Merge -r 127928:132243 from trunk
[official-gcc.git] / gcc / tree-flow-inline.h
blob1afbd1a8fc79a0936ca03122d91ce147de1090f1
1 /* Inline functions for tree-flow.h
2 Copyright (C) 2001, 2003, 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #ifndef _TREE_FLOW_INLINE_H
22 #define _TREE_FLOW_INLINE_H 1
24 /* Inline functions for manipulating various data structures defined in
25 tree-flow.h. See tree-flow.h for documentation. */
27 /* Return true when gimple SSA form was built.
28 gimple_in_ssa_p is queried by gimplifier in various early stages before SSA
29 infrastructure is initialized. Check for presence of the datastructures
30 at first place. */
31 static inline bool
32 gimple_in_ssa_p (const struct function *fun)
34 return fun && fun->gimple_df && fun->gimple_df->in_ssa_p;
37 /* 'true' after aliases have been computed (see compute_may_aliases). */
38 static inline bool
39 gimple_aliases_computed_p (const struct function *fun)
41 gcc_assert (fun && fun->gimple_df);
42 return fun->gimple_df->aliases_computed_p;
45 /* Addressable variables in the function. If bit I is set, then
46 REFERENCED_VARS (I) has had its address taken. Note that
47 CALL_CLOBBERED_VARS and ADDRESSABLE_VARS are not related. An
48 addressable variable is not necessarily call-clobbered (e.g., a
49 local addressable whose address does not escape) and not all
50 call-clobbered variables are addressable (e.g., a local static
51 variable). */
52 static inline bitmap
53 gimple_addressable_vars (const struct function *fun)
55 gcc_assert (fun && fun->gimple_df);
56 return fun->gimple_df->addressable_vars;
59 /* Call clobbered variables in the function. If bit I is set, then
60 REFERENCED_VARS (I) is call-clobbered. */
61 static inline bitmap
62 gimple_call_clobbered_vars (const struct function *fun)
64 gcc_assert (fun && fun->gimple_df);
65 return fun->gimple_df->call_clobbered_vars;
68 /* Array of all variables referenced in the function. */
69 static inline htab_t
70 gimple_referenced_vars (const struct function *fun)
72 if (!fun->gimple_df)
73 return NULL;
74 return fun->gimple_df->referenced_vars;
77 /* Artificial variable used to model the effects of function calls. */
78 static inline tree
79 gimple_global_var (const struct function *fun)
81 gcc_assert (fun && fun->gimple_df);
82 return fun->gimple_df->global_var;
85 /* Artificial variable used to model the effects of nonlocal
86 variables. */
87 static inline tree
88 gimple_nonlocal_all (const struct function *fun)
90 gcc_assert (fun && fun->gimple_df);
91 return fun->gimple_df->nonlocal_all;
94 /* Hashtable of variables annotations. Used for static variables only;
95 local variables have direct pointer in the tree node. */
96 static inline htab_t
97 gimple_var_anns (const struct function *fun)
99 return fun->gimple_df->var_anns;
102 /* Initialize the hashtable iterator HTI to point to hashtable TABLE */
104 static inline void *
105 first_htab_element (htab_iterator *hti, htab_t table)
107 hti->htab = table;
108 hti->slot = table->entries;
109 hti->limit = hti->slot + htab_size (table);
112 PTR x = *(hti->slot);
113 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
114 break;
115 } while (++(hti->slot) < hti->limit);
117 if (hti->slot < hti->limit)
118 return *(hti->slot);
119 return NULL;
122 /* Return current non-empty/deleted slot of the hashtable pointed to by HTI,
123 or NULL if we have reached the end. */
125 static inline bool
126 end_htab_p (const htab_iterator *hti)
128 if (hti->slot >= hti->limit)
129 return true;
130 return false;
133 /* Advance the hashtable iterator pointed to by HTI to the next element of the
134 hashtable. */
136 static inline void *
137 next_htab_element (htab_iterator *hti)
139 while (++(hti->slot) < hti->limit)
141 PTR x = *(hti->slot);
142 if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
143 return x;
145 return NULL;
148 /* Initialize ITER to point to the first referenced variable in the
149 referenced_vars hashtable, and return that variable. */
151 static inline tree
152 first_referenced_var (referenced_var_iterator *iter)
154 return (tree) first_htab_element (&iter->hti,
155 gimple_referenced_vars (cfun));
158 /* Return true if we have hit the end of the referenced variables ITER is
159 iterating through. */
161 static inline bool
162 end_referenced_vars_p (const referenced_var_iterator *iter)
164 return end_htab_p (&iter->hti);
167 /* Make ITER point to the next referenced_var in the referenced_var hashtable,
168 and return that variable. */
170 static inline tree
171 next_referenced_var (referenced_var_iterator *iter)
173 return (tree) next_htab_element (&iter->hti);
176 /* Fill up VEC with the variables in the referenced vars hashtable. */
178 static inline void
179 fill_referenced_var_vec (VEC (tree, heap) **vec)
181 referenced_var_iterator rvi;
182 tree var;
183 *vec = NULL;
184 FOR_EACH_REFERENCED_VAR (var, rvi)
185 VEC_safe_push (tree, heap, *vec, var);
188 /* Return the variable annotation for T, which must be a _DECL node.
189 Return NULL if the variable annotation doesn't already exist. */
190 static inline var_ann_t
191 var_ann (const_tree t)
193 var_ann_t ann;
195 if (!MTAG_P (t)
196 && (TREE_STATIC (t) || DECL_EXTERNAL (t)))
198 struct static_var_ann_d *sann
199 = ((struct static_var_ann_d *)
200 htab_find_with_hash (gimple_var_anns (cfun), t, DECL_UID (t)));
201 if (!sann)
202 return NULL;
203 ann = &sann->ann;
205 else
207 if (!t->base.ann)
208 return NULL;
209 ann = (var_ann_t) t->base.ann;
212 gcc_assert (ann->common.type == VAR_ANN);
214 return ann;
217 /* Return the variable annotation for T, which must be a _DECL node.
218 Create the variable annotation if it doesn't exist. */
219 static inline var_ann_t
220 get_var_ann (tree var)
222 var_ann_t ann = var_ann (var);
223 return (ann) ? ann : create_var_ann (var);
226 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
227 Return NULL if the function annotation doesn't already exist. */
228 static inline function_ann_t
229 function_ann (const_tree t)
231 gcc_assert (t);
232 gcc_assert (TREE_CODE (t) == FUNCTION_DECL);
233 gcc_assert (!t->base.ann
234 || t->base.ann->common.type == FUNCTION_ANN);
236 return (function_ann_t) t->base.ann;
239 /* Return the function annotation for T, which must be a FUNCTION_DECL node.
240 Create the function annotation if it doesn't exist. */
241 static inline function_ann_t
242 get_function_ann (tree var)
244 function_ann_t ann = function_ann (var);
245 gcc_assert (!var->base.ann || var->base.ann->common.type == FUNCTION_ANN);
246 return (ann) ? ann : create_function_ann (var);
249 /* Return true if T has a statement annotation attached to it. */
251 static inline bool
252 has_stmt_ann (tree t)
254 #ifdef ENABLE_CHECKING
255 gcc_assert (is_gimple_stmt (t));
256 #endif
257 return t->base.ann && t->base.ann->common.type == STMT_ANN;
260 /* Return the statement annotation for T, which must be a statement
261 node. Return NULL if the statement annotation doesn't exist. */
262 static inline stmt_ann_t
263 stmt_ann (tree t)
265 #ifdef ENABLE_CHECKING
266 gcc_assert (is_gimple_stmt (t));
267 #endif
268 gcc_assert (!t->base.ann || t->base.ann->common.type == STMT_ANN);
269 return (stmt_ann_t) t->base.ann;
272 /* Return the statement annotation for T, which must be a statement
273 node. Create the statement annotation if it doesn't exist. */
274 static inline stmt_ann_t
275 get_stmt_ann (tree stmt)
277 stmt_ann_t ann = stmt_ann (stmt);
278 return (ann) ? ann : create_stmt_ann (stmt);
281 /* Return the annotation type for annotation ANN. */
282 static inline enum tree_ann_type
283 ann_type (tree_ann_t ann)
285 return ann->common.type;
288 /* Return the basic block for statement T. */
289 static inline basic_block
290 bb_for_stmt (tree t)
292 stmt_ann_t ann;
294 if (TREE_CODE (t) == PHI_NODE)
295 return PHI_BB (t);
297 ann = stmt_ann (t);
298 return ann ? ann->bb : NULL;
301 /* Return the may_aliases bitmap for variable VAR, or NULL if it has
302 no may aliases. */
303 static inline bitmap
304 may_aliases (const_tree var)
306 return MTAG_ALIASES (var);
309 /* Return the line number for EXPR, or return -1 if we have no line
310 number information for it. */
311 static inline int
312 get_lineno (const_tree expr)
314 if (expr == NULL_TREE)
315 return -1;
317 if (TREE_CODE (expr) == COMPOUND_EXPR)
318 expr = TREE_OPERAND (expr, 0);
320 if (! EXPR_HAS_LOCATION (expr))
321 return -1;
323 return EXPR_LINENO (expr);
326 /* Return true if T is a noreturn call. */
327 static inline bool
328 noreturn_call_p (tree t)
330 tree call = get_call_expr_in (t);
331 return call != 0 && (call_expr_flags (call) & ECF_NORETURN) != 0;
334 /* Mark statement T as modified. */
335 static inline void
336 mark_stmt_modified (tree t)
338 stmt_ann_t ann;
339 if (TREE_CODE (t) == PHI_NODE)
340 return;
342 ann = stmt_ann (t);
343 if (ann == NULL)
344 ann = create_stmt_ann (t);
345 else if (noreturn_call_p (t) && cfun->gimple_df)
346 VEC_safe_push (tree, gc, MODIFIED_NORETURN_CALLS (cfun), t);
347 ann->modified = 1;
350 /* Mark statement T as modified, and update it. */
351 static inline void
352 update_stmt (tree t)
354 if (TREE_CODE (t) == PHI_NODE)
355 return;
356 mark_stmt_modified (t);
357 update_stmt_operands (t);
360 static inline void
361 update_stmt_if_modified (tree t)
363 if (stmt_modified_p (t))
364 update_stmt_operands (t);
367 /* Return true if T is marked as modified, false otherwise. */
368 static inline bool
369 stmt_modified_p (tree t)
371 stmt_ann_t ann = stmt_ann (t);
373 /* Note that if the statement doesn't yet have an annotation, we consider it
374 modified. This will force the next call to update_stmt_operands to scan
375 the statement. */
376 return ann ? ann->modified : true;
379 /* Delink an immediate_uses node from its chain. */
380 static inline void
381 delink_imm_use (ssa_use_operand_t *linknode)
383 /* Return if this node is not in a list. */
384 if (linknode->prev == NULL)
385 return;
387 linknode->prev->next = linknode->next;
388 linknode->next->prev = linknode->prev;
389 linknode->prev = NULL;
390 linknode->next = NULL;
393 /* Link ssa_imm_use node LINKNODE into the chain for LIST. */
394 static inline void
395 link_imm_use_to_list (ssa_use_operand_t *linknode, ssa_use_operand_t *list)
397 /* Link the new node at the head of the list. If we are in the process of
398 traversing the list, we won't visit any new nodes added to it. */
399 linknode->prev = list;
400 linknode->next = list->next;
401 list->next->prev = linknode;
402 list->next = linknode;
405 /* Link ssa_imm_use node LINKNODE into the chain for DEF. */
406 static inline void
407 link_imm_use (ssa_use_operand_t *linknode, tree def)
409 ssa_use_operand_t *root;
411 if (!def || TREE_CODE (def) != SSA_NAME)
412 linknode->prev = NULL;
413 else
415 root = &(SSA_NAME_IMM_USE_NODE (def));
416 #ifdef ENABLE_CHECKING
417 if (linknode->use)
418 gcc_assert (*(linknode->use) == def);
419 #endif
420 link_imm_use_to_list (linknode, root);
424 /* Set the value of a use pointed to by USE to VAL. */
425 static inline void
426 set_ssa_use_from_ptr (use_operand_p use, tree val)
428 delink_imm_use (use);
429 *(use->use) = val;
430 link_imm_use (use, val);
433 /* Link ssa_imm_use node LINKNODE into the chain for DEF, with use occurring
434 in STMT. */
435 static inline void
436 link_imm_use_stmt (ssa_use_operand_t *linknode, tree def, tree stmt)
438 if (stmt)
439 link_imm_use (linknode, def);
440 else
441 link_imm_use (linknode, NULL);
442 linknode->stmt = stmt;
445 /* Relink a new node in place of an old node in the list. */
446 static inline void
447 relink_imm_use (ssa_use_operand_t *node, ssa_use_operand_t *old)
449 /* The node one had better be in the same list. */
450 gcc_assert (*(old->use) == *(node->use));
451 node->prev = old->prev;
452 node->next = old->next;
453 if (old->prev)
455 old->prev->next = node;
456 old->next->prev = node;
457 /* Remove the old node from the list. */
458 old->prev = NULL;
462 /* Relink ssa_imm_use node LINKNODE into the chain for OLD, with use occurring
463 in STMT. */
464 static inline void
465 relink_imm_use_stmt (ssa_use_operand_t *linknode, ssa_use_operand_t *old, tree stmt)
467 if (stmt)
468 relink_imm_use (linknode, old);
469 else
470 link_imm_use (linknode, NULL);
471 linknode->stmt = stmt;
475 /* Return true is IMM has reached the end of the immediate use list. */
476 static inline bool
477 end_readonly_imm_use_p (const imm_use_iterator *imm)
479 return (imm->imm_use == imm->end_p);
482 /* Initialize iterator IMM to process the list for VAR. */
483 static inline use_operand_p
484 first_readonly_imm_use (imm_use_iterator *imm, tree var)
486 gcc_assert (TREE_CODE (var) == SSA_NAME);
488 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
489 imm->imm_use = imm->end_p->next;
490 #ifdef ENABLE_CHECKING
491 imm->iter_node.next = imm->imm_use->next;
492 #endif
493 if (end_readonly_imm_use_p (imm))
494 return NULL_USE_OPERAND_P;
495 return imm->imm_use;
498 /* Bump IMM to the next use in the list. */
499 static inline use_operand_p
500 next_readonly_imm_use (imm_use_iterator *imm)
502 use_operand_p old = imm->imm_use;
504 #ifdef ENABLE_CHECKING
505 /* If this assertion fails, it indicates the 'next' pointer has changed
506 since the last bump. This indicates that the list is being modified
507 via stmt changes, or SET_USE, or somesuch thing, and you need to be
508 using the SAFE version of the iterator. */
509 gcc_assert (imm->iter_node.next == old->next);
510 imm->iter_node.next = old->next->next;
511 #endif
513 imm->imm_use = old->next;
514 if (end_readonly_imm_use_p (imm))
515 return old;
516 return imm->imm_use;
519 /* Return true if VAR has no uses. */
520 static inline bool
521 has_zero_uses (const_tree var)
523 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
524 /* A single use means there is no items in the list. */
525 return (ptr == ptr->next);
528 /* Return true if VAR has a single use. */
529 static inline bool
530 has_single_use (const_tree var)
532 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
533 /* A single use means there is one item in the list. */
534 return (ptr != ptr->next && ptr == ptr->next->next);
538 /* If VAR has only a single immediate use, return true, and set USE_P and STMT
539 to the use pointer and stmt of occurrence. */
540 static inline bool
541 single_imm_use (const_tree var, use_operand_p *use_p, tree *stmt)
543 const ssa_use_operand_t *const ptr = &(SSA_NAME_IMM_USE_NODE (var));
544 if (ptr != ptr->next && ptr == ptr->next->next)
546 *use_p = ptr->next;
547 *stmt = ptr->next->stmt;
548 return true;
550 *use_p = NULL_USE_OPERAND_P;
551 *stmt = NULL_TREE;
552 return false;
555 /* Return the number of immediate uses of VAR. */
556 static inline unsigned int
557 num_imm_uses (const_tree var)
559 const ssa_use_operand_t *const start = &(SSA_NAME_IMM_USE_NODE (var));
560 const ssa_use_operand_t *ptr;
561 unsigned int num = 0;
563 for (ptr = start->next; ptr != start; ptr = ptr->next)
564 num++;
566 return num;
569 /* Return the tree pointer to by USE. */
570 static inline tree
571 get_use_from_ptr (use_operand_p use)
573 return *(use->use);
576 /* Return the tree pointer to by DEF. */
577 static inline tree
578 get_def_from_ptr (def_operand_p def)
580 return *def;
583 /* Return a def_operand_p pointer for the result of PHI. */
584 static inline def_operand_p
585 get_phi_result_ptr (tree phi)
587 return &(PHI_RESULT_TREE (phi));
590 /* Return a use_operand_p pointer for argument I of phinode PHI. */
591 static inline use_operand_p
592 get_phi_arg_def_ptr (tree phi, int i)
594 return &(PHI_ARG_IMM_USE_NODE (phi,i));
598 /* Return the bitmap of addresses taken by STMT, or NULL if it takes
599 no addresses. */
600 static inline bitmap
601 addresses_taken (tree stmt)
603 stmt_ann_t ann = stmt_ann (stmt);
604 return ann ? ann->addresses_taken : NULL;
607 /* Return the PHI nodes for basic block BB, or NULL if there are no
608 PHI nodes. */
609 static inline tree
610 phi_nodes (const_basic_block bb)
612 gcc_assert (!(bb->flags & BB_RTL));
613 if (!bb->il.tree)
614 return NULL;
615 return bb->il.tree->phi_nodes;
618 /* Return pointer to the list of PHI nodes for basic block BB. */
620 static inline tree *
621 phi_nodes_ptr (basic_block bb)
623 gcc_assert (!(bb->flags & BB_RTL));
624 return &bb->il.tree->phi_nodes;
627 /* Set list of phi nodes of a basic block BB to L. */
629 static inline void
630 set_phi_nodes (basic_block bb, tree l)
632 tree phi;
634 gcc_assert (!(bb->flags & BB_RTL));
635 bb->il.tree->phi_nodes = l;
636 for (phi = l; phi; phi = PHI_CHAIN (phi))
637 set_bb_for_stmt (phi, bb);
640 /* Return the phi argument which contains the specified use. */
642 static inline int
643 phi_arg_index_from_use (use_operand_p use)
645 struct phi_arg_d *element, *root;
646 int index;
647 tree phi;
649 /* Since the use is the first thing in a PHI argument element, we can
650 calculate its index based on casting it to an argument, and performing
651 pointer arithmetic. */
653 phi = USE_STMT (use);
654 gcc_assert (TREE_CODE (phi) == PHI_NODE);
656 element = (struct phi_arg_d *)use;
657 root = &(PHI_ARG_ELT (phi, 0));
658 index = element - root;
660 #ifdef ENABLE_CHECKING
661 /* Make sure the calculation doesn't have any leftover bytes. If it does,
662 then imm_use is likely not the first element in phi_arg_d. */
663 gcc_assert (
664 (((char *)element - (char *)root) % sizeof (struct phi_arg_d)) == 0);
665 gcc_assert (index >= 0 && index < PHI_ARG_CAPACITY (phi));
666 #endif
668 return index;
671 /* Mark VAR as used, so that it'll be preserved during rtl expansion. */
673 static inline void
674 set_is_used (tree var)
676 var_ann_t ann = get_var_ann (var);
677 ann->used = 1;
681 /* Return true if T (assumed to be a DECL) is a global variable. */
683 static inline bool
684 is_global_var (const_tree t)
686 if (MTAG_P (t))
687 return (TREE_STATIC (t) || MTAG_GLOBAL (t));
688 else
689 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
692 /* PHI nodes should contain only ssa_names and invariants. A test
693 for ssa_name is definitely simpler; don't let invalid contents
694 slip in in the meantime. */
696 static inline bool
697 phi_ssa_name_p (const_tree t)
699 if (TREE_CODE (t) == SSA_NAME)
700 return true;
701 #ifdef ENABLE_CHECKING
702 gcc_assert (is_gimple_min_invariant (t));
703 #endif
704 return false;
707 /* ----------------------------------------------------------------------- */
709 /* Returns the list of statements in BB. */
711 static inline tree
712 bb_stmt_list (const_basic_block bb)
714 gcc_assert (!(bb->flags & BB_RTL));
715 return bb->il.tree->stmt_list;
718 /* Sets the list of statements in BB to LIST. */
720 static inline void
721 set_bb_stmt_list (basic_block bb, tree list)
723 gcc_assert (!(bb->flags & BB_RTL));
724 bb->il.tree->stmt_list = list;
727 /* Return a block_stmt_iterator that points to beginning of basic
728 block BB. */
729 static inline block_stmt_iterator
730 bsi_start (basic_block bb)
732 block_stmt_iterator bsi;
733 if (bb->index < NUM_FIXED_BLOCKS)
735 bsi.tsi.ptr = NULL;
736 bsi.tsi.container = NULL;
738 else
739 bsi.tsi = tsi_start (bb_stmt_list (bb));
740 bsi.bb = bb;
741 return bsi;
744 /* Return a block statement iterator that points to the first non-label
745 statement in block BB. */
747 static inline block_stmt_iterator
748 bsi_after_labels (basic_block bb)
750 block_stmt_iterator bsi = bsi_start (bb);
752 while (!bsi_end_p (bsi) && TREE_CODE (bsi_stmt (bsi)) == LABEL_EXPR)
753 bsi_next (&bsi);
755 return bsi;
758 /* Return a block statement iterator that points to the end of basic
759 block BB. */
760 static inline block_stmt_iterator
761 bsi_last (basic_block bb)
763 block_stmt_iterator bsi;
765 if (bb->index < NUM_FIXED_BLOCKS)
767 bsi.tsi.ptr = NULL;
768 bsi.tsi.container = NULL;
770 else
771 bsi.tsi = tsi_last (bb_stmt_list (bb));
772 bsi.bb = bb;
773 return bsi;
776 /* Return true if block statement iterator I has reached the end of
777 the basic block. */
778 static inline bool
779 bsi_end_p (block_stmt_iterator i)
781 return tsi_end_p (i.tsi);
784 /* Modify block statement iterator I so that it is at the next
785 statement in the basic block. */
786 static inline void
787 bsi_next (block_stmt_iterator *i)
789 tsi_next (&i->tsi);
792 /* Modify block statement iterator I so that it is at the previous
793 statement in the basic block. */
794 static inline void
795 bsi_prev (block_stmt_iterator *i)
797 tsi_prev (&i->tsi);
800 /* Return the statement that block statement iterator I is currently
801 at. */
802 static inline tree
803 bsi_stmt (block_stmt_iterator i)
805 return tsi_stmt (i.tsi);
808 /* Return a pointer to the statement that block statement iterator I
809 is currently at. */
810 static inline tree *
811 bsi_stmt_ptr (block_stmt_iterator i)
813 return tsi_stmt_ptr (i.tsi);
816 /* Returns the loop of the statement STMT. */
818 static inline struct loop *
819 loop_containing_stmt (tree stmt)
821 basic_block bb = bb_for_stmt (stmt);
822 if (!bb)
823 return NULL;
825 return bb->loop_father;
829 /* Return the memory partition tag associated with symbol SYM. */
831 static inline tree
832 memory_partition (tree sym)
834 tree tag;
836 /* MPTs belong to their own partition. */
837 if (TREE_CODE (sym) == MEMORY_PARTITION_TAG)
838 return sym;
840 gcc_assert (!is_gimple_reg (sym));
841 tag = get_var_ann (sym)->mpt;
843 #if defined ENABLE_CHECKING
844 if (tag)
845 gcc_assert (TREE_CODE (tag) == MEMORY_PARTITION_TAG);
846 #endif
848 return tag;
851 /* Return true if NAME is a memory factoring SSA name (i.e., an SSA
852 name for a memory partition. */
854 static inline bool
855 factoring_name_p (const_tree name)
857 return TREE_CODE (SSA_NAME_VAR (name)) == MEMORY_PARTITION_TAG;
860 /* Return true if VAR is a clobbered by function calls. */
861 static inline bool
862 is_call_clobbered (const_tree var)
864 if (!MTAG_P (var))
865 return var_ann (var)->call_clobbered;
866 else
867 return bitmap_bit_p (gimple_call_clobbered_vars (cfun), DECL_UID (var));
870 /* Mark variable VAR as being clobbered by function calls. */
871 static inline void
872 mark_call_clobbered (tree var, unsigned int escape_type)
874 var_ann (var)->escape_mask |= escape_type;
875 if (!MTAG_P (var))
876 var_ann (var)->call_clobbered = true;
877 bitmap_set_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
880 /* Clear the call-clobbered attribute from variable VAR. */
881 static inline void
882 clear_call_clobbered (tree var)
884 var_ann_t ann = var_ann (var);
885 ann->escape_mask = 0;
886 if (MTAG_P (var) && TREE_CODE (var) != STRUCT_FIELD_TAG)
887 MTAG_GLOBAL (var) = 0;
888 if (!MTAG_P (var))
889 var_ann (var)->call_clobbered = false;
890 bitmap_clear_bit (gimple_call_clobbered_vars (cfun), DECL_UID (var));
893 /* Return the common annotation for T. Return NULL if the annotation
894 doesn't already exist. */
895 static inline tree_ann_common_t
896 tree_common_ann (const_tree t)
898 /* Watch out static variables with unshared annotations. */
899 if (DECL_P (t) && TREE_CODE (t) == VAR_DECL)
900 return &var_ann (t)->common;
901 return &t->base.ann->common;
904 /* Return a common annotation for T. Create the constant annotation if it
905 doesn't exist. */
906 static inline tree_ann_common_t
907 get_tree_common_ann (tree t)
909 tree_ann_common_t ann = tree_common_ann (t);
910 return (ann) ? ann : create_tree_common_ann (t);
913 /* ----------------------------------------------------------------------- */
915 /* The following set of routines are used to iterator over various type of
916 SSA operands. */
918 /* Return true if PTR is finished iterating. */
919 static inline bool
920 op_iter_done (const ssa_op_iter *ptr)
922 return ptr->done;
925 /* Get the next iterator use value for PTR. */
926 static inline use_operand_p
927 op_iter_next_use (ssa_op_iter *ptr)
929 use_operand_p use_p;
930 #ifdef ENABLE_CHECKING
931 gcc_assert (ptr->iter_type == ssa_op_iter_use);
932 #endif
933 if (ptr->uses)
935 use_p = USE_OP_PTR (ptr->uses);
936 ptr->uses = ptr->uses->next;
937 return use_p;
939 if (ptr->vuses)
941 use_p = VUSE_OP_PTR (ptr->vuses, ptr->vuse_index);
942 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
944 ptr->vuse_index = 0;
945 ptr->vuses = ptr->vuses->next;
947 return use_p;
949 if (ptr->mayuses)
951 use_p = VDEF_OP_PTR (ptr->mayuses, ptr->mayuse_index);
952 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
954 ptr->mayuse_index = 0;
955 ptr->mayuses = ptr->mayuses->next;
957 return use_p;
959 if (ptr->phi_i < ptr->num_phi)
961 return PHI_ARG_DEF_PTR (ptr->phi_stmt, (ptr->phi_i)++);
963 ptr->done = true;
964 return NULL_USE_OPERAND_P;
967 /* Get the next iterator def value for PTR. */
968 static inline def_operand_p
969 op_iter_next_def (ssa_op_iter *ptr)
971 def_operand_p def_p;
972 #ifdef ENABLE_CHECKING
973 gcc_assert (ptr->iter_type == ssa_op_iter_def);
974 #endif
975 if (ptr->defs)
977 def_p = DEF_OP_PTR (ptr->defs);
978 ptr->defs = ptr->defs->next;
979 return def_p;
981 if (ptr->vdefs)
983 def_p = VDEF_RESULT_PTR (ptr->vdefs);
984 ptr->vdefs = ptr->vdefs->next;
985 return def_p;
987 ptr->done = true;
988 return NULL_DEF_OPERAND_P;
991 /* Get the next iterator tree value for PTR. */
992 static inline tree
993 op_iter_next_tree (ssa_op_iter *ptr)
995 tree val;
996 #ifdef ENABLE_CHECKING
997 gcc_assert (ptr->iter_type == ssa_op_iter_tree);
998 #endif
999 if (ptr->uses)
1001 val = USE_OP (ptr->uses);
1002 ptr->uses = ptr->uses->next;
1003 return val;
1005 if (ptr->vuses)
1007 val = VUSE_OP (ptr->vuses, ptr->vuse_index);
1008 if (++(ptr->vuse_index) >= VUSE_NUM (ptr->vuses))
1010 ptr->vuse_index = 0;
1011 ptr->vuses = ptr->vuses->next;
1013 return val;
1015 if (ptr->mayuses)
1017 val = VDEF_OP (ptr->mayuses, ptr->mayuse_index);
1018 if (++(ptr->mayuse_index) >= VDEF_NUM (ptr->mayuses))
1020 ptr->mayuse_index = 0;
1021 ptr->mayuses = ptr->mayuses->next;
1023 return val;
1025 if (ptr->defs)
1027 val = DEF_OP (ptr->defs);
1028 ptr->defs = ptr->defs->next;
1029 return val;
1031 if (ptr->vdefs)
1033 val = VDEF_RESULT (ptr->vdefs);
1034 ptr->vdefs = ptr->vdefs->next;
1035 return val;
1038 ptr->done = true;
1039 return NULL_TREE;
1044 /* This functions clears the iterator PTR, and marks it done. This is normally
1045 used to prevent warnings in the compile about might be uninitialized
1046 components. */
1048 static inline void
1049 clear_and_done_ssa_iter (ssa_op_iter *ptr)
1051 ptr->defs = NULL;
1052 ptr->uses = NULL;
1053 ptr->vuses = NULL;
1054 ptr->vdefs = NULL;
1055 ptr->mayuses = NULL;
1056 ptr->iter_type = ssa_op_iter_none;
1057 ptr->phi_i = 0;
1058 ptr->num_phi = 0;
1059 ptr->phi_stmt = NULL_TREE;
1060 ptr->done = true;
1061 ptr->vuse_index = 0;
1062 ptr->mayuse_index = 0;
1065 /* Initialize the iterator PTR to the virtual defs in STMT. */
1066 static inline void
1067 op_iter_init (ssa_op_iter *ptr, tree stmt, int flags)
1069 #ifdef ENABLE_CHECKING
1070 gcc_assert (stmt_ann (stmt));
1071 #endif
1073 ptr->defs = (flags & SSA_OP_DEF) ? DEF_OPS (stmt) : NULL;
1074 ptr->uses = (flags & SSA_OP_USE) ? USE_OPS (stmt) : NULL;
1075 ptr->vuses = (flags & SSA_OP_VUSE) ? VUSE_OPS (stmt) : NULL;
1076 ptr->vdefs = (flags & SSA_OP_VDEF) ? VDEF_OPS (stmt) : NULL;
1077 ptr->mayuses = (flags & SSA_OP_VMAYUSE) ? VDEF_OPS (stmt) : NULL;
1078 ptr->done = false;
1080 ptr->phi_i = 0;
1081 ptr->num_phi = 0;
1082 ptr->phi_stmt = NULL_TREE;
1083 ptr->vuse_index = 0;
1084 ptr->mayuse_index = 0;
1087 /* Initialize iterator PTR to the use operands in STMT based on FLAGS. Return
1088 the first use. */
1089 static inline use_operand_p
1090 op_iter_init_use (ssa_op_iter *ptr, tree stmt, int flags)
1092 gcc_assert ((flags & SSA_OP_ALL_DEFS) == 0);
1093 op_iter_init (ptr, stmt, flags);
1094 ptr->iter_type = ssa_op_iter_use;
1095 return op_iter_next_use (ptr);
1098 /* Initialize iterator PTR to the def operands in STMT based on FLAGS. Return
1099 the first def. */
1100 static inline def_operand_p
1101 op_iter_init_def (ssa_op_iter *ptr, tree stmt, int flags)
1103 gcc_assert ((flags & SSA_OP_ALL_USES) == 0);
1104 op_iter_init (ptr, stmt, flags);
1105 ptr->iter_type = ssa_op_iter_def;
1106 return op_iter_next_def (ptr);
1109 /* Initialize iterator PTR to the operands in STMT based on FLAGS. Return
1110 the first operand as a tree. */
1111 static inline tree
1112 op_iter_init_tree (ssa_op_iter *ptr, tree stmt, int flags)
1114 op_iter_init (ptr, stmt, flags);
1115 ptr->iter_type = ssa_op_iter_tree;
1116 return op_iter_next_tree (ptr);
1119 /* Get the next iterator mustdef value for PTR, returning the mustdef values in
1120 KILL and DEF. */
1121 static inline void
1122 op_iter_next_vdef (vuse_vec_p *use, def_operand_p *def,
1123 ssa_op_iter *ptr)
1125 #ifdef ENABLE_CHECKING
1126 gcc_assert (ptr->iter_type == ssa_op_iter_vdef);
1127 #endif
1128 if (ptr->mayuses)
1130 *def = VDEF_RESULT_PTR (ptr->mayuses);
1131 *use = VDEF_VECT (ptr->mayuses);
1132 ptr->mayuses = ptr->mayuses->next;
1133 return;
1136 *def = NULL_DEF_OPERAND_P;
1137 *use = NULL;
1138 ptr->done = true;
1139 return;
1143 static inline void
1144 op_iter_next_mustdef (use_operand_p *use, def_operand_p *def,
1145 ssa_op_iter *ptr)
1147 vuse_vec_p vp;
1148 op_iter_next_vdef (&vp, def, ptr);
1149 if (vp != NULL)
1151 gcc_assert (VUSE_VECT_NUM_ELEM (*vp) == 1);
1152 *use = VUSE_ELEMENT_PTR (*vp, 0);
1154 else
1155 *use = NULL_USE_OPERAND_P;
1158 /* Initialize iterator PTR to the operands in STMT. Return the first operands
1159 in USE and DEF. */
1160 static inline void
1161 op_iter_init_vdef (ssa_op_iter *ptr, tree stmt, vuse_vec_p *use,
1162 def_operand_p *def)
1164 gcc_assert (TREE_CODE (stmt) != PHI_NODE);
1166 op_iter_init (ptr, stmt, SSA_OP_VMAYUSE);
1167 ptr->iter_type = ssa_op_iter_vdef;
1168 op_iter_next_vdef (use, def, ptr);
1172 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1173 return NULL. */
1174 static inline tree
1175 single_ssa_tree_operand (tree stmt, int flags)
1177 tree var;
1178 ssa_op_iter iter;
1180 var = op_iter_init_tree (&iter, stmt, flags);
1181 if (op_iter_done (&iter))
1182 return NULL_TREE;
1183 op_iter_next_tree (&iter);
1184 if (op_iter_done (&iter))
1185 return var;
1186 return NULL_TREE;
1190 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1191 return NULL. */
1192 static inline use_operand_p
1193 single_ssa_use_operand (tree stmt, int flags)
1195 use_operand_p var;
1196 ssa_op_iter iter;
1198 var = op_iter_init_use (&iter, stmt, flags);
1199 if (op_iter_done (&iter))
1200 return NULL_USE_OPERAND_P;
1201 op_iter_next_use (&iter);
1202 if (op_iter_done (&iter))
1203 return var;
1204 return NULL_USE_OPERAND_P;
1209 /* If there is a single operand in STMT matching FLAGS, return it. Otherwise
1210 return NULL. */
1211 static inline def_operand_p
1212 single_ssa_def_operand (tree stmt, int flags)
1214 def_operand_p var;
1215 ssa_op_iter iter;
1217 var = op_iter_init_def (&iter, stmt, flags);
1218 if (op_iter_done (&iter))
1219 return NULL_DEF_OPERAND_P;
1220 op_iter_next_def (&iter);
1221 if (op_iter_done (&iter))
1222 return var;
1223 return NULL_DEF_OPERAND_P;
1227 /* Return true if there are zero operands in STMT matching the type
1228 given in FLAGS. */
1229 static inline bool
1230 zero_ssa_operands (tree stmt, int flags)
1232 ssa_op_iter iter;
1234 op_iter_init_tree (&iter, stmt, flags);
1235 return op_iter_done (&iter);
1239 /* Return the number of operands matching FLAGS in STMT. */
1240 static inline int
1241 num_ssa_operands (tree stmt, int flags)
1243 ssa_op_iter iter;
1244 tree t;
1245 int num = 0;
1247 FOR_EACH_SSA_TREE_OPERAND (t, stmt, iter, flags)
1248 num++;
1249 return num;
1253 /* Delink all immediate_use information for STMT. */
1254 static inline void
1255 delink_stmt_imm_use (tree stmt)
1257 ssa_op_iter iter;
1258 use_operand_p use_p;
1260 if (ssa_operands_active ())
1261 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1262 delink_imm_use (use_p);
1266 /* This routine will compare all the operands matching FLAGS in STMT1 to those
1267 in STMT2. TRUE is returned if they are the same. STMTs can be NULL. */
1268 static inline bool
1269 compare_ssa_operands_equal (tree stmt1, tree stmt2, int flags)
1271 ssa_op_iter iter1, iter2;
1272 tree op1 = NULL_TREE;
1273 tree op2 = NULL_TREE;
1274 bool look1, look2;
1276 if (stmt1 == stmt2)
1277 return true;
1279 look1 = stmt1 && stmt_ann (stmt1);
1280 look2 = stmt2 && stmt_ann (stmt2);
1282 if (look1)
1284 op1 = op_iter_init_tree (&iter1, stmt1, flags);
1285 if (!look2)
1286 return op_iter_done (&iter1);
1288 else
1289 clear_and_done_ssa_iter (&iter1);
1291 if (look2)
1293 op2 = op_iter_init_tree (&iter2, stmt2, flags);
1294 if (!look1)
1295 return op_iter_done (&iter2);
1297 else
1298 clear_and_done_ssa_iter (&iter2);
1300 while (!op_iter_done (&iter1) && !op_iter_done (&iter2))
1302 if (op1 != op2)
1303 return false;
1304 op1 = op_iter_next_tree (&iter1);
1305 op2 = op_iter_next_tree (&iter2);
1308 return (op_iter_done (&iter1) && op_iter_done (&iter2));
1312 /* If there is a single DEF in the PHI node which matches FLAG, return it.
1313 Otherwise return NULL_DEF_OPERAND_P. */
1314 static inline tree
1315 single_phi_def (tree stmt, int flags)
1317 tree def = PHI_RESULT (stmt);
1318 if ((flags & SSA_OP_DEF) && is_gimple_reg (def))
1319 return def;
1320 if ((flags & SSA_OP_VIRTUAL_DEFS) && !is_gimple_reg (def))
1321 return def;
1322 return NULL_TREE;
1325 /* Initialize the iterator PTR for uses matching FLAGS in PHI. FLAGS should
1326 be either SSA_OP_USES or SSA_OP_VIRTUAL_USES. */
1327 static inline use_operand_p
1328 op_iter_init_phiuse (ssa_op_iter *ptr, tree phi, int flags)
1330 tree phi_def = PHI_RESULT (phi);
1331 int comp;
1333 clear_and_done_ssa_iter (ptr);
1334 ptr->done = false;
1336 gcc_assert ((flags & (SSA_OP_USE | SSA_OP_VIRTUAL_USES)) != 0);
1338 comp = (is_gimple_reg (phi_def) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1340 /* If the PHI node doesn't the operand type we care about, we're done. */
1341 if ((flags & comp) == 0)
1343 ptr->done = true;
1344 return NULL_USE_OPERAND_P;
1347 ptr->phi_stmt = phi;
1348 ptr->num_phi = PHI_NUM_ARGS (phi);
1349 ptr->iter_type = ssa_op_iter_use;
1350 return op_iter_next_use (ptr);
1354 /* Start an iterator for a PHI definition. */
1356 static inline def_operand_p
1357 op_iter_init_phidef (ssa_op_iter *ptr, tree phi, int flags)
1359 tree phi_def = PHI_RESULT (phi);
1360 int comp;
1362 clear_and_done_ssa_iter (ptr);
1363 ptr->done = false;
1365 gcc_assert ((flags & (SSA_OP_DEF | SSA_OP_VIRTUAL_DEFS)) != 0);
1367 comp = (is_gimple_reg (phi_def) ? SSA_OP_DEF : SSA_OP_VIRTUAL_DEFS);
1369 /* If the PHI node doesn't the operand type we care about, we're done. */
1370 if ((flags & comp) == 0)
1372 ptr->done = true;
1373 return NULL_USE_OPERAND_P;
1376 ptr->iter_type = ssa_op_iter_def;
1377 /* The first call to op_iter_next_def will terminate the iterator since
1378 all the fields are NULL. Simply return the result here as the first and
1379 therefore only result. */
1380 return PHI_RESULT_PTR (phi);
1383 /* Return true is IMM has reached the end of the immediate use stmt list. */
1385 static inline bool
1386 end_imm_use_stmt_p (const imm_use_iterator *imm)
1388 return (imm->imm_use == imm->end_p);
1391 /* Finished the traverse of an immediate use stmt list IMM by removing the
1392 placeholder node from the list. */
1394 static inline void
1395 end_imm_use_stmt_traverse (imm_use_iterator *imm)
1397 delink_imm_use (&(imm->iter_node));
1400 /* Immediate use traversal of uses within a stmt require that all the
1401 uses on a stmt be sequentially listed. This routine is used to build up
1402 this sequential list by adding USE_P to the end of the current list
1403 currently delimited by HEAD and LAST_P. The new LAST_P value is
1404 returned. */
1406 static inline use_operand_p
1407 move_use_after_head (use_operand_p use_p, use_operand_p head,
1408 use_operand_p last_p)
1410 gcc_assert (USE_FROM_PTR (use_p) == USE_FROM_PTR (head));
1411 /* Skip head when we find it. */
1412 if (use_p != head)
1414 /* If use_p is already linked in after last_p, continue. */
1415 if (last_p->next == use_p)
1416 last_p = use_p;
1417 else
1419 /* Delink from current location, and link in at last_p. */
1420 delink_imm_use (use_p);
1421 link_imm_use_to_list (use_p, last_p);
1422 last_p = use_p;
1425 return last_p;
1429 /* This routine will relink all uses with the same stmt as HEAD into the list
1430 immediately following HEAD for iterator IMM. */
1432 static inline void
1433 link_use_stmts_after (use_operand_p head, imm_use_iterator *imm)
1435 use_operand_p use_p;
1436 use_operand_p last_p = head;
1437 tree head_stmt = USE_STMT (head);
1438 tree use = USE_FROM_PTR (head);
1439 ssa_op_iter op_iter;
1440 int flag;
1442 /* Only look at virtual or real uses, depending on the type of HEAD. */
1443 flag = (is_gimple_reg (use) ? SSA_OP_USE : SSA_OP_VIRTUAL_USES);
1445 if (TREE_CODE (head_stmt) == PHI_NODE)
1447 FOR_EACH_PHI_ARG (use_p, head_stmt, op_iter, flag)
1448 if (USE_FROM_PTR (use_p) == use)
1449 last_p = move_use_after_head (use_p, head, last_p);
1451 else
1453 FOR_EACH_SSA_USE_OPERAND (use_p, head_stmt, op_iter, flag)
1454 if (USE_FROM_PTR (use_p) == use)
1455 last_p = move_use_after_head (use_p, head, last_p);
1457 /* LInk iter node in after last_p. */
1458 if (imm->iter_node.prev != NULL)
1459 delink_imm_use (&imm->iter_node);
1460 link_imm_use_to_list (&(imm->iter_node), last_p);
1463 /* Initialize IMM to traverse over uses of VAR. Return the first statement. */
1464 static inline tree
1465 first_imm_use_stmt (imm_use_iterator *imm, tree var)
1467 gcc_assert (TREE_CODE (var) == SSA_NAME);
1469 imm->end_p = &(SSA_NAME_IMM_USE_NODE (var));
1470 imm->imm_use = imm->end_p->next;
1471 imm->next_imm_name = NULL_USE_OPERAND_P;
1473 /* iter_node is used as a marker within the immediate use list to indicate
1474 where the end of the current stmt's uses are. Initialize it to NULL
1475 stmt and use, which indicates a marker node. */
1476 imm->iter_node.prev = NULL_USE_OPERAND_P;
1477 imm->iter_node.next = NULL_USE_OPERAND_P;
1478 imm->iter_node.stmt = NULL_TREE;
1479 imm->iter_node.use = NULL_USE_OPERAND_P;
1481 if (end_imm_use_stmt_p (imm))
1482 return NULL_TREE;
1484 link_use_stmts_after (imm->imm_use, imm);
1486 return USE_STMT (imm->imm_use);
1489 /* Bump IMM to the next stmt which has a use of var. */
1491 static inline tree
1492 next_imm_use_stmt (imm_use_iterator *imm)
1494 imm->imm_use = imm->iter_node.next;
1495 if (end_imm_use_stmt_p (imm))
1497 if (imm->iter_node.prev != NULL)
1498 delink_imm_use (&imm->iter_node);
1499 return NULL_TREE;
1502 link_use_stmts_after (imm->imm_use, imm);
1503 return USE_STMT (imm->imm_use);
1506 /* This routine will return the first use on the stmt IMM currently refers
1507 to. */
1509 static inline use_operand_p
1510 first_imm_use_on_stmt (imm_use_iterator *imm)
1512 imm->next_imm_name = imm->imm_use->next;
1513 return imm->imm_use;
1516 /* Return TRUE if the last use on the stmt IMM refers to has been visited. */
1518 static inline bool
1519 end_imm_use_on_stmt_p (const imm_use_iterator *imm)
1521 return (imm->imm_use == &(imm->iter_node));
1524 /* Bump to the next use on the stmt IMM refers to, return NULL if done. */
1526 static inline use_operand_p
1527 next_imm_use_on_stmt (imm_use_iterator *imm)
1529 imm->imm_use = imm->next_imm_name;
1530 if (end_imm_use_on_stmt_p (imm))
1531 return NULL_USE_OPERAND_P;
1532 else
1534 imm->next_imm_name = imm->imm_use->next;
1535 return imm->imm_use;
1539 /* Return true if VAR cannot be modified by the program. */
1541 static inline bool
1542 unmodifiable_var_p (const_tree var)
1544 if (TREE_CODE (var) == SSA_NAME)
1545 var = SSA_NAME_VAR (var);
1547 if (MTAG_P (var))
1548 return TREE_READONLY (var) && (TREE_STATIC (var) || MTAG_GLOBAL (var));
1550 return TREE_READONLY (var) && (TREE_STATIC (var) || DECL_EXTERNAL (var));
1553 /* Return true if REF, an ARRAY_REF, has an INDIRECT_REF somewhere in it. */
1555 static inline bool
1556 array_ref_contains_indirect_ref (const_tree ref)
1558 gcc_assert (TREE_CODE (ref) == ARRAY_REF);
1560 do {
1561 ref = TREE_OPERAND (ref, 0);
1562 } while (handled_component_p (ref));
1564 return TREE_CODE (ref) == INDIRECT_REF;
1567 /* Return true if REF, a handled component reference, has an ARRAY_REF
1568 somewhere in it. */
1570 static inline bool
1571 ref_contains_array_ref (const_tree ref)
1573 gcc_assert (handled_component_p (ref));
1575 do {
1576 if (TREE_CODE (ref) == ARRAY_REF)
1577 return true;
1578 ref = TREE_OPERAND (ref, 0);
1579 } while (handled_component_p (ref));
1581 return false;
1584 /* Given a variable VAR, lookup and return a pointer to the list of
1585 subvariables for it. */
1587 static inline subvar_t *
1588 lookup_subvars_for_var (const_tree var)
1590 var_ann_t ann = var_ann (var);
1591 gcc_assert (ann);
1592 return &ann->subvars;
1595 /* Given a variable VAR, return a linked list of subvariables for VAR, or
1596 NULL, if there are no subvariables. */
1598 static inline subvar_t
1599 get_subvars_for_var (tree var)
1601 subvar_t subvars;
1603 gcc_assert (SSA_VAR_P (var));
1605 if (TREE_CODE (var) == SSA_NAME)
1606 subvars = *(lookup_subvars_for_var (SSA_NAME_VAR (var)));
1607 else
1608 subvars = *(lookup_subvars_for_var (var));
1609 return subvars;
1612 /* Return the subvariable of VAR at offset OFFSET. */
1614 static inline tree
1615 get_subvar_at (tree var, unsigned HOST_WIDE_INT offset)
1617 subvar_t sv = get_subvars_for_var (var);
1618 int low, high;
1620 low = 0;
1621 high = VEC_length (tree, sv) - 1;
1622 while (low <= high)
1624 int mid = (low + high) / 2;
1625 tree subvar = VEC_index (tree, sv, mid);
1626 if (SFT_OFFSET (subvar) == offset)
1627 return subvar;
1628 else if (SFT_OFFSET (subvar) < offset)
1629 low = mid + 1;
1630 else
1631 high = mid - 1;
1634 return NULL_TREE;
1638 /* Return the first subvariable in SV that overlaps [offset, offset + size[.
1639 NULL_TREE is returned, if there is no overlapping subvariable, else *I
1640 is set to the index in the SV vector of the first overlap. */
1642 static inline tree
1643 get_first_overlapping_subvar (subvar_t sv, unsigned HOST_WIDE_INT offset,
1644 unsigned HOST_WIDE_INT size, unsigned int *i)
1646 int low = 0;
1647 int high = VEC_length (tree, sv) - 1;
1648 int mid;
1649 tree subvar;
1651 if (low > high)
1652 return NULL_TREE;
1654 /* Binary search for offset. */
1657 mid = (low + high) / 2;
1658 subvar = VEC_index (tree, sv, mid);
1659 if (SFT_OFFSET (subvar) == offset)
1661 *i = mid;
1662 return subvar;
1664 else if (SFT_OFFSET (subvar) < offset)
1665 low = mid + 1;
1666 else
1667 high = mid - 1;
1669 while (low <= high);
1671 /* As we didn't find a subvar with offset, adjust to return the
1672 first overlapping one. */
1673 if (SFT_OFFSET (subvar) < offset
1674 && SFT_OFFSET (subvar) + SFT_SIZE (subvar) <= offset)
1676 mid += 1;
1677 if ((unsigned)mid >= VEC_length (tree, sv))
1678 return NULL_TREE;
1679 subvar = VEC_index (tree, sv, mid);
1681 else if (SFT_OFFSET (subvar) > offset
1682 && size <= SFT_OFFSET (subvar) - offset)
1684 mid -= 1;
1685 if (mid < 0)
1686 return NULL_TREE;
1687 subvar = VEC_index (tree, sv, mid);
1690 if (overlap_subvar (offset, size, subvar, NULL))
1692 *i = mid;
1693 return subvar;
1696 return NULL_TREE;
1700 /* Return true if V is a tree that we can have subvars for.
1701 Normally, this is any aggregate type. Also complex
1702 types which are not gimple registers can have subvars. */
1704 static inline bool
1705 var_can_have_subvars (const_tree v)
1707 /* Volatile variables should never have subvars. */
1708 if (TREE_THIS_VOLATILE (v))
1709 return false;
1711 /* Non decls or memory tags can never have subvars. */
1712 if (!DECL_P (v) || MTAG_P (v))
1713 return false;
1715 /* Aggregates can have subvars. */
1716 if (AGGREGATE_TYPE_P (TREE_TYPE (v)))
1717 return true;
1719 /* Complex types variables which are not also a gimple register can
1720 have subvars. */
1721 if (TREE_CODE (TREE_TYPE (v)) == COMPLEX_TYPE
1722 && !DECL_GIMPLE_REG_P (v))
1723 return true;
1725 return false;
1729 /* Return true if OFFSET and SIZE define a range that overlaps with some
1730 portion of the range of SV, a subvar. If there was an exact overlap,
1731 *EXACT will be set to true upon return. */
1733 static inline bool
1734 overlap_subvar (unsigned HOST_WIDE_INT offset, unsigned HOST_WIDE_INT size,
1735 const_tree sv, bool *exact)
1737 /* There are three possible cases of overlap.
1738 1. We can have an exact overlap, like so:
1739 |offset, offset + size |
1740 |sv->offset, sv->offset + sv->size |
1742 2. We can have offset starting after sv->offset, like so:
1744 |offset, offset + size |
1745 |sv->offset, sv->offset + sv->size |
1747 3. We can have offset starting before sv->offset, like so:
1749 |offset, offset + size |
1750 |sv->offset, sv->offset + sv->size|
1753 if (exact)
1754 *exact = false;
1755 if (offset == SFT_OFFSET (sv) && size == SFT_SIZE (sv))
1757 if (exact)
1758 *exact = true;
1759 return true;
1761 else if (offset >= SFT_OFFSET (sv)
1762 && offset < (SFT_OFFSET (sv) + SFT_SIZE (sv)))
1764 return true;
1766 else if (offset < SFT_OFFSET (sv)
1767 && (size > SFT_OFFSET (sv) - offset))
1769 return true;
1771 return false;
1775 /* Return the memory tag associated with symbol SYM. */
1777 static inline tree
1778 symbol_mem_tag (tree sym)
1780 tree tag = get_var_ann (sym)->symbol_mem_tag;
1782 #if defined ENABLE_CHECKING
1783 if (tag)
1784 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1785 #endif
1787 return tag;
1791 /* Set the memory tag associated with symbol SYM. */
1793 static inline void
1794 set_symbol_mem_tag (tree sym, tree tag)
1796 #if defined ENABLE_CHECKING
1797 if (tag)
1798 gcc_assert (TREE_CODE (tag) == SYMBOL_MEMORY_TAG);
1799 #endif
1801 get_var_ann (sym)->symbol_mem_tag = tag;
1804 /* Get the value handle of EXPR. This is the only correct way to get
1805 the value handle for a "thing". If EXPR does not have a value
1806 handle associated, it returns NULL_TREE.
1807 NB: If EXPR is min_invariant, this function is *required* to return
1808 EXPR. */
1810 static inline tree
1811 get_value_handle (tree expr)
1813 if (TREE_CODE (expr) == SSA_NAME)
1814 return SSA_NAME_VALUE (expr);
1815 else if (DECL_P (expr) || TREE_CODE (expr) == TREE_LIST
1816 || TREE_CODE (expr) == CONSTRUCTOR)
1818 tree_ann_common_t ann = tree_common_ann (expr);
1819 return ((ann) ? ann->value_handle : NULL_TREE);
1821 else if (is_gimple_min_invariant (expr))
1822 return expr;
1823 else if (EXPR_P (expr))
1825 tree_ann_common_t ann = tree_common_ann (expr);
1826 return ((ann) ? ann->value_handle : NULL_TREE);
1828 else
1829 gcc_unreachable ();
1832 /* Accessor to tree-ssa-operands.c caches. */
1833 static inline struct ssa_operands *
1834 gimple_ssa_operands (const struct function *fun)
1836 return &fun->gimple_df->ssa_operands;
1839 /* Map describing reference statistics for function FN. */
1840 static inline struct mem_ref_stats_d *
1841 gimple_mem_ref_stats (const struct function *fn)
1843 return &fn->gimple_df->mem_ref_stats;
1845 #endif /* _TREE_FLOW_INLINE_H */