Merge -r 127928:132243 from trunk
[official-gcc.git] / libgfortran / generated / product_i2.c
blob16793f89579579663129beed34f660c24333faa8
1 /* Implementation of the PRODUCT intrinsic
2 Copyright 2002, 2007 Free Software Foundation, Inc.
3 Contributed by Paul Brook <paul@nowt.org>
5 This file is part of the GNU Fortran 95 runtime library (libgfortran).
7 Libgfortran is free software; you can redistribute it and/or
8 modify it under the terms of the GNU General Public
9 License as published by the Free Software Foundation; either
10 version 2 of the License, or (at your option) any later version.
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
21 Libgfortran is distributed in the hope that it will be useful,
22 but WITHOUT ANY WARRANTY; without even the implied warranty of
23 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 GNU General Public License for more details.
26 You should have received a copy of the GNU General Public
27 License along with libgfortran; see the file COPYING. If not,
28 write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
29 Boston, MA 02110-1301, USA. */
31 #include "libgfortran.h"
32 #include <stdlib.h>
33 #include <assert.h>
36 #if defined (HAVE_GFC_INTEGER_2) && defined (HAVE_GFC_INTEGER_2)
39 extern void product_i2 (gfc_array_i2 * const restrict,
40 gfc_array_i2 * const restrict, const index_type * const restrict);
41 export_proto(product_i2);
43 void
44 product_i2 (gfc_array_i2 * const restrict retarray,
45 gfc_array_i2 * const restrict array,
46 const index_type * const restrict pdim)
48 index_type count[GFC_MAX_DIMENSIONS];
49 index_type extent[GFC_MAX_DIMENSIONS];
50 index_type sstride[GFC_MAX_DIMENSIONS];
51 index_type dstride[GFC_MAX_DIMENSIONS];
52 const GFC_INTEGER_2 * restrict base;
53 GFC_INTEGER_2 * restrict dest;
54 index_type rank;
55 index_type n;
56 index_type len;
57 index_type delta;
58 index_type dim;
60 /* Make dim zero based to avoid confusion. */
61 dim = (*pdim) - 1;
62 rank = GFC_DESCRIPTOR_RANK (array) - 1;
64 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
65 delta = array->dim[dim].stride;
67 for (n = 0; n < dim; n++)
69 sstride[n] = array->dim[n].stride;
70 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
72 if (extent[n] < 0)
73 extent[n] = 0;
75 for (n = dim; n < rank; n++)
77 sstride[n] = array->dim[n + 1].stride;
78 extent[n] =
79 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
81 if (extent[n] < 0)
82 extent[n] = 0;
85 if (retarray->data == NULL)
87 size_t alloc_size;
89 for (n = 0; n < rank; n++)
91 retarray->dim[n].lbound = 0;
92 retarray->dim[n].ubound = extent[n]-1;
93 if (n == 0)
94 retarray->dim[n].stride = 1;
95 else
96 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
99 retarray->offset = 0;
100 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
102 alloc_size = sizeof (GFC_INTEGER_2) * retarray->dim[rank-1].stride
103 * extent[rank-1];
105 if (alloc_size == 0)
107 /* Make sure we have a zero-sized array. */
108 retarray->dim[0].lbound = 0;
109 retarray->dim[0].ubound = -1;
110 return;
112 else
113 retarray->data = internal_malloc_size (alloc_size);
115 else
117 if (rank != GFC_DESCRIPTOR_RANK (retarray))
118 runtime_error ("rank of return array incorrect in"
119 " PRODUCT intrinsic: is %ld, should be %ld",
120 (long int) (GFC_DESCRIPTOR_RANK (retarray)),
121 (long int) rank);
123 if (compile_options.bounds_check)
125 for (n=0; n < rank; n++)
127 index_type ret_extent;
129 ret_extent = retarray->dim[n].ubound + 1
130 - retarray->dim[n].lbound;
131 if (extent[n] != ret_extent)
132 runtime_error ("Incorrect extent in return value of"
133 " PRODUCT intrinsic in dimension %ld:"
134 " is %ld, should be %ld", (long int) n + 1,
135 (long int) ret_extent, (long int) extent[n]);
140 for (n = 0; n < rank; n++)
142 count[n] = 0;
143 dstride[n] = retarray->dim[n].stride;
144 if (extent[n] <= 0)
145 len = 0;
148 base = array->data;
149 dest = retarray->data;
151 while (base)
153 const GFC_INTEGER_2 * restrict src;
154 GFC_INTEGER_2 result;
155 src = base;
158 result = 1;
159 if (len <= 0)
160 *dest = 1;
161 else
163 for (n = 0; n < len; n++, src += delta)
166 result *= *src;
168 *dest = result;
171 /* Advance to the next element. */
172 count[0]++;
173 base += sstride[0];
174 dest += dstride[0];
175 n = 0;
176 while (count[n] == extent[n])
178 /* When we get to the end of a dimension, reset it and increment
179 the next dimension. */
180 count[n] = 0;
181 /* We could precalculate these products, but this is a less
182 frequently used path so probably not worth it. */
183 base -= sstride[n] * extent[n];
184 dest -= dstride[n] * extent[n];
185 n++;
186 if (n == rank)
188 /* Break out of the look. */
189 base = NULL;
190 break;
192 else
194 count[n]++;
195 base += sstride[n];
196 dest += dstride[n];
203 extern void mproduct_i2 (gfc_array_i2 * const restrict,
204 gfc_array_i2 * const restrict, const index_type * const restrict,
205 gfc_array_l1 * const restrict);
206 export_proto(mproduct_i2);
208 void
209 mproduct_i2 (gfc_array_i2 * const restrict retarray,
210 gfc_array_i2 * const restrict array,
211 const index_type * const restrict pdim,
212 gfc_array_l1 * const restrict mask)
214 index_type count[GFC_MAX_DIMENSIONS];
215 index_type extent[GFC_MAX_DIMENSIONS];
216 index_type sstride[GFC_MAX_DIMENSIONS];
217 index_type dstride[GFC_MAX_DIMENSIONS];
218 index_type mstride[GFC_MAX_DIMENSIONS];
219 GFC_INTEGER_2 * restrict dest;
220 const GFC_INTEGER_2 * restrict base;
221 const GFC_LOGICAL_1 * restrict mbase;
222 int rank;
223 int dim;
224 index_type n;
225 index_type len;
226 index_type delta;
227 index_type mdelta;
228 int mask_kind;
230 dim = (*pdim) - 1;
231 rank = GFC_DESCRIPTOR_RANK (array) - 1;
233 len = array->dim[dim].ubound + 1 - array->dim[dim].lbound;
234 if (len <= 0)
235 return;
237 mbase = mask->data;
239 mask_kind = GFC_DESCRIPTOR_SIZE (mask);
241 if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
242 #ifdef HAVE_GFC_LOGICAL_16
243 || mask_kind == 16
244 #endif
246 mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
247 else
248 runtime_error ("Funny sized logical array");
250 delta = array->dim[dim].stride;
251 mdelta = mask->dim[dim].stride * mask_kind;
253 for (n = 0; n < dim; n++)
255 sstride[n] = array->dim[n].stride;
256 mstride[n] = mask->dim[n].stride * mask_kind;
257 extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
259 if (extent[n] < 0)
260 extent[n] = 0;
263 for (n = dim; n < rank; n++)
265 sstride[n] = array->dim[n + 1].stride;
266 mstride[n] = mask->dim[n + 1].stride * mask_kind;
267 extent[n] =
268 array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
270 if (extent[n] < 0)
271 extent[n] = 0;
274 if (retarray->data == NULL)
276 size_t alloc_size;
278 for (n = 0; n < rank; n++)
280 retarray->dim[n].lbound = 0;
281 retarray->dim[n].ubound = extent[n]-1;
282 if (n == 0)
283 retarray->dim[n].stride = 1;
284 else
285 retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
288 alloc_size = sizeof (GFC_INTEGER_2) * retarray->dim[rank-1].stride
289 * extent[rank-1];
291 retarray->offset = 0;
292 retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
294 if (alloc_size == 0)
296 /* Make sure we have a zero-sized array. */
297 retarray->dim[0].lbound = 0;
298 retarray->dim[0].ubound = -1;
299 return;
301 else
302 retarray->data = internal_malloc_size (alloc_size);
305 else
307 if (rank != GFC_DESCRIPTOR_RANK (retarray))
308 runtime_error ("rank of return array incorrect in PRODUCT intrinsic");
310 if (compile_options.bounds_check)
312 for (n=0; n < rank; n++)
314 index_type ret_extent;
316 ret_extent = retarray->dim[n].ubound + 1
317 - retarray->dim[n].lbound;
318 if (extent[n] != ret_extent)
319 runtime_error ("Incorrect extent in return value of"
320 " PRODUCT intrinsic in dimension %ld:"
321 " is %ld, should be %ld", (long int) n + 1,
322 (long int) ret_extent, (long int) extent[n]);
324 for (n=0; n<= rank; n++)
326 index_type mask_extent, array_extent;
328 array_extent = array->dim[n].ubound + 1 - array->dim[n].lbound;
329 mask_extent = mask->dim[n].ubound + 1 - mask->dim[n].lbound;
330 if (array_extent != mask_extent)
331 runtime_error ("Incorrect extent in MASK argument of"
332 " PRODUCT intrinsic in dimension %ld:"
333 " is %ld, should be %ld", (long int) n + 1,
334 (long int) mask_extent, (long int) array_extent);
339 for (n = 0; n < rank; n++)
341 count[n] = 0;
342 dstride[n] = retarray->dim[n].stride;
343 if (extent[n] <= 0)
344 return;
347 dest = retarray->data;
348 base = array->data;
350 while (base)
352 const GFC_INTEGER_2 * restrict src;
353 const GFC_LOGICAL_1 * restrict msrc;
354 GFC_INTEGER_2 result;
355 src = base;
356 msrc = mbase;
359 result = 1;
360 if (len <= 0)
361 *dest = 1;
362 else
364 for (n = 0; n < len; n++, src += delta, msrc += mdelta)
367 if (*msrc)
368 result *= *src;
370 *dest = result;
373 /* Advance to the next element. */
374 count[0]++;
375 base += sstride[0];
376 mbase += mstride[0];
377 dest += dstride[0];
378 n = 0;
379 while (count[n] == extent[n])
381 /* When we get to the end of a dimension, reset it and increment
382 the next dimension. */
383 count[n] = 0;
384 /* We could precalculate these products, but this is a less
385 frequently used path so probably not worth it. */
386 base -= sstride[n] * extent[n];
387 mbase -= mstride[n] * extent[n];
388 dest -= dstride[n] * extent[n];
389 n++;
390 if (n == rank)
392 /* Break out of the look. */
393 base = NULL;
394 break;
396 else
398 count[n]++;
399 base += sstride[n];
400 mbase += mstride[n];
401 dest += dstride[n];
408 extern void sproduct_i2 (gfc_array_i2 * const restrict,
409 gfc_array_i2 * const restrict, const index_type * const restrict,
410 GFC_LOGICAL_4 *);
411 export_proto(sproduct_i2);
413 void
414 sproduct_i2 (gfc_array_i2 * const restrict retarray,
415 gfc_array_i2 * const restrict array,
416 const index_type * const restrict pdim,
417 GFC_LOGICAL_4 * mask)
419 index_type rank;
420 index_type n;
421 index_type dstride;
422 GFC_INTEGER_2 *dest;
424 if (*mask)
426 product_i2 (retarray, array, pdim);
427 return;
429 rank = GFC_DESCRIPTOR_RANK (array);
430 if (rank <= 0)
431 runtime_error ("Rank of array needs to be > 0");
433 if (retarray->data == NULL)
435 retarray->dim[0].lbound = 0;
436 retarray->dim[0].ubound = rank-1;
437 retarray->dim[0].stride = 1;
438 retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
439 retarray->offset = 0;
440 retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_2) * rank);
442 else
444 if (compile_options.bounds_check)
446 int ret_rank;
447 index_type ret_extent;
449 ret_rank = GFC_DESCRIPTOR_RANK (retarray);
450 if (ret_rank != 1)
451 runtime_error ("rank of return array in PRODUCT intrinsic"
452 " should be 1, is %ld", (long int) ret_rank);
454 ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
455 if (ret_extent != rank)
456 runtime_error ("dimension of return array incorrect");
459 dstride = retarray->dim[0].stride;
460 dest = retarray->data;
462 for (n = 0; n < rank; n++)
463 dest[n * dstride] = 1 ;
466 #endif