_set;
272 /* Record the luid of the last CALL_INSN
273 so we can tell whether a potential combination crosses any calls. */
275 static int last_call_luid;
277 /* When `subst' is called, this is the insn that is being modified
278 (by combining in a previous insn). The PATTERN of this insn
279 is still the old pattern partially modified and it should not be
280 looked at, but this may be used to examine the successors of the insn
281 to judge whether a simplification is valid. */
283 static rtx_insn *subst_insn;
285 /* This is the lowest LUID that `subst' is currently dealing with.
286 get_last_value will not return a value if the register was set at or
287 after this LUID. If not for this mechanism, we could get confused if
288 I2 or I1 in try_combine were an insn that used the old value of a register
289 to obtain a new value. In that case, we might erroneously get the
290 new value of the register when we wanted the old one. */
292 static int subst_low_luid;
294 /* This contains any hard registers that are used in newpat; reg_dead_at_p
295 must consider all these registers to be always live. */
297 static HARD_REG_SET newpat_used_regs;
299 /* This is an insn to which a LOG_LINKS entry has been added. If this
300 insn is the earlier than I2 or I3, combine should rescan starting at
301 that location. */
303 static rtx_insn *added_links_insn;
305 /* And similarly, for notes. */
307 static rtx_insn *added_notes_insn;
309 /* Basic block in which we are performing combines. */
310 static basic_block this_basic_block;
311 static bool optimize_this_for_speed_p;
314 /* Length of the currently allocated uid_insn_cost array. */
316 static int max_uid_known;
318 /* The following array records the insn_cost for every insn
319 in the instruction stream. */
321 static int *uid_insn_cost;
323 /* The following array records the LOG_LINKS for every insn in the
324 instruction stream as struct insn_link pointers. */
326 struct insn_link {
327 rtx_insn *insn;
328 unsigned int regno;
329 struct insn_link *next;
332 static struct insn_link **uid_log_links;
334 static inline int
335 insn_uid_check (const_rtx insn)
337 int uid = INSN_UID (insn);
338 gcc_checking_assert (uid <= max_uid_known);
339 return uid;
342 #define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
343 #define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
345 #define FOR_EACH_LOG_LINK(L, INSN) \
346 for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
348 /* Links for LOG_LINKS are allocated from this obstack. */
350 static struct obstack insn_link_obstack;
352 /* Allocate a link. */
354 static inline struct insn_link *
355 alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
357 struct insn_link *l
358 = (struct insn_link *) obstack_alloc (&insn_link_obstack,
359 sizeof (struct insn_link));
360 l->insn = insn;
361 l->regno = regno;
362 l->next = next;
363 return l;
366 /* Incremented for each basic block. */
368 static int label_tick;
370 /* Reset to label_tick for each extended basic block in scanning order. */
372 static int label_tick_ebb_start;
374 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
375 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
377 static scalar_int_mode nonzero_bits_mode;
379 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
380 be safely used. It is zero while computing them and after combine has
381 completed. This former test prevents propagating values based on
382 previously set values, which can be incorrect if a variable is modified
383 in a loop. */
385 static int nonzero_sign_valid;
388 /* Record one modification to rtl structure
389 to be undone by storing old_contents into *where. */
391 enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
393 struct undo
395 struct undo *next;
396 enum undo_kind kind;
397 union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
398 union { rtx *r; int *i; struct insn_link **l; } where;
401 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
402 num_undo says how many are currently recorded.
404 other_insn is nonzero if we have modified some other insn in the process
405 of working on subst_insn. It must be verified too. */
407 struct undobuf
409 struct undo *undos;
410 struct undo *frees;
411 rtx_insn *other_insn;
414 static struct undobuf undobuf;
416 /* Number of times the pseudo being substituted for
417 was found and replaced. */
419 static int n_occurrences;
421 static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
422 scalar_int_mode,
423 unsigned HOST_WIDE_INT *);
424 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
425 scalar_int_mode,
426 unsigned int *);
427 static void do_SUBST (rtx *, rtx);
428 static void do_SUBST_INT (int *, int);
429 static void init_reg_last (void);
430 static void setup_incoming_promotions (rtx_insn *);
431 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
432 static int cant_combine_insn_p (rtx_insn *);
433 static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
434 rtx_insn *, rtx_insn *, rtx *, rtx *);
435 static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
436 static int contains_muldiv (rtx);
437 static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
438 int *, rtx_insn *);
439 static void undo_all (void);
440 static void undo_commit (void);
441 static rtx *find_split_point (rtx *, rtx_insn *, bool);
442 static rtx subst (rtx, rtx, rtx, int, int, int);
443 static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
444 static rtx simplify_if_then_else (rtx);
445 static rtx simplify_set (rtx);
446 static rtx simplify_logical (rtx);
447 static rtx expand_compound_operation (rtx);
448 static const_rtx expand_field_assignment (const_rtx);
449 static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
450 rtx, unsigned HOST_WIDE_INT, int, int, int);
451 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
452 unsigned HOST_WIDE_INT *);
453 static rtx canon_reg_for_combine (rtx, rtx);
454 static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
455 scalar_int_mode, unsigned HOST_WIDE_INT, int);
456 static rtx force_to_mode (rtx, machine_mode,
457 unsigned HOST_WIDE_INT, int);
458 static rtx if_then_else_cond (rtx, rtx *, rtx *);
459 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
460 static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
461 static rtx make_field_assignment (rtx);
462 static rtx apply_distributive_law (rtx);
463 static rtx distribute_and_simplify_rtx (rtx, int);
464 static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
465 unsigned HOST_WIDE_INT);
466 static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
467 unsigned HOST_WIDE_INT);
468 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
469 HOST_WIDE_INT, machine_mode, int *);
470 static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
471 static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
472 int);
473 static int recog_for_combine (rtx *, rtx_insn *, rtx *);
474 static rtx gen_lowpart_for_combine (machine_mode, rtx);
475 static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
476 rtx, rtx *);
477 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
478 static void update_table_tick (rtx);
479 static void record_value_for_reg (rtx, rtx_insn *, rtx);
480 static void check_promoted_subreg (rtx_insn *, rtx);
481 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
482 static void record_dead_and_set_regs (rtx_insn *);
483 static int get_last_value_validate (rtx *, rtx_insn *, int, int);
484 static rtx get_last_value (const_rtx);
485 static int use_crosses_set_p (const_rtx, int);
486 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
487 static int reg_dead_at_p (rtx, rtx_insn *);
488 static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
489 static int reg_bitfield_target_p (rtx, rtx);
490 static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
491 static void distribute_links (struct insn_link *);
492 static void mark_used_regs_combine (rtx);
493 static void record_promoted_value (rtx_insn *, rtx);
494 static bool unmentioned_reg_p (rtx, rtx);
495 static void record_truncated_values (rtx *, void *);
496 static bool reg_truncated_to_mode (machine_mode, const_rtx);
497 static rtx gen_lowpart_or_truncate (machine_mode, rtx);
500 /* It is not safe to use ordinary gen_lowpart in combine.
501 See comments in gen_lowpart_for_combine. */
502 #undef RTL_HOOKS_GEN_LOWPART
503 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
505 /* Our implementation of gen_lowpart never emits a new pseudo. */
506 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
507 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
509 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
510 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
512 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
513 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
515 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
516 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
518 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
521 /* Convenience wrapper for the canonicalize_comparison target hook.
522 Target hooks cannot use enum rtx_code. */
523 static inline void
524 target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
525 bool op0_preserve_value)
527 int code_int = (int)*code;
528 targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
529 *code = (enum rtx_code)code_int;
532 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
533 PATTERN can not be split. Otherwise, it returns an insn sequence.
534 This is a wrapper around split_insns which ensures that the
535 reg_stat vector is made larger if the splitter creates a new
536 register. */
538 static rtx_insn *
539 combine_split_insns (rtx pattern, rtx_insn *insn)
541 rtx_insn *ret;
542 unsigned int nregs;
544 ret = split_insns (pattern, insn);
545 nregs = max_reg_num ();
546 if (nregs > reg_stat.length ())
547 reg_stat.safe_grow_cleared (nregs);
548 return ret;
551 /* This is used by find_single_use to locate an rtx in LOC that
552 contains exactly one use of DEST, which is typically either a REG
553 or CC0. It returns a pointer to the innermost rtx expression
554 containing DEST. Appearances of DEST that are being used to
555 totally replace it are not counted. */
557 static rtx *
558 find_single_use_1 (rtx dest, rtx *loc)
560 rtx x = *loc;
561 enum rtx_code code = GET_CODE (x);
562 rtx *result = NULL;
563 rtx *this_result;
564 int i;
565 const char *fmt;
567 switch (code)
569 case CONST:
570 case LABEL_REF:
571 case SYMBOL_REF:
572 CASE_CONST_ANY:
573 case CLOBBER:
574 return 0;
576 case SET:
577 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
578 of a REG that occupies all of the REG, the insn uses DEST if
579 it is mentioned in the destination or the source. Otherwise, we
580 need just check the source. */
581 if (GET_CODE (SET_DEST (x)) != CC0
582 && GET_CODE (SET_DEST (x)) != PC
583 && !REG_P (SET_DEST (x))
584 && ! (GET_CODE (SET_DEST (x)) == SUBREG
585 && REG_P (SUBREG_REG (SET_DEST (x)))
586 && !read_modify_subreg_p (SET_DEST (x))))
587 break;
589 return find_single_use_1 (dest, &SET_SRC (x));
591 case MEM:
592 case SUBREG:
593 return find_single_use_1 (dest, &XEXP (x, 0));
595 default:
596 break;
599 /* If it wasn't one of the common cases above, check each expression and
600 vector of this code. Look for a unique usage of DEST. */
602 fmt = GET_RTX_FORMAT (code);
603 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
605 if (fmt[i] == 'e')
607 if (dest == XEXP (x, i)
608 || (REG_P (dest) && REG_P (XEXP (x, i))
609 && REGNO (dest) == REGNO (XEXP (x, i))))
610 this_result = loc;
611 else
612 this_result = find_single_use_1 (dest, &XEXP (x, i));
614 if (result == NULL)
615 result = this_result;
616 else if (this_result)
617 /* Duplicate usage. */
618 return NULL;
620 else if (fmt[i] == 'E')
622 int j;
624 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
626 if (XVECEXP (x, i, j) == dest
627 || (REG_P (dest)
628 && REG_P (XVECEXP (x, i, j))
629 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
630 this_result = loc;
631 else
632 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
634 if (result == NULL)
635 result = this_result;
636 else if (this_result)
637 return NULL;
642 return result;
646 /* See if DEST, produced in INSN, is used only a single time in the
647 sequel. If so, return a pointer to the innermost rtx expression in which
648 it is used.
650 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
652 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
653 care about REG_DEAD notes or LOG_LINKS.
655 Otherwise, we find the single use by finding an insn that has a
656 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
657 only referenced once in that insn, we know that it must be the first
658 and last insn referencing DEST. */
660 static rtx *
661 find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
663 basic_block bb;
664 rtx_insn *next;
665 rtx *result;
666 struct insn_link *link;
668 if (dest == cc0_rtx)
670 next = NEXT_INSN (insn);
671 if (next == 0
672 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
673 return 0;
675 result = find_single_use_1 (dest, &PATTERN (next));
676 if (result && ploc)
677 *ploc = next;
678 return result;
681 if (!REG_P (dest))
682 return 0;
684 bb = BLOCK_FOR_INSN (insn);
685 for (next = NEXT_INSN (insn);
686 next && BLOCK_FOR_INSN (next) == bb;
687 next = NEXT_INSN (next))
688 if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
690 FOR_EACH_LOG_LINK (link, next)
691 if (link->insn == insn && link->regno == REGNO (dest))
692 break;
694 if (link)
696 result = find_single_use_1 (dest, &PATTERN (next));
697 if (ploc)
698 *ploc = next;
699 return result;
703 return 0;
706 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
707 insn. The substitution can be undone by undo_all. If INTO is already
708 set to NEWVAL, do not record this change. Because computing NEWVAL might
709 also call SUBST, we have to compute it before we put anything into
710 the undo table. */
712 static void
713 do_SUBST (rtx *into, rtx newval)
715 struct undo *buf;
716 rtx oldval = *into;
718 if (oldval == newval)
719 return;
721 /* We'd like to catch as many invalid transformations here as
722 possible. Unfortunately, there are way too many mode changes
723 that are perfectly valid, so we'd waste too much effort for
724 little gain doing the checks here. Focus on catching invalid
725 transformations involving integer constants. */
726 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
727 && CONST_INT_P (newval))
729 /* Sanity check that we're replacing oldval with a CONST_INT
730 that is a valid sign-extension for the original mode. */
731 gcc_assert (INTVAL (newval)
732 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
734 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
735 CONST_INT is not valid, because after the replacement, the
736 original mode would be gone. Unfortunately, we can't tell
737 when do_SUBST is called to replace the operand thereof, so we
738 perform this test on oldval instead, checking whether an
739 invalid replacement took place before we got here. */
740 gcc_assert (!(GET_CODE (oldval) == SUBREG
741 && CONST_INT_P (SUBREG_REG (oldval))));
742 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
743 && CONST_INT_P (XEXP (oldval, 0))));
746 if (undobuf.frees)
747 buf = undobuf.frees, undobuf.frees = buf->next;
748 else
749 buf = XNEW (struct undo);
751 buf->kind = UNDO_RTX;
752 buf->where.r = into;
753 buf->old_contents.r = oldval;
754 *into = newval;
756 buf->next = undobuf.undos, undobuf.undos = buf;
759 #define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
761 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
762 for the value of a HOST_WIDE_INT value (including CONST_INT) is
763 not safe. */
765 static void
766 do_SUBST_INT (int *into, int newval)
768 struct undo *buf;
769 int oldval = *into;
771 if (oldval == newval)
772 return;
774 if (undobuf.frees)
775 buf = undobuf.frees, undobuf.frees = buf->next;
776 else
777 buf = XNEW (struct undo);
779 buf->kind = UNDO_INT;
780 buf->where.i = into;
781 buf->old_contents.i = oldval;
782 *into = newval;
784 buf->next = undobuf.undos, undobuf.undos = buf;
787 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
789 /* Similar to SUBST, but just substitute the mode. This is used when
790 changing the mode of a pseudo-register, so that any other
791 references to the entry in the regno_reg_rtx array will change as
792 well. */
794 static void
795 do_SUBST_MODE (rtx *into, machine_mode newval)
797 struct undo *buf;
798 machine_mode oldval = GET_MODE (*into);
800 if (oldval == newval)
801 return;
803 if (undobuf.frees)
804 buf = undobuf.frees, undobuf.frees = buf->next;
805 else
806 buf = XNEW (struct undo);
808 buf->kind = UNDO_MODE;
809 buf->where.r = into;
810 buf->old_contents.m = oldval;
811 adjust_reg_mode (*into, newval);
813 buf->next = undobuf.undos, undobuf.undos = buf;
816 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
818 /* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
820 static void
821 do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
823 struct undo *buf;
824 struct insn_link * oldval = *into;
826 if (oldval == newval)
827 return;
829 if (undobuf.frees)
830 buf = undobuf.frees, undobuf.frees = buf->next;
831 else
832 buf = XNEW (struct undo);
834 buf->kind = UNDO_LINKS;
835 buf->where.l = into;
836 buf->old_contents.l = oldval;
837 *into = newval;
839 buf->next = undobuf.undos, undobuf.undos = buf;
842 #define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
844 /* Subroutine of try_combine. Determine whether the replacement patterns
845 NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
846 than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
847 that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
848 undobuf.other_insn may also both be NULL_RTX. Return false if the cost
849 of all the instructions can be estimated and the replacements are more
850 expensive than the original sequence. */
852 static bool
853 combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
854 rtx newpat, rtx newi2pat, rtx newotherpat)
856 int i0_cost, i1_cost, i2_cost, i3_cost;
857 int new_i2_cost, new_i3_cost;
858 int old_cost, new_cost;
860 /* Lookup the original insn_costs. */
861 i2_cost = INSN_COST (i2);
862 i3_cost = INSN_COST (i3);
864 if (i1)
866 i1_cost = INSN_COST (i1);
867 if (i0)
869 i0_cost = INSN_COST (i0);
870 old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
871 ? i0_cost + i1_cost + i2_cost + i3_cost : 0);
873 else
875 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
876 ? i1_cost + i2_cost + i3_cost : 0);
877 i0_cost = 0;
880 else
882 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
883 i1_cost = i0_cost = 0;
886 /* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
887 correct that. */
888 if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
889 old_cost -= i1_cost;
892 /* Calculate the replacement insn_costs. */
893 rtx tmp = PATTERN (i3);
894 PATTERN (i3) = newpat;
895 int tmpi = INSN_CODE (i3);
896 INSN_CODE (i3) = -1;
897 new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
898 PATTERN (i3) = tmp;
899 INSN_CODE (i3) = tmpi;
900 if (newi2pat)
902 tmp = PATTERN (i2);
903 PATTERN (i2) = newi2pat;
904 tmpi = INSN_CODE (i2);
905 INSN_CODE (i2) = -1;
906 new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
907 PATTERN (i2) = tmp;
908 INSN_CODE (i2) = tmpi;
909 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
910 ? new_i2_cost + new_i3_cost : 0;
912 else
914 new_cost = new_i3_cost;
915 new_i2_cost = 0;
918 if (undobuf.other_insn)
920 int old_other_cost, new_other_cost;
922 old_other_cost = INSN_COST (undobuf.other_insn);
923 tmp = PATTERN (undobuf.other_insn);
924 PATTERN (undobuf.other_insn) = newotherpat;
925 tmpi = INSN_CODE (undobuf.other_insn);
926 INSN_CODE (undobuf.other_insn) = -1;
927 new_other_cost = insn_cost (undobuf.other_insn,
928 optimize_this_for_speed_p);
929 PATTERN (undobuf.other_insn) = tmp;
930 INSN_CODE (undobuf.other_insn) = tmpi;
931 if (old_other_cost > 0 && new_other_cost > 0)
933 old_cost += old_other_cost;
934 new_cost += new_other_cost;
936 else
937 old_cost = 0;
940 /* Disallow this combination if both new_cost and old_cost are greater than
941 zero, and new_cost is greater than old cost. */
942 int reject = old_cost > 0 && new_cost > old_cost;
944 if (dump_file)
946 fprintf (dump_file, "%s combination of insns ",
947 reject ? "rejecting" : "allowing");
948 if (i0)
949 fprintf (dump_file, "%d, ", INSN_UID (i0));
950 if (i1 && INSN_UID (i1) != INSN_UID (i2))
951 fprintf (dump_file, "%d, ", INSN_UID (i1));
952 fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
954 fprintf (dump_file, "original costs ");
955 if (i0)
956 fprintf (dump_file, "%d + ", i0_cost);
957 if (i1 && INSN_UID (i1) != INSN_UID (i2))
958 fprintf (dump_file, "%d + ", i1_cost);
959 fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
961 if (newi2pat)
962 fprintf (dump_file, "replacement costs %d + %d = %d\n",
963 new_i2_cost, new_i3_cost, new_cost);
964 else
965 fprintf (dump_file, "replacement cost %d\n", new_cost);
968 if (reject)
969 return false;
971 /* Update the uid_insn_cost array with the replacement costs. */
972 INSN_COST (i2) = new_i2_cost;
973 INSN_COST (i3) = new_i3_cost;
974 if (i1)
976 INSN_COST (i1) = 0;
977 if (i0)
978 INSN_COST (i0) = 0;
981 return true;
985 /* Delete any insns that copy a register to itself. */
987 static void
988 delete_noop_moves (void)
990 rtx_insn *insn, *next;
991 basic_block bb;
993 FOR_EACH_BB_FN (bb, cfun)
995 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
997 next = NEXT_INSN (insn);
998 if (INSN_P (insn) && noop_move_p (insn))
1000 if (dump_file)
1001 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
1003 delete_insn_and_edges (insn);
1010 /* Return false if we do not want to (or cannot) combine DEF. */
1011 static bool
1012 can_combine_def_p (df_ref def)
1014 /* Do not consider if it is pre/post modification in MEM. */
1015 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
1016 return false;
1018 unsigned int regno = DF_REF_REGNO (def);
1020 /* Do not combine frame pointer adjustments. */
1021 if ((regno == FRAME_POINTER_REGNUM
1022 && (!reload_completed || frame_pointer_needed))
1023 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
1024 && regno == HARD_FRAME_POINTER_REGNUM
1025 && (!reload_completed || frame_pointer_needed))
1026 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1027 && regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
1028 return false;
1030 return true;
1033 /* Return false if we do not want to (or cannot) combine USE. */
1034 static bool
1035 can_combine_use_p (df_ref use)
1037 /* Do not consider the usage of the stack pointer by function call. */
1038 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
1039 return false;
1041 return true;
1044 /* Fill in log links field for all insns. */
1046 static void
1047 create_log_links (void)
1049 basic_block bb;
1050 rtx_insn **next_use;
1051 rtx_insn *insn;
1052 df_ref def, use;
1054 next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
1056 /* Pass through each block from the end, recording the uses of each
1057 register and establishing log links when def is encountered.
1058 Note that we do not clear next_use array in order to save time,
1059 so we have to test whether the use is in the same basic block as def.
1061 There are a few cases below when we do not consider the definition or
1062 usage -- these are taken from original flow.c did. Don't ask me why it is
1063 done this way; I don't know and if it works, I don't want to know. */
1065 FOR_EACH_BB_FN (bb, cfun)
1067 FOR_BB_INSNS_REVERSE (bb, insn)
1069 if (!NONDEBUG_INSN_P (insn))
1070 continue;
1072 /* Log links are created only once. */
1073 gcc_assert (!LOG_LINKS (insn));
1075 FOR_EACH_INSN_DEF (def, insn)
1077 unsigned int regno = DF_REF_REGNO (def);
1078 rtx_insn *use_insn;
1080 if (!next_use[regno])
1081 continue;
1083 if (!can_combine_def_p (def))
1084 continue;
1086 use_insn = next_use[regno];
1087 next_use[regno] = NULL;
1089 if (BLOCK_FOR_INSN (use_insn) != bb)
1090 continue;
1092 /* flow.c claimed:
1094 We don't build a LOG_LINK for hard registers contained
1095 in ASM_OPERANDs. If these registers get replaced,
1096 we might wind up changing the semantics of the insn,
1097 even if reload can make what appear to be valid
1098 assignments later. */
1099 if (regno < FIRST_PSEUDO_REGISTER
1100 && asm_noperands (PATTERN (use_insn)) >= 0)
1101 continue;
1103 /* Don't add duplicate links between instructions. */
1104 struct insn_link *links;
1105 FOR_EACH_LOG_LINK (links, use_insn)
1106 if (insn == links->insn && regno == links->regno)
1107 break;
1109 if (!links)
1110 LOG_LINKS (use_insn)
1111 = alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
1114 FOR_EACH_INSN_USE (use, insn)
1115 if (can_combine_use_p (use))
1116 next_use[DF_REF_REGNO (use)] = insn;
1120 free (next_use);
1123 /* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
1124 true if we found a LOG_LINK that proves that A feeds B. This only works
1125 if there are no instructions between A and B which could have a link
1126 depending on A, since in that case we would not record a link for B.
1127 We also check the implicit dependency created by a cc0 setter/user
1128 pair. */
1130 static bool
1131 insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
1133 struct insn_link *links;
1134 FOR_EACH_LOG_LINK (links, b)
1135 if (links->insn == a)
1136 return true;
1137 if (HAVE_cc0 && sets_cc0_p (a))
1138 return true;
1139 return false;
1142 /* Main entry point for combiner. F is the first insn of the function.
1143 NREGS is the first unused pseudo-reg number.
1145 Return nonzero if the combiner has turned an indirect jump
1146 instruction into a direct jump. */
1147 static int
1148 combine_instructions (rtx_insn *f, unsigned int nregs)
1150 rtx_insn *insn, *next;
1151 rtx_insn *prev;
1152 struct insn_link *links, *nextlinks;
1153 rtx_insn *first;
1154 basic_block last_bb;
1156 int new_direct_jump_p = 0;
1158 for (first = f; first && !NONDEBUG_INSN_P (first); )
1159 first = NEXT_INSN (first);
1160 if (!first)
1161 return 0;
1163 combine_attempts = 0;
1164 combine_merges = 0;
1165 combine_extras = 0;
1166 combine_successes = 0;
1168 rtl_hooks = combine_rtl_hooks;
1170 reg_stat.safe_grow_cleared (nregs);
1172 init_recog_no_volatile ();
1174 /* Allocate array for insn info. */
1175 max_uid_known = get_max_uid ();
1176 uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
1177 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1178 gcc_obstack_init (&insn_link_obstack);
1180 nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1182 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1183 problems when, for example, we have j <<= 1 in a loop. */
1185 nonzero_sign_valid = 0;
1186 label_tick = label_tick_ebb_start = 1;
1188 /* Scan all SETs and see if we can deduce anything about what
1189 bits are known to be zero for some registers and how many copies
1190 of the sign bit are known to exist for those registers.
1192 Also set any known values so that we can use it while searching
1193 for what bits are known to be set. */
1195 setup_incoming_promotions (first);
1196 /* Allow the entry block and the first block to fall into the same EBB.
1197 Conceptually the incoming promotions are assigned to the entry block. */
1198 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1200 create_log_links ();
1201 FOR_EACH_BB_FN (this_basic_block, cfun)
1203 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1204 last_call_luid = 0;
1205 mem_last_set = -1;
1207 label_tick++;
1208 if (!single_pred_p (this_basic_block)
1209 || single_pred (this_basic_block) != last_bb)
1210 label_tick_ebb_start = label_tick;
1211 last_bb = this_basic_block;
1213 FOR_BB_INSNS (this_basic_block, insn)
1214 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1216 rtx links;
1218 subst_low_luid = DF_INSN_LUID (insn);
1219 subst_insn = insn;
1221 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1222 insn);
1223 record_dead_and_set_regs (insn);
1225 if (AUTO_INC_DEC)
1226 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1227 if (REG_NOTE_KIND (links) == REG_INC)
1228 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1229 insn);
1231 /* Record the current insn_cost of this instruction. */
1232 if (NONJUMP_INSN_P (insn))
1233 INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
1234 if (dump_file)
1236 fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
1237 dump_insn_slim (dump_file, insn);
1242 nonzero_sign_valid = 1;
1244 /* Now scan all the insns in forward order. */
1245 label_tick = label_tick_ebb_start = 1;
1246 init_reg_last ();
1247 setup_incoming_promotions (first);
1248 last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1249 int max_combine = PARAM_VALUE (PARAM_MAX_COMBINE_INSNS);
1251 FOR_EACH_BB_FN (this_basic_block, cfun)
1253 rtx_insn *last_combined_insn = NULL;
1255 /* Ignore instruction combination in basic blocks that are going to
1256 be removed as unreachable anyway. See PR82386. */
1257 if (EDGE_COUNT (this_basic_block->preds) == 0)
1258 continue;
1260 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1261 last_call_luid = 0;
1262 mem_last_set = -1;
1264 label_tick++;
1265 if (!single_pred_p (this_basic_block)
1266 || single_pred (this_basic_block) != last_bb)
1267 label_tick_ebb_start = label_tick;
1268 last_bb = this_basic_block;
1270 rtl_profile_for_bb (this_basic_block);
1271 for (insn = BB_HEAD (this_basic_block);
1272 insn != NEXT_INSN (BB_END (this_basic_block));
1273 insn = next ? next : NEXT_INSN (insn))
1275 next = 0;
1276 if (!NONDEBUG_INSN_P (insn))
1277 continue;
1279 while (last_combined_insn
1280 && (!NONDEBUG_INSN_P (last_combined_insn)
1281 || last_combined_insn->deleted ()))
1282 last_combined_insn = PREV_INSN (last_combined_insn);
1283 if (last_combined_insn == NULL_RTX
1284 || BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
1285 || DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
1286 last_combined_insn = insn;
1288 /* See if we know about function return values before this
1289 insn based upon SUBREG flags. */
1290 check_promoted_subreg (insn, PATTERN (insn));
1292 /* See if we can find hardregs and subreg of pseudos in
1293 narrower modes. This could help turning TRUNCATEs
1294 into SUBREGs. */
1295 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1297 /* Try this insn with each insn it links back to. */
1299 FOR_EACH_LOG_LINK (links, insn)
1300 if ((next = try_combine (insn, links->insn, NULL,
1301 NULL, &new_direct_jump_p,
1302 last_combined_insn)) != 0)
1304 statistics_counter_event (cfun, "two-insn combine", 1);
1305 goto retry;
1308 /* Try each sequence of three linked insns ending with this one. */
1310 if (max_combine >= 3)
1311 FOR_EACH_LOG_LINK (links, insn)
1313 rtx_insn *link = links->insn;
1315 /* If the linked insn has been replaced by a note, then there
1316 is no point in pursuing this chain any further. */
1317 if (NOTE_P (link))
1318 continue;
1320 FOR_EACH_LOG_LINK (nextlinks, link)
1321 if ((next = try_combine (insn, link, nextlinks->insn,
1322 NULL, &new_direct_jump_p,
1323 last_combined_insn)) != 0)
1325 statistics_counter_event (cfun, "three-insn combine", 1);
1326 goto retry;
1330 /* Try to combine a jump insn that uses CC0
1331 with a preceding insn that sets CC0, and maybe with its
1332 logical predecessor as well.
1333 This is how we make decrement-and-branch insns.
1334 We need this special code because data flow connections
1335 via CC0 do not get entered in LOG_LINKS. */
1337 if (HAVE_cc0
1338 && JUMP_P (insn)
1339 && (prev = prev_nonnote_insn (insn)) != 0
1340 && NONJUMP_INSN_P (prev)
1341 && sets_cc0_p (PATTERN (prev)))
1343 if ((next = try_combine (insn, prev, NULL, NULL,
1344 &new_direct_jump_p,
1345 last_combined_insn)) != 0)
1346 goto retry;
1348 FOR_EACH_LOG_LINK (nextlinks, prev)
1349 if ((next = try_combine (insn, prev, nextlinks->insn,
1350 NULL, &new_direct_jump_p,
1351 last_combined_insn)) != 0)
1352 goto retry;
1355 /* Do the same for an insn that explicitly references CC0. */
1356 if (HAVE_cc0 && NONJUMP_INSN_P (insn)
1357 && (prev = prev_nonnote_insn (insn)) != 0
1358 && NONJUMP_INSN_P (prev)
1359 && sets_cc0_p (PATTERN (prev))
1360 && GET_CODE (PATTERN (insn)) == SET
1361 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1363 if ((next = try_combine (insn, prev, NULL, NULL,
1364 &new_direct_jump_p,
1365 last_combined_insn)) != 0)
1366 goto retry;
1368 FOR_EACH_LOG_LINK (nextlinks, prev)
1369 if ((next = try_combine (insn, prev, nextlinks->insn,
1370 NULL, &new_direct_jump_p,
1371 last_combined_insn)) != 0)
1372 goto retry;
1375 /* Finally, see if any of the insns that this insn links to
1376 explicitly references CC0. If so, try this insn, that insn,
1377 and its predecessor if it sets CC0. */
1378 if (HAVE_cc0)
1380 FOR_EACH_LOG_LINK (links, insn)
1381 if (NONJUMP_INSN_P (links->insn)
1382 && GET_CODE (PATTERN (links->insn)) == SET
1383 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
1384 && (prev = prev_nonnote_insn (links->insn)) != 0
1385 && NONJUMP_INSN_P (prev)
1386 && sets_cc0_p (PATTERN (prev))
1387 && (next = try_combine (insn, links->insn,
1388 prev, NULL, &new_direct_jump_p,
1389 last_combined_insn)) != 0)
1390 goto retry;
1393 /* Try combining an insn with two different insns whose results it
1394 uses. */
1395 if (max_combine >= 3)
1396 FOR_EACH_LOG_LINK (links, insn)
1397 for (nextlinks = links->next; nextlinks;
1398 nextlinks = nextlinks->next)
1399 if ((next = try_combine (insn, links->insn,
1400 nextlinks->insn, NULL,
1401 &new_direct_jump_p,
1402 last_combined_insn)) != 0)
1405 statistics_counter_event (cfun, "three-insn combine", 1);
1406 goto retry;
1409 /* Try four-instruction combinations. */
1410 if (max_combine >= 4)
1411 FOR_EACH_LOG_LINK (links, insn)
1413 struct insn_link *next1;
1414 rtx_insn *link = links->insn;
1416 /* If the linked insn has been replaced by a note, then there
1417 is no point in pursuing this chain any further. */
1418 if (NOTE_P (link))
1419 continue;
1421 FOR_EACH_LOG_LINK (next1, link)
1423 rtx_insn *link1 = next1->insn;
1424 if (NOTE_P (link1))
1425 continue;
1426 /* I0 -> I1 -> I2 -> I3. */
1427 FOR_EACH_LOG_LINK (nextlinks, link1)
1428 if ((next = try_combine (insn, link, link1,
1429 nextlinks->insn,
1430 &new_direct_jump_p,
1431 last_combined_insn)) != 0)
1433 statistics_counter_event (cfun, "four-insn combine", 1);
1434 goto retry;
1436 /* I0, I1 -> I2, I2 -> I3. */
1437 for (nextlinks = next1->next; nextlinks;
1438 nextlinks = nextlinks->next)
1439 if ((next = try_combine (insn, link, link1,
1440 nextlinks->insn,
1441 &new_direct_jump_p,
1442 last_combined_insn)) != 0)
1444 statistics_counter_event (cfun, "four-insn combine", 1);
1445 goto retry;
1449 for (next1 = links->next; next1; next1 = next1->next)
1451 rtx_insn *link1 = next1->insn;
1452 if (NOTE_P (link1))
1453 continue;
1454 /* I0 -> I2; I1, I2 -> I3. */
1455 FOR_EACH_LOG_LINK (nextlinks, link)
1456 if ((next = try_combine (insn, link, link1,
1457 nextlinks->insn,
1458 &new_direct_jump_p,
1459 last_combined_insn)) != 0)
1461 statistics_counter_event (cfun, "four-insn combine", 1);
1462 goto retry;
1464 /* I0 -> I1; I1, I2 -> I3. */
1465 FOR_EACH_LOG_LINK (nextlinks, link1)
1466 if ((next = try_combine (insn, link, link1,
1467 nextlinks->insn,
1468 &new_direct_jump_p,
1469 last_combined_insn)) != 0)
1471 statistics_counter_event (cfun, "four-insn combine", 1);
1472 goto retry;
1477 /* Try this insn with each REG_EQUAL note it links back to. */
1478 FOR_EACH_LOG_LINK (links, insn)
1480 rtx set, note;
1481 rtx_insn *temp = links->insn;
1482 if ((set = single_set (temp)) != 0
1483 && (note = find_reg_equal_equiv_note (temp)) != 0
1484 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1485 /* Avoid using a register that may already been marked
1486 dead by an earlier instruction. */
1487 && ! unmentioned_reg_p (note, SET_SRC (set))
1488 && (GET_MODE (note) == VOIDmode
1489 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1490 : (GET_MODE (SET_DEST (set)) == GET_MODE (note)
1491 && (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
1492 || (GET_MODE (XEXP (SET_DEST (set), 0))
1493 == GET_MODE (note))))))
1495 /* Temporarily replace the set's source with the
1496 contents of the REG_EQUAL note. The insn will
1497 be deleted or recognized by try_combine. */
1498 rtx orig_src = SET_SRC (set);
1499 rtx orig_dest = SET_DEST (set);
1500 if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
1501 SET_DEST (set) = XEXP (SET_DEST (set), 0);
1502 SET_SRC (set) = note;
1503 i2mod = temp;
1504 i2mod_old_rhs = copy_rtx (orig_src);
1505 i2mod_new_rhs = copy_rtx (note);
1506 next = try_combine (insn, i2mod, NULL, NULL,
1507 &new_direct_jump_p,
1508 last_combined_insn);
1509 i2mod = NULL;
1510 if (next)
1512 statistics_counter_event (cfun, "insn-with-note combine", 1);
1513 goto retry;
1515 SET_SRC (set) = orig_src;
1516 SET_DEST (set) = orig_dest;
1520 if (!NOTE_P (insn))
1521 record_dead_and_set_regs (insn);
1523 retry:
1528 default_rtl_profile ();
1529 clear_bb_flags ();
1530 new_direct_jump_p |= purge_all_dead_edges ();
1531 delete_noop_moves ();
1533 /* Clean up. */
1534 obstack_free (&insn_link_obstack, NULL);
1535 free (uid_log_links);
1536 free (uid_insn_cost);
1537 reg_stat.release ();
1540 struct undo *undo, *next;
1541 for (undo = undobuf.frees; undo; undo = next)
1543 next = undo->next;
1544 free (undo);
1546 undobuf.frees = 0;
1549 total_attempts += combine_attempts;
1550 total_merges += combine_merges;
1551 total_extras += combine_extras;
1552 total_successes += combine_successes;
1554 nonzero_sign_valid = 0;
1555 rtl_hooks = general_rtl_hooks;
1557 /* Make recognizer allow volatile MEMs again. */
1558 init_recog ();
1560 return new_direct_jump_p;
1563 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1565 static void
1566 init_reg_last (void)
1568 unsigned int i;
1569 reg_stat_type *p;
1571 FOR_EACH_VEC_ELT (reg_stat, i, p)
1572 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1575 /* Set up any promoted values for incoming argument registers. */
1577 static void
1578 setup_incoming_promotions (rtx_insn *first)
1580 tree arg;
1581 bool strictly_local = false;
1583 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1584 arg = DECL_CHAIN (arg))
1586 rtx x, reg = DECL_INCOMING_RTL (arg);
1587 int uns1, uns3;
1588 machine_mode mode1, mode2, mode3, mode4;
1590 /* Only continue if the incoming argument is in a register. */
1591 if (!REG_P (reg))
1592 continue;
1594 /* Determine, if possible, whether all call sites of the current
1595 function lie within the current compilation unit. (This does
1596 take into account the exporting of a function via taking its
1597 address, and so forth.) */
1598 strictly_local = cgraph_node::local_info (current_function_decl)->local;
1600 /* The mode and signedness of the argument before any promotions happen
1601 (equal to the mode of the pseudo holding it at that stage). */
1602 mode1 = TYPE_MODE (TREE_TYPE (arg));
1603 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1605 /* The mode and signedness of the argument after any source language and
1606 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1607 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1608 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1610 /* The mode and signedness of the argument as it is actually passed,
1611 see assign_parm_setup_reg in function.c. */
1612 mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
1613 TREE_TYPE (cfun->decl), 0);
1615 /* The mode of the register in which the argument is being passed. */
1616 mode4 = GET_MODE (reg);
1618 /* Eliminate sign extensions in the callee when:
1619 (a) A mode promotion has occurred; */
1620 if (mode1 == mode3)
1621 continue;
1622 /* (b) The mode of the register is the same as the mode of
1623 the argument as it is passed; */
1624 if (mode3 != mode4)
1625 continue;
1626 /* (c) There's no language level extension; */
1627 if (mode1 == mode2)
1629 /* (c.1) All callers are from the current compilation unit. If that's
1630 the case we don't have to rely on an ABI, we only have to know
1631 what we're generating right now, and we know that we will do the
1632 mode1 to mode2 promotion with the given sign. */
1633 else if (!strictly_local)
1634 continue;
1635 /* (c.2) The combination of the two promotions is useful. This is
1636 true when the signs match, or if the first promotion is unsigned.
1637 In the later case, (sign_extend (zero_extend x)) is the same as
1638 (zero_extend (zero_extend x)), so make sure to force UNS3 true. */
1639 else if (uns1)
1640 uns3 = true;
1641 else if (uns3)
1642 continue;
1644 /* Record that the value was promoted from mode1 to mode3,
1645 so that any sign extension at the head of the current
1646 function may be eliminated. */
1647 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1648 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1649 record_value_for_reg (reg, first, x);
1653 /* If MODE has a precision lower than PREC and SRC is a non-negative constant
1654 that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
1655 because some machines (maybe most) will actually do the sign-extension and
1656 this is the conservative approach.
1658 ??? For 2.5, try to tighten up the MD files in this regard instead of this
1659 kludge. */
1661 static rtx
1662 sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
1664 scalar_int_mode int_mode;
1665 if (CONST_INT_P (src)
1666 && is_a <scalar_int_mode> (mode, &int_mode)
1667 && GET_MODE_PRECISION (int_mode) < prec
1668 && INTVAL (src) > 0
1669 && val_signbit_known_set_p (int_mode, INTVAL (src)))
1670 src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
1672 return src;
1675 /* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
1676 and SET. */
1678 static void
1679 update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
1680 rtx x)
1682 rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
1683 unsigned HOST_WIDE_INT bits = 0;
1684 rtx reg_equal = NULL, src = SET_SRC (set);
1685 unsigned int num = 0;
1687 if (reg_equal_note)
1688 reg_equal = XEXP (reg_equal_note, 0);
1690 if (SHORT_IMMEDIATES_SIGN_EXTEND)
1692 src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
1693 if (reg_equal)
1694 reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
1697 /* Don't call nonzero_bits if it cannot change anything. */
1698 if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
1700 bits = nonzero_bits (src, nonzero_bits_mode);
1701 if (reg_equal && bits)
1702 bits &= nonzero_bits (reg_equal, nonzero_bits_mode);
1703 rsp->nonzero_bits |= bits;
1706 /* Don't call num_sign_bit_copies if it cannot change anything. */
1707 if (rsp->sign_bit_copies != 1)
1709 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1710 if (reg_equal && num != GET_MODE_PRECISION (GET_MODE (x)))
1712 unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
1713 if (num == 0 || numeq > num)
1714 num = numeq;
1716 if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
1717 rsp->sign_bit_copies = num;
1721 /* Called via note_stores. If X is a pseudo that is narrower than
1722 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1724 If we are setting only a portion of X and we can't figure out what
1725 portion, assume all bits will be used since we don't know what will
1726 be happening.
1728 Similarly, set how many bits of X are known to be copies of the sign bit
1729 at all locations in the function. This is the smallest number implied
1730 by any set of X. */
1732 static void
1733 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1735 rtx_insn *insn = (rtx_insn *) data;
1736 scalar_int_mode mode;
1738 if (REG_P (x)
1739 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1740 /* If this register is undefined at the start of the file, we can't
1741 say what its contents were. */
1742 && ! REGNO_REG_SET_P
1743 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
1744 && is_a <scalar_int_mode> (GET_MODE (x), &mode)
1745 && HWI_COMPUTABLE_MODE_P (mode))
1747 reg_stat_type *rsp = &reg_stat[REGNO (x)];
1749 if (set == 0 || GET_CODE (set) == CLOBBER)
1751 rsp->nonzero_bits = GET_MODE_MASK (mode);
1752 rsp->sign_bit_copies = 1;
1753 return;
1756 /* If this register is being initialized using itself, and the
1757 register is uninitialized in this basic block, and there are
1758 no LOG_LINKS which set the register, then part of the
1759 register is uninitialized. In that case we can't assume
1760 anything about the number of nonzero bits.
1762 ??? We could do better if we checked this in
1763 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1764 could avoid making assumptions about the insn which initially
1765 sets the register, while still using the information in other
1766 insns. We would have to be careful to check every insn
1767 involved in the combination. */
1769 if (insn
1770 && reg_referenced_p (x, PATTERN (insn))
1771 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1772 REGNO (x)))
1774 struct insn_link *link;
1776 FOR_EACH_LOG_LINK (link, insn)
1777 if (dead_or_set_p (link->insn, x))
1778 break;
1779 if (!link)
1781 rsp->nonzero_bits = GET_MODE_MASK (mode);
1782 rsp->sign_bit_copies = 1;
1783 return;
1787 /* If this is a complex assignment, see if we can convert it into a
1788 simple assignment. */
1789 set = expand_field_assignment (set);
1791 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1792 set what we know about X. */
1794 if (SET_DEST (set) == x
1795 || (paradoxical_subreg_p (SET_DEST (set))
1796 && SUBREG_REG (SET_DEST (set)) == x))
1797 update_rsp_from_reg_equal (rsp, insn, set, x);
1798 else
1800 rsp->nonzero_bits = GET_MODE_MASK (mode);
1801 rsp->sign_bit_copies = 1;
1806 /* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
1807 optionally insns that were previously combined into I3 or that will be
1808 combined into the merger of INSN and I3. The order is PRED, PRED2,
1809 INSN, SUCC, SUCC2, I3.
1811 Return 0 if the combination is not allowed for any reason.
1813 If the combination is allowed, *PDEST will be set to the single
1814 destination of INSN and *PSRC to the single source, and this function
1815 will return 1. */
1817 static int
1818 can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
1819 rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
1820 rtx *pdest, rtx *psrc)
1822 int i;
1823 const_rtx set = 0;
1824 rtx src, dest;
1825 rtx_insn *p;
1826 rtx link;
1827 bool all_adjacent = true;
1828 int (*is_volatile_p) (const_rtx);
1830 if (succ)
1832 if (succ2)
1834 if (next_active_insn (succ2) != i3)
1835 all_adjacent = false;
1836 if (next_active_insn (succ) != succ2)
1837 all_adjacent = false;
1839 else if (next_active_insn (succ) != i3)
1840 all_adjacent = false;
1841 if (next_active_insn (insn) != succ)
1842 all_adjacent = false;
1844 else if (next_active_insn (insn) != i3)
1845 all_adjacent = false;
1847 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1848 or a PARALLEL consisting of such a SET and CLOBBERs.
1850 If INSN has CLOBBER parallel parts, ignore them for our processing.
1851 By definition, these happen during the execution of the insn. When it
1852 is merged with another insn, all bets are off. If they are, in fact,
1853 needed and aren't also supplied in I3, they may be added by
1854 recog_for_combine. Otherwise, it won't match.
1856 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1857 note.
1859 Get the source and destination of INSN. If more than one, can't
1860 combine. */
1862 if (GET_CODE (PATTERN (insn)) == SET)
1863 set = PATTERN (insn);
1864 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1865 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1867 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1869 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1871 switch (GET_CODE (elt))
1873 /* This is important to combine floating point insns
1874 for the SH4 port. */
1875 case USE:
1876 /* Combining an isolated USE doesn't make sense.
1877 We depend here on combinable_i3pat to reject them. */
1878 /* The code below this loop only verifies that the inputs of
1879 the SET in INSN do not change. We call reg_set_between_p
1880 to verify that the REG in the USE does not change between
1881 I3 and INSN.
1882 If the USE in INSN was for a pseudo register, the matching
1883 insn pattern will likely match any register; combining this
1884 with any other USE would only be safe if we knew that the
1885 used registers have identical values, or if there was
1886 something to tell them apart, e.g. different modes. For
1887 now, we forgo such complicated tests and simply disallow
1888 combining of USES of pseudo registers with any other USE. */
1889 if (REG_P (XEXP (elt, 0))
1890 && GET_CODE (PATTERN (i3)) == PARALLEL)
1892 rtx i3pat = PATTERN (i3);
1893 int i = XVECLEN (i3pat, 0) - 1;
1894 unsigned int regno = REGNO (XEXP (elt, 0));
1898 rtx i3elt = XVECEXP (i3pat, 0, i);
1900 if (GET_CODE (i3elt) == USE
1901 && REG_P (XEXP (i3elt, 0))
1902 && (REGNO (XEXP (i3elt, 0)) == regno
1903 ? reg_set_between_p (XEXP (elt, 0),
1904 PREV_INSN (insn), i3)
1905 : regno >= FIRST_PSEUDO_REGISTER))
1906 return 0;
1908 while (--i >= 0);
1910 break;
1912 /* We can ignore CLOBBERs. */
1913 case CLOBBER:
1914 break;
1916 case SET:
1917 /* Ignore SETs whose result isn't used but not those that
1918 have side-effects. */
1919 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1920 && insn_nothrow_p (insn)
1921 && !side_effects_p (elt))
1922 break;
1924 /* If we have already found a SET, this is a second one and
1925 so we cannot combine with this insn. */
1926 if (set)
1927 return 0;
1929 set = elt;
1930 break;
1932 default:
1933 /* Anything else means we can't combine. */
1934 return 0;
1938 if (set == 0
1939 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1940 so don't do anything with it. */
1941 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1942 return 0;
1944 else
1945 return 0;
1947 if (set == 0)
1948 return 0;
1950 /* The simplification in expand_field_assignment may call back to
1951 get_last_value, so set safe guard here. */
1952 subst_low_luid = DF_INSN_LUID (insn);
1954 set = expand_field_assignment (set);
1955 src = SET_SRC (set), dest = SET_DEST (set);
1957 /* Do not eliminate user-specified register if it is in an
1958 asm input because we may break the register asm usage defined
1959 in GCC manual if allow to do so.
1960 Be aware that this may cover more cases than we expect but this
1961 should be harmless. */
1962 if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
1963 && extract_asm_operands (PATTERN (i3)))
1964 return 0;
1966 /* Don't eliminate a store in the stack pointer. */
1967 if (dest == stack_pointer_rtx
1968 /* Don't combine with an insn that sets a register to itself if it has
1969 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1970 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1971 /* Can't merge an ASM_OPERANDS. */
1972 || GET_CODE (src) == ASM_OPERANDS
1973 /* Can't merge a function call. */
1974 || GET_CODE (src) == CALL
1975 /* Don't eliminate a function call argument. */
1976 || (CALL_P (i3)
1977 && (find_reg_fusage (i3, USE, dest)
1978 || (REG_P (dest)
1979 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1980 && global_regs[REGNO (dest)])))
1981 /* Don't substitute into an incremented register. */
1982 || FIND_REG_INC_NOTE (i3, dest)
1983 || (succ && FIND_REG_INC_NOTE (succ, dest))
1984 || (succ2 && FIND_REG_INC_NOTE (succ2, dest))
1985 /* Don't substitute into a non-local goto, this confuses CFG. */
1986 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1987 /* Make sure that DEST is not used after INSN but before SUCC, or
1988 after SUCC and before SUCC2, or after SUCC2 but before I3. */
1989 || (!all_adjacent
1990 && ((succ2
1991 && (reg_used_between_p (dest, succ2, i3)
1992 || reg_used_between_p (dest, succ, succ2)))
1993 || (!succ2 && succ && reg_used_between_p (dest, succ, i3))
1994 || (succ
1995 /* SUCC and SUCC2 can be split halves from a PARALLEL; in
1996 that case SUCC is not in the insn stream, so use SUCC2
1997 instead for this test. */
1998 && reg_used_between_p (dest, insn,
1999 succ2
2000 && INSN_UID (succ) == INSN_UID (succ2)
2001 ? succ2 : succ))))
2002 /* Make sure that the value that is to be substituted for the register
2003 does not use any registers whose values alter in between. However,
2004 If the insns are adjacent, a use can't cross a set even though we
2005 think it might (this can happen for a sequence of insns each setting
2006 the same destination; last_set of that register might point to
2007 a NOTE). If INSN has a REG_EQUIV note, the register is always
2008 equivalent to the memory so the substitution is valid even if there
2009 are intervening stores. Also, don't move a volatile asm or
2010 UNSPEC_VOLATILE across any other insns. */
2011 || (! all_adjacent
2012 && (((!MEM_P (src)
2013 || ! find_reg_note (insn, REG_EQUIV, src))
2014 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
2015 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
2016 || GET_CODE (src) == UNSPEC_VOLATILE))
2017 /* Don't combine across a CALL_INSN, because that would possibly
2018 change whether the life span of some REGs crosses calls or not,
2019 and it is a pain to update that information.
2020 Exception: if source is a constant, moving it later can't hurt.
2021 Accept that as a special case. */
2022 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
2023 return 0;
2025 /* DEST must either be a REG or CC0. */
2026 if (REG_P (dest))
2028 /* If register alignment is being enforced for multi-word items in all
2029 cases except for parameters, it is possible to have a register copy
2030 insn referencing a hard register that is not allowed to contain the
2031 mode being copied and which would not be valid as an operand of most
2032 insns. Eliminate this problem by not combining with such an insn.
2034 Also, on some machines we don't want to extend the life of a hard
2035 register. */
2037 if (REG_P (src)
2038 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
2039 && !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
2040 /* Don't extend the life of a hard register unless it is
2041 user variable (if we have few registers) or it can't
2042 fit into the desired register (meaning something special
2043 is going on).
2044 Also avoid substituting a return register into I3, because
2045 reload can't handle a conflict with constraints of other
2046 inputs. */
2047 || (REGNO (src) < FIRST_PSEUDO_REGISTER
2048 && !targetm.hard_regno_mode_ok (REGNO (src),
2049 GET_MODE (src)))))
2050 return 0;
2052 else if (GET_CODE (dest) != CC0)
2053 return 0;
2056 if (GET_CODE (PATTERN (i3)) == PARALLEL)
2057 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
2058 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
2060 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
2062 /* If the clobber represents an earlyclobber operand, we must not
2063 substitute an expression containing the clobbered register.
2064 As we do not analyze the constraint strings here, we have to
2065 make the conservative assumption. However, if the register is
2066 a fixed hard reg, the clobber cannot represent any operand;
2067 we leave it up to the machine description to either accept or
2068 reject use-and-clobber patterns. */
2069 if (!REG_P (reg)
2070 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
2071 || !fixed_regs[REGNO (reg)])
2072 if (reg_overlap_mentioned_p (reg, src))
2073 return 0;
2076 /* If INSN contains anything volatile, or is an `asm' (whether volatile
2077 or not), reject, unless nothing volatile comes between it and I3 */
2079 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
2081 /* Make sure neither succ nor succ2 contains a volatile reference. */
2082 if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
2083 return 0;
2084 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
2085 return 0;
2086 /* We'll check insns between INSN and I3 below. */
2089 /* If INSN is an asm, and DEST is a hard register, reject, since it has
2090 to be an explicit register variable, and was chosen for a reason. */
2092 if (GET_CODE (src) == ASM_OPERANDS
2093 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
2094 return 0;
2096 /* If INSN contains volatile references (specifically volatile MEMs),
2097 we cannot combine across any other volatile references.
2098 Even if INSN doesn't contain volatile references, any intervening
2099 volatile insn might affect machine state. */
2101 is_volatile_p = volatile_refs_p (PATTERN (insn))
2102 ? volatile_refs_p
2103 : volatile_insn_p;
2105 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
2106 if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
2107 return 0;
2109 /* If INSN contains an autoincrement or autodecrement, make sure that
2110 register is not used between there and I3, and not already used in
2111 I3 either. Neither must it be used in PRED or SUCC, if they exist.
2112 Also insist that I3 not be a jump; if it were one
2113 and the incremented register were spilled, we would lose. */
2115 if (AUTO_INC_DEC)
2116 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2117 if (REG_NOTE_KIND (link) == REG_INC
2118 && (JUMP_P (i3)
2119 || reg_used_between_p (XEXP (link, 0), insn, i3)
2120 || (pred != NULL_RTX
2121 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
2122 || (pred2 != NULL_RTX
2123 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
2124 || (succ != NULL_RTX
2125 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
2126 || (succ2 != NULL_RTX
2127 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
2128 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
2129 return 0;
2131 /* Don't combine an insn that follows a CC0-setting insn.
2132 An insn that uses CC0 must not be separated from the one that sets it.
2133 We do, however, allow I2 to follow a CC0-setting insn if that insn
2134 is passed as I1; in that case it will be deleted also.
2135 We also allow combining in this case if all the insns are adjacent
2136 because that would leave the two CC0 insns adjacent as well.
2137 It would be more logical to test whether CC0 occurs inside I1 or I2,
2138 but that would be much slower, and this ought to be equivalent. */
2140 if (HAVE_cc0)
2142 p = prev_nonnote_insn (insn);
2143 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
2144 && ! all_adjacent)
2145 return 0;
2148 /* If we get here, we have passed all the tests and the combination is
2149 to be allowed. */
2151 *pdest = dest;
2152 *psrc = src;
2154 return 1;
2157 /* LOC is the location within I3 that contains its pattern or the component
2158 of a PARALLEL of the pattern. We validate that it is valid for combining.
2160 One problem is if I3 modifies its output, as opposed to replacing it
2161 entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
2162 doing so would produce an insn that is not equivalent to the original insns.
2164 Consider:
2166 (set (reg:DI 101) (reg:DI 100))
2167 (set (subreg:SI (reg:DI 101) 0) <foo>)
2169 This is NOT equivalent to:
2171 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
2172 (set (reg:DI 101) (reg:DI 100))])
2174 Not only does this modify 100 (in which case it might still be valid
2175 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
2177 We can also run into a problem if I2 sets a register that I1
2178 uses and I1 gets directly substituted into I3 (not via I2). In that
2179 case, we would be getting the wrong value of I2DEST into I3, so we
2180 must reject the combination. This case occurs when I2 and I1 both
2181 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
2182 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
2183 of a SET must prevent combination from occurring. The same situation
2184 can occur for I0, in which case I0_NOT_IN_SRC is set.
2186 Before doing the above check, we first try to expand a field assignment
2187 into a set of logical operations.
2189 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
2190 we place a register that is both set and used within I3. If more than one
2191 such register is detected, we fail.
2193 Return 1 if the combination is valid, zero otherwise. */
2195 static int
2196 combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
2197 int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
2199 rtx x = *loc;
2201 if (GET_CODE (x) == SET)
2203 rtx set = x ;
2204 rtx dest = SET_DEST (set);
2205 rtx src = SET_SRC (set);
2206 rtx inner_dest = dest;
2207 rtx subdest;
2209 while (GET_CODE (inner_dest) == STRICT_LOW_PART
2210 || GET_CODE (inner_dest) == SUBREG
2211 || GET_CODE (inner_dest) == ZERO_EXTRACT)
2212 inner_dest = XEXP (inner_dest, 0);
2214 /* Check for the case where I3 modifies its output, as discussed
2215 above. We don't want to prevent pseudos from being combined
2216 into the address of a MEM, so only prevent the combination if
2217 i1 or i2 set the same MEM. */
2218 if ((inner_dest != dest &&
2219 (!MEM_P (inner_dest)
2220 || rtx_equal_p (i2dest, inner_dest)
2221 || (i1dest && rtx_equal_p (i1dest, inner_dest))
2222 || (i0dest && rtx_equal_p (i0dest, inner_dest)))
2223 && (reg_overlap_mentioned_p (i2dest, inner_dest)
2224 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
2225 || (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
2227 /* This is the same test done in can_combine_p except we can't test
2228 all_adjacent; we don't have to, since this instruction will stay
2229 in place, thus we are not considering increasing the lifetime of
2230 INNER_DEST.
2232 Also, if this insn sets a function argument, combining it with
2233 something that might need a spill could clobber a previous
2234 function argument; the all_adjacent test in can_combine_p also
2235 checks this; here, we do a more specific test for this case. */
2237 || (REG_P (inner_dest)
2238 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
2239 && !targetm.hard_regno_mode_ok (REGNO (inner_dest),
2240 GET_MODE (inner_dest)))
2241 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
2242 || (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
2243 return 0;
2245 /* If DEST is used in I3, it is being killed in this insn, so
2246 record that for later. We have to consider paradoxical
2247 subregs here, since they kill the whole register, but we
2248 ignore partial subregs, STRICT_LOW_PART, etc.
2249 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
2250 STACK_POINTER_REGNUM, since these are always considered to be
2251 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
2252 subdest = dest;
2253 if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
2254 subdest = SUBREG_REG (subdest);
2255 if (pi3dest_killed
2256 && REG_P (subdest)
2257 && reg_referenced_p (subdest, PATTERN (i3))
2258 && REGNO (subdest) != FRAME_POINTER_REGNUM
2259 && (HARD_FRAME_POINTER_IS_FRAME_POINTER
2260 || REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
2261 && (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
2262 || (REGNO (subdest) != ARG_POINTER_REGNUM
2263 || ! fixed_regs [REGNO (subdest)]))
2264 && REGNO (subdest) != STACK_POINTER_REGNUM)
2266 if (*pi3dest_killed)
2267 return 0;
2269 *pi3dest_killed = subdest;
2273 else if (GET_CODE (x) == PARALLEL)
2275 int i;
2277 for (i = 0; i < XVECLEN (x, 0); i++)
2278 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
2279 i1_not_in_src, i0_not_in_src, pi3dest_killed))
2280 return 0;
2283 return 1;
2286 /* Return 1 if X is an arithmetic expression that contains a multiplication
2287 and division. We don't count multiplications by powers of two here. */
2289 static int
2290 contains_muldiv (rtx x)
2292 switch (GET_CODE (x))
2294 case MOD: case DIV: case UMOD: case UDIV:
2295 return 1;
2297 case MULT:
2298 return ! (CONST_INT_P (XEXP (x, 1))
2299 && pow2p_hwi (UINTVAL (XEXP (x, 1))));
2300 default:
2301 if (BINARY_P (x))
2302 return contains_muldiv (XEXP (x, 0))
2303 || contains_muldiv (XEXP (x, 1));
2305 if (UNARY_P (x))
2306 return contains_muldiv (XEXP (x, 0));
2308 return 0;
2312 /* Determine whether INSN can be used in a combination. Return nonzero if
2313 not. This is used in try_combine to detect early some cases where we
2314 can't perform combinations. */
2316 static int
2317 cant_combine_insn_p (rtx_insn *insn)
2319 rtx set;
2320 rtx src, dest;
2322 /* If this isn't really an insn, we can't do anything.
2323 This can occur when flow deletes an insn that it has merged into an
2324 auto-increment address. */
2325 if (!NONDEBUG_INSN_P (insn))
2326 return 1;
2328 /* Never combine loads and stores involving hard regs that are likely
2329 to be spilled. The register allocator can usually handle such
2330 reg-reg moves by tying. If we allow the combiner to make
2331 substitutions of likely-spilled regs, reload might die.
2332 As an exception, we allow combinations involving fixed regs; these are
2333 not available to the register allocator so there's no risk involved. */
2335 set = single_set (insn);
2336 if (! set)
2337 return 0;
2338 src = SET_SRC (set);
2339 dest = SET_DEST (set);
2340 if (GET_CODE (src) == SUBREG)
2341 src = SUBREG_REG (src);
2342 if (GET_CODE (dest) == SUBREG)
2343 dest = SUBREG_REG (dest);
2344 if (REG_P (src) && REG_P (dest)
2345 && ((HARD_REGISTER_P (src)
2346 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
2347 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (src))))
2348 || (HARD_REGISTER_P (dest)
2349 && ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
2350 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
2351 return 1;
2353 return 0;
2356 struct likely_spilled_retval_info
2358 unsigned regno, nregs;
2359 unsigned mask;
2362 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2363 hard registers that are known to be written to / clobbered in full. */
2364 static void
2365 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2367 struct likely_spilled_retval_info *const info =
2368 (struct likely_spilled_retval_info *) data;
2369 unsigned regno, nregs;
2370 unsigned new_mask;
2372 if (!REG_P (XEXP (set, 0)))
2373 return;
2374 regno = REGNO (x);
2375 if (regno >= info->regno + info->nregs)
2376 return;
2377 nregs = REG_NREGS (x);
2378 if (regno + nregs <= info->regno)
2379 return;
2380 new_mask = (2U << (nregs - 1)) - 1;
2381 if (regno < info->regno)
2382 new_mask >>= info->regno - regno;
2383 else
2384 new_mask <<= regno - info->regno;
2385 info->mask &= ~new_mask;
2388 /* Return nonzero iff part of the return value is live during INSN, and
2389 it is likely spilled. This can happen when more than one insn is needed
2390 to copy the return value, e.g. when we consider to combine into the
2391 second copy insn for a complex value. */
2393 static int
2394 likely_spilled_retval_p (rtx_insn *insn)
2396 rtx_insn *use = BB_END (this_basic_block);
2397 rtx reg;
2398 rtx_insn *p;
2399 unsigned regno, nregs;
2400 /* We assume here that no machine mode needs more than
2401 32 hard registers when the value overlaps with a register
2402 for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
2403 unsigned mask;
2404 struct likely_spilled_retval_info info;
2406 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2407 return 0;
2408 reg = XEXP (PATTERN (use), 0);
2409 if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
2410 return 0;
2411 regno = REGNO (reg);
2412 nregs = REG_NREGS (reg);
2413 if (nregs == 1)
2414 return 0;
2415 mask = (2U << (nregs - 1)) - 1;
2417 /* Disregard parts of the return value that are set later. */
2418 info.regno = regno;
2419 info.nregs = nregs;
2420 info.mask = mask;
2421 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2422 if (INSN_P (p))
2423 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2424 mask = info.mask;
2426 /* Check if any of the (probably) live return value registers is
2427 likely spilled. */
2428 nregs --;
2431 if ((mask & 1 << nregs)
2432 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
2433 return 1;
2434 } while (nregs--);
2435 return 0;
2438 /* Adjust INSN after we made a change to its destination.
2440 Changing the destination can invalidate notes that say something about
2441 the results of the insn and a LOG_LINK pointing to the insn. */
2443 static void
2444 adjust_for_new_dest (rtx_insn *insn)
2446 /* For notes, be conservative and simply remove them. */
2447 remove_reg_equal_equiv_notes (insn);
2449 /* The new insn will have a destination that was previously the destination
2450 of an insn just above it. Call distribute_links to make a LOG_LINK from
2451 the next use of that destination. */
2453 rtx set = single_set (insn);
2454 gcc_assert (set);
2456 rtx reg = SET_DEST (set);
2458 while (GET_CODE (reg) == ZERO_EXTRACT
2459 || GET_CODE (reg) == STRICT_LOW_PART
2460 || GET_CODE (reg) == SUBREG)
2461 reg = XEXP (reg, 0);
2462 gcc_assert (REG_P (reg));
2464 distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
2466 df_insn_rescan (insn);
2469 /* Return TRUE if combine can reuse reg X in mode MODE.
2470 ADDED_SETS is nonzero if the original set is still required. */
2471 static bool
2472 can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
2474 unsigned int regno;
2476 if (!REG_P (x))
2477 return false;
2479 /* Don't change between modes with different underlying register sizes,
2480 since this could lead to invalid subregs. */
2481 if (REGMODE_NATURAL_SIZE (mode)
2482 != REGMODE_NATURAL_SIZE (GET_MODE (x)))
2483 return false;
2485 regno = REGNO (x);
2486 /* Allow hard registers if the new mode is legal, and occupies no more
2487 registers than the old mode. */
2488 if (regno < FIRST_PSEUDO_REGISTER)
2489 return (targetm.hard_regno_mode_ok (regno, mode)
2490 && REG_NREGS (x) >= hard_regno_nregs (regno, mode));
2492 /* Or a pseudo that is only used once. */
2493 return (regno < reg_n_sets_max
2494 && REG_N_SETS (regno) == 1
2495 && !added_sets
2496 && !REG_USERVAR_P (x));
2500 /* Check whether X, the destination of a set, refers to part of
2501 the register specified by REG. */
2503 static bool
2504 reg_subword_p (rtx x, rtx reg)
2506 /* Check that reg is an integer mode register. */
2507 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2508 return false;
2510 if (GET_CODE (x) == STRICT_LOW_PART
2511 || GET_CODE (x) == ZERO_EXTRACT)
2512 x = XEXP (x, 0);
2514 return GET_CODE (x) == SUBREG
2515 && SUBREG_REG (x) == reg
2516 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2519 /* Delete the unconditional jump INSN and adjust the CFG correspondingly.
2520 Note that the INSN should be deleted *after* removing dead edges, so
2521 that the kept edge is the fallthrough edge for a (set (pc) (pc))
2522 but not for a (set (pc) (label_ref FOO)). */
2524 static void
2525 update_cfg_for_uncondjump (rtx_insn *insn)
2527 basic_block bb = BLOCK_FOR_INSN (insn);
2528 gcc_assert (BB_END (bb) == insn);
2530 purge_dead_edges (bb);
2532 delete_insn (insn);
2533 if (EDGE_COUNT (bb->succs) == 1)
2535 rtx_insn *insn;
2537 single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
2539 /* Remove barriers from the footer if there are any. */
2540 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
2541 if (BARRIER_P (insn))
2543 if (PREV_INSN (insn))
2544 SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
2545 else
2546 BB_FOOTER (bb) = NEXT_INSN (insn);
2547 if (NEXT_INSN (insn))
2548 SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
2550 else if (LABEL_P (insn))
2551 break;
2555 /* Return whether PAT is a PARALLEL of exactly N register SETs followed
2556 by an arbitrary number of CLOBBERs. */
2557 static bool
2558 is_parallel_of_n_reg_sets (rtx pat, int n)
2560 if (GET_CODE (pat) != PARALLEL)
2561 return false;
2563 int len = XVECLEN (pat, 0);
2564 if (len < n)
2565 return false;
2567 int i;
2568 for (i = 0; i < n; i++)
2569 if (GET_CODE (XVECEXP (pat, 0, i)) != SET
2570 || !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
2571 return false;
2572 for ( ; i < len; i++)
2573 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER
2574 || XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
2575 return false;
2577 return true;
2580 /* Return whether INSN, a PARALLEL of N register SETs (and maybe some
2581 CLOBBERs), can be split into individual SETs in that order, without
2582 changing semantics. */
2583 static bool
2584 can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
2586 if (!insn_nothrow_p (insn))
2587 return false;
2589 rtx pat = PATTERN (insn);
2591 int i, j;
2592 for (i = 0; i < n; i++)
2594 if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
2595 return false;
2597 rtx reg = SET_DEST (XVECEXP (pat, 0, i));
2599 for (j = i + 1; j < n; j++)
2600 if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
2601 return false;
2604 return true;
2607 /* Try to combine the insns I0, I1 and I2 into I3.
2608 Here I0, I1 and I2 appear earlier than I3.
2609 I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
2612 If we are combining more than two insns and the resulting insn is not
2613 recognized, try splitting it into two insns. If that happens, I2 and I3
2614 are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
2615 Otherwise, I0, I1 and I2 are pseudo-deleted.
2617 Return 0 if the combination does not work. Then nothing is changed.
2618 If we did the combination, return the insn at which combine should
2619 resume scanning.
2621 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2622 new direct jump instruction.
2624 LAST_COMBINED_INSN is either I3, or some insn after I3 that has
2625 been I3 passed to an earlier try_combine within the same basic
2626 block. */
2628 static rtx_insn *
2629 try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
2630 int *new_direct_jump_p, rtx_insn *last_combined_insn)
2632 /* New patterns for I3 and I2, respectively. */
2633 rtx newpat, newi2pat = 0;
2634 rtvec newpat_vec_with_clobbers = 0;
2635 int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
2636 /* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
2637 dead. */
2638 int added_sets_0, added_sets_1, added_sets_2;
2639 /* Total number of SETs to put into I3. */
2640 int total_sets;
2641 /* Nonzero if I2's or I1's body now appears in I3. */
2642 int i2_is_used = 0, i1_is_used = 0;
2643 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2644 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2645 /* Contains I3 if the destination of I3 is used in its source, which means
2646 that the old life of I3 is being killed. If that usage is placed into
2647 I2 and not in I3, a REG_DEAD note must be made. */
2648 rtx i3dest_killed = 0;
2649 /* SET_DEST and SET_SRC of I2, I1 and I0. */
2650 rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
2651 /* Copy of SET_SRC of I1 and I0, if needed. */
2652 rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
2653 /* Set if I2DEST was reused as a scratch register. */
2654 bool i2scratch = false;
2655 /* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
2656 rtx i0pat = 0, i1pat = 0, i2pat = 0;
2657 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2658 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2659 int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
2660 int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
2661 int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
2662 /* Notes that must be added to REG_NOTES in I3 and I2. */
2663 rtx new_i3_notes, new_i2_notes;
2664 /* Notes that we substituted I3 into I2 instead of the normal case. */
2665 int i3_subst_into_i2 = 0;
2666 /* Notes that I1, I2 or I3 is a MULT operation. */
2667 int have_mult = 0;
2668 int swap_i2i3 = 0;
2669 int changed_i3_dest = 0;
2671 int maxreg;
2672 rtx_insn *temp_insn;
2673 rtx temp_expr;
2674 struct insn_link *link;
2675 rtx other_pat = 0;
2676 rtx new_other_notes;
2677 int i;
2678 scalar_int_mode dest_mode, temp_mode;
2680 /* Immediately return if any of I0,I1,I2 are the same insn (I3 can
2681 never be). */
2682 if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
2683 return 0;
2685 /* Only try four-insn combinations when there's high likelihood of
2686 success. Look for simple insns, such as loads of constants or
2687 binary operations involving a constant. */
2688 if (i0)
2690 int i;
2691 int ngood = 0;
2692 int nshift = 0;
2693 rtx set0, set3;
2695 if (!flag_expensive_optimizations)
2696 return 0;
2698 for (i = 0; i < 4; i++)
2700 rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
2701 rtx set = single_set (insn);
2702 rtx src;
2703 if (!set)
2704 continue;
2705 src = SET_SRC (set);
2706 if (CONSTANT_P (src))
2708 ngood += 2;
2709 break;
2711 else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
2712 ngood++;
2713 else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
2714 || GET_CODE (src) == LSHIFTRT)
2715 nshift++;
2718 /* If I0 loads a memory and I3 sets the same memory, then I1 and I2
2719 are likely manipulating its value. Ideally we'll be able to combine
2720 all four insns into a bitfield insertion of some kind.
2722 Note the source in I0 might be inside a sign/zero extension and the
2723 memory modes in I0 and I3 might be different. So extract the address
2724 from the destination of I3 and search for it in the source of I0.
2726 In the event that there's a match but the source/dest do not actually
2727 refer to the same memory, the worst that happens is we try some
2728 combinations that we wouldn't have otherwise. */
2729 if ((set0 = single_set (i0))
2730 /* Ensure the source of SET0 is a MEM, possibly buried inside
2731 an extension. */
2732 && (GET_CODE (SET_SRC (set0)) == MEM
2733 || ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
2734 || GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
2735 && GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
2736 && (set3 = single_set (i3))
2737 /* Ensure the destination of SET3 is a MEM. */
2738 && GET_CODE (SET_DEST (set3)) == MEM
2739 /* Would it be better to extract the base address for the MEM
2740 in SET3 and look for that? I don't have cases where it matters
2741 but I could envision such cases. */
2742 && rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
2743 ngood += 2;
2745 if (ngood < 2 && nshift < 2)
2746 return 0;
2749 /* Exit early if one of the insns involved can't be used for
2750 combinations. */
2751 if (CALL_P (i2)
2752 || (i1 && CALL_P (i1))
2753 || (i0 && CALL_P (i0))
2754 || cant_combine_insn_p (i3)
2755 || cant_combine_insn_p (i2)
2756 || (i1 && cant_combine_insn_p (i1))
2757 || (i0 && cant_combine_insn_p (i0))
2758 || likely_spilled_retval_p (i3))
2759 return 0;
2761 combine_attempts++;
2762 undobuf.other_insn = 0;
2764 /* Reset the hard register usage information. */
2765 CLEAR_HARD_REG_SET (newpat_used_regs);
2767 if (dump_file && (dump_flags & TDF_DETAILS))
2769 if (i0)
2770 fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
2771 INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2772 else if (i1)
2773 fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
2774 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
2775 else
2776 fprintf (dump_file, "\nTrying %d -> %d:\n",
2777 INSN_UID (i2), INSN_UID (i3));
2779 if (i0)
2780 dump_insn_slim (dump_file, i0);
2781 if (i1)
2782 dump_insn_slim (dump_file, i1);
2783 dump_insn_slim (dump_file, i2);
2784 dump_insn_slim (dump_file, i3);
2787 /* If multiple insns feed into one of I2 or I3, they can be in any
2788 order. To simplify the code below, reorder them in sequence. */
2789 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
2790 std::swap (i0, i2);
2791 if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
2792 std::swap (i0, i1);
2793 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2794 std::swap (i1, i2);
2796 added_links_insn = 0;
2797 added_notes_insn = 0;
2799 /* First check for one important special case that the code below will
2800 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2801 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2802 we may be able to replace that destination with the destination of I3.
2803 This occurs in the common code where we compute both a quotient and
2804 remainder into a structure, in which case we want to do the computation
2805 directly into the structure to avoid register-register copies.
2807 Note that this case handles both multiple sets in I2 and also cases
2808 where I2 has a number of CLOBBERs inside the PARALLEL.
2810 We make very conservative checks below and only try to handle the
2811 most common cases of this. For example, we only handle the case
2812 where I2 and I3 are adjacent to avoid making difficult register
2813 usage tests. */
2815 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2816 && REG_P (SET_SRC (PATTERN (i3)))
2817 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2818 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2819 && GET_CODE (PATTERN (i2)) == PARALLEL
2820 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2821 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2822 below would need to check what is inside (and reg_overlap_mentioned_p
2823 doesn't support those codes anyway). Don't allow those destinations;
2824 the resulting insn isn't likely to be recognized anyway. */
2825 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2826 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2827 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2828 SET_DEST (PATTERN (i3)))
2829 && next_active_insn (i2) == i3)
2831 rtx p2 = PATTERN (i2);
2833 /* Make sure that the destination of I3,
2834 which we are going to substitute into one output of I2,
2835 is not used within another output of I2. We must avoid making this:
2836 (parallel [(set (mem (reg 69)) ...)
2837 (set (reg 69) ...)])
2838 which is not well-defined as to order of actions.
2839 (Besides, reload can't handle output reloads for this.)
2841 The problem can also happen if the dest of I3 is a memory ref,
2842 if another dest in I2 is an indirect memory ref.
2844 Neither can this PARALLEL be an asm. We do not allow combining
2845 that usually (see can_combine_p), so do not here either. */
2846 bool ok = true;
2847 for (i = 0; ok && i < XVECLEN (p2, 0); i++)
2849 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2850 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2851 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2852 SET_DEST (XVECEXP (p2, 0, i))))
2853 ok = false;
2854 else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2855 && GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
2856 ok = false;
2859 if (ok)
2860 for (i = 0; i < XVECLEN (p2, 0); i++)
2861 if (GET_CODE (XVECEXP (p2, 0, i)) == SET
2862 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2864 combine_merges++;
2866 subst_insn = i3;
2867 subst_low_luid = DF_INSN_LUID (i2);
2869 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2870 i2src = SET_SRC (XVECEXP (p2, 0, i));
2871 i2dest = SET_DEST (XVECEXP (p2, 0, i));
2872 i2dest_killed = dead_or_set_p (i2, i2dest);
2874 /* Replace the dest in I2 with our dest and make the resulting
2875 insn the new pattern for I3. Then skip to where we validate
2876 the pattern. Everything was set up above. */
2877 SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
2878 newpat = p2;
2879 i3_subst_into_i2 = 1;
2880 goto validate_replacement;
2884 /* If I2 is setting a pseudo to a constant and I3 is setting some
2885 sub-part of it to another constant, merge them by making a new
2886 constant. */
2887 if (i1 == 0
2888 && (temp_expr = single_set (i2)) != 0
2889 && is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
2890 && CONST_SCALAR_INT_P (SET_SRC (temp_expr))
2891 && GET_CODE (PATTERN (i3)) == SET
2892 && CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
2893 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
2895 rtx dest = SET_DEST (PATTERN (i3));
2896 rtx temp_dest = SET_DEST (temp_expr);
2897 int offset = -1;
2898 int width = 0;
2900 if (GET_CODE (dest) == ZERO_EXTRACT)
2902 if (CONST_INT_P (XEXP (dest, 1))
2903 && CONST_INT_P (XEXP (dest, 2))
2904 && is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
2905 &dest_mode))
2907 width = INTVAL (XEXP (dest, 1));
2908 offset = INTVAL (XEXP (dest, 2));
2909 dest = XEXP (dest, 0);
2910 if (BITS_BIG_ENDIAN)
2911 offset = GET_MODE_PRECISION (dest_mode) - width - offset;
2914 else
2916 if (GET_CODE (dest) == STRICT_LOW_PART)
2917 dest = XEXP (dest, 0);
2918 if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
2920 width = GET_MODE_PRECISION (dest_mode);
2921 offset = 0;
2925 if (offset >= 0)
2927 /* If this is the low part, we're done. */
2928 if (subreg_lowpart_p (dest))
2930 /* Handle the case where inner is twice the size of outer. */
2931 else if (GET_MODE_PRECISION (temp_mode)
2932 == 2 * GET_MODE_PRECISION (dest_mode))
2933 offset += GET_MODE_PRECISION (dest_mode);
2934 /* Otherwise give up for now. */
2935 else
2936 offset = -1;
2939 if (offset >= 0)
2941 rtx inner = SET_SRC (PATTERN (i3));
2942 rtx outer = SET_SRC (temp_expr);
2944 wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
2945 rtx_mode_t (inner, dest_mode),
2946 offset, width);
2948 combine_merges++;
2949 subst_insn = i3;
2950 subst_low_luid = DF_INSN_LUID (i2);
2951 added_sets_2 = added_sets_1 = added_sets_0 = 0;
2952 i2dest = temp_dest;
2953 i2dest_killed = dead_or_set_p (i2, i2dest);
2955 /* Replace the source in I2 with the new constant and make the
2956 resulting insn the new pattern for I3. Then skip to where we
2957 validate the pattern. Everything was set up above. */
2958 SUBST (SET_SRC (temp_expr),
2959 immed_wide_int_const (o, temp_mode));
2961 newpat = PATTERN (i2);
2963 /* The dest of I3 has been replaced with the dest of I2. */
2964 changed_i3_dest = 1;
2965 goto validate_replacement;
2969 /* If we have no I1 and I2 looks like:
2970 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2971 (set Y OP)])
2972 make up a dummy I1 that is
2973 (set Y OP)
2974 and change I2 to be
2975 (set (reg:CC X) (compare:CC Y (const_int 0)))
2977 (We can ignore any trailing CLOBBERs.)
2979 This undoes a previous combination and allows us to match a branch-and-
2980 decrement insn. */
2982 if (!HAVE_cc0 && i1 == 0
2983 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
2984 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2985 == MODE_CC)
2986 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2987 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2988 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2989 SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
2990 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
2991 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
2993 /* We make I1 with the same INSN_UID as I2. This gives it
2994 the same DF_INSN_LUID for value tracking. Our fake I1 will
2995 never appear in the insn stream so giving it the same INSN_UID
2996 as I2 will not cause a problem. */
2998 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
2999 XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
3000 -1, NULL_RTX);
3001 INSN_UID (i1) = INSN_UID (i2);
3003 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
3004 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
3005 SET_DEST (PATTERN (i1)));
3006 unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
3007 SUBST_LINK (LOG_LINKS (i2),
3008 alloc_insn_link (i1, regno, LOG_LINKS (i2)));
3011 /* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
3012 make those two SETs separate I1 and I2 insns, and make an I0 that is
3013 the original I1. */
3014 if (!HAVE_cc0 && i0 == 0
3015 && is_parallel_of_n_reg_sets (PATTERN (i2), 2)
3016 && can_split_parallel_of_n_reg_sets (i2, 2)
3017 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
3018 && !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
3019 && !find_reg_note (i2, REG_UNUSED, 0))
3021 /* If there is no I1, there is no I0 either. */
3022 i0 = i1;
3024 /* We make I1 with the same INSN_UID as I2. This gives it
3025 the same DF_INSN_LUID for value tracking. Our fake I1 will
3026 never appear in the insn stream so giving it the same INSN_UID
3027 as I2 will not cause a problem. */
3029 i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
3030 XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
3031 -1, NULL_RTX);
3032 INSN_UID (i1) = INSN_UID (i2);
3034 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
3037 /* Verify that I2 and I1 are valid for combining. */
3038 if (! can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src)
3039 || (i1 && ! can_combine_p (i1, i3, i0, NULL, i2, NULL,
3040 &i1dest, &i1src))
3041 || (i0 && ! can_combine_p (i0, i3, NULL, NULL, i1, i2,
3042 &i0dest, &i0src)))
3044 undo_all ();
3045 return 0;
3048 /* Record whether I2DEST is used in I2SRC and similarly for the other
3049 cases. Knowing this will help in register status updating below. */
3050 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
3051 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
3052 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
3053 i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
3054 i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
3055 i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
3056 i2dest_killed = dead_or_set_p (i2, i2dest);
3057 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
3058 i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
3060 /* For the earlier insns, determine which of the subsequent ones they
3061 feed. */
3062 i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
3063 i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
3064 i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
3065 : (!reg_overlap_mentioned_p (i1dest, i0dest)
3066 && reg_overlap_mentioned_p (i0dest, i2src))));
3068 /* Ensure that I3's pattern can be the destination of combines. */
3069 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
3070 i1 && i2dest_in_i1src && !i1_feeds_i2_n,
3071 i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
3072 || (i1dest_in_i0src && !i0_feeds_i1_n)),
3073 &i3dest_killed))
3075 undo_all ();
3076 return 0;
3079 /* See if any of the insns is a MULT operation. Unless one is, we will
3080 reject a combination that is, since it must be slower. Be conservative
3081 here. */
3082 if (GET_CODE (i2src) == MULT
3083 || (i1 != 0 && GET_CODE (i1src) == MULT)
3084 || (i0 != 0 && GET_CODE (i0src) == MULT)
3085 || (GET_CODE (PATTERN (i3)) == SET
3086 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
3087 have_mult = 1;
3089 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
3090 We used to do this EXCEPT in one case: I3 has a post-inc in an
3091 output operand. However, that exception can give rise to insns like
3092 mov r3,(r3)+
3093 which is a famous insn on the PDP-11 where the value of r3 used as the
3094 source was model-dependent. Avoid this sort of thing. */
3096 #if 0
3097 if (!(GET_CODE (PATTERN (i3)) == SET
3098 && REG_P (SET_SRC (PATTERN (i3)))
3099 && MEM_P (SET_DEST (PATTERN (i3)))
3100 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
3101 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
3102 /* It's not the exception. */
3103 #endif
3104 if (AUTO_INC_DEC)
3106 rtx link;
3107 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
3108 if (REG_NOTE_KIND (link) == REG_INC
3109 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
3110 || (i1 != 0
3111 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
3113 undo_all ();
3114 return 0;
3118 /* See if the SETs in I1 or I2 need to be kept around in the merged
3119 instruction: whenever the value set there is still needed past I3.
3120 For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
3122 For the SET in I1, we have two cases: if I1 and I2 independently feed
3123 into I3, the set in I1 needs to be kept around unless I1DEST dies
3124 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
3125 in I1 needs to be kept around unless I1DEST dies or is set in either
3126 I2 or I3. The same considerations apply to I0. */
3128 added_sets_2 = !dead_or_set_p (i3, i2dest);
3130 if (i1)
3131 added_sets_1 = !(dead_or_set_p (i3, i1dest)
3132 || (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
3133 else
3134 added_sets_1 = 0;
3136 if (i0)
3137 added_sets_0 = !(dead_or_set_p (i3, i0dest)
3138 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
3139 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3140 && dead_or_set_p (i2, i0dest)));
3141 else
3142 added_sets_0 = 0;
3144 /* We are about to copy insns for the case where they need to be kept
3145 around. Check that they can be copied in the merged instruction. */
3147 if (targetm.cannot_copy_insn_p
3148 && ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
3149 || (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
3150 || (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
3152 undo_all ();
3153 return 0;
3156 /* If the set in I2 needs to be kept around, we must make a copy of
3157 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
3158 PATTERN (I2), we are only substituting for the original I1DEST, not into
3159 an already-substituted copy. This also prevents making self-referential
3160 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
3161 I2DEST. */
3163 if (added_sets_2)
3165 if (GET_CODE (PATTERN (i2)) == PARALLEL)
3166 i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
3167 else
3168 i2pat = copy_rtx (PATTERN (i2));
3171 if (added_sets_1)
3173 if (GET_CODE (PATTERN (i1)) == PARALLEL)
3174 i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
3175 else
3176 i1pat = copy_rtx (PATTERN (i1));
3179 if (added_sets_0)
3181 if (GET_CODE (PATTERN (i0)) == PARALLEL)
3182 i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
3183 else
3184 i0pat = copy_rtx (PATTERN (i0));
3187 combine_merges++;
3189 /* Substitute in the latest insn for the regs set by the earlier ones. */
3191 maxreg = max_reg_num ();
3193 subst_insn = i3;
3195 /* Many machines that don't use CC0 have insns that can both perform an
3196 arithmetic operation and set the condition code. These operations will
3197 be represented as a PARALLEL with the first element of the vector
3198 being a COMPARE of an arithmetic operation with the constant zero.
3199 The second element of the vector will set some pseudo to the result
3200 of the same arithmetic operation. If we simplify the COMPARE, we won't
3201 match such a pattern and so will generate an extra insn. Here we test
3202 for this case, where both the comparison and the operation result are
3203 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
3204 I2SRC. Later we will make the PARALLEL that contains I2. */
3206 if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
3207 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
3208 && CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
3209 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
3211 rtx newpat_dest;
3212 rtx *cc_use_loc = NULL;
3213 rtx_insn *cc_use_insn = NULL;
3214 rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
3215 machine_mode compare_mode, orig_compare_mode;
3216 enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
3217 scalar_int_mode mode;
3219 newpat = PATTERN (i3);
3220 newpat_dest = SET_DEST (newpat);
3221 compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
3223 if (undobuf.other_insn == 0
3224 && (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
3225 &cc_use_insn)))
3227 compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
3228 if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
3229 compare_code = simplify_compare_const (compare_code, mode,
3230 op0, &op1);
3231 target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
3234 /* Do the rest only if op1 is const0_rtx, which may be the
3235 result of simplification. */
3236 if (op1 == const0_rtx)
3238 /* If a single use of the CC is found, prepare to modify it
3239 when SELECT_CC_MODE returns a new CC-class mode, or when
3240 the above simplify_compare_const() returned a new comparison
3241 operator. undobuf.other_insn is assigned the CC use insn
3242 when modifying it. */
3243 if (cc_use_loc)
3245 #ifdef SELECT_CC_MODE
3246 machine_mode new_mode
3247 = SELECT_CC_MODE (compare_code, op0, op1);
3248 if (new_mode != orig_compare_mode
3249 && can_change_dest_mode (SET_DEST (newpat),
3250 added_sets_2, new_mode))
3252 unsigned int regno = REGNO (newpat_dest);
3253 compare_mode = new_mode;
3254 if (regno < FIRST_PSEUDO_REGISTER)
3255 newpat_dest = gen_rtx_REG (compare_mode, regno);
3256 else
3258 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
3259 newpat_dest = regno_reg_rtx[regno];
3262 #endif
3263 /* Cases for modifying the CC-using comparison. */
3264 if (compare_code != orig_compare_code
3265 /* ??? Do we need to verify the zero rtx? */
3266 && XEXP (*cc_use_loc, 1) == const0_rtx)
3268 /* Replace cc_use_loc with entire new RTX. */
3269 SUBST (*cc_use_loc,
3270 gen_rtx_fmt_ee (compare_code, compare_mode,
3271 newpat_dest, const0_rtx));
3272 undobuf.other_insn = cc_use_insn;
3274 else if (compare_mode != orig_compare_mode)
3276 /* Just replace the CC reg with a new mode. */
3277 SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
3278 undobuf.other_insn = cc_use_insn;
3282 /* Now we modify the current newpat:
3283 First, SET_DEST(newpat) is updated if the CC mode has been
3284 altered. For targets without SELECT_CC_MODE, this should be
3285 optimized away. */
3286 if (compare_mode != orig_compare_mode)
3287 SUBST (SET_DEST (newpat), newpat_dest);
3288 /* This is always done to propagate i2src into newpat. */
3289 SUBST (SET_SRC (newpat),
3290 gen_rtx_COMPARE (compare_mode, op0, op1));
3291 /* Create new version of i2pat if needed; the below PARALLEL
3292 creation needs this to work correctly. */
3293 if (! rtx_equal_p (i2src, op0))
3294 i2pat = gen_rtx_SET (i2dest, op0);
3295 i2_is_used = 1;
3299 if (i2_is_used == 0)
3301 /* It is possible that the source of I2 or I1 may be performing
3302 an unneeded operation, such as a ZERO_EXTEND of something
3303 that is known to have the high part zero. Handle that case
3304 by letting subst look at the inner insns.
3306 Another way to do this would be to have a function that tries
3307 to simplify a single insn instead of merging two or more
3308 insns. We don't do this because of the potential of infinite
3309 loops and because of the potential extra memory required.
3310 However, doing it the way we are is a bit of a kludge and
3311 doesn't catch all cases.
3313 But only do this if -fexpensive-optimizations since it slows
3314 things down and doesn't usually win.
3316 This is not done in the COMPARE case above because the
3317 unmodified I2PAT is used in the PARALLEL and so a pattern
3318 with a modified I2SRC would not match. */
3320 if (flag_expensive_optimizations)
3322 /* Pass pc_rtx so no substitutions are done, just
3323 simplifications. */
3324 if (i1)
3326 subst_low_luid = DF_INSN_LUID (i1);
3327 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
3330 subst_low_luid = DF_INSN_LUID (i2);
3331 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
3334 n_occurrences = 0; /* `subst' counts here */
3335 subst_low_luid = DF_INSN_LUID (i2);
3337 /* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
3338 copy of I2SRC each time we substitute it, in order to avoid creating
3339 self-referential RTL when we will be substituting I1SRC for I1DEST
3340 later. Likewise if I0 feeds into I2, either directly or indirectly
3341 through I1, and I0DEST is in I0SRC. */
3342 newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
3343 (i1_feeds_i2_n && i1dest_in_i1src)
3344 || ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
3345 && i0dest_in_i0src));
3346 substed_i2 = 1;
3348 /* Record whether I2's body now appears within I3's body. */
3349 i2_is_used = n_occurrences;
3352 /* If we already got a failure, don't try to do more. Otherwise, try to
3353 substitute I1 if we have it. */
3355 if (i1 && GET_CODE (newpat) != CLOBBER)
3357 /* Check that an autoincrement side-effect on I1 has not been lost.
3358 This happens if I1DEST is mentioned in I2 and dies there, and
3359 has disappeared from the new pattern. */
3360 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3361 && i1_feeds_i2_n
3362 && dead_or_set_p (i2, i1dest)
3363 && !reg_overlap_mentioned_p (i1dest, newpat))
3364 /* Before we can do this substitution, we must redo the test done
3365 above (see detailed comments there) that ensures I1DEST isn't
3366 mentioned in any SETs in NEWPAT that are field assignments. */
3367 || !combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
3368 0, 0, 0))
3370 undo_all ();
3371 return 0;
3374 n_occurrences = 0;
3375 subst_low_luid = DF_INSN_LUID (i1);
3377 /* If the following substitution will modify I1SRC, make a copy of it
3378 for the case where it is substituted for I1DEST in I2PAT later. */
3379 if (added_sets_2 && i1_feeds_i2_n)
3380 i1src_copy = copy_rtx (i1src);
3382 /* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
3383 copy of I1SRC each time we substitute it, in order to avoid creating
3384 self-referential RTL when we will be substituting I0SRC for I0DEST
3385 later. */
3386 newpat = subst (newpat, i1dest, i1src, 0, 0,
3387 i0_feeds_i1_n && i0dest_in_i0src);
3388 substed_i1 = 1;
3390 /* Record whether I1's body now appears within I3's body. */
3391 i1_is_used = n_occurrences;
3394 /* Likewise for I0 if we have it. */
3396 if (i0 && GET_CODE (newpat) != CLOBBER)
3398 if ((FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3399 && ((i0_feeds_i2_n && dead_or_set_p (i2, i0dest))
3400 || (i0_feeds_i1_n && dead_or_set_p (i1, i0dest)))
3401 && !reg_overlap_mentioned_p (i0dest, newpat))
3402 || !combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
3403 0, 0, 0))
3405 undo_all ();
3406 return 0;
3409 /* If the following substitution will modify I0SRC, make a copy of it
3410 for the case where it is substituted for I0DEST in I1PAT later. */
3411 if (added_sets_1 && i0_feeds_i1_n)
3412 i0src_copy = copy_rtx (i0src);
3413 /* And a copy for I0DEST in I2PAT substitution. */
3414 if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
3415 || (i0_feeds_i2_n)))
3416 i0src_copy2 = copy_rtx (i0src);
3418 n_occurrences = 0;
3419 subst_low_luid = DF_INSN_LUID (i0);
3420 newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
3421 substed_i0 = 1;
3424 /* Fail if an autoincrement side-effect has been duplicated. Be careful
3425 to count all the ways that I2SRC and I1SRC can be used. */
3426 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
3427 && i2_is_used + added_sets_2 > 1)
3428 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
3429 && (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
3430 > 1))
3431 || (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
3432 && (n_occurrences + added_sets_0
3433 + (added_sets_1 && i0_feeds_i1_n)
3434 + (added_sets_2 && i0_feeds_i2_n)
3435 > 1))
3436 /* Fail if we tried to make a new register. */
3437 || max_reg_num () != maxreg
3438 /* Fail if we couldn't do something and have a CLOBBER. */
3439 || GET_CODE (newpat) == CLOBBER
3440 /* Fail if this new pattern is a MULT and we didn't have one before
3441 at the outer level. */
3442 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
3443 && ! have_mult))
3445 undo_all ();
3446 return 0;
3449 /* If the actions of the earlier insns must be kept
3450 in addition to substituting them into the latest one,
3451 we must make a new PARALLEL for the latest insn
3452 to hold additional the SETs. */
3454 if (added_sets_0 || added_sets_1 || added_sets_2)
3456 int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
3457 combine_extras++;
3459 if (GET_CODE (newpat) == PARALLEL)
3461 rtvec old = XVEC (newpat, 0);
3462 total_sets = XVECLEN (newpat, 0) + extra_sets;
3463 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3464 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
3465 sizeof (old->elem[0]) * old->num_elem);
3467 else
3469 rtx old = newpat;
3470 total_sets = 1 + extra_sets;
3471 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
3472 XVECEXP (newpat, 0, 0) = old;
3475 if (added_sets_0)
3476 XVECEXP (newpat, 0, --total_sets) = i0pat;
3478 if (added_sets_1)
3480 rtx t = i1pat;
3481 if (i0_feeds_i1_n)
3482 t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
3484 XVECEXP (newpat, 0, --total_sets) = t;
3486 if (added_sets_2)
3488 rtx t = i2pat;
3489 if (i1_feeds_i2_n)
3490 t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
3491 i0_feeds_i1_n && i0dest_in_i0src);
3492 if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
3493 t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
3495 XVECEXP (newpat, 0, --total_sets) = t;
3499 validate_replacement:
3501 /* Note which hard regs this insn has as inputs. */
3502 mark_used_regs_combine (newpat);
3504 /* If recog_for_combine fails, it strips existing clobbers. If we'll
3505 consider splitting this pattern, we might need these clobbers. */
3506 if (i1 && GET_CODE (newpat) == PARALLEL
3507 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
3509 int len = XVECLEN (newpat, 0);
3511 newpat_vec_with_clobbers = rtvec_alloc (len);
3512 for (i = 0; i < len; i++)
3513 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
3516 /* We have recognized nothing yet. */
3517 insn_code_number = -1;
3519 /* See if this is a PARALLEL of two SETs where one SET's destination is
3520 a register that is unused and this isn't marked as an instruction that
3521 might trap in an EH region. In that case, we just need the other SET.
3522 We prefer this over the PARALLEL.
3524 This can occur when simplifying a divmod insn. We *must* test for this
3525 case here because the code below that splits two independent SETs doesn't
3526 handle this case correctly when it updates the register status.
3528 It's pointless doing this if we originally had two sets, one from
3529 i3, and one from i2. Combining then splitting the parallel results
3530 in the original i2 again plus an invalid insn (which we delete).
3531 The net effect is only to move instructions around, which makes
3532 debug info less accurate.
3534 If the remaining SET came from I2 its destination should not be used
3535 between I2 and I3. See PR82024. */
3537 if (!(added_sets_2 && i1 == 0)
3538 && is_parallel_of_n_reg_sets (newpat, 2)
3539 && asm_noperands (newpat) < 0)
3541 rtx set0 = XVECEXP (newpat, 0, 0);
3542 rtx set1 = XVECEXP (newpat, 0, 1);
3543 rtx oldpat = newpat;
3545 if (((REG_P (SET_DEST (set1))
3546 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
3547 || (GET_CODE (SET_DEST (set1)) == SUBREG
3548 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
3549 && insn_nothrow_p (i3)
3550 && !side_effects_p (SET_SRC (set1)))
3552 newpat = set0;
3553 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3556 else if (((REG_P (SET_DEST (set0))
3557 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
3558 || (GET_CODE (SET_DEST (set0)) == SUBREG
3559 && find_reg_note (i3, REG_UNUSED,
3560 SUBREG_REG (SET_DEST (set0)))))
3561 && insn_nothrow_p (i3)
3562 && !side_effects_p (SET_SRC (set0)))
3564 rtx dest = SET_DEST (set1);
3565 if (GET_CODE (dest) == SUBREG)
3566 dest = SUBREG_REG (dest);
3567 if (!reg_used_between_p (dest, i2, i3))
3569 newpat = set1;
3570 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3572 if (insn_code_number >= 0)
3573 changed_i3_dest = 1;
3577 if (insn_code_number < 0)
3578 newpat = oldpat;
3581 /* Is the result of combination a valid instruction? */
3582 if (insn_code_number < 0)
3583 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3585 /* If we were combining three insns and the result is a simple SET
3586 with no ASM_OPERANDS that wasn't recognized, try to split it into two
3587 insns. There are two ways to do this. It can be split using a
3588 machine-specific method (like when you have an addition of a large
3589 constant) or by combine in the function find_split_point. */
3591 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
3592 && asm_noperands (newpat) < 0)
3594 rtx parallel, *split;
3595 rtx_insn *m_split_insn;
3597 /* See if the MD file can split NEWPAT. If it can't, see if letting it
3598 use I2DEST as a scratch register will help. In the latter case,
3599 convert I2DEST to the mode of the source of NEWPAT if we can. */
3601 m_split_insn = combine_split_insns (newpat, i3);
3603 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
3604 inputs of NEWPAT. */
3606 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
3607 possible to try that as a scratch reg. This would require adding
3608 more code to make it work though. */
3610 if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
3612 machine_mode new_mode = GET_MODE (SET_DEST (newpat));
3614 /* ??? Reusing i2dest without resetting the reg_stat entry for it
3615 (temporarily, until we are committed to this instruction
3616 combination) does not work: for example, any call to nonzero_bits
3617 on the register (from a splitter in the MD file, for example)
3618 will get the old information, which is invalid.
3620 Since nowadays we can create registers during combine just fine,
3621 we should just create a new one here, not reuse i2dest. */
3623 /* First try to split using the original register as a
3624 scratch register. */
3625 parallel = gen_rtx_PARALLEL (VOIDmode,
3626 gen_rtvec (2, newpat,
3627 gen_rtx_CLOBBER (VOIDmode,
3628 i2dest)));
3629 m_split_insn = combine_split_insns (parallel, i3);
3631 /* If that didn't work, try changing the mode of I2DEST if
3632 we can. */
3633 if (m_split_insn == 0
3634 && new_mode != GET_MODE (i2dest)
3635 && new_mode != VOIDmode
3636 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
3638 machine_mode old_mode = GET_MODE (i2dest);
3639 rtx ni2dest;
3641 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3642 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
3643 else
3645 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
3646 ni2dest = regno_reg_rtx[REGNO (i2dest)];
3649 parallel = (gen_rtx_PARALLEL
3650 (VOIDmode,
3651 gen_rtvec (2, newpat,
3652 gen_rtx_CLOBBER (VOIDmode,
3653 ni2dest))));
3654 m_split_insn = combine_split_insns (parallel, i3);
3656 if (m_split_insn == 0
3657 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
3659 struct undo *buf;
3661 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
3662 buf = undobuf.undos;
3663 undobuf.undos = buf->next;
3664 buf->next = undobuf.frees;
3665 undobuf.frees = buf;
3669 i2scratch = m_split_insn != 0;
3672 /* If recog_for_combine has discarded clobbers, try to use them
3673 again for the split. */
3674 if (m_split_insn == 0 && newpat_vec_with_clobbers)
3676 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
3677 m_split_insn = combine_split_insns (parallel, i3);
3680 if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
3682 rtx m_split_pat = PATTERN (m_split_insn);
3683 insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
3684 if (insn_code_number >= 0)
3685 newpat = m_split_pat;
3687 else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
3688 && (next_nonnote_nondebug_insn (i2) == i3
3689 || ! use_crosses_set_p (PATTERN (m_split_insn), DF_INSN_LUID (i2))))
3691 rtx i2set, i3set;
3692 rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
3693 newi2pat = PATTERN (m_split_insn);
3695 i3set = single_set (NEXT_INSN (m_split_insn));
3696 i2set = single_set (m_split_insn);
3698 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3700 /* If I2 or I3 has multiple SETs, we won't know how to track
3701 register status, so don't use these insns. If I2's destination
3702 is used between I2 and I3, we also can't use these insns. */
3704 if (i2_code_number >= 0 && i2set && i3set
3705 && (next_nonnote_nondebug_insn (i2) == i3
3706 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3707 insn_code_number = recog_for_combine (&newi3pat, i3,
3708 &new_i3_notes);
3709 if (insn_code_number >= 0)
3710 newpat = newi3pat;
3712 /* It is possible that both insns now set the destination of I3.
3713 If so, we must show an extra use of it. */
3715 if (insn_code_number >= 0)
3717 rtx new_i3_dest = SET_DEST (i3set);
3718 rtx new_i2_dest = SET_DEST (i2set);
3720 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3721 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3722 || GET_CODE (new_i3_dest) == SUBREG)
3723 new_i3_dest = XEXP (new_i3_dest, 0);
3725 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3726 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3727 || GET_CODE (new_i2_dest) == SUBREG)
3728 new_i2_dest = XEXP (new_i2_dest, 0);
3730 if (REG_P (new_i3_dest)
3731 && REG_P (new_i2_dest)
3732 && REGNO (new_i3_dest) == REGNO (new_i2_dest)
3733 && REGNO (new_i2_dest) < reg_n_sets_max)
3734 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3738 /* If we can split it and use I2DEST, go ahead and see if that
3739 helps things be recognized. Verify that none of the registers
3740 are set between I2 and I3. */
3741 if (insn_code_number < 0
3742 && (split = find_split_point (&newpat, i3, false)) != 0
3743 && (!HAVE_cc0 || REG_P (i2dest))
3744 /* We need I2DEST in the proper mode. If it is a hard register
3745 or the only use of a pseudo, we can change its mode.
3746 Make sure we don't change a hard register to have a mode that
3747 isn't valid for it, or change the number of registers. */
3748 && (GET_MODE (*split) == GET_MODE (i2dest)
3749 || GET_MODE (*split) == VOIDmode
3750 || can_change_dest_mode (i2dest, added_sets_2,
3751 GET_MODE (*split)))
3752 && (next_nonnote_nondebug_insn (i2) == i3
3753 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3754 /* We can't overwrite I2DEST if its value is still used by
3755 NEWPAT. */
3756 && ! reg_referenced_p (i2dest, newpat))
3758 rtx newdest = i2dest;
3759 enum rtx_code split_code = GET_CODE (*split);
3760 machine_mode split_mode = GET_MODE (*split);
3761 bool subst_done = false;
3762 newi2pat = NULL_RTX;
3764 i2scratch = true;
3766 /* *SPLIT may be part of I2SRC, so make sure we have the
3767 original expression around for later debug processing.
3768 We should not need I2SRC any more in other cases. */
3769 if (MAY_HAVE_DEBUG_INSNS)
3770 i2src = copy_rtx (i2src);
3771 else
3772 i2src = NULL;
3774 /* Get NEWDEST as a register in the proper mode. We have already
3775 validated that we can do this. */
3776 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3778 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3779 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3780 else
3782 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3783 newdest = regno_reg_rtx[REGNO (i2dest)];
3787 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3788 an ASHIFT. This can occur if it was inside a PLUS and hence
3789 appeared to be a memory address. This is a kludge. */
3790 if (split_code == MULT
3791 && CONST_INT_P (XEXP (*split, 1))
3792 && INTVAL (XEXP (*split, 1)) > 0
3793 && (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
3795 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3796 XEXP (*split, 0), GEN_INT (i)));
3797 /* Update split_code because we may not have a multiply
3798 anymore. */
3799 split_code = GET_CODE (*split);
3802 /* Similarly for (plus (mult FOO (const_int pow2))). */
3803 if (split_code == PLUS
3804 && GET_CODE (XEXP (*split, 0)) == MULT
3805 && CONST_INT_P (XEXP (XEXP (*split, 0), 1))
3806 && INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
3807 && (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
3809 rtx nsplit = XEXP (*split, 0);
3810 SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
3811 XEXP (nsplit, 0), GEN_INT (i)));
3812 /* Update split_code because we may not have a multiply
3813 anymore. */
3814 split_code = GET_CODE (*split);
3817 #ifdef INSN_SCHEDULING
3818 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3819 be written as a ZERO_EXTEND. */
3820 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3822 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3823 what it really is. */
3824 if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
3825 == SIGN_EXTEND)
3826 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3827 SUBREG_REG (*split)));
3828 else
3829 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3830 SUBREG_REG (*split)));
3832 #endif
3834 /* Attempt to split binary operators using arithmetic identities. */
3835 if (BINARY_P (SET_SRC (newpat))
3836 && split_mode == GET_MODE (SET_SRC (newpat))
3837 && ! side_effects_p (SET_SRC (newpat)))
3839 rtx setsrc = SET_SRC (newpat);
3840 machine_mode mode = GET_MODE (setsrc);
3841 enum rtx_code code = GET_CODE (setsrc);
3842 rtx src_op0 = XEXP (setsrc, 0);
3843 rtx src_op1 = XEXP (setsrc, 1);
3845 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3846 if (rtx_equal_p (src_op0, src_op1))
3848 newi2pat = gen_rtx_SET (newdest, src_op0);
3849 SUBST (XEXP (setsrc, 0), newdest);
3850 SUBST (XEXP (setsrc, 1), newdest);
3851 subst_done = true;
3853 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3854 else if ((code == PLUS || code == MULT)
3855 && GET_CODE (src_op0) == code
3856 && GET_CODE (XEXP (src_op0, 0)) == code
3857 && (INTEGRAL_MODE_P (mode)
3858 || (FLOAT_MODE_P (mode)
3859 && flag_unsafe_math_optimizations)))
3861 rtx p = XEXP (XEXP (src_op0, 0), 0);
3862 rtx q = XEXP (XEXP (src_op0, 0), 1);
3863 rtx r = XEXP (src_op0, 1);
3864 rtx s = src_op1;
3866 /* Split both "((X op Y) op X) op Y" and
3867 "((X op Y) op Y) op X" as "T op T" where T is
3868 "X op Y". */
3869 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3870 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3872 newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
3873 SUBST (XEXP (setsrc, 0), newdest);
3874 SUBST (XEXP (setsrc, 1), newdest);
3875 subst_done = true;
3877 /* Split "((X op X) op Y) op Y)" as "T op T" where
3878 T is "X op Y". */
3879 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3881 rtx tmp = simplify_gen_binary (code, mode, p, r);
3882 newi2pat = gen_rtx_SET (newdest, tmp);
3883 SUBST (XEXP (setsrc, 0), newdest);
3884 SUBST (XEXP (setsrc, 1), newdest);
3885 subst_done = true;
3890 if (!subst_done)
3892 newi2pat = gen_rtx_SET (newdest, *split);
3893 SUBST (*split, newdest);
3896 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3898 /* recog_for_combine might have added CLOBBERs to newi2pat.
3899 Make sure NEWPAT does not depend on the clobbered regs. */
3900 if (GET_CODE (newi2pat) == PARALLEL)
3901 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3902 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3904 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3905 if (reg_overlap_mentioned_p (reg, newpat))
3907 undo_all ();
3908 return 0;
3912 /* If the split point was a MULT and we didn't have one before,
3913 don't use one now. */
3914 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3915 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3919 /* Check for a case where we loaded from memory in a narrow mode and
3920 then sign extended it, but we need both registers. In that case,
3921 we have a PARALLEL with both loads from the same memory location.
3922 We can split this into a load from memory followed by a register-register
3923 copy. This saves at least one insn, more if register allocation can
3924 eliminate the copy.
3926 We cannot do this if the destination of the first assignment is a
3927 condition code register or cc0. We eliminate this case by making sure
3928 the SET_DEST and SET_SRC have the same mode.
3930 We cannot do this if the destination of the second assignment is
3931 a register that we have already assumed is zero-extended. Similarly
3932 for a SUBREG of such a register. */
3934 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3935 && GET_CODE (newpat) == PARALLEL
3936 && XVECLEN (newpat, 0) == 2
3937 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3938 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3939 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3940 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3941 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3942 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3943 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3944 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3945 DF_INSN_LUID (i2))
3946 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3947 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3948 && ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
3949 (REG_P (temp_expr)
3950 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3951 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3952 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3953 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3954 != GET_MODE_MASK (word_mode))))
3955 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3956 && (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3957 (REG_P (temp_expr)
3958 && reg_stat[REGNO (temp_expr)].nonzero_bits != 0
3959 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < BITS_PER_WORD
3960 && GET_MODE_PRECISION (GET_MODE (temp_expr)) < HOST_BITS_PER_INT
3961 && (reg_stat[REGNO (temp_expr)].nonzero_bits
3962 != GET_MODE_MASK (word_mode)))))
3963 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3964 SET_SRC (XVECEXP (newpat, 0, 1)))
3965 && ! find_reg_note (i3, REG_UNUSED,
3966 SET_DEST (XVECEXP (newpat, 0, 0))))
3968 rtx ni2dest;
3970 newi2pat = XVECEXP (newpat, 0, 0);
3971 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3972 newpat = XVECEXP (newpat, 0, 1);
3973 SUBST (SET_SRC (newpat),
3974 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3975 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3977 if (i2_code_number >= 0)
3978 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3980 if (insn_code_number >= 0)
3981 swap_i2i3 = 1;
3984 /* Similarly, check for a case where we have a PARALLEL of two independent
3985 SETs but we started with three insns. In this case, we can do the sets
3986 as two separate insns. This case occurs when some SET allows two
3987 other insns to combine, but the destination of that SET is still live.
3989 Also do this if we started with two insns and (at least) one of the
3990 resulting sets is a noop; this noop will be deleted later. */
3992 else if (insn_code_number < 0 && asm_noperands (newpat) < 0
3993 && GET_CODE (newpat) == PARALLEL
3994 && XVECLEN (newpat, 0) == 2
3995 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3996 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3997 && (i1 || set_noop_p (XVECEXP (newpat, 0, 0))
3998 || set_noop_p (XVECEXP (newpat, 0, 1)))
3999 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
4000 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
4001 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
4002 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
4003 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
4004 XVECEXP (newpat, 0, 0))
4005 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
4006 XVECEXP (newpat, 0, 1))
4007 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
4008 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
4010 rtx set0 = XVECEXP (newpat, 0, 0);
4011 rtx set1 = XVECEXP (newpat, 0, 1);
4013 /* Normally, it doesn't matter which of the two is done first,
4014 but the one that references cc0 can't be the second, and
4015 one which uses any regs/memory set in between i2 and i3 can't
4016 be first. The PARALLEL might also have been pre-existing in i3,
4017 so we need to make sure that we won't wrongly hoist a SET to i2
4018 that would conflict with a death note present in there. */
4019 if (!use_crosses_set_p (SET_SRC (set1), DF_INSN_LUID (i2))
4020 && !(REG_P (SET_DEST (set1))
4021 && find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
4022 && !(GET_CODE (SET_DEST (set1)) == SUBREG
4023 && find_reg_note (i2, REG_DEAD,
4024 SUBREG_REG (SET_DEST (set1))))
4025 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
4026 /* If I3 is a jump, ensure that set0 is a jump so that
4027 we do not create invalid RTL. */
4028 && (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
4031 newi2pat = set1;
4032 newpat = set0;
4034 else if (!use_crosses_set_p (SET_SRC (set0), DF_INSN_LUID (i2))
4035 && !(REG_P (SET_DEST (set0))
4036 && find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
4037 && !(GET_CODE (SET_DEST (set0)) == SUBREG
4038 && find_reg_note (i2, REG_DEAD,
4039 SUBREG_REG (SET_DEST (set0))))
4040 && (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
4041 /* If I3 is a jump, ensure that set1 is a jump so that
4042 we do not create invalid RTL. */
4043 && (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
4046 newi2pat = set0;
4047 newpat = set1;
4049 else
4051 undo_all ();
4052 return 0;
4055 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
4057 if (i2_code_number >= 0)
4059 /* recog_for_combine might have added CLOBBERs to newi2pat.
4060 Make sure NEWPAT does not depend on the clobbered regs. */
4061 if (GET_CODE (newi2pat) == PARALLEL)
4063 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
4064 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
4066 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
4067 if (reg_overlap_mentioned_p (reg, newpat))
4069 undo_all ();
4070 return 0;
4075 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
4079 /* If it still isn't recognized, fail and change things back the way they
4080 were. */
4081 if ((insn_code_number < 0
4082 /* Is the result a reasonable ASM_OPERANDS? */
4083 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
4085 undo_all ();
4086 return 0;
4089 /* If we had to change another insn, make sure it is valid also. */
4090 if (undobuf.other_insn)
4092 CLEAR_HARD_REG_SET (newpat_used_regs);
4094 other_pat = PATTERN (undobuf.other_insn);
4095 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
4096 &new_other_notes);
4098 if (other_code_number < 0 && ! check_asm_operands (other_pat))
4100 undo_all ();
4101 return 0;
4105 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
4106 they are adjacent to each other or not. */
4107 if (HAVE_cc0)
4109 rtx_insn *p = prev_nonnote_insn (i3);
4110 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
4111 && sets_cc0_p (newi2pat))
4113 undo_all ();
4114 return 0;
4118 /* Only allow this combination if insn_cost reports that the
4119 replacement instructions are cheaper than the originals. */
4120 if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
4122 undo_all ();
4123 return 0;
4126 if (MAY_HAVE_DEBUG_INSNS)
4128 struct undo *undo;
4130 for (undo = undobuf.undos; undo; undo = undo->next)
4131 if (undo->kind == UNDO_MODE)
4133 rtx reg = *undo->where.r;
4134 machine_mode new_mode = GET_MODE (reg);
4135 machine_mode old_mode = undo->old_contents.m;
4137 /* Temporarily revert mode back. */
4138 adjust_reg_mode (reg, old_mode);
4140 if (reg == i2dest && i2scratch)
4142 /* If we used i2dest as a scratch register with a
4143 different mode, substitute it for the original
4144 i2src while its original mode is temporarily
4145 restored, and then clear i2scratch so that we don't
4146 do it again later. */
4147 propagate_for_debug (i2, last_combined_insn, reg, i2src,
4148 this_basic_block);
4149 i2scratch = false;
4150 /* Put back the new mode. */
4151 adjust_reg_mode (reg, new_mode);
4153 else
4155 rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
4156 rtx_insn *first, *last;
4158 if (reg == i2dest)
4160 first = i2;
4161 last = last_combined_insn;
4163 else
4165 first = i3;
4166 last = undobuf.other_insn;
4167 gcc_assert (last);
4168 if (DF_INSN_LUID (last)
4169 < DF_INSN_LUID (last_combined_insn))
4170 last = last_combined_insn;
4173 /* We're dealing with a reg that changed mode but not
4174 meaning, so we want to turn it into a subreg for
4175 the new mode. However, because of REG sharing and
4176 because its mode had already changed, we have to do
4177 it in two steps. First, replace any debug uses of
4178 reg, with its original mode temporarily restored,
4179 with this copy we have created; then, replace the
4180 copy with the SUBREG of the original shared reg,
4181 once again changed to the new mode. */
4182 propagate_for_debug (first, last, reg, tempreg,
4183 this_basic_block);
4184 adjust_reg_mode (reg, new_mode);
4185 propagate_for_debug (first, last, tempreg,
4186 lowpart_subreg (old_mode, reg, new_mode),
4187 this_basic_block);
4192 /* If we will be able to accept this, we have made a
4193 change to the destination of I3. This requires us to
4194 do a few adjustments. */
4196 if (changed_i3_dest)
4198 PATTERN (i3) = newpat;
4199 adjust_for_new_dest (i3);
4202 /* We now know that we can do this combination. Merge the insns and
4203 update the status of registers and LOG_LINKS. */
4205 if (undobuf.other_insn)
4207 rtx note, next;
4209 PATTERN (undobuf.other_insn) = other_pat;
4211 /* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
4212 ensure that they are still valid. Then add any non-duplicate
4213 notes added by recog_for_combine. */
4214 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
4216 next = XEXP (note, 1);
4218 if ((REG_NOTE_KIND (note) == REG_DEAD
4219 && !reg_referenced_p (XEXP (note, 0),
4220 PATTERN (undobuf.other_insn)))
4221 ||(REG_NOTE_KIND (note) == REG_UNUSED
4222 && !reg_set_p (XEXP (note, 0),
4223 PATTERN (undobuf.other_insn)))
4224 /* Simply drop equal note since it may be no longer valid
4225 for other_insn. It may be possible to record that CC
4226 register is changed and only discard those notes, but
4227 in practice it's unnecessary complication and doesn't
4228 give any meaningful improvement.
4230 See PR78559. */
4231 || REG_NOTE_KIND (note) == REG_EQUAL
4232 || REG_NOTE_KIND (note) == REG_EQUIV)
4233 remove_note (undobuf.other_insn, note);
4236 distribute_notes (new_other_notes, undobuf.other_insn,
4237 undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
4238 NULL_RTX);
4241 if (swap_i2i3)
4243 rtx_insn *insn;
4244 struct insn_link *link;
4245 rtx ni2dest;
4247 /* I3 now uses what used to be its destination and which is now
4248 I2's destination. This requires us to do a few adjustments. */
4249 PATTERN (i3) = newpat;
4250 adjust_for_new_dest (i3);
4252 /* We need a LOG_LINK from I3 to I2. But we used to have one,
4253 so we still will.
4255 However, some later insn might be using I2's dest and have
4256 a LOG_LINK pointing at I3. We must remove this link.
4257 The simplest way to remove the link is to point it at I1,
4258 which we know will be a NOTE. */
4260 /* newi2pat is usually a SET here; however, recog_for_combine might
4261 have added some clobbers. */
4262 if (GET_CODE (newi2pat) == PARALLEL)
4263 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
4264 else
4265 ni2dest = SET_DEST (newi2pat);
4267 for (insn = NEXT_INSN (i3);
4268 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4269 || insn != BB_HEAD (this_basic_block->next_bb));
4270 insn = NEXT_INSN (insn))
4272 if (NONDEBUG_INSN_P (insn)
4273 && reg_referenced_p (ni2dest, PATTERN (insn)))
4275 FOR_EACH_LOG_LINK (link, insn)
4276 if (link->insn == i3)
4277 link->insn = i1;
4279 break;
4285 rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
4286 struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
4287 rtx midnotes = 0;
4288 int from_luid;
4289 /* Compute which registers we expect to eliminate. newi2pat may be setting
4290 either i3dest or i2dest, so we must check it. */
4291 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
4292 || i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
4293 || !i2dest_killed
4294 ? 0 : i2dest);
4295 /* For i1, we need to compute both local elimination and global
4296 elimination information with respect to newi2pat because i1dest
4297 may be the same as i3dest, in which case newi2pat may be setting
4298 i1dest. Global information is used when distributing REG_DEAD
4299 note for i2 and i3, in which case it does matter if newi2pat sets
4300 i1dest or not.
4302 Local information is used when distributing REG_DEAD note for i1,
4303 in which case it doesn't matter if newi2pat sets i1dest or not.
4304 See PR62151, if we have four insns combination:
4305 i0: r0 <- i0src
4306 i1: r1 <- i1src (using r0)
4307 REG_DEAD (r0)
4308 i2: r0 <- i2src (using r1)
4309 i3: r3 <- i3src (using r0)
4310 ix: using r0
4311 From i1's point of view, r0 is eliminated, no matter if it is set
4312 by newi2pat or not. In other words, REG_DEAD info for r0 in i1
4313 should be discarded.
4315 Note local information only affects cases in forms like "I1->I2->I3",
4316 "I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
4317 "I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
4318 i0dest anyway. */
4319 rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
4320 || !i1dest_killed
4321 ? 0 : i1dest);
4322 rtx elim_i1 = (local_elim_i1 == 0
4323 || (newi2pat && reg_set_p (i1dest, newi2pat))
4324 ? 0 : i1dest);
4325 /* Same case as i1. */
4326 rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
4327 ? 0 : i0dest);
4328 rtx elim_i0 = (local_elim_i0 == 0
4329 || (newi2pat && reg_set_p (i0dest, newi2pat))
4330 ? 0 : i0dest);
4332 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
4333 clear them. */
4334 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
4335 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
4336 if (i1)
4337 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
4338 if (i0)
4339 i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
4341 /* Ensure that we do not have something that should not be shared but
4342 occurs multiple times in the new insns. Check this by first
4343 resetting all the `used' flags and then copying anything is shared. */
4345 reset_used_flags (i3notes);
4346 reset_used_flags (i2notes);
4347 reset_used_flags (i1notes);
4348 reset_used_flags (i0notes);
4349 reset_used_flags (newpat);
4350 reset_used_flags (newi2pat);
4351 if (undobuf.other_insn)
4352 reset_used_flags (PATTERN (undobuf.other_insn));
4354 i3notes = copy_rtx_if_shared (i3notes);
4355 i2notes = copy_rtx_if_shared (i2notes);
4356 i1notes = copy_rtx_if_shared (i1notes);
4357 i0notes = copy_rtx_if_shared (i0notes);
4358 newpat = copy_rtx_if_shared (newpat);
4359 newi2pat = copy_rtx_if_shared (newi2pat);
4360 if (undobuf.other_insn)
4361 reset_used_flags (PATTERN (undobuf.other_insn));
4363 INSN_CODE (i3) = insn_code_number;
4364 PATTERN (i3) = newpat;
4366 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
4368 for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
4369 link = XEXP (link, 1))
4371 if (substed_i2)
4373 /* I2SRC must still be meaningful at this point. Some
4374 splitting operations can invalidate I2SRC, but those
4375 operations do not apply to calls. */
4376 gcc_assert (i2src);
4377 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4378 i2dest, i2src);
4380 if (substed_i1)
4381 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4382 i1dest, i1src);
4383 if (substed_i0)
4384 XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
4385 i0dest, i0src);
4389 if (undobuf.other_insn)
4390 INSN_CODE (undobuf.other_insn) = other_code_number;
4392 /* We had one special case above where I2 had more than one set and
4393 we replaced a destination of one of those sets with the destination
4394 of I3. In that case, we have to update LOG_LINKS of insns later
4395 in this basic block. Note that this (expensive) case is rare.
4397 Also, in this case, we must pretend that all REG_NOTEs for I2
4398 actually came from I3, so that REG_UNUSED notes from I2 will be
4399 properly handled. */
4401 if (i3_subst_into_i2)
4403 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
4404 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
4405 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
4406 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
4407 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
4408 && ! find_reg_note (i2, REG_UNUSED,
4409 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
4410 for (temp_insn = NEXT_INSN (i2);
4411 temp_insn
4412 && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4413 || BB_HEAD (this_basic_block) != temp_insn);
4414 temp_insn = NEXT_INSN (temp_insn))
4415 if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
4416 FOR_EACH_LOG_LINK (link, temp_insn)
4417 if (link->insn == i2)
4418 link->insn = i3;
4420 if (i3notes)
4422 rtx link = i3notes;
4423 while (XEXP (link, 1))
4424 link = XEXP (link, 1);
4425 XEXP (link, 1) = i2notes;
4427 else
4428 i3notes = i2notes;
4429 i2notes = 0;
4432 LOG_LINKS (i3) = NULL;
4433 REG_NOTES (i3) = 0;
4434 LOG_LINKS (i2) = NULL;
4435 REG_NOTES (i2) = 0;
4437 if (newi2pat)
4439 if (MAY_HAVE_DEBUG_INSNS && i2scratch)
4440 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4441 this_basic_block);
4442 INSN_CODE (i2) = i2_code_number;
4443 PATTERN (i2) = newi2pat;
4445 else
4447 if (MAY_HAVE_DEBUG_INSNS && i2src)
4448 propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
4449 this_basic_block);
4450 SET_INSN_DELETED (i2);
4453 if (i1)
4455 LOG_LINKS (i1) = NULL;
4456 REG_NOTES (i1) = 0;
4457 if (MAY_HAVE_DEBUG_INSNS)
4458 propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
4459 this_basic_block);
4460 SET_INSN_DELETED (i1);
4463 if (i0)
4465 LOG_LINKS (i0) = NULL;
4466 REG_NOTES (i0) = 0;
4467 if (MAY_HAVE_DEBUG_INSNS)
4468 propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
4469 this_basic_block);
4470 SET_INSN_DELETED (i0);
4473 /* Get death notes for everything that is now used in either I3 or
4474 I2 and used to die in a previous insn. If we built two new
4475 patterns, move from I1 to I2 then I2 to I3 so that we get the
4476 proper movement on registers that I2 modifies. */
4478 if (i0)
4479 from_luid = DF_INSN_LUID (i0);
4480 else if (i1)
4481 from_luid = DF_INSN_LUID (i1);
4482 else
4483 from_luid = DF_INSN_LUID (i2);
4484 if (newi2pat)
4485 move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
4486 move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
4488 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
4489 if (i3notes)
4490 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
4491 elim_i2, elim_i1, elim_i0);
4492 if (i2notes)
4493 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
4494 elim_i2, elim_i1, elim_i0);
4495 if (i1notes)
4496 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
4497 elim_i2, local_elim_i1, local_elim_i0);
4498 if (i0notes)
4499 distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
4500 elim_i2, elim_i1, local_elim_i0);
4501 if (midnotes)
4502 distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
4503 elim_i2, elim_i1, elim_i0);
4505 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
4506 know these are REG_UNUSED and want them to go to the desired insn,
4507 so we always pass it as i3. */
4509 if (newi2pat && new_i2_notes)
4510 distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
4511 NULL_RTX);
4513 if (new_i3_notes)
4514 distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
4515 NULL_RTX);
4517 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
4518 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
4519 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
4520 in that case, it might delete I2. Similarly for I2 and I1.
4521 Show an additional death due to the REG_DEAD note we make here. If
4522 we discard it in distribute_notes, we will decrement it again. */
4524 if (i3dest_killed)
4526 rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
4527 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
4528 distribute_notes (new_note, NULL, i2, NULL, elim_i2,
4529 elim_i1, elim_i0);
4530 else
4531 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4532 elim_i2, elim_i1, elim_i0);
4535 if (i2dest_in_i2src)
4537 rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
4538 if (newi2pat && reg_set_p (i2dest, newi2pat))
4539 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4540 NULL_RTX, NULL_RTX);
4541 else
4542 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4543 NULL_RTX, NULL_RTX, NULL_RTX);
4546 if (i1dest_in_i1src)
4548 rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
4549 if (newi2pat && reg_set_p (i1dest, newi2pat))
4550 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4551 NULL_RTX, NULL_RTX);
4552 else
4553 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4554 NULL_RTX, NULL_RTX, NULL_RTX);
4557 if (i0dest_in_i0src)
4559 rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
4560 if (newi2pat && reg_set_p (i0dest, newi2pat))
4561 distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
4562 NULL_RTX, NULL_RTX);
4563 else
4564 distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
4565 NULL_RTX, NULL_RTX, NULL_RTX);
4568 distribute_links (i3links);
4569 distribute_links (i2links);
4570 distribute_links (i1links);
4571 distribute_links (i0links);
4573 if (REG_P (i2dest))
4575 struct insn_link *link;
4576 rtx_insn *i2_insn = 0;
4577 rtx i2_val = 0, set;
4579 /* The insn that used to set this register doesn't exist, and
4580 this life of the register may not exist either. See if one of
4581 I3's links points to an insn that sets I2DEST. If it does,
4582 that is now the last known value for I2DEST. If we don't update
4583 this and I2 set the register to a value that depended on its old
4584 contents, we will get confused. If this insn is used, thing
4585 will be set correctly in combine_instructions. */
4586 FOR_EACH_LOG_LINK (link, i3)
4587 if ((set = single_set (link->insn)) != 0
4588 && rtx_equal_p (i2dest, SET_DEST (set)))
4589 i2_insn = link->insn, i2_val = SET_SRC (set);
4591 record_value_for_reg (i2dest, i2_insn, i2_val);
4593 /* If the reg formerly set in I2 died only once and that was in I3,
4594 zero its use count so it won't make `reload' do any work. */
4595 if (! added_sets_2
4596 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
4597 && ! i2dest_in_i2src
4598 && REGNO (i2dest) < reg_n_sets_max)
4599 INC_REG_N_SETS (REGNO (i2dest), -1);
4602 if (i1 && REG_P (i1dest))
4604 struct insn_link *link;
4605 rtx_insn *i1_insn = 0;
4606 rtx i1_val = 0, set;
4608 FOR_EACH_LOG_LINK (link, i3)
4609 if ((set = single_set (link->insn)) != 0
4610 && rtx_equal_p (i1dest, SET_DEST (set)))
4611 i1_insn = link->insn, i1_val = SET_SRC (set);
4613 record_value_for_reg (i1dest, i1_insn, i1_val);
4615 if (! added_sets_1
4616 && ! i1dest_in_i1src
4617 && REGNO (i1dest) < reg_n_sets_max)
4618 INC_REG_N_SETS (REGNO (i1dest), -1);
4621 if (i0 && REG_P (i0dest))
4623 struct insn_link *link;
4624 rtx_insn *i0_insn = 0;
4625 rtx i0_val = 0, set;
4627 FOR_EACH_LOG_LINK (link, i3)
4628 if ((set = single_set (link->insn)) != 0
4629 && rtx_equal_p (i0dest, SET_DEST (set)))
4630 i0_insn = link->insn, i0_val = SET_SRC (set);
4632 record_value_for_reg (i0dest, i0_insn, i0_val);
4634 if (! added_sets_0
4635 && ! i0dest_in_i0src
4636 && REGNO (i0dest) < reg_n_sets_max)
4637 INC_REG_N_SETS (REGNO (i0dest), -1);
4640 /* Update reg_stat[].nonzero_bits et al for any changes that may have
4641 been made to this insn. The order is important, because newi2pat
4642 can affect nonzero_bits of newpat. */
4643 if (newi2pat)
4644 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
4645 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
4648 if (undobuf.other_insn != NULL_RTX)
4650 if (dump_file)
4652 fprintf (dump_file, "modifying other_insn ");
4653 dump_insn_slim (dump_file, undobuf.other_insn);
4655 df_insn_rescan (undobuf.other_insn);
4658 if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
4660 if (dump_file)
4662 fprintf (dump_file, "modifying insn i0 ");
4663 dump_insn_slim (dump_file, i0);
4665 df_insn_rescan (i0);
4668 if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
4670 if (dump_file)
4672 fprintf (dump_file, "modifying insn i1 ");
4673 dump_insn_slim (dump_file, i1);
4675 df_insn_rescan (i1);
4678 if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
4680 if (dump_file)
4682 fprintf (dump_file, "modifying insn i2 ");
4683 dump_insn_slim (dump_file, i2);
4685 df_insn_rescan (i2);
4688 if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
4690 if (dump_file)
4692 fprintf (dump_file, "modifying insn i3 ");
4693 dump_insn_slim (dump_file, i3);
4695 df_insn_rescan (i3);
4698 /* Set new_direct_jump_p if a new return or simple jump instruction
4699 has been created. Adjust the CFG accordingly. */
4700 if (returnjump_p (i3) || any_uncondjump_p (i3))
4702 *new_direct_jump_p = 1;
4703 mark_jump_label (PATTERN (i3), i3, 0);
4704 update_cfg_for_uncondjump (i3);
4707 if (undobuf.other_insn != NULL_RTX
4708 && (returnjump_p (undobuf.other_insn)
4709 || any_uncondjump_p (undobuf.other_insn)))
4711 *new_direct_jump_p = 1;
4712 update_cfg_for_uncondjump (undobuf.other_insn);
4715 if (GET_CODE (PATTERN (i3)) == TRAP_IF
4716 && XEXP (PATTERN (i3), 0) == const1_rtx)
4718 basic_block bb = BLOCK_FOR_INSN (i3);
4719 gcc_assert (bb);
4720 remove_edge (split_block (bb, i3));
4721 emit_barrier_after_bb (bb);
4722 *new_direct_jump_p = 1;
4725 if (undobuf.other_insn
4726 && GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
4727 && XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
4729 basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
4730 gcc_assert (bb);
4731 remove_edge (split_block (bb, undobuf.other_insn));
4732 emit_barrier_after_bb (bb);
4733 *new_direct_jump_p = 1;
4736 /* A noop might also need cleaning up of CFG, if it comes from the
4737 simplification of a jump. */
4738 if (JUMP_P (i3)
4739 && GET_CODE (newpat) == SET
4740 && SET_SRC (newpat) == pc_rtx
4741 && SET_DEST (newpat) == pc_rtx)
4743 *new_direct_jump_p = 1;
4744 update_cfg_for_uncondjump (i3);
4747 if (undobuf.other_insn != NULL_RTX
4748 && JUMP_P (undobuf.other_insn)
4749 && GET_CODE (PATTERN (undobuf.other_insn)) == SET
4750 && SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
4751 && SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
4753 *new_direct_jump_p = 1;
4754 update_cfg_for_uncondjump (undobuf.other_insn);
4757 combine_successes++;
4758 undo_commit ();
4760 rtx_insn *ret = newi2pat ? i2 : i3;
4761 if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
4762 ret = added_links_insn;
4763 if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
4764 ret = added_notes_insn;
4766 return ret;
4769 /* Get a marker for undoing to the current state. */
4771 static void *
4772 get_undo_marker (void)
4774 return undobuf.undos;
4777 /* Undo the modifications up to the marker. */
4779 static void
4780 undo_to_marker (void *marker)
4782 struct undo *undo, *next;
4784 for (undo = undobuf.undos; undo != marker; undo = next)
4786 gcc_assert (undo);
4788 next = undo->next;
4789 switch (undo->kind)
4791 case UNDO_RTX:
4792 *undo->where.r = undo->old_contents.r;
4793 break;
4794 case UNDO_INT:
4795 *undo->where.i = undo->old_contents.i;
4796 break;
4797 case UNDO_MODE:
4798 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
4799 break;
4800 case UNDO_LINKS:
4801 *undo->where.l = undo->old_contents.l;
4802 break;
4803 default:
4804 gcc_unreachable ();
4807 undo->next = undobuf.frees;
4808 undobuf.frees = undo;
4811 undobuf.undos = (struct undo *) marker;
4814 /* Undo all the modifications recorded in undobuf. */
4816 static void
4817 undo_all (void)
4819 undo_to_marker (0);
4822 /* We've committed to accepting the changes we made. Move all
4823 of the undos to the free list. */
4825 static void
4826 undo_commit (void)
4828 struct undo *undo, *next;
4830 for (undo = undobuf.undos; undo; undo = next)
4832 next = undo->next;
4833 undo->next = undobuf.frees;
4834 undobuf.frees = undo;
4836 undobuf.undos = 0;
4839 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
4840 where we have an arithmetic expression and return that point. LOC will
4841 be inside INSN.
4843 try_combine will call this function to see if an insn can be split into
4844 two insns. */
4846 static rtx *
4847 find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
4849 rtx x = *loc;
4850 enum rtx_code code = GET_CODE (x);
4851 rtx *split;
4852 unsigned HOST_WIDE_INT len = 0;
4853 HOST_WIDE_INT pos = 0;
4854 int unsignedp = 0;
4855 rtx inner = NULL_RTX;
4856 scalar_int_mode mode, inner_mode;
4858 /* First special-case some codes. */
4859 switch (code)
4861 case SUBREG:
4862 #ifdef INSN_SCHEDULING
4863 /* If we are making a paradoxical SUBREG invalid, it becomes a split
4864 point. */
4865 if (MEM_P (SUBREG_REG (x)))
4866 return loc;
4867 #endif
4868 return find_split_point (&SUBREG_REG (x), insn, false);
4870 case MEM:
4871 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
4872 using LO_SUM and HIGH. */
4873 if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
4874 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
4876 machine_mode address_mode = get_address_mode (x);
4878 SUBST (XEXP (x, 0),
4879 gen_rtx_LO_SUM (address_mode,
4880 gen_rtx_HIGH (address_mode, XEXP (x, 0)),
4881 XEXP (x, 0)));
4882 return &XEXP (XEXP (x, 0), 0);
4885 /* If we have a PLUS whose second operand is a constant and the
4886 address is not valid, perhaps will can split it up using
4887 the machine-specific way to split large constants. We use
4888 the first pseudo-reg (one of the virtual regs) as a placeholder;
4889 it will not remain in the result. */
4890 if (GET_CODE (XEXP (x, 0)) == PLUS
4891 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
4892 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4893 MEM_ADDR_SPACE (x)))
4895 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
4896 rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
4897 subst_insn);
4899 /* This should have produced two insns, each of which sets our
4900 placeholder. If the source of the second is a valid address,
4901 we can make put both sources together and make a split point
4902 in the middle. */
4904 if (seq
4905 && NEXT_INSN (seq) != NULL_RTX
4906 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
4907 && NONJUMP_INSN_P (seq)
4908 && GET_CODE (PATTERN (seq)) == SET
4909 && SET_DEST (PATTERN (seq)) == reg
4910 && ! reg_mentioned_p (reg,
4911 SET_SRC (PATTERN (seq)))
4912 && NONJUMP_INSN_P (NEXT_INSN (seq))
4913 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
4914 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
4915 && memory_address_addr_space_p
4916 (GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
4917 MEM_ADDR_SPACE (x)))
4919 rtx src1 = SET_SRC (PATTERN (seq));
4920 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
4922 /* Replace the placeholder in SRC2 with SRC1. If we can
4923 find where in SRC2 it was placed, that can become our
4924 split point and we can replace this address with SRC2.
4925 Just try two obvious places. */
4927 src2 = replace_rtx (src2, reg, src1);
4928 split = 0;
4929 if (XEXP (src2, 0) == src1)
4930 split = &XEXP (src2, 0);
4931 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
4932 && XEXP (XEXP (src2, 0), 0) == src1)
4933 split = &XEXP (XEXP (src2, 0), 0);
4935 if (split)
4937 SUBST (XEXP (x, 0), src2);
4938 return split;
4942 /* If that didn't work, perhaps the first operand is complex and
4943 needs to be computed separately, so make a split point there.
4944 This will occur on machines that just support REG + CONST
4945 and have a constant moved through some previous computation. */
4947 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
4948 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4949 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4950 return &XEXP (XEXP (x, 0), 0);
4953 /* If we have a PLUS whose first operand is complex, try computing it
4954 separately by making a split there. */
4955 if (GET_CODE (XEXP (x, 0)) == PLUS
4956 && ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
4957 MEM_ADDR_SPACE (x))
4958 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
4959 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
4960 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
4961 return &XEXP (XEXP (x, 0), 0);
4962 break;
4964 case SET:
4965 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
4966 ZERO_EXTRACT, the most likely reason why this doesn't match is that
4967 we need to put the operand into a register. So split at that
4968 point. */
4970 if (SET_DEST (x) == cc0_rtx
4971 && GET_CODE (SET_SRC (x)) != COMPARE
4972 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
4973 && !OBJECT_P (SET_SRC (x))
4974 && ! (GET_CODE (SET_SRC (x)) == SUBREG
4975 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
4976 return &SET_SRC (x);
4978 /* See if we can split SET_SRC as it stands. */
4979 split = find_split_point (&SET_SRC (x), insn, true);
4980 if (split && split != &SET_SRC (x))
4981 return split;
4983 /* See if we can split SET_DEST as it stands. */
4984 split = find_split_point (&SET_DEST (x), insn, false);
4985 if (split && split != &SET_DEST (x))
4986 return split;
4988 /* See if this is a bitfield assignment with everything constant. If
4989 so, this is an IOR of an AND, so split it into that. */
4990 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4991 && is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
4992 &inner_mode)
4993 && HWI_COMPUTABLE_MODE_P (inner_mode)
4994 && CONST_INT_P (XEXP (SET_DEST (x), 1))
4995 && CONST_INT_P (XEXP (SET_DEST (x), 2))
4996 && CONST_INT_P (SET_SRC (x))
4997 && ((INTVAL (XEXP (SET_DEST (x), 1))
4998 + INTVAL (XEXP (SET_DEST (x), 2)))
4999 <= GET_MODE_PRECISION (inner_mode))
5000 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
5002 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
5003 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
5004 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
5005 rtx dest = XEXP (SET_DEST (x), 0);
5006 unsigned HOST_WIDE_INT mask
5007 = (HOST_WIDE_INT_1U << len) - 1;
5008 rtx or_mask;
5010 if (BITS_BIG_ENDIAN)
5011 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5013 or_mask = gen_int_mode (src << pos, inner_mode);
5014 if (src == mask)
5015 SUBST (SET_SRC (x),
5016 simplify_gen_binary (IOR, inner_mode, dest, or_mask));
5017 else
5019 rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
5020 SUBST (SET_SRC (x),
5021 simplify_gen_binary (IOR, inner_mode,
5022 simplify_gen_binary (AND, inner_mode,
5023 dest, negmask),
5024 or_mask));
5027 SUBST (SET_DEST (x), dest);
5029 split = find_split_point (&SET_SRC (x), insn, true);
5030 if (split && split != &SET_SRC (x))
5031 return split;
5034 /* Otherwise, see if this is an operation that we can split into two.
5035 If so, try to split that. */
5036 code = GET_CODE (SET_SRC (x));
5038 switch (code)
5040 case AND:
5041 /* If we are AND'ing with a large constant that is only a single
5042 bit and the result is only being used in a context where we
5043 need to know if it is zero or nonzero, replace it with a bit
5044 extraction. This will avoid the large constant, which might
5045 have taken more than one insn to make. If the constant were
5046 not a valid argument to the AND but took only one insn to make,
5047 this is no worse, but if it took more than one insn, it will
5048 be better. */
5050 if (CONST_INT_P (XEXP (SET_SRC (x), 1))
5051 && REG_P (XEXP (SET_SRC (x), 0))
5052 && (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
5053 && REG_P (SET_DEST (x))
5054 && (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
5055 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
5056 && XEXP (*split, 0) == SET_DEST (x)
5057 && XEXP (*split, 1) == const0_rtx)
5059 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
5060 XEXP (SET_SRC (x), 0),
5061 pos, NULL_RTX, 1, 1, 0, 0);
5062 if (extraction != 0)
5064 SUBST (SET_SRC (x), extraction);
5065 return find_split_point (loc, insn, false);
5068 break;
5070 case NE:
5071 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
5072 is known to be on, this can be converted into a NEG of a shift. */
5073 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
5074 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
5075 && 1 <= (pos = exact_log2
5076 (nonzero_bits (XEXP (SET_SRC (x), 0),
5077 GET_MODE (XEXP (SET_SRC (x), 0))))))
5079 machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
5081 SUBST (SET_SRC (x),
5082 gen_rtx_NEG (mode,
5083 gen_rtx_LSHIFTRT (mode,
5084 XEXP (SET_SRC (x), 0),
5085 GEN_INT (pos))));
5087 split = find_split_point (&SET_SRC (x), insn, true);
5088 if (split && split != &SET_SRC (x))
5089 return split;
5091 break;
5093 case SIGN_EXTEND:
5094 inner = XEXP (SET_SRC (x), 0);
5096 /* We can't optimize if either mode is a partial integer
5097 mode as we don't know how many bits are significant
5098 in those modes. */
5099 if (!is_int_mode (GET_MODE (inner), &inner_mode)
5100 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
5101 break;
5103 pos = 0;
5104 len = GET_MODE_PRECISION (inner_mode);
5105 unsignedp = 0;
5106 break;
5108 case SIGN_EXTRACT:
5109 case ZERO_EXTRACT:
5110 if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
5111 &inner_mode)
5112 && CONST_INT_P (XEXP (SET_SRC (x), 1))
5113 && CONST_INT_P (XEXP (SET_SRC (x), 2)))
5115 inner = XEXP (SET_SRC (x), 0);
5116 len = INTVAL (XEXP (SET_SRC (x), 1));
5117 pos = INTVAL (XEXP (SET_SRC (x), 2));
5119 if (BITS_BIG_ENDIAN)
5120 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
5121 unsignedp = (code == ZERO_EXTRACT);
5123 break;
5125 default:
5126 break;
5129 if (len && pos >= 0
5130 && pos + len <= GET_MODE_PRECISION (GET_MODE (inner))
5131 && is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
5133 /* For unsigned, we have a choice of a shift followed by an
5134 AND or two shifts. Use two shifts for field sizes where the
5135 constant might be too large. We assume here that we can
5136 always at least get 8-bit constants in an AND insn, which is
5137 true for every current RISC. */
5139 if (unsignedp && len <= 8)
5141 unsigned HOST_WIDE_INT mask
5142 = (HOST_WIDE_INT_1U << len) - 1;
5143 SUBST (SET_SRC (x),
5144 gen_rtx_AND (mode,
5145 gen_rtx_LSHIFTRT
5146 (mode, gen_lowpart (mode, inner),
5147 GEN_INT (pos)),
5148 gen_int_mode (mask, mode)));
5150 split = find_split_point (&SET_SRC (x), insn, true);
5151 if (split && split != &SET_SRC (x))
5152 return split;
5154 else
5156 SUBST (SET_SRC (x),
5157 gen_rtx_fmt_ee
5158 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
5159 gen_rtx_ASHIFT (mode,
5160 gen_lowpart (mode, inner),
5161 GEN_INT (GET_MODE_PRECISION (mode)
5162 - len - pos)),
5163 GEN_INT (GET_MODE_PRECISION (mode) - len)));
5165 split = find_split_point (&SET_SRC (x), insn, true);
5166 if (split && split != &SET_SRC (x))
5167 return split;
5171 /* See if this is a simple operation with a constant as the second
5172 operand. It might be that this constant is out of range and hence
5173 could be used as a split point. */
5174 if (BINARY_P (SET_SRC (x))
5175 && CONSTANT_P (XEXP (SET_SRC (x), 1))
5176 && (OBJECT_P (XEXP (SET_SRC (x), 0))
5177 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
5178 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
5179 return &XEXP (SET_SRC (x), 1);
5181 /* Finally, see if this is a simple operation with its first operand
5182 not in a register. The operation might require this operand in a
5183 register, so return it as a split point. We can always do this
5184 because if the first operand were another operation, we would have
5185 already found it as a split point. */
5186 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
5187 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
5188 return &XEXP (SET_SRC (x), 0);
5190 return 0;
5192 case AND:
5193 case IOR:
5194 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
5195 it is better to write this as (not (ior A B)) so we can split it.
5196 Similarly for IOR. */
5197 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
5199 SUBST (*loc,
5200 gen_rtx_NOT (GET_MODE (x),
5201 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
5202 GET_MODE (x),
5203 XEXP (XEXP (x, 0), 0),
5204 XEXP (XEXP (x, 1), 0))));
5205 return find_split_point (loc, insn, set_src);
5208 /* Many RISC machines have a large set of logical insns. If the
5209 second operand is a NOT, put it first so we will try to split the
5210 other operand first. */
5211 if (GET_CODE (XEXP (x, 1)) == NOT)
5213 rtx tem = XEXP (x, 0);
5214 SUBST (XEXP (x, 0), XEXP (x, 1));
5215 SUBST (XEXP (x, 1), tem);
5217 break;
5219 case PLUS:
5220 case MINUS:
5221 /* Canonicalization can produce (minus A (mult B C)), where C is a
5222 constant. It may be better to try splitting (plus (mult B -C) A)
5223 instead if this isn't a multiply by a power of two. */
5224 if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
5225 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
5226 && !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
5228 machine_mode mode = GET_MODE (x);
5229 unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
5230 HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
5231 SUBST (*loc, gen_rtx_PLUS (mode,
5232 gen_rtx_MULT (mode,
5233 XEXP (XEXP (x, 1), 0),
5234 gen_int_mode (other_int,
5235 mode)),
5236 XEXP (x, 0)));
5237 return find_split_point (loc, insn, set_src);
5240 /* Split at a multiply-accumulate instruction. However if this is
5241 the SET_SRC, we likely do not have such an instruction and it's
5242 worthless to try this split. */
5243 if (!set_src
5244 && (GET_CODE (XEXP (x, 0)) == MULT
5245 || (GET_CODE (XEXP (x, 0)) == ASHIFT
5246 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
5247 return loc;
5249 default:
5250 break;
5253 /* Otherwise, select our actions depending on our rtx class. */
5254 switch (GET_RTX_CLASS (code))
5256 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
5257 case RTX_TERNARY:
5258 split = find_split_point (&XEXP (x, 2), insn, false);
5259 if (split)
5260 return split;
5261 /* fall through */
5262 case RTX_BIN_ARITH:
5263 case RTX_COMM_ARITH:
5264 case RTX_COMPARE:
5265 case RTX_COMM_COMPARE:
5266 split = find_split_point (&XEXP (x, 1), insn, false);
5267 if (split)
5268 return split;
5269 /* fall through */
5270 case RTX_UNARY:
5271 /* Some machines have (and (shift ...) ...) insns. If X is not
5272 an AND, but XEXP (X, 0) is, use it as our split point. */
5273 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
5274 return &XEXP (x, 0);
5276 split = find_split_point (&XEXP (x, 0), insn, false);
5277 if (split)
5278 return split;
5279 return loc;
5281 default:
5282 /* Otherwise, we don't have a split point. */
5283 return 0;
5287 /* Throughout X, replace FROM with TO, and return the result.
5288 The result is TO if X is FROM;
5289 otherwise the result is X, but its contents may have been modified.
5290 If they were modified, a record was made in undobuf so that
5291 undo_all will (among other things) return X to its original state.
5293 If the number of changes necessary is too much to record to undo,
5294 the excess changes are not made, so the result is invalid.
5295 The changes already made can still be undone.
5296 undobuf.num_undo is incremented for such changes, so by testing that
5297 the caller can tell whether the result is valid.
5299 `n_occurrences' is incremented each time FROM is replaced.
5301 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
5303 IN_COND is nonzero if we are at the top level of a condition.
5305 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
5306 by copying if `n_occurrences' is nonzero. */
5308 static rtx
5309 subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
5311 enum rtx_code code = GET_CODE (x);
5312 machine_mode op0_mode = VOIDmode;
5313 const char *fmt;
5314 int len, i;
5315 rtx new_rtx;
5317 /* Two expressions are equal if they are identical copies of a shared
5318 RTX or if they are both registers with the same register number
5319 and mode. */
5321 #define COMBINE_RTX_EQUAL_P(X,Y) \
5322 ((X) == (Y) \
5323 || (REG_P (X) && REG_P (Y) \
5324 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
5326 /* Do not substitute into clobbers of regs -- this will never result in
5327 valid RTL. */
5328 if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
5329 return x;
5331 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
5333 n_occurrences++;
5334 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
5337 /* If X and FROM are the same register but different modes, they
5338 will not have been seen as equal above. However, the log links code
5339 will make a LOG_LINKS entry for that case. If we do nothing, we
5340 will try to rerecognize our original insn and, when it succeeds,
5341 we will delete the feeding insn, which is incorrect.
5343 So force this insn not to match in this (rare) case. */
5344 if (! in_dest && code == REG && REG_P (from)
5345 && reg_overlap_mentioned_p (x, from))
5346 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
5348 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
5349 of which may contain things that can be combined. */
5350 if (code != MEM && code != LO_SUM && OBJECT_P (x))
5351 return x;
5353 /* It is possible to have a subexpression appear twice in the insn.
5354 Suppose that FROM is a register that appears within TO.
5355 Then, after that subexpression has been scanned once by `subst',
5356 the second time it is scanned, TO may be found. If we were
5357 to scan TO here, we would find FROM within it and create a
5358 self-referent rtl structure which is completely wrong. */
5359 if (COMBINE_RTX_EQUAL_P (x, to))
5360 return to;
5362 /* Parallel asm_operands need special attention because all of the
5363 inputs are shared across the arms. Furthermore, unsharing the
5364 rtl results in recognition failures. Failure to handle this case
5365 specially can result in circular rtl.
5367 Solve this by doing a normal pass across the first entry of the
5368 parallel, and only processing the SET_DESTs of the subsequent
5369 entries. Ug. */
5371 if (code == PARALLEL
5372 && GET_CODE (XVECEXP (x, 0, 0)) == SET
5373 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
5375 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
5377 /* If this substitution failed, this whole thing fails. */
5378 if (GET_CODE (new_rtx) == CLOBBER
5379 && XEXP (new_rtx, 0) == const0_rtx)
5380 return new_rtx;
5382 SUBST (XVECEXP (x, 0, 0), new_rtx);
5384 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
5386 rtx dest = SET_DEST (XVECEXP (x, 0, i));
5388 if (!REG_P (dest)
5389 && GET_CODE (dest) != CC0
5390 && GET_CODE (dest) != PC)
5392 new_rtx = subst (dest, from, to, 0, 0, unique_copy);
5394 /* If this substitution failed, this whole thing fails. */
5395 if (GET_CODE (new_rtx) == CLOBBER
5396 && XEXP (new_rtx, 0) == const0_rtx)
5397 return new_rtx;
5399 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
5403 else
5405 len = GET_RTX_LENGTH (code);
5406 fmt = GET_RTX_FORMAT (code);
5408 /* We don't need to process a SET_DEST that is a register, CC0,
5409 or PC, so set up to skip this common case. All other cases
5410 where we want to suppress replacing something inside a
5411 SET_SRC are handled via the IN_DEST operand. */
5412 if (code == SET
5413 && (REG_P (SET_DEST (x))
5414 || GET_CODE (SET_DEST (x)) == CC0
5415 || GET_CODE (SET_DEST (x)) == PC))
5416 fmt = "ie";
5418 /* Trying to simplify the operands of a widening MULT is not likely
5419 to create RTL matching a machine insn. */
5420 if (code == MULT
5421 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
5422 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
5423 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
5424 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
5425 && REG_P (XEXP (XEXP (x, 0), 0))
5426 && REG_P (XEXP (XEXP (x, 1), 0))
5427 && from == to)
5428 return x;
5431 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
5432 constant. */
5433 if (fmt[0] == 'e')
5434 op0_mode = GET_MODE (XEXP (x, 0));
5436 for (i = 0; i < len; i++)
5438 if (fmt[i] == 'E')
5440 int j;
5441 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5443 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
5445 new_rtx = (unique_copy && n_occurrences
5446 ? copy_rtx (to) : to);
5447 n_occurrences++;
5449 else
5451 new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
5452 unique_copy);
5454 /* If this substitution failed, this whole thing
5455 fails. */
5456 if (GET_CODE (new_rtx) == CLOBBER
5457 && XEXP (new_rtx, 0) == const0_rtx)
5458 return new_rtx;
5461 SUBST (XVECEXP (x, i, j), new_rtx);
5464 else if (fmt[i] == 'e')
5466 /* If this is a register being set, ignore it. */
5467 new_rtx = XEXP (x, i);
5468 if (in_dest
5469 && i == 0
5470 && (((code == SUBREG || code == ZERO_EXTRACT)
5471 && REG_P (new_rtx))
5472 || code == STRICT_LOW_PART))
5475 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
5477 /* In general, don't install a subreg involving two
5478 modes not tieable. It can worsen register
5479 allocation, and can even make invalid reload
5480 insns, since the reg inside may need to be copied
5481 from in the outside mode, and that may be invalid
5482 if it is an fp reg copied in integer mode.
5484 We allow two exceptions to this: It is valid if
5485 it is inside another SUBREG and the mode of that
5486 SUBREG and the mode of the inside of TO is
5487 tieable and it is valid if X is a SET that copies
5488 FROM to CC0. */
5490 if (GET_CODE (to) == SUBREG
5491 && !targetm.modes_tieable_p (GET_MODE (to),
5492 GET_MODE (SUBREG_REG (to)))
5493 && ! (code == SUBREG
5494 && (targetm.modes_tieable_p
5495 (GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
5496 && (!HAVE_cc0
5497 || (! (code == SET
5498 && i == 1
5499 && XEXP (x, 0) == cc0_rtx))))
5500 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5502 if (code == SUBREG
5503 && REG_P (to)
5504 && REGNO (to) < FIRST_PSEUDO_REGISTER
5505 && simplify_subreg_regno (REGNO (to), GET_MODE (to),
5506 SUBREG_BYTE (x),
5507 GET_MODE (x)) < 0)
5508 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
5510 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
5511 n_occurrences++;
5513 else
5514 /* If we are in a SET_DEST, suppress most cases unless we
5515 have gone inside a MEM, in which case we want to
5516 simplify the address. We assume here that things that
5517 are actually part of the destination have their inner
5518 parts in the first expression. This is true for SUBREG,
5519 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
5520 things aside from REG and MEM that should appear in a
5521 SET_DEST. */
5522 new_rtx = subst (XEXP (x, i), from, to,
5523 (((in_dest
5524 && (code == SUBREG || code == STRICT_LOW_PART
5525 || code == ZERO_EXTRACT))
5526 || code == SET)
5527 && i == 0),
5528 code == IF_THEN_ELSE && i == 0,
5529 unique_copy);
5531 /* If we found that we will have to reject this combination,
5532 indicate that by returning the CLOBBER ourselves, rather than
5533 an expression containing it. This will speed things up as
5534 well as prevent accidents where two CLOBBERs are considered
5535 to be equal, thus producing an incorrect simplification. */
5537 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
5538 return new_rtx;
5540 if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
5542 machine_mode mode = GET_MODE (x);
5544 x = simplify_subreg (GET_MODE (x), new_rtx,
5545 GET_MODE (SUBREG_REG (x)),
5546 SUBREG_BYTE (x));
5547 if (! x)
5548 x = gen_rtx_CLOBBER (mode, const0_rtx);
5550 else if (CONST_SCALAR_INT_P (new_rtx)
5551 && GET_CODE (x) == ZERO_EXTEND)
5553 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
5554 new_rtx, GET_MODE (XEXP (x, 0)));
5555 gcc_assert (x);
5557 else
5558 SUBST (XEXP (x, i), new_rtx);
5563 /* Check if we are loading something from the constant pool via float
5564 extension; in this case we would undo compress_float_constant
5565 optimization and degenerate constant load to an immediate value. */
5566 if (GET_CODE (x) == FLOAT_EXTEND
5567 && MEM_P (XEXP (x, 0))
5568 && MEM_READONLY_P (XEXP (x, 0)))
5570 rtx tmp = avoid_constant_pool_reference (x);
5571 if (x != tmp)
5572 return x;
5575 /* Try to simplify X. If the simplification changed the code, it is likely
5576 that further simplification will help, so loop, but limit the number
5577 of repetitions that will be performed. */
5579 for (i = 0; i < 4; i++)
5581 /* If X is sufficiently simple, don't bother trying to do anything
5582 with it. */
5583 if (code != CONST_INT && code != REG && code != CLOBBER)
5584 x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
5586 if (GET_CODE (x) == code)
5587 break;
5589 code = GET_CODE (x);
5591 /* We no longer know the original mode of operand 0 since we
5592 have changed the form of X) */
5593 op0_mode = VOIDmode;
5596 return x;
5599 /* If X is a commutative operation whose operands are not in the canonical
5600 order, use substitutions to swap them. */
5602 static void
5603 maybe_swap_commutative_operands (rtx x)
5605 if (COMMUTATIVE_ARITH_P (x)
5606 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
5608 rtx temp = XEXP (x, 0);
5609 SUBST (XEXP (x, 0), XEXP (x, 1));
5610 SUBST (XEXP (x, 1), temp);
5614 /* Simplify X, a piece of RTL. We just operate on the expression at the
5615 outer level; call `subst' to simplify recursively. Return the new
5616 expression.
5618 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
5619 if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
5620 of a condition. */
5622 static rtx
5623 combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
5624 int in_cond)
5626 enum rtx_code code = GET_CODE (x);
5627 machine_mode mode = GET_MODE (x);
5628 scalar_int_mode int_mode;
5629 rtx temp;
5630 int i;
5632 /* If this is a commutative operation, put a constant last and a complex
5633 expression first. We don't need to do this for comparisons here. */
5634 maybe_swap_commutative_operands (x);
5636 /* Try to fold this expression in case we have constants that weren't
5637 present before. */
5638 temp = 0;
5639 switch (GET_RTX_CLASS (code))
5641 case RTX_UNARY:
5642 if (op0_mode == VOIDmode)
5643 op0_mode = GET_MODE (XEXP (x, 0));
5644 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
5645 break;
5646 case RTX_COMPARE:
5647 case RTX_COMM_COMPARE:
5649 machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
5650 if (cmp_mode == VOIDmode)
5652 cmp_mode = GET_MODE (XEXP (x, 1));
5653 if (cmp_mode == VOIDmode)
5654 cmp_mode = op0_mode;
5656 temp = simplify_relational_operation (code, mode, cmp_mode,
5657 XEXP (x, 0), XEXP (x, 1));
5659 break;
5660 case RTX_COMM_ARITH:
5661 case RTX_BIN_ARITH:
5662 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
5663 break;
5664 case RTX_BITFIELD_OPS:
5665 case RTX_TERNARY:
5666 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
5667 XEXP (x, 1), XEXP (x, 2));
5668 break;
5669 default:
5670 break;
5673 if (temp)
5675 x = temp;
5676 code = GET_CODE (temp);
5677 op0_mode = VOIDmode;
5678 mode = GET_MODE (temp);
5681 /* If this is a simple operation applied to an IF_THEN_ELSE, try
5682 applying it to the arms of the IF_THEN_ELSE. This often simplifies
5683 things. Check for cases where both arms are testing the same
5684 condition.
5686 Don't do anything if all operands are very simple. */
5688 if ((BINARY_P (x)
5689 && ((!OBJECT_P (XEXP (x, 0))
5690 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5691 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
5692 || (!OBJECT_P (XEXP (x, 1))
5693 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
5694 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
5695 || (UNARY_P (x)
5696 && (!OBJECT_P (XEXP (x, 0))
5697 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
5698 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
5700 rtx cond, true_rtx, false_rtx;
5702 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
5703 if (cond != 0
5704 /* If everything is a comparison, what we have is highly unlikely
5705 to be simpler, so don't use it. */
5706 && ! (COMPARISON_P (x)
5707 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
5709 rtx cop1 = const0_rtx;
5710 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
5712 if (cond_code == NE && COMPARISON_P (cond))
5713 return x;
5715 /* Simplify the alternative arms; this may collapse the true and
5716 false arms to store-flag values. Be careful to use copy_rtx
5717 here since true_rtx or false_rtx might share RTL with x as a
5718 result of the if_then_else_cond call above. */
5719 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5720 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
5722 /* If true_rtx and false_rtx are not general_operands, an if_then_else
5723 is unlikely to be simpler. */
5724 if (general_operand (true_rtx, VOIDmode)
5725 && general_operand (false_rtx, VOIDmode))
5727 enum rtx_code reversed;
5729 /* Restarting if we generate a store-flag expression will cause
5730 us to loop. Just drop through in this case. */
5732 /* If the result values are STORE_FLAG_VALUE and zero, we can
5733 just make the comparison operation. */
5734 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
5735 x = simplify_gen_relational (cond_code, mode, VOIDmode,
5736 cond, cop1);
5737 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
5738 && ((reversed = reversed_comparison_code_parts
5739 (cond_code, cond, cop1, NULL))
5740 != UNKNOWN))
5741 x = simplify_gen_relational (reversed, mode, VOIDmode,
5742 cond, cop1);
5744 /* Likewise, we can make the negate of a comparison operation
5745 if the result values are - STORE_FLAG_VALUE and zero. */
5746 else if (CONST_INT_P (true_rtx)
5747 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
5748 && false_rtx == const0_rtx)
5749 x = simplify_gen_unary (NEG, mode,
5750 simplify_gen_relational (cond_code,
5751 mode, VOIDmode,
5752 cond, cop1),
5753 mode);
5754 else if (CONST_INT_P (false_rtx)
5755 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
5756 && true_rtx == const0_rtx
5757 && ((reversed = reversed_comparison_code_parts
5758 (cond_code, cond, cop1, NULL))
5759 != UNKNOWN))
5760 x = simplify_gen_unary (NEG, mode,
5761 simplify_gen_relational (reversed,
5762 mode, VOIDmode,
5763 cond, cop1),
5764 mode);
5765 else
5766 return gen_rtx_IF_THEN_ELSE (mode,
5767 simplify_gen_relational (cond_code,
5768 mode,
5769 VOIDmode,
5770 cond,
5771 cop1),
5772 true_rtx, false_rtx);
5774 code = GET_CODE (x);
5775 op0_mode = VOIDmode;
5780 /* First see if we can apply the inverse distributive law. */
5781 if (code == PLUS || code == MINUS
5782 || code == AND || code == IOR || code == XOR)
5784 x = apply_distributive_law (x);
5785 code = GET_CODE (x);
5786 op0_mode = VOIDmode;
5789 /* If CODE is an associative operation not otherwise handled, see if we
5790 can associate some operands. This can win if they are constants or
5791 if they are logically related (i.e. (a & b) & a). */
5792 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
5793 || code == AND || code == IOR || code == XOR
5794 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
5795 && ((INTEGRAL_MODE_P (mode) && code != DIV)
5796 || (flag_associative_math && FLOAT_MODE_P (mode))))
5798 if (GET_CODE (XEXP (x, 0)) == code)
5800 rtx other = XEXP (XEXP (x, 0), 0);
5801 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
5802 rtx inner_op1 = XEXP (x, 1);
5803 rtx inner;
5805 /* Make sure we pass the constant operand if any as the second
5806 one if this is a commutative operation. */
5807 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
5808 std::swap (inner_op0, inner_op1);
5809 inner = simplify_binary_operation (code == MINUS ? PLUS
5810 : code == DIV ? MULT
5811 : code,
5812 mode, inner_op0, inner_op1);
5814 /* For commutative operations, try the other pair if that one
5815 didn't simplify. */
5816 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
5818 other = XEXP (XEXP (x, 0), 1);
5819 inner = simplify_binary_operation (code, mode,
5820 XEXP (XEXP (x, 0), 0),
5821 XEXP (x, 1));
5824 if (inner)
5825 return simplify_gen_binary (code, mode, other, inner);
5829 /* A little bit of algebraic simplification here. */
5830 switch (code)
5832 case MEM:
5833 /* Ensure that our address has any ASHIFTs converted to MULT in case
5834 address-recognizing predicates are called later. */
5835 temp = make_compound_operation (XEXP (x, 0), MEM);
5836 SUBST (XEXP (x, 0), temp);
5837 break;
5839 case SUBREG:
5840 if (op0_mode == VOIDmode)
5841 op0_mode = GET_MODE (SUBREG_REG (x));
5843 /* See if this can be moved to simplify_subreg. */
5844 if (CONSTANT_P (SUBREG_REG (x))
5845 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
5846 /* Don't call gen_lowpart if the inner mode
5847 is VOIDmode and we cannot simplify it, as SUBREG without
5848 inner mode is invalid. */
5849 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
5850 || gen_lowpart_common (mode, SUBREG_REG (x))))
5851 return gen_lowpart (mode, SUBREG_REG (x));
5853 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
5854 break;
5856 rtx temp;
5857 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
5858 SUBREG_BYTE (x));
5859 if (temp)
5860 return temp;
5862 /* If op is known to have all lower bits zero, the result is zero. */
5863 scalar_int_mode int_mode, int_op0_mode;
5864 if (!in_dest
5865 && is_a <scalar_int_mode> (mode, &int_mode)
5866 && is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
5867 && (GET_MODE_PRECISION (int_mode)
5868 < GET_MODE_PRECISION (int_op0_mode))
5869 && (subreg_lowpart_offset (int_mode, int_op0_mode)
5870 == SUBREG_BYTE (x))
5871 && HWI_COMPUTABLE_MODE_P (int_op0_mode)
5872 && (nonzero_bits (SUBREG_REG (x), int_op0_mode)
5873 & GET_MODE_MASK (int_mode)) == 0)
5874 return CONST0_RTX (int_mode);
5877 /* Don't change the mode of the MEM if that would change the meaning
5878 of the address. */
5879 if (MEM_P (SUBREG_REG (x))
5880 && (MEM_VOLATILE_P (SUBREG_REG (x))
5881 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
5882 MEM_ADDR_SPACE (SUBREG_REG (x)))))
5883 return gen_rtx_CLOBBER (mode, const0_rtx);
5885 /* Note that we cannot do any narrowing for non-constants since
5886 we might have been counting on using the fact that some bits were
5887 zero. We now do this in the SET. */
5889 break;
5891 case NEG:
5892 temp = expand_compound_operation (XEXP (x, 0));
5894 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
5895 replaced by (lshiftrt X C). This will convert
5896 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
5898 if (GET_CODE (temp) == ASHIFTRT
5899 && CONST_INT_P (XEXP (temp, 1))
5900 && INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
5901 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
5902 INTVAL (XEXP (temp, 1)));
5904 /* If X has only a single bit that might be nonzero, say, bit I, convert
5905 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
5906 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
5907 (sign_extract X 1 Y). But only do this if TEMP isn't a register
5908 or a SUBREG of one since we'd be making the expression more
5909 complex if it was just a register. */
5911 if (!REG_P (temp)
5912 && ! (GET_CODE (temp) == SUBREG
5913 && REG_P (SUBREG_REG (temp)))
5914 && is_a <scalar_int_mode> (mode, &int_mode)
5915 && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
5917 rtx temp1 = simplify_shift_const
5918 (NULL_RTX, ASHIFTRT, int_mode,
5919 simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
5920 GET_MODE_PRECISION (int_mode) - 1 - i),
5921 GET_MODE_PRECISION (int_mode) - 1 - i);
5923 /* If all we did was surround TEMP with the two shifts, we
5924 haven't improved anything, so don't use it. Otherwise,
5925 we are better off with TEMP1. */
5926 if (GET_CODE (temp1) != ASHIFTRT
5927 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
5928 || XEXP (XEXP (temp1, 0), 0) != temp)
5929 return temp1;
5931 break;
5933 case TRUNCATE:
5934 /* We can't handle truncation to a partial integer mode here
5935 because we don't know the real bitsize of the partial
5936 integer mode. */
5937 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
5938 break;
5940 if (HWI_COMPUTABLE_MODE_P (mode))
5941 SUBST (XEXP (x, 0),
5942 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
5943 GET_MODE_MASK (mode), 0));
5945 /* We can truncate a constant value and return it. */
5946 if (CONST_INT_P (XEXP (x, 0)))
5947 return gen_int_mode (INTVAL (XEXP (x, 0)), mode);
5949 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
5950 whose value is a comparison can be replaced with a subreg if
5951 STORE_FLAG_VALUE permits. */
5952 if (HWI_COMPUTABLE_MODE_P (mode)
5953 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
5954 && (temp = get_last_value (XEXP (x, 0)))
5955 && COMPARISON_P (temp))
5956 return gen_lowpart (mode, XEXP (x, 0));
5957 break;
5959 case CONST:
5960 /* (const (const X)) can become (const X). Do it this way rather than
5961 returning the inner CONST since CONST can be shared with a
5962 REG_EQUAL note. */
5963 if (GET_CODE (XEXP (x, 0)) == CONST)
5964 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
5965 break;
5967 case LO_SUM:
5968 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
5969 can add in an offset. find_split_point will split this address up
5970 again if it doesn't match. */
5971 if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
5972 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
5973 return XEXP (x, 1);
5974 break;
5976 case PLUS:
5977 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
5978 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
5979 bit-field and can be replaced by either a sign_extend or a
5980 sign_extract. The `and' may be a zero_extend and the two
5981 <c>, -<c> constants may be reversed. */
5982 if (GET_CODE (XEXP (x, 0)) == XOR
5983 && is_a <scalar_int_mode> (mode, &int_mode)
5984 && CONST_INT_P (XEXP (x, 1))
5985 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
5986 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
5987 && ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
5988 || (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
5989 && HWI_COMPUTABLE_MODE_P (int_mode)
5990 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
5991 && CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
5992 && (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
5993 == (HOST_WIDE_INT_1U << (i + 1)) - 1))
5994 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
5995 && (GET_MODE_PRECISION (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
5996 == (unsigned int) i + 1))))
5997 return simplify_shift_const
5998 (NULL_RTX, ASHIFTRT, int_mode,
5999 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6000 XEXP (XEXP (XEXP (x, 0), 0), 0),
6001 GET_MODE_PRECISION (int_mode) - (i + 1)),
6002 GET_MODE_PRECISION (int_mode) - (i + 1));
6004 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
6005 can become (ashiftrt (ashift (xor x 1) C) C) where C is
6006 the bitsize of the mode - 1. This allows simplification of
6007 "a = (b & 8) == 0;" */
6008 if (XEXP (x, 1) == constm1_rtx
6009 && !REG_P (XEXP (x, 0))
6010 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
6011 && REG_P (SUBREG_REG (XEXP (x, 0))))
6012 && is_a <scalar_int_mode> (mode, &int_mode)
6013 && nonzero_bits (XEXP (x, 0), int_mode) == 1)
6014 return simplify_shift_const
6015 (NULL_RTX, ASHIFTRT, int_mode,
6016 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6017 gen_rtx_XOR (int_mode, XEXP (x, 0),
6018 const1_rtx),
6019 GET_MODE_PRECISION (int_mode) - 1),
6020 GET_MODE_PRECISION (int_mode) - 1);
6022 /* If we are adding two things that have no bits in common, convert
6023 the addition into an IOR. This will often be further simplified,
6024 for example in cases like ((a & 1) + (a & 2)), which can
6025 become a & 3. */
6027 if (HWI_COMPUTABLE_MODE_P (mode)
6028 && (nonzero_bits (XEXP (x, 0), mode)
6029 & nonzero_bits (XEXP (x, 1), mode)) == 0)
6031 /* Try to simplify the expression further. */
6032 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
6033 temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
6035 /* If we could, great. If not, do not go ahead with the IOR
6036 replacement, since PLUS appears in many special purpose
6037 address arithmetic instructions. */
6038 if (GET_CODE (temp) != CLOBBER
6039 && (GET_CODE (temp) != IOR
6040 || ((XEXP (temp, 0) != XEXP (x, 0)
6041 || XEXP (temp, 1) != XEXP (x, 1))
6042 && (XEXP (temp, 0) != XEXP (x, 1)
6043 || XEXP (temp, 1) != XEXP (x, 0)))))
6044 return temp;
6047 /* Canonicalize x + x into x << 1. */
6048 if (GET_MODE_CLASS (mode) == MODE_INT
6049 && rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
6050 && !side_effects_p (XEXP (x, 0)))
6051 return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
6053 break;
6055 case MINUS:
6056 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
6057 (and <foo> (const_int pow2-1)) */
6058 if (is_a <scalar_int_mode> (mode, &int_mode)
6059 && GET_CODE (XEXP (x, 1)) == AND
6060 && CONST_INT_P (XEXP (XEXP (x, 1), 1))
6061 && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
6062 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
6063 return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
6064 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
6065 break;
6067 case MULT:
6068 /* If we have (mult (plus A B) C), apply the distributive law and then
6069 the inverse distributive law to see if things simplify. This
6070 occurs mostly in addresses, often when unrolling loops. */
6072 if (GET_CODE (XEXP (x, 0)) == PLUS)
6074 rtx result = distribute_and_simplify_rtx (x, 0);
6075 if (result)
6076 return result;
6079 /* Try simplify a*(b/c) as (a*b)/c. */
6080 if (FLOAT_MODE_P (mode) && flag_associative_math
6081 && GET_CODE (XEXP (x, 0)) == DIV)
6083 rtx tem = simplify_binary_operation (MULT, mode,
6084 XEXP (XEXP (x, 0), 0),
6085 XEXP (x, 1));
6086 if (tem)
6087 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
6089 break;
6091 case UDIV:
6092 /* If this is a divide by a power of two, treat it as a shift if
6093 its first operand is a shift. */
6094 if (is_a <scalar_int_mode> (mode, &int_mode)
6095 && CONST_INT_P (XEXP (x, 1))
6096 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
6097 && (GET_CODE (XEXP (x, 0)) == ASHIFT
6098 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
6099 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
6100 || GET_CODE (XEXP (x, 0)) == ROTATE
6101 || GET_CODE (XEXP (x, 0)) == ROTATERT))
6102 return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
6103 XEXP (x, 0), i);
6104 break;
6106 case EQ: case NE:
6107 case GT: case GTU: case GE: case GEU:
6108 case LT: case LTU: case LE: case LEU:
6109 case UNEQ: case LTGT:
6110 case UNGT: case UNGE:
6111 case UNLT: case UNLE:
6112 case UNORDERED: case ORDERED:
6113 /* If the first operand is a condition code, we can't do anything
6114 with it. */
6115 if (GET_CODE (XEXP (x, 0)) == COMPARE
6116 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
6117 && ! CC0_P (XEXP (x, 0))))
6119 rtx op0 = XEXP (x, 0);
6120 rtx op1 = XEXP (x, 1);
6121 enum rtx_code new_code;
6123 if (GET_CODE (op0) == COMPARE)
6124 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
6126 /* Simplify our comparison, if possible. */
6127 new_code = simplify_comparison (code, &op0, &op1);
6129 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
6130 if only the low-order bit is possibly nonzero in X (such as when
6131 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
6132 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
6133 known to be either 0 or -1, NE becomes a NEG and EQ becomes
6134 (plus X 1).
6136 Remove any ZERO_EXTRACT we made when thinking this was a
6137 comparison. It may now be simpler to use, e.g., an AND. If a
6138 ZERO_EXTRACT is indeed appropriate, it will be placed back by
6139 the call to make_compound_operation in the SET case.
6141 Don't apply these optimizations if the caller would
6142 prefer a comparison rather than a value.
6143 E.g., for the condition in an IF_THEN_ELSE most targets need
6144 an explicit comparison. */
6146 if (in_cond)
6149 else if (STORE_FLAG_VALUE == 1
6150 && new_code == NE
6151 && is_int_mode (mode, &int_mode)
6152 && op1 == const0_rtx
6153 && int_mode == GET_MODE (op0)
6154 && nonzero_bits (op0, int_mode) == 1)
6155 return gen_lowpart (int_mode,
6156 expand_compound_operation (op0));
6158 else if (STORE_FLAG_VALUE == 1
6159 && new_code == NE
6160 && is_int_mode (mode, &int_mode)
6161 && op1 == const0_rtx
6162 && int_mode == GET_MODE (op0)
6163 && (num_sign_bit_copies (op0, int_mode)
6164 == GET_MODE_PRECISION (int_mode)))
6166 op0 = expand_compound_operation (op0);
6167 return simplify_gen_unary (NEG, int_mode,
6168 gen_lowpart (int_mode, op0),
6169 int_mode);
6172 else if (STORE_FLAG_VALUE == 1
6173 && new_code == EQ
6174 && is_int_mode (mode, &int_mode)
6175 && op1 == const0_rtx
6176 && int_mode == GET_MODE (op0)
6177 && nonzero_bits (op0, int_mode) == 1)
6179 op0 = expand_compound_operation (op0);
6180 return simplify_gen_binary (XOR, int_mode,
6181 gen_lowpart (int_mode, op0),
6182 const1_rtx);
6185 else if (STORE_FLAG_VALUE == 1
6186 && new_code == EQ
6187 && is_int_mode (mode, &int_mode)
6188 && op1 == const0_rtx
6189 && int_mode == GET_MODE (op0)
6190 && (num_sign_bit_copies (op0, int_mode)
6191 == GET_MODE_PRECISION (int_mode)))
6193 op0 = expand_compound_operation (op0);
6194 return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
6197 /* If STORE_FLAG_VALUE is -1, we have cases similar to
6198 those above. */
6199 if (in_cond)
6202 else if (STORE_FLAG_VALUE == -1
6203 && new_code == NE
6204 && is_int_mode (mode, &int_mode)
6205 && op1 == const0_rtx
6206 && int_mode == GET_MODE (op0)
6207 && (num_sign_bit_copies (op0, int_mode)
6208 == GET_MODE_PRECISION (int_mode)))
6209 return gen_lowpart (int_mode, expand_compound_operation (op0));
6211 else if (STORE_FLAG_VALUE == -1
6212 && new_code == NE
6213 && is_int_mode (mode, &int_mode)
6214 && op1 == const0_rtx
6215 && int_mode == GET_MODE (op0)
6216 && nonzero_bits (op0, int_mode) == 1)
6218 op0 = expand_compound_operation (op0);
6219 return simplify_gen_unary (NEG, int_mode,
6220 gen_lowpart (int_mode, op0),
6221 int_mode);
6224 else if (STORE_FLAG_VALUE == -1
6225 && new_code == EQ
6226 && is_int_mode (mode, &int_mode)
6227 && op1 == const0_rtx
6228 && int_mode == GET_MODE (op0)
6229 && (num_sign_bit_copies (op0, int_mode)
6230 == GET_MODE_PRECISION (int_mode)))
6232 op0 = expand_compound_operation (op0);
6233 return simplify_gen_unary (NOT, int_mode,
6234 gen_lowpart (int_mode, op0),
6235 int_mode);
6238 /* If X is 0/1, (eq X 0) is X-1. */
6239 else if (STORE_FLAG_VALUE == -1
6240 && new_code == EQ
6241 && is_int_mode (mode, &int_mode)
6242 && op1 == const0_rtx
6243 && int_mode == GET_MODE (op0)
6244 && nonzero_bits (op0, int_mode) == 1)
6246 op0 = expand_compound_operation (op0);
6247 return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
6250 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
6251 one bit that might be nonzero, we can convert (ne x 0) to
6252 (ashift x c) where C puts the bit in the sign bit. Remove any
6253 AND with STORE_FLAG_VALUE when we are done, since we are only
6254 going to test the sign bit. */
6255 if (new_code == NE
6256 && is_int_mode (mode, &int_mode)
6257 && HWI_COMPUTABLE_MODE_P (int_mode)
6258 && val_signbit_p (int_mode, STORE_FLAG_VALUE)
6259 && op1 == const0_rtx
6260 && int_mode == GET_MODE (op0)
6261 && (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
6263 x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6264 expand_compound_operation (op0),
6265 GET_MODE_PRECISION (int_mode) - 1 - i);
6266 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
6267 return XEXP (x, 0);
6268 else
6269 return x;
6272 /* If the code changed, return a whole new comparison.
6273 We also need to avoid using SUBST in cases where
6274 simplify_comparison has widened a comparison with a CONST_INT,
6275 since in that case the wider CONST_INT may fail the sanity
6276 checks in do_SUBST. */
6277 if (new_code != code
6278 || (CONST_INT_P (op1)
6279 && GET_MODE (op0) != GET_MODE (XEXP (x, 0))
6280 && GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
6281 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
6283 /* Otherwise, keep this operation, but maybe change its operands.
6284 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
6285 SUBST (XEXP (x, 0), op0);
6286 SUBST (XEXP (x, 1), op1);
6288 break;
6290 case IF_THEN_ELSE:
6291 return simplify_if_then_else (x);
6293 case ZERO_EXTRACT:
6294 case SIGN_EXTRACT:
6295 case ZERO_EXTEND:
6296 case SIGN_EXTEND:
6297 /* If we are processing SET_DEST, we are done. */
6298 if (in_dest)
6299 return x;
6301 return expand_compound_operation (x);
6303 case SET:
6304 return simplify_set (x);
6306 case AND:
6307 case IOR:
6308 return simplify_logical (x);
6310 case ASHIFT:
6311 case LSHIFTRT:
6312 case ASHIFTRT:
6313 case ROTATE:
6314 case ROTATERT:
6315 /* If this is a shift by a constant amount, simplify it. */
6316 if (CONST_INT_P (XEXP (x, 1)))
6317 return simplify_shift_const (x, code, mode, XEXP (x, 0),
6318 INTVAL (XEXP (x, 1)));
6320 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
6321 SUBST (XEXP (x, 1),
6322 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
6323 (HOST_WIDE_INT_1U
6324 << exact_log2 (GET_MODE_UNIT_BITSIZE
6325 (GET_MODE (x))))
6326 - 1,
6327 0));
6328 break;
6330 default:
6331 break;
6334 return x;
6337 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
6339 static rtx
6340 simplify_if_then_else (rtx x)
6342 machine_mode mode = GET_MODE (x);
6343 rtx cond = XEXP (x, 0);
6344 rtx true_rtx = XEXP (x, 1);
6345 rtx false_rtx = XEXP (x, 2);
6346 enum rtx_code true_code = GET_CODE (cond);
6347 int comparison_p = COMPARISON_P (cond);
6348 rtx temp;
6349 int i;
6350 enum rtx_code false_code;
6351 rtx reversed;
6352 scalar_int_mode int_mode, inner_mode;
6354 /* Simplify storing of the truth value. */
6355 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
6356 return simplify_gen_relational (true_code, mode, VOIDmode,
6357 XEXP (cond, 0), XEXP (cond, 1));
6359 /* Also when the truth value has to be reversed. */
6360 if (comparison_p
6361 && true_rtx == const0_rtx && false_rtx == const_true_rtx
6362 && (reversed = reversed_comparison (cond, mode)))
6363 return reversed;
6365 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
6366 in it is being compared against certain values. Get the true and false
6367 comparisons and see if that says anything about the value of each arm. */
6369 if (comparison_p
6370 && ((false_code = reversed_comparison_code (cond, NULL))
6371 != UNKNOWN)
6372 && REG_P (XEXP (cond, 0)))
6374 HOST_WIDE_INT nzb;
6375 rtx from = XEXP (cond, 0);
6376 rtx true_val = XEXP (cond, 1);
6377 rtx false_val = true_val;
6378 int swapped = 0;
6380 /* If FALSE_CODE is EQ, swap the codes and arms. */
6382 if (false_code == EQ)
6384 swapped = 1, true_code = EQ, false_code = NE;
6385 std::swap (true_rtx, false_rtx);
6388 scalar_int_mode from_mode;
6389 if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
6391 /* If we are comparing against zero and the expression being
6392 tested has only a single bit that might be nonzero, that is
6393 its value when it is not equal to zero. Similarly if it is
6394 known to be -1 or 0. */
6395 if (true_code == EQ
6396 && true_val == const0_rtx
6397 && pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
6399 false_code = EQ;
6400 false_val = gen_int_mode (nzb, from_mode);
6402 else if (true_code == EQ
6403 && true_val == const0_rtx
6404 && (num_sign_bit_copies (from, from_mode)
6405 == GET_MODE_PRECISION (from_mode)))
6407 false_code = EQ;
6408 false_val = constm1_rtx;
6412 /* Now simplify an arm if we know the value of the register in the
6413 branch and it is used in the arm. Be careful due to the potential
6414 of locally-shared RTL. */
6416 if (reg_mentioned_p (from, true_rtx))
6417 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
6418 from, true_val),
6419 pc_rtx, pc_rtx, 0, 0, 0);
6420 if (reg_mentioned_p (from, false_rtx))
6421 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
6422 from, false_val),
6423 pc_rtx, pc_rtx, 0, 0, 0);
6425 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
6426 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
6428 true_rtx = XEXP (x, 1);
6429 false_rtx = XEXP (x, 2);
6430 true_code = GET_CODE (cond);
6433 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
6434 reversed, do so to avoid needing two sets of patterns for
6435 subtract-and-branch insns. Similarly if we have a constant in the true
6436 arm, the false arm is the same as the first operand of the comparison, or
6437 the false arm is more complicated than the true arm. */
6439 if (comparison_p
6440 && reversed_comparison_code (cond, NULL) != UNKNOWN
6441 && (true_rtx == pc_rtx
6442 || (CONSTANT_P (true_rtx)
6443 && !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
6444 || true_rtx == const0_rtx
6445 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
6446 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
6447 && !OBJECT_P (false_rtx))
6448 || reg_mentioned_p (true_rtx, false_rtx)
6449 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
6451 true_code = reversed_comparison_code (cond, NULL);
6452 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
6453 SUBST (XEXP (x, 1), false_rtx);
6454 SUBST (XEXP (x, 2), true_rtx);
6456 std::swap (true_rtx, false_rtx);
6457 cond = XEXP (x, 0);
6459 /* It is possible that the conditional has been simplified out. */
6460 true_code = GET_CODE (cond);
6461 comparison_p = COMPARISON_P (cond);
6464 /* If the two arms are identical, we don't need the comparison. */
6466 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
6467 return true_rtx;
6469 /* Convert a == b ? b : a to "a". */
6470 if (true_code == EQ && ! side_effects_p (cond)
6471 && !HONOR_NANS (mode)
6472 && rtx_equal_p (XEXP (cond, 0), false_rtx)
6473 && rtx_equal_p (XEXP (cond, 1), true_rtx))
6474 return false_rtx;
6475 else if (true_code == NE && ! side_effects_p (cond)
6476 && !HONOR_NANS (mode)
6477 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6478 && rtx_equal_p (XEXP (cond, 1), false_rtx))
6479 return true_rtx;
6481 /* Look for cases where we have (abs x) or (neg (abs X)). */
6483 if (GET_MODE_CLASS (mode) == MODE_INT
6484 && comparison_p
6485 && XEXP (cond, 1) == const0_rtx
6486 && GET_CODE (false_rtx) == NEG
6487 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
6488 && rtx_equal_p (true_rtx, XEXP (cond, 0))
6489 && ! side_effects_p (true_rtx))
6490 switch (true_code)
6492 case GT:
6493 case GE:
6494 return simplify_gen_unary (ABS, mode, true_rtx, mode);
6495 case LT:
6496 case LE:
6497 return
6498 simplify_gen_unary (NEG, mode,
6499 simplify_gen_unary (ABS, mode, true_rtx, mode),
6500 mode);
6501 default:
6502 break;
6505 /* Look for MIN or MAX. */
6507 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
6508 && comparison_p
6509 && rtx_equal_p (XEXP (cond, 0), true_rtx)
6510 && rtx_equal_p (XEXP (cond, 1), false_rtx)
6511 && ! side_effects_p (cond))
6512 switch (true_code)
6514 case GE:
6515 case GT:
6516 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
6517 case LE:
6518 case LT:
6519 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
6520 case GEU:
6521 case GTU:
6522 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
6523 case LEU:
6524 case LTU:
6525 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
6526 default:
6527 break;
6530 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
6531 second operand is zero, this can be done as (OP Z (mult COND C2)) where
6532 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
6533 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
6534 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
6535 neither 1 or -1, but it isn't worth checking for. */
6537 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
6538 && comparison_p
6539 && is_int_mode (mode, &int_mode)
6540 && ! side_effects_p (x))
6542 rtx t = make_compound_operation (true_rtx, SET);
6543 rtx f = make_compound_operation (false_rtx, SET);
6544 rtx cond_op0 = XEXP (cond, 0);
6545 rtx cond_op1 = XEXP (cond, 1);
6546 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
6547 scalar_int_mode m = int_mode;
6548 rtx z = 0, c1 = NULL_RTX;
6550 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
6551 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
6552 || GET_CODE (t) == ASHIFT
6553 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
6554 && rtx_equal_p (XEXP (t, 0), f))
6555 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
6557 /* If an identity-zero op is commutative, check whether there
6558 would be a match if we swapped the operands. */
6559 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
6560 || GET_CODE (t) == XOR)
6561 && rtx_equal_p (XEXP (t, 1), f))
6562 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
6563 else if (GET_CODE (t) == SIGN_EXTEND
6564 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6565 && (GET_CODE (XEXP (t, 0)) == PLUS
6566 || GET_CODE (XEXP (t, 0)) == MINUS
6567 || GET_CODE (XEXP (t, 0)) == IOR
6568 || GET_CODE (XEXP (t, 0)) == XOR
6569 || GET_CODE (XEXP (t, 0)) == ASHIFT
6570 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6571 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6572 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6573 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6574 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6575 && (num_sign_bit_copies (f, GET_MODE (f))
6576 > (unsigned int)
6577 (GET_MODE_PRECISION (int_mode)
6578 - GET_MODE_PRECISION (inner_mode))))
6580 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6581 extend_op = SIGN_EXTEND;
6582 m = inner_mode;
6584 else if (GET_CODE (t) == SIGN_EXTEND
6585 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6586 && (GET_CODE (XEXP (t, 0)) == PLUS
6587 || GET_CODE (XEXP (t, 0)) == IOR
6588 || GET_CODE (XEXP (t, 0)) == XOR)
6589 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6590 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6591 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6592 && (num_sign_bit_copies (f, GET_MODE (f))
6593 > (unsigned int)
6594 (GET_MODE_PRECISION (int_mode)
6595 - GET_MODE_PRECISION (inner_mode))))
6597 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6598 extend_op = SIGN_EXTEND;
6599 m = inner_mode;
6601 else if (GET_CODE (t) == ZERO_EXTEND
6602 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6603 && (GET_CODE (XEXP (t, 0)) == PLUS
6604 || GET_CODE (XEXP (t, 0)) == MINUS
6605 || GET_CODE (XEXP (t, 0)) == IOR
6606 || GET_CODE (XEXP (t, 0)) == XOR
6607 || GET_CODE (XEXP (t, 0)) == ASHIFT
6608 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
6609 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
6610 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
6611 && HWI_COMPUTABLE_MODE_P (int_mode)
6612 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
6613 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
6614 && ((nonzero_bits (f, GET_MODE (f))
6615 & ~GET_MODE_MASK (inner_mode))
6616 == 0))
6618 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
6619 extend_op = ZERO_EXTEND;
6620 m = inner_mode;
6622 else if (GET_CODE (t) == ZERO_EXTEND
6623 && is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
6624 && (GET_CODE (XEXP (t, 0)) == PLUS
6625 || GET_CODE (XEXP (t, 0)) == IOR
6626 || GET_CODE (XEXP (t, 0)) == XOR)
6627 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
6628 && HWI_COMPUTABLE_MODE_P (int_mode)
6629 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
6630 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
6631 && ((nonzero_bits (f, GET_MODE (f))
6632 & ~GET_MODE_MASK (inner_mode))
6633 == 0))
6635 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
6636 extend_op = ZERO_EXTEND;
6637 m = inner_mode;
6640 if (z)
6642 machine_mode cm = m;
6643 if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
6644 && GET_MODE (c1) != VOIDmode)
6645 cm = GET_MODE (c1);
6646 temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
6647 cond_op0, cond_op1),
6648 pc_rtx, pc_rtx, 0, 0, 0);
6649 temp = simplify_gen_binary (MULT, cm, temp,
6650 simplify_gen_binary (MULT, cm, c1,
6651 const_true_rtx));
6652 temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
6653 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
6655 if (extend_op != UNKNOWN)
6656 temp = simplify_gen_unary (extend_op, int_mode, temp, m);
6658 return temp;
6662 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
6663 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
6664 negation of a single bit, we can convert this operation to a shift. We
6665 can actually do this more generally, but it doesn't seem worth it. */
6667 if (true_code == NE
6668 && is_a <scalar_int_mode> (mode, &int_mode)
6669 && XEXP (cond, 1) == const0_rtx
6670 && false_rtx == const0_rtx
6671 && CONST_INT_P (true_rtx)
6672 && ((1 == nonzero_bits (XEXP (cond, 0), int_mode)
6673 && (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
6674 || ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
6675 == GET_MODE_PRECISION (int_mode))
6676 && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
6677 return
6678 simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
6679 gen_lowpart (int_mode, XEXP (cond, 0)), i);
6681 /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
6682 non-zero bit in A is C1. */
6683 if (true_code == NE && XEXP (cond, 1) == const0_rtx
6684 && false_rtx == const0_rtx && CONST_INT_P (true_rtx)
6685 && is_a <scalar_int_mode> (mode, &int_mode)
6686 && is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
6687 && (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
6688 == nonzero_bits (XEXP (cond, 0), inner_mode)
6689 && (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
6691 rtx val = XEXP (cond, 0);
6692 if (inner_mode == int_mode)
6693 return val;
6694 else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
6695 return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
6698 return x;
6701 /* Simplify X, a SET expression. Return the new expression. */
6703 static rtx
6704 simplify_set (rtx x)
6706 rtx src = SET_SRC (x);
6707 rtx dest = SET_DEST (x);
6708 machine_mode mode
6709 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
6710 rtx_insn *other_insn;
6711 rtx *cc_use;
6712 scalar_int_mode int_mode;
6714 /* (set (pc) (return)) gets written as (return). */
6715 if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
6716 return src;
6718 /* Now that we know for sure which bits of SRC we are using, see if we can
6719 simplify the expression for the object knowing that we only need the
6720 low-order bits. */
6722 if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
6724 src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
6725 SUBST (SET_SRC (x), src);
6728 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
6729 the comparison result and try to simplify it unless we already have used
6730 undobuf.other_insn. */
6731 if ((GET_MODE_CLASS (mode) == MODE_CC
6732 || GET_CODE (src) == COMPARE
6733 || CC0_P (dest))
6734 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
6735 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
6736 && COMPARISON_P (*cc_use)
6737 && rtx_equal_p (XEXP (*cc_use, 0), dest))
6739 enum rtx_code old_code = GET_CODE (*cc_use);
6740 enum rtx_code new_code;
6741 rtx op0, op1, tmp;
6742 int other_changed = 0;
6743 rtx inner_compare = NULL_RTX;
6744 machine_mode compare_mode = GET_MODE (dest);
6746 if (GET_CODE (src) == COMPARE)
6748 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
6749 if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
6751 inner_compare = op0;
6752 op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
6755 else
6756 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
6758 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
6759 op0, op1);
6760 if (!tmp)
6761 new_code = old_code;
6762 else if (!CONSTANT_P (tmp))
6764 new_code = GET_CODE (tmp);
6765 op0 = XEXP (tmp, 0);
6766 op1 = XEXP (tmp, 1);
6768 else
6770 rtx pat = PATTERN (other_insn);
6771 undobuf.other_insn = other_insn;
6772 SUBST (*cc_use, tmp);
6774 /* Attempt to simplify CC user. */
6775 if (GET_CODE (pat) == SET)
6777 rtx new_rtx = simplify_rtx (SET_SRC (pat));
6778 if (new_rtx != NULL_RTX)
6779 SUBST (SET_SRC (pat), new_rtx);
6782 /* Convert X into a no-op move. */
6783 SUBST (SET_DEST (x), pc_rtx);
6784 SUBST (SET_SRC (x), pc_rtx);
6785 return x;
6788 /* Simplify our comparison, if possible. */
6789 new_code = simplify_comparison (new_code, &op0, &op1);
6791 #ifdef SELECT_CC_MODE
6792 /* If this machine has CC modes other than CCmode, check to see if we
6793 need to use a different CC mode here. */
6794 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
6795 compare_mode = GET_MODE (op0);
6796 else if (inner_compare
6797 && GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
6798 && new_code == old_code
6799 && op0 == XEXP (inner_compare, 0)
6800 && op1 == XEXP (inner_compare, 1))
6801 compare_mode = GET_MODE (inner_compare);
6802 else
6803 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
6805 /* If the mode changed, we have to change SET_DEST, the mode in the
6806 compare, and the mode in the place SET_DEST is used. If SET_DEST is
6807 a hard register, just build new versions with the proper mode. If it
6808 is a pseudo, we lose unless it is only time we set the pseudo, in
6809 which case we can safely change its mode. */
6810 if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
6812 if (can_change_dest_mode (dest, 0, compare_mode))
6814 unsigned int regno = REGNO (dest);
6815 rtx new_dest;
6817 if (regno < FIRST_PSEUDO_REGISTER)
6818 new_dest = gen_rtx_REG (compare_mode, regno);
6819 else
6821 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
6822 new_dest = regno_reg_rtx[regno];
6825 SUBST (SET_DEST (x), new_dest);
6826 SUBST (XEXP (*cc_use, 0), new_dest);
6827 other_changed = 1;
6829 dest = new_dest;
6832 #endif /* SELECT_CC_MODE */
6834 /* If the code changed, we have to build a new comparison in
6835 undobuf.other_insn. */
6836 if (new_code != old_code)
6838 int other_changed_previously = other_changed;
6839 unsigned HOST_WIDE_INT mask;
6840 rtx old_cc_use = *cc_use;
6842 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
6843 dest, const0_rtx));
6844 other_changed = 1;
6846 /* If the only change we made was to change an EQ into an NE or
6847 vice versa, OP0 has only one bit that might be nonzero, and OP1
6848 is zero, check if changing the user of the condition code will
6849 produce a valid insn. If it won't, we can keep the original code
6850 in that insn by surrounding our operation with an XOR. */
6852 if (((old_code == NE && new_code == EQ)
6853 || (old_code == EQ && new_code == NE))
6854 && ! other_changed_previously && op1 == const0_rtx
6855 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
6856 && pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
6858 rtx pat = PATTERN (other_insn), note = 0;
6860 if ((recog_for_combine (&pat, other_insn, &note) < 0
6861 && ! check_asm_operands (pat)))
6863 *cc_use = old_cc_use;
6864 other_changed = 0;
6866 op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
6867 gen_int_mode (mask,
6868 GET_MODE (op0)));
6873 if (other_changed)
6874 undobuf.other_insn = other_insn;
6876 /* Don't generate a compare of a CC with 0, just use that CC. */
6877 if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
6879 SUBST (SET_SRC (x), op0);
6880 src = SET_SRC (x);
6882 /* Otherwise, if we didn't previously have the same COMPARE we
6883 want, create it from scratch. */
6884 else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
6885 || XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
6887 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
6888 src = SET_SRC (x);
6891 else
6893 /* Get SET_SRC in a form where we have placed back any
6894 compound expressions. Then do the checks below. */
6895 src = make_compound_operation (src, SET);
6896 SUBST (SET_SRC (x), src);
6899 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
6900 and X being a REG or (subreg (reg)), we may be able to convert this to
6901 (set (subreg:m2 x) (op)).
6903 We can always do this if M1 is narrower than M2 because that means that
6904 we only care about the low bits of the result.
6906 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
6907 perform a narrower operation than requested since the high-order bits will
6908 be undefined. On machine where it is defined, this transformation is safe
6909 as long as M1 and M2 have the same number of words. */
6911 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
6912 && !OBJECT_P (SUBREG_REG (src))
6913 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
6914 / UNITS_PER_WORD)
6915 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
6916 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
6917 && (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
6918 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
6919 && !REG_CAN_CHANGE_MODE_P (REGNO (dest),
6920 GET_MODE (SUBREG_REG (src)),
6921 GET_MODE (src)))
6922 && (REG_P (dest)
6923 || (GET_CODE (dest) == SUBREG
6924 && REG_P (SUBREG_REG (dest)))))
6926 SUBST (SET_DEST (x),
6927 gen_lowpart (GET_MODE (SUBREG_REG (src)),
6928 dest));
6929 SUBST (SET_SRC (x), SUBREG_REG (src));
6931 src = SET_SRC (x), dest = SET_DEST (x);
6934 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
6935 in SRC. */
6936 if (dest == cc0_rtx
6937 && partial_subreg_p (src)
6938 && subreg_lowpart_p (src))
6940 rtx inner = SUBREG_REG (src);
6941 machine_mode inner_mode = GET_MODE (inner);
6943 /* Here we make sure that we don't have a sign bit on. */
6944 if (val_signbit_known_clear_p (GET_MODE (src),
6945 nonzero_bits (inner, inner_mode)))
6947 SUBST (SET_SRC (x), inner);
6948 src = SET_SRC (x);
6952 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
6953 would require a paradoxical subreg. Replace the subreg with a
6954 zero_extend to avoid the reload that would otherwise be required. */
6956 enum rtx_code extend_op;
6957 if (paradoxical_subreg_p (src)
6958 && MEM_P (SUBREG_REG (src))
6959 && (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
6961 SUBST (SET_SRC (x),
6962 gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
6964 src = SET_SRC (x);
6967 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
6968 are comparing an item known to be 0 or -1 against 0, use a logical
6969 operation instead. Check for one of the arms being an IOR of the other
6970 arm with some value. We compute three terms to be IOR'ed together. In
6971 practice, at most two will be nonzero. Then we do the IOR's. */
6973 if (GET_CODE (dest) != PC
6974 && GET_CODE (src) == IF_THEN_ELSE
6975 && is_int_mode (GET_MODE (src), &int_mode)
6976 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
6977 && XEXP (XEXP (src, 0), 1) == const0_rtx
6978 && int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
6979 && (!HAVE_conditional_move
6980 || ! can_conditionally_move_p (int_mode))
6981 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
6982 == GET_MODE_PRECISION (int_mode))
6983 && ! side_effects_p (src))
6985 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
6986 ? XEXP (src, 1) : XEXP (src, 2));
6987 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
6988 ? XEXP (src, 2) : XEXP (src, 1));
6989 rtx term1 = const0_rtx, term2, term3;
6991 if (GET_CODE (true_rtx) == IOR
6992 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
6993 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
6994 else if (GET_CODE (true_rtx) == IOR
6995 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
6996 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
6997 else if (GET_CODE (false_rtx) == IOR
6998 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
6999 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
7000 else if (GET_CODE (false_rtx) == IOR
7001 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
7002 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
7004 term2 = simplify_gen_binary (AND, int_mode,
7005 XEXP (XEXP (src, 0), 0), true_rtx);
7006 term3 = simplify_gen_binary (AND, int_mode,
7007 simplify_gen_unary (NOT, int_mode,
7008 XEXP (XEXP (src, 0), 0),
7009 int_mode),
7010 false_rtx);
7012 SUBST (SET_SRC (x),
7013 simplify_gen_binary (IOR, int_mode,
7014 simplify_gen_binary (IOR, int_mode,
7015 term1, term2),
7016 term3));
7018 src = SET_SRC (x);
7021 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
7022 whole thing fail. */
7023 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
7024 return src;
7025 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
7026 return dest;
7027 else
7028 /* Convert this into a field assignment operation, if possible. */
7029 return make_field_assignment (x);
7032 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
7033 result. */
7035 static rtx
7036 simplify_logical (rtx x)
7038 rtx op0 = XEXP (x, 0);
7039 rtx op1 = XEXP (x, 1);
7040 scalar_int_mode mode;
7042 switch (GET_CODE (x))
7044 case AND:
7045 /* We can call simplify_and_const_int only if we don't lose
7046 any (sign) bits when converting INTVAL (op1) to
7047 "unsigned HOST_WIDE_INT". */
7048 if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
7049 && CONST_INT_P (op1)
7050 && (HWI_COMPUTABLE_MODE_P (mode)
7051 || INTVAL (op1) > 0))
7053 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
7054 if (GET_CODE (x) != AND)
7055 return x;
7057 op0 = XEXP (x, 0);
7058 op1 = XEXP (x, 1);
7061 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
7062 apply the distributive law and then the inverse distributive
7063 law to see if things simplify. */
7064 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
7066 rtx result = distribute_and_simplify_rtx (x, 0);
7067 if (result)
7068 return result;
7070 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
7072 rtx result = distribute_and_simplify_rtx (x, 1);
7073 if (result)
7074 return result;
7076 break;
7078 case IOR:
7079 /* If we have (ior (and A B) C), apply the distributive law and then
7080 the inverse distributive law to see if things simplify. */
7082 if (GET_CODE (op0) == AND)
7084 rtx result = distribute_and_simplify_rtx (x, 0);
7085 if (result)
7086 return result;
7089 if (GET_CODE (op1) == AND)
7091 rtx result = distribute_and_simplify_rtx (x, 1);
7092 if (result)
7093 return result;
7095 break;
7097 default:
7098 gcc_unreachable ();
7101 return x;
7104 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
7105 operations" because they can be replaced with two more basic operations.
7106 ZERO_EXTEND is also considered "compound" because it can be replaced with
7107 an AND operation, which is simpler, though only one operation.
7109 The function expand_compound_operation is called with an rtx expression
7110 and will convert it to the appropriate shifts and AND operations,
7111 simplifying at each stage.
7113 The function make_compound_operation is called to convert an expression
7114 consisting of shifts and ANDs into the equivalent compound expression.
7115 It is the inverse of this function, loosely speaking. */
7117 static rtx
7118 expand_compound_operation (rtx x)
7120 unsigned HOST_WIDE_INT pos = 0, len;
7121 int unsignedp = 0;
7122 unsigned int modewidth;
7123 rtx tem;
7124 scalar_int_mode inner_mode;
7126 switch (GET_CODE (x))
7128 case ZERO_EXTEND:
7129 unsignedp = 1;
7130 /* FALLTHRU */
7131 case SIGN_EXTEND:
7132 /* We can't necessarily use a const_int for a multiword mode;
7133 it depends on implicitly extending the value.
7134 Since we don't know the right way to extend it,
7135 we can't tell whether the implicit way is right.
7137 Even for a mode that is no wider than a const_int,
7138 we can't win, because we need to sign extend one of its bits through
7139 the rest of it, and we don't know which bit. */
7140 if (CONST_INT_P (XEXP (x, 0)))
7141 return x;
7143 /* Reject modes that aren't scalar integers because turning vector
7144 or complex modes into shifts causes problems. */
7145 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7146 return x;
7148 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
7149 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
7150 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
7151 reloaded. If not for that, MEM's would very rarely be safe.
7153 Reject modes bigger than a word, because we might not be able
7154 to reference a two-register group starting with an arbitrary register
7155 (and currently gen_lowpart might crash for a SUBREG). */
7157 if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
7158 return x;
7160 len = GET_MODE_PRECISION (inner_mode);
7161 /* If the inner object has VOIDmode (the only way this can happen
7162 is if it is an ASM_OPERANDS), we can't do anything since we don't
7163 know how much masking to do. */
7164 if (len == 0)
7165 return x;
7167 break;
7169 case ZERO_EXTRACT:
7170 unsignedp = 1;
7172 /* fall through */
7174 case SIGN_EXTRACT:
7175 /* If the operand is a CLOBBER, just return it. */
7176 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
7177 return XEXP (x, 0);
7179 if (!CONST_INT_P (XEXP (x, 1))
7180 || !CONST_INT_P (XEXP (x, 2)))
7181 return x;
7183 /* Reject modes that aren't scalar integers because turning vector
7184 or complex modes into shifts causes problems. */
7185 if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
7186 return x;
7188 len = INTVAL (XEXP (x, 1));
7189 pos = INTVAL (XEXP (x, 2));
7191 /* This should stay within the object being extracted, fail otherwise. */
7192 if (len + pos > GET_MODE_PRECISION (inner_mode))
7193 return x;
7195 if (BITS_BIG_ENDIAN)
7196 pos = GET_MODE_PRECISION (inner_mode) - len - pos;
7198 break;
7200 default:
7201 return x;
7204 /* We've rejected non-scalar operations by now. */
7205 scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
7207 /* Convert sign extension to zero extension, if we know that the high
7208 bit is not set, as this is easier to optimize. It will be converted
7209 back to cheaper alternative in make_extraction. */
7210 if (GET_CODE (x) == SIGN_EXTEND
7211 && HWI_COMPUTABLE_MODE_P (mode)
7212 && ((nonzero_bits (XEXP (x, 0), inner_mode)
7213 & ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
7214 == 0))
7216 rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
7217 rtx temp2 = expand_compound_operation (temp);
7219 /* Make sure this is a profitable operation. */
7220 if (set_src_cost (x, mode, optimize_this_for_speed_p)
7221 > set_src_cost (temp2, mode, optimize_this_for_speed_p))
7222 return temp2;
7223 else if (set_src_cost (x, mode, optimize_this_for_speed_p)
7224 > set_src_cost (temp, mode, optimize_this_for_speed_p))
7225 return temp;
7226 else
7227 return x;
7230 /* We can optimize some special cases of ZERO_EXTEND. */
7231 if (GET_CODE (x) == ZERO_EXTEND)
7233 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
7234 know that the last value didn't have any inappropriate bits
7235 set. */
7236 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7237 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7238 && HWI_COMPUTABLE_MODE_P (mode)
7239 && (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
7240 & ~GET_MODE_MASK (inner_mode)) == 0)
7241 return XEXP (XEXP (x, 0), 0);
7243 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7244 if (GET_CODE (XEXP (x, 0)) == SUBREG
7245 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7246 && subreg_lowpart_p (XEXP (x, 0))
7247 && HWI_COMPUTABLE_MODE_P (mode)
7248 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
7249 & ~GET_MODE_MASK (inner_mode)) == 0)
7250 return SUBREG_REG (XEXP (x, 0));
7252 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
7253 is a comparison and STORE_FLAG_VALUE permits. This is like
7254 the first case, but it works even when MODE is larger
7255 than HOST_WIDE_INT. */
7256 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
7257 && GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
7258 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
7259 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7260 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7261 return XEXP (XEXP (x, 0), 0);
7263 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
7264 if (GET_CODE (XEXP (x, 0)) == SUBREG
7265 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
7266 && subreg_lowpart_p (XEXP (x, 0))
7267 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
7268 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
7269 && (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
7270 return SUBREG_REG (XEXP (x, 0));
7274 /* If we reach here, we want to return a pair of shifts. The inner
7275 shift is a left shift of BITSIZE - POS - LEN bits. The outer
7276 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
7277 logical depending on the value of UNSIGNEDP.
7279 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
7280 converted into an AND of a shift.
7282 We must check for the case where the left shift would have a negative
7283 count. This can happen in a case like (x >> 31) & 255 on machines
7284 that can't shift by a constant. On those machines, we would first
7285 combine the shift with the AND to produce a variable-position
7286 extraction. Then the constant of 31 would be substituted in
7287 to produce such a position. */
7289 modewidth = GET_MODE_PRECISION (mode);
7290 if (modewidth >= pos + len)
7292 tem = gen_lowpart (mode, XEXP (x, 0));
7293 if (!tem || GET_CODE (tem) == CLOBBER)
7294 return x;
7295 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
7296 tem, modewidth - pos - len);
7297 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
7298 mode, tem, modewidth - len);
7300 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
7301 tem = simplify_and_const_int (NULL_RTX, mode,
7302 simplify_shift_const (NULL_RTX, LSHIFTRT,
7303 mode, XEXP (x, 0),
7304 pos),
7305 (HOST_WIDE_INT_1U << len) - 1);
7306 else
7307 /* Any other cases we can't handle. */
7308 return x;
7310 /* If we couldn't do this for some reason, return the original
7311 expression. */
7312 if (GET_CODE (tem) == CLOBBER)
7313 return x;
7315 return tem;
7318 /* X is a SET which contains an assignment of one object into
7319 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
7320 or certain SUBREGS). If possible, convert it into a series of
7321 logical operations.
7323 We half-heartedly support variable positions, but do not at all
7324 support variable lengths. */
7326 static const_rtx
7327 expand_field_assignment (const_rtx x)
7329 rtx inner;
7330 rtx pos; /* Always counts from low bit. */
7331 int len;
7332 rtx mask, cleared, masked;
7333 scalar_int_mode compute_mode;
7335 /* Loop until we find something we can't simplify. */
7336 while (1)
7338 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
7339 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
7341 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
7342 len = GET_MODE_PRECISION (GET_MODE (XEXP (SET_DEST (x), 0)));
7343 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
7345 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
7346 && CONST_INT_P (XEXP (SET_DEST (x), 1)))
7348 inner = XEXP (SET_DEST (x), 0);
7349 len = INTVAL (XEXP (SET_DEST (x), 1));
7350 pos = XEXP (SET_DEST (x), 2);
7352 /* A constant position should stay within the width of INNER. */
7353 if (CONST_INT_P (pos)
7354 && INTVAL (pos) + len > GET_MODE_PRECISION (GET_MODE (inner)))
7355 break;
7357 if (BITS_BIG_ENDIAN)
7359 if (CONST_INT_P (pos))
7360 pos = GEN_INT (GET_MODE_PRECISION (GET_MODE (inner)) - len
7361 - INTVAL (pos));
7362 else if (GET_CODE (pos) == MINUS
7363 && CONST_INT_P (XEXP (pos, 1))
7364 && (INTVAL (XEXP (pos, 1))
7365 == GET_MODE_PRECISION (GET_MODE (inner)) - len))
7366 /* If position is ADJUST - X, new position is X. */
7367 pos = XEXP (pos, 0);
7368 else
7370 HOST_WIDE_INT prec = GET_MODE_PRECISION (GET_MODE (inner));
7371 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
7372 gen_int_mode (prec - len,
7373 GET_MODE (pos)),
7374 pos);
7379 /* If the destination is a subreg that overwrites the whole of the inner
7380 register, we can move the subreg to the source. */
7381 else if (GET_CODE (SET_DEST (x)) == SUBREG
7382 /* We need SUBREGs to compute nonzero_bits properly. */
7383 && nonzero_sign_valid
7384 && !read_modify_subreg_p (SET_DEST (x)))
7386 x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
7387 gen_lowpart
7388 (GET_MODE (SUBREG_REG (SET_DEST (x))),
7389 SET_SRC (x)));
7390 continue;
7392 else
7393 break;
7395 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
7396 inner = SUBREG_REG (inner);
7398 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
7399 if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
7401 /* Don't do anything for vector or complex integral types. */
7402 if (! FLOAT_MODE_P (GET_MODE (inner)))
7403 break;
7405 /* Try to find an integral mode to pun with. */
7406 if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
7407 .exists (&compute_mode))
7408 break;
7410 inner = gen_lowpart (compute_mode, inner);
7413 /* Compute a mask of LEN bits, if we can do this on the host machine. */
7414 if (len >= HOST_BITS_PER_WIDE_INT)
7415 break;
7417 /* Don't try to compute in too wide unsupported modes. */
7418 if (!targetm.scalar_mode_supported_p (compute_mode))
7419 break;
7421 /* Now compute the equivalent expression. Make a copy of INNER
7422 for the SET_DEST in case it is a MEM into which we will substitute;
7423 we don't want shared RTL in that case. */
7424 mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
7425 compute_mode);
7426 cleared = simplify_gen_binary (AND, compute_mode,
7427 simplify_gen_unary (NOT, compute_mode,
7428 simplify_gen_binary (ASHIFT,
7429 compute_mode,
7430 mask, pos),
7431 compute_mode),
7432 inner);
7433 masked = simplify_gen_binary (ASHIFT, compute_mode,
7434 simplify_gen_binary (
7435 AND, compute_mode,
7436 gen_lowpart (compute_mode, SET_SRC (x)),
7437 mask),
7438 pos);
7440 x = gen_rtx_SET (copy_rtx (inner),
7441 simplify_gen_binary (IOR, compute_mode,
7442 cleared, masked));
7445 return x;
7448 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
7449 it is an RTX that represents the (variable) starting position; otherwise,
7450 POS is the (constant) starting bit position. Both are counted from the LSB.
7452 UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
7454 IN_DEST is nonzero if this is a reference in the destination of a SET.
7455 This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
7456 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
7457 be used.
7459 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
7460 ZERO_EXTRACT should be built even for bits starting at bit 0.
7462 MODE is the desired mode of the result (if IN_DEST == 0).
7464 The result is an RTX for the extraction or NULL_RTX if the target
7465 can't handle it. */
7467 static rtx
7468 make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
7469 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
7470 int in_dest, int in_compare)
7472 /* This mode describes the size of the storage area
7473 to fetch the overall value from. Within that, we
7474 ignore the POS lowest bits, etc. */
7475 machine_mode is_mode = GET_MODE (inner);
7476 machine_mode inner_mode;
7477 scalar_int_mode wanted_inner_mode;
7478 scalar_int_mode wanted_inner_reg_mode = word_mode;
7479 scalar_int_mode pos_mode = word_mode;
7480 machine_mode extraction_mode = word_mode;
7481 rtx new_rtx = 0;
7482 rtx orig_pos_rtx = pos_rtx;
7483 HOST_WIDE_INT orig_pos;
7485 if (pos_rtx && CONST_INT_P (pos_rtx))
7486 pos = INTVAL (pos_rtx), pos_rtx = 0;
7488 if (GET_CODE (inner) == SUBREG
7489 && subreg_lowpart_p (inner)
7490 && (paradoxical_subreg_p (inner)
7491 /* If trying or potentionally trying to extract
7492 bits outside of is_mode, don't look through
7493 non-paradoxical SUBREGs. See PR82192. */
7494 || (pos_rtx == NULL_RTX
7495 && pos + len <= GET_MODE_PRECISION (is_mode))))
7497 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
7498 consider just the QI as the memory to extract from.
7499 The subreg adds or removes high bits; its mode is
7500 irrelevant to the meaning of this extraction,
7501 since POS and LEN count from the lsb. */
7502 if (MEM_P (SUBREG_REG (inner)))
7503 is_mode = GET_MODE (SUBREG_REG (inner));
7504 inner = SUBREG_REG (inner);
7506 else if (GET_CODE (inner) == ASHIFT
7507 && CONST_INT_P (XEXP (inner, 1))
7508 && pos_rtx == 0 && pos == 0
7509 && len > UINTVAL (XEXP (inner, 1)))
7511 /* We're extracting the least significant bits of an rtx
7512 (ashift X (const_int C)), where LEN > C. Extract the
7513 least significant (LEN - C) bits of X, giving an rtx
7514 whose mode is MODE, then shift it left C times. */
7515 new_rtx = make_extraction (mode, XEXP (inner, 0),
7516 0, 0, len - INTVAL (XEXP (inner, 1)),
7517 unsignedp, in_dest, in_compare);
7518 if (new_rtx != 0)
7519 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
7521 else if (GET_CODE (inner) == TRUNCATE
7522 /* If trying or potentionally trying to extract
7523 bits outside of is_mode, don't look through
7524 TRUNCATE. See PR82192. */
7525 && pos_rtx == NULL_RTX
7526 && pos + len <= GET_MODE_PRECISION (is_mode))
7527 inner = XEXP (inner, 0);
7529 inner_mode = GET_MODE (inner);
7531 /* See if this can be done without an extraction. We never can if the
7532 width of the field is not the same as that of some integer mode. For
7533 registers, we can only avoid the extraction if the position is at the
7534 low-order bit and this is either not in the destination or we have the
7535 appropriate STRICT_LOW_PART operation available.
7537 For MEM, we can avoid an extract if the field starts on an appropriate
7538 boundary and we can change the mode of the memory reference. */
7540 scalar_int_mode tmode;
7541 if (int_mode_for_size (len, 1).exists (&tmode)
7542 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
7543 && !MEM_P (inner)
7544 && (pos == 0 || REG_P (inner))
7545 && (inner_mode == tmode
7546 || !REG_P (inner)
7547 || TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
7548 || reg_truncated_to_mode (tmode, inner))
7549 && (! in_dest
7550 || (REG_P (inner)
7551 && have_insn_for (STRICT_LOW_PART, tmode))))
7552 || (MEM_P (inner) && pos_rtx == 0
7553 && (pos
7554 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
7555 : BITS_PER_UNIT)) == 0
7556 /* We can't do this if we are widening INNER_MODE (it
7557 may not be aligned, for one thing). */
7558 && !paradoxical_subreg_p (tmode, inner_mode)
7559 && (inner_mode == tmode
7560 || (! mode_dependent_address_p (XEXP (inner, 0),
7561 MEM_ADDR_SPACE (inner))
7562 && ! MEM_VOLATILE_P (inner))))))
7564 /* If INNER is a MEM, make a new MEM that encompasses just the desired
7565 field. If the original and current mode are the same, we need not
7566 adjust the offset. Otherwise, we do if bytes big endian.
7568 If INNER is not a MEM, get a piece consisting of just the field
7569 of interest (in this case POS % BITS_PER_WORD must be 0). */
7571 if (MEM_P (inner))
7573 HOST_WIDE_INT offset;
7575 /* POS counts from lsb, but make OFFSET count in memory order. */
7576 if (BYTES_BIG_ENDIAN)
7577 offset = (GET_MODE_PRECISION (is_mode) - len - pos) / BITS_PER_UNIT;
7578 else
7579 offset = pos / BITS_PER_UNIT;
7581 new_rtx = adjust_address_nv (inner, tmode, offset);
7583 else if (REG_P (inner))
7585 if (tmode != inner_mode)
7587 /* We can't call gen_lowpart in a DEST since we
7588 always want a SUBREG (see below) and it would sometimes
7589 return a new hard register. */
7590 if (pos || in_dest)
7592 unsigned int offset
7593 = subreg_offset_from_lsb (tmode, inner_mode, pos);
7595 /* Avoid creating invalid subregs, for example when
7596 simplifying (x>>32)&255. */
7597 if (!validate_subreg (tmode, inner_mode, inner, offset))
7598 return NULL_RTX;
7600 new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
7602 else
7603 new_rtx = gen_lowpart (tmode, inner);
7605 else
7606 new_rtx = inner;
7608 else
7609 new_rtx = force_to_mode (inner, tmode,
7610 len >= HOST_BITS_PER_WIDE_INT
7611 ? HOST_WIDE_INT_M1U
7612 : (HOST_WIDE_INT_1U << len) - 1, 0);
7614 /* If this extraction is going into the destination of a SET,
7615 make a STRICT_LOW_PART unless we made a MEM. */
7617 if (in_dest)
7618 return (MEM_P (new_rtx) ? new_rtx
7619 : (GET_CODE (new_rtx) != SUBREG
7620 ? gen_rtx_CLOBBER (tmode, const0_rtx)
7621 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
7623 if (mode == tmode)
7624 return new_rtx;
7626 if (CONST_SCALAR_INT_P (new_rtx))
7627 return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7628 mode, new_rtx, tmode);
7630 /* If we know that no extraneous bits are set, and that the high
7631 bit is not set, convert the extraction to the cheaper of
7632 sign and zero extension, that are equivalent in these cases. */
7633 if (flag_expensive_optimizations
7634 && (HWI_COMPUTABLE_MODE_P (tmode)
7635 && ((nonzero_bits (new_rtx, tmode)
7636 & ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
7637 == 0)))
7639 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
7640 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
7642 /* Prefer ZERO_EXTENSION, since it gives more information to
7643 backends. */
7644 if (set_src_cost (temp, mode, optimize_this_for_speed_p)
7645 <= set_src_cost (temp1, mode, optimize_this_for_speed_p))
7646 return temp;
7647 return temp1;
7650 /* Otherwise, sign- or zero-extend unless we already are in the
7651 proper mode. */
7653 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
7654 mode, new_rtx));
7657 /* Unless this is a COMPARE or we have a funny memory reference,
7658 don't do anything with zero-extending field extracts starting at
7659 the low-order bit since they are simple AND operations. */
7660 if (pos_rtx == 0 && pos == 0 && ! in_dest
7661 && ! in_compare && unsignedp)
7662 return 0;
7664 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
7665 if the position is not a constant and the length is not 1. In all
7666 other cases, we would only be going outside our object in cases when
7667 an original shift would have been undefined. */
7668 if (MEM_P (inner)
7669 && ((pos_rtx == 0 && pos + len > GET_MODE_PRECISION (is_mode))
7670 || (pos_rtx != 0 && len != 1)))
7671 return 0;
7673 enum extraction_pattern pattern = (in_dest ? EP_insv
7674 : unsignedp ? EP_extzv : EP_extv);
7676 /* If INNER is not from memory, we want it to have the mode of a register
7677 extraction pattern's structure operand, or word_mode if there is no
7678 such pattern. The same applies to extraction_mode and pos_mode
7679 and their respective operands.
7681 For memory, assume that the desired extraction_mode and pos_mode
7682 are the same as for a register operation, since at present we don't
7683 have named patterns for aligned memory structures. */
7684 struct extraction_insn insn;
7685 if (get_best_reg_extraction_insn (&insn, pattern,
7686 GET_MODE_BITSIZE (inner_mode), mode))
7688 wanted_inner_reg_mode = insn.struct_mode.require ();
7689 pos_mode = insn.pos_mode;
7690 extraction_mode = insn.field_mode;
7693 /* Never narrow an object, since that might not be safe. */
7695 if (mode != VOIDmode
7696 && partial_subreg_p (extraction_mode, mode))
7697 extraction_mode = mode;
7699 if (!MEM_P (inner))
7700 wanted_inner_mode = wanted_inner_reg_mode;
7701 else
7703 /* Be careful not to go beyond the extracted object and maintain the
7704 natural alignment of the memory. */
7705 wanted_inner_mode = smallest_int_mode_for_size (len);
7706 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
7707 > GET_MODE_BITSIZE (wanted_inner_mode))
7708 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
7711 orig_pos = pos;
7713 if (BITS_BIG_ENDIAN)
7715 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
7716 BITS_BIG_ENDIAN style. If position is constant, compute new
7717 position. Otherwise, build subtraction.
7718 Note that POS is relative to the mode of the original argument.
7719 If it's a MEM we need to recompute POS relative to that.
7720 However, if we're extracting from (or inserting into) a register,
7721 we want to recompute POS relative to wanted_inner_mode. */
7722 int width = (MEM_P (inner)
7723 ? GET_MODE_BITSIZE (is_mode)
7724 : GET_MODE_BITSIZE (wanted_inner_mode));
7726 if (pos_rtx == 0)
7727 pos = width - len - pos;
7728 else
7729 pos_rtx
7730 = gen_rtx_MINUS (GET_MODE (pos_rtx),
7731 gen_int_mode (width - len, GET_MODE (pos_rtx)),
7732 pos_rtx);
7733 /* POS may be less than 0 now, but we check for that below.
7734 Note that it can only be less than 0 if !MEM_P (inner). */
7737 /* If INNER has a wider mode, and this is a constant extraction, try to
7738 make it smaller and adjust the byte to point to the byte containing
7739 the value. */
7740 if (wanted_inner_mode != VOIDmode
7741 && inner_mode != wanted_inner_mode
7742 && ! pos_rtx
7743 && partial_subreg_p (wanted_inner_mode, is_mode)
7744 && MEM_P (inner)
7745 && ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
7746 && ! MEM_VOLATILE_P (inner))
7748 int offset = 0;
7750 /* The computations below will be correct if the machine is big
7751 endian in both bits and bytes or little endian in bits and bytes.
7752 If it is mixed, we must adjust. */
7754 /* If bytes are big endian and we had a paradoxical SUBREG, we must
7755 adjust OFFSET to compensate. */
7756 if (BYTES_BIG_ENDIAN
7757 && paradoxical_subreg_p (is_mode, inner_mode))
7758 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
7760 /* We can now move to the desired byte. */
7761 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
7762 * GET_MODE_SIZE (wanted_inner_mode);
7763 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
7765 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
7766 && is_mode != wanted_inner_mode)
7767 offset = (GET_MODE_SIZE (is_mode)
7768 - GET_MODE_SIZE (wanted_inner_mode) - offset);
7770 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
7773 /* If INNER is not memory, get it into the proper mode. If we are changing
7774 its mode, POS must be a constant and smaller than the size of the new
7775 mode. */
7776 else if (!MEM_P (inner))
7778 /* On the LHS, don't create paradoxical subregs implicitely truncating
7779 the register unless TARGET_TRULY_NOOP_TRUNCATION. */
7780 if (in_dest
7781 && !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
7782 wanted_inner_mode))
7783 return NULL_RTX;
7785 if (GET_MODE (inner) != wanted_inner_mode
7786 && (pos_rtx != 0
7787 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
7788 return NULL_RTX;
7790 if (orig_pos < 0)
7791 return NULL_RTX;
7793 inner = force_to_mode (inner, wanted_inner_mode,
7794 pos_rtx
7795 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
7796 ? HOST_WIDE_INT_M1U
7797 : (((HOST_WIDE_INT_1U << len) - 1)
7798 << orig_pos),
7802 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
7803 have to zero extend. Otherwise, we can just use a SUBREG.
7805 We dealt with constant rtxes earlier, so pos_rtx cannot
7806 have VOIDmode at this point. */
7807 if (pos_rtx != 0
7808 && (GET_MODE_SIZE (pos_mode)
7809 > GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
7811 rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
7812 GET_MODE (pos_rtx));
7814 /* If we know that no extraneous bits are set, and that the high
7815 bit is not set, convert extraction to cheaper one - either
7816 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
7817 cases. */
7818 if (flag_expensive_optimizations
7819 && (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
7820 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
7821 & ~(((unsigned HOST_WIDE_INT)
7822 GET_MODE_MASK (GET_MODE (pos_rtx)))
7823 >> 1))
7824 == 0)))
7826 rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
7827 GET_MODE (pos_rtx));
7829 /* Prefer ZERO_EXTENSION, since it gives more information to
7830 backends. */
7831 if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
7832 < set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
7833 temp = temp1;
7835 pos_rtx = temp;
7838 /* Make POS_RTX unless we already have it and it is correct. If we don't
7839 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
7840 be a CONST_INT. */
7841 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
7842 pos_rtx = orig_pos_rtx;
7844 else if (pos_rtx == 0)
7845 pos_rtx = GEN_INT (pos);
7847 /* Make the required operation. See if we can use existing rtx. */
7848 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
7849 extraction_mode, inner, GEN_INT (len), pos_rtx);
7850 if (! in_dest)
7851 new_rtx = gen_lowpart (mode, new_rtx);
7853 return new_rtx;
7856 /* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
7857 can be commuted with any other operations in X. Return X without
7858 that shift if so. */
7860 static rtx
7861 extract_left_shift (scalar_int_mode mode, rtx x, int count)
7863 enum rtx_code code = GET_CODE (x);
7864 rtx tem;
7866 switch (code)
7868 case ASHIFT:
7869 /* This is the shift itself. If it is wide enough, we will return
7870 either the value being shifted if the shift count is equal to
7871 COUNT or a shift for the difference. */
7872 if (CONST_INT_P (XEXP (x, 1))
7873 && INTVAL (XEXP (x, 1)) >= count)
7874 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
7875 INTVAL (XEXP (x, 1)) - count);
7876 break;
7878 case NEG: case NOT:
7879 if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7880 return simplify_gen_unary (code, mode, tem, mode);
7882 break;
7884 case PLUS: case IOR: case XOR: case AND:
7885 /* If we can safely shift this constant and we find the inner shift,
7886 make a new operation. */
7887 if (CONST_INT_P (XEXP (x, 1))
7888 && (UINTVAL (XEXP (x, 1))
7889 & (((HOST_WIDE_INT_1U << count)) - 1)) == 0
7890 && (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
7892 HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
7893 return simplify_gen_binary (code, mode, tem,
7894 gen_int_mode (val, mode));
7896 break;
7898 default:
7899 break;
7902 return 0;
7905 /* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
7906 level of the expression and MODE is its mode. IN_CODE is as for
7907 make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
7908 that should be used when recursing on operands of *X_PTR.
7910 There are two possible actions:
7912 - Return null. This tells the caller to recurse on *X_PTR with IN_CODE
7913 equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
7915 - Return a new rtx, which the caller returns directly. */
7917 static rtx
7918 make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
7919 enum rtx_code in_code,
7920 enum rtx_code *next_code_ptr)
7922 rtx x = *x_ptr;
7923 enum rtx_code next_code = *next_code_ptr;
7924 enum rtx_code code = GET_CODE (x);
7925 int mode_width = GET_MODE_PRECISION (mode);
7926 rtx rhs, lhs;
7927 rtx new_rtx = 0;
7928 int i;
7929 rtx tem;
7930 scalar_int_mode inner_mode;
7931 bool equality_comparison = false;
7933 if (in_code == EQ)
7935 equality_comparison = true;
7936 in_code = COMPARE;
7939 /* Process depending on the code of this operation. If NEW is set
7940 nonzero, it will be returned. */
7942 switch (code)
7944 case ASHIFT:
7945 /* Convert shifts by constants into multiplications if inside
7946 an address. */
7947 if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
7948 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7949 && INTVAL (XEXP (x, 1)) >= 0)
7951 HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
7952 HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
7954 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
7955 if (GET_CODE (new_rtx) == NEG)
7957 new_rtx = XEXP (new_rtx, 0);
7958 multval = -multval;
7960 multval = trunc_int_for_mode (multval, mode);
7961 new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
7963 break;
7965 case PLUS:
7966 lhs = XEXP (x, 0);
7967 rhs = XEXP (x, 1);
7968 lhs = make_compound_operation (lhs, next_code);
7969 rhs = make_compound_operation (rhs, next_code);
7970 if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
7972 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
7973 XEXP (lhs, 1));
7974 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7976 else if (GET_CODE (lhs) == MULT
7977 && (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
7979 tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
7980 simplify_gen_unary (NEG, mode,
7981 XEXP (lhs, 1),
7982 mode));
7983 new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
7985 else
7987 SUBST (XEXP (x, 0), lhs);
7988 SUBST (XEXP (x, 1), rhs);
7990 maybe_swap_commutative_operands (x);
7991 return x;
7993 case MINUS:
7994 lhs = XEXP (x, 0);
7995 rhs = XEXP (x, 1);
7996 lhs = make_compound_operation (lhs, next_code);
7997 rhs = make_compound_operation (rhs, next_code);
7998 if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
8000 tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
8001 XEXP (rhs, 1));
8002 return simplify_gen_binary (PLUS, mode, tem, lhs);
8004 else if (GET_CODE (rhs) == MULT
8005 && (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
8007 tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
8008 simplify_gen_unary (NEG, mode,
8009 XEXP (rhs, 1),
8010 mode));
8011 return simplify_gen_binary (PLUS, mode, tem, lhs);
8013 else
8015 SUBST (XEXP (x, 0), lhs);
8016 SUBST (XEXP (x, 1), rhs);
8017 return x;
8020 case AND:
8021 /* If the second operand is not a constant, we can't do anything
8022 with it. */
8023 if (!CONST_INT_P (XEXP (x, 1)))
8024 break;
8026 /* If the constant is a power of two minus one and the first operand
8027 is a logical right shift, make an extraction. */
8028 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8029 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8031 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8032 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
8033 i, 1, 0, in_code == COMPARE);
8036 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
8037 else if (GET_CODE (XEXP (x, 0)) == SUBREG
8038 && subreg_lowpart_p (XEXP (x, 0))
8039 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
8040 &inner_mode)
8041 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
8042 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8044 rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
8045 new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
8046 new_rtx = make_extraction (inner_mode, new_rtx, 0,
8047 XEXP (inner_x0, 1),
8048 i, 1, 0, in_code == COMPARE);
8050 /* If we narrowed the mode when dropping the subreg, then we lose. */
8051 if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
8052 new_rtx = NULL;
8054 /* If that didn't give anything, see if the AND simplifies on
8055 its own. */
8056 if (!new_rtx && i >= 0)
8058 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8059 new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
8060 0, in_code == COMPARE);
8063 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
8064 else if ((GET_CODE (XEXP (x, 0)) == XOR
8065 || GET_CODE (XEXP (x, 0)) == IOR)
8066 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
8067 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
8068 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8070 /* Apply the distributive law, and then try to make extractions. */
8071 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
8072 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
8073 XEXP (x, 1)),
8074 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
8075 XEXP (x, 1)));
8076 new_rtx = make_compound_operation (new_rtx, in_code);
8079 /* If we are have (and (rotate X C) M) and C is larger than the number
8080 of bits in M, this is an extraction. */
8082 else if (GET_CODE (XEXP (x, 0)) == ROTATE
8083 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8084 && (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
8085 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
8087 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
8088 new_rtx = make_extraction (mode, new_rtx,
8089 (GET_MODE_PRECISION (mode)
8090 - INTVAL (XEXP (XEXP (x, 0), 1))),
8091 NULL_RTX, i, 1, 0, in_code == COMPARE);
8094 /* On machines without logical shifts, if the operand of the AND is
8095 a logical shift and our mask turns off all the propagated sign
8096 bits, we can replace the logical shift with an arithmetic shift. */
8097 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8098 && !have_insn_for (LSHIFTRT, mode)
8099 && have_insn_for (ASHIFTRT, mode)
8100 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8101 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8102 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8103 && mode_width <= HOST_BITS_PER_WIDE_INT)
8105 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
8107 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
8108 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
8109 SUBST (XEXP (x, 0),
8110 gen_rtx_ASHIFTRT (mode,
8111 make_compound_operation (XEXP (XEXP (x,
8114 next_code),
8115 XEXP (XEXP (x, 0), 1)));
8118 /* If the constant is one less than a power of two, this might be
8119 representable by an extraction even if no shift is present.
8120 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
8121 we are in a COMPARE. */
8122 else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
8123 new_rtx = make_extraction (mode,
8124 make_compound_operation (XEXP (x, 0),
8125 next_code),
8126 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
8128 /* If we are in a comparison and this is an AND with a power of two,
8129 convert this into the appropriate bit extract. */
8130 else if (in_code == COMPARE
8131 && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
8132 && (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
8133 new_rtx = make_extraction (mode,
8134 make_compound_operation (XEXP (x, 0),
8135 next_code),
8136 i, NULL_RTX, 1, 1, 0, 1);
8138 /* If the one operand is a paradoxical subreg of a register or memory and
8139 the constant (limited to the smaller mode) has only zero bits where
8140 the sub expression has known zero bits, this can be expressed as
8141 a zero_extend. */
8142 else if (GET_CODE (XEXP (x, 0)) == SUBREG)
8144 rtx sub;
8146 sub = XEXP (XEXP (x, 0), 0);
8147 machine_mode sub_mode = GET_MODE (sub);
8148 if ((REG_P (sub) || MEM_P (sub))
8149 && GET_MODE_PRECISION (sub_mode) < mode_width)
8151 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
8152 unsigned HOST_WIDE_INT mask;
8154 /* original AND constant with all the known zero bits set */
8155 mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
8156 if ((mask & mode_mask) == mode_mask)
8158 new_rtx = make_compound_operation (sub, next_code);
8159 new_rtx = make_extraction (mode, new_rtx, 0, 0,
8160 GET_MODE_PRECISION (sub_mode),
8161 1, 0, in_code == COMPARE);
8166 break;
8168 case LSHIFTRT:
8169 /* If the sign bit is known to be zero, replace this with an
8170 arithmetic shift. */
8171 if (have_insn_for (ASHIFTRT, mode)
8172 && ! have_insn_for (LSHIFTRT, mode)
8173 && mode_width <= HOST_BITS_PER_WIDE_INT
8174 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
8176 new_rtx = gen_rtx_ASHIFTRT (mode,
8177 make_compound_operation (XEXP (x, 0),
8178 next_code),
8179 XEXP (x, 1));
8180 break;
8183 /* fall through */
8185 case ASHIFTRT:
8186 lhs = XEXP (x, 0);
8187 rhs = XEXP (x, 1);
8189 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
8190 this is a SIGN_EXTRACT. */
8191 if (CONST_INT_P (rhs)
8192 && GET_CODE (lhs) == ASHIFT
8193 && CONST_INT_P (XEXP (lhs, 1))
8194 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
8195 && INTVAL (XEXP (lhs, 1)) >= 0
8196 && INTVAL (rhs) < mode_width)
8198 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
8199 new_rtx = make_extraction (mode, new_rtx,
8200 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
8201 NULL_RTX, mode_width - INTVAL (rhs),
8202 code == LSHIFTRT, 0, in_code == COMPARE);
8203 break;
8206 /* See if we have operations between an ASHIFTRT and an ASHIFT.
8207 If so, try to merge the shifts into a SIGN_EXTEND. We could
8208 also do this for some cases of SIGN_EXTRACT, but it doesn't
8209 seem worth the effort; the case checked for occurs on Alpha. */
8211 if (!OBJECT_P (lhs)
8212 && ! (GET_CODE (lhs) == SUBREG
8213 && (OBJECT_P (SUBREG_REG (lhs))))
8214 && CONST_INT_P (rhs)
8215 && INTVAL (rhs) >= 0
8216 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
8217 && INTVAL (rhs) < mode_width
8218 && (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
8219 new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
8220 next_code),
8221 0, NULL_RTX, mode_width - INTVAL (rhs),
8222 code == LSHIFTRT, 0, in_code == COMPARE);
8224 break;
8226 case SUBREG:
8227 /* Call ourselves recursively on the inner expression. If we are
8228 narrowing the object and it has a different RTL code from
8229 what it originally did, do this SUBREG as a force_to_mode. */
8231 rtx inner = SUBREG_REG (x), simplified;
8232 enum rtx_code subreg_code = in_code;
8234 /* If the SUBREG is masking of a logical right shift,
8235 make an extraction. */
8236 if (GET_CODE (inner) == LSHIFTRT
8237 && is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
8238 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
8239 && CONST_INT_P (XEXP (inner, 1))
8240 && UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
8241 && subreg_lowpart_p (x))
8243 new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
8244 int width = GET_MODE_PRECISION (inner_mode)
8245 - INTVAL (XEXP (inner, 1));
8246 if (width > mode_width)
8247 width = mode_width;
8248 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
8249 width, 1, 0, in_code == COMPARE);
8250 break;
8253 /* If in_code is COMPARE, it isn't always safe to pass it through
8254 to the recursive make_compound_operation call. */
8255 if (subreg_code == COMPARE
8256 && (!subreg_lowpart_p (x)
8257 || GET_CODE (inner) == SUBREG
8258 /* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
8259 is (const_int 0), rather than
8260 (subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
8261 Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
8262 for non-equality comparisons against 0 is not equivalent
8263 to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
8264 || (GET_CODE (inner) == AND
8265 && CONST_INT_P (XEXP (inner, 1))
8266 && partial_subreg_p (x)
8267 && exact_log2 (UINTVAL (XEXP (inner, 1)))
8268 >= GET_MODE_BITSIZE (mode) - 1)))
8269 subreg_code = SET;
8271 tem = make_compound_operation (inner, subreg_code);
8273 simplified
8274 = simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
8275 if (simplified)
8276 tem = simplified;
8278 if (GET_CODE (tem) != GET_CODE (inner)
8279 && partial_subreg_p (x)
8280 && subreg_lowpart_p (x))
8282 rtx newer
8283 = force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
8285 /* If we have something other than a SUBREG, we might have
8286 done an expansion, so rerun ourselves. */
8287 if (GET_CODE (newer) != SUBREG)
8288 newer = make_compound_operation (newer, in_code);
8290 /* force_to_mode can expand compounds. If it just re-expanded
8291 the compound, use gen_lowpart to convert to the desired
8292 mode. */
8293 if (rtx_equal_p (newer, x)
8294 /* Likewise if it re-expanded the compound only partially.
8295 This happens for SUBREG of ZERO_EXTRACT if they extract
8296 the same number of bits. */
8297 || (GET_CODE (newer) == SUBREG
8298 && (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
8299 || GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
8300 && GET_CODE (inner) == AND
8301 && rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
8302 return gen_lowpart (GET_MODE (x), tem);
8304 return newer;
8307 if (simplified)
8308 return tem;
8310 break;
8312 default:
8313 break;
8316 if (new_rtx)
8317 *x_ptr = gen_lowpart (mode, new_rtx);
8318 *next_code_ptr = next_code;
8319 return NULL_RTX;
8322 /* Look at the expression rooted at X. Look for expressions
8323 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
8324 Form these expressions.
8326 Return the new rtx, usually just X.
8328 Also, for machines like the VAX that don't have logical shift insns,
8329 try to convert logical to arithmetic shift operations in cases where
8330 they are equivalent. This undoes the canonicalizations to logical
8331 shifts done elsewhere.
8333 We try, as much as possible, to re-use rtl expressions to save memory.
8335 IN_CODE says what kind of expression we are processing. Normally, it is
8336 SET. In a memory address it is MEM. When processing the arguments of
8337 a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
8338 precisely it is an equality comparison against zero. */
8341 make_compound_operation (rtx x, enum rtx_code in_code)
8343 enum rtx_code code = GET_CODE (x);
8344 const char *fmt;
8345 int i, j;
8346 enum rtx_code next_code;
8347 rtx new_rtx, tem;
8349 /* Select the code to be used in recursive calls. Once we are inside an
8350 address, we stay there. If we have a comparison, set to COMPARE,
8351 but once inside, go back to our default of SET. */
8353 next_code = (code == MEM ? MEM
8354 : ((code == COMPARE || COMPARISON_P (x))
8355 && XEXP (x, 1) == const0_rtx) ? COMPARE
8356 : in_code == COMPARE || in_code == EQ ? SET : in_code);
8358 scalar_int_mode mode;
8359 if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
8361 rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
8362 &next_code);
8363 if (new_rtx)
8364 return new_rtx;
8365 code = GET_CODE (x);
8368 /* Now recursively process each operand of this operation. We need to
8369 handle ZERO_EXTEND specially so that we don't lose track of the
8370 inner mode. */
8371 if (code == ZERO_EXTEND)
8373 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
8374 tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
8375 new_rtx, GET_MODE (XEXP (x, 0)));
8376 if (tem)
8377 return tem;
8378 SUBST (XEXP (x, 0), new_rtx);
8379 return x;
8382 fmt = GET_RTX_FORMAT (code);
8383 for (i = 0; i < GET_RTX_LENGTH (code); i++)
8384 if (fmt[i] == 'e')
8386 new_rtx = make_compound_operation (XEXP (x, i), next_code);
8387 SUBST (XEXP (x, i), new_rtx);
8389 else if (fmt[i] == 'E')
8390 for (j = 0; j < XVECLEN (x, i); j++)
8392 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
8393 SUBST (XVECEXP (x, i, j), new_rtx);
8396 maybe_swap_commutative_operands (x);
8397 return x;
8400 /* Given M see if it is a value that would select a field of bits
8401 within an item, but not the entire word. Return -1 if not.
8402 Otherwise, return the starting position of the field, where 0 is the
8403 low-order bit.
8405 *PLEN is set to the length of the field. */
8407 static int
8408 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
8410 /* Get the bit number of the first 1 bit from the right, -1 if none. */
8411 int pos = m ? ctz_hwi (m) : -1;
8412 int len = 0;
8414 if (pos >= 0)
8415 /* Now shift off the low-order zero bits and see if we have a
8416 power of two minus 1. */
8417 len = exact_log2 ((m >> pos) + 1);
8419 if (len <= 0)
8420 pos = -1;
8422 *plen = len;
8423 return pos;
8426 /* If X refers to a register that equals REG in value, replace these
8427 references with REG. */
8428 static rtx
8429 canon_reg_for_combine (rtx x, rtx reg)
8431 rtx op0, op1, op2;
8432 const char *fmt;
8433 int i;
8434 bool copied;
8436 enum rtx_code code = GET_CODE (x);
8437 switch (GET_RTX_CLASS (code))
8439 case RTX_UNARY:
8440 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8441 if (op0 != XEXP (x, 0))
8442 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
8443 GET_MODE (reg));
8444 break;
8446 case RTX_BIN_ARITH:
8447 case RTX_COMM_ARITH:
8448 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8449 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8450 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8451 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
8452 break;
8454 case RTX_COMPARE:
8455 case RTX_COMM_COMPARE:
8456 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8457 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8458 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8459 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
8460 GET_MODE (op0), op0, op1);
8461 break;
8463 case RTX_TERNARY:
8464 case RTX_BITFIELD_OPS:
8465 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
8466 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
8467 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
8468 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
8469 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
8470 GET_MODE (op0), op0, op1, op2);
8471 /* FALLTHRU */
8473 case RTX_OBJ:
8474 if (REG_P (x))
8476 if (rtx_equal_p (get_last_value (reg), x)
8477 || rtx_equal_p (reg, get_last_value (x)))
8478 return reg;
8479 else
8480 break;
8483 /* fall through */
8485 default:
8486 fmt = GET_RTX_FORMAT (code);
8487 copied = false;
8488 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8489 if (fmt[i] == 'e')
8491 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
8492 if (op != XEXP (x, i))
8494 if (!copied)
8496 copied = true;
8497 x = copy_rtx (x);
8499 XEXP (x, i) = op;
8502 else if (fmt[i] == 'E')
8504 int j;
8505 for (j = 0; j < XVECLEN (x, i); j++)
8507 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
8508 if (op != XVECEXP (x, i, j))
8510 if (!copied)
8512 copied = true;
8513 x = copy_rtx (x);
8515 XVECEXP (x, i, j) = op;
8520 break;
8523 return x;
8526 /* Return X converted to MODE. If the value is already truncated to
8527 MODE we can just return a subreg even though in the general case we
8528 would need an explicit truncation. */
8530 static rtx
8531 gen_lowpart_or_truncate (machine_mode mode, rtx x)
8533 if (!CONST_INT_P (x)
8534 && partial_subreg_p (mode, GET_MODE (x))
8535 && !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
8536 && !(REG_P (x) && reg_truncated_to_mode (mode, x)))
8538 /* Bit-cast X into an integer mode. */
8539 if (!SCALAR_INT_MODE_P (GET_MODE (x)))
8540 x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
8541 x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
8542 x, GET_MODE (x));
8545 return gen_lowpart (mode, x);
8548 /* See if X can be simplified knowing that we will only refer to it in
8549 MODE and will only refer to those bits that are nonzero in MASK.
8550 If other bits are being computed or if masking operations are done
8551 that select a superset of the bits in MASK, they can sometimes be
8552 ignored.
8554 Return a possibly simplified expression, but always convert X to
8555 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
8557 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
8558 are all off in X. This is used when X will be complemented, by either
8559 NOT, NEG, or XOR. */
8561 static rtx
8562 force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
8563 int just_select)
8565 enum rtx_code code = GET_CODE (x);
8566 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8567 machine_mode op_mode;
8568 unsigned HOST_WIDE_INT nonzero;
8570 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
8571 code below will do the wrong thing since the mode of such an
8572 expression is VOIDmode.
8574 Also do nothing if X is a CLOBBER; this can happen if X was
8575 the return value from a call to gen_lowpart. */
8576 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
8577 return x;
8579 /* We want to perform the operation in its present mode unless we know
8580 that the operation is valid in MODE, in which case we do the operation
8581 in MODE. */
8582 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
8583 && have_insn_for (code, mode))
8584 ? mode : GET_MODE (x));
8586 /* It is not valid to do a right-shift in a narrower mode
8587 than the one it came in with. */
8588 if ((code == LSHIFTRT || code == ASHIFTRT)
8589 && partial_subreg_p (mode, GET_MODE (x)))
8590 op_mode = GET_MODE (x);
8592 /* Truncate MASK to fit OP_MODE. */
8593 if (op_mode)
8594 mask &= GET_MODE_MASK (op_mode);
8596 /* Determine what bits of X are guaranteed to be (non)zero. */
8597 nonzero = nonzero_bits (x, mode);
8599 /* If none of the bits in X are needed, return a zero. */
8600 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
8601 x = const0_rtx;
8603 /* If X is a CONST_INT, return a new one. Do this here since the
8604 test below will fail. */
8605 if (CONST_INT_P (x))
8607 if (SCALAR_INT_MODE_P (mode))
8608 return gen_int_mode (INTVAL (x) & mask, mode);
8609 else
8611 x = GEN_INT (INTVAL (x) & mask);
8612 return gen_lowpart_common (mode, x);
8616 /* If X is narrower than MODE and we want all the bits in X's mode, just
8617 get X in the proper mode. */
8618 if (paradoxical_subreg_p (mode, GET_MODE (x))
8619 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
8620 return gen_lowpart (mode, x);
8622 /* We can ignore the effect of a SUBREG if it narrows the mode or
8623 if the constant masks to zero all the bits the mode doesn't have. */
8624 if (GET_CODE (x) == SUBREG
8625 && subreg_lowpart_p (x)
8626 && (partial_subreg_p (x)
8627 || (0 == (mask
8628 & GET_MODE_MASK (GET_MODE (x))
8629 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
8630 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
8632 scalar_int_mode int_mode, xmode;
8633 if (is_a <scalar_int_mode> (mode, &int_mode)
8634 && is_a <scalar_int_mode> (GET_MODE (x), &xmode))
8635 /* OP_MODE is either MODE or XMODE, so it must be a scalar
8636 integer too. */
8637 return force_int_to_mode (x, int_mode, xmode,
8638 as_a <scalar_int_mode> (op_mode),
8639 mask, just_select);
8641 return gen_lowpart_or_truncate (mode, x);
8644 /* Subroutine of force_to_mode that handles cases in which both X and
8645 the result are scalar integers. MODE is the mode of the result,
8646 XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
8647 is preferred for simplified versions of X. The other arguments
8648 are as for force_to_mode. */
8650 static rtx
8651 force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
8652 scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
8653 int just_select)
8655 enum rtx_code code = GET_CODE (x);
8656 int next_select = just_select || code == XOR || code == NOT || code == NEG;
8657 unsigned HOST_WIDE_INT fuller_mask;
8658 rtx op0, op1, temp;
8660 /* When we have an arithmetic operation, or a shift whose count we
8661 do not know, we need to assume that all bits up to the highest-order
8662 bit in MASK will be needed. This is how we form such a mask. */
8663 if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
8664 fuller_mask = HOST_WIDE_INT_M1U;
8665 else
8666 fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
8667 - 1);
8669 switch (code)
8671 case CLOBBER:
8672 /* If X is a (clobber (const_int)), return it since we know we are
8673 generating something that won't match. */
8674 return x;
8676 case SIGN_EXTEND:
8677 case ZERO_EXTEND:
8678 case ZERO_EXTRACT:
8679 case SIGN_EXTRACT:
8680 x = expand_compound_operation (x);
8681 if (GET_CODE (x) != code)
8682 return force_to_mode (x, mode, mask, next_select);
8683 break;
8685 case TRUNCATE:
8686 /* Similarly for a truncate. */
8687 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8689 case AND:
8690 /* If this is an AND with a constant, convert it into an AND
8691 whose constant is the AND of that constant with MASK. If it
8692 remains an AND of MASK, delete it since it is redundant. */
8694 if (CONST_INT_P (XEXP (x, 1)))
8696 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
8697 mask & INTVAL (XEXP (x, 1)));
8698 xmode = op_mode;
8700 /* If X is still an AND, see if it is an AND with a mask that
8701 is just some low-order bits. If so, and it is MASK, we don't
8702 need it. */
8704 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8705 && (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
8706 x = XEXP (x, 0);
8708 /* If it remains an AND, try making another AND with the bits
8709 in the mode mask that aren't in MASK turned on. If the
8710 constant in the AND is wide enough, this might make a
8711 cheaper constant. */
8713 if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
8714 && GET_MODE_MASK (xmode) != mask
8715 && HWI_COMPUTABLE_MODE_P (xmode))
8717 unsigned HOST_WIDE_INT cval
8718 = UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
8719 rtx y;
8721 y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
8722 gen_int_mode (cval, xmode));
8723 if (set_src_cost (y, xmode, optimize_this_for_speed_p)
8724 < set_src_cost (x, xmode, optimize_this_for_speed_p))
8725 x = y;
8728 break;
8731 goto binop;
8733 case PLUS:
8734 /* In (and (plus FOO C1) M), if M is a mask that just turns off
8735 low-order bits (as in an alignment operation) and FOO is already
8736 aligned to that boundary, mask C1 to that boundary as well.
8737 This may eliminate that PLUS and, later, the AND. */
8740 unsigned int width = GET_MODE_PRECISION (mode);
8741 unsigned HOST_WIDE_INT smask = mask;
8743 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
8744 number, sign extend it. */
8746 if (width < HOST_BITS_PER_WIDE_INT
8747 && (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
8748 smask |= HOST_WIDE_INT_M1U << width;
8750 if (CONST_INT_P (XEXP (x, 1))
8751 && pow2p_hwi (- smask)
8752 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
8753 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
8754 return force_to_mode (plus_constant (xmode, XEXP (x, 0),
8755 (INTVAL (XEXP (x, 1)) & smask)),
8756 mode, smask, next_select);
8759 /* fall through */
8761 case MULT:
8762 /* Substituting into the operands of a widening MULT is not likely to
8763 create RTL matching a machine insn. */
8764 if (code == MULT
8765 && (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
8766 || GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
8767 && (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
8768 || GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
8769 && REG_P (XEXP (XEXP (x, 0), 0))
8770 && REG_P (XEXP (XEXP (x, 1), 0)))
8771 return gen_lowpart_or_truncate (mode, x);
8773 /* For PLUS, MINUS and MULT, we need any bits less significant than the
8774 most significant bit in MASK since carries from those bits will
8775 affect the bits we are interested in. */
8776 mask = fuller_mask;
8777 goto binop;
8779 case MINUS:
8780 /* If X is (minus C Y) where C's least set bit is larger than any bit
8781 in the mask, then we may replace with (neg Y). */
8782 if (CONST_INT_P (XEXP (x, 0))
8783 && least_bit_hwi (UINTVAL (XEXP (x, 0))) > mask)
8785 x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
8786 return force_to_mode (x, mode, mask, next_select);
8789 /* Similarly, if C contains every bit in the fuller_mask, then we may
8790 replace with (not Y). */
8791 if (CONST_INT_P (XEXP (x, 0))
8792 && ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
8794 x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
8795 return force_to_mode (x, mode, mask, next_select);
8798 mask = fuller_mask;
8799 goto binop;
8801 case IOR:
8802 case XOR:
8803 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
8804 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
8805 operation which may be a bitfield extraction. Ensure that the
8806 constant we form is not wider than the mode of X. */
8808 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
8809 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
8810 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
8811 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
8812 && CONST_INT_P (XEXP (x, 1))
8813 && ((INTVAL (XEXP (XEXP (x, 0), 1))
8814 + floor_log2 (INTVAL (XEXP (x, 1))))
8815 < GET_MODE_PRECISION (xmode))
8816 && (UINTVAL (XEXP (x, 1))
8817 & ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
8819 temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
8820 << INTVAL (XEXP (XEXP (x, 0), 1)),
8821 xmode);
8822 temp = simplify_gen_binary (GET_CODE (x), xmode,
8823 XEXP (XEXP (x, 0), 0), temp);
8824 x = simplify_gen_binary (LSHIFTRT, xmode, temp,
8825 XEXP (XEXP (x, 0), 1));
8826 return force_to_mode (x, mode, mask, next_select);
8829 binop:
8830 /* For most binary operations, just propagate into the operation and
8831 change the mode if we have an operation of that mode. */
8833 op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
8834 op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
8836 /* If we ended up truncating both operands, truncate the result of the
8837 operation instead. */
8838 if (GET_CODE (op0) == TRUNCATE
8839 && GET_CODE (op1) == TRUNCATE)
8841 op0 = XEXP (op0, 0);
8842 op1 = XEXP (op1, 0);
8845 op0 = gen_lowpart_or_truncate (op_mode, op0);
8846 op1 = gen_lowpart_or_truncate (op_mode, op1);
8848 if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
8850 x = simplify_gen_binary (code, op_mode, op0, op1);
8851 xmode = op_mode;
8853 break;
8855 case ASHIFT:
8856 /* For left shifts, do the same, but just for the first operand.
8857 However, we cannot do anything with shifts where we cannot
8858 guarantee that the counts are smaller than the size of the mode
8859 because such a count will have a different meaning in a
8860 wider mode. */
8862 if (! (CONST_INT_P (XEXP (x, 1))
8863 && INTVAL (XEXP (x, 1)) >= 0
8864 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
8865 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
8866 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
8867 < (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
8868 break;
8870 /* If the shift count is a constant and we can do arithmetic in
8871 the mode of the shift, refine which bits we need. Otherwise, use the
8872 conservative form of the mask. */
8873 if (CONST_INT_P (XEXP (x, 1))
8874 && INTVAL (XEXP (x, 1)) >= 0
8875 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
8876 && HWI_COMPUTABLE_MODE_P (op_mode))
8877 mask >>= INTVAL (XEXP (x, 1));
8878 else
8879 mask = fuller_mask;
8881 op0 = gen_lowpart_or_truncate (op_mode,
8882 force_to_mode (XEXP (x, 0), op_mode,
8883 mask, next_select));
8885 if (op_mode != xmode || op0 != XEXP (x, 0))
8887 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
8888 xmode = op_mode;
8890 break;
8892 case LSHIFTRT:
8893 /* Here we can only do something if the shift count is a constant,
8894 this shift constant is valid for the host, and we can do arithmetic
8895 in OP_MODE. */
8897 if (CONST_INT_P (XEXP (x, 1))
8898 && INTVAL (XEXP (x, 1)) >= 0
8899 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
8900 && HWI_COMPUTABLE_MODE_P (op_mode))
8902 rtx inner = XEXP (x, 0);
8903 unsigned HOST_WIDE_INT inner_mask;
8905 /* Select the mask of the bits we need for the shift operand. */
8906 inner_mask = mask << INTVAL (XEXP (x, 1));
8908 /* We can only change the mode of the shift if we can do arithmetic
8909 in the mode of the shift and INNER_MASK is no wider than the
8910 width of X's mode. */
8911 if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
8912 op_mode = xmode;
8914 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
8916 if (xmode != op_mode || inner != XEXP (x, 0))
8918 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
8919 xmode = op_mode;
8923 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
8924 shift and AND produces only copies of the sign bit (C2 is one less
8925 than a power of two), we can do this with just a shift. */
8927 if (GET_CODE (x) == LSHIFTRT
8928 && CONST_INT_P (XEXP (x, 1))
8929 /* The shift puts one of the sign bit copies in the least significant
8930 bit. */
8931 && ((INTVAL (XEXP (x, 1))
8932 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
8933 >= GET_MODE_PRECISION (xmode))
8934 && pow2p_hwi (mask + 1)
8935 /* Number of bits left after the shift must be more than the mask
8936 needs. */
8937 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
8938 <= GET_MODE_PRECISION (xmode))
8939 /* Must be more sign bit copies than the mask needs. */
8940 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
8941 >= exact_log2 (mask + 1)))
8942 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
8943 GEN_INT (GET_MODE_PRECISION (xmode)
8944 - exact_log2 (mask + 1)));
8946 goto shiftrt;
8948 case ASHIFTRT:
8949 /* If we are just looking for the sign bit, we don't need this shift at
8950 all, even if it has a variable count. */
8951 if (val_signbit_p (xmode, mask))
8952 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
8954 /* If this is a shift by a constant, get a mask that contains those bits
8955 that are not copies of the sign bit. We then have two cases: If
8956 MASK only includes those bits, this can be a logical shift, which may
8957 allow simplifications. If MASK is a single-bit field not within
8958 those bits, we are requesting a copy of the sign bit and hence can
8959 shift the sign bit to the appropriate location. */
8961 if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
8962 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
8964 unsigned HOST_WIDE_INT nonzero;
8965 int i;
8967 /* If the considered data is wider than HOST_WIDE_INT, we can't
8968 represent a mask for all its bits in a single scalar.
8969 But we only care about the lower bits, so calculate these. */
8971 if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
8973 nonzero = HOST_WIDE_INT_M1U;
8975 /* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
8976 is the number of bits a full-width mask would have set.
8977 We need only shift if these are fewer than nonzero can
8978 hold. If not, we must keep all bits set in nonzero. */
8980 if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
8981 < HOST_BITS_PER_WIDE_INT)
8982 nonzero >>= INTVAL (XEXP (x, 1))
8983 + HOST_BITS_PER_WIDE_INT
8984 - GET_MODE_PRECISION (xmode);
8986 else
8988 nonzero = GET_MODE_MASK (xmode);
8989 nonzero >>= INTVAL (XEXP (x, 1));
8992 if ((mask & ~nonzero) == 0)
8994 x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
8995 XEXP (x, 0), INTVAL (XEXP (x, 1)));
8996 if (GET_CODE (x) != ASHIFTRT)
8997 return force_to_mode (x, mode, mask, next_select);
9000 else if ((i = exact_log2 (mask)) >= 0)
9002 x = simplify_shift_const
9003 (NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
9004 GET_MODE_PRECISION (xmode) - 1 - i);
9006 if (GET_CODE (x) != ASHIFTRT)
9007 return force_to_mode (x, mode, mask, next_select);
9011 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
9012 even if the shift count isn't a constant. */
9013 if (mask == 1)
9014 x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
9016 shiftrt:
9018 /* If this is a zero- or sign-extension operation that just affects bits
9019 we don't care about, remove it. Be sure the call above returned
9020 something that is still a shift. */
9022 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
9023 && CONST_INT_P (XEXP (x, 1))
9024 && INTVAL (XEXP (x, 1)) >= 0
9025 && (INTVAL (XEXP (x, 1))
9026 <= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
9027 && GET_CODE (XEXP (x, 0)) == ASHIFT
9028 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
9029 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
9030 next_select);
9032 break;
9034 case ROTATE:
9035 case ROTATERT:
9036 /* If the shift count is constant and we can do computations
9037 in the mode of X, compute where the bits we care about are.
9038 Otherwise, we can't do anything. Don't change the mode of
9039 the shift or propagate MODE into the shift, though. */
9040 if (CONST_INT_P (XEXP (x, 1))
9041 && INTVAL (XEXP (x, 1)) >= 0)
9043 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
9044 xmode, gen_int_mode (mask, xmode),
9045 XEXP (x, 1));
9046 if (temp && CONST_INT_P (temp))
9047 x = simplify_gen_binary (code, xmode,
9048 force_to_mode (XEXP (x, 0), xmode,
9049 INTVAL (temp), next_select),
9050 XEXP (x, 1));
9052 break;
9054 case NEG:
9055 /* If we just want the low-order bit, the NEG isn't needed since it
9056 won't change the low-order bit. */
9057 if (mask == 1)
9058 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
9060 /* We need any bits less significant than the most significant bit in
9061 MASK since carries from those bits will affect the bits we are
9062 interested in. */
9063 mask = fuller_mask;
9064 goto unop;
9066 case NOT:
9067 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
9068 same as the XOR case above. Ensure that the constant we form is not
9069 wider than the mode of X. */
9071 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
9072 && CONST_INT_P (XEXP (XEXP (x, 0), 1))
9073 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
9074 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
9075 < GET_MODE_PRECISION (xmode))
9076 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
9078 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
9079 temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
9080 x = simplify_gen_binary (LSHIFTRT, xmode,
9081 temp, XEXP (XEXP (x, 0), 1));
9083 return force_to_mode (x, mode, mask, next_select);
9086 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
9087 use the full mask inside the NOT. */
9088 mask = fuller_mask;
9090 unop:
9091 op0 = gen_lowpart_or_truncate (op_mode,
9092 force_to_mode (XEXP (x, 0), mode, mask,
9093 next_select));
9094 if (op_mode != xmode || op0 != XEXP (x, 0))
9096 x = simplify_gen_unary (code, op_mode, op0, op_mode);
9097 xmode = op_mode;
9099 break;
9101 case NE:
9102 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
9103 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
9104 which is equal to STORE_FLAG_VALUE. */
9105 if ((mask & ~STORE_FLAG_VALUE) == 0
9106 && XEXP (x, 1) == const0_rtx
9107 && GET_MODE (XEXP (x, 0)) == mode
9108 && pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
9109 && (nonzero_bits (XEXP (x, 0), mode)
9110 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
9111 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
9113 break;
9115 case IF_THEN_ELSE:
9116 /* We have no way of knowing if the IF_THEN_ELSE can itself be
9117 written in a narrower mode. We play it safe and do not do so. */
9119 op0 = gen_lowpart_or_truncate (xmode,
9120 force_to_mode (XEXP (x, 1), mode,
9121 mask, next_select));
9122 op1 = gen_lowpart_or_truncate (xmode,
9123 force_to_mode (XEXP (x, 2), mode,
9124 mask, next_select));
9125 if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
9126 x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
9127 GET_MODE (XEXP (x, 0)), XEXP (x, 0),
9128 op0, op1);
9129 break;
9131 default:
9132 break;
9135 /* Ensure we return a value of the proper mode. */
9136 return gen_lowpart_or_truncate (mode, x);
9139 /* Return nonzero if X is an expression that has one of two values depending on
9140 whether some other value is zero or nonzero. In that case, we return the
9141 value that is being tested, *PTRUE is set to the value if the rtx being
9142 returned has a nonzero value, and *PFALSE is set to the other alternative.
9144 If we return zero, we set *PTRUE and *PFALSE to X. */
9146 static rtx
9147 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
9149 machine_mode mode = GET_MODE (x);
9150 enum rtx_code code = GET_CODE (x);
9151 rtx cond0, cond1, true0, true1, false0, false1;
9152 unsigned HOST_WIDE_INT nz;
9153 scalar_int_mode int_mode;
9155 /* If we are comparing a value against zero, we are done. */
9156 if ((code == NE || code == EQ)
9157 && XEXP (x, 1) == const0_rtx)
9159 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
9160 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
9161 return XEXP (x, 0);
9164 /* If this is a unary operation whose operand has one of two values, apply
9165 our opcode to compute those values. */
9166 else if (UNARY_P (x)
9167 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
9169 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
9170 *pfalse = simplify_gen_unary (code, mode, false0,
9171 GET_MODE (XEXP (x, 0)));
9172 return cond0;
9175 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
9176 make can't possibly match and would suppress other optimizations. */
9177 else if (code == COMPARE)
9180 /* If this is a binary operation, see if either side has only one of two
9181 values. If either one does or if both do and they are conditional on
9182 the same value, compute the new true and false values. */
9183 else if (BINARY_P (x))
9185 rtx op0 = XEXP (x, 0);
9186 rtx op1 = XEXP (x, 1);
9187 cond0 = if_then_else_cond (op0, &true0, &false0);
9188 cond1 = if_then_else_cond (op1, &true1, &false1);
9190 if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
9191 && (REG_P (op0) || REG_P (op1)))
9193 /* Try to enable a simplification by undoing work done by
9194 if_then_else_cond if it converted a REG into something more
9195 complex. */
9196 if (REG_P (op0))
9198 cond0 = 0;
9199 true0 = false0 = op0;
9201 else
9203 cond1 = 0;
9204 true1 = false1 = op1;
9208 if ((cond0 != 0 || cond1 != 0)
9209 && ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
9211 /* If if_then_else_cond returned zero, then true/false are the
9212 same rtl. We must copy one of them to prevent invalid rtl
9213 sharing. */
9214 if (cond0 == 0)
9215 true0 = copy_rtx (true0);
9216 else if (cond1 == 0)
9217 true1 = copy_rtx (true1);
9219 if (COMPARISON_P (x))
9221 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
9222 true0, true1);
9223 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
9224 false0, false1);
9226 else
9228 *ptrue = simplify_gen_binary (code, mode, true0, true1);
9229 *pfalse = simplify_gen_binary (code, mode, false0, false1);
9232 return cond0 ? cond0 : cond1;
9235 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
9236 operands is zero when the other is nonzero, and vice-versa,
9237 and STORE_FLAG_VALUE is 1 or -1. */
9239 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9240 && (code == PLUS || code == IOR || code == XOR || code == MINUS
9241 || code == UMAX)
9242 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9244 rtx op0 = XEXP (XEXP (x, 0), 1);
9245 rtx op1 = XEXP (XEXP (x, 1), 1);
9247 cond0 = XEXP (XEXP (x, 0), 0);
9248 cond1 = XEXP (XEXP (x, 1), 0);
9250 if (COMPARISON_P (cond0)
9251 && COMPARISON_P (cond1)
9252 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9253 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9254 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9255 || ((swap_condition (GET_CODE (cond0))
9256 == reversed_comparison_code (cond1, NULL))
9257 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9258 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9259 && ! side_effects_p (x))
9261 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
9262 *pfalse = simplify_gen_binary (MULT, mode,
9263 (code == MINUS
9264 ? simplify_gen_unary (NEG, mode,
9265 op1, mode)
9266 : op1),
9267 const_true_rtx);
9268 return cond0;
9272 /* Similarly for MULT, AND and UMIN, except that for these the result
9273 is always zero. */
9274 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9275 && (code == MULT || code == AND || code == UMIN)
9276 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
9278 cond0 = XEXP (XEXP (x, 0), 0);
9279 cond1 = XEXP (XEXP (x, 1), 0);
9281 if (COMPARISON_P (cond0)
9282 && COMPARISON_P (cond1)
9283 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
9284 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
9285 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
9286 || ((swap_condition (GET_CODE (cond0))
9287 == reversed_comparison_code (cond1, NULL))
9288 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
9289 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
9290 && ! side_effects_p (x))
9292 *ptrue = *pfalse = const0_rtx;
9293 return cond0;
9298 else if (code == IF_THEN_ELSE)
9300 /* If we have IF_THEN_ELSE already, extract the condition and
9301 canonicalize it if it is NE or EQ. */
9302 cond0 = XEXP (x, 0);
9303 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
9304 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
9305 return XEXP (cond0, 0);
9306 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
9308 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
9309 return XEXP (cond0, 0);
9311 else
9312 return cond0;
9315 /* If X is a SUBREG, we can narrow both the true and false values
9316 if the inner expression, if there is a condition. */
9317 else if (code == SUBREG
9318 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
9319 &true0, &false0)))
9321 true0 = simplify_gen_subreg (mode, true0,
9322 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9323 false0 = simplify_gen_subreg (mode, false0,
9324 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
9325 if (true0 && false0)
9327 *ptrue = true0;
9328 *pfalse = false0;
9329 return cond0;
9333 /* If X is a constant, this isn't special and will cause confusions
9334 if we treat it as such. Likewise if it is equivalent to a constant. */
9335 else if (CONSTANT_P (x)
9336 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
9339 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
9340 will be least confusing to the rest of the compiler. */
9341 else if (mode == BImode)
9343 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
9344 return x;
9347 /* If X is known to be either 0 or -1, those are the true and
9348 false values when testing X. */
9349 else if (x == constm1_rtx || x == const0_rtx
9350 || (is_a <scalar_int_mode> (mode, &int_mode)
9351 && (num_sign_bit_copies (x, int_mode)
9352 == GET_MODE_PRECISION (int_mode))))
9354 *ptrue = constm1_rtx, *pfalse = const0_rtx;
9355 return x;
9358 /* Likewise for 0 or a single bit. */
9359 else if (HWI_COMPUTABLE_MODE_P (mode)
9360 && pow2p_hwi (nz = nonzero_bits (x, mode)))
9362 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
9363 return x;
9366 /* Otherwise fail; show no condition with true and false values the same. */
9367 *ptrue = *pfalse = x;
9368 return 0;
9371 /* Return the value of expression X given the fact that condition COND
9372 is known to be true when applied to REG as its first operand and VAL
9373 as its second. X is known to not be shared and so can be modified in
9374 place.
9376 We only handle the simplest cases, and specifically those cases that
9377 arise with IF_THEN_ELSE expressions. */
9379 static rtx
9380 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
9382 enum rtx_code code = GET_CODE (x);
9383 const char *fmt;
9384 int i, j;
9386 if (side_effects_p (x))
9387 return x;
9389 /* If either operand of the condition is a floating point value,
9390 then we have to avoid collapsing an EQ comparison. */
9391 if (cond == EQ
9392 && rtx_equal_p (x, reg)
9393 && ! FLOAT_MODE_P (GET_MODE (x))
9394 && ! FLOAT_MODE_P (GET_MODE (val)))
9395 return val;
9397 if (cond == UNEQ && rtx_equal_p (x, reg))
9398 return val;
9400 /* If X is (abs REG) and we know something about REG's relationship
9401 with zero, we may be able to simplify this. */
9403 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
9404 switch (cond)
9406 case GE: case GT: case EQ:
9407 return XEXP (x, 0);
9408 case LT: case LE:
9409 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
9410 XEXP (x, 0),
9411 GET_MODE (XEXP (x, 0)));
9412 default:
9413 break;
9416 /* The only other cases we handle are MIN, MAX, and comparisons if the
9417 operands are the same as REG and VAL. */
9419 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
9421 if (rtx_equal_p (XEXP (x, 0), val))
9423 std::swap (val, reg);
9424 cond = swap_condition (cond);
9427 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
9429 if (COMPARISON_P (x))
9431 if (comparison_dominates_p (cond, code))
9432 return const_true_rtx;
9434 code = reversed_comparison_code (x, NULL);
9435 if (code != UNKNOWN
9436 && comparison_dominates_p (cond, code))
9437 return const0_rtx;
9438 else
9439 return x;
9441 else if (code == SMAX || code == SMIN
9442 || code == UMIN || code == UMAX)
9444 int unsignedp = (code == UMIN || code == UMAX);
9446 /* Do not reverse the condition when it is NE or EQ.
9447 This is because we cannot conclude anything about
9448 the value of 'SMAX (x, y)' when x is not equal to y,
9449 but we can when x equals y. */
9450 if ((code == SMAX || code == UMAX)
9451 && ! (cond == EQ || cond == NE))
9452 cond = reverse_condition (cond);
9454 switch (cond)
9456 case GE: case GT:
9457 return unsignedp ? x : XEXP (x, 1);
9458 case LE: case LT:
9459 return unsignedp ? x : XEXP (x, 0);
9460 case GEU: case GTU:
9461 return unsignedp ? XEXP (x, 1) : x;
9462 case LEU: case LTU:
9463 return unsignedp ? XEXP (x, 0) : x;
9464 default:
9465 break;
9470 else if (code == SUBREG)
9472 machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
9473 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
9475 if (SUBREG_REG (x) != r)
9477 /* We must simplify subreg here, before we lose track of the
9478 original inner_mode. */
9479 new_rtx = simplify_subreg (GET_MODE (x), r,
9480 inner_mode, SUBREG_BYTE (x));
9481 if (new_rtx)
9482 return new_rtx;
9483 else
9484 SUBST (SUBREG_REG (x), r);
9487 return x;
9489 /* We don't have to handle SIGN_EXTEND here, because even in the
9490 case of replacing something with a modeless CONST_INT, a
9491 CONST_INT is already (supposed to be) a valid sign extension for
9492 its narrower mode, which implies it's already properly
9493 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
9494 story is different. */
9495 else if (code == ZERO_EXTEND)
9497 machine_mode inner_mode = GET_MODE (XEXP (x, 0));
9498 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
9500 if (XEXP (x, 0) != r)
9502 /* We must simplify the zero_extend here, before we lose
9503 track of the original inner_mode. */
9504 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
9505 r, inner_mode);
9506 if (new_rtx)
9507 return new_rtx;
9508 else
9509 SUBST (XEXP (x, 0), r);
9512 return x;
9515 fmt = GET_RTX_FORMAT (code);
9516 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9518 if (fmt[i] == 'e')
9519 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
9520 else if (fmt[i] == 'E')
9521 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9522 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
9523 cond, reg, val));
9526 return x;
9529 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
9530 assignment as a field assignment. */
9532 static int
9533 rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
9535 if (widen_x && GET_MODE (x) != GET_MODE (y))
9537 if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
9538 return 0;
9539 if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
9540 return 0;
9541 x = adjust_address_nv (x, GET_MODE (y),
9542 byte_lowpart_offset (GET_MODE (y),
9543 GET_MODE (x)));
9546 if (x == y || rtx_equal_p (x, y))
9547 return 1;
9549 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
9550 return 0;
9552 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
9553 Note that all SUBREGs of MEM are paradoxical; otherwise they
9554 would have been rewritten. */
9555 if (MEM_P (x) && GET_CODE (y) == SUBREG
9556 && MEM_P (SUBREG_REG (y))
9557 && rtx_equal_p (SUBREG_REG (y),
9558 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
9559 return 1;
9561 if (MEM_P (y) && GET_CODE (x) == SUBREG
9562 && MEM_P (SUBREG_REG (x))
9563 && rtx_equal_p (SUBREG_REG (x),
9564 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
9565 return 1;
9567 /* We used to see if get_last_value of X and Y were the same but that's
9568 not correct. In one direction, we'll cause the assignment to have
9569 the wrong destination and in the case, we'll import a register into this
9570 insn that might have already have been dead. So fail if none of the
9571 above cases are true. */
9572 return 0;
9575 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
9576 Return that assignment if so.
9578 We only handle the most common cases. */
9580 static rtx
9581 make_field_assignment (rtx x)
9583 rtx dest = SET_DEST (x);
9584 rtx src = SET_SRC (x);
9585 rtx assign;
9586 rtx rhs, lhs;
9587 HOST_WIDE_INT c1;
9588 HOST_WIDE_INT pos;
9589 unsigned HOST_WIDE_INT len;
9590 rtx other;
9592 /* All the rules in this function are specific to scalar integers. */
9593 scalar_int_mode mode;
9594 if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
9595 return x;
9597 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
9598 a clear of a one-bit field. We will have changed it to
9599 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
9600 for a SUBREG. */
9602 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
9603 && CONST_INT_P (XEXP (XEXP (src, 0), 0))
9604 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
9605 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9607 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9608 1, 1, 1, 0);
9609 if (assign != 0)
9610 return gen_rtx_SET (assign, const0_rtx);
9611 return x;
9614 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
9615 && subreg_lowpart_p (XEXP (src, 0))
9616 && partial_subreg_p (XEXP (src, 0))
9617 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
9618 && CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
9619 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
9620 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9622 assign = make_extraction (VOIDmode, dest, 0,
9623 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
9624 1, 1, 1, 0);
9625 if (assign != 0)
9626 return gen_rtx_SET (assign, const0_rtx);
9627 return x;
9630 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
9631 one-bit field. */
9632 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
9633 && XEXP (XEXP (src, 0), 0) == const1_rtx
9634 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
9636 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
9637 1, 1, 1, 0);
9638 if (assign != 0)
9639 return gen_rtx_SET (assign, const1_rtx);
9640 return x;
9643 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
9644 SRC is an AND with all bits of that field set, then we can discard
9645 the AND. */
9646 if (GET_CODE (dest) == ZERO_EXTRACT
9647 && CONST_INT_P (XEXP (dest, 1))
9648 && GET_CODE (src) == AND
9649 && CONST_INT_P (XEXP (src, 1)))
9651 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
9652 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
9653 unsigned HOST_WIDE_INT ze_mask;
9655 if (width >= HOST_BITS_PER_WIDE_INT)
9656 ze_mask = -1;
9657 else
9658 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
9660 /* Complete overlap. We can remove the source AND. */
9661 if ((and_mask & ze_mask) == ze_mask)
9662 return gen_rtx_SET (dest, XEXP (src, 0));
9664 /* Partial overlap. We can reduce the source AND. */
9665 if ((and_mask & ze_mask) != and_mask)
9667 src = gen_rtx_AND (mode, XEXP (src, 0),
9668 gen_int_mode (and_mask & ze_mask, mode));
9669 return gen_rtx_SET (dest, src);
9673 /* The other case we handle is assignments into a constant-position
9674 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
9675 a mask that has all one bits except for a group of zero bits and
9676 OTHER is known to have zeros where C1 has ones, this is such an
9677 assignment. Compute the position and length from C1. Shift OTHER
9678 to the appropriate position, force it to the required mode, and
9679 make the extraction. Check for the AND in both operands. */
9681 /* One or more SUBREGs might obscure the constant-position field
9682 assignment. The first one we are likely to encounter is an outer
9683 narrowing SUBREG, which we can just strip for the purposes of
9684 identifying the constant-field assignment. */
9685 scalar_int_mode src_mode = mode;
9686 if (GET_CODE (src) == SUBREG
9687 && subreg_lowpart_p (src)
9688 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
9689 src = SUBREG_REG (src);
9691 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
9692 return x;
9694 rhs = expand_compound_operation (XEXP (src, 0));
9695 lhs = expand_compound_operation (XEXP (src, 1));
9697 if (GET_CODE (rhs) == AND
9698 && CONST_INT_P (XEXP (rhs, 1))
9699 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
9700 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9701 /* The second SUBREG that might get in the way is a paradoxical
9702 SUBREG around the first operand of the AND. We want to
9703 pretend the operand is as wide as the destination here. We
9704 do this by adjusting the MEM to wider mode for the sole
9705 purpose of the call to rtx_equal_for_field_assignment_p. Also
9706 note this trick only works for MEMs. */
9707 else if (GET_CODE (rhs) == AND
9708 && paradoxical_subreg_p (XEXP (rhs, 0))
9709 && MEM_P (SUBREG_REG (XEXP (rhs, 0)))
9710 && CONST_INT_P (XEXP (rhs, 1))
9711 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
9712 dest, true))
9713 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
9714 else if (GET_CODE (lhs) == AND
9715 && CONST_INT_P (XEXP (lhs, 1))
9716 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
9717 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9718 /* The second SUBREG that might get in the way is a paradoxical
9719 SUBREG around the first operand of the AND. We want to
9720 pretend the operand is as wide as the destination here. We
9721 do this by adjusting the MEM to wider mode for the sole
9722 purpose of the call to rtx_equal_for_field_assignment_p. Also
9723 note this trick only works for MEMs. */
9724 else if (GET_CODE (lhs) == AND
9725 && paradoxical_subreg_p (XEXP (lhs, 0))
9726 && MEM_P (SUBREG_REG (XEXP (lhs, 0)))
9727 && CONST_INT_P (XEXP (lhs, 1))
9728 && rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
9729 dest, true))
9730 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
9731 else
9732 return x;
9734 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
9735 if (pos < 0
9736 || pos + len > GET_MODE_PRECISION (mode)
9737 || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
9738 || (c1 & nonzero_bits (other, mode)) != 0)
9739 return x;
9741 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
9742 if (assign == 0)
9743 return x;
9745 /* The mode to use for the source is the mode of the assignment, or of
9746 what is inside a possible STRICT_LOW_PART. */
9747 machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
9748 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
9750 /* Shift OTHER right POS places and make it the source, restricting it
9751 to the proper length and mode. */
9753 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
9754 src_mode, other, pos),
9755 dest);
9756 src = force_to_mode (src, new_mode,
9757 len >= HOST_BITS_PER_WIDE_INT
9758 ? HOST_WIDE_INT_M1U
9759 : (HOST_WIDE_INT_1U << len) - 1,
9762 /* If SRC is masked by an AND that does not make a difference in
9763 the value being stored, strip it. */
9764 if (GET_CODE (assign) == ZERO_EXTRACT
9765 && CONST_INT_P (XEXP (assign, 1))
9766 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
9767 && GET_CODE (src) == AND
9768 && CONST_INT_P (XEXP (src, 1))
9769 && UINTVAL (XEXP (src, 1))
9770 == (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
9771 src = XEXP (src, 0);
9773 return gen_rtx_SET (assign, src);
9776 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
9777 if so. */
9779 static rtx
9780 apply_distributive_law (rtx x)
9782 enum rtx_code code = GET_CODE (x);
9783 enum rtx_code inner_code;
9784 rtx lhs, rhs, other;
9785 rtx tem;
9787 /* Distributivity is not true for floating point as it can change the
9788 value. So we don't do it unless -funsafe-math-optimizations. */
9789 if (FLOAT_MODE_P (GET_MODE (x))
9790 && ! flag_unsafe_math_optimizations)
9791 return x;
9793 /* The outer operation can only be one of the following: */
9794 if (code != IOR && code != AND && code != XOR
9795 && code != PLUS && code != MINUS)
9796 return x;
9798 lhs = XEXP (x, 0);
9799 rhs = XEXP (x, 1);
9801 /* If either operand is a primitive we can't do anything, so get out
9802 fast. */
9803 if (OBJECT_P (lhs) || OBJECT_P (rhs))
9804 return x;
9806 lhs = expand_compound_operation (lhs);
9807 rhs = expand_compound_operation (rhs);
9808 inner_code = GET_CODE (lhs);
9809 if (inner_code != GET_CODE (rhs))
9810 return x;
9812 /* See if the inner and outer operations distribute. */
9813 switch (inner_code)
9815 case LSHIFTRT:
9816 case ASHIFTRT:
9817 case AND:
9818 case IOR:
9819 /* These all distribute except over PLUS. */
9820 if (code == PLUS || code == MINUS)
9821 return x;
9822 break;
9824 case MULT:
9825 if (code != PLUS && code != MINUS)
9826 return x;
9827 break;
9829 case ASHIFT:
9830 /* This is also a multiply, so it distributes over everything. */
9831 break;
9833 /* This used to handle SUBREG, but this turned out to be counter-
9834 productive, since (subreg (op ...)) usually is not handled by
9835 insn patterns, and this "optimization" therefore transformed
9836 recognizable patterns into unrecognizable ones. Therefore the
9837 SUBREG case was removed from here.
9839 It is possible that distributing SUBREG over arithmetic operations
9840 leads to an intermediate result than can then be optimized further,
9841 e.g. by moving the outer SUBREG to the other side of a SET as done
9842 in simplify_set. This seems to have been the original intent of
9843 handling SUBREGs here.
9845 However, with current GCC this does not appear to actually happen,
9846 at least on major platforms. If some case is found where removing
9847 the SUBREG case here prevents follow-on optimizations, distributing
9848 SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
9850 default:
9851 return x;
9854 /* Set LHS and RHS to the inner operands (A and B in the example
9855 above) and set OTHER to the common operand (C in the example).
9856 There is only one way to do this unless the inner operation is
9857 commutative. */
9858 if (COMMUTATIVE_ARITH_P (lhs)
9859 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
9860 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
9861 else if (COMMUTATIVE_ARITH_P (lhs)
9862 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
9863 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
9864 else if (COMMUTATIVE_ARITH_P (lhs)
9865 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
9866 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
9867 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
9868 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
9869 else
9870 return x;
9872 /* Form the new inner operation, seeing if it simplifies first. */
9873 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
9875 /* There is one exception to the general way of distributing:
9876 (a | c) ^ (b | c) -> (a ^ b) & ~c */
9877 if (code == XOR && inner_code == IOR)
9879 inner_code = AND;
9880 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
9883 /* We may be able to continuing distributing the result, so call
9884 ourselves recursively on the inner operation before forming the
9885 outer operation, which we return. */
9886 return simplify_gen_binary (inner_code, GET_MODE (x),
9887 apply_distributive_law (tem), other);
9890 /* See if X is of the form (* (+ A B) C), and if so convert to
9891 (+ (* A C) (* B C)) and try to simplify.
9893 Most of the time, this results in no change. However, if some of
9894 the operands are the same or inverses of each other, simplifications
9895 will result.
9897 For example, (and (ior A B) (not B)) can occur as the result of
9898 expanding a bit field assignment. When we apply the distributive
9899 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
9900 which then simplifies to (and (A (not B))).
9902 Note that no checks happen on the validity of applying the inverse
9903 distributive law. This is pointless since we can do it in the
9904 few places where this routine is called.
9906 N is the index of the term that is decomposed (the arithmetic operation,
9907 i.e. (+ A B) in the first example above). !N is the index of the term that
9908 is distributed, i.e. of C in the first example above. */
9909 static rtx
9910 distribute_and_simplify_rtx (rtx x, int n)
9912 machine_mode mode;
9913 enum rtx_code outer_code, inner_code;
9914 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
9916 /* Distributivity is not true for floating point as it can change the
9917 value. So we don't do it unless -funsafe-math-optimizations. */
9918 if (FLOAT_MODE_P (GET_MODE (x))
9919 && ! flag_unsafe_math_optimizations)
9920 return NULL_RTX;
9922 decomposed = XEXP (x, n);
9923 if (!ARITHMETIC_P (decomposed))
9924 return NULL_RTX;
9926 mode = GET_MODE (x);
9927 outer_code = GET_CODE (x);
9928 distributed = XEXP (x, !n);
9930 inner_code = GET_CODE (decomposed);
9931 inner_op0 = XEXP (decomposed, 0);
9932 inner_op1 = XEXP (decomposed, 1);
9934 /* Special case (and (xor B C) (not A)), which is equivalent to
9935 (xor (ior A B) (ior A C)) */
9936 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
9938 distributed = XEXP (distributed, 0);
9939 outer_code = IOR;
9942 if (n == 0)
9944 /* Distribute the second term. */
9945 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
9946 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
9948 else
9950 /* Distribute the first term. */
9951 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
9952 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
9955 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
9956 new_op0, new_op1));
9957 if (GET_CODE (tmp) != outer_code
9958 && (set_src_cost (tmp, mode, optimize_this_for_speed_p)
9959 < set_src_cost (x, mode, optimize_this_for_speed_p)))
9960 return tmp;
9962 return NULL_RTX;
9965 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
9966 in MODE. Return an equivalent form, if different from (and VAROP
9967 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
9969 static rtx
9970 simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
9971 unsigned HOST_WIDE_INT constop)
9973 unsigned HOST_WIDE_INT nonzero;
9974 unsigned HOST_WIDE_INT orig_constop;
9975 rtx orig_varop;
9976 int i;
9978 orig_varop = varop;
9979 orig_constop = constop;
9980 if (GET_CODE (varop) == CLOBBER)
9981 return NULL_RTX;
9983 /* Simplify VAROP knowing that we will be only looking at some of the
9984 bits in it.
9986 Note by passing in CONSTOP, we guarantee that the bits not set in
9987 CONSTOP are not significant and will never be examined. We must
9988 ensure that is the case by explicitly masking out those bits
9989 before returning. */
9990 varop = force_to_mode (varop, mode, constop, 0);
9992 /* If VAROP is a CLOBBER, we will fail so return it. */
9993 if (GET_CODE (varop) == CLOBBER)
9994 return varop;
9996 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
9997 to VAROP and return the new constant. */
9998 if (CONST_INT_P (varop))
9999 return gen_int_mode (INTVAL (varop) & constop, mode);
10001 /* See what bits may be nonzero in VAROP. Unlike the general case of
10002 a call to nonzero_bits, here we don't care about bits outside
10003 MODE. */
10005 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
10007 /* Turn off all bits in the constant that are known to already be zero.
10008 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
10009 which is tested below. */
10011 constop &= nonzero;
10013 /* If we don't have any bits left, return zero. */
10014 if (constop == 0)
10015 return const0_rtx;
10017 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
10018 a power of two, we can replace this with an ASHIFT. */
10019 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
10020 && (i = exact_log2 (constop)) >= 0)
10021 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
10023 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
10024 or XOR, then try to apply the distributive law. This may eliminate
10025 operations if either branch can be simplified because of the AND.
10026 It may also make some cases more complex, but those cases probably
10027 won't match a pattern either with or without this. */
10029 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
10031 scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10032 return
10033 gen_lowpart
10034 (mode,
10035 apply_distributive_law
10036 (simplify_gen_binary (GET_CODE (varop), varop_mode,
10037 simplify_and_const_int (NULL_RTX, varop_mode,
10038 XEXP (varop, 0),
10039 constop),
10040 simplify_and_const_int (NULL_RTX, varop_mode,
10041 XEXP (varop, 1),
10042 constop))));
10045 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
10046 the AND and see if one of the operands simplifies to zero. If so, we
10047 may eliminate it. */
10049 if (GET_CODE (varop) == PLUS
10050 && pow2p_hwi (constop + 1))
10052 rtx o0, o1;
10054 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
10055 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
10056 if (o0 == const0_rtx)
10057 return o1;
10058 if (o1 == const0_rtx)
10059 return o0;
10062 /* Make a SUBREG if necessary. If we can't make it, fail. */
10063 varop = gen_lowpart (mode, varop);
10064 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
10065 return NULL_RTX;
10067 /* If we are only masking insignificant bits, return VAROP. */
10068 if (constop == nonzero)
10069 return varop;
10071 if (varop == orig_varop && constop == orig_constop)
10072 return NULL_RTX;
10074 /* Otherwise, return an AND. */
10075 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
10079 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
10080 in MODE.
10082 Return an equivalent form, if different from X. Otherwise, return X. If
10083 X is zero, we are to always construct the equivalent form. */
10085 static rtx
10086 simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
10087 unsigned HOST_WIDE_INT constop)
10089 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
10090 if (tem)
10091 return tem;
10093 if (!x)
10094 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
10095 gen_int_mode (constop, mode));
10096 if (GET_MODE (x) != mode)
10097 x = gen_lowpart (mode, x);
10098 return x;
10101 /* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
10102 We don't care about bits outside of those defined in MODE.
10104 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
10105 a shift, AND, or zero_extract, we can do better. */
10107 static rtx
10108 reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
10109 scalar_int_mode mode,
10110 unsigned HOST_WIDE_INT *nonzero)
10112 rtx tem;
10113 reg_stat_type *rsp;
10115 /* If X is a register whose nonzero bits value is current, use it.
10116 Otherwise, if X is a register whose value we can find, use that
10117 value. Otherwise, use the previously-computed global nonzero bits
10118 for this register. */
10120 rsp = &reg_stat[REGNO (x)];
10121 if (rsp->last_set_value != 0
10122 && (rsp->last_set_mode == mode
10123 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
10124 && GET_MODE_CLASS (mode) == MODE_INT))
10125 && ((rsp->last_set_label >= label_tick_ebb_start
10126 && rsp->last_set_label < label_tick)
10127 || (rsp->last_set_label == label_tick
10128 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10129 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10130 && REGNO (x) < reg_n_sets_max
10131 && REG_N_SETS (REGNO (x)) == 1
10132 && !REGNO_REG_SET_P
10133 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10134 REGNO (x)))))
10136 /* Note that, even if the precision of last_set_mode is lower than that
10137 of mode, record_value_for_reg invoked nonzero_bits on the register
10138 with nonzero_bits_mode (because last_set_mode is necessarily integral
10139 and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
10140 are all valid, hence in mode too since nonzero_bits_mode is defined
10141 to the largest HWI_COMPUTABLE_MODE_P mode. */
10142 *nonzero &= rsp->last_set_nonzero_bits;
10143 return NULL;
10146 tem = get_last_value (x);
10147 if (tem)
10149 if (SHORT_IMMEDIATES_SIGN_EXTEND)
10150 tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
10152 return tem;
10155 if (nonzero_sign_valid && rsp->nonzero_bits)
10157 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
10159 if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
10160 /* We don't know anything about the upper bits. */
10161 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
10163 *nonzero &= mask;
10166 return NULL;
10169 /* Given a reg X of mode XMODE, return the number of bits at the high-order
10170 end of X that are known to be equal to the sign bit. X will be used
10171 in mode MODE; the returned value will always be between 1 and the
10172 number of bits in MODE. */
10174 static rtx
10175 reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
10176 scalar_int_mode mode,
10177 unsigned int *result)
10179 rtx tem;
10180 reg_stat_type *rsp;
10182 rsp = &reg_stat[REGNO (x)];
10183 if (rsp->last_set_value != 0
10184 && rsp->last_set_mode == mode
10185 && ((rsp->last_set_label >= label_tick_ebb_start
10186 && rsp->last_set_label < label_tick)
10187 || (rsp->last_set_label == label_tick
10188 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
10189 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
10190 && REGNO (x) < reg_n_sets_max
10191 && REG_N_SETS (REGNO (x)) == 1
10192 && !REGNO_REG_SET_P
10193 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
10194 REGNO (x)))))
10196 *result = rsp->last_set_sign_bit_copies;
10197 return NULL;
10200 tem = get_last_value (x);
10201 if (tem != 0)
10202 return tem;
10204 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
10205 && GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
10206 *result = rsp->sign_bit_copies;
10208 return NULL;
10211 /* Return the number of "extended" bits there are in X, when interpreted
10212 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
10213 unsigned quantities, this is the number of high-order zero bits.
10214 For signed quantities, this is the number of copies of the sign bit
10215 minus 1. In both case, this function returns the number of "spare"
10216 bits. For example, if two quantities for which this function returns
10217 at least 1 are added, the addition is known not to overflow.
10219 This function will always return 0 unless called during combine, which
10220 implies that it must be called from a define_split. */
10222 unsigned int
10223 extended_count (const_rtx x, machine_mode mode, int unsignedp)
10225 if (nonzero_sign_valid == 0)
10226 return 0;
10228 scalar_int_mode int_mode;
10229 return (unsignedp
10230 ? (is_a <scalar_int_mode> (mode, &int_mode)
10231 && HWI_COMPUTABLE_MODE_P (int_mode)
10232 ? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
10233 - floor_log2 (nonzero_bits (x, int_mode)))
10234 : 0)
10235 : num_sign_bit_copies (x, mode) - 1);
10238 /* This function is called from `simplify_shift_const' to merge two
10239 outer operations. Specifically, we have already found that we need
10240 to perform operation *POP0 with constant *PCONST0 at the outermost
10241 position. We would now like to also perform OP1 with constant CONST1
10242 (with *POP0 being done last).
10244 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
10245 the resulting operation. *PCOMP_P is set to 1 if we would need to
10246 complement the innermost operand, otherwise it is unchanged.
10248 MODE is the mode in which the operation will be done. No bits outside
10249 the width of this mode matter. It is assumed that the width of this mode
10250 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
10252 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
10253 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
10254 result is simply *PCONST0.
10256 If the resulting operation cannot be expressed as one operation, we
10257 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
10259 static int
10260 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
10262 enum rtx_code op0 = *pop0;
10263 HOST_WIDE_INT const0 = *pconst0;
10265 const0 &= GET_MODE_MASK (mode);
10266 const1 &= GET_MODE_MASK (mode);
10268 /* If OP0 is an AND, clear unimportant bits in CONST1. */
10269 if (op0 == AND)
10270 const1 &= const0;
10272 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
10273 if OP0 is SET. */
10275 if (op1 == UNKNOWN || op0 == SET)
10276 return 1;
10278 else if (op0 == UNKNOWN)
10279 op0 = op1, const0 = const1;
10281 else if (op0 == op1)
10283 switch (op0)
10285 case AND:
10286 const0 &= const1;
10287 break;
10288 case IOR:
10289 const0 |= const1;
10290 break;
10291 case XOR:
10292 const0 ^= const1;
10293 break;
10294 case PLUS:
10295 const0 += const1;
10296 break;
10297 case NEG:
10298 op0 = UNKNOWN;
10299 break;
10300 default:
10301 break;
10305 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
10306 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
10307 return 0;
10309 /* If the two constants aren't the same, we can't do anything. The
10310 remaining six cases can all be done. */
10311 else if (const0 != const1)
10312 return 0;
10314 else
10315 switch (op0)
10317 case IOR:
10318 if (op1 == AND)
10319 /* (a & b) | b == b */
10320 op0 = SET;
10321 else /* op1 == XOR */
10322 /* (a ^ b) | b == a | b */
10324 break;
10326 case XOR:
10327 if (op1 == AND)
10328 /* (a & b) ^ b == (~a) & b */
10329 op0 = AND, *pcomp_p = 1;
10330 else /* op1 == IOR */
10331 /* (a | b) ^ b == a & ~b */
10332 op0 = AND, const0 = ~const0;
10333 break;
10335 case AND:
10336 if (op1 == IOR)
10337 /* (a | b) & b == b */
10338 op0 = SET;
10339 else /* op1 == XOR */
10340 /* (a ^ b) & b) == (~a) & b */
10341 *pcomp_p = 1;
10342 break;
10343 default:
10344 break;
10347 /* Check for NO-OP cases. */
10348 const0 &= GET_MODE_MASK (mode);
10349 if (const0 == 0
10350 && (op0 == IOR || op0 == XOR || op0 == PLUS))
10351 op0 = UNKNOWN;
10352 else if (const0 == 0 && op0 == AND)
10353 op0 = SET;
10354 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
10355 && op0 == AND)
10356 op0 = UNKNOWN;
10358 *pop0 = op0;
10360 /* ??? Slightly redundant with the above mask, but not entirely.
10361 Moving this above means we'd have to sign-extend the mode mask
10362 for the final test. */
10363 if (op0 != UNKNOWN && op0 != NEG)
10364 *pconst0 = trunc_int_for_mode (const0, mode);
10366 return 1;
10369 /* A helper to simplify_shift_const_1 to determine the mode we can perform
10370 the shift in. The original shift operation CODE is performed on OP in
10371 ORIG_MODE. Return the wider mode MODE if we can perform the operation
10372 in that mode. Return ORIG_MODE otherwise. We can also assume that the
10373 result of the shift is subject to operation OUTER_CODE with operand
10374 OUTER_CONST. */
10376 static scalar_int_mode
10377 try_widen_shift_mode (enum rtx_code code, rtx op, int count,
10378 scalar_int_mode orig_mode, scalar_int_mode mode,
10379 enum rtx_code outer_code, HOST_WIDE_INT outer_const)
10381 gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
10383 /* In general we can't perform in wider mode for right shift and rotate. */
10384 switch (code)
10386 case ASHIFTRT:
10387 /* We can still widen if the bits brought in from the left are identical
10388 to the sign bit of ORIG_MODE. */
10389 if (num_sign_bit_copies (op, mode)
10390 > (unsigned) (GET_MODE_PRECISION (mode)
10391 - GET_MODE_PRECISION (orig_mode)))
10392 return mode;
10393 return orig_mode;
10395 case LSHIFTRT:
10396 /* Similarly here but with zero bits. */
10397 if (HWI_COMPUTABLE_MODE_P (mode)
10398 && (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
10399 return mode;
10401 /* We can also widen if the bits brought in will be masked off. This
10402 operation is performed in ORIG_MODE. */
10403 if (outer_code == AND)
10405 int care_bits = low_bitmask_len (orig_mode, outer_const);
10407 if (care_bits >= 0
10408 && GET_MODE_PRECISION (orig_mode) - care_bits >= count)
10409 return mode;
10411 /* fall through */
10413 case ROTATE:
10414 return orig_mode;
10416 case ROTATERT:
10417 gcc_unreachable ();
10419 default:
10420 return mode;
10424 /* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
10425 of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
10426 if we cannot simplify it. Otherwise, return a simplified value.
10428 The shift is normally computed in the widest mode we find in VAROP, as
10429 long as it isn't a different number of words than RESULT_MODE. Exceptions
10430 are ASHIFTRT and ROTATE, which are always done in their original mode. */
10432 static rtx
10433 simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
10434 rtx varop, int orig_count)
10436 enum rtx_code orig_code = code;
10437 rtx orig_varop = varop;
10438 int count;
10439 machine_mode mode = result_mode;
10440 machine_mode shift_mode;
10441 scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
10442 unsigned int mode_words
10443 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
10444 /* We form (outer_op (code varop count) (outer_const)). */
10445 enum rtx_code outer_op = UNKNOWN;
10446 HOST_WIDE_INT outer_const = 0;
10447 int complement_p = 0;
10448 rtx new_rtx, x;
10450 /* Make sure and truncate the "natural" shift on the way in. We don't
10451 want to do this inside the loop as it makes it more difficult to
10452 combine shifts. */
10453 if (SHIFT_COUNT_TRUNCATED)
10454 orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
10456 /* If we were given an invalid count, don't do anything except exactly
10457 what was requested. */
10459 if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
10460 return NULL_RTX;
10462 count = orig_count;
10464 /* Unless one of the branches of the `if' in this loop does a `continue',
10465 we will `break' the loop after the `if'. */
10467 while (count != 0)
10469 /* If we have an operand of (clobber (const_int 0)), fail. */
10470 if (GET_CODE (varop) == CLOBBER)
10471 return NULL_RTX;
10473 /* Convert ROTATERT to ROTATE. */
10474 if (code == ROTATERT)
10476 unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
10477 code = ROTATE;
10478 count = bitsize - count;
10481 shift_mode = result_mode;
10482 if (shift_mode != mode)
10484 /* We only change the modes of scalar shifts. */
10485 int_mode = as_a <scalar_int_mode> (mode);
10486 int_result_mode = as_a <scalar_int_mode> (result_mode);
10487 shift_mode = try_widen_shift_mode (code, varop, count,
10488 int_result_mode, int_mode,
10489 outer_op, outer_const);
10492 scalar_int_mode shift_unit_mode
10493 = as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
10495 /* Handle cases where the count is greater than the size of the mode
10496 minus 1. For ASHIFT, use the size minus one as the count (this can
10497 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
10498 take the count modulo the size. For other shifts, the result is
10499 zero.
10501 Since these shifts are being produced by the compiler by combining
10502 multiple operations, each of which are defined, we know what the
10503 result is supposed to be. */
10505 if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
10507 if (code == ASHIFTRT)
10508 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10509 else if (code == ROTATE || code == ROTATERT)
10510 count %= GET_MODE_PRECISION (shift_unit_mode);
10511 else
10513 /* We can't simply return zero because there may be an
10514 outer op. */
10515 varop = const0_rtx;
10516 count = 0;
10517 break;
10521 /* If we discovered we had to complement VAROP, leave. Making a NOT
10522 here would cause an infinite loop. */
10523 if (complement_p)
10524 break;
10526 if (shift_mode == shift_unit_mode)
10528 /* An arithmetic right shift of a quantity known to be -1 or 0
10529 is a no-op. */
10530 if (code == ASHIFTRT
10531 && (num_sign_bit_copies (varop, shift_unit_mode)
10532 == GET_MODE_PRECISION (shift_unit_mode)))
10534 count = 0;
10535 break;
10538 /* If we are doing an arithmetic right shift and discarding all but
10539 the sign bit copies, this is equivalent to doing a shift by the
10540 bitsize minus one. Convert it into that shift because it will
10541 often allow other simplifications. */
10543 if (code == ASHIFTRT
10544 && (count + num_sign_bit_copies (varop, shift_unit_mode)
10545 >= GET_MODE_PRECISION (shift_unit_mode)))
10546 count = GET_MODE_PRECISION (shift_unit_mode) - 1;
10548 /* We simplify the tests below and elsewhere by converting
10549 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
10550 `make_compound_operation' will convert it to an ASHIFTRT for
10551 those machines (such as VAX) that don't have an LSHIFTRT. */
10552 if (code == ASHIFTRT
10553 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10554 && val_signbit_known_clear_p (shift_unit_mode,
10555 nonzero_bits (varop,
10556 shift_unit_mode)))
10557 code = LSHIFTRT;
10559 if (((code == LSHIFTRT
10560 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10561 && !(nonzero_bits (varop, shift_unit_mode) >> count))
10562 || (code == ASHIFT
10563 && HWI_COMPUTABLE_MODE_P (shift_unit_mode)
10564 && !((nonzero_bits (varop, shift_unit_mode) << count)
10565 & GET_MODE_MASK (shift_unit_mode))))
10566 && !side_effects_p (varop))
10567 varop = const0_rtx;
10570 switch (GET_CODE (varop))
10572 case SIGN_EXTEND:
10573 case ZERO_EXTEND:
10574 case SIGN_EXTRACT:
10575 case ZERO_EXTRACT:
10576 new_rtx = expand_compound_operation (varop);
10577 if (new_rtx != varop)
10579 varop = new_rtx;
10580 continue;
10582 break;
10584 case MEM:
10585 /* The following rules apply only to scalars. */
10586 if (shift_mode != shift_unit_mode)
10587 break;
10588 int_mode = as_a <scalar_int_mode> (mode);
10590 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
10591 minus the width of a smaller mode, we can do this with a
10592 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
10593 if ((code == ASHIFTRT || code == LSHIFTRT)
10594 && ! mode_dependent_address_p (XEXP (varop, 0),
10595 MEM_ADDR_SPACE (varop))
10596 && ! MEM_VOLATILE_P (varop)
10597 && (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
10598 .exists (&tmode)))
10600 new_rtx = adjust_address_nv (varop, tmode,
10601 BYTES_BIG_ENDIAN ? 0
10602 : count / BITS_PER_UNIT);
10604 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
10605 : ZERO_EXTEND, int_mode, new_rtx);
10606 count = 0;
10607 continue;
10609 break;
10611 case SUBREG:
10612 /* The following rules apply only to scalars. */
10613 if (shift_mode != shift_unit_mode)
10614 break;
10615 int_mode = as_a <scalar_int_mode> (mode);
10616 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10618 /* If VAROP is a SUBREG, strip it as long as the inner operand has
10619 the same number of words as what we've seen so far. Then store
10620 the widest mode in MODE. */
10621 if (subreg_lowpart_p (varop)
10622 && is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
10623 && GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
10624 && (unsigned int) ((GET_MODE_SIZE (inner_mode)
10625 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
10626 == mode_words
10627 && GET_MODE_CLASS (int_varop_mode) == MODE_INT)
10629 varop = SUBREG_REG (varop);
10630 if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
10631 mode = inner_mode;
10632 continue;
10634 break;
10636 case MULT:
10637 /* Some machines use MULT instead of ASHIFT because MULT
10638 is cheaper. But it is still better on those machines to
10639 merge two shifts into one. */
10640 if (CONST_INT_P (XEXP (varop, 1))
10641 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10643 varop
10644 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
10645 XEXP (varop, 0),
10646 GEN_INT (exact_log2 (
10647 UINTVAL (XEXP (varop, 1)))));
10648 continue;
10650 break;
10652 case UDIV:
10653 /* Similar, for when divides are cheaper. */
10654 if (CONST_INT_P (XEXP (varop, 1))
10655 && exact_log2 (UINTVAL (XEXP (varop, 1))) >= 0)
10657 varop
10658 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
10659 XEXP (varop, 0),
10660 GEN_INT (exact_log2 (
10661 UINTVAL (XEXP (varop, 1)))));
10662 continue;
10664 break;
10666 case ASHIFTRT:
10667 /* If we are extracting just the sign bit of an arithmetic
10668 right shift, that shift is not needed. However, the sign
10669 bit of a wider mode may be different from what would be
10670 interpreted as the sign bit in a narrower mode, so, if
10671 the result is narrower, don't discard the shift. */
10672 if (code == LSHIFTRT
10673 && count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
10674 && (GET_MODE_UNIT_BITSIZE (result_mode)
10675 >= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
10677 varop = XEXP (varop, 0);
10678 continue;
10681 /* fall through */
10683 case LSHIFTRT:
10684 case ASHIFT:
10685 case ROTATE:
10686 /* The following rules apply only to scalars. */
10687 if (shift_mode != shift_unit_mode)
10688 break;
10689 int_mode = as_a <scalar_int_mode> (mode);
10690 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10691 int_result_mode = as_a <scalar_int_mode> (result_mode);
10693 /* Here we have two nested shifts. The result is usually the
10694 AND of a new shift with a mask. We compute the result below. */
10695 if (CONST_INT_P (XEXP (varop, 1))
10696 && INTVAL (XEXP (varop, 1)) >= 0
10697 && INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
10698 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10699 && HWI_COMPUTABLE_MODE_P (int_mode))
10701 enum rtx_code first_code = GET_CODE (varop);
10702 unsigned int first_count = INTVAL (XEXP (varop, 1));
10703 unsigned HOST_WIDE_INT mask;
10704 rtx mask_rtx;
10706 /* We have one common special case. We can't do any merging if
10707 the inner code is an ASHIFTRT of a smaller mode. However, if
10708 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
10709 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
10710 we can convert it to
10711 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
10712 This simplifies certain SIGN_EXTEND operations. */
10713 if (code == ASHIFT && first_code == ASHIFTRT
10714 && count == (GET_MODE_PRECISION (int_result_mode)
10715 - GET_MODE_PRECISION (int_varop_mode)))
10717 /* C3 has the low-order C1 bits zero. */
10719 mask = GET_MODE_MASK (int_mode)
10720 & ~((HOST_WIDE_INT_1U << first_count) - 1);
10722 varop = simplify_and_const_int (NULL_RTX, int_result_mode,
10723 XEXP (varop, 0), mask);
10724 varop = simplify_shift_const (NULL_RTX, ASHIFT,
10725 int_result_mode, varop, count);
10726 count = first_count;
10727 code = ASHIFTRT;
10728 continue;
10731 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
10732 than C1 high-order bits equal to the sign bit, we can convert
10733 this to either an ASHIFT or an ASHIFTRT depending on the
10734 two counts.
10736 We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
10738 if (code == ASHIFTRT && first_code == ASHIFT
10739 && int_varop_mode == shift_unit_mode
10740 && (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
10741 > first_count))
10743 varop = XEXP (varop, 0);
10744 count -= first_count;
10745 if (count < 0)
10747 count = -count;
10748 code = ASHIFT;
10751 continue;
10754 /* There are some cases we can't do. If CODE is ASHIFTRT,
10755 we can only do this if FIRST_CODE is also ASHIFTRT.
10757 We can't do the case when CODE is ROTATE and FIRST_CODE is
10758 ASHIFTRT.
10760 If the mode of this shift is not the mode of the outer shift,
10761 we can't do this if either shift is a right shift or ROTATE.
10763 Finally, we can't do any of these if the mode is too wide
10764 unless the codes are the same.
10766 Handle the case where the shift codes are the same
10767 first. */
10769 if (code == first_code)
10771 if (int_varop_mode != int_result_mode
10772 && (code == ASHIFTRT || code == LSHIFTRT
10773 || code == ROTATE))
10774 break;
10776 count += first_count;
10777 varop = XEXP (varop, 0);
10778 continue;
10781 if (code == ASHIFTRT
10782 || (code == ROTATE && first_code == ASHIFTRT)
10783 || GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
10784 || (int_varop_mode != int_result_mode
10785 && (first_code == ASHIFTRT || first_code == LSHIFTRT
10786 || first_code == ROTATE
10787 || code == ROTATE)))
10788 break;
10790 /* To compute the mask to apply after the shift, shift the
10791 nonzero bits of the inner shift the same way the
10792 outer shift will. */
10794 mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
10795 int_result_mode);
10797 mask_rtx
10798 = simplify_const_binary_operation (code, int_result_mode,
10799 mask_rtx, GEN_INT (count));
10801 /* Give up if we can't compute an outer operation to use. */
10802 if (mask_rtx == 0
10803 || !CONST_INT_P (mask_rtx)
10804 || ! merge_outer_ops (&outer_op, &outer_const, AND,
10805 INTVAL (mask_rtx),
10806 int_result_mode, &complement_p))
10807 break;
10809 /* If the shifts are in the same direction, we add the
10810 counts. Otherwise, we subtract them. */
10811 if ((code == ASHIFTRT || code == LSHIFTRT)
10812 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
10813 count += first_count;
10814 else
10815 count -= first_count;
10817 /* If COUNT is positive, the new shift is usually CODE,
10818 except for the two exceptions below, in which case it is
10819 FIRST_CODE. If the count is negative, FIRST_CODE should
10820 always be used */
10821 if (count > 0
10822 && ((first_code == ROTATE && code == ASHIFT)
10823 || (first_code == ASHIFTRT && code == LSHIFTRT)))
10824 code = first_code;
10825 else if (count < 0)
10826 code = first_code, count = -count;
10828 varop = XEXP (varop, 0);
10829 continue;
10832 /* If we have (A << B << C) for any shift, we can convert this to
10833 (A << C << B). This wins if A is a constant. Only try this if
10834 B is not a constant. */
10836 else if (GET_CODE (varop) == code
10837 && CONST_INT_P (XEXP (varop, 0))
10838 && !CONST_INT_P (XEXP (varop, 1)))
10840 /* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
10841 sure the result will be masked. See PR70222. */
10842 if (code == LSHIFTRT
10843 && int_mode != int_result_mode
10844 && !merge_outer_ops (&outer_op, &outer_const, AND,
10845 GET_MODE_MASK (int_result_mode)
10846 >> orig_count, int_result_mode,
10847 &complement_p))
10848 break;
10849 /* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
10850 up outer sign extension (often left and right shift) is
10851 hardly more efficient than the original. See PR70429. */
10852 if (code == ASHIFTRT && int_mode != int_result_mode)
10853 break;
10855 rtx new_rtx = simplify_const_binary_operation (code, int_mode,
10856 XEXP (varop, 0),
10857 GEN_INT (count));
10858 varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
10859 count = 0;
10860 continue;
10862 break;
10864 case NOT:
10865 /* The following rules apply only to scalars. */
10866 if (shift_mode != shift_unit_mode)
10867 break;
10869 /* Make this fit the case below. */
10870 varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
10871 continue;
10873 case IOR:
10874 case AND:
10875 case XOR:
10876 /* The following rules apply only to scalars. */
10877 if (shift_mode != shift_unit_mode)
10878 break;
10879 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
10880 int_result_mode = as_a <scalar_int_mode> (result_mode);
10882 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
10883 with C the size of VAROP - 1 and the shift is logical if
10884 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
10885 we have an (le X 0) operation. If we have an arithmetic shift
10886 and STORE_FLAG_VALUE is 1 or we have a logical shift with
10887 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
10889 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
10890 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
10891 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
10892 && (code == LSHIFTRT || code == ASHIFTRT)
10893 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
10894 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
10896 count = 0;
10897 varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
10898 const0_rtx);
10900 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
10901 varop = gen_rtx_NEG (int_varop_mode, varop);
10903 continue;
10906 /* If we have (shift (logical)), move the logical to the outside
10907 to allow it to possibly combine with another logical and the
10908 shift to combine with another shift. This also canonicalizes to
10909 what a ZERO_EXTRACT looks like. Also, some machines have
10910 (and (shift)) insns. */
10912 if (CONST_INT_P (XEXP (varop, 1))
10913 /* We can't do this if we have (ashiftrt (xor)) and the
10914 constant has its sign bit set in shift_unit_mode with
10915 shift_unit_mode wider than result_mode. */
10916 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10917 && int_result_mode != shift_unit_mode
10918 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10919 shift_unit_mode))
10920 && (new_rtx = simplify_const_binary_operation
10921 (code, int_result_mode,
10922 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
10923 GEN_INT (count))) != 0
10924 && CONST_INT_P (new_rtx)
10925 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
10926 INTVAL (new_rtx), int_result_mode,
10927 &complement_p))
10929 varop = XEXP (varop, 0);
10930 continue;
10933 /* If we can't do that, try to simplify the shift in each arm of the
10934 logical expression, make a new logical expression, and apply
10935 the inverse distributive law. This also can't be done for
10936 (ashiftrt (xor)) where we've widened the shift and the constant
10937 changes the sign bit. */
10938 if (CONST_INT_P (XEXP (varop, 1))
10939 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
10940 && int_result_mode != shift_unit_mode
10941 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
10942 shift_unit_mode)))
10944 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10945 XEXP (varop, 0), count);
10946 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
10947 XEXP (varop, 1), count);
10949 varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
10950 lhs, rhs);
10951 varop = apply_distributive_law (varop);
10953 count = 0;
10954 continue;
10956 break;
10958 case EQ:
10959 /* The following rules apply only to scalars. */
10960 if (shift_mode != shift_unit_mode)
10961 break;
10962 int_result_mode = as_a <scalar_int_mode> (result_mode);
10964 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
10965 says that the sign bit can be tested, FOO has mode MODE, C is
10966 GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
10967 that may be nonzero. */
10968 if (code == LSHIFTRT
10969 && XEXP (varop, 1) == const0_rtx
10970 && GET_MODE (XEXP (varop, 0)) == int_result_mode
10971 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10972 && HWI_COMPUTABLE_MODE_P (int_result_mode)
10973 && STORE_FLAG_VALUE == -1
10974 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
10975 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
10976 int_result_mode, &complement_p))
10978 varop = XEXP (varop, 0);
10979 count = 0;
10980 continue;
10982 break;
10984 case NEG:
10985 /* The following rules apply only to scalars. */
10986 if (shift_mode != shift_unit_mode)
10987 break;
10988 int_result_mode = as_a <scalar_int_mode> (result_mode);
10990 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
10991 than the number of bits in the mode is equivalent to A. */
10992 if (code == LSHIFTRT
10993 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
10994 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
10996 varop = XEXP (varop, 0);
10997 count = 0;
10998 continue;
11001 /* NEG commutes with ASHIFT since it is multiplication. Move the
11002 NEG outside to allow shifts to combine. */
11003 if (code == ASHIFT
11004 && merge_outer_ops (&outer_op, &outer_const, NEG, 0,
11005 int_result_mode, &complement_p))
11007 varop = XEXP (varop, 0);
11008 continue;
11010 break;
11012 case PLUS:
11013 /* The following rules apply only to scalars. */
11014 if (shift_mode != shift_unit_mode)
11015 break;
11016 int_result_mode = as_a <scalar_int_mode> (result_mode);
11018 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
11019 is one less than the number of bits in the mode is
11020 equivalent to (xor A 1). */
11021 if (code == LSHIFTRT
11022 && count == (GET_MODE_PRECISION (int_result_mode) - 1)
11023 && XEXP (varop, 1) == constm1_rtx
11024 && nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
11025 && merge_outer_ops (&outer_op, &outer_const, XOR, 1,
11026 int_result_mode, &complement_p))
11028 count = 0;
11029 varop = XEXP (varop, 0);
11030 continue;
11033 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
11034 that might be nonzero in BAR are those being shifted out and those
11035 bits are known zero in FOO, we can replace the PLUS with FOO.
11036 Similarly in the other operand order. This code occurs when
11037 we are computing the size of a variable-size array. */
11039 if ((code == ASHIFTRT || code == LSHIFTRT)
11040 && count < HOST_BITS_PER_WIDE_INT
11041 && nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
11042 && (nonzero_bits (XEXP (varop, 1), int_result_mode)
11043 & nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
11045 varop = XEXP (varop, 0);
11046 continue;
11048 else if ((code == ASHIFTRT || code == LSHIFTRT)
11049 && count < HOST_BITS_PER_WIDE_INT
11050 && HWI_COMPUTABLE_MODE_P (int_result_mode)
11051 && 0 == (nonzero_bits (XEXP (varop, 0), int_result_mode)
11052 >> count)
11053 && 0 == (nonzero_bits (XEXP (varop, 0), int_result_mode)
11054 & nonzero_bits (XEXP (varop, 1), int_result_mode)))
11056 varop = XEXP (varop, 1);
11057 continue;
11060 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
11061 if (code == ASHIFT
11062 && CONST_INT_P (XEXP (varop, 1))
11063 && (new_rtx = simplify_const_binary_operation
11064 (ASHIFT, int_result_mode,
11065 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11066 GEN_INT (count))) != 0
11067 && CONST_INT_P (new_rtx)
11068 && merge_outer_ops (&outer_op, &outer_const, PLUS,
11069 INTVAL (new_rtx), int_result_mode,
11070 &complement_p))
11072 varop = XEXP (varop, 0);
11073 continue;
11076 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
11077 signbit', and attempt to change the PLUS to an XOR and move it to
11078 the outer operation as is done above in the AND/IOR/XOR case
11079 leg for shift(logical). See details in logical handling above
11080 for reasoning in doing so. */
11081 if (code == LSHIFTRT
11082 && CONST_INT_P (XEXP (varop, 1))
11083 && mode_signbit_p (int_result_mode, XEXP (varop, 1))
11084 && (new_rtx = simplify_const_binary_operation
11085 (code, int_result_mode,
11086 gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
11087 GEN_INT (count))) != 0
11088 && CONST_INT_P (new_rtx)
11089 && merge_outer_ops (&outer_op, &outer_const, XOR,
11090 INTVAL (new_rtx), int_result_mode,
11091 &complement_p))
11093 varop = XEXP (varop, 0);
11094 continue;
11097 break;
11099 case MINUS:
11100 /* The following rules apply only to scalars. */
11101 if (shift_mode != shift_unit_mode)
11102 break;
11103 int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
11105 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
11106 with C the size of VAROP - 1 and the shift is logical if
11107 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
11108 we have a (gt X 0) operation. If the shift is arithmetic with
11109 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
11110 we have a (neg (gt X 0)) operation. */
11112 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
11113 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
11114 && count == (GET_MODE_PRECISION (int_varop_mode) - 1)
11115 && (code == LSHIFTRT || code == ASHIFTRT)
11116 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11117 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
11118 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
11120 count = 0;
11121 varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
11122 const0_rtx);
11124 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
11125 varop = gen_rtx_NEG (int_varop_mode, varop);
11127 continue;
11129 break;
11131 case TRUNCATE:
11132 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
11133 if the truncate does not affect the value. */
11134 if (code == LSHIFTRT
11135 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
11136 && CONST_INT_P (XEXP (XEXP (varop, 0), 1))
11137 && (INTVAL (XEXP (XEXP (varop, 0), 1))
11138 >= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
11139 - GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
11141 rtx varop_inner = XEXP (varop, 0);
11143 varop_inner
11144 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
11145 XEXP (varop_inner, 0),
11146 GEN_INT
11147 (count + INTVAL (XEXP (varop_inner, 1))));
11148 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
11149 count = 0;
11150 continue;
11152 break;
11154 default:
11155 break;
11158 break;
11161 shift_mode = result_mode;
11162 if (shift_mode != mode)
11164 /* We only change the modes of scalar shifts. */
11165 int_mode = as_a <scalar_int_mode> (mode);
11166 int_result_mode = as_a <scalar_int_mode> (result_mode);
11167 shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
11168 int_mode, outer_op, outer_const);
11171 /* We have now finished analyzing the shift. The result should be
11172 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
11173 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
11174 to the result of the shift. OUTER_CONST is the relevant constant,
11175 but we must turn off all bits turned off in the shift. */
11177 if (outer_op == UNKNOWN
11178 && orig_code == code && orig_count == count
11179 && varop == orig_varop
11180 && shift_mode == GET_MODE (varop))
11181 return NULL_RTX;
11183 /* Make a SUBREG if necessary. If we can't make it, fail. */
11184 varop = gen_lowpart (shift_mode, varop);
11185 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
11186 return NULL_RTX;
11188 /* If we have an outer operation and we just made a shift, it is
11189 possible that we could have simplified the shift were it not
11190 for the outer operation. So try to do the simplification
11191 recursively. */
11193 if (outer_op != UNKNOWN)
11194 x = simplify_shift_const_1 (code, shift_mode, varop, count);
11195 else
11196 x = NULL_RTX;
11198 if (x == NULL_RTX)
11199 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
11201 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
11202 turn off all the bits that the shift would have turned off. */
11203 if (orig_code == LSHIFTRT && result_mode != shift_mode)
11204 /* We only change the modes of scalar shifts. */
11205 x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
11206 x, GET_MODE_MASK (result_mode) >> orig_count);
11208 /* Do the remainder of the processing in RESULT_MODE. */
11209 x = gen_lowpart_or_truncate (result_mode, x);
11211 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
11212 operation. */
11213 if (complement_p)
11214 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
11216 if (outer_op != UNKNOWN)
11218 int_result_mode = as_a <scalar_int_mode> (result_mode);
11220 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
11221 && GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
11222 outer_const = trunc_int_for_mode (outer_const, int_result_mode);
11224 if (outer_op == AND)
11225 x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
11226 else if (outer_op == SET)
11228 /* This means that we have determined that the result is
11229 equivalent to a constant. This should be rare. */
11230 if (!side_effects_p (x))
11231 x = GEN_INT (outer_const);
11233 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
11234 x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
11235 else
11236 x = simplify_gen_binary (outer_op, int_result_mode, x,
11237 GEN_INT (outer_const));
11240 return x;
11243 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
11244 The result of the shift is RESULT_MODE. If we cannot simplify it,
11245 return X or, if it is NULL, synthesize the expression with
11246 simplify_gen_binary. Otherwise, return a simplified value.
11248 The shift is normally computed in the widest mode we find in VAROP, as
11249 long as it isn't a different number of words than RESULT_MODE. Exceptions
11250 are ASHIFTRT and ROTATE, which are always done in their original mode. */
11252 static rtx
11253 simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
11254 rtx varop, int count)
11256 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
11257 if (tem)
11258 return tem;
11260 if (!x)
11261 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
11262 if (GET_MODE (x) != result_mode)
11263 x = gen_lowpart (result_mode, x);
11264 return x;
11268 /* A subroutine of recog_for_combine. See there for arguments and
11269 return value. */
11271 static int
11272 recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11274 rtx pat = *pnewpat;
11275 rtx pat_without_clobbers;
11276 int insn_code_number;
11277 int num_clobbers_to_add = 0;
11278 int i;
11279 rtx notes = NULL_RTX;
11280 rtx old_notes, old_pat;
11281 int old_icode;
11283 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
11284 we use to indicate that something didn't match. If we find such a
11285 thing, force rejection. */
11286 if (GET_CODE (pat) == PARALLEL)
11287 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
11288 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
11289 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
11290 return -1;
11292 old_pat = PATTERN (insn);
11293 old_notes = REG_NOTES (insn);
11294 PATTERN (insn) = pat;
11295 REG_NOTES (insn) = NULL_RTX;
11297 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11298 if (dump_file && (dump_flags & TDF_DETAILS))
11300 if (insn_code_number < 0)
11301 fputs ("Failed to match this instruction:\n", dump_file);
11302 else
11303 fputs ("Successfully matched this instruction:\n", dump_file);
11304 print_rtl_single (dump_file, pat);
11307 /* If it isn't, there is the possibility that we previously had an insn
11308 that clobbered some register as a side effect, but the combined
11309 insn doesn't need to do that. So try once more without the clobbers
11310 unless this represents an ASM insn. */
11312 if (insn_code_number < 0 && ! check_asm_operands (pat)
11313 && GET_CODE (pat) == PARALLEL)
11315 int pos;
11317 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
11318 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
11320 if (i != pos)
11321 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
11322 pos++;
11325 SUBST_INT (XVECLEN (pat, 0), pos);
11327 if (pos == 1)
11328 pat = XVECEXP (pat, 0, 0);
11330 PATTERN (insn) = pat;
11331 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
11332 if (dump_file && (dump_flags & TDF_DETAILS))
11334 if (insn_code_number < 0)
11335 fputs ("Failed to match this instruction:\n", dump_file);
11336 else
11337 fputs ("Successfully matched this instruction:\n", dump_file);
11338 print_rtl_single (dump_file, pat);
11342 pat_without_clobbers = pat;
11344 PATTERN (insn) = old_pat;
11345 REG_NOTES (insn) = old_notes;
11347 /* Recognize all noop sets, these will be killed by followup pass. */
11348 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
11349 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
11351 /* If we had any clobbers to add, make a new pattern than contains
11352 them. Then check to make sure that all of them are dead. */
11353 if (num_clobbers_to_add)
11355 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
11356 rtvec_alloc (GET_CODE (pat) == PARALLEL
11357 ? (XVECLEN (pat, 0)
11358 + num_clobbers_to_add)
11359 : num_clobbers_to_add + 1));
11361 if (GET_CODE (pat) == PARALLEL)
11362 for (i = 0; i < XVECLEN (pat, 0); i++)
11363 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
11364 else
11365 XVECEXP (newpat, 0, 0) = pat;
11367 add_clobbers (newpat, insn_code_number);
11369 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
11370 i < XVECLEN (newpat, 0); i++)
11372 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
11373 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
11374 return -1;
11375 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
11377 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
11378 notes = alloc_reg_note (REG_UNUSED,
11379 XEXP (XVECEXP (newpat, 0, i), 0), notes);
11382 pat = newpat;
11385 if (insn_code_number >= 0
11386 && insn_code_number != NOOP_MOVE_INSN_CODE)
11388 old_pat = PATTERN (insn);
11389 old_notes = REG_NOTES (insn);
11390 old_icode = INSN_CODE (insn);
11391 PATTERN (insn) = pat;
11392 REG_NOTES (insn) = notes;
11393 INSN_CODE (insn) = insn_code_number;
11395 /* Allow targets to reject combined insn. */
11396 if (!targetm.legitimate_combined_insn (insn))
11398 if (dump_file && (dump_flags & TDF_DETAILS))
11399 fputs ("Instruction not appropriate for target.",
11400 dump_file);
11402 /* Callers expect recog_for_combine to strip
11403 clobbers from the pattern on failure. */
11404 pat = pat_without_clobbers;
11405 notes = NULL_RTX;
11407 insn_code_number = -1;
11410 PATTERN (insn) = old_pat;
11411 REG_NOTES (insn) = old_notes;
11412 INSN_CODE (insn) = old_icode;
11415 *pnewpat = pat;
11416 *pnotes = notes;
11418 return insn_code_number;
11421 /* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
11422 expressed as an AND and maybe an LSHIFTRT, to that formulation.
11423 Return whether anything was so changed. */
11425 static bool
11426 change_zero_ext (rtx pat)
11428 bool changed = false;
11429 rtx *src = &SET_SRC (pat);
11431 subrtx_ptr_iterator::array_type array;
11432 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11434 rtx x = **iter;
11435 scalar_int_mode mode, inner_mode;
11436 if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
11437 continue;
11438 int size;
11440 if (GET_CODE (x) == ZERO_EXTRACT
11441 && CONST_INT_P (XEXP (x, 1))
11442 && CONST_INT_P (XEXP (x, 2))
11443 && is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
11444 && GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
11446 size = INTVAL (XEXP (x, 1));
11448 int start = INTVAL (XEXP (x, 2));
11449 if (BITS_BIG_ENDIAN)
11450 start = GET_MODE_PRECISION (inner_mode) - size - start;
11452 if (start)
11453 x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0), GEN_INT (start));
11454 else
11455 x = XEXP (x, 0);
11456 if (mode != inner_mode)
11457 x = gen_lowpart_SUBREG (mode, x);
11459 else if (GET_CODE (x) == ZERO_EXTEND
11460 && GET_CODE (XEXP (x, 0)) == SUBREG
11461 && SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
11462 && !paradoxical_subreg_p (XEXP (x, 0))
11463 && subreg_lowpart_p (XEXP (x, 0)))
11465 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11466 size = GET_MODE_PRECISION (inner_mode);
11467 x = SUBREG_REG (XEXP (x, 0));
11468 if (GET_MODE (x) != mode)
11469 x = gen_lowpart_SUBREG (mode, x);
11471 else if (GET_CODE (x) == ZERO_EXTEND
11472 && REG_P (XEXP (x, 0))
11473 && HARD_REGISTER_P (XEXP (x, 0))
11474 && can_change_dest_mode (XEXP (x, 0), 0, mode))
11476 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
11477 size = GET_MODE_PRECISION (inner_mode);
11478 x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
11480 else
11481 continue;
11483 if (!(GET_CODE (x) == LSHIFTRT
11484 && CONST_INT_P (XEXP (x, 1))
11485 && size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
11487 wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
11488 x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
11491 SUBST (**iter, x);
11492 changed = true;
11495 if (changed)
11496 FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
11497 maybe_swap_commutative_operands (**iter);
11499 rtx *dst = &SET_DEST (pat);
11500 scalar_int_mode mode;
11501 if (GET_CODE (*dst) == ZERO_EXTRACT
11502 && REG_P (XEXP (*dst, 0))
11503 && is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
11504 && CONST_INT_P (XEXP (*dst, 1))
11505 && CONST_INT_P (XEXP (*dst, 2)))
11507 rtx reg = XEXP (*dst, 0);
11508 int width = INTVAL (XEXP (*dst, 1));
11509 int offset = INTVAL (XEXP (*dst, 2));
11510 int reg_width = GET_MODE_PRECISION (mode);
11511 if (BITS_BIG_ENDIAN)
11512 offset = reg_width - width - offset;
11514 rtx x, y, z, w;
11515 wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
11516 wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
11517 x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
11518 if (offset)
11519 y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
11520 else
11521 y = SET_SRC (pat);
11522 z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
11523 w = gen_rtx_IOR (mode, x, z);
11524 SUBST (SET_DEST (pat), reg);
11525 SUBST (SET_SRC (pat), w);
11527 changed = true;
11530 return changed;
11533 /* Like recog, but we receive the address of a pointer to a new pattern.
11534 We try to match the rtx that the pointer points to.
11535 If that fails, we may try to modify or replace the pattern,
11536 storing the replacement into the same pointer object.
11538 Modifications include deletion or addition of CLOBBERs. If the
11539 instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
11540 to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
11541 (and undo if that fails).
11543 PNOTES is a pointer to a location where any REG_UNUSED notes added for
11544 the CLOBBERs are placed.
11546 The value is the final insn code from the pattern ultimately matched,
11547 or -1. */
11549 static int
11550 recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
11552 rtx pat = *pnewpat;
11553 int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11554 if (insn_code_number >= 0 || check_asm_operands (pat))
11555 return insn_code_number;
11557 void *marker = get_undo_marker ();
11558 bool changed = false;
11560 if (GET_CODE (pat) == SET)
11561 changed = change_zero_ext (pat);
11562 else if (GET_CODE (pat) == PARALLEL)
11564 int i;
11565 for (i = 0; i < XVECLEN (pat, 0); i++)
11567 rtx set = XVECEXP (pat, 0, i);
11568 if (GET_CODE (set) == SET)
11569 changed |= change_zero_ext (set);
11573 if (changed)
11575 insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
11577 if (insn_code_number < 0)
11578 undo_to_marker (marker);
11581 return insn_code_number;
11584 /* Like gen_lowpart_general but for use by combine. In combine it
11585 is not possible to create any new pseudoregs. However, it is
11586 safe to create invalid memory addresses, because combine will
11587 try to recognize them and all they will do is make the combine
11588 attempt fail.
11590 If for some reason this cannot do its job, an rtx
11591 (clobber (const_int 0)) is returned.
11592 An insn containing that will not be recognized. */
11594 static rtx
11595 gen_lowpart_for_combine (machine_mode omode, rtx x)
11597 machine_mode imode = GET_MODE (x);
11598 unsigned int osize = GET_MODE_SIZE (omode);
11599 unsigned int isize = GET_MODE_SIZE (imode);
11600 rtx result;
11602 if (omode == imode)
11603 return x;
11605 /* We can only support MODE being wider than a word if X is a
11606 constant integer or has a mode the same size. */
11607 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
11608 && ! (CONST_SCALAR_INT_P (x) || isize == osize))
11609 goto fail;
11611 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
11612 won't know what to do. So we will strip off the SUBREG here and
11613 process normally. */
11614 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
11616 x = SUBREG_REG (x);
11618 /* For use in case we fall down into the address adjustments
11619 further below, we need to adjust the known mode and size of
11620 x; imode and isize, since we just adjusted x. */
11621 imode = GET_MODE (x);
11623 if (imode == omode)
11624 return x;
11626 isize = GET_MODE_SIZE (imode);
11629 result = gen_lowpart_common (omode, x);
11631 if (result)
11632 return result;
11634 if (MEM_P (x))
11636 /* Refuse to work on a volatile memory ref or one with a mode-dependent
11637 address. */
11638 if (MEM_VOLATILE_P (x)
11639 || mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
11640 goto fail;
11642 /* If we want to refer to something bigger than the original memref,
11643 generate a paradoxical subreg instead. That will force a reload
11644 of the original memref X. */
11645 if (paradoxical_subreg_p (omode, imode))
11646 return gen_rtx_SUBREG (omode, x, 0);
11648 HOST_WIDE_INT offset = byte_lowpart_offset (omode, imode);
11649 return adjust_address_nv (x, omode, offset);
11652 /* If X is a comparison operator, rewrite it in a new mode. This
11653 probably won't match, but may allow further simplifications. */
11654 else if (COMPARISON_P (x))
11655 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
11657 /* If we couldn't simplify X any other way, just enclose it in a
11658 SUBREG. Normally, this SUBREG won't match, but some patterns may
11659 include an explicit SUBREG or we may simplify it further in combine. */
11660 else
11662 rtx res;
11664 if (imode == VOIDmode)
11666 imode = int_mode_for_mode (omode).require ();
11667 x = gen_lowpart_common (imode, x);
11668 if (x == NULL)
11669 goto fail;
11671 res = lowpart_subreg (omode, x, imode);
11672 if (res)
11673 return res;
11676 fail:
11677 return gen_rtx_CLOBBER (omode, const0_rtx);
11680 /* Try to simplify a comparison between OP0 and a constant OP1,
11681 where CODE is the comparison code that will be tested, into a
11682 (CODE OP0 const0_rtx) form.
11684 The result is a possibly different comparison code to use.
11685 *POP1 may be updated. */
11687 static enum rtx_code
11688 simplify_compare_const (enum rtx_code code, machine_mode mode,
11689 rtx op0, rtx *pop1)
11691 scalar_int_mode int_mode;
11692 HOST_WIDE_INT const_op = INTVAL (*pop1);
11694 /* Get the constant we are comparing against and turn off all bits
11695 not on in our mode. */
11696 if (mode != VOIDmode)
11697 const_op = trunc_int_for_mode (const_op, mode);
11699 /* If we are comparing against a constant power of two and the value
11700 being compared can only have that single bit nonzero (e.g., it was
11701 `and'ed with that bit), we can replace this with a comparison
11702 with zero. */
11703 if (const_op
11704 && (code == EQ || code == NE || code == GE || code == GEU
11705 || code == LT || code == LTU)
11706 && is_a <scalar_int_mode> (mode, &int_mode)
11707 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11708 && pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
11709 && (nonzero_bits (op0, int_mode)
11710 == (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
11712 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
11713 const_op = 0;
11716 /* Similarly, if we are comparing a value known to be either -1 or
11717 0 with -1, change it to the opposite comparison against zero. */
11718 if (const_op == -1
11719 && (code == EQ || code == NE || code == GT || code == LE
11720 || code == GEU || code == LTU)
11721 && is_a <scalar_int_mode> (mode, &int_mode)
11722 && num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
11724 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
11725 const_op = 0;
11728 /* Do some canonicalizations based on the comparison code. We prefer
11729 comparisons against zero and then prefer equality comparisons.
11730 If we can reduce the size of a constant, we will do that too. */
11731 switch (code)
11733 case LT:
11734 /* < C is equivalent to <= (C - 1) */
11735 if (const_op > 0)
11737 const_op -= 1;
11738 code = LE;
11739 /* ... fall through to LE case below. */
11740 gcc_fallthrough ();
11742 else
11743 break;
11745 case LE:
11746 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
11747 if (const_op < 0)
11749 const_op += 1;
11750 code = LT;
11753 /* If we are doing a <= 0 comparison on a value known to have
11754 a zero sign bit, we can replace this with == 0. */
11755 else if (const_op == 0
11756 && is_a <scalar_int_mode> (mode, &int_mode)
11757 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11758 && (nonzero_bits (op0, int_mode)
11759 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11760 == 0)
11761 code = EQ;
11762 break;
11764 case GE:
11765 /* >= C is equivalent to > (C - 1). */
11766 if (const_op > 0)
11768 const_op -= 1;
11769 code = GT;
11770 /* ... fall through to GT below. */
11771 gcc_fallthrough ();
11773 else
11774 break;
11776 case GT:
11777 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
11778 if (const_op < 0)
11780 const_op += 1;
11781 code = GE;
11784 /* If we are doing a > 0 comparison on a value known to have
11785 a zero sign bit, we can replace this with != 0. */
11786 else if (const_op == 0
11787 && is_a <scalar_int_mode> (mode, &int_mode)
11788 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11789 && (nonzero_bits (op0, int_mode)
11790 & (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11791 == 0)
11792 code = NE;
11793 break;
11795 case LTU:
11796 /* < C is equivalent to <= (C - 1). */
11797 if (const_op > 0)
11799 const_op -= 1;
11800 code = LEU;
11801 /* ... fall through ... */
11802 gcc_fallthrough ();
11804 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
11805 else if (is_a <scalar_int_mode> (mode, &int_mode)
11806 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11807 && ((unsigned HOST_WIDE_INT) const_op
11808 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11810 const_op = 0;
11811 code = GE;
11812 break;
11814 else
11815 break;
11817 case LEU:
11818 /* unsigned <= 0 is equivalent to == 0 */
11819 if (const_op == 0)
11820 code = EQ;
11821 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
11822 else if (is_a <scalar_int_mode> (mode, &int_mode)
11823 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11824 && ((unsigned HOST_WIDE_INT) const_op
11825 == ((HOST_WIDE_INT_1U
11826 << (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
11828 const_op = 0;
11829 code = GE;
11831 break;
11833 case GEU:
11834 /* >= C is equivalent to > (C - 1). */
11835 if (const_op > 1)
11837 const_op -= 1;
11838 code = GTU;
11839 /* ... fall through ... */
11840 gcc_fallthrough ();
11843 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
11844 else if (is_a <scalar_int_mode> (mode, &int_mode)
11845 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11846 && ((unsigned HOST_WIDE_INT) const_op
11847 == HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
11849 const_op = 0;
11850 code = LT;
11851 break;
11853 else
11854 break;
11856 case GTU:
11857 /* unsigned > 0 is equivalent to != 0 */
11858 if (const_op == 0)
11859 code = NE;
11860 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
11861 else if (is_a <scalar_int_mode> (mode, &int_mode)
11862 && GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
11863 && ((unsigned HOST_WIDE_INT) const_op
11864 == (HOST_WIDE_INT_1U
11865 << (GET_MODE_PRECISION (int_mode) - 1)) - 1))
11867 const_op = 0;
11868 code = LT;
11870 break;
11872 default:
11873 break;
11876 *pop1 = GEN_INT (const_op);
11877 return code;
11880 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
11881 comparison code that will be tested.
11883 The result is a possibly different comparison code to use. *POP0 and
11884 *POP1 may be updated.
11886 It is possible that we might detect that a comparison is either always
11887 true or always false. However, we do not perform general constant
11888 folding in combine, so this knowledge isn't useful. Such tautologies
11889 should have been detected earlier. Hence we ignore all such cases. */
11891 static enum rtx_code
11892 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
11894 rtx op0 = *pop0;
11895 rtx op1 = *pop1;
11896 rtx tem, tem1;
11897 int i;
11898 scalar_int_mode mode, inner_mode, tmode;
11899 opt_scalar_int_mode tmode_iter;
11901 /* Try a few ways of applying the same transformation to both operands. */
11902 while (1)
11904 /* The test below this one won't handle SIGN_EXTENDs on these machines,
11905 so check specially. */
11906 if (!WORD_REGISTER_OPERATIONS
11907 && code != GTU && code != GEU && code != LTU && code != LEU
11908 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
11909 && GET_CODE (XEXP (op0, 0)) == ASHIFT
11910 && GET_CODE (XEXP (op1, 0)) == ASHIFT
11911 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
11912 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
11913 && is_a <scalar_int_mode> (GET_MODE (op0), &mode)
11914 && (is_a <scalar_int_mode>
11915 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
11916 && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
11917 && CONST_INT_P (XEXP (op0, 1))
11918 && XEXP (op0, 1) == XEXP (op1, 1)
11919 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
11920 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
11921 && (INTVAL (XEXP (op0, 1))
11922 == (GET_MODE_PRECISION (mode)
11923 - GET_MODE_PRECISION (inner_mode))))
11925 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
11926 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
11929 /* If both operands are the same constant shift, see if we can ignore the
11930 shift. We can if the shift is a rotate or if the bits shifted out of
11931 this shift are known to be zero for both inputs and if the type of
11932 comparison is compatible with the shift. */
11933 if (GET_CODE (op0) == GET_CODE (op1)
11934 && HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
11935 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
11936 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
11937 && (code != GT && code != LT && code != GE && code != LE))
11938 || (GET_CODE (op0) == ASHIFTRT
11939 && (code != GTU && code != LTU
11940 && code != GEU && code != LEU)))
11941 && CONST_INT_P (XEXP (op0, 1))
11942 && INTVAL (XEXP (op0, 1)) >= 0
11943 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11944 && XEXP (op0, 1) == XEXP (op1, 1))
11946 machine_mode mode = GET_MODE (op0);
11947 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
11948 int shift_count = INTVAL (XEXP (op0, 1));
11950 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
11951 mask &= (mask >> shift_count) << shift_count;
11952 else if (GET_CODE (op0) == ASHIFT)
11953 mask = (mask & (mask << shift_count)) >> shift_count;
11955 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
11956 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
11957 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
11958 else
11959 break;
11962 /* If both operands are AND's of a paradoxical SUBREG by constant, the
11963 SUBREGs are of the same mode, and, in both cases, the AND would
11964 be redundant if the comparison was done in the narrower mode,
11965 do the comparison in the narrower mode (e.g., we are AND'ing with 1
11966 and the operand's possibly nonzero bits are 0xffffff01; in that case
11967 if we only care about QImode, we don't need the AND). This case
11968 occurs if the output mode of an scc insn is not SImode and
11969 STORE_FLAG_VALUE == 1 (e.g., the 386).
11971 Similarly, check for a case where the AND's are ZERO_EXTEND
11972 operations from some narrower mode even though a SUBREG is not
11973 present. */
11975 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
11976 && CONST_INT_P (XEXP (op0, 1))
11977 && CONST_INT_P (XEXP (op1, 1)))
11979 rtx inner_op0 = XEXP (op0, 0);
11980 rtx inner_op1 = XEXP (op1, 0);
11981 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
11982 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
11983 int changed = 0;
11985 if (paradoxical_subreg_p (inner_op0)
11986 && GET_CODE (inner_op1) == SUBREG
11987 && HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
11988 && (GET_MODE (SUBREG_REG (inner_op0))
11989 == GET_MODE (SUBREG_REG (inner_op1)))
11990 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
11991 GET_MODE (SUBREG_REG (inner_op0)))))
11992 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
11993 GET_MODE (SUBREG_REG (inner_op1))))))
11995 op0 = SUBREG_REG (inner_op0);
11996 op1 = SUBREG_REG (inner_op1);
11998 /* The resulting comparison is always unsigned since we masked
11999 off the original sign bit. */
12000 code = unsigned_condition (code);
12002 changed = 1;
12005 else if (c0 == c1)
12006 FOR_EACH_MODE_UNTIL (tmode,
12007 as_a <scalar_int_mode> (GET_MODE (op0)))
12008 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
12010 op0 = gen_lowpart_or_truncate (tmode, inner_op0);
12011 op1 = gen_lowpart_or_truncate (tmode, inner_op1);
12012 code = unsigned_condition (code);
12013 changed = 1;
12014 break;
12017 if (! changed)
12018 break;
12021 /* If both operands are NOT, we can strip off the outer operation
12022 and adjust the comparison code for swapped operands; similarly for
12023 NEG, except that this must be an equality comparison. */
12024 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
12025 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
12026 && (code == EQ || code == NE)))
12027 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
12029 else
12030 break;
12033 /* If the first operand is a constant, swap the operands and adjust the
12034 comparison code appropriately, but don't do this if the second operand
12035 is already a constant integer. */
12036 if (swap_commutative_operands_p (op0, op1))
12038 std::swap (op0, op1);
12039 code = swap_condition (code);
12042 /* We now enter a loop during which we will try to simplify the comparison.
12043 For the most part, we only are concerned with comparisons with zero,
12044 but some things may really be comparisons with zero but not start
12045 out looking that way. */
12047 while (CONST_INT_P (op1))
12049 machine_mode raw_mode = GET_MODE (op0);
12050 scalar_int_mode int_mode;
12051 int equality_comparison_p;
12052 int sign_bit_comparison_p;
12053 int unsigned_comparison_p;
12054 HOST_WIDE_INT const_op;
12056 /* We only want to handle integral modes. This catches VOIDmode,
12057 CCmode, and the floating-point modes. An exception is that we
12058 can handle VOIDmode if OP0 is a COMPARE or a comparison
12059 operation. */
12061 if (GET_MODE_CLASS (raw_mode) != MODE_INT
12062 && ! (raw_mode == VOIDmode
12063 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
12064 break;
12066 /* Try to simplify the compare to constant, possibly changing the
12067 comparison op, and/or changing op1 to zero. */
12068 code = simplify_compare_const (code, raw_mode, op0, &op1);
12069 const_op = INTVAL (op1);
12071 /* Compute some predicates to simplify code below. */
12073 equality_comparison_p = (code == EQ || code == NE);
12074 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
12075 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
12076 || code == GEU);
12078 /* If this is a sign bit comparison and we can do arithmetic in
12079 MODE, say that we will only be needing the sign bit of OP0. */
12080 if (sign_bit_comparison_p
12081 && is_a <scalar_int_mode> (raw_mode, &int_mode)
12082 && HWI_COMPUTABLE_MODE_P (int_mode))
12083 op0 = force_to_mode (op0, int_mode,
12084 HOST_WIDE_INT_1U
12085 << (GET_MODE_PRECISION (int_mode) - 1),
12088 if (COMPARISON_P (op0))
12090 /* We can't do anything if OP0 is a condition code value, rather
12091 than an actual data value. */
12092 if (const_op != 0
12093 || CC0_P (XEXP (op0, 0))
12094 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
12095 break;
12097 /* Get the two operands being compared. */
12098 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
12099 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
12100 else
12101 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
12103 /* Check for the cases where we simply want the result of the
12104 earlier test or the opposite of that result. */
12105 if (code == NE || code == EQ
12106 || (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
12107 && (code == LT || code == GE)))
12109 enum rtx_code new_code;
12110 if (code == LT || code == NE)
12111 new_code = GET_CODE (op0);
12112 else
12113 new_code = reversed_comparison_code (op0, NULL);
12115 if (new_code != UNKNOWN)
12117 code = new_code;
12118 op0 = tem;
12119 op1 = tem1;
12120 continue;
12123 break;
12126 if (raw_mode == VOIDmode)
12127 break;
12128 scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
12130 /* Now try cases based on the opcode of OP0. If none of the cases
12131 does a "continue", we exit this loop immediately after the
12132 switch. */
12134 unsigned int mode_width = GET_MODE_PRECISION (mode);
12135 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
12136 switch (GET_CODE (op0))
12138 case ZERO_EXTRACT:
12139 /* If we are extracting a single bit from a variable position in
12140 a constant that has only a single bit set and are comparing it
12141 with zero, we can convert this into an equality comparison
12142 between the position and the location of the single bit. */
12143 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
12144 have already reduced the shift count modulo the word size. */
12145 if (!SHIFT_COUNT_TRUNCATED
12146 && CONST_INT_P (XEXP (op0, 0))
12147 && XEXP (op0, 1) == const1_rtx
12148 && equality_comparison_p && const_op == 0
12149 && (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
12151 if (BITS_BIG_ENDIAN)
12152 i = BITS_PER_WORD - 1 - i;
12154 op0 = XEXP (op0, 2);
12155 op1 = GEN_INT (i);
12156 const_op = i;
12158 /* Result is nonzero iff shift count is equal to I. */
12159 code = reverse_condition (code);
12160 continue;
12163 /* fall through */
12165 case SIGN_EXTRACT:
12166 tem = expand_compound_operation (op0);
12167 if (tem != op0)
12169 op0 = tem;
12170 continue;
12172 break;
12174 case NOT:
12175 /* If testing for equality, we can take the NOT of the constant. */
12176 if (equality_comparison_p
12177 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
12179 op0 = XEXP (op0, 0);
12180 op1 = tem;
12181 continue;
12184 /* If just looking at the sign bit, reverse the sense of the
12185 comparison. */
12186 if (sign_bit_comparison_p)
12188 op0 = XEXP (op0, 0);
12189 code = (code == GE ? LT : GE);
12190 continue;
12192 break;
12194 case NEG:
12195 /* If testing for equality, we can take the NEG of the constant. */
12196 if (equality_comparison_p
12197 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
12199 op0 = XEXP (op0, 0);
12200 op1 = tem;
12201 continue;
12204 /* The remaining cases only apply to comparisons with zero. */
12205 if (const_op != 0)
12206 break;
12208 /* When X is ABS or is known positive,
12209 (neg X) is < 0 if and only if X != 0. */
12211 if (sign_bit_comparison_p
12212 && (GET_CODE (XEXP (op0, 0)) == ABS
12213 || (mode_width <= HOST_BITS_PER_WIDE_INT
12214 && (nonzero_bits (XEXP (op0, 0), mode)
12215 & (HOST_WIDE_INT_1U << (mode_width - 1)))
12216 == 0)))
12218 op0 = XEXP (op0, 0);
12219 code = (code == LT ? NE : EQ);
12220 continue;
12223 /* If we have NEG of something whose two high-order bits are the
12224 same, we know that "(-a) < 0" is equivalent to "a > 0". */
12225 if (num_sign_bit_copies (op0, mode) >= 2)
12227 op0 = XEXP (op0, 0);
12228 code = swap_condition (code);
12229 continue;
12231 break;
12233 case ROTATE:
12234 /* If we are testing equality and our count is a constant, we
12235 can perform the inverse operation on our RHS. */
12236 if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
12237 && (tem = simplify_binary_operation (ROTATERT, mode,
12238 op1, XEXP (op0, 1))) != 0)
12240 op0 = XEXP (op0, 0);
12241 op1 = tem;
12242 continue;
12245 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
12246 a particular bit. Convert it to an AND of a constant of that
12247 bit. This will be converted into a ZERO_EXTRACT. */
12248 if (const_op == 0 && sign_bit_comparison_p
12249 && CONST_INT_P (XEXP (op0, 1))
12250 && mode_width <= HOST_BITS_PER_WIDE_INT)
12252 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12253 (HOST_WIDE_INT_1U
12254 << (mode_width - 1
12255 - INTVAL (XEXP (op0, 1)))));
12256 code = (code == LT ? NE : EQ);
12257 continue;
12260 /* Fall through. */
12262 case ABS:
12263 /* ABS is ignorable inside an equality comparison with zero. */
12264 if (const_op == 0 && equality_comparison_p)
12266 op0 = XEXP (op0, 0);
12267 continue;
12269 break;
12271 case SIGN_EXTEND:
12272 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
12273 (compare FOO CONST) if CONST fits in FOO's mode and we
12274 are either testing inequality or have an unsigned
12275 comparison with ZERO_EXTEND or a signed comparison with
12276 SIGN_EXTEND. But don't do it if we don't have a compare
12277 insn of the given mode, since we'd have to revert it
12278 later on, and then we wouldn't know whether to sign- or
12279 zero-extend. */
12280 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12281 && ! unsigned_comparison_p
12282 && HWI_COMPUTABLE_MODE_P (mode)
12283 && trunc_int_for_mode (const_op, mode) == const_op
12284 && have_insn_for (COMPARE, mode))
12286 op0 = XEXP (op0, 0);
12287 continue;
12289 break;
12291 case SUBREG:
12292 /* Check for the case where we are comparing A - C1 with C2, that is
12294 (subreg:MODE (plus (A) (-C1))) op (C2)
12296 with C1 a constant, and try to lift the SUBREG, i.e. to do the
12297 comparison in the wider mode. One of the following two conditions
12298 must be true in order for this to be valid:
12300 1. The mode extension results in the same bit pattern being added
12301 on both sides and the comparison is equality or unsigned. As
12302 C2 has been truncated to fit in MODE, the pattern can only be
12303 all 0s or all 1s.
12305 2. The mode extension results in the sign bit being copied on
12306 each side.
12308 The difficulty here is that we have predicates for A but not for
12309 (A - C1) so we need to check that C1 is within proper bounds so
12310 as to perturbate A as little as possible. */
12312 if (mode_width <= HOST_BITS_PER_WIDE_INT
12313 && subreg_lowpart_p (op0)
12314 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
12315 &inner_mode)
12316 && GET_MODE_PRECISION (inner_mode) > mode_width
12317 && GET_CODE (SUBREG_REG (op0)) == PLUS
12318 && CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
12320 rtx a = XEXP (SUBREG_REG (op0), 0);
12321 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
12323 if ((c1 > 0
12324 && (unsigned HOST_WIDE_INT) c1
12325 < HOST_WIDE_INT_1U << (mode_width - 1)
12326 && (equality_comparison_p || unsigned_comparison_p)
12327 /* (A - C1) zero-extends if it is positive and sign-extends
12328 if it is negative, C2 both zero- and sign-extends. */
12329 && ((0 == (nonzero_bits (a, inner_mode)
12330 & ~GET_MODE_MASK (mode))
12331 && const_op >= 0)
12332 /* (A - C1) sign-extends if it is positive and 1-extends
12333 if it is negative, C2 both sign- and 1-extends. */
12334 || (num_sign_bit_copies (a, inner_mode)
12335 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12336 - mode_width)
12337 && const_op < 0)))
12338 || ((unsigned HOST_WIDE_INT) c1
12339 < HOST_WIDE_INT_1U << (mode_width - 2)
12340 /* (A - C1) always sign-extends, like C2. */
12341 && num_sign_bit_copies (a, inner_mode)
12342 > (unsigned int) (GET_MODE_PRECISION (inner_mode)
12343 - (mode_width - 1))))
12345 op0 = SUBREG_REG (op0);
12346 continue;
12350 /* If the inner mode is narrower and we are extracting the low part,
12351 we can treat the SUBREG as if it were a ZERO_EXTEND. */
12352 if (paradoxical_subreg_p (op0))
12354 else if (subreg_lowpart_p (op0)
12355 && GET_MODE_CLASS (mode) == MODE_INT
12356 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12357 && (code == NE || code == EQ)
12358 && GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12359 && !paradoxical_subreg_p (op0)
12360 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12361 & ~GET_MODE_MASK (mode)) == 0)
12363 /* Remove outer subregs that don't do anything. */
12364 tem = gen_lowpart (inner_mode, op1);
12366 if ((nonzero_bits (tem, inner_mode)
12367 & ~GET_MODE_MASK (mode)) == 0)
12369 op0 = SUBREG_REG (op0);
12370 op1 = tem;
12371 continue;
12373 break;
12375 else
12376 break;
12378 /* FALLTHROUGH */
12380 case ZERO_EXTEND:
12381 if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
12382 && (unsigned_comparison_p || equality_comparison_p)
12383 && HWI_COMPUTABLE_MODE_P (mode)
12384 && (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
12385 && const_op >= 0
12386 && have_insn_for (COMPARE, mode))
12388 op0 = XEXP (op0, 0);
12389 continue;
12391 break;
12393 case PLUS:
12394 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
12395 this for equality comparisons due to pathological cases involving
12396 overflows. */
12397 if (equality_comparison_p
12398 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12399 op1, XEXP (op0, 1))))
12401 op0 = XEXP (op0, 0);
12402 op1 = tem;
12403 continue;
12406 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
12407 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
12408 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
12410 op0 = XEXP (XEXP (op0, 0), 0);
12411 code = (code == LT ? EQ : NE);
12412 continue;
12414 break;
12416 case MINUS:
12417 /* We used to optimize signed comparisons against zero, but that
12418 was incorrect. Unsigned comparisons against zero (GTU, LEU)
12419 arrive here as equality comparisons, or (GEU, LTU) are
12420 optimized away. No need to special-case them. */
12422 /* (eq (minus A B) C) -> (eq A (plus B C)) or
12423 (eq B (minus A C)), whichever simplifies. We can only do
12424 this for equality comparisons due to pathological cases involving
12425 overflows. */
12426 if (equality_comparison_p
12427 && 0 != (tem = simplify_binary_operation (PLUS, mode,
12428 XEXP (op0, 1), op1)))
12430 op0 = XEXP (op0, 0);
12431 op1 = tem;
12432 continue;
12435 if (equality_comparison_p
12436 && 0 != (tem = simplify_binary_operation (MINUS, mode,
12437 XEXP (op0, 0), op1)))
12439 op0 = XEXP (op0, 1);
12440 op1 = tem;
12441 continue;
12444 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
12445 of bits in X minus 1, is one iff X > 0. */
12446 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
12447 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12448 && UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
12449 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12451 op0 = XEXP (op0, 1);
12452 code = (code == GE ? LE : GT);
12453 continue;
12455 break;
12457 case XOR:
12458 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
12459 if C is zero or B is a constant. */
12460 if (equality_comparison_p
12461 && 0 != (tem = simplify_binary_operation (XOR, mode,
12462 XEXP (op0, 1), op1)))
12464 op0 = XEXP (op0, 0);
12465 op1 = tem;
12466 continue;
12468 break;
12471 case IOR:
12472 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
12473 iff X <= 0. */
12474 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
12475 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
12476 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
12478 op0 = XEXP (op0, 1);
12479 code = (code == GE ? GT : LE);
12480 continue;
12482 break;
12484 case AND:
12485 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
12486 will be converted to a ZERO_EXTRACT later. */
12487 if (const_op == 0 && equality_comparison_p
12488 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12489 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
12491 op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
12492 XEXP (XEXP (op0, 0), 1));
12493 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12494 continue;
12497 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
12498 zero and X is a comparison and C1 and C2 describe only bits set
12499 in STORE_FLAG_VALUE, we can compare with X. */
12500 if (const_op == 0 && equality_comparison_p
12501 && mode_width <= HOST_BITS_PER_WIDE_INT
12502 && CONST_INT_P (XEXP (op0, 1))
12503 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
12504 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12505 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
12506 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
12508 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12509 << INTVAL (XEXP (XEXP (op0, 0), 1)));
12510 if ((~STORE_FLAG_VALUE & mask) == 0
12511 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
12512 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
12513 && COMPARISON_P (tem))))
12515 op0 = XEXP (XEXP (op0, 0), 0);
12516 continue;
12520 /* If we are doing an equality comparison of an AND of a bit equal
12521 to the sign bit, replace this with a LT or GE comparison of
12522 the underlying value. */
12523 if (equality_comparison_p
12524 && const_op == 0
12525 && CONST_INT_P (XEXP (op0, 1))
12526 && mode_width <= HOST_BITS_PER_WIDE_INT
12527 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
12528 == HOST_WIDE_INT_1U << (mode_width - 1)))
12530 op0 = XEXP (op0, 0);
12531 code = (code == EQ ? GE : LT);
12532 continue;
12535 /* If this AND operation is really a ZERO_EXTEND from a narrower
12536 mode, the constant fits within that mode, and this is either an
12537 equality or unsigned comparison, try to do this comparison in
12538 the narrower mode.
12540 Note that in:
12542 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
12543 -> (ne:DI (reg:SI 4) (const_int 0))
12545 unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
12546 known to hold a value of the required mode the
12547 transformation is invalid. */
12548 if ((equality_comparison_p || unsigned_comparison_p)
12549 && CONST_INT_P (XEXP (op0, 1))
12550 && (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
12551 & GET_MODE_MASK (mode))
12552 + 1)) >= 0
12553 && const_op >> i == 0
12554 && int_mode_for_size (i, 1).exists (&tmode))
12556 op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
12557 continue;
12560 /* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
12561 fits in both M1 and M2 and the SUBREG is either paradoxical
12562 or represents the low part, permute the SUBREG and the AND
12563 and try again. */
12564 if (GET_CODE (XEXP (op0, 0)) == SUBREG
12565 && CONST_INT_P (XEXP (op0, 1)))
12567 unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
12568 /* Require an integral mode, to avoid creating something like
12569 (AND:SF ...). */
12570 if ((is_a <scalar_int_mode>
12571 (GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
12572 /* It is unsafe to commute the AND into the SUBREG if the
12573 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
12574 not defined. As originally written the upper bits
12575 have a defined value due to the AND operation.
12576 However, if we commute the AND inside the SUBREG then
12577 they no longer have defined values and the meaning of
12578 the code has been changed.
12579 Also C1 should not change value in the smaller mode,
12580 see PR67028 (a positive C1 can become negative in the
12581 smaller mode, so that the AND does no longer mask the
12582 upper bits). */
12583 && ((WORD_REGISTER_OPERATIONS
12584 && mode_width > GET_MODE_PRECISION (tmode)
12585 && mode_width <= BITS_PER_WORD
12586 && trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
12587 || (mode_width <= GET_MODE_PRECISION (tmode)
12588 && subreg_lowpart_p (XEXP (op0, 0))))
12589 && mode_width <= HOST_BITS_PER_WIDE_INT
12590 && HWI_COMPUTABLE_MODE_P (tmode)
12591 && (c1 & ~mask) == 0
12592 && (c1 & ~GET_MODE_MASK (tmode)) == 0
12593 && c1 != mask
12594 && c1 != GET_MODE_MASK (tmode))
12596 op0 = simplify_gen_binary (AND, tmode,
12597 SUBREG_REG (XEXP (op0, 0)),
12598 gen_int_mode (c1, tmode));
12599 op0 = gen_lowpart (mode, op0);
12600 continue;
12604 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
12605 if (const_op == 0 && equality_comparison_p
12606 && XEXP (op0, 1) == const1_rtx
12607 && GET_CODE (XEXP (op0, 0)) == NOT)
12609 op0 = simplify_and_const_int (NULL_RTX, mode,
12610 XEXP (XEXP (op0, 0), 0), 1);
12611 code = (code == NE ? EQ : NE);
12612 continue;
12615 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
12616 (eq (and (lshiftrt X) 1) 0).
12617 Also handle the case where (not X) is expressed using xor. */
12618 if (const_op == 0 && equality_comparison_p
12619 && XEXP (op0, 1) == const1_rtx
12620 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
12622 rtx shift_op = XEXP (XEXP (op0, 0), 0);
12623 rtx shift_count = XEXP (XEXP (op0, 0), 1);
12625 if (GET_CODE (shift_op) == NOT
12626 || (GET_CODE (shift_op) == XOR
12627 && CONST_INT_P (XEXP (shift_op, 1))
12628 && CONST_INT_P (shift_count)
12629 && HWI_COMPUTABLE_MODE_P (mode)
12630 && (UINTVAL (XEXP (shift_op, 1))
12631 == HOST_WIDE_INT_1U
12632 << INTVAL (shift_count))))
12635 = gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
12636 op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
12637 code = (code == NE ? EQ : NE);
12638 continue;
12641 break;
12643 case ASHIFT:
12644 /* If we have (compare (ashift FOO N) (const_int C)) and
12645 the high order N bits of FOO (N+1 if an inequality comparison)
12646 are known to be zero, we can do this by comparing FOO with C
12647 shifted right N bits so long as the low-order N bits of C are
12648 zero. */
12649 if (CONST_INT_P (XEXP (op0, 1))
12650 && INTVAL (XEXP (op0, 1)) >= 0
12651 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
12652 < HOST_BITS_PER_WIDE_INT)
12653 && (((unsigned HOST_WIDE_INT) const_op
12654 & ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
12655 - 1)) == 0)
12656 && mode_width <= HOST_BITS_PER_WIDE_INT
12657 && (nonzero_bits (XEXP (op0, 0), mode)
12658 & ~(mask >> (INTVAL (XEXP (op0, 1))
12659 + ! equality_comparison_p))) == 0)
12661 /* We must perform a logical shift, not an arithmetic one,
12662 as we want the top N bits of C to be zero. */
12663 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
12665 temp >>= INTVAL (XEXP (op0, 1));
12666 op1 = gen_int_mode (temp, mode);
12667 op0 = XEXP (op0, 0);
12668 continue;
12671 /* If we are doing a sign bit comparison, it means we are testing
12672 a particular bit. Convert it to the appropriate AND. */
12673 if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
12674 && mode_width <= HOST_BITS_PER_WIDE_INT)
12676 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
12677 (HOST_WIDE_INT_1U
12678 << (mode_width - 1
12679 - INTVAL (XEXP (op0, 1)))));
12680 code = (code == LT ? NE : EQ);
12681 continue;
12684 /* If this an equality comparison with zero and we are shifting
12685 the low bit to the sign bit, we can convert this to an AND of the
12686 low-order bit. */
12687 if (const_op == 0 && equality_comparison_p
12688 && CONST_INT_P (XEXP (op0, 1))
12689 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12691 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
12692 continue;
12694 break;
12696 case ASHIFTRT:
12697 /* If this is an equality comparison with zero, we can do this
12698 as a logical shift, which might be much simpler. */
12699 if (equality_comparison_p && const_op == 0
12700 && CONST_INT_P (XEXP (op0, 1)))
12702 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
12703 XEXP (op0, 0),
12704 INTVAL (XEXP (op0, 1)));
12705 continue;
12708 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
12709 do the comparison in a narrower mode. */
12710 if (! unsigned_comparison_p
12711 && CONST_INT_P (XEXP (op0, 1))
12712 && GET_CODE (XEXP (op0, 0)) == ASHIFT
12713 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
12714 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12715 .exists (&tmode))
12716 && (((unsigned HOST_WIDE_INT) const_op
12717 + (GET_MODE_MASK (tmode) >> 1) + 1)
12718 <= GET_MODE_MASK (tmode)))
12720 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
12721 continue;
12724 /* Likewise if OP0 is a PLUS of a sign extension with a
12725 constant, which is usually represented with the PLUS
12726 between the shifts. */
12727 if (! unsigned_comparison_p
12728 && CONST_INT_P (XEXP (op0, 1))
12729 && GET_CODE (XEXP (op0, 0)) == PLUS
12730 && CONST_INT_P (XEXP (XEXP (op0, 0), 1))
12731 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
12732 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
12733 && (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
12734 .exists (&tmode))
12735 && (((unsigned HOST_WIDE_INT) const_op
12736 + (GET_MODE_MASK (tmode) >> 1) + 1)
12737 <= GET_MODE_MASK (tmode)))
12739 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
12740 rtx add_const = XEXP (XEXP (op0, 0), 1);
12741 rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
12742 add_const, XEXP (op0, 1));
12744 op0 = simplify_gen_binary (PLUS, tmode,
12745 gen_lowpart (tmode, inner),
12746 new_const);
12747 continue;
12750 /* FALLTHROUGH */
12751 case LSHIFTRT:
12752 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
12753 the low order N bits of FOO are known to be zero, we can do this
12754 by comparing FOO with C shifted left N bits so long as no
12755 overflow occurs. Even if the low order N bits of FOO aren't known
12756 to be zero, if the comparison is >= or < we can use the same
12757 optimization and for > or <= by setting all the low
12758 order N bits in the comparison constant. */
12759 if (CONST_INT_P (XEXP (op0, 1))
12760 && INTVAL (XEXP (op0, 1)) > 0
12761 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
12762 && mode_width <= HOST_BITS_PER_WIDE_INT
12763 && (((unsigned HOST_WIDE_INT) const_op
12764 + (GET_CODE (op0) != LSHIFTRT
12765 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
12766 + 1)
12767 : 0))
12768 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
12770 unsigned HOST_WIDE_INT low_bits
12771 = (nonzero_bits (XEXP (op0, 0), mode)
12772 & ((HOST_WIDE_INT_1U
12773 << INTVAL (XEXP (op0, 1))) - 1));
12774 if (low_bits == 0 || !equality_comparison_p)
12776 /* If the shift was logical, then we must make the condition
12777 unsigned. */
12778 if (GET_CODE (op0) == LSHIFTRT)
12779 code = unsigned_condition (code);
12781 const_op = (unsigned HOST_WIDE_INT) const_op
12782 << INTVAL (XEXP (op0, 1));
12783 if (low_bits != 0
12784 && (code == GT || code == GTU
12785 || code == LE || code == LEU))
12786 const_op
12787 |= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
12788 op1 = GEN_INT (const_op);
12789 op0 = XEXP (op0, 0);
12790 continue;
12794 /* If we are using this shift to extract just the sign bit, we
12795 can replace this with an LT or GE comparison. */
12796 if (const_op == 0
12797 && (equality_comparison_p || sign_bit_comparison_p)
12798 && CONST_INT_P (XEXP (op0, 1))
12799 && UINTVAL (XEXP (op0, 1)) == mode_width - 1)
12801 op0 = XEXP (op0, 0);
12802 code = (code == NE || code == GT ? LT : GE);
12803 continue;
12805 break;
12807 default:
12808 break;
12811 break;
12814 /* Now make any compound operations involved in this comparison. Then,
12815 check for an outmost SUBREG on OP0 that is not doing anything or is
12816 paradoxical. The latter transformation must only be performed when
12817 it is known that the "extra" bits will be the same in op0 and op1 or
12818 that they don't matter. There are three cases to consider:
12820 1. SUBREG_REG (op0) is a register. In this case the bits are don't
12821 care bits and we can assume they have any convenient value. So
12822 making the transformation is safe.
12824 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
12825 In this case the upper bits of op0 are undefined. We should not make
12826 the simplification in that case as we do not know the contents of
12827 those bits.
12829 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
12830 In that case we know those bits are zeros or ones. We must also be
12831 sure that they are the same as the upper bits of op1.
12833 We can never remove a SUBREG for a non-equality comparison because
12834 the sign bit is in a different place in the underlying object. */
12836 rtx_code op0_mco_code = SET;
12837 if (op1 == const0_rtx)
12838 op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
12840 op0 = make_compound_operation (op0, op0_mco_code);
12841 op1 = make_compound_operation (op1, SET);
12843 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
12844 && is_int_mode (GET_MODE (op0), &mode)
12845 && is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
12846 && (code == NE || code == EQ))
12848 if (paradoxical_subreg_p (op0))
12850 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
12851 implemented. */
12852 if (REG_P (SUBREG_REG (op0)))
12854 op0 = SUBREG_REG (op0);
12855 op1 = gen_lowpart (inner_mode, op1);
12858 else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
12859 && (nonzero_bits (SUBREG_REG (op0), inner_mode)
12860 & ~GET_MODE_MASK (mode)) == 0)
12862 tem = gen_lowpart (inner_mode, op1);
12864 if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
12865 op0 = SUBREG_REG (op0), op1 = tem;
12869 /* We now do the opposite procedure: Some machines don't have compare
12870 insns in all modes. If OP0's mode is an integer mode smaller than a
12871 word and we can't do a compare in that mode, see if there is a larger
12872 mode for which we can do the compare. There are a number of cases in
12873 which we can use the wider mode. */
12875 if (is_int_mode (GET_MODE (op0), &mode)
12876 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
12877 && ! have_insn_for (COMPARE, mode))
12878 FOR_EACH_WIDER_MODE (tmode_iter, mode)
12880 tmode = tmode_iter.require ();
12881 if (!HWI_COMPUTABLE_MODE_P (tmode))
12882 break;
12883 if (have_insn_for (COMPARE, tmode))
12885 int zero_extended;
12887 /* If this is a test for negative, we can make an explicit
12888 test of the sign bit. Test this first so we can use
12889 a paradoxical subreg to extend OP0. */
12891 if (op1 == const0_rtx && (code == LT || code == GE)
12892 && HWI_COMPUTABLE_MODE_P (mode))
12894 unsigned HOST_WIDE_INT sign
12895 = HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
12896 op0 = simplify_gen_binary (AND, tmode,
12897 gen_lowpart (tmode, op0),
12898 gen_int_mode (sign, tmode));
12899 code = (code == LT) ? NE : EQ;
12900 break;
12903 /* If the only nonzero bits in OP0 and OP1 are those in the
12904 narrower mode and this is an equality or unsigned comparison,
12905 we can use the wider mode. Similarly for sign-extended
12906 values, in which case it is true for all comparisons. */
12907 zero_extended = ((code == EQ || code == NE
12908 || code == GEU || code == GTU
12909 || code == LEU || code == LTU)
12910 && (nonzero_bits (op0, tmode)
12911 & ~GET_MODE_MASK (mode)) == 0
12912 && ((CONST_INT_P (op1)
12913 || (nonzero_bits (op1, tmode)
12914 & ~GET_MODE_MASK (mode)) == 0)));
12916 if (zero_extended
12917 || ((num_sign_bit_copies (op0, tmode)
12918 > (unsigned int) (GET_MODE_PRECISION (tmode)
12919 - GET_MODE_PRECISION (mode)))
12920 && (num_sign_bit_copies (op1, tmode)
12921 > (unsigned int) (GET_MODE_PRECISION (tmode)
12922 - GET_MODE_PRECISION (mode)))))
12924 /* If OP0 is an AND and we don't have an AND in MODE either,
12925 make a new AND in the proper mode. */
12926 if (GET_CODE (op0) == AND
12927 && !have_insn_for (AND, mode))
12928 op0 = simplify_gen_binary (AND, tmode,
12929 gen_lowpart (tmode,
12930 XEXP (op0, 0)),
12931 gen_lowpart (tmode,
12932 XEXP (op0, 1)));
12933 else
12935 if (zero_extended)
12937 op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
12938 op0, mode);
12939 op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
12940 op1, mode);
12942 else
12944 op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
12945 op0, mode);
12946 op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
12947 op1, mode);
12949 break;
12955 /* We may have changed the comparison operands. Re-canonicalize. */
12956 if (swap_commutative_operands_p (op0, op1))
12958 std::swap (op0, op1);
12959 code = swap_condition (code);
12962 /* If this machine only supports a subset of valid comparisons, see if we
12963 can convert an unsupported one into a supported one. */
12964 target_canonicalize_comparison (&code, &op0, &op1, 0);
12966 *pop0 = op0;
12967 *pop1 = op1;
12969 return code;
12972 /* Utility function for record_value_for_reg. Count number of
12973 rtxs in X. */
12974 static int
12975 count_rtxs (rtx x)
12977 enum rtx_code code = GET_CODE (x);
12978 const char *fmt;
12979 int i, j, ret = 1;
12981 if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
12982 || GET_RTX_CLASS (code) == RTX_COMM_ARITH)
12984 rtx x0 = XEXP (x, 0);
12985 rtx x1 = XEXP (x, 1);
12987 if (x0 == x1)
12988 return 1 + 2 * count_rtxs (x0);
12990 if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
12991 || GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
12992 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
12993 return 2 + 2 * count_rtxs (x0)
12994 + count_rtxs (x == XEXP (x1, 0)
12995 ? XEXP (x1, 1) : XEXP (x1, 0));
12997 if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
12998 || GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
12999 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13000 return 2 + 2 * count_rtxs (x1)
13001 + count_rtxs (x == XEXP (x0, 0)
13002 ? XEXP (x0, 1) : XEXP (x0, 0));
13005 fmt = GET_RTX_FORMAT (code);
13006 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13007 if (fmt[i] == 'e')
13008 ret += count_rtxs (XEXP (x, i));
13009 else if (fmt[i] == 'E')
13010 for (j = 0; j < XVECLEN (x, i); j++)
13011 ret += count_rtxs (XVECEXP (x, i, j));
13013 return ret;
13016 /* Utility function for following routine. Called when X is part of a value
13017 being stored into last_set_value. Sets last_set_table_tick
13018 for each register mentioned. Similar to mention_regs in cse.c */
13020 static void
13021 update_table_tick (rtx x)
13023 enum rtx_code code = GET_CODE (x);
13024 const char *fmt = GET_RTX_FORMAT (code);
13025 int i, j;
13027 if (code == REG)
13029 unsigned int regno = REGNO (x);
13030 unsigned int endregno = END_REGNO (x);
13031 unsigned int r;
13033 for (r = regno; r < endregno; r++)
13035 reg_stat_type *rsp = &reg_stat[r];
13036 rsp->last_set_table_tick = label_tick;
13039 return;
13042 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13043 if (fmt[i] == 'e')
13045 /* Check for identical subexpressions. If x contains
13046 identical subexpression we only have to traverse one of
13047 them. */
13048 if (i == 0 && ARITHMETIC_P (x))
13050 /* Note that at this point x1 has already been
13051 processed. */
13052 rtx x0 = XEXP (x, 0);
13053 rtx x1 = XEXP (x, 1);
13055 /* If x0 and x1 are identical then there is no need to
13056 process x0. */
13057 if (x0 == x1)
13058 break;
13060 /* If x0 is identical to a subexpression of x1 then while
13061 processing x1, x0 has already been processed. Thus we
13062 are done with x. */
13063 if (ARITHMETIC_P (x1)
13064 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13065 break;
13067 /* If x1 is identical to a subexpression of x0 then we
13068 still have to process the rest of x0. */
13069 if (ARITHMETIC_P (x0)
13070 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13072 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
13073 break;
13077 update_table_tick (XEXP (x, i));
13079 else if (fmt[i] == 'E')
13080 for (j = 0; j < XVECLEN (x, i); j++)
13081 update_table_tick (XVECEXP (x, i, j));
13084 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
13085 are saying that the register is clobbered and we no longer know its
13086 value. If INSN is zero, don't update reg_stat[].last_set; this is
13087 only permitted with VALUE also zero and is used to invalidate the
13088 register. */
13090 static void
13091 record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
13093 unsigned int regno = REGNO (reg);
13094 unsigned int endregno = END_REGNO (reg);
13095 unsigned int i;
13096 reg_stat_type *rsp;
13098 /* If VALUE contains REG and we have a previous value for REG, substitute
13099 the previous value. */
13100 if (value && insn && reg_overlap_mentioned_p (reg, value))
13102 rtx tem;
13104 /* Set things up so get_last_value is allowed to see anything set up to
13105 our insn. */
13106 subst_low_luid = DF_INSN_LUID (insn);
13107 tem = get_last_value (reg);
13109 /* If TEM is simply a binary operation with two CLOBBERs as operands,
13110 it isn't going to be useful and will take a lot of time to process,
13111 so just use the CLOBBER. */
13113 if (tem)
13115 if (ARITHMETIC_P (tem)
13116 && GET_CODE (XEXP (tem, 0)) == CLOBBER
13117 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
13118 tem = XEXP (tem, 0);
13119 else if (count_occurrences (value, reg, 1) >= 2)
13121 /* If there are two or more occurrences of REG in VALUE,
13122 prevent the value from growing too much. */
13123 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
13124 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
13127 value = replace_rtx (copy_rtx (value), reg, tem);
13131 /* For each register modified, show we don't know its value, that
13132 we don't know about its bitwise content, that its value has been
13133 updated, and that we don't know the location of the death of the
13134 register. */
13135 for (i = regno; i < endregno; i++)
13137 rsp = &reg_stat[i];
13139 if (insn)
13140 rsp->last_set = insn;
13142 rsp->last_set_value = 0;
13143 rsp->last_set_mode = VOIDmode;
13144 rsp->last_set_nonzero_bits = 0;
13145 rsp->last_set_sign_bit_copies = 0;
13146 rsp->last_death = 0;
13147 rsp->truncated_to_mode = VOIDmode;
13150 /* Mark registers that are being referenced in this value. */
13151 if (value)
13152 update_table_tick (value);
13154 /* Now update the status of each register being set.
13155 If someone is using this register in this block, set this register
13156 to invalid since we will get confused between the two lives in this
13157 basic block. This makes using this register always invalid. In cse, we
13158 scan the table to invalidate all entries using this register, but this
13159 is too much work for us. */
13161 for (i = regno; i < endregno; i++)
13163 rsp = &reg_stat[i];
13164 rsp->last_set_label = label_tick;
13165 if (!insn
13166 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
13167 rsp->last_set_invalid = 1;
13168 else
13169 rsp->last_set_invalid = 0;
13172 /* The value being assigned might refer to X (like in "x++;"). In that
13173 case, we must replace it with (clobber (const_int 0)) to prevent
13174 infinite loops. */
13175 rsp = &reg_stat[regno];
13176 if (value && !get_last_value_validate (&value, insn, label_tick, 0))
13178 value = copy_rtx (value);
13179 if (!get_last_value_validate (&value, insn, label_tick, 1))
13180 value = 0;
13183 /* For the main register being modified, update the value, the mode, the
13184 nonzero bits, and the number of sign bit copies. */
13186 rsp->last_set_value = value;
13188 if (value)
13190 machine_mode mode = GET_MODE (reg);
13191 subst_low_luid = DF_INSN_LUID (insn);
13192 rsp->last_set_mode = mode;
13193 if (GET_MODE_CLASS (mode) == MODE_INT
13194 && HWI_COMPUTABLE_MODE_P (mode))
13195 mode = nonzero_bits_mode;
13196 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
13197 rsp->last_set_sign_bit_copies
13198 = num_sign_bit_copies (value, GET_MODE (reg));
13202 /* Called via note_stores from record_dead_and_set_regs to handle one
13203 SET or CLOBBER in an insn. DATA is the instruction in which the
13204 set is occurring. */
13206 static void
13207 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
13209 rtx_insn *record_dead_insn = (rtx_insn *) data;
13211 if (GET_CODE (dest) == SUBREG)
13212 dest = SUBREG_REG (dest);
13214 if (!record_dead_insn)
13216 if (REG_P (dest))
13217 record_value_for_reg (dest, NULL, NULL_RTX);
13218 return;
13221 if (REG_P (dest))
13223 /* If we are setting the whole register, we know its value. Otherwise
13224 show that we don't know the value. We can handle SUBREG in
13225 some cases. */
13226 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
13227 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
13228 else if (GET_CODE (setter) == SET
13229 && GET_CODE (SET_DEST (setter)) == SUBREG
13230 && SUBREG_REG (SET_DEST (setter)) == dest
13231 && GET_MODE_PRECISION (GET_MODE (dest)) <= BITS_PER_WORD
13232 && subreg_lowpart_p (SET_DEST (setter)))
13233 record_value_for_reg (dest, record_dead_insn,
13234 gen_lowpart (GET_MODE (dest),
13235 SET_SRC (setter)));
13236 else
13237 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
13239 else if (MEM_P (dest)
13240 /* Ignore pushes, they clobber nothing. */
13241 && ! push_operand (dest, GET_MODE (dest)))
13242 mem_last_set = DF_INSN_LUID (record_dead_insn);
13245 /* Update the records of when each REG was most recently set or killed
13246 for the things done by INSN. This is the last thing done in processing
13247 INSN in the combiner loop.
13249 We update reg_stat[], in particular fields last_set, last_set_value,
13250 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
13251 last_death, and also the similar information mem_last_set (which insn
13252 most recently modified memory) and last_call_luid (which insn was the
13253 most recent subroutine call). */
13255 static void
13256 record_dead_and_set_regs (rtx_insn *insn)
13258 rtx link;
13259 unsigned int i;
13261 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
13263 if (REG_NOTE_KIND (link) == REG_DEAD
13264 && REG_P (XEXP (link, 0)))
13266 unsigned int regno = REGNO (XEXP (link, 0));
13267 unsigned int endregno = END_REGNO (XEXP (link, 0));
13269 for (i = regno; i < endregno; i++)
13271 reg_stat_type *rsp;
13273 rsp = &reg_stat[i];
13274 rsp->last_death = insn;
13277 else if (REG_NOTE_KIND (link) == REG_INC)
13278 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
13281 if (CALL_P (insn))
13283 hard_reg_set_iterator hrsi;
13284 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, i, hrsi)
13286 reg_stat_type *rsp;
13288 rsp = &reg_stat[i];
13289 rsp->last_set_invalid = 1;
13290 rsp->last_set = insn;
13291 rsp->last_set_value = 0;
13292 rsp->last_set_mode = VOIDmode;
13293 rsp->last_set_nonzero_bits = 0;
13294 rsp->last_set_sign_bit_copies = 0;
13295 rsp->last_death = 0;
13296 rsp->truncated_to_mode = VOIDmode;
13299 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
13301 /* We can't combine into a call pattern. Remember, though, that
13302 the return value register is set at this LUID. We could
13303 still replace a register with the return value from the
13304 wrong subroutine call! */
13305 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
13307 else
13308 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
13311 /* If a SUBREG has the promoted bit set, it is in fact a property of the
13312 register present in the SUBREG, so for each such SUBREG go back and
13313 adjust nonzero and sign bit information of the registers that are
13314 known to have some zero/sign bits set.
13316 This is needed because when combine blows the SUBREGs away, the
13317 information on zero/sign bits is lost and further combines can be
13318 missed because of that. */
13320 static void
13321 record_promoted_value (rtx_insn *insn, rtx subreg)
13323 struct insn_link *links;
13324 rtx set;
13325 unsigned int regno = REGNO (SUBREG_REG (subreg));
13326 machine_mode mode = GET_MODE (subreg);
13328 if (!HWI_COMPUTABLE_MODE_P (mode))
13329 return;
13331 for (links = LOG_LINKS (insn); links;)
13333 reg_stat_type *rsp;
13335 insn = links->insn;
13336 set = single_set (insn);
13338 if (! set || !REG_P (SET_DEST (set))
13339 || REGNO (SET_DEST (set)) != regno
13340 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
13342 links = links->next;
13343 continue;
13346 rsp = &reg_stat[regno];
13347 if (rsp->last_set == insn)
13349 if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
13350 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
13353 if (REG_P (SET_SRC (set)))
13355 regno = REGNO (SET_SRC (set));
13356 links = LOG_LINKS (insn);
13358 else
13359 break;
13363 /* Check if X, a register, is known to contain a value already
13364 truncated to MODE. In this case we can use a subreg to refer to
13365 the truncated value even though in the generic case we would need
13366 an explicit truncation. */
13368 static bool
13369 reg_truncated_to_mode (machine_mode mode, const_rtx x)
13371 reg_stat_type *rsp = &reg_stat[REGNO (x)];
13372 machine_mode truncated = rsp->truncated_to_mode;
13374 if (truncated == 0
13375 || rsp->truncation_label < label_tick_ebb_start)
13376 return false;
13377 if (!partial_subreg_p (mode, truncated))
13378 return true;
13379 if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
13380 return true;
13381 return false;
13384 /* If X is a hard reg or a subreg record the mode that the register is
13385 accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
13386 able to turn a truncate into a subreg using this information. Return true
13387 if traversing X is complete. */
13389 static bool
13390 record_truncated_value (rtx x)
13392 machine_mode truncated_mode;
13393 reg_stat_type *rsp;
13395 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
13397 machine_mode original_mode = GET_MODE (SUBREG_REG (x));
13398 truncated_mode = GET_MODE (x);
13400 if (!partial_subreg_p (truncated_mode, original_mode))
13401 return true;
13403 truncated_mode = GET_MODE (x);
13404 if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
13405 return true;
13407 x = SUBREG_REG (x);
13409 /* ??? For hard-regs we now record everything. We might be able to
13410 optimize this using last_set_mode. */
13411 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
13412 truncated_mode = GET_MODE (x);
13413 else
13414 return false;
13416 rsp = &reg_stat[REGNO (x)];
13417 if (rsp->truncated_to_mode == 0
13418 || rsp->truncation_label < label_tick_ebb_start
13419 || partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
13421 rsp->truncated_to_mode = truncated_mode;
13422 rsp->truncation_label = label_tick;
13425 return true;
13428 /* Callback for note_uses. Find hardregs and subregs of pseudos and
13429 the modes they are used in. This can help truning TRUNCATEs into
13430 SUBREGs. */
13432 static void
13433 record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
13435 subrtx_var_iterator::array_type array;
13436 FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
13437 if (record_truncated_value (*iter))
13438 iter.skip_subrtxes ();
13441 /* Scan X for promoted SUBREGs. For each one found,
13442 note what it implies to the registers used in it. */
13444 static void
13445 check_promoted_subreg (rtx_insn *insn, rtx x)
13447 if (GET_CODE (x) == SUBREG
13448 && SUBREG_PROMOTED_VAR_P (x)
13449 && REG_P (SUBREG_REG (x)))
13450 record_promoted_value (insn, x);
13451 else
13453 const char *format = GET_RTX_FORMAT (GET_CODE (x));
13454 int i, j;
13456 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
13457 switch (format[i])
13459 case 'e':
13460 check_promoted_subreg (insn, XEXP (x, i));
13461 break;
13462 case 'V':
13463 case 'E':
13464 if (XVEC (x, i) != 0)
13465 for (j = 0; j < XVECLEN (x, i); j++)
13466 check_promoted_subreg (insn, XVECEXP (x, i, j));
13467 break;
13472 /* Verify that all the registers and memory references mentioned in *LOC are
13473 still valid. *LOC was part of a value set in INSN when label_tick was
13474 equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
13475 the invalid references with (clobber (const_int 0)) and return 1. This
13476 replacement is useful because we often can get useful information about
13477 the form of a value (e.g., if it was produced by a shift that always
13478 produces -1 or 0) even though we don't know exactly what registers it
13479 was produced from. */
13481 static int
13482 get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
13484 rtx x = *loc;
13485 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
13486 int len = GET_RTX_LENGTH (GET_CODE (x));
13487 int i, j;
13489 if (REG_P (x))
13491 unsigned int regno = REGNO (x);
13492 unsigned int endregno = END_REGNO (x);
13493 unsigned int j;
13495 for (j = regno; j < endregno; j++)
13497 reg_stat_type *rsp = &reg_stat[j];
13498 if (rsp->last_set_invalid
13499 /* If this is a pseudo-register that was only set once and not
13500 live at the beginning of the function, it is always valid. */
13501 || (! (regno >= FIRST_PSEUDO_REGISTER
13502 && regno < reg_n_sets_max
13503 && REG_N_SETS (regno) == 1
13504 && (!REGNO_REG_SET_P
13505 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
13506 regno)))
13507 && rsp->last_set_label > tick))
13509 if (replace)
13510 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13511 return replace;
13515 return 1;
13517 /* If this is a memory reference, make sure that there were no stores after
13518 it that might have clobbered the value. We don't have alias info, so we
13519 assume any store invalidates it. Moreover, we only have local UIDs, so
13520 we also assume that there were stores in the intervening basic blocks. */
13521 else if (MEM_P (x) && !MEM_READONLY_P (x)
13522 && (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
13524 if (replace)
13525 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
13526 return replace;
13529 for (i = 0; i < len; i++)
13531 if (fmt[i] == 'e')
13533 /* Check for identical subexpressions. If x contains
13534 identical subexpression we only have to traverse one of
13535 them. */
13536 if (i == 1 && ARITHMETIC_P (x))
13538 /* Note that at this point x0 has already been checked
13539 and found valid. */
13540 rtx x0 = XEXP (x, 0);
13541 rtx x1 = XEXP (x, 1);
13543 /* If x0 and x1 are identical then x is also valid. */
13544 if (x0 == x1)
13545 return 1;
13547 /* If x1 is identical to a subexpression of x0 then
13548 while checking x0, x1 has already been checked. Thus
13549 it is valid and so as x. */
13550 if (ARITHMETIC_P (x0)
13551 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
13552 return 1;
13554 /* If x0 is identical to a subexpression of x1 then x is
13555 valid iff the rest of x1 is valid. */
13556 if (ARITHMETIC_P (x1)
13557 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
13558 return
13559 get_last_value_validate (&XEXP (x1,
13560 x0 == XEXP (x1, 0) ? 1 : 0),
13561 insn, tick, replace);
13564 if (get_last_value_validate (&XEXP (x, i), insn, tick,
13565 replace) == 0)
13566 return 0;
13568 else if (fmt[i] == 'E')
13569 for (j = 0; j < XVECLEN (x, i); j++)
13570 if (get_last_value_validate (&XVECEXP (x, i, j),
13571 insn, tick, replace) == 0)
13572 return 0;
13575 /* If we haven't found a reason for it to be invalid, it is valid. */
13576 return 1;
13579 /* Get the last value assigned to X, if known. Some registers
13580 in the value may be replaced with (clobber (const_int 0)) if their value
13581 is known longer known reliably. */
13583 static rtx
13584 get_last_value (const_rtx x)
13586 unsigned int regno;
13587 rtx value;
13588 reg_stat_type *rsp;
13590 /* If this is a non-paradoxical SUBREG, get the value of its operand and
13591 then convert it to the desired mode. If this is a paradoxical SUBREG,
13592 we cannot predict what values the "extra" bits might have. */
13593 if (GET_CODE (x) == SUBREG
13594 && subreg_lowpart_p (x)
13595 && !paradoxical_subreg_p (x)
13596 && (value = get_last_value (SUBREG_REG (x))) != 0)
13597 return gen_lowpart (GET_MODE (x), value);
13599 if (!REG_P (x))
13600 return 0;
13602 regno = REGNO (x);
13603 rsp = &reg_stat[regno];
13604 value = rsp->last_set_value;
13606 /* If we don't have a value, or if it isn't for this basic block and
13607 it's either a hard register, set more than once, or it's a live
13608 at the beginning of the function, return 0.
13610 Because if it's not live at the beginning of the function then the reg
13611 is always set before being used (is never used without being set).
13612 And, if it's set only once, and it's always set before use, then all
13613 uses must have the same last value, even if it's not from this basic
13614 block. */
13616 if (value == 0
13617 || (rsp->last_set_label < label_tick_ebb_start
13618 && (regno < FIRST_PSEUDO_REGISTER
13619 || regno >= reg_n_sets_max
13620 || REG_N_SETS (regno) != 1
13621 || REGNO_REG_SET_P
13622 (DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
13623 return 0;
13625 /* If the value was set in a later insn than the ones we are processing,
13626 we can't use it even if the register was only set once. */
13627 if (rsp->last_set_label == label_tick
13628 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
13629 return 0;
13631 /* If fewer bits were set than what we are asked for now, we cannot use
13632 the value. */
13633 if (GET_MODE_PRECISION (rsp->last_set_mode)
13634 < GET_MODE_PRECISION (GET_MODE (x)))
13635 return 0;
13637 /* If the value has all its registers valid, return it. */
13638 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
13639 return value;
13641 /* Otherwise, make a copy and replace any invalid register with
13642 (clobber (const_int 0)). If that fails for some reason, return 0. */
13644 value = copy_rtx (value);
13645 if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
13646 return value;
13648 return 0;
13651 /* Return nonzero if expression X refers to a REG or to memory
13652 that is set in an instruction more recent than FROM_LUID. */
13654 static int
13655 use_crosses_set_p (const_rtx x, int from_luid)
13657 const char *fmt;
13658 int i;
13659 enum rtx_code code = GET_CODE (x);
13661 if (code == REG)
13663 unsigned int regno = REGNO (x);
13664 unsigned endreg = END_REGNO (x);
13666 #ifdef PUSH_ROUNDING
13667 /* Don't allow uses of the stack pointer to be moved,
13668 because we don't know whether the move crosses a push insn. */
13669 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
13670 return 1;
13671 #endif
13672 for (; regno < endreg; regno++)
13674 reg_stat_type *rsp = &reg_stat[regno];
13675 if (rsp->last_set
13676 && rsp->last_set_label == label_tick
13677 && DF_INSN_LUID (rsp->last_set) > from_luid)
13678 return 1;
13680 return 0;
13683 if (code == MEM && mem_last_set > from_luid)
13684 return 1;
13686 fmt = GET_RTX_FORMAT (code);
13688 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13690 if (fmt[i] == 'E')
13692 int j;
13693 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
13694 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
13695 return 1;
13697 else if (fmt[i] == 'e'
13698 && use_crosses_set_p (XEXP (x, i), from_luid))
13699 return 1;
13701 return 0;
13704 /* Define three variables used for communication between the following
13705 routines. */
13707 static unsigned int reg_dead_regno, reg_dead_endregno;
13708 static int reg_dead_flag;
13710 /* Function called via note_stores from reg_dead_at_p.
13712 If DEST is within [reg_dead_regno, reg_dead_endregno), set
13713 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
13715 static void
13716 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
13718 unsigned int regno, endregno;
13720 if (!REG_P (dest))
13721 return;
13723 regno = REGNO (dest);
13724 endregno = END_REGNO (dest);
13725 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
13726 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
13729 /* Return nonzero if REG is known to be dead at INSN.
13731 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
13732 referencing REG, it is dead. If we hit a SET referencing REG, it is
13733 live. Otherwise, see if it is live or dead at the start of the basic
13734 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
13735 must be assumed to be always live. */
13737 static int
13738 reg_dead_at_p (rtx reg, rtx_insn *insn)
13740 basic_block block;
13741 unsigned int i;
13743 /* Set variables for reg_dead_at_p_1. */
13744 reg_dead_regno = REGNO (reg);
13745 reg_dead_endregno = END_REGNO (reg);
13747 reg_dead_flag = 0;
13749 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
13750 we allow the machine description to decide whether use-and-clobber
13751 patterns are OK. */
13752 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
13754 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13755 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
13756 return 0;
13759 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
13760 beginning of basic block. */
13761 block = BLOCK_FOR_INSN (insn);
13762 for (;;)
13764 if (INSN_P (insn))
13766 if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
13767 return 1;
13769 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
13770 if (reg_dead_flag)
13771 return reg_dead_flag == 1 ? 1 : 0;
13773 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
13774 return 1;
13777 if (insn == BB_HEAD (block))
13778 break;
13780 insn = PREV_INSN (insn);
13783 /* Look at live-in sets for the basic block that we were in. */
13784 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
13785 if (REGNO_REG_SET_P (df_get_live_in (block), i))
13786 return 0;
13788 return 1;
13791 /* Note hard registers in X that are used. */
13793 static void
13794 mark_used_regs_combine (rtx x)
13796 RTX_CODE code = GET_CODE (x);
13797 unsigned int regno;
13798 int i;
13800 switch (code)
13802 case LABEL_REF:
13803 case SYMBOL_REF:
13804 case CONST:
13805 CASE_CONST_ANY:
13806 case PC:
13807 case ADDR_VEC:
13808 case ADDR_DIFF_VEC:
13809 case ASM_INPUT:
13810 /* CC0 must die in the insn after it is set, so we don't need to take
13811 special note of it here. */
13812 case CC0:
13813 return;
13815 case CLOBBER:
13816 /* If we are clobbering a MEM, mark any hard registers inside the
13817 address as used. */
13818 if (MEM_P (XEXP (x, 0)))
13819 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
13820 return;
13822 case REG:
13823 regno = REGNO (x);
13824 /* A hard reg in a wide mode may really be multiple registers.
13825 If so, mark all of them just like the first. */
13826 if (regno < FIRST_PSEUDO_REGISTER)
13828 /* None of this applies to the stack, frame or arg pointers. */
13829 if (regno == STACK_POINTER_REGNUM
13830 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER
13831 && regno == HARD_FRAME_POINTER_REGNUM)
13832 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
13833 && regno == ARG_POINTER_REGNUM && fixed_regs[regno])
13834 || regno == FRAME_POINTER_REGNUM)
13835 return;
13837 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
13839 return;
13841 case SET:
13843 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
13844 the address. */
13845 rtx testreg = SET_DEST (x);
13847 while (GET_CODE (testreg) == SUBREG
13848 || GET_CODE (testreg) == ZERO_EXTRACT
13849 || GET_CODE (testreg) == STRICT_LOW_PART)
13850 testreg = XEXP (testreg, 0);
13852 if (MEM_P (testreg))
13853 mark_used_regs_combine (XEXP (testreg, 0));
13855 mark_used_regs_combine (SET_SRC (x));
13857 return;
13859 default:
13860 break;
13863 /* Recursively scan the operands of this expression. */
13866 const char *fmt = GET_RTX_FORMAT (code);
13868 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
13870 if (fmt[i] == 'e')
13871 mark_used_regs_combine (XEXP (x, i));
13872 else if (fmt[i] == 'E')
13874 int j;
13876 for (j = 0; j < XVECLEN (x, i); j++)
13877 mark_used_regs_combine (XVECEXP (x, i, j));
13883 /* Remove register number REGNO from the dead registers list of INSN.
13885 Return the note used to record the death, if there was one. */
13888 remove_death (unsigned int regno, rtx_insn *insn)
13890 rtx note = find_regno_note (insn, REG_DEAD, regno);
13892 if (note)
13893 remove_note (insn, note);
13895 return note;
13898 /* For each register (hardware or pseudo) used within expression X, if its
13899 death is in an instruction with luid between FROM_LUID (inclusive) and
13900 TO_INSN (exclusive), put a REG_DEAD note for that register in the
13901 list headed by PNOTES.
13903 That said, don't move registers killed by maybe_kill_insn.
13905 This is done when X is being merged by combination into TO_INSN. These
13906 notes will then be distributed as needed. */
13908 static void
13909 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
13910 rtx *pnotes)
13912 const char *fmt;
13913 int len, i;
13914 enum rtx_code code = GET_CODE (x);
13916 if (code == REG)
13918 unsigned int regno = REGNO (x);
13919 rtx_insn *where_dead = reg_stat[regno].last_death;
13921 /* Don't move the register if it gets killed in between from and to. */
13922 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
13923 && ! reg_referenced_p (x, maybe_kill_insn))
13924 return;
13926 if (where_dead
13927 && BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
13928 && DF_INSN_LUID (where_dead) >= from_luid
13929 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
13931 rtx note = remove_death (regno, where_dead);
13933 /* It is possible for the call above to return 0. This can occur
13934 when last_death points to I2 or I1 that we combined with.
13935 In that case make a new note.
13937 We must also check for the case where X is a hard register
13938 and NOTE is a death note for a range of hard registers
13939 including X. In that case, we must put REG_DEAD notes for
13940 the remaining registers in place of NOTE. */
13942 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
13943 && partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
13945 unsigned int deadregno = REGNO (XEXP (note, 0));
13946 unsigned int deadend = END_REGNO (XEXP (note, 0));
13947 unsigned int ourend = END_REGNO (x);
13948 unsigned int i;
13950 for (i = deadregno; i < deadend; i++)
13951 if (i < regno || i >= ourend)
13952 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
13955 /* If we didn't find any note, or if we found a REG_DEAD note that
13956 covers only part of the given reg, and we have a multi-reg hard
13957 register, then to be safe we must check for REG_DEAD notes
13958 for each register other than the first. They could have
13959 their own REG_DEAD notes lying around. */
13960 else if ((note == 0
13961 || (note != 0
13962 && partial_subreg_p (GET_MODE (XEXP (note, 0)),
13963 GET_MODE (x))))
13964 && regno < FIRST_PSEUDO_REGISTER
13965 && REG_NREGS (x) > 1)
13967 unsigned int ourend = END_REGNO (x);
13968 unsigned int i, offset;
13969 rtx oldnotes = 0;
13971 if (note)
13972 offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
13973 else
13974 offset = 1;
13976 for (i = regno + offset; i < ourend; i++)
13977 move_deaths (regno_reg_rtx[i],
13978 maybe_kill_insn, from_luid, to_insn, &oldnotes);
13981 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
13983 XEXP (note, 1) = *pnotes;
13984 *pnotes = note;
13986 else
13987 *pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
13990 return;
13993 else if (GET_CODE (x) == SET)
13995 rtx dest = SET_DEST (x);
13997 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
13999 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
14000 that accesses one word of a multi-word item, some
14001 piece of everything register in the expression is used by
14002 this insn, so remove any old death. */
14003 /* ??? So why do we test for equality of the sizes? */
14005 if (GET_CODE (dest) == ZERO_EXTRACT
14006 || GET_CODE (dest) == STRICT_LOW_PART
14007 || (GET_CODE (dest) == SUBREG
14008 && !read_modify_subreg_p (dest)))
14010 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
14011 return;
14014 /* If this is some other SUBREG, we know it replaces the entire
14015 value, so use that as the destination. */
14016 if (GET_CODE (dest) == SUBREG)
14017 dest = SUBREG_REG (dest);
14019 /* If this is a MEM, adjust deaths of anything used in the address.
14020 For a REG (the only other possibility), the entire value is
14021 being replaced so the old value is not used in this insn. */
14023 if (MEM_P (dest))
14024 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
14025 to_insn, pnotes);
14026 return;
14029 else if (GET_CODE (x) == CLOBBER)
14030 return;
14032 len = GET_RTX_LENGTH (code);
14033 fmt = GET_RTX_FORMAT (code);
14035 for (i = 0; i < len; i++)
14037 if (fmt[i] == 'E')
14039 int j;
14040 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
14041 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
14042 to_insn, pnotes);
14044 else if (fmt[i] == 'e')
14045 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
14049 /* Return 1 if X is the target of a bit-field assignment in BODY, the
14050 pattern of an insn. X must be a REG. */
14052 static int
14053 reg_bitfield_target_p (rtx x, rtx body)
14055 int i;
14057 if (GET_CODE (body) == SET)
14059 rtx dest = SET_DEST (body);
14060 rtx target;
14061 unsigned int regno, tregno, endregno, endtregno;
14063 if (GET_CODE (dest) == ZERO_EXTRACT)
14064 target = XEXP (dest, 0);
14065 else if (GET_CODE (dest) == STRICT_LOW_PART)
14066 target = SUBREG_REG (XEXP (dest, 0));
14067 else
14068 return 0;
14070 if (GET_CODE (target) == SUBREG)
14071 target = SUBREG_REG (target);
14073 if (!REG_P (target))
14074 return 0;
14076 tregno = REGNO (target), regno = REGNO (x);
14077 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
14078 return target == x;
14080 endtregno = end_hard_regno (GET_MODE (target), tregno);
14081 endregno = end_hard_regno (GET_MODE (x), regno);
14083 return endregno > tregno && regno < endtregno;
14086 else if (GET_CODE (body) == PARALLEL)
14087 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
14088 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
14089 return 1;
14091 return 0;
14094 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
14095 as appropriate. I3 and I2 are the insns resulting from the combination
14096 insns including FROM (I2 may be zero).
14098 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
14099 not need REG_DEAD notes because they are being substituted for. This
14100 saves searching in the most common cases.
14102 Each note in the list is either ignored or placed on some insns, depending
14103 on the type of note. */
14105 static void
14106 distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
14107 rtx elim_i2, rtx elim_i1, rtx elim_i0)
14109 rtx note, next_note;
14110 rtx tem_note;
14111 rtx_insn *tem_insn;
14113 for (note = notes; note; note = next_note)
14115 rtx_insn *place = 0, *place2 = 0;
14117 next_note = XEXP (note, 1);
14118 switch (REG_NOTE_KIND (note))
14120 case REG_BR_PROB:
14121 case REG_BR_PRED:
14122 /* Doesn't matter much where we put this, as long as it's somewhere.
14123 It is preferable to keep these notes on branches, which is most
14124 likely to be i3. */
14125 place = i3;
14126 break;
14128 case REG_NON_LOCAL_GOTO:
14129 if (JUMP_P (i3))
14130 place = i3;
14131 else
14133 gcc_assert (i2 && JUMP_P (i2));
14134 place = i2;
14136 break;
14138 case REG_EH_REGION:
14139 /* These notes must remain with the call or trapping instruction. */
14140 if (CALL_P (i3))
14141 place = i3;
14142 else if (i2 && CALL_P (i2))
14143 place = i2;
14144 else
14146 gcc_assert (cfun->can_throw_non_call_exceptions);
14147 if (may_trap_p (i3))
14148 place = i3;
14149 else if (i2 && may_trap_p (i2))
14150 place = i2;
14151 /* ??? Otherwise assume we've combined things such that we
14152 can now prove that the instructions can't trap. Drop the
14153 note in this case. */
14155 break;
14157 case REG_ARGS_SIZE:
14158 /* ??? How to distribute between i3-i1. Assume i3 contains the
14159 entire adjustment. Assert i3 contains at least some adjust. */
14160 if (!noop_move_p (i3))
14162 int old_size, args_size = INTVAL (XEXP (note, 0));
14163 /* fixup_args_size_notes looks at REG_NORETURN note,
14164 so ensure the note is placed there first. */
14165 if (CALL_P (i3))
14167 rtx *np;
14168 for (np = &next_note; *np; np = &XEXP (*np, 1))
14169 if (REG_NOTE_KIND (*np) == REG_NORETURN)
14171 rtx n = *np;
14172 *np = XEXP (n, 1);
14173 XEXP (n, 1) = REG_NOTES (i3);
14174 REG_NOTES (i3) = n;
14175 break;
14178 old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
14179 /* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
14180 REG_ARGS_SIZE note to all noreturn calls, allow that here. */
14181 gcc_assert (old_size != args_size
14182 || (CALL_P (i3)
14183 && !ACCUMULATE_OUTGOING_ARGS
14184 && find_reg_note (i3, REG_NORETURN, NULL_RTX)));
14186 break;
14188 case REG_NORETURN:
14189 case REG_SETJMP:
14190 case REG_TM:
14191 case REG_CALL_DECL:
14192 case REG_CALL_NOCF_CHECK:
14193 /* These notes must remain with the call. It should not be
14194 possible for both I2 and I3 to be a call. */
14195 if (CALL_P (i3))
14196 place = i3;
14197 else
14199 gcc_assert (i2 && CALL_P (i2));
14200 place = i2;
14202 break;
14204 case REG_UNUSED:
14205 /* Any clobbers for i3 may still exist, and so we must process
14206 REG_UNUSED notes from that insn.
14208 Any clobbers from i2 or i1 can only exist if they were added by
14209 recog_for_combine. In that case, recog_for_combine created the
14210 necessary REG_UNUSED notes. Trying to keep any original
14211 REG_UNUSED notes from these insns can cause incorrect output
14212 if it is for the same register as the original i3 dest.
14213 In that case, we will notice that the register is set in i3,
14214 and then add a REG_UNUSED note for the destination of i3, which
14215 is wrong. However, it is possible to have REG_UNUSED notes from
14216 i2 or i1 for register which were both used and clobbered, so
14217 we keep notes from i2 or i1 if they will turn into REG_DEAD
14218 notes. */
14220 /* If this register is set or clobbered in I3, put the note there
14221 unless there is one already. */
14222 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
14224 if (from_insn != i3)
14225 break;
14227 if (! (REG_P (XEXP (note, 0))
14228 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
14229 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
14230 place = i3;
14232 /* Otherwise, if this register is used by I3, then this register
14233 now dies here, so we must put a REG_DEAD note here unless there
14234 is one already. */
14235 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
14236 && ! (REG_P (XEXP (note, 0))
14237 ? find_regno_note (i3, REG_DEAD,
14238 REGNO (XEXP (note, 0)))
14239 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
14241 PUT_REG_NOTE_KIND (note, REG_DEAD);
14242 place = i3;
14244 break;
14246 case REG_EQUAL:
14247 case REG_EQUIV:
14248 case REG_NOALIAS:
14249 /* These notes say something about results of an insn. We can
14250 only support them if they used to be on I3 in which case they
14251 remain on I3. Otherwise they are ignored.
14253 If the note refers to an expression that is not a constant, we
14254 must also ignore the note since we cannot tell whether the
14255 equivalence is still true. It might be possible to do
14256 slightly better than this (we only have a problem if I2DEST
14257 or I1DEST is present in the expression), but it doesn't
14258 seem worth the trouble. */
14260 if (from_insn == i3
14261 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
14262 place = i3;
14263 break;
14265 case REG_INC:
14266 /* These notes say something about how a register is used. They must
14267 be present on any use of the register in I2 or I3. */
14268 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
14269 place = i3;
14271 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
14273 if (place)
14274 place2 = i2;
14275 else
14276 place = i2;
14278 break;
14280 case REG_LABEL_TARGET:
14281 case REG_LABEL_OPERAND:
14282 /* This can show up in several ways -- either directly in the
14283 pattern, or hidden off in the constant pool with (or without?)
14284 a REG_EQUAL note. */
14285 /* ??? Ignore the without-reg_equal-note problem for now. */
14286 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
14287 || ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
14288 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14289 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
14290 place = i3;
14292 if (i2
14293 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
14294 || ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
14295 && GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
14296 && label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
14298 if (place)
14299 place2 = i2;
14300 else
14301 place = i2;
14304 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
14305 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
14306 there. */
14307 if (place && JUMP_P (place)
14308 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14309 && (JUMP_LABEL (place) == NULL
14310 || JUMP_LABEL (place) == XEXP (note, 0)))
14312 rtx label = JUMP_LABEL (place);
14314 if (!label)
14315 JUMP_LABEL (place) = XEXP (note, 0);
14316 else if (LABEL_P (label))
14317 LABEL_NUSES (label)--;
14320 if (place2 && JUMP_P (place2)
14321 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
14322 && (JUMP_LABEL (place2) == NULL
14323 || JUMP_LABEL (place2) == XEXP (note, 0)))
14325 rtx label = JUMP_LABEL (place2);
14327 if (!label)
14328 JUMP_LABEL (place2) = XEXP (note, 0);
14329 else if (LABEL_P (label))
14330 LABEL_NUSES (label)--;
14331 place2 = 0;
14333 break;
14335 case REG_NONNEG:
14336 /* This note says something about the value of a register prior
14337 to the execution of an insn. It is too much trouble to see
14338 if the note is still correct in all situations. It is better
14339 to simply delete it. */
14340 break;
14342 case REG_DEAD:
14343 /* If we replaced the right hand side of FROM_INSN with a
14344 REG_EQUAL note, the original use of the dying register
14345 will not have been combined into I3 and I2. In such cases,
14346 FROM_INSN is guaranteed to be the first of the combined
14347 instructions, so we simply need to search back before
14348 FROM_INSN for the previous use or set of this register,
14349 then alter the notes there appropriately.
14351 If the register is used as an input in I3, it dies there.
14352 Similarly for I2, if it is nonzero and adjacent to I3.
14354 If the register is not used as an input in either I3 or I2
14355 and it is not one of the registers we were supposed to eliminate,
14356 there are two possibilities. We might have a non-adjacent I2
14357 or we might have somehow eliminated an additional register
14358 from a computation. For example, we might have had A & B where
14359 we discover that B will always be zero. In this case we will
14360 eliminate the reference to A.
14362 In both cases, we must search to see if we can find a previous
14363 use of A and put the death note there. */
14365 if (from_insn
14366 && from_insn == i2mod
14367 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
14368 tem_insn = from_insn;
14369 else
14371 if (from_insn
14372 && CALL_P (from_insn)
14373 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
14374 place = from_insn;
14375 else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
14377 /* If the new I2 sets the same register that is marked
14378 dead in the note, we do not in general know where to
14379 put the note. One important case we _can_ handle is
14380 when the note comes from I3. */
14381 if (from_insn == i3)
14382 place = i3;
14383 else
14384 break;
14386 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
14387 place = i3;
14388 else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
14389 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14390 place = i2;
14391 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
14392 && !(i2mod
14393 && reg_overlap_mentioned_p (XEXP (note, 0),
14394 i2mod_old_rhs)))
14395 || rtx_equal_p (XEXP (note, 0), elim_i1)
14396 || rtx_equal_p (XEXP (note, 0), elim_i0))
14397 break;
14398 tem_insn = i3;
14401 if (place == 0)
14403 basic_block bb = this_basic_block;
14405 for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
14407 if (!NONDEBUG_INSN_P (tem_insn))
14409 if (tem_insn == BB_HEAD (bb))
14410 break;
14411 continue;
14414 /* If the register is being set at TEM_INSN, see if that is all
14415 TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
14416 into a REG_UNUSED note instead. Don't delete sets to
14417 global register vars. */
14418 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
14419 || !global_regs[REGNO (XEXP (note, 0))])
14420 && reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
14422 rtx set = single_set (tem_insn);
14423 rtx inner_dest = 0;
14424 rtx_insn *cc0_setter = NULL;
14426 if (set != 0)
14427 for (inner_dest = SET_DEST (set);
14428 (GET_CODE (inner_dest) == STRICT_LOW_PART
14429 || GET_CODE (inner_dest) == SUBREG
14430 || GET_CODE (inner_dest) == ZERO_EXTRACT);
14431 inner_dest = XEXP (inner_dest, 0))
14434 /* Verify that it was the set, and not a clobber that
14435 modified the register.
14437 CC0 targets must be careful to maintain setter/user
14438 pairs. If we cannot delete the setter due to side
14439 effects, mark the user with an UNUSED note instead
14440 of deleting it. */
14442 if (set != 0 && ! side_effects_p (SET_SRC (set))
14443 && rtx_equal_p (XEXP (note, 0), inner_dest)
14444 && (!HAVE_cc0
14445 || (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
14446 || ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
14447 && sets_cc0_p (PATTERN (cc0_setter)) > 0))))
14449 /* Move the notes and links of TEM_INSN elsewhere.
14450 This might delete other dead insns recursively.
14451 First set the pattern to something that won't use
14452 any register. */
14453 rtx old_notes = REG_NOTES (tem_insn);
14455 PATTERN (tem_insn) = pc_rtx;
14456 REG_NOTES (tem_insn) = NULL;
14458 distribute_notes (old_notes, tem_insn, tem_insn, NULL,
14459 NULL_RTX, NULL_RTX, NULL_RTX);
14460 distribute_links (LOG_LINKS (tem_insn));
14462 unsigned int regno = REGNO (XEXP (note, 0));
14463 reg_stat_type *rsp = &reg_stat[regno];
14464 if (rsp->last_set == tem_insn)
14465 record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
14467 SET_INSN_DELETED (tem_insn);
14468 if (tem_insn == i2)
14469 i2 = NULL;
14471 /* Delete the setter too. */
14472 if (cc0_setter)
14474 PATTERN (cc0_setter) = pc_rtx;
14475 old_notes = REG_NOTES (cc0_setter);
14476 REG_NOTES (cc0_setter) = NULL;
14478 distribute_notes (old_notes, cc0_setter,
14479 cc0_setter, NULL,
14480 NULL_RTX, NULL_RTX, NULL_RTX);
14481 distribute_links (LOG_LINKS (cc0_setter));
14483 SET_INSN_DELETED (cc0_setter);
14484 if (cc0_setter == i2)
14485 i2 = NULL;
14488 else
14490 PUT_REG_NOTE_KIND (note, REG_UNUSED);
14492 /* If there isn't already a REG_UNUSED note, put one
14493 here. Do not place a REG_DEAD note, even if
14494 the register is also used here; that would not
14495 match the algorithm used in lifetime analysis
14496 and can cause the consistency check in the
14497 scheduler to fail. */
14498 if (! find_regno_note (tem_insn, REG_UNUSED,
14499 REGNO (XEXP (note, 0))))
14500 place = tem_insn;
14501 break;
14504 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
14505 || (CALL_P (tem_insn)
14506 && find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
14508 place = tem_insn;
14510 /* If we are doing a 3->2 combination, and we have a
14511 register which formerly died in i3 and was not used
14512 by i2, which now no longer dies in i3 and is used in
14513 i2 but does not die in i2, and place is between i2
14514 and i3, then we may need to move a link from place to
14515 i2. */
14516 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
14517 && from_insn
14518 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
14519 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
14521 struct insn_link *links = LOG_LINKS (place);
14522 LOG_LINKS (place) = NULL;
14523 distribute_links (links);
14525 break;
14528 if (tem_insn == BB_HEAD (bb))
14529 break;
14534 /* If the register is set or already dead at PLACE, we needn't do
14535 anything with this note if it is still a REG_DEAD note.
14536 We check here if it is set at all, not if is it totally replaced,
14537 which is what `dead_or_set_p' checks, so also check for it being
14538 set partially. */
14540 if (place && REG_NOTE_KIND (note) == REG_DEAD)
14542 unsigned int regno = REGNO (XEXP (note, 0));
14543 reg_stat_type *rsp = &reg_stat[regno];
14545 if (dead_or_set_p (place, XEXP (note, 0))
14546 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
14548 /* Unless the register previously died in PLACE, clear
14549 last_death. [I no longer understand why this is
14550 being done.] */
14551 if (rsp->last_death != place)
14552 rsp->last_death = 0;
14553 place = 0;
14555 else
14556 rsp->last_death = place;
14558 /* If this is a death note for a hard reg that is occupying
14559 multiple registers, ensure that we are still using all
14560 parts of the object. If we find a piece of the object
14561 that is unused, we must arrange for an appropriate REG_DEAD
14562 note to be added for it. However, we can't just emit a USE
14563 and tag the note to it, since the register might actually
14564 be dead; so we recourse, and the recursive call then finds
14565 the previous insn that used this register. */
14567 if (place && REG_NREGS (XEXP (note, 0)) > 1)
14569 unsigned int endregno = END_REGNO (XEXP (note, 0));
14570 bool all_used = true;
14571 unsigned int i;
14573 for (i = regno; i < endregno; i++)
14574 if ((! refers_to_regno_p (i, PATTERN (place))
14575 && ! find_regno_fusage (place, USE, i))
14576 || dead_or_set_regno_p (place, i))
14578 all_used = false;
14579 break;
14582 if (! all_used)
14584 /* Put only REG_DEAD notes for pieces that are
14585 not already dead or set. */
14587 for (i = regno; i < endregno;
14588 i += hard_regno_nregs (i, reg_raw_mode[i]))
14590 rtx piece = regno_reg_rtx[i];
14591 basic_block bb = this_basic_block;
14593 if (! dead_or_set_p (place, piece)
14594 && ! reg_bitfield_target_p (piece,
14595 PATTERN (place)))
14597 rtx new_note = alloc_reg_note (REG_DEAD, piece,
14598 NULL_RTX);
14600 distribute_notes (new_note, place, place,
14601 NULL, NULL_RTX, NULL_RTX,
14602 NULL_RTX);
14604 else if (! refers_to_regno_p (i, PATTERN (place))
14605 && ! find_regno_fusage (place, USE, i))
14606 for (tem_insn = PREV_INSN (place); ;
14607 tem_insn = PREV_INSN (tem_insn))
14609 if (!NONDEBUG_INSN_P (tem_insn))
14611 if (tem_insn == BB_HEAD (bb))
14612 break;
14613 continue;
14615 if (dead_or_set_p (tem_insn, piece)
14616 || reg_bitfield_target_p (piece,
14617 PATTERN (tem_insn)))
14619 add_reg_note (tem_insn, REG_UNUSED, piece);
14620 break;
14625 place = 0;
14629 break;
14631 default:
14632 /* Any other notes should not be present at this point in the
14633 compilation. */
14634 gcc_unreachable ();
14637 if (place)
14639 XEXP (note, 1) = REG_NOTES (place);
14640 REG_NOTES (place) = note;
14642 /* Set added_notes_insn to the earliest insn we added a note to. */
14643 if (added_notes_insn == 0
14644 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
14645 added_notes_insn = place;
14648 if (place2)
14650 add_shallow_copy_of_reg_note (place2, note);
14652 /* Set added_notes_insn to the earliest insn we added a note to. */
14653 if (added_notes_insn == 0
14654 || DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
14655 added_notes_insn = place2;
14660 /* Similarly to above, distribute the LOG_LINKS that used to be present on
14661 I3, I2, and I1 to new locations. This is also called to add a link
14662 pointing at I3 when I3's destination is changed. */
14664 static void
14665 distribute_links (struct insn_link *links)
14667 struct insn_link *link, *next_link;
14669 for (link = links; link; link = next_link)
14671 rtx_insn *place = 0;
14672 rtx_insn *insn;
14673 rtx set, reg;
14675 next_link = link->next;
14677 /* If the insn that this link points to is a NOTE, ignore it. */
14678 if (NOTE_P (link->insn))
14679 continue;
14681 set = 0;
14682 rtx pat = PATTERN (link->insn);
14683 if (GET_CODE (pat) == SET)
14684 set = pat;
14685 else if (GET_CODE (pat) == PARALLEL)
14687 int i;
14688 for (i = 0; i < XVECLEN (pat, 0); i++)
14690 set = XVECEXP (pat, 0, i);
14691 if (GET_CODE (set) != SET)
14692 continue;
14694 reg = SET_DEST (set);
14695 while (GET_CODE (reg) == ZERO_EXTRACT
14696 || GET_CODE (reg) == STRICT_LOW_PART
14697 || GET_CODE (reg) == SUBREG)
14698 reg = XEXP (reg, 0);
14700 if (!REG_P (reg))
14701 continue;
14703 if (REGNO (reg) == link->regno)
14704 break;
14706 if (i == XVECLEN (pat, 0))
14707 continue;
14709 else
14710 continue;
14712 reg = SET_DEST (set);
14714 while (GET_CODE (reg) == ZERO_EXTRACT
14715 || GET_CODE (reg) == STRICT_LOW_PART
14716 || GET_CODE (reg) == SUBREG)
14717 reg = XEXP (reg, 0);
14719 /* A LOG_LINK is defined as being placed on the first insn that uses
14720 a register and points to the insn that sets the register. Start
14721 searching at the next insn after the target of the link and stop
14722 when we reach a set of the register or the end of the basic block.
14724 Note that this correctly handles the link that used to point from
14725 I3 to I2. Also note that not much searching is typically done here
14726 since most links don't point very far away. */
14728 for (insn = NEXT_INSN (link->insn);
14729 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
14730 || BB_HEAD (this_basic_block->next_bb) != insn));
14731 insn = NEXT_INSN (insn))
14732 if (DEBUG_INSN_P (insn))
14733 continue;
14734 else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
14736 if (reg_referenced_p (reg, PATTERN (insn)))
14737 place = insn;
14738 break;
14740 else if (CALL_P (insn)
14741 && find_reg_fusage (insn, USE, reg))
14743 place = insn;
14744 break;
14746 else if (INSN_P (insn) && reg_set_p (reg, insn))
14747 break;
14749 /* If we found a place to put the link, place it there unless there
14750 is already a link to the same insn as LINK at that point. */
14752 if (place)
14754 struct insn_link *link2;
14756 FOR_EACH_LOG_LINK (link2, place)
14757 if (link2->insn == link->insn && link2->regno == link->regno)
14758 break;
14760 if (link2 == NULL)
14762 link->next = LOG_LINKS (place);
14763 LOG_LINKS (place) = link;
14765 /* Set added_links_insn to the earliest insn we added a
14766 link to. */
14767 if (added_links_insn == 0
14768 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
14769 added_links_insn = place;
14775 /* Check for any register or memory mentioned in EQUIV that is not
14776 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
14777 of EXPR where some registers may have been replaced by constants. */
14779 static bool
14780 unmentioned_reg_p (rtx equiv, rtx expr)
14782 subrtx_iterator::array_type array;
14783 FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
14785 const_rtx x = *iter;
14786 if ((REG_P (x) || MEM_P (x))
14787 && !reg_mentioned_p (x, expr))
14788 return true;
14790 return false;
14793 DEBUG_FUNCTION void
14794 dump_combine_stats (FILE *file)
14796 fprintf
14797 (file,
14798 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
14799 combine_attempts, combine_merges, combine_extras, combine_successes);
14802 void
14803 dump_combine_total_stats (FILE *file)
14805 fprintf
14806 (file,
14807 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
14808 total_attempts, total_merges, total_extras, total_successes);
14811 /* Try combining insns through substitution. */
14812 static unsigned int
14813 rest_of_handle_combine (void)
14815 int rebuild_jump_labels_after_combine;
14817 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
14818 df_note_add_problem ();
14819 df_analyze ();
14821 regstat_init_n_sets_and_refs ();
14822 reg_n_sets_max = max_reg_num ();
14824 rebuild_jump_labels_after_combine
14825 = combine_instructions (get_insns (), max_reg_num ());
14827 /* Combining insns may have turned an indirect jump into a
14828 direct jump. Rebuild the JUMP_LABEL fields of jumping
14829 instructions. */
14830 if (rebuild_jump_labels_after_combine)
14832 if (dom_info_available_p (CDI_DOMINATORS))
14833 free_dominance_info (CDI_DOMINATORS);
14834 timevar_push (TV_JUMP);
14835 rebuild_jump_labels (get_insns ());
14836 cleanup_cfg (0);
14837 timevar_pop (TV_JUMP);
14840 regstat_free_n_sets_and_refs ();
14841 return 0;
14844 namespace {
14846 const pass_data pass_data_combine =
14848 RTL_PASS, /* type */
14849 "combine", /* name */
14850 OPTGROUP_NONE, /* optinfo_flags */
14851 TV_COMBINE, /* tv_id */
14852 PROP_cfglayout, /* properties_required */
14853 0, /* properties_provided */
14854 0, /* properties_destroyed */
14855 0, /* todo_flags_start */
14856 TODO_df_finish, /* todo_flags_finish */
14859 class pass_combine : public rtl_opt_pass
14861 public:
14862 pass_combine (gcc::context *ctxt)
14863 : rtl_opt_pass (pass_data_combine, ctxt)
14866 /* opt_pass methods: */
14867 virtual bool gate (function *) { return (optimize > 0); }
14868 virtual unsigned int execute (function *)
14870 return rest_of_handle_combine ();
14873 }; // class pass_combine
14875 } // anon namespace
14877 rtl_opt_pass *
14878 make_pass_combine (gcc::context *ctxt)
14880 return new pass_combine (ctxt);