Merge -r 127928:132243 from trunk
[official-gcc.git] / libstdc++-v3 / include / bits / stl_vector.h
blob34bb595d52868c4ac177dc6980d711d1d2f415c9
1 // Vector implementation -*- C++ -*-
3 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 // Free Software Foundation, Inc.
5 //
6 // This file is part of the GNU ISO C++ Library. This library is free
7 // software; you can redistribute it and/or modify it under the
8 // terms of the GNU General Public License as published by the
9 // Free Software Foundation; either version 2, or (at your option)
10 // any later version.
12 // This library is distributed in the hope that it will be useful,
13 // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 // GNU General Public License for more details.
17 // You should have received a copy of the GNU General Public License along
18 // with this library; see the file COPYING. If not, write to the Free
19 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
20 // USA.
22 // As a special exception, you may use this file as part of a free software
23 // library without restriction. Specifically, if other files instantiate
24 // templates or use macros or inline functions from this file, or you compile
25 // this file and link it with other files to produce an executable, this
26 // file does not by itself cause the resulting executable to be covered by
27 // the GNU General Public License. This exception does not however
28 // invalidate any other reasons why the executable file might be covered by
29 // the GNU General Public License.
33 * Copyright (c) 1994
34 * Hewlett-Packard Company
36 * Permission to use, copy, modify, distribute and sell this software
37 * and its documentation for any purpose is hereby granted without fee,
38 * provided that the above copyright notice appear in all copies and
39 * that both that copyright notice and this permission notice appear
40 * in supporting documentation. Hewlett-Packard Company makes no
41 * representations about the suitability of this software for any
42 * purpose. It is provided "as is" without express or implied warranty.
45 * Copyright (c) 1996
46 * Silicon Graphics Computer Systems, Inc.
48 * Permission to use, copy, modify, distribute and sell this software
49 * and its documentation for any purpose is hereby granted without fee,
50 * provided that the above copyright notice appear in all copies and
51 * that both that copyright notice and this permission notice appear
52 * in supporting documentation. Silicon Graphics makes no
53 * representations about the suitability of this software for any
54 * purpose. It is provided "as is" without express or implied warranty.
57 /** @file stl_vector.h
58 * This is an internal header file, included by other library headers.
59 * You should not attempt to use it directly.
62 #ifndef _STL_VECTOR_H
63 #define _STL_VECTOR_H 1
65 #include <bits/stl_iterator_base_funcs.h>
66 #include <bits/functexcept.h>
67 #include <bits/concept_check.h>
69 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
71 /// See bits/stl_deque.h's _Deque_base for an explanation.
72 template<typename _Tp, typename _Alloc>
73 struct _Vector_base
75 typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
77 struct _Vector_impl
78 : public _Tp_alloc_type
80 _Tp* _M_start;
81 _Tp* _M_finish;
82 _Tp* _M_end_of_storage;
84 _Vector_impl()
85 : _Tp_alloc_type(), _M_start(0), _M_finish(0), _M_end_of_storage(0)
86 { }
88 _Vector_impl(_Tp_alloc_type const& __a)
89 : _Tp_alloc_type(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
90 { }
93 public:
94 typedef _Alloc allocator_type;
96 _Tp_alloc_type&
97 _M_get_Tp_allocator()
98 { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
100 const _Tp_alloc_type&
101 _M_get_Tp_allocator() const
102 { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
104 allocator_type
105 get_allocator() const
106 { return allocator_type(_M_get_Tp_allocator()); }
108 _Vector_base()
109 : _M_impl() { }
111 _Vector_base(const allocator_type& __a)
112 : _M_impl(__a) { }
114 _Vector_base(size_t __n, const allocator_type& __a)
115 : _M_impl(__a)
117 this->_M_impl._M_start = this->_M_allocate(__n);
118 this->_M_impl._M_finish = this->_M_impl._M_start;
119 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
122 #ifdef __GXX_EXPERIMENTAL_CXX0X__
123 _Vector_base(_Vector_base&& __x)
124 : _M_impl(__x._M_get_Tp_allocator())
126 this->_M_impl._M_start = __x._M_impl._M_start;
127 this->_M_impl._M_finish = __x._M_impl._M_finish;
128 this->_M_impl._M_end_of_storage = __x._M_impl._M_end_of_storage;
129 __x._M_impl._M_start = 0;
130 __x._M_impl._M_finish = 0;
131 __x._M_impl._M_end_of_storage = 0;
133 #endif
135 ~_Vector_base()
136 { _M_deallocate(this->_M_impl._M_start, this->_M_impl._M_end_of_storage
137 - this->_M_impl._M_start); }
139 public:
140 _Vector_impl _M_impl;
142 _Tp*
143 _M_allocate(size_t __n)
144 { return __n != 0 ? _M_impl.allocate(__n) : 0; }
146 void
147 _M_deallocate(_Tp* __p, size_t __n)
149 if (__p)
150 _M_impl.deallocate(__p, __n);
156 * @brief A standard container which offers fixed time access to
157 * individual elements in any order.
159 * @ingroup Containers
160 * @ingroup Sequences
162 * Meets the requirements of a <a href="tables.html#65">container</a>, a
163 * <a href="tables.html#66">reversible container</a>, and a
164 * <a href="tables.html#67">sequence</a>, including the
165 * <a href="tables.html#68">optional sequence requirements</a> with the
166 * %exception of @c push_front and @c pop_front.
168 * In some terminology a %vector can be described as a dynamic
169 * C-style array, it offers fast and efficient access to individual
170 * elements in any order and saves the user from worrying about
171 * memory and size allocation. Subscripting ( @c [] ) access is
172 * also provided as with C-style arrays.
174 template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
175 class vector : protected _Vector_base<_Tp, _Alloc>
177 // Concept requirements.
178 typedef typename _Alloc::value_type _Alloc_value_type;
179 __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
180 __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
182 typedef _Vector_base<_Tp, _Alloc> _Base;
183 typedef vector<_Tp, _Alloc> vector_type;
184 typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
186 public:
187 typedef _Tp value_type;
188 typedef typename _Tp_alloc_type::pointer pointer;
189 typedef typename _Tp_alloc_type::const_pointer const_pointer;
190 typedef typename _Tp_alloc_type::reference reference;
191 typedef typename _Tp_alloc_type::const_reference const_reference;
192 typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
193 typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
194 const_iterator;
195 typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
196 typedef std::reverse_iterator<iterator> reverse_iterator;
197 typedef size_t size_type;
198 typedef ptrdiff_t difference_type;
199 typedef _Alloc allocator_type;
201 protected:
202 using _Base::_M_allocate;
203 using _Base::_M_deallocate;
204 using _Base::_M_impl;
205 using _Base::_M_get_Tp_allocator;
207 public:
208 // [23.2.4.1] construct/copy/destroy
209 // (assign() and get_allocator() are also listed in this section)
211 * @brief Default constructor creates no elements.
213 vector()
214 : _Base() { }
217 * @brief Creates a %vector with no elements.
218 * @param a An allocator object.
220 explicit
221 vector(const allocator_type& __a)
222 : _Base(__a) { }
225 * @brief Creates a %vector with copies of an exemplar element.
226 * @param n The number of elements to initially create.
227 * @param value An element to copy.
228 * @param a An allocator.
230 * This constructor fills the %vector with @a n copies of @a value.
232 explicit
233 vector(size_type __n, const value_type& __value = value_type(),
234 const allocator_type& __a = allocator_type())
235 : _Base(__n, __a)
236 { _M_fill_initialize(__n, __value); }
239 * @brief %Vector copy constructor.
240 * @param x A %vector of identical element and allocator types.
242 * The newly-created %vector uses a copy of the allocation
243 * object used by @a x. All the elements of @a x are copied,
244 * but any extra memory in
245 * @a x (for fast expansion) will not be copied.
247 vector(const vector& __x)
248 : _Base(__x.size(), __x._M_get_Tp_allocator())
249 { this->_M_impl._M_finish =
250 std::__uninitialized_copy_a(__x.begin(), __x.end(),
251 this->_M_impl._M_start,
252 _M_get_Tp_allocator());
255 #ifdef __GXX_EXPERIMENTAL_CXX0X__
257 * @brief %Vector move constructor.
258 * @param x A %vector of identical element and allocator types.
260 * The newly-created %vector contains the exact contents of @a x.
261 * The contents of @a x are a valid, but unspecified %vector.
263 vector(vector&& __x)
264 : _Base(std::forward<_Base>(__x)) { }
265 #endif
268 * @brief Builds a %vector from a range.
269 * @param first An input iterator.
270 * @param last An input iterator.
271 * @param a An allocator.
273 * Create a %vector consisting of copies of the elements from
274 * [first,last).
276 * If the iterators are forward, bidirectional, or
277 * random-access, then this will call the elements' copy
278 * constructor N times (where N is distance(first,last)) and do
279 * no memory reallocation. But if only input iterators are
280 * used, then this will do at most 2N calls to the copy
281 * constructor, and logN memory reallocations.
283 template<typename _InputIterator>
284 vector(_InputIterator __first, _InputIterator __last,
285 const allocator_type& __a = allocator_type())
286 : _Base(__a)
288 // Check whether it's an integral type. If so, it's not an iterator.
289 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
290 _M_initialize_dispatch(__first, __last, _Integral());
294 * The dtor only erases the elements, and note that if the
295 * elements themselves are pointers, the pointed-to memory is
296 * not touched in any way. Managing the pointer is the user's
297 * responsibility.
299 ~vector()
300 { std::_Destroy(this->_M_impl._M_start, this->_M_impl._M_finish,
301 _M_get_Tp_allocator()); }
304 * @brief %Vector assignment operator.
305 * @param x A %vector of identical element and allocator types.
307 * All the elements of @a x are copied, but any extra memory in
308 * @a x (for fast expansion) will not be copied. Unlike the
309 * copy constructor, the allocator object is not copied.
311 vector&
312 operator=(const vector& __x);
314 #ifdef __GXX_EXPERIMENTAL_CXX0X__
316 * @brief %Vector move assignment operator.
317 * @param x A %vector of identical element and allocator types.
319 * The contents of @a x are moved into this %vector (without copying).
320 * @a x is a valid, but unspecified %vector.
322 vector&
323 operator=(vector&& __x)
325 // NB: DR 675.
326 this->clear();
327 this->swap(__x);
328 return *this;
330 #endif
333 * @brief Assigns a given value to a %vector.
334 * @param n Number of elements to be assigned.
335 * @param val Value to be assigned.
337 * This function fills a %vector with @a n copies of the given
338 * value. Note that the assignment completely changes the
339 * %vector and that the resulting %vector's size is the same as
340 * the number of elements assigned. Old data may be lost.
342 void
343 assign(size_type __n, const value_type& __val)
344 { _M_fill_assign(__n, __val); }
347 * @brief Assigns a range to a %vector.
348 * @param first An input iterator.
349 * @param last An input iterator.
351 * This function fills a %vector with copies of the elements in the
352 * range [first,last).
354 * Note that the assignment completely changes the %vector and
355 * that the resulting %vector's size is the same as the number
356 * of elements assigned. Old data may be lost.
358 template<typename _InputIterator>
359 void
360 assign(_InputIterator __first, _InputIterator __last)
362 // Check whether it's an integral type. If so, it's not an iterator.
363 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
364 _M_assign_dispatch(__first, __last, _Integral());
367 /// Get a copy of the memory allocation object.
368 using _Base::get_allocator;
370 // iterators
372 * Returns a read/write iterator that points to the first
373 * element in the %vector. Iteration is done in ordinary
374 * element order.
376 iterator
377 begin()
378 { return iterator(this->_M_impl._M_start); }
381 * Returns a read-only (constant) iterator that points to the
382 * first element in the %vector. Iteration is done in ordinary
383 * element order.
385 const_iterator
386 begin() const
387 { return const_iterator(this->_M_impl._M_start); }
390 * Returns a read/write iterator that points one past the last
391 * element in the %vector. Iteration is done in ordinary
392 * element order.
394 iterator
395 end()
396 { return iterator(this->_M_impl._M_finish); }
399 * Returns a read-only (constant) iterator that points one past
400 * the last element in the %vector. Iteration is done in
401 * ordinary element order.
403 const_iterator
404 end() const
405 { return const_iterator(this->_M_impl._M_finish); }
408 * Returns a read/write reverse iterator that points to the
409 * last element in the %vector. Iteration is done in reverse
410 * element order.
412 reverse_iterator
413 rbegin()
414 { return reverse_iterator(end()); }
417 * Returns a read-only (constant) reverse iterator that points
418 * to the last element in the %vector. Iteration is done in
419 * reverse element order.
421 const_reverse_iterator
422 rbegin() const
423 { return const_reverse_iterator(end()); }
426 * Returns a read/write reverse iterator that points to one
427 * before the first element in the %vector. Iteration is done
428 * in reverse element order.
430 reverse_iterator
431 rend()
432 { return reverse_iterator(begin()); }
435 * Returns a read-only (constant) reverse iterator that points
436 * to one before the first element in the %vector. Iteration
437 * is done in reverse element order.
439 const_reverse_iterator
440 rend() const
441 { return const_reverse_iterator(begin()); }
443 #ifdef __GXX_EXPERIMENTAL_CXX0X__
445 * Returns a read-only (constant) iterator that points to the
446 * first element in the %vector. Iteration is done in ordinary
447 * element order.
449 const_iterator
450 cbegin() const
451 { return const_iterator(this->_M_impl._M_start); }
454 * Returns a read-only (constant) iterator that points one past
455 * the last element in the %vector. Iteration is done in
456 * ordinary element order.
458 const_iterator
459 cend() const
460 { return const_iterator(this->_M_impl._M_finish); }
463 * Returns a read-only (constant) reverse iterator that points
464 * to the last element in the %vector. Iteration is done in
465 * reverse element order.
467 const_reverse_iterator
468 crbegin() const
469 { return const_reverse_iterator(end()); }
472 * Returns a read-only (constant) reverse iterator that points
473 * to one before the first element in the %vector. Iteration
474 * is done in reverse element order.
476 const_reverse_iterator
477 crend() const
478 { return const_reverse_iterator(begin()); }
479 #endif
481 // [23.2.4.2] capacity
482 /** Returns the number of elements in the %vector. */
483 size_type
484 size() const
485 { return size_type(this->_M_impl._M_finish - this->_M_impl._M_start); }
487 /** Returns the size() of the largest possible %vector. */
488 size_type
489 max_size() const
490 { return _M_get_Tp_allocator().max_size(); }
493 * @brief Resizes the %vector to the specified number of elements.
494 * @param new_size Number of elements the %vector should contain.
495 * @param x Data with which new elements should be populated.
497 * This function will %resize the %vector to the specified
498 * number of elements. If the number is smaller than the
499 * %vector's current size the %vector is truncated, otherwise
500 * the %vector is extended and new elements are populated with
501 * given data.
503 void
504 resize(size_type __new_size, value_type __x = value_type())
506 if (__new_size < size())
507 _M_erase_at_end(this->_M_impl._M_start + __new_size);
508 else
509 insert(end(), __new_size - size(), __x);
513 * Returns the total number of elements that the %vector can
514 * hold before needing to allocate more memory.
516 size_type
517 capacity() const
518 { return size_type(this->_M_impl._M_end_of_storage
519 - this->_M_impl._M_start); }
522 * Returns true if the %vector is empty. (Thus begin() would
523 * equal end().)
525 bool
526 empty() const
527 { return begin() == end(); }
530 * @brief Attempt to preallocate enough memory for specified number of
531 * elements.
532 * @param n Number of elements required.
533 * @throw std::length_error If @a n exceeds @c max_size().
535 * This function attempts to reserve enough memory for the
536 * %vector to hold the specified number of elements. If the
537 * number requested is more than max_size(), length_error is
538 * thrown.
540 * The advantage of this function is that if optimal code is a
541 * necessity and the user can determine the number of elements
542 * that will be required, the user can reserve the memory in
543 * %advance, and thus prevent a possible reallocation of memory
544 * and copying of %vector data.
546 void
547 reserve(size_type __n);
549 // element access
551 * @brief Subscript access to the data contained in the %vector.
552 * @param n The index of the element for which data should be
553 * accessed.
554 * @return Read/write reference to data.
556 * This operator allows for easy, array-style, data access.
557 * Note that data access with this operator is unchecked and
558 * out_of_range lookups are not defined. (For checked lookups
559 * see at().)
561 reference
562 operator[](size_type __n)
563 { return *(this->_M_impl._M_start + __n); }
566 * @brief Subscript access to the data contained in the %vector.
567 * @param n The index of the element for which data should be
568 * accessed.
569 * @return Read-only (constant) reference to data.
571 * This operator allows for easy, array-style, data access.
572 * Note that data access with this operator is unchecked and
573 * out_of_range lookups are not defined. (For checked lookups
574 * see at().)
576 const_reference
577 operator[](size_type __n) const
578 { return *(this->_M_impl._M_start + __n); }
580 protected:
581 /// Safety check used only from at().
582 void
583 _M_range_check(size_type __n) const
585 if (__n >= this->size())
586 __throw_out_of_range(__N("vector::_M_range_check"));
589 public:
591 * @brief Provides access to the data contained in the %vector.
592 * @param n The index of the element for which data should be
593 * accessed.
594 * @return Read/write reference to data.
595 * @throw std::out_of_range If @a n is an invalid index.
597 * This function provides for safer data access. The parameter
598 * is first checked that it is in the range of the vector. The
599 * function throws out_of_range if the check fails.
601 reference
602 at(size_type __n)
604 _M_range_check(__n);
605 return (*this)[__n];
609 * @brief Provides access to the data contained in the %vector.
610 * @param n The index of the element for which data should be
611 * accessed.
612 * @return Read-only (constant) reference to data.
613 * @throw std::out_of_range If @a n is an invalid index.
615 * This function provides for safer data access. The parameter
616 * is first checked that it is in the range of the vector. The
617 * function throws out_of_range if the check fails.
619 const_reference
620 at(size_type __n) const
622 _M_range_check(__n);
623 return (*this)[__n];
627 * Returns a read/write reference to the data at the first
628 * element of the %vector.
630 reference
631 front()
632 { return *begin(); }
635 * Returns a read-only (constant) reference to the data at the first
636 * element of the %vector.
638 const_reference
639 front() const
640 { return *begin(); }
643 * Returns a read/write reference to the data at the last
644 * element of the %vector.
646 reference
647 back()
648 { return *(end() - 1); }
651 * Returns a read-only (constant) reference to the data at the
652 * last element of the %vector.
654 const_reference
655 back() const
656 { return *(end() - 1); }
658 // _GLIBCXX_RESOLVE_LIB_DEFECTS
659 // DR 464. Suggestion for new member functions in standard containers.
660 // data access
662 * Returns a pointer such that [data(), data() + size()) is a valid
663 * range. For a non-empty %vector, data() == &front().
665 pointer
666 data()
667 { return pointer(this->_M_impl._M_start); }
669 const_pointer
670 data() const
671 { return const_pointer(this->_M_impl._M_start); }
673 // [23.2.4.3] modifiers
675 * @brief Add data to the end of the %vector.
676 * @param x Data to be added.
678 * This is a typical stack operation. The function creates an
679 * element at the end of the %vector and assigns the given data
680 * to it. Due to the nature of a %vector this operation can be
681 * done in constant time if the %vector has preallocated space
682 * available.
684 #ifndef __GXX_EXPERIMENTAL_CXX0X__
685 void
686 push_back(const value_type& __x)
688 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
690 this->_M_impl.construct(this->_M_impl._M_finish, __x);
691 ++this->_M_impl._M_finish;
693 else
694 _M_insert_aux(end(), __x);
696 #else
697 template<typename... _Args>
698 void
699 push_back(_Args&&... __args)
701 if (this->_M_impl._M_finish != this->_M_impl._M_end_of_storage)
703 this->_M_impl.construct(this->_M_impl._M_finish,
704 std::forward<_Args>(__args)...);
705 ++this->_M_impl._M_finish;
707 else
708 _M_insert_aux(end(), std::forward<_Args>(__args)...);
710 #endif
713 * @brief Removes last element.
715 * This is a typical stack operation. It shrinks the %vector by one.
717 * Note that no data is returned, and if the last element's
718 * data is needed, it should be retrieved before pop_back() is
719 * called.
721 void
722 pop_back()
724 --this->_M_impl._M_finish;
725 this->_M_impl.destroy(this->_M_impl._M_finish);
728 #ifdef __GXX_EXPERIMENTAL_CXX0X__
730 * @brief Inserts an object in %vector before specified iterator.
731 * @param position An iterator into the %vector.
732 * @param args Arguments.
733 * @return An iterator that points to the inserted data.
735 * This function will insert an object of type T constructed
736 * with T(std::forward<Args>(args)...) before the specified location.
737 * Note that this kind of operation could be expensive for a %vector
738 * and if it is frequently used the user should consider using
739 * std::list.
741 template<typename... _Args>
742 iterator
743 emplace(iterator __position, _Args&&... __args);
744 #endif
747 * @brief Inserts given value into %vector before specified iterator.
748 * @param position An iterator into the %vector.
749 * @param x Data to be inserted.
750 * @return An iterator that points to the inserted data.
752 * This function will insert a copy of the given value before
753 * the specified location. Note that this kind of operation
754 * could be expensive for a %vector and if it is frequently
755 * used the user should consider using std::list.
757 iterator
758 insert(iterator __position, const value_type& __x);
760 #ifdef __GXX_EXPERIMENTAL_CXX0X__
762 * @brief Inserts given rvalue into %vector before specified iterator.
763 * @param position An iterator into the %vector.
764 * @param x Data to be inserted.
765 * @return An iterator that points to the inserted data.
767 * This function will insert a copy of the given rvalue before
768 * the specified location. Note that this kind of operation
769 * could be expensive for a %vector and if it is frequently
770 * used the user should consider using std::list.
772 iterator
773 insert(iterator __position, value_type&& __x)
774 { return emplace(__position, std::move(__x)); }
775 #endif
778 * @brief Inserts a number of copies of given data into the %vector.
779 * @param position An iterator into the %vector.
780 * @param n Number of elements to be inserted.
781 * @param x Data to be inserted.
783 * This function will insert a specified number of copies of
784 * the given data before the location specified by @a position.
786 * Note that this kind of operation could be expensive for a
787 * %vector and if it is frequently used the user should
788 * consider using std::list.
790 void
791 insert(iterator __position, size_type __n, const value_type& __x)
792 { _M_fill_insert(__position, __n, __x); }
795 * @brief Inserts a range into the %vector.
796 * @param position An iterator into the %vector.
797 * @param first An input iterator.
798 * @param last An input iterator.
800 * This function will insert copies of the data in the range
801 * [first,last) into the %vector before the location specified
802 * by @a pos.
804 * Note that this kind of operation could be expensive for a
805 * %vector and if it is frequently used the user should
806 * consider using std::list.
808 template<typename _InputIterator>
809 void
810 insert(iterator __position, _InputIterator __first,
811 _InputIterator __last)
813 // Check whether it's an integral type. If so, it's not an iterator.
814 typedef typename std::__is_integer<_InputIterator>::__type _Integral;
815 _M_insert_dispatch(__position, __first, __last, _Integral());
819 * @brief Remove element at given position.
820 * @param position Iterator pointing to element to be erased.
821 * @return An iterator pointing to the next element (or end()).
823 * This function will erase the element at the given position and thus
824 * shorten the %vector by one.
826 * Note This operation could be expensive and if it is
827 * frequently used the user should consider using std::list.
828 * The user is also cautioned that this function only erases
829 * the element, and that if the element is itself a pointer,
830 * the pointed-to memory is not touched in any way. Managing
831 * the pointer is the user's responsibility.
833 iterator
834 erase(iterator __position);
837 * @brief Remove a range of elements.
838 * @param first Iterator pointing to the first element to be erased.
839 * @param last Iterator pointing to one past the last element to be
840 * erased.
841 * @return An iterator pointing to the element pointed to by @a last
842 * prior to erasing (or end()).
844 * This function will erase the elements in the range [first,last) and
845 * shorten the %vector accordingly.
847 * Note This operation could be expensive and if it is
848 * frequently used the user should consider using std::list.
849 * The user is also cautioned that this function only erases
850 * the elements, and that if the elements themselves are
851 * pointers, the pointed-to memory is not touched in any way.
852 * Managing the pointer is the user's responsibility.
854 iterator
855 erase(iterator __first, iterator __last);
858 * @brief Swaps data with another %vector.
859 * @param x A %vector of the same element and allocator types.
861 * This exchanges the elements between two vectors in constant time.
862 * (Three pointers, so it should be quite fast.)
863 * Note that the global std::swap() function is specialized such that
864 * std::swap(v1,v2) will feed to this function.
866 void
867 #ifdef __GXX_EXPERIMENTAL_CXX0X__
868 swap(vector&& __x)
869 #else
870 swap(vector& __x)
871 #endif
873 std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
874 std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
875 std::swap(this->_M_impl._M_end_of_storage,
876 __x._M_impl._M_end_of_storage);
878 // _GLIBCXX_RESOLVE_LIB_DEFECTS
879 // 431. Swapping containers with unequal allocators.
880 std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
881 __x._M_get_Tp_allocator());
885 * Erases all the elements. Note that this function only erases the
886 * elements, and that if the elements themselves are pointers, the
887 * pointed-to memory is not touched in any way. Managing the pointer is
888 * the user's responsibility.
890 void
891 clear()
892 { _M_erase_at_end(this->_M_impl._M_start); }
894 protected:
896 * Memory expansion handler. Uses the member allocation function to
897 * obtain @a n bytes of memory, and then copies [first,last) into it.
899 template<typename _ForwardIterator>
900 pointer
901 _M_allocate_and_copy(size_type __n,
902 _ForwardIterator __first, _ForwardIterator __last)
904 pointer __result = this->_M_allocate(__n);
907 std::__uninitialized_copy_a(__first, __last, __result,
908 _M_get_Tp_allocator());
909 return __result;
911 catch(...)
913 _M_deallocate(__result, __n);
914 __throw_exception_again;
919 // Internal constructor functions follow.
921 // Called by the range constructor to implement [23.1.1]/9
923 // _GLIBCXX_RESOLVE_LIB_DEFECTS
924 // 438. Ambiguity in the "do the right thing" clause
925 template<typename _Integer>
926 void
927 _M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
929 this->_M_impl._M_start = _M_allocate(static_cast<size_type>(__n));
930 this->_M_impl._M_end_of_storage =
931 this->_M_impl._M_start + static_cast<size_type>(__n);
932 _M_fill_initialize(static_cast<size_type>(__n), __value);
935 // Called by the range constructor to implement [23.1.1]/9
936 template<typename _InputIterator>
937 void
938 _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
939 __false_type)
941 typedef typename std::iterator_traits<_InputIterator>::
942 iterator_category _IterCategory;
943 _M_range_initialize(__first, __last, _IterCategory());
946 // Called by the second initialize_dispatch above
947 template<typename _InputIterator>
948 void
949 _M_range_initialize(_InputIterator __first,
950 _InputIterator __last, std::input_iterator_tag)
952 for (; __first != __last; ++__first)
953 push_back(*__first);
956 // Called by the second initialize_dispatch above
957 template<typename _ForwardIterator>
958 void
959 _M_range_initialize(_ForwardIterator __first,
960 _ForwardIterator __last, std::forward_iterator_tag)
962 const size_type __n = std::distance(__first, __last);
963 this->_M_impl._M_start = this->_M_allocate(__n);
964 this->_M_impl._M_end_of_storage = this->_M_impl._M_start + __n;
965 this->_M_impl._M_finish =
966 std::__uninitialized_copy_a(__first, __last,
967 this->_M_impl._M_start,
968 _M_get_Tp_allocator());
971 // Called by the first initialize_dispatch above and by the
972 // vector(n,value,a) constructor.
973 void
974 _M_fill_initialize(size_type __n, const value_type& __value)
976 std::__uninitialized_fill_n_a(this->_M_impl._M_start, __n, __value,
977 _M_get_Tp_allocator());
978 this->_M_impl._M_finish = this->_M_impl._M_end_of_storage;
982 // Internal assign functions follow. The *_aux functions do the actual
983 // assignment work for the range versions.
985 // Called by the range assign to implement [23.1.1]/9
987 // _GLIBCXX_RESOLVE_LIB_DEFECTS
988 // 438. Ambiguity in the "do the right thing" clause
989 template<typename _Integer>
990 void
991 _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
992 { _M_fill_assign(__n, __val); }
994 // Called by the range assign to implement [23.1.1]/9
995 template<typename _InputIterator>
996 void
997 _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
998 __false_type)
1000 typedef typename std::iterator_traits<_InputIterator>::
1001 iterator_category _IterCategory;
1002 _M_assign_aux(__first, __last, _IterCategory());
1005 // Called by the second assign_dispatch above
1006 template<typename _InputIterator>
1007 void
1008 _M_assign_aux(_InputIterator __first, _InputIterator __last,
1009 std::input_iterator_tag);
1011 // Called by the second assign_dispatch above
1012 template<typename _ForwardIterator>
1013 void
1014 _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1015 std::forward_iterator_tag);
1017 // Called by assign(n,t), and the range assign when it turns out
1018 // to be the same thing.
1019 void
1020 _M_fill_assign(size_type __n, const value_type& __val);
1023 // Internal insert functions follow.
1025 // Called by the range insert to implement [23.1.1]/9
1027 // _GLIBCXX_RESOLVE_LIB_DEFECTS
1028 // 438. Ambiguity in the "do the right thing" clause
1029 template<typename _Integer>
1030 void
1031 _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
1032 __true_type)
1033 { _M_fill_insert(__pos, __n, __val); }
1035 // Called by the range insert to implement [23.1.1]/9
1036 template<typename _InputIterator>
1037 void
1038 _M_insert_dispatch(iterator __pos, _InputIterator __first,
1039 _InputIterator __last, __false_type)
1041 typedef typename std::iterator_traits<_InputIterator>::
1042 iterator_category _IterCategory;
1043 _M_range_insert(__pos, __first, __last, _IterCategory());
1046 // Called by the second insert_dispatch above
1047 template<typename _InputIterator>
1048 void
1049 _M_range_insert(iterator __pos, _InputIterator __first,
1050 _InputIterator __last, std::input_iterator_tag);
1052 // Called by the second insert_dispatch above
1053 template<typename _ForwardIterator>
1054 void
1055 _M_range_insert(iterator __pos, _ForwardIterator __first,
1056 _ForwardIterator __last, std::forward_iterator_tag);
1058 // Called by insert(p,n,x), and the range insert when it turns out to be
1059 // the same thing.
1060 void
1061 _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1063 // Called by insert(p,x)
1064 #ifndef __GXX_EXPERIMENTAL_CXX0X__
1065 void
1066 _M_insert_aux(iterator __position, const value_type& __x);
1067 #else
1068 template<typename... _Args>
1069 void
1070 _M_insert_aux(iterator __position, _Args&&... __args);
1071 #endif
1073 // Called by the latter.
1074 size_type
1075 _M_check_len(size_type __n, const char* __s) const
1077 if (max_size() - size() < __n)
1078 __throw_length_error(__N(__s));
1080 const size_type __len = size() + std::max(size(), __n);
1081 return (__len < size() || __len > max_size()) ? max_size() : __len;
1084 // Internal erase functions follow.
1086 // Called by erase(q1,q2), clear(), resize(), _M_fill_assign,
1087 // _M_assign_aux.
1088 void
1089 _M_erase_at_end(pointer __pos)
1091 std::_Destroy(__pos, this->_M_impl._M_finish, _M_get_Tp_allocator());
1092 this->_M_impl._M_finish = __pos;
1098 * @brief Vector equality comparison.
1099 * @param x A %vector.
1100 * @param y A %vector of the same type as @a x.
1101 * @return True iff the size and elements of the vectors are equal.
1103 * This is an equivalence relation. It is linear in the size of the
1104 * vectors. Vectors are considered equivalent if their sizes are equal,
1105 * and if corresponding elements compare equal.
1107 template<typename _Tp, typename _Alloc>
1108 inline bool
1109 operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1110 { return (__x.size() == __y.size()
1111 && std::equal(__x.begin(), __x.end(), __y.begin())); }
1114 * @brief Vector ordering relation.
1115 * @param x A %vector.
1116 * @param y A %vector of the same type as @a x.
1117 * @return True iff @a x is lexicographically less than @a y.
1119 * This is a total ordering relation. It is linear in the size of the
1120 * vectors. The elements must be comparable with @c <.
1122 * See std::lexicographical_compare() for how the determination is made.
1124 template<typename _Tp, typename _Alloc>
1125 inline bool
1126 operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1127 { return std::lexicographical_compare(__x.begin(), __x.end(),
1128 __y.begin(), __y.end()); }
1130 /// Based on operator==
1131 template<typename _Tp, typename _Alloc>
1132 inline bool
1133 operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1134 { return !(__x == __y); }
1136 /// Based on operator<
1137 template<typename _Tp, typename _Alloc>
1138 inline bool
1139 operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1140 { return __y < __x; }
1142 /// Based on operator<
1143 template<typename _Tp, typename _Alloc>
1144 inline bool
1145 operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1146 { return !(__y < __x); }
1148 /// Based on operator<
1149 template<typename _Tp, typename _Alloc>
1150 inline bool
1151 operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
1152 { return !(__x < __y); }
1154 /// See std::vector::swap().
1155 template<typename _Tp, typename _Alloc>
1156 inline void
1157 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
1158 { __x.swap(__y); }
1160 #ifdef __GXX_EXPERIMENTAL_CXX0X__
1161 template<typename _Tp, typename _Alloc>
1162 inline void
1163 swap(vector<_Tp, _Alloc>&& __x, vector<_Tp, _Alloc>& __y)
1164 { __x.swap(__y); }
1166 template<typename _Tp, typename _Alloc>
1167 inline void
1168 swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>&& __y)
1169 { __x.swap(__y); }
1170 #endif
1172 _GLIBCXX_END_NESTED_NAMESPACE
1174 #endif /* _STL_VECTOR_H */