Merge -r 127928:132243 from trunk
[official-gcc.git] / libstdc++-v3 / doc / html / ext / pb_ds / ds_gen.html
blobec99c4d5f7ef1c8b948651c65c58feef4513e76c
1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
2 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
4 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
5 <head>
6 <meta name="generator" content=
7 "HTML Tidy for Linux/x86 (vers 12 April 2005), see www.w3.org" />
9 <title>Data-Structure Genericity</title>
10 <meta http-equiv="Content-Type" content=
11 "text/html; charset=us-ascii" />
12 </head>
14 <body>
15 <div id="page">
16 <h1>Data-Structure Genericity</h1>
18 <h2><a name="problem" id="problem">The Basic Problem</a></h2>
20 <p>The design attempts to address the following problem. When
21 writing a function manipulating a generic container object,
22 what is the behavior of the object? <i>E.g.</i>, suppose one
23 writes</p>
24 <pre>
25 <b>template</b>&lt;<b>typename</b> Cntnr&gt;
26 <b>void</b>
27 some_op_sequence(Cntnr &amp;r_container)
29 ...
31 </pre>then one needs to address the following questions in the body
32 of <tt>some_op_sequence</tt>:
34 <ol>
35 <li>Which types and methods does <tt>Cntnr</tt> support?
36 Containers based on hash tables can be queries for the
37 hash-functor type and object; this is meaningless for
38 tree-based containers. Containers based on trees can be
39 split, joined, or can erase iterators and return the
40 following iterator; this cannot be done by hash-based
41 containers.</li>
43 <li>What are the guarantees of <tt>Cntnr</tt>? A container
44 based on a probing hash-table invalidates all iterators when
45 it is modified; this is not the case for containers based on
46 node-based trees. Containers based on a node-based tree can
47 be split or joined without exceptions; this is not the case
48 for containers based on vector-based trees.</li>
50 <li>How does the container maintain its elements? Tree-based
51 and Trie-based containers store elements by key order;
52 others, typically, do not. A container based on a splay trees
53 or lists with update policies "cache" "frequently accessed"
54 elements; containers based on most other underlying
55 data structures do not.</li>
56 </ol>
58 <p>The remainder of this section deals with these issues.</p>
60 <h2><a name="ds_hierarchy" id="ds_hierarchy">Container
61 Hierarchy</a></h2>
63 <p>Figure <a href="#cd">Container class hierarchy</a> shows the
64 container hierarchy.</p>
66 <h6 class="c1"><a name="cd" id="cd"><img src="container_cd.png" alt=
67 "no image" /></a></h6>
69 <h6 class="c1">Container class hierarchy.</h6>
71 <ol>
72 <li><a href=
73 "container_base.html"><tt>container_base</tt></a> is an
74 abstract base class for associative containers.</li>
76 <li>Tree-Like-Based Associative-Containers:
78 <ol>
79 <li><a href=
80 "basic_tree.html"><tt>basic_tree</tt></a>
81 is an abstract base class for tree-like-based
82 associative-containers</li>
84 <li><a href=
85 "tree.html"><tt>tree</tt></a>
86 is a concrete base class for tree-based
87 associative-containers</li>
89 <li><a href=
90 "trie.html"><tt>trie</tt></a>
91 is a concrete base class trie-based
92 associative-containers</li>
93 </ol>
94 </li>
96 <li>Hash-Based Associative-Containers:
98 <ol>
99 <li><a href=
100 "basic_hash_table.html"><tt>basic_hash_table</tt></a>
101 is an abstract base class for hash-based
102 associative-containers</li>
104 <li><a href=
105 "cc_hash_table.html"><tt>cc_hash_table</tt></a>
106 is a concrete collision-chaining hash-based
107 associative-containers</li>
109 <li><a href=
110 "gp_hash_table.html"><tt>gp_hash_table</tt></a>
111 is a concrete (general) probing hash-based
112 associative-containers</li>
113 </ol>
114 </li>
116 <li>List-Based Associative-Containers:
118 <ol>
119 <li><a href=
120 "list_update.html"><tt>list_update</tt></a> -
121 list-based update-policy associative container</li>
122 </ol>
123 </li>
124 </ol>
126 <p>The hierarchy is composed naturally so that commonality is
127 captured by base classes. Thus <tt><b>operator[]</b></tt> is
128 defined <a href=
129 "container_base.html"><tt>container_base</tt></a>, since
130 all containers support it. Conversely <tt>split</tt> is defined
131 in <a href=
132 "basic_tree.html"><tt>basic_tree</tt></a>,
133 since only tree-like containers support it. <a href=
134 "#container_traits">Data-Structure Tags and Traits</a> discusses how
135 to query which types and methods each container supports.</p>
137 <h2><a name="container_traits" id="container_traits">Data-Structure Tags and
138 Traits</a></h2>
140 <p>Tags and traits are very useful for manipulating generic
141 types. For example, if <tt>It</tt> is an iterator class, then
142 <tt><b>typename</b> It::iterator_category</tt> or
143 <tt><b>typename</b>
144 std::iterator_traits&lt;It&gt;::iterator_category</tt> will
145 yield its category, and <tt><b>typename</b>
146 std::iterator_traits&lt;It&gt;::value_type</tt> will yield its
147 value type.</p>
149 <p><tt>pb_ds</tt> contains a tag hierarchy corresponding to the
150 hierarchy in Figure <a href="#cd">Class hierarchy</a>. The tag
151 hierarchy is shown in Figure <a href=
152 "#tag_cd">Data-structure tag class hierarchy</a>.</p>
154 <h6 class="c1"><a name="tag_cd" id="tag_cd"><img src=
155 "assoc_container_tag_cd.png" alt="no image" /></a></h6>
157 <h6 class="c1">Data-structure tag class hierarchy.</h6>
159 <p><a href=
160 "container_base.html"><tt>container_base</tt></a>
161 publicly defines <tt>container_category</tt> as one of the classes in
162 Figure <a href="#tag_cd">Data-structure tag class
163 hierarchy</a>. Given any container <tt>Cntnr</tt>, the tag of
164 the underlying data structure can be found via
165 <tt><b>typename</b> Cntnr::container_category</tt>.</p>
167 <p>Additionally, a traits mechanism can be used to query a
168 container type for its attributes. Given any container
169 <tt>Cntnr</tt>, then <tt><a href=
170 "assoc_container_traits.html">__gnu_pbds::container_traits</a>&lt;Cntnr&gt;</tt>
171 is a traits class identifying the properties of the
172 container.</p>
174 <p>To find if a container can throw when a key is erased (which
175 is true for vector-based trees, for example), one can
176 use</p><a href=
177 "assoc_container_traits.html"><tt>container_traits</tt></a><tt>&lt;Cntnr&gt;::erase_can_throw</tt>,
178 for example.
180 <p>Some of the definitions in <a href=
181 "assoc_container_traits.html"><tt>container_traits</tt></a> are
182 dependent on other definitions. <i>E.g.</i>, if <a href=
183 "assoc_container_traits.html"><tt>container_traits</tt></a><tt>&lt;Cntnr&gt;::order_preserving</tt>
184 is <tt><b>true</b></tt> (which is the case for containers based
185 on trees and tries), then the container can be split or joined;
186 in this case, <a href=
187 "assoc_container_traits.html"><tt>container_traits</tt></a><tt>&lt;Cntnr&gt;::split_join_can_throw</tt>
188 indicates whether splits or joins can throw exceptions (which
189 is true for vector-based trees); otherwise <a href=
190 "assoc_container_traits.html"><tt>container_traits</tt></a><tt>&lt;Cntnr&gt;::split_join_can_throw</tt>
191 will yield a compilation error. (This is somewhat similar to a
192 compile-time version of the COM model [<a href=
193 "references.html#mscom">mscom</a>]).</p>
195 <h2><a name="find_range" id="find_range">Point-Type and
196 Range-Type Methods and Iterators</a></h2>
198 <h3><a name="it_unordered" id="it_unordered">Iterators in
199 Unordered Container Types</a></h3>
201 <p><tt>pb_ds</tt> differentiates between two types of methods
202 and iterators: point-type methods and iterators, and range-type
203 methods and iterators (see <a href=
204 "motivation.html#assoc_diff_it">Motivation::Associative
205 Containers::Differentiating between Iterator Types</a> and
206 <a href="tutorial.html#assoc_find_range">Tutorial::Associative
207 Containers::Point-Type and Range-Type Methods and
208 Iterators</a>). Each associative container's interface includes
209 the methods:</p>
210 <pre>
211 const_point_iterator
212 find(const_key_reference r_key) const;
214 point_iterator
215 find(const_key_reference r_key);
217 std::pair&lt;point_iterator,<b>bool</b>&gt;
218 insert(const_reference r_val);
219 </pre>
221 <p>The relationship between these iterator types varies between
222 container types. Figure <a href=
223 "#point_iterators_cd">Point-type and range-type iterators</a>-A
224 shows the most general invariant between point-type and
225 range-type iterators: <tt>iterator</tt>, <i>e.g.</i>, can
226 always be converted to <tt>point_iterator</tt>. Figure <a href=
227 "#point_iterators_cd">Point-type and range-type iterators</a>-B
228 shows invariants for order-preserving containers: point-type
229 iterators are synonymous with range-type iterators.
230 Orthogonally, Figure <a href="#point_iterators_cd">Point-type
231 and range-type iterators</a>-C shows invariants for "set"
232 containers: iterators are synonymous with const iterators.</p>
234 <h6 class="c1"><a name="point_iterators_cd" id=
235 "point_iterators_cd"><img src="point_iterators_cd.png" alt=
236 "no image" /></a></h6>
238 <h6 class="c1">Point-type and range-type iterators.</h6>
240 <p>Note that point-type iterators in self-organizing containers
241 (<i>e.g.</i>, hash-based associative containers) lack movement
242 operators, such as <tt><b>operator++</b></tt> - in fact, this
243 is the reason why <tt>pb_ds</tt> differentiates from the STL's
244 design on this point.</p>
246 <p>Typically, one can determine an iterator's movement
247 capabilities in the STL using
248 <tt>std::iterator_traits&lt;It&gt;iterator_category</tt>, which
249 is a <tt><b>struct</b></tt> indicating the iterator's movement
250 capabilities. Unfortunately, none of the STL's predefined
251 categories reflect a pointer's <u>not</u> having any movement
252 capabilities whatsoever. Consequently, <tt>pb_ds</tt> adds a
253 type <a href=
254 "trivial_iterator_tag.html"><tt>trivial_iterator_tag</tt></a>
255 (whose name is taken from a concept in [<a href=
256 "references.html#sgi_stl">sgi_stl</a>]), which is the category
257 of iterators with no movement capabilities. All other STL tags,
258 such as <tt>forward_iterator_tag</tt> retain their common
259 use.</p>
261 <h3><a name="inv_guar" id="inv_guar">Invalidation
262 Guarantees</a></h3>
264 <p><a href=
265 "motivation.html#assoc_inv_guar">Motivation::Associative
266 Containers::Differentiating between Iterator
267 Types::Invalidation Guarantees</a> posed a problem. Given three
268 different types of associative containers, a modifying
269 operation (in that example, <tt>erase</tt>) invalidated
270 iterators in three different ways: the iterator of one
271 container remained completely valid - it could be de-referenced
272 and incremented; the iterator of a different container could
273 not even be de-referenced; the iterator of the third container
274 could be de-referenced, but its "next" iterator changed
275 unpredictably.</p>
277 <p>Distinguishing between find and range types allows
278 fine-grained invalidation guarantees, because these questions
279 correspond exactly to the question of whether point-type
280 iterators and range-type iterators are valid. <a href=
281 "#invalidation_guarantee_cd">Invalidation guarantees class
282 hierarchy</a> shows tags corresponding to different types of
283 invalidation guarantees.</p>
285 <h6 class="c1"><a name="invalidation_guarantee_cd" id=
286 "invalidation_guarantee_cd"><img src=
287 "invalidation_guarantee_cd.png" alt="no image" /></a></h6>
289 <h6 class="c1">Invalidation guarantees class hierarchy.</h6>
291 <ol>
292 <li><a href=
293 "basic_invalidation_guarantee.html"><tt>basic_invalidation_guarantee</tt></a>
294 corresponds to a basic guarantee that a point-type iterator,
295 a found pointer, or a found reference, remains valid as long
296 as the container object is not modified.</li>
298 <li><a href=
299 "point_invalidation_guarantee.html"><tt>point_invalidation_guarantee</tt></a>
300 corresponds to a guarantee that a point-type iterator, a
301 found pointer, or a found reference, remains valid even if
302 the container object is modified.</li>
304 <li><a href=
305 "range_invalidation_guarantee.html"><tt>range_invalidation_guarantee</tt></a>
306 corresponds to a guarantee that a range-type iterator remains
307 valid even if the container object is modified.</li>
308 </ol>
310 <p>As shown in <a href=
311 "tutorial.html#assoc_find_range">Tutorial::Associative
312 Containers::Point-Type and Range-Type Methods and
313 Iterators</a>, to find the invalidation guarantee of a
314 container, one can use</p>
315 <pre>
316 <b>typename</b> <a href=
317 "assoc_container_traits.html">container_traits</a>&lt;Cntnr&gt;::invalidation_guarantee
318 </pre>
320 <p>which is one of the classes in Figure <a href=
321 "#invalidation_guarantee_cd">Invalidation guarantees class
322 hierarchy</a>.</p>
324 <p>Note that this hierarchy corresponds to the logic it
325 represents: if a container has range-invalidation guarantees,
326 then it must also have find invalidation guarantees;
327 correspondingly, its invalidation guarantee (in this case
328 <a href=
329 "range_invalidation_guarantee.html"><tt>range_invalidation_guarantee</tt></a>)
330 can be cast to its base class (in this case <a href=
331 "point_invalidation_guarantee.html"><tt>point_invalidation_guarantee</tt></a>).
332 This means that this this hierarchy can be used easily using
333 standard metaprogramming techniques, by specializing on the
334 type of <tt>invalidation_guarantee</tt>.</p>
336 <p>(These types of problems were addressed, in a more general
337 setting, in [<a href=
338 "references.html#meyers96more">meyers96more</a>] - Item 2. In
339 our opinion, an invalidation-guarantee hierarchy would solve
340 these problems in all container types - not just associative
341 containers.)</p>
342 </div>
343 </body>
344 </html>