Merge -r 127928:132243 from trunk
[official-gcc.git] / gcc / function.c
blob4144e5de0ec21b62fb86d9f92d2382b309453886
1 /* Expands front end tree to back end RTL for GCC.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* This file handles the generation of rtl code from tree structure
23 at the level of the function as a whole.
24 It creates the rtl expressions for parameters and auto variables
25 and has full responsibility for allocating stack slots.
27 `expand_function_start' is called at the beginning of a function,
28 before the function body is parsed, and `expand_function_end' is
29 called after parsing the body.
31 Call `assign_stack_local' to allocate a stack slot for a local variable.
32 This is usually done during the RTL generation for the function body,
33 but it can also be done in the reload pass when a pseudo-register does
34 not get a hard register. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tree.h"
42 #include "flags.h"
43 #include "except.h"
44 #include "function.h"
45 #include "expr.h"
46 #include "optabs.h"
47 #include "libfuncs.h"
48 #include "regs.h"
49 #include "hard-reg-set.h"
50 #include "insn-config.h"
51 #include "recog.h"
52 #include "output.h"
53 #include "basic-block.h"
54 #include "toplev.h"
55 #include "hashtab.h"
56 #include "ggc.h"
57 #include "tm_p.h"
58 #include "integrate.h"
59 #include "langhooks.h"
60 #include "target.h"
61 #include "cfglayout.h"
62 #include "tree-gimple.h"
63 #include "tree-pass.h"
64 #include "predict.h"
65 #include "df.h"
66 #include "timevar.h"
67 #include "vecprim.h"
68 #include "cgraph.h"
70 /* So we can assign to cfun in this file. */
71 #undef cfun
73 #ifndef LOCAL_ALIGNMENT
74 #define LOCAL_ALIGNMENT(TYPE, ALIGNMENT) ALIGNMENT
75 #endif
77 #ifndef STACK_ALIGNMENT_NEEDED
78 #define STACK_ALIGNMENT_NEEDED 1
79 #endif
81 #define STACK_BYTES (STACK_BOUNDARY / BITS_PER_UNIT)
83 /* Some systems use __main in a way incompatible with its use in gcc, in these
84 cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
85 give the same symbol without quotes for an alternative entry point. You
86 must define both, or neither. */
87 #ifndef NAME__MAIN
88 #define NAME__MAIN "__main"
89 #endif
91 /* Round a value to the lowest integer less than it that is a multiple of
92 the required alignment. Avoid using division in case the value is
93 negative. Assume the alignment is a power of two. */
94 #define FLOOR_ROUND(VALUE,ALIGN) ((VALUE) & ~((ALIGN) - 1))
96 /* Similar, but round to the next highest integer that meets the
97 alignment. */
98 #define CEIL_ROUND(VALUE,ALIGN) (((VALUE) + (ALIGN) - 1) & ~((ALIGN)- 1))
100 /* Nonzero if function being compiled doesn't contain any calls
101 (ignoring the prologue and epilogue). This is set prior to
102 local register allocation and is valid for the remaining
103 compiler passes. */
104 int current_function_is_leaf;
106 /* Nonzero if function being compiled doesn't modify the stack pointer
107 (ignoring the prologue and epilogue). This is only valid after
108 pass_stack_ptr_mod has run. */
109 int current_function_sp_is_unchanging;
111 /* Nonzero if the function being compiled is a leaf function which only
112 uses leaf registers. This is valid after reload (specifically after
113 sched2) and is useful only if the port defines LEAF_REGISTERS. */
114 int current_function_uses_only_leaf_regs;
116 /* Nonzero once virtual register instantiation has been done.
117 assign_stack_local uses frame_pointer_rtx when this is nonzero.
118 calls.c:emit_library_call_value_1 uses it to set up
119 post-instantiation libcalls. */
120 int virtuals_instantiated;
122 /* Assign unique numbers to labels generated for profiling, debugging, etc. */
123 static GTY(()) int funcdef_no;
125 /* These variables hold pointers to functions to create and destroy
126 target specific, per-function data structures. */
127 struct machine_function * (*init_machine_status) (void);
129 /* The currently compiled function. */
130 struct function *cfun = 0;
132 /* These arrays record the INSN_UIDs of the prologue and epilogue insns. */
133 static VEC(int,heap) *prologue;
134 static VEC(int,heap) *epilogue;
136 /* Array of INSN_UIDs to hold the INSN_UIDs for each sibcall epilogue
137 in this function. */
138 static VEC(int,heap) *sibcall_epilogue;
140 /* In order to evaluate some expressions, such as function calls returning
141 structures in memory, we need to temporarily allocate stack locations.
142 We record each allocated temporary in the following structure.
144 Associated with each temporary slot is a nesting level. When we pop up
145 one level, all temporaries associated with the previous level are freed.
146 Normally, all temporaries are freed after the execution of the statement
147 in which they were created. However, if we are inside a ({...}) grouping,
148 the result may be in a temporary and hence must be preserved. If the
149 result could be in a temporary, we preserve it if we can determine which
150 one it is in. If we cannot determine which temporary may contain the
151 result, all temporaries are preserved. A temporary is preserved by
152 pretending it was allocated at the previous nesting level.
154 Automatic variables are also assigned temporary slots, at the nesting
155 level where they are defined. They are marked a "kept" so that
156 free_temp_slots will not free them. */
158 struct temp_slot GTY(())
160 /* Points to next temporary slot. */
161 struct temp_slot *next;
162 /* Points to previous temporary slot. */
163 struct temp_slot *prev;
165 /* The rtx to used to reference the slot. */
166 rtx slot;
167 /* The rtx used to represent the address if not the address of the
168 slot above. May be an EXPR_LIST if multiple addresses exist. */
169 rtx address;
170 /* The alignment (in bits) of the slot. */
171 unsigned int align;
172 /* The size, in units, of the slot. */
173 HOST_WIDE_INT size;
174 /* The type of the object in the slot, or zero if it doesn't correspond
175 to a type. We use this to determine whether a slot can be reused.
176 It can be reused if objects of the type of the new slot will always
177 conflict with objects of the type of the old slot. */
178 tree type;
179 /* Nonzero if this temporary is currently in use. */
180 char in_use;
181 /* Nonzero if this temporary has its address taken. */
182 char addr_taken;
183 /* Nesting level at which this slot is being used. */
184 int level;
185 /* Nonzero if this should survive a call to free_temp_slots. */
186 int keep;
187 /* The offset of the slot from the frame_pointer, including extra space
188 for alignment. This info is for combine_temp_slots. */
189 HOST_WIDE_INT base_offset;
190 /* The size of the slot, including extra space for alignment. This
191 info is for combine_temp_slots. */
192 HOST_WIDE_INT full_size;
195 /* Forward declarations. */
197 static rtx assign_stack_local_1 (enum machine_mode, HOST_WIDE_INT, int,
198 struct function *);
199 static struct temp_slot *find_temp_slot_from_address (rtx);
200 static void pad_to_arg_alignment (struct args_size *, int, struct args_size *);
201 static void pad_below (struct args_size *, enum machine_mode, tree);
202 static void reorder_blocks_1 (rtx, tree, VEC(tree,heap) **);
203 static int all_blocks (tree, tree *);
204 static tree *get_block_vector (tree, int *);
205 extern tree debug_find_var_in_block_tree (tree, tree);
206 /* We always define `record_insns' even if it's not used so that we
207 can always export `prologue_epilogue_contains'. */
208 static void record_insns (rtx, VEC(int,heap) **) ATTRIBUTE_UNUSED;
209 static int contains (const_rtx, VEC(int,heap) **);
210 #ifdef HAVE_return
211 static void emit_return_into_block (basic_block);
212 #endif
213 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
214 static rtx keep_stack_depressed (rtx);
215 #endif
216 static void prepare_function_start (void);
217 static void do_clobber_return_reg (rtx, void *);
218 static void do_use_return_reg (rtx, void *);
219 static void set_insn_locators (rtx, int) ATTRIBUTE_UNUSED;
221 /* Pointer to chain of `struct function' for containing functions. */
222 struct function *outer_function_chain;
224 /* Given a function decl for a containing function,
225 return the `struct function' for it. */
227 struct function *
228 find_function_data (tree decl)
230 struct function *p;
232 for (p = outer_function_chain; p; p = p->outer)
233 if (p->decl == decl)
234 return p;
236 gcc_unreachable ();
239 /* Save the current context for compilation of a nested function.
240 This is called from language-specific code. The caller should use
241 the enter_nested langhook to save any language-specific state,
242 since this function knows only about language-independent
243 variables. */
245 void
246 push_function_context_to (tree context ATTRIBUTE_UNUSED)
248 struct function *p;
250 if (cfun == 0)
251 allocate_struct_function (NULL, false);
252 p = cfun;
254 p->outer = outer_function_chain;
255 outer_function_chain = p;
257 lang_hooks.function.enter_nested (p);
259 set_cfun (NULL);
262 void
263 push_function_context (void)
265 push_function_context_to (current_function_decl);
268 /* Restore the last saved context, at the end of a nested function.
269 This function is called from language-specific code. */
271 void
272 pop_function_context_from (tree context ATTRIBUTE_UNUSED)
274 struct function *p = outer_function_chain;
276 set_cfun (p);
277 outer_function_chain = p->outer;
279 current_function_decl = p->decl;
281 lang_hooks.function.leave_nested (p);
283 /* Reset variables that have known state during rtx generation. */
284 virtuals_instantiated = 0;
285 generating_concat_p = 1;
288 void
289 pop_function_context (void)
291 pop_function_context_from (current_function_decl);
294 /* Clear out all parts of the state in F that can safely be discarded
295 after the function has been parsed, but not compiled, to let
296 garbage collection reclaim the memory. */
298 void
299 free_after_parsing (struct function *f)
301 /* f->expr->forced_labels is used by code generation. */
302 /* f->emit->regno_reg_rtx is used by code generation. */
303 /* f->varasm is used by code generation. */
304 /* f->eh->eh_return_stub_label is used by code generation. */
306 lang_hooks.function.final (f);
309 /* Clear out all parts of the state in F that can safely be discarded
310 after the function has been compiled, to let garbage collection
311 reclaim the memory. */
313 void
314 free_after_compilation (struct function *f)
316 VEC_free (int, heap, prologue);
317 VEC_free (int, heap, epilogue);
318 VEC_free (int, heap, sibcall_epilogue);
320 f->eh = NULL;
321 f->expr = NULL;
322 f->emit = NULL;
323 f->varasm = NULL;
324 f->machine = NULL;
325 f->cfg = NULL;
327 f->x_avail_temp_slots = NULL;
328 f->x_used_temp_slots = NULL;
329 f->arg_offset_rtx = NULL;
330 f->return_rtx = NULL;
331 f->internal_arg_pointer = NULL;
332 f->x_nonlocal_goto_handler_labels = NULL;
333 f->x_return_label = NULL;
334 f->x_naked_return_label = NULL;
335 f->x_stack_slot_list = NULL;
336 f->x_stack_check_probe_note = NULL;
337 f->x_arg_pointer_save_area = NULL;
338 f->x_parm_birth_insn = NULL;
339 f->epilogue_delay_list = NULL;
342 /* Allocate fixed slots in the stack frame of the current function. */
344 /* Return size needed for stack frame based on slots so far allocated in
345 function F.
346 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
347 the caller may have to do that. */
349 static HOST_WIDE_INT
350 get_func_frame_size (struct function *f)
352 if (FRAME_GROWS_DOWNWARD)
353 return -f->x_frame_offset;
354 else
355 return f->x_frame_offset;
358 /* Return size needed for stack frame based on slots so far allocated.
359 This size counts from zero. It is not rounded to PREFERRED_STACK_BOUNDARY;
360 the caller may have to do that. */
362 HOST_WIDE_INT
363 get_frame_size (void)
365 return get_func_frame_size (cfun);
368 /* Issue an error message and return TRUE if frame OFFSET overflows in
369 the signed target pointer arithmetics for function FUNC. Otherwise
370 return FALSE. */
372 bool
373 frame_offset_overflow (HOST_WIDE_INT offset, tree func)
375 unsigned HOST_WIDE_INT size = FRAME_GROWS_DOWNWARD ? -offset : offset;
377 if (size > ((unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (Pmode) - 1))
378 /* Leave room for the fixed part of the frame. */
379 - 64 * UNITS_PER_WORD)
381 error ("%Jtotal size of local objects too large", func);
382 return TRUE;
385 return FALSE;
388 /* Allocate a stack slot of SIZE bytes and return a MEM rtx for it
389 with machine mode MODE.
391 ALIGN controls the amount of alignment for the address of the slot:
392 0 means according to MODE,
393 -1 means use BIGGEST_ALIGNMENT and round size to multiple of that,
394 -2 means use BITS_PER_UNIT,
395 positive specifies alignment boundary in bits.
397 We do not round to stack_boundary here.
399 FUNCTION specifies the function to allocate in. */
401 static rtx
402 assign_stack_local_1 (enum machine_mode mode, HOST_WIDE_INT size, int align,
403 struct function *function)
405 rtx x, addr;
406 int bigend_correction = 0;
407 unsigned int alignment;
408 int frame_off, frame_alignment, frame_phase;
410 if (align == 0)
412 tree type;
414 if (mode == BLKmode)
415 alignment = BIGGEST_ALIGNMENT;
416 else
417 alignment = GET_MODE_ALIGNMENT (mode);
419 /* Allow the target to (possibly) increase the alignment of this
420 stack slot. */
421 type = lang_hooks.types.type_for_mode (mode, 0);
422 if (type)
423 alignment = LOCAL_ALIGNMENT (type, alignment);
425 alignment /= BITS_PER_UNIT;
427 else if (align == -1)
429 alignment = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
430 size = CEIL_ROUND (size, alignment);
432 else if (align == -2)
433 alignment = 1; /* BITS_PER_UNIT / BITS_PER_UNIT */
434 else
435 alignment = align / BITS_PER_UNIT;
437 if (FRAME_GROWS_DOWNWARD)
438 function->x_frame_offset -= size;
440 /* Ignore alignment we can't do with expected alignment of the boundary. */
441 if (alignment * BITS_PER_UNIT > PREFERRED_STACK_BOUNDARY)
442 alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
444 if (function->stack_alignment_needed < alignment * BITS_PER_UNIT)
445 function->stack_alignment_needed = alignment * BITS_PER_UNIT;
447 /* Calculate how many bytes the start of local variables is off from
448 stack alignment. */
449 frame_alignment = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
450 frame_off = STARTING_FRAME_OFFSET % frame_alignment;
451 frame_phase = frame_off ? frame_alignment - frame_off : 0;
453 /* Round the frame offset to the specified alignment. The default is
454 to always honor requests to align the stack but a port may choose to
455 do its own stack alignment by defining STACK_ALIGNMENT_NEEDED. */
456 if (STACK_ALIGNMENT_NEEDED
457 || mode != BLKmode
458 || size != 0)
460 /* We must be careful here, since FRAME_OFFSET might be negative and
461 division with a negative dividend isn't as well defined as we might
462 like. So we instead assume that ALIGNMENT is a power of two and
463 use logical operations which are unambiguous. */
464 if (FRAME_GROWS_DOWNWARD)
465 function->x_frame_offset
466 = (FLOOR_ROUND (function->x_frame_offset - frame_phase,
467 (unsigned HOST_WIDE_INT) alignment)
468 + frame_phase);
469 else
470 function->x_frame_offset
471 = (CEIL_ROUND (function->x_frame_offset - frame_phase,
472 (unsigned HOST_WIDE_INT) alignment)
473 + frame_phase);
476 /* On a big-endian machine, if we are allocating more space than we will use,
477 use the least significant bytes of those that are allocated. */
478 if (BYTES_BIG_ENDIAN && mode != BLKmode && GET_MODE_SIZE (mode) < size)
479 bigend_correction = size - GET_MODE_SIZE (mode);
481 /* If we have already instantiated virtual registers, return the actual
482 address relative to the frame pointer. */
483 if (function == cfun && virtuals_instantiated)
484 addr = plus_constant (frame_pointer_rtx,
485 trunc_int_for_mode
486 (frame_offset + bigend_correction
487 + STARTING_FRAME_OFFSET, Pmode));
488 else
489 addr = plus_constant (virtual_stack_vars_rtx,
490 trunc_int_for_mode
491 (function->x_frame_offset + bigend_correction,
492 Pmode));
494 if (!FRAME_GROWS_DOWNWARD)
495 function->x_frame_offset += size;
497 x = gen_rtx_MEM (mode, addr);
498 MEM_NOTRAP_P (x) = 1;
500 function->x_stack_slot_list
501 = gen_rtx_EXPR_LIST (VOIDmode, x, function->x_stack_slot_list);
503 if (frame_offset_overflow (function->x_frame_offset, function->decl))
504 function->x_frame_offset = 0;
506 return x;
509 /* Wrapper around assign_stack_local_1; assign a local stack slot for the
510 current function. */
513 assign_stack_local (enum machine_mode mode, HOST_WIDE_INT size, int align)
515 return assign_stack_local_1 (mode, size, align, cfun);
519 /* Removes temporary slot TEMP from LIST. */
521 static void
522 cut_slot_from_list (struct temp_slot *temp, struct temp_slot **list)
524 if (temp->next)
525 temp->next->prev = temp->prev;
526 if (temp->prev)
527 temp->prev->next = temp->next;
528 else
529 *list = temp->next;
531 temp->prev = temp->next = NULL;
534 /* Inserts temporary slot TEMP to LIST. */
536 static void
537 insert_slot_to_list (struct temp_slot *temp, struct temp_slot **list)
539 temp->next = *list;
540 if (*list)
541 (*list)->prev = temp;
542 temp->prev = NULL;
543 *list = temp;
546 /* Returns the list of used temp slots at LEVEL. */
548 static struct temp_slot **
549 temp_slots_at_level (int level)
551 if (level >= (int) VEC_length (temp_slot_p, used_temp_slots))
552 VEC_safe_grow_cleared (temp_slot_p, gc, used_temp_slots, level + 1);
554 return &(VEC_address (temp_slot_p, used_temp_slots)[level]);
557 /* Returns the maximal temporary slot level. */
559 static int
560 max_slot_level (void)
562 if (!used_temp_slots)
563 return -1;
565 return VEC_length (temp_slot_p, used_temp_slots) - 1;
568 /* Moves temporary slot TEMP to LEVEL. */
570 static void
571 move_slot_to_level (struct temp_slot *temp, int level)
573 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
574 insert_slot_to_list (temp, temp_slots_at_level (level));
575 temp->level = level;
578 /* Make temporary slot TEMP available. */
580 static void
581 make_slot_available (struct temp_slot *temp)
583 cut_slot_from_list (temp, temp_slots_at_level (temp->level));
584 insert_slot_to_list (temp, &avail_temp_slots);
585 temp->in_use = 0;
586 temp->level = -1;
589 /* Allocate a temporary stack slot and record it for possible later
590 reuse.
592 MODE is the machine mode to be given to the returned rtx.
594 SIZE is the size in units of the space required. We do no rounding here
595 since assign_stack_local will do any required rounding.
597 KEEP is 1 if this slot is to be retained after a call to
598 free_temp_slots. Automatic variables for a block are allocated
599 with this flag. KEEP values of 2 or 3 were needed respectively
600 for variables whose lifetime is controlled by CLEANUP_POINT_EXPRs
601 or for SAVE_EXPRs, but they are now unused.
603 TYPE is the type that will be used for the stack slot. */
606 assign_stack_temp_for_type (enum machine_mode mode, HOST_WIDE_INT size,
607 int keep, tree type)
609 unsigned int align;
610 struct temp_slot *p, *best_p = 0, *selected = NULL, **pp;
611 rtx slot;
613 /* If SIZE is -1 it means that somebody tried to allocate a temporary
614 of a variable size. */
615 gcc_assert (size != -1);
617 /* These are now unused. */
618 gcc_assert (keep <= 1);
620 if (mode == BLKmode)
621 align = BIGGEST_ALIGNMENT;
622 else
623 align = GET_MODE_ALIGNMENT (mode);
625 if (! type)
626 type = lang_hooks.types.type_for_mode (mode, 0);
628 if (type)
629 align = LOCAL_ALIGNMENT (type, align);
631 /* Try to find an available, already-allocated temporary of the proper
632 mode which meets the size and alignment requirements. Choose the
633 smallest one with the closest alignment.
635 If assign_stack_temp is called outside of the tree->rtl expansion,
636 we cannot reuse the stack slots (that may still refer to
637 VIRTUAL_STACK_VARS_REGNUM). */
638 if (!virtuals_instantiated)
640 for (p = avail_temp_slots; p; p = p->next)
642 if (p->align >= align && p->size >= size
643 && GET_MODE (p->slot) == mode
644 && objects_must_conflict_p (p->type, type)
645 && (best_p == 0 || best_p->size > p->size
646 || (best_p->size == p->size && best_p->align > p->align)))
648 if (p->align == align && p->size == size)
650 selected = p;
651 cut_slot_from_list (selected, &avail_temp_slots);
652 best_p = 0;
653 break;
655 best_p = p;
660 /* Make our best, if any, the one to use. */
661 if (best_p)
663 selected = best_p;
664 cut_slot_from_list (selected, &avail_temp_slots);
666 /* If there are enough aligned bytes left over, make them into a new
667 temp_slot so that the extra bytes don't get wasted. Do this only
668 for BLKmode slots, so that we can be sure of the alignment. */
669 if (GET_MODE (best_p->slot) == BLKmode)
671 int alignment = best_p->align / BITS_PER_UNIT;
672 HOST_WIDE_INT rounded_size = CEIL_ROUND (size, alignment);
674 if (best_p->size - rounded_size >= alignment)
676 p = ggc_alloc (sizeof (struct temp_slot));
677 p->in_use = p->addr_taken = 0;
678 p->size = best_p->size - rounded_size;
679 p->base_offset = best_p->base_offset + rounded_size;
680 p->full_size = best_p->full_size - rounded_size;
681 p->slot = adjust_address_nv (best_p->slot, BLKmode, rounded_size);
682 p->align = best_p->align;
683 p->address = 0;
684 p->type = best_p->type;
685 insert_slot_to_list (p, &avail_temp_slots);
687 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, p->slot,
688 stack_slot_list);
690 best_p->size = rounded_size;
691 best_p->full_size = rounded_size;
696 /* If we still didn't find one, make a new temporary. */
697 if (selected == 0)
699 HOST_WIDE_INT frame_offset_old = frame_offset;
701 p = ggc_alloc (sizeof (struct temp_slot));
703 /* We are passing an explicit alignment request to assign_stack_local.
704 One side effect of that is assign_stack_local will not round SIZE
705 to ensure the frame offset remains suitably aligned.
707 So for requests which depended on the rounding of SIZE, we go ahead
708 and round it now. We also make sure ALIGNMENT is at least
709 BIGGEST_ALIGNMENT. */
710 gcc_assert (mode != BLKmode || align == BIGGEST_ALIGNMENT);
711 p->slot = assign_stack_local (mode,
712 (mode == BLKmode
713 ? CEIL_ROUND (size, (int) align / BITS_PER_UNIT)
714 : size),
715 align);
717 p->align = align;
719 /* The following slot size computation is necessary because we don't
720 know the actual size of the temporary slot until assign_stack_local
721 has performed all the frame alignment and size rounding for the
722 requested temporary. Note that extra space added for alignment
723 can be either above or below this stack slot depending on which
724 way the frame grows. We include the extra space if and only if it
725 is above this slot. */
726 if (FRAME_GROWS_DOWNWARD)
727 p->size = frame_offset_old - frame_offset;
728 else
729 p->size = size;
731 /* Now define the fields used by combine_temp_slots. */
732 if (FRAME_GROWS_DOWNWARD)
734 p->base_offset = frame_offset;
735 p->full_size = frame_offset_old - frame_offset;
737 else
739 p->base_offset = frame_offset_old;
740 p->full_size = frame_offset - frame_offset_old;
742 p->address = 0;
744 selected = p;
747 p = selected;
748 p->in_use = 1;
749 p->addr_taken = 0;
750 p->type = type;
751 p->level = temp_slot_level;
752 p->keep = keep;
754 pp = temp_slots_at_level (p->level);
755 insert_slot_to_list (p, pp);
757 /* Create a new MEM rtx to avoid clobbering MEM flags of old slots. */
758 slot = gen_rtx_MEM (mode, XEXP (p->slot, 0));
759 stack_slot_list = gen_rtx_EXPR_LIST (VOIDmode, slot, stack_slot_list);
761 /* If we know the alias set for the memory that will be used, use
762 it. If there's no TYPE, then we don't know anything about the
763 alias set for the memory. */
764 set_mem_alias_set (slot, type ? get_alias_set (type) : 0);
765 set_mem_align (slot, align);
767 /* If a type is specified, set the relevant flags. */
768 if (type != 0)
770 MEM_VOLATILE_P (slot) = TYPE_VOLATILE (type);
771 MEM_SET_IN_STRUCT_P (slot, (AGGREGATE_TYPE_P (type)
772 || TREE_CODE (type) == COMPLEX_TYPE));
774 MEM_NOTRAP_P (slot) = 1;
776 return slot;
779 /* Allocate a temporary stack slot and record it for possible later
780 reuse. First three arguments are same as in preceding function. */
783 assign_stack_temp (enum machine_mode mode, HOST_WIDE_INT size, int keep)
785 return assign_stack_temp_for_type (mode, size, keep, NULL_TREE);
788 /* Assign a temporary.
789 If TYPE_OR_DECL is a decl, then we are doing it on behalf of the decl
790 and so that should be used in error messages. In either case, we
791 allocate of the given type.
792 KEEP is as for assign_stack_temp.
793 MEMORY_REQUIRED is 1 if the result must be addressable stack memory;
794 it is 0 if a register is OK.
795 DONT_PROMOTE is 1 if we should not promote values in register
796 to wider modes. */
799 assign_temp (tree type_or_decl, int keep, int memory_required,
800 int dont_promote ATTRIBUTE_UNUSED)
802 tree type, decl;
803 enum machine_mode mode;
804 #ifdef PROMOTE_MODE
805 int unsignedp;
806 #endif
808 if (DECL_P (type_or_decl))
809 decl = type_or_decl, type = TREE_TYPE (decl);
810 else
811 decl = NULL, type = type_or_decl;
813 mode = TYPE_MODE (type);
814 #ifdef PROMOTE_MODE
815 unsignedp = TYPE_UNSIGNED (type);
816 #endif
818 if (mode == BLKmode || memory_required)
820 HOST_WIDE_INT size = int_size_in_bytes (type);
821 rtx tmp;
823 /* Zero sized arrays are GNU C extension. Set size to 1 to avoid
824 problems with allocating the stack space. */
825 if (size == 0)
826 size = 1;
828 /* Unfortunately, we don't yet know how to allocate variable-sized
829 temporaries. However, sometimes we can find a fixed upper limit on
830 the size, so try that instead. */
831 else if (size == -1)
832 size = max_int_size_in_bytes (type);
834 /* The size of the temporary may be too large to fit into an integer. */
835 /* ??? Not sure this should happen except for user silliness, so limit
836 this to things that aren't compiler-generated temporaries. The
837 rest of the time we'll die in assign_stack_temp_for_type. */
838 if (decl && size == -1
839 && TREE_CODE (TYPE_SIZE_UNIT (type)) == INTEGER_CST)
841 error ("size of variable %q+D is too large", decl);
842 size = 1;
845 tmp = assign_stack_temp_for_type (mode, size, keep, type);
846 return tmp;
849 #ifdef PROMOTE_MODE
850 if (! dont_promote)
851 mode = promote_mode (type, mode, &unsignedp, 0);
852 #endif
854 return gen_reg_rtx (mode);
857 /* Combine temporary stack slots which are adjacent on the stack.
859 This allows for better use of already allocated stack space. This is only
860 done for BLKmode slots because we can be sure that we won't have alignment
861 problems in this case. */
863 static void
864 combine_temp_slots (void)
866 struct temp_slot *p, *q, *next, *next_q;
867 int num_slots;
869 /* We can't combine slots, because the information about which slot
870 is in which alias set will be lost. */
871 if (flag_strict_aliasing)
872 return;
874 /* If there are a lot of temp slots, don't do anything unless
875 high levels of optimization. */
876 if (! flag_expensive_optimizations)
877 for (p = avail_temp_slots, num_slots = 0; p; p = p->next, num_slots++)
878 if (num_slots > 100 || (num_slots > 10 && optimize == 0))
879 return;
881 for (p = avail_temp_slots; p; p = next)
883 int delete_p = 0;
885 next = p->next;
887 if (GET_MODE (p->slot) != BLKmode)
888 continue;
890 for (q = p->next; q; q = next_q)
892 int delete_q = 0;
894 next_q = q->next;
896 if (GET_MODE (q->slot) != BLKmode)
897 continue;
899 if (p->base_offset + p->full_size == q->base_offset)
901 /* Q comes after P; combine Q into P. */
902 p->size += q->size;
903 p->full_size += q->full_size;
904 delete_q = 1;
906 else if (q->base_offset + q->full_size == p->base_offset)
908 /* P comes after Q; combine P into Q. */
909 q->size += p->size;
910 q->full_size += p->full_size;
911 delete_p = 1;
912 break;
914 if (delete_q)
915 cut_slot_from_list (q, &avail_temp_slots);
918 /* Either delete P or advance past it. */
919 if (delete_p)
920 cut_slot_from_list (p, &avail_temp_slots);
924 /* Find the temp slot corresponding to the object at address X. */
926 static struct temp_slot *
927 find_temp_slot_from_address (rtx x)
929 struct temp_slot *p;
930 rtx next;
931 int i;
933 for (i = max_slot_level (); i >= 0; i--)
934 for (p = *temp_slots_at_level (i); p; p = p->next)
936 if (XEXP (p->slot, 0) == x
937 || p->address == x
938 || (GET_CODE (x) == PLUS
939 && XEXP (x, 0) == virtual_stack_vars_rtx
940 && GET_CODE (XEXP (x, 1)) == CONST_INT
941 && INTVAL (XEXP (x, 1)) >= p->base_offset
942 && INTVAL (XEXP (x, 1)) < p->base_offset + p->full_size))
943 return p;
945 else if (p->address != 0 && GET_CODE (p->address) == EXPR_LIST)
946 for (next = p->address; next; next = XEXP (next, 1))
947 if (XEXP (next, 0) == x)
948 return p;
951 /* If we have a sum involving a register, see if it points to a temp
952 slot. */
953 if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 0))
954 && (p = find_temp_slot_from_address (XEXP (x, 0))) != 0)
955 return p;
956 else if (GET_CODE (x) == PLUS && REG_P (XEXP (x, 1))
957 && (p = find_temp_slot_from_address (XEXP (x, 1))) != 0)
958 return p;
960 return 0;
963 /* Indicate that NEW is an alternate way of referring to the temp slot
964 that previously was known by OLD. */
966 void
967 update_temp_slot_address (rtx old, rtx new)
969 struct temp_slot *p;
971 if (rtx_equal_p (old, new))
972 return;
974 p = find_temp_slot_from_address (old);
976 /* If we didn't find one, see if both OLD is a PLUS. If so, and NEW
977 is a register, see if one operand of the PLUS is a temporary
978 location. If so, NEW points into it. Otherwise, if both OLD and
979 NEW are a PLUS and if there is a register in common between them.
980 If so, try a recursive call on those values. */
981 if (p == 0)
983 if (GET_CODE (old) != PLUS)
984 return;
986 if (REG_P (new))
988 update_temp_slot_address (XEXP (old, 0), new);
989 update_temp_slot_address (XEXP (old, 1), new);
990 return;
992 else if (GET_CODE (new) != PLUS)
993 return;
995 if (rtx_equal_p (XEXP (old, 0), XEXP (new, 0)))
996 update_temp_slot_address (XEXP (old, 1), XEXP (new, 1));
997 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 0)))
998 update_temp_slot_address (XEXP (old, 0), XEXP (new, 1));
999 else if (rtx_equal_p (XEXP (old, 0), XEXP (new, 1)))
1000 update_temp_slot_address (XEXP (old, 1), XEXP (new, 0));
1001 else if (rtx_equal_p (XEXP (old, 1), XEXP (new, 1)))
1002 update_temp_slot_address (XEXP (old, 0), XEXP (new, 0));
1004 return;
1007 /* Otherwise add an alias for the temp's address. */
1008 else if (p->address == 0)
1009 p->address = new;
1010 else
1012 if (GET_CODE (p->address) != EXPR_LIST)
1013 p->address = gen_rtx_EXPR_LIST (VOIDmode, p->address, NULL_RTX);
1015 p->address = gen_rtx_EXPR_LIST (VOIDmode, new, p->address);
1019 /* If X could be a reference to a temporary slot, mark the fact that its
1020 address was taken. */
1022 void
1023 mark_temp_addr_taken (rtx x)
1025 struct temp_slot *p;
1027 if (x == 0)
1028 return;
1030 /* If X is not in memory or is at a constant address, it cannot be in
1031 a temporary slot. */
1032 if (!MEM_P (x) || CONSTANT_P (XEXP (x, 0)))
1033 return;
1035 p = find_temp_slot_from_address (XEXP (x, 0));
1036 if (p != 0)
1037 p->addr_taken = 1;
1040 /* If X could be a reference to a temporary slot, mark that slot as
1041 belonging to the to one level higher than the current level. If X
1042 matched one of our slots, just mark that one. Otherwise, we can't
1043 easily predict which it is, so upgrade all of them. Kept slots
1044 need not be touched.
1046 This is called when an ({...}) construct occurs and a statement
1047 returns a value in memory. */
1049 void
1050 preserve_temp_slots (rtx x)
1052 struct temp_slot *p = 0, *next;
1054 /* If there is no result, we still might have some objects whose address
1055 were taken, so we need to make sure they stay around. */
1056 if (x == 0)
1058 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1060 next = p->next;
1062 if (p->addr_taken)
1063 move_slot_to_level (p, temp_slot_level - 1);
1066 return;
1069 /* If X is a register that is being used as a pointer, see if we have
1070 a temporary slot we know it points to. To be consistent with
1071 the code below, we really should preserve all non-kept slots
1072 if we can't find a match, but that seems to be much too costly. */
1073 if (REG_P (x) && REG_POINTER (x))
1074 p = find_temp_slot_from_address (x);
1076 /* If X is not in memory or is at a constant address, it cannot be in
1077 a temporary slot, but it can contain something whose address was
1078 taken. */
1079 if (p == 0 && (!MEM_P (x) || CONSTANT_P (XEXP (x, 0))))
1081 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1083 next = p->next;
1085 if (p->addr_taken)
1086 move_slot_to_level (p, temp_slot_level - 1);
1089 return;
1092 /* First see if we can find a match. */
1093 if (p == 0)
1094 p = find_temp_slot_from_address (XEXP (x, 0));
1096 if (p != 0)
1098 /* Move everything at our level whose address was taken to our new
1099 level in case we used its address. */
1100 struct temp_slot *q;
1102 if (p->level == temp_slot_level)
1104 for (q = *temp_slots_at_level (temp_slot_level); q; q = next)
1106 next = q->next;
1108 if (p != q && q->addr_taken)
1109 move_slot_to_level (q, temp_slot_level - 1);
1112 move_slot_to_level (p, temp_slot_level - 1);
1113 p->addr_taken = 0;
1115 return;
1118 /* Otherwise, preserve all non-kept slots at this level. */
1119 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1121 next = p->next;
1123 if (!p->keep)
1124 move_slot_to_level (p, temp_slot_level - 1);
1128 /* Free all temporaries used so far. This is normally called at the
1129 end of generating code for a statement. */
1131 void
1132 free_temp_slots (void)
1134 struct temp_slot *p, *next;
1136 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1138 next = p->next;
1140 if (!p->keep)
1141 make_slot_available (p);
1144 combine_temp_slots ();
1147 /* Push deeper into the nesting level for stack temporaries. */
1149 void
1150 push_temp_slots (void)
1152 temp_slot_level++;
1155 /* Pop a temporary nesting level. All slots in use in the current level
1156 are freed. */
1158 void
1159 pop_temp_slots (void)
1161 struct temp_slot *p, *next;
1163 for (p = *temp_slots_at_level (temp_slot_level); p; p = next)
1165 next = p->next;
1166 make_slot_available (p);
1169 combine_temp_slots ();
1171 temp_slot_level--;
1174 /* Initialize temporary slots. */
1176 void
1177 init_temp_slots (void)
1179 /* We have not allocated any temporaries yet. */
1180 avail_temp_slots = 0;
1181 used_temp_slots = 0;
1182 temp_slot_level = 0;
1185 /* These routines are responsible for converting virtual register references
1186 to the actual hard register references once RTL generation is complete.
1188 The following four variables are used for communication between the
1189 routines. They contain the offsets of the virtual registers from their
1190 respective hard registers. */
1192 static int in_arg_offset;
1193 static int var_offset;
1194 static int dynamic_offset;
1195 static int out_arg_offset;
1196 static int cfa_offset;
1198 /* In most machines, the stack pointer register is equivalent to the bottom
1199 of the stack. */
1201 #ifndef STACK_POINTER_OFFSET
1202 #define STACK_POINTER_OFFSET 0
1203 #endif
1205 /* If not defined, pick an appropriate default for the offset of dynamically
1206 allocated memory depending on the value of ACCUMULATE_OUTGOING_ARGS,
1207 REG_PARM_STACK_SPACE, and OUTGOING_REG_PARM_STACK_SPACE. */
1209 #ifndef STACK_DYNAMIC_OFFSET
1211 /* The bottom of the stack points to the actual arguments. If
1212 REG_PARM_STACK_SPACE is defined, this includes the space for the register
1213 parameters. However, if OUTGOING_REG_PARM_STACK space is not defined,
1214 stack space for register parameters is not pushed by the caller, but
1215 rather part of the fixed stack areas and hence not included in
1216 `current_function_outgoing_args_size'. Nevertheless, we must allow
1217 for it when allocating stack dynamic objects. */
1219 #if defined(REG_PARM_STACK_SPACE)
1220 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1221 ((ACCUMULATE_OUTGOING_ARGS \
1222 ? (current_function_outgoing_args_size \
1223 + (OUTGOING_REG_PARM_STACK_SPACE ? 0 : REG_PARM_STACK_SPACE (FNDECL))) \
1224 : 0) + (STACK_POINTER_OFFSET))
1225 #else
1226 #define STACK_DYNAMIC_OFFSET(FNDECL) \
1227 ((ACCUMULATE_OUTGOING_ARGS ? current_function_outgoing_args_size : 0) \
1228 + (STACK_POINTER_OFFSET))
1229 #endif
1230 #endif
1233 /* Given a piece of RTX and a pointer to a HOST_WIDE_INT, if the RTX
1234 is a virtual register, return the equivalent hard register and set the
1235 offset indirectly through the pointer. Otherwise, return 0. */
1237 static rtx
1238 instantiate_new_reg (rtx x, HOST_WIDE_INT *poffset)
1240 rtx new;
1241 HOST_WIDE_INT offset;
1243 if (x == virtual_incoming_args_rtx)
1244 new = arg_pointer_rtx, offset = in_arg_offset;
1245 else if (x == virtual_stack_vars_rtx)
1246 new = frame_pointer_rtx, offset = var_offset;
1247 else if (x == virtual_stack_dynamic_rtx)
1248 new = stack_pointer_rtx, offset = dynamic_offset;
1249 else if (x == virtual_outgoing_args_rtx)
1250 new = stack_pointer_rtx, offset = out_arg_offset;
1251 else if (x == virtual_cfa_rtx)
1253 #ifdef FRAME_POINTER_CFA_OFFSET
1254 new = frame_pointer_rtx;
1255 #else
1256 new = arg_pointer_rtx;
1257 #endif
1258 offset = cfa_offset;
1260 else
1261 return NULL_RTX;
1263 *poffset = offset;
1264 return new;
1267 /* A subroutine of instantiate_virtual_regs, called via for_each_rtx.
1268 Instantiate any virtual registers present inside of *LOC. The expression
1269 is simplified, as much as possible, but is not to be considered "valid"
1270 in any sense implied by the target. If any change is made, set CHANGED
1271 to true. */
1273 static int
1274 instantiate_virtual_regs_in_rtx (rtx *loc, void *data)
1276 HOST_WIDE_INT offset;
1277 bool *changed = (bool *) data;
1278 rtx x, new;
1280 x = *loc;
1281 if (x == 0)
1282 return 0;
1284 switch (GET_CODE (x))
1286 case REG:
1287 new = instantiate_new_reg (x, &offset);
1288 if (new)
1290 *loc = plus_constant (new, offset);
1291 if (changed)
1292 *changed = true;
1294 return -1;
1296 case PLUS:
1297 new = instantiate_new_reg (XEXP (x, 0), &offset);
1298 if (new)
1300 new = plus_constant (new, offset);
1301 *loc = simplify_gen_binary (PLUS, GET_MODE (x), new, XEXP (x, 1));
1302 if (changed)
1303 *changed = true;
1304 return -1;
1307 /* FIXME -- from old code */
1308 /* If we have (plus (subreg (virtual-reg)) (const_int)), we know
1309 we can commute the PLUS and SUBREG because pointers into the
1310 frame are well-behaved. */
1311 break;
1313 default:
1314 break;
1317 return 0;
1320 /* A subroutine of instantiate_virtual_regs_in_insn. Return true if X
1321 matches the predicate for insn CODE operand OPERAND. */
1323 static int
1324 safe_insn_predicate (int code, int operand, rtx x)
1326 const struct insn_operand_data *op_data;
1328 if (code < 0)
1329 return true;
1331 op_data = &insn_data[code].operand[operand];
1332 if (op_data->predicate == NULL)
1333 return true;
1335 return op_data->predicate (x, op_data->mode);
1338 /* A subroutine of instantiate_virtual_regs. Instantiate any virtual
1339 registers present inside of insn. The result will be a valid insn. */
1341 static void
1342 instantiate_virtual_regs_in_insn (rtx insn)
1344 HOST_WIDE_INT offset;
1345 int insn_code, i;
1346 bool any_change = false;
1347 rtx set, new, x, seq;
1349 /* There are some special cases to be handled first. */
1350 set = single_set (insn);
1351 if (set)
1353 /* We're allowed to assign to a virtual register. This is interpreted
1354 to mean that the underlying register gets assigned the inverse
1355 transformation. This is used, for example, in the handling of
1356 non-local gotos. */
1357 new = instantiate_new_reg (SET_DEST (set), &offset);
1358 if (new)
1360 start_sequence ();
1362 for_each_rtx (&SET_SRC (set), instantiate_virtual_regs_in_rtx, NULL);
1363 x = simplify_gen_binary (PLUS, GET_MODE (new), SET_SRC (set),
1364 GEN_INT (-offset));
1365 x = force_operand (x, new);
1366 if (x != new)
1367 emit_move_insn (new, x);
1369 seq = get_insns ();
1370 end_sequence ();
1372 emit_insn_before (seq, insn);
1373 delete_insn (insn);
1374 return;
1377 /* Handle a straight copy from a virtual register by generating a
1378 new add insn. The difference between this and falling through
1379 to the generic case is avoiding a new pseudo and eliminating a
1380 move insn in the initial rtl stream. */
1381 new = instantiate_new_reg (SET_SRC (set), &offset);
1382 if (new && offset != 0
1383 && REG_P (SET_DEST (set))
1384 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1386 start_sequence ();
1388 x = expand_simple_binop (GET_MODE (SET_DEST (set)), PLUS,
1389 new, GEN_INT (offset), SET_DEST (set),
1390 1, OPTAB_LIB_WIDEN);
1391 if (x != SET_DEST (set))
1392 emit_move_insn (SET_DEST (set), x);
1394 seq = get_insns ();
1395 end_sequence ();
1397 emit_insn_before (seq, insn);
1398 delete_insn (insn);
1399 return;
1402 extract_insn (insn);
1403 insn_code = INSN_CODE (insn);
1405 /* Handle a plus involving a virtual register by determining if the
1406 operands remain valid if they're modified in place. */
1407 if (GET_CODE (SET_SRC (set)) == PLUS
1408 && recog_data.n_operands >= 3
1409 && recog_data.operand_loc[1] == &XEXP (SET_SRC (set), 0)
1410 && recog_data.operand_loc[2] == &XEXP (SET_SRC (set), 1)
1411 && GET_CODE (recog_data.operand[2]) == CONST_INT
1412 && (new = instantiate_new_reg (recog_data.operand[1], &offset)))
1414 offset += INTVAL (recog_data.operand[2]);
1416 /* If the sum is zero, then replace with a plain move. */
1417 if (offset == 0
1418 && REG_P (SET_DEST (set))
1419 && REGNO (SET_DEST (set)) > LAST_VIRTUAL_REGISTER)
1421 start_sequence ();
1422 emit_move_insn (SET_DEST (set), new);
1423 seq = get_insns ();
1424 end_sequence ();
1426 emit_insn_before (seq, insn);
1427 delete_insn (insn);
1428 return;
1431 x = gen_int_mode (offset, recog_data.operand_mode[2]);
1433 /* Using validate_change and apply_change_group here leaves
1434 recog_data in an invalid state. Since we know exactly what
1435 we want to check, do those two by hand. */
1436 if (safe_insn_predicate (insn_code, 1, new)
1437 && safe_insn_predicate (insn_code, 2, x))
1439 *recog_data.operand_loc[1] = recog_data.operand[1] = new;
1440 *recog_data.operand_loc[2] = recog_data.operand[2] = x;
1441 any_change = true;
1443 /* Fall through into the regular operand fixup loop in
1444 order to take care of operands other than 1 and 2. */
1448 else
1450 extract_insn (insn);
1451 insn_code = INSN_CODE (insn);
1454 /* In the general case, we expect virtual registers to appear only in
1455 operands, and then only as either bare registers or inside memories. */
1456 for (i = 0; i < recog_data.n_operands; ++i)
1458 x = recog_data.operand[i];
1459 switch (GET_CODE (x))
1461 case MEM:
1463 rtx addr = XEXP (x, 0);
1464 bool changed = false;
1466 for_each_rtx (&addr, instantiate_virtual_regs_in_rtx, &changed);
1467 if (!changed)
1468 continue;
1470 start_sequence ();
1471 x = replace_equiv_address (x, addr);
1472 seq = get_insns ();
1473 end_sequence ();
1474 if (seq)
1475 emit_insn_before (seq, insn);
1477 break;
1479 case REG:
1480 new = instantiate_new_reg (x, &offset);
1481 if (new == NULL)
1482 continue;
1483 if (offset == 0)
1484 x = new;
1485 else
1487 start_sequence ();
1489 /* Careful, special mode predicates may have stuff in
1490 insn_data[insn_code].operand[i].mode that isn't useful
1491 to us for computing a new value. */
1492 /* ??? Recognize address_operand and/or "p" constraints
1493 to see if (plus new offset) is a valid before we put
1494 this through expand_simple_binop. */
1495 x = expand_simple_binop (GET_MODE (x), PLUS, new,
1496 GEN_INT (offset), NULL_RTX,
1497 1, OPTAB_LIB_WIDEN);
1498 seq = get_insns ();
1499 end_sequence ();
1500 emit_insn_before (seq, insn);
1502 break;
1504 case SUBREG:
1505 new = instantiate_new_reg (SUBREG_REG (x), &offset);
1506 if (new == NULL)
1507 continue;
1508 if (offset != 0)
1510 start_sequence ();
1511 new = expand_simple_binop (GET_MODE (new), PLUS, new,
1512 GEN_INT (offset), NULL_RTX,
1513 1, OPTAB_LIB_WIDEN);
1514 seq = get_insns ();
1515 end_sequence ();
1516 emit_insn_before (seq, insn);
1518 x = simplify_gen_subreg (recog_data.operand_mode[i], new,
1519 GET_MODE (new), SUBREG_BYTE (x));
1520 break;
1522 default:
1523 continue;
1526 /* At this point, X contains the new value for the operand.
1527 Validate the new value vs the insn predicate. Note that
1528 asm insns will have insn_code -1 here. */
1529 if (!safe_insn_predicate (insn_code, i, x))
1531 start_sequence ();
1532 x = force_reg (insn_data[insn_code].operand[i].mode, x);
1533 seq = get_insns ();
1534 end_sequence ();
1535 if (seq)
1536 emit_insn_before (seq, insn);
1539 *recog_data.operand_loc[i] = recog_data.operand[i] = x;
1540 any_change = true;
1543 if (any_change)
1545 /* Propagate operand changes into the duplicates. */
1546 for (i = 0; i < recog_data.n_dups; ++i)
1547 *recog_data.dup_loc[i]
1548 = copy_rtx (recog_data.operand[(unsigned)recog_data.dup_num[i]]);
1550 /* Force re-recognition of the instruction for validation. */
1551 INSN_CODE (insn) = -1;
1554 if (asm_noperands (PATTERN (insn)) >= 0)
1556 if (!check_asm_operands (PATTERN (insn)))
1558 error_for_asm (insn, "impossible constraint in %<asm%>");
1559 delete_insn (insn);
1562 else
1564 if (recog_memoized (insn) < 0)
1565 fatal_insn_not_found (insn);
1569 /* Subroutine of instantiate_decls. Given RTL representing a decl,
1570 do any instantiation required. */
1572 void
1573 instantiate_decl_rtl (rtx x)
1575 rtx addr;
1577 if (x == 0)
1578 return;
1580 /* If this is a CONCAT, recurse for the pieces. */
1581 if (GET_CODE (x) == CONCAT)
1583 instantiate_decl_rtl (XEXP (x, 0));
1584 instantiate_decl_rtl (XEXP (x, 1));
1585 return;
1588 /* If this is not a MEM, no need to do anything. Similarly if the
1589 address is a constant or a register that is not a virtual register. */
1590 if (!MEM_P (x))
1591 return;
1593 addr = XEXP (x, 0);
1594 if (CONSTANT_P (addr)
1595 || (REG_P (addr)
1596 && (REGNO (addr) < FIRST_VIRTUAL_REGISTER
1597 || REGNO (addr) > LAST_VIRTUAL_REGISTER)))
1598 return;
1600 for_each_rtx (&XEXP (x, 0), instantiate_virtual_regs_in_rtx, NULL);
1603 /* Helper for instantiate_decls called via walk_tree: Process all decls
1604 in the given DECL_VALUE_EXPR. */
1606 static tree
1607 instantiate_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
1609 tree t = *tp;
1610 if (! EXPR_P (t) && ! GIMPLE_STMT_P (t))
1612 *walk_subtrees = 0;
1613 if (DECL_P (t) && DECL_RTL_SET_P (t))
1614 instantiate_decl_rtl (DECL_RTL (t));
1616 return NULL;
1619 /* Subroutine of instantiate_decls: Process all decls in the given
1620 BLOCK node and all its subblocks. */
1622 static void
1623 instantiate_decls_1 (tree let)
1625 tree t;
1627 for (t = BLOCK_VARS (let); t; t = TREE_CHAIN (t))
1629 if (DECL_RTL_SET_P (t))
1630 instantiate_decl_rtl (DECL_RTL (t));
1631 if (TREE_CODE (t) == VAR_DECL && DECL_HAS_VALUE_EXPR_P (t))
1633 tree v = DECL_VALUE_EXPR (t);
1634 walk_tree (&v, instantiate_expr, NULL, NULL);
1638 /* Process all subblocks. */
1639 for (t = BLOCK_SUBBLOCKS (let); t; t = BLOCK_CHAIN (t))
1640 instantiate_decls_1 (t);
1643 /* Scan all decls in FNDECL (both variables and parameters) and instantiate
1644 all virtual registers in their DECL_RTL's. */
1646 static void
1647 instantiate_decls (tree fndecl)
1649 tree decl;
1651 /* Process all parameters of the function. */
1652 for (decl = DECL_ARGUMENTS (fndecl); decl; decl = TREE_CHAIN (decl))
1654 instantiate_decl_rtl (DECL_RTL (decl));
1655 instantiate_decl_rtl (DECL_INCOMING_RTL (decl));
1656 if (DECL_HAS_VALUE_EXPR_P (decl))
1658 tree v = DECL_VALUE_EXPR (decl);
1659 walk_tree (&v, instantiate_expr, NULL, NULL);
1663 /* Now process all variables defined in the function or its subblocks. */
1664 instantiate_decls_1 (DECL_INITIAL (fndecl));
1667 /* Pass through the INSNS of function FNDECL and convert virtual register
1668 references to hard register references. */
1670 static unsigned int
1671 instantiate_virtual_regs (void)
1673 rtx insn;
1675 /* Compute the offsets to use for this function. */
1676 in_arg_offset = FIRST_PARM_OFFSET (current_function_decl);
1677 var_offset = STARTING_FRAME_OFFSET;
1678 dynamic_offset = STACK_DYNAMIC_OFFSET (current_function_decl);
1679 out_arg_offset = STACK_POINTER_OFFSET;
1680 #ifdef FRAME_POINTER_CFA_OFFSET
1681 cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
1682 #else
1683 cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
1684 #endif
1686 /* Initialize recognition, indicating that volatile is OK. */
1687 init_recog ();
1689 /* Scan through all the insns, instantiating every virtual register still
1690 present. */
1691 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1692 if (INSN_P (insn))
1694 /* These patterns in the instruction stream can never be recognized.
1695 Fortunately, they shouldn't contain virtual registers either. */
1696 if (GET_CODE (PATTERN (insn)) == USE
1697 || GET_CODE (PATTERN (insn)) == CLOBBER
1698 || GET_CODE (PATTERN (insn)) == ADDR_VEC
1699 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC
1700 || GET_CODE (PATTERN (insn)) == ASM_INPUT)
1701 continue;
1703 instantiate_virtual_regs_in_insn (insn);
1705 if (INSN_DELETED_P (insn))
1706 continue;
1708 for_each_rtx (&REG_NOTES (insn), instantiate_virtual_regs_in_rtx, NULL);
1710 /* Instantiate any virtual registers in CALL_INSN_FUNCTION_USAGE. */
1711 if (GET_CODE (insn) == CALL_INSN)
1712 for_each_rtx (&CALL_INSN_FUNCTION_USAGE (insn),
1713 instantiate_virtual_regs_in_rtx, NULL);
1716 /* Instantiate the virtual registers in the DECLs for debugging purposes. */
1717 instantiate_decls (current_function_decl);
1719 targetm.instantiate_decls ();
1721 /* Indicate that, from now on, assign_stack_local should use
1722 frame_pointer_rtx. */
1723 virtuals_instantiated = 1;
1724 return 0;
1727 struct tree_opt_pass pass_instantiate_virtual_regs =
1729 "vregs", /* name */
1730 NULL, /* gate */
1731 instantiate_virtual_regs, /* execute */
1732 NULL, /* sub */
1733 NULL, /* next */
1734 0, /* static_pass_number */
1735 0, /* tv_id */
1736 0, /* properties_required */
1737 0, /* properties_provided */
1738 0, /* properties_destroyed */
1739 0, /* todo_flags_start */
1740 TODO_dump_func, /* todo_flags_finish */
1741 0 /* letter */
1745 /* Return 1 if EXP is an aggregate type (or a value with aggregate type).
1746 This means a type for which function calls must pass an address to the
1747 function or get an address back from the function.
1748 EXP may be a type node or an expression (whose type is tested). */
1751 aggregate_value_p (const_tree exp, const_tree fntype)
1753 int i, regno, nregs;
1754 rtx reg;
1756 const_tree type = (TYPE_P (exp)) ? exp : TREE_TYPE (exp);
1758 /* DECL node associated with FNTYPE when relevant, which we might need to
1759 check for by-invisible-reference returns, typically for CALL_EXPR input
1760 EXPressions. */
1761 const_tree fndecl = NULL_TREE;
1763 if (fntype)
1764 switch (TREE_CODE (fntype))
1766 case CALL_EXPR:
1767 fndecl = get_callee_fndecl (fntype);
1768 fntype = fndecl ? TREE_TYPE (fndecl) : 0;
1769 break;
1770 case FUNCTION_DECL:
1771 fndecl = fntype;
1772 fntype = TREE_TYPE (fndecl);
1773 break;
1774 case FUNCTION_TYPE:
1775 case METHOD_TYPE:
1776 break;
1777 case IDENTIFIER_NODE:
1778 fntype = 0;
1779 break;
1780 default:
1781 /* We don't expect other rtl types here. */
1782 gcc_unreachable ();
1785 if (TREE_CODE (type) == VOID_TYPE)
1786 return 0;
1788 /* If the front end has decided that this needs to be passed by
1789 reference, do so. */
1790 if ((TREE_CODE (exp) == PARM_DECL || TREE_CODE (exp) == RESULT_DECL)
1791 && DECL_BY_REFERENCE (exp))
1792 return 1;
1794 /* If the EXPression is a CALL_EXPR, honor DECL_BY_REFERENCE set on the
1795 called function RESULT_DECL, meaning the function returns in memory by
1796 invisible reference. This check lets front-ends not set TREE_ADDRESSABLE
1797 on the function type, which used to be the way to request such a return
1798 mechanism but might now be causing troubles at gimplification time if
1799 temporaries with the function type need to be created. */
1800 if (TREE_CODE (exp) == CALL_EXPR && fndecl && DECL_RESULT (fndecl)
1801 && DECL_BY_REFERENCE (DECL_RESULT (fndecl)))
1802 return 1;
1804 if (targetm.calls.return_in_memory (type, fntype))
1805 return 1;
1806 /* Types that are TREE_ADDRESSABLE must be constructed in memory,
1807 and thus can't be returned in registers. */
1808 if (TREE_ADDRESSABLE (type))
1809 return 1;
1810 if (flag_pcc_struct_return && AGGREGATE_TYPE_P (type))
1811 return 1;
1812 /* Make sure we have suitable call-clobbered regs to return
1813 the value in; if not, we must return it in memory. */
1814 reg = hard_function_value (type, 0, fntype, 0);
1816 /* If we have something other than a REG (e.g. a PARALLEL), then assume
1817 it is OK. */
1818 if (!REG_P (reg))
1819 return 0;
1821 regno = REGNO (reg);
1822 nregs = hard_regno_nregs[regno][TYPE_MODE (type)];
1823 for (i = 0; i < nregs; i++)
1824 if (! call_used_regs[regno + i])
1825 return 1;
1826 return 0;
1829 /* Return true if we should assign DECL a pseudo register; false if it
1830 should live on the local stack. */
1832 bool
1833 use_register_for_decl (const_tree decl)
1835 /* Honor volatile. */
1836 if (TREE_SIDE_EFFECTS (decl))
1837 return false;
1839 /* Honor addressability. */
1840 if (TREE_ADDRESSABLE (decl))
1841 return false;
1843 /* Only register-like things go in registers. */
1844 if (DECL_MODE (decl) == BLKmode)
1845 return false;
1847 /* If -ffloat-store specified, don't put explicit float variables
1848 into registers. */
1849 /* ??? This should be checked after DECL_ARTIFICIAL, but tree-ssa
1850 propagates values across these stores, and it probably shouldn't. */
1851 if (flag_float_store && FLOAT_TYPE_P (TREE_TYPE (decl)))
1852 return false;
1854 /* If we're not interested in tracking debugging information for
1855 this decl, then we can certainly put it in a register. */
1856 if (DECL_IGNORED_P (decl))
1857 return true;
1859 return (optimize || DECL_REGISTER (decl));
1862 /* Return true if TYPE should be passed by invisible reference. */
1864 bool
1865 pass_by_reference (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1866 tree type, bool named_arg)
1868 if (type)
1870 /* If this type contains non-trivial constructors, then it is
1871 forbidden for the middle-end to create any new copies. */
1872 if (TREE_ADDRESSABLE (type))
1873 return true;
1875 /* GCC post 3.4 passes *all* variable sized types by reference. */
1876 if (!TYPE_SIZE (type) || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1877 return true;
1880 return targetm.calls.pass_by_reference (ca, mode, type, named_arg);
1883 /* Return true if TYPE, which is passed by reference, should be callee
1884 copied instead of caller copied. */
1886 bool
1887 reference_callee_copied (CUMULATIVE_ARGS *ca, enum machine_mode mode,
1888 tree type, bool named_arg)
1890 if (type && TREE_ADDRESSABLE (type))
1891 return false;
1892 return targetm.calls.callee_copies (ca, mode, type, named_arg);
1895 /* Structures to communicate between the subroutines of assign_parms.
1896 The first holds data persistent across all parameters, the second
1897 is cleared out for each parameter. */
1899 struct assign_parm_data_all
1901 CUMULATIVE_ARGS args_so_far;
1902 struct args_size stack_args_size;
1903 tree function_result_decl;
1904 tree orig_fnargs;
1905 rtx first_conversion_insn;
1906 rtx last_conversion_insn;
1907 HOST_WIDE_INT pretend_args_size;
1908 HOST_WIDE_INT extra_pretend_bytes;
1909 int reg_parm_stack_space;
1912 struct assign_parm_data_one
1914 tree nominal_type;
1915 tree passed_type;
1916 rtx entry_parm;
1917 rtx stack_parm;
1918 enum machine_mode nominal_mode;
1919 enum machine_mode passed_mode;
1920 enum machine_mode promoted_mode;
1921 struct locate_and_pad_arg_data locate;
1922 int partial;
1923 BOOL_BITFIELD named_arg : 1;
1924 BOOL_BITFIELD passed_pointer : 1;
1925 BOOL_BITFIELD on_stack : 1;
1926 BOOL_BITFIELD loaded_in_reg : 1;
1929 /* A subroutine of assign_parms. Initialize ALL. */
1931 static void
1932 assign_parms_initialize_all (struct assign_parm_data_all *all)
1934 tree fntype;
1936 memset (all, 0, sizeof (*all));
1938 fntype = TREE_TYPE (current_function_decl);
1940 #ifdef INIT_CUMULATIVE_INCOMING_ARGS
1941 INIT_CUMULATIVE_INCOMING_ARGS (all->args_so_far, fntype, NULL_RTX);
1942 #else
1943 INIT_CUMULATIVE_ARGS (all->args_so_far, fntype, NULL_RTX,
1944 current_function_decl, -1);
1945 #endif
1947 #ifdef REG_PARM_STACK_SPACE
1948 all->reg_parm_stack_space = REG_PARM_STACK_SPACE (current_function_decl);
1949 #endif
1952 /* If ARGS contains entries with complex types, split the entry into two
1953 entries of the component type. Return a new list of substitutions are
1954 needed, else the old list. */
1956 static tree
1957 split_complex_args (tree args)
1959 tree p;
1961 /* Before allocating memory, check for the common case of no complex. */
1962 for (p = args; p; p = TREE_CHAIN (p))
1964 tree type = TREE_TYPE (p);
1965 if (TREE_CODE (type) == COMPLEX_TYPE
1966 && targetm.calls.split_complex_arg (type))
1967 goto found;
1969 return args;
1971 found:
1972 args = copy_list (args);
1974 for (p = args; p; p = TREE_CHAIN (p))
1976 tree type = TREE_TYPE (p);
1977 if (TREE_CODE (type) == COMPLEX_TYPE
1978 && targetm.calls.split_complex_arg (type))
1980 tree decl;
1981 tree subtype = TREE_TYPE (type);
1982 bool addressable = TREE_ADDRESSABLE (p);
1984 /* Rewrite the PARM_DECL's type with its component. */
1985 TREE_TYPE (p) = subtype;
1986 DECL_ARG_TYPE (p) = TREE_TYPE (DECL_ARG_TYPE (p));
1987 DECL_MODE (p) = VOIDmode;
1988 DECL_SIZE (p) = NULL;
1989 DECL_SIZE_UNIT (p) = NULL;
1990 /* If this arg must go in memory, put it in a pseudo here.
1991 We can't allow it to go in memory as per normal parms,
1992 because the usual place might not have the imag part
1993 adjacent to the real part. */
1994 DECL_ARTIFICIAL (p) = addressable;
1995 DECL_IGNORED_P (p) = addressable;
1996 TREE_ADDRESSABLE (p) = 0;
1997 layout_decl (p, 0);
1999 /* Build a second synthetic decl. */
2000 decl = build_decl (PARM_DECL, NULL_TREE, subtype);
2001 DECL_ARG_TYPE (decl) = DECL_ARG_TYPE (p);
2002 DECL_ARTIFICIAL (decl) = addressable;
2003 DECL_IGNORED_P (decl) = addressable;
2004 layout_decl (decl, 0);
2006 /* Splice it in; skip the new decl. */
2007 TREE_CHAIN (decl) = TREE_CHAIN (p);
2008 TREE_CHAIN (p) = decl;
2009 p = decl;
2013 return args;
2016 /* A subroutine of assign_parms. Adjust the parameter list to incorporate
2017 the hidden struct return argument, and (abi willing) complex args.
2018 Return the new parameter list. */
2020 static tree
2021 assign_parms_augmented_arg_list (struct assign_parm_data_all *all)
2023 tree fndecl = current_function_decl;
2024 tree fntype = TREE_TYPE (fndecl);
2025 tree fnargs = DECL_ARGUMENTS (fndecl);
2027 /* If struct value address is treated as the first argument, make it so. */
2028 if (aggregate_value_p (DECL_RESULT (fndecl), fndecl)
2029 && ! current_function_returns_pcc_struct
2030 && targetm.calls.struct_value_rtx (TREE_TYPE (fndecl), 1) == 0)
2032 tree type = build_pointer_type (TREE_TYPE (fntype));
2033 tree decl;
2035 decl = build_decl (PARM_DECL, NULL_TREE, type);
2036 DECL_ARG_TYPE (decl) = type;
2037 DECL_ARTIFICIAL (decl) = 1;
2038 DECL_IGNORED_P (decl) = 1;
2040 TREE_CHAIN (decl) = fnargs;
2041 fnargs = decl;
2042 all->function_result_decl = decl;
2045 all->orig_fnargs = fnargs;
2047 /* If the target wants to split complex arguments into scalars, do so. */
2048 if (targetm.calls.split_complex_arg)
2049 fnargs = split_complex_args (fnargs);
2051 return fnargs;
2054 /* A subroutine of assign_parms. Examine PARM and pull out type and mode
2055 data for the parameter. Incorporate ABI specifics such as pass-by-
2056 reference and type promotion. */
2058 static void
2059 assign_parm_find_data_types (struct assign_parm_data_all *all, tree parm,
2060 struct assign_parm_data_one *data)
2062 tree nominal_type, passed_type;
2063 enum machine_mode nominal_mode, passed_mode, promoted_mode;
2065 memset (data, 0, sizeof (*data));
2067 /* NAMED_ARG is a mis-nomer. We really mean 'non-varadic'. */
2068 if (!current_function_stdarg)
2069 data->named_arg = 1; /* No varadic parms. */
2070 else if (TREE_CHAIN (parm))
2071 data->named_arg = 1; /* Not the last non-varadic parm. */
2072 else if (targetm.calls.strict_argument_naming (&all->args_so_far))
2073 data->named_arg = 1; /* Only varadic ones are unnamed. */
2074 else
2075 data->named_arg = 0; /* Treat as varadic. */
2077 nominal_type = TREE_TYPE (parm);
2078 passed_type = DECL_ARG_TYPE (parm);
2080 /* Look out for errors propagating this far. Also, if the parameter's
2081 type is void then its value doesn't matter. */
2082 if (TREE_TYPE (parm) == error_mark_node
2083 /* This can happen after weird syntax errors
2084 or if an enum type is defined among the parms. */
2085 || TREE_CODE (parm) != PARM_DECL
2086 || passed_type == NULL
2087 || VOID_TYPE_P (nominal_type))
2089 nominal_type = passed_type = void_type_node;
2090 nominal_mode = passed_mode = promoted_mode = VOIDmode;
2091 goto egress;
2094 /* Find mode of arg as it is passed, and mode of arg as it should be
2095 during execution of this function. */
2096 passed_mode = TYPE_MODE (passed_type);
2097 nominal_mode = TYPE_MODE (nominal_type);
2099 /* If the parm is to be passed as a transparent union, use the type of
2100 the first field for the tests below. We have already verified that
2101 the modes are the same. */
2102 if (TREE_CODE (passed_type) == UNION_TYPE
2103 && TYPE_TRANSPARENT_UNION (passed_type))
2104 passed_type = TREE_TYPE (TYPE_FIELDS (passed_type));
2106 /* See if this arg was passed by invisible reference. */
2107 if (pass_by_reference (&all->args_so_far, passed_mode,
2108 passed_type, data->named_arg))
2110 passed_type = nominal_type = build_pointer_type (passed_type);
2111 data->passed_pointer = true;
2112 passed_mode = nominal_mode = Pmode;
2115 /* Find mode as it is passed by the ABI. */
2116 promoted_mode = passed_mode;
2117 if (targetm.calls.promote_function_args (TREE_TYPE (current_function_decl)))
2119 int unsignedp = TYPE_UNSIGNED (passed_type);
2120 promoted_mode = promote_mode (passed_type, promoted_mode,
2121 &unsignedp, 1);
2124 egress:
2125 data->nominal_type = nominal_type;
2126 data->passed_type = passed_type;
2127 data->nominal_mode = nominal_mode;
2128 data->passed_mode = passed_mode;
2129 data->promoted_mode = promoted_mode;
2132 /* A subroutine of assign_parms. Invoke setup_incoming_varargs. */
2134 static void
2135 assign_parms_setup_varargs (struct assign_parm_data_all *all,
2136 struct assign_parm_data_one *data, bool no_rtl)
2138 int varargs_pretend_bytes = 0;
2140 targetm.calls.setup_incoming_varargs (&all->args_so_far,
2141 data->promoted_mode,
2142 data->passed_type,
2143 &varargs_pretend_bytes, no_rtl);
2145 /* If the back-end has requested extra stack space, record how much is
2146 needed. Do not change pretend_args_size otherwise since it may be
2147 nonzero from an earlier partial argument. */
2148 if (varargs_pretend_bytes > 0)
2149 all->pretend_args_size = varargs_pretend_bytes;
2152 /* A subroutine of assign_parms. Set DATA->ENTRY_PARM corresponding to
2153 the incoming location of the current parameter. */
2155 static void
2156 assign_parm_find_entry_rtl (struct assign_parm_data_all *all,
2157 struct assign_parm_data_one *data)
2159 HOST_WIDE_INT pretend_bytes = 0;
2160 rtx entry_parm;
2161 bool in_regs;
2163 if (data->promoted_mode == VOIDmode)
2165 data->entry_parm = data->stack_parm = const0_rtx;
2166 return;
2169 #ifdef FUNCTION_INCOMING_ARG
2170 entry_parm = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2171 data->passed_type, data->named_arg);
2172 #else
2173 entry_parm = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2174 data->passed_type, data->named_arg);
2175 #endif
2177 if (entry_parm == 0)
2178 data->promoted_mode = data->passed_mode;
2180 /* Determine parm's home in the stack, in case it arrives in the stack
2181 or we should pretend it did. Compute the stack position and rtx where
2182 the argument arrives and its size.
2184 There is one complexity here: If this was a parameter that would
2185 have been passed in registers, but wasn't only because it is
2186 __builtin_va_alist, we want locate_and_pad_parm to treat it as if
2187 it came in a register so that REG_PARM_STACK_SPACE isn't skipped.
2188 In this case, we call FUNCTION_ARG with NAMED set to 1 instead of 0
2189 as it was the previous time. */
2190 in_regs = entry_parm != 0;
2191 #ifdef STACK_PARMS_IN_REG_PARM_AREA
2192 in_regs = true;
2193 #endif
2194 if (!in_regs && !data->named_arg)
2196 if (targetm.calls.pretend_outgoing_varargs_named (&all->args_so_far))
2198 rtx tem;
2199 #ifdef FUNCTION_INCOMING_ARG
2200 tem = FUNCTION_INCOMING_ARG (all->args_so_far, data->promoted_mode,
2201 data->passed_type, true);
2202 #else
2203 tem = FUNCTION_ARG (all->args_so_far, data->promoted_mode,
2204 data->passed_type, true);
2205 #endif
2206 in_regs = tem != NULL;
2210 /* If this parameter was passed both in registers and in the stack, use
2211 the copy on the stack. */
2212 if (targetm.calls.must_pass_in_stack (data->promoted_mode,
2213 data->passed_type))
2214 entry_parm = 0;
2216 if (entry_parm)
2218 int partial;
2220 partial = targetm.calls.arg_partial_bytes (&all->args_so_far,
2221 data->promoted_mode,
2222 data->passed_type,
2223 data->named_arg);
2224 data->partial = partial;
2226 /* The caller might already have allocated stack space for the
2227 register parameters. */
2228 if (partial != 0 && all->reg_parm_stack_space == 0)
2230 /* Part of this argument is passed in registers and part
2231 is passed on the stack. Ask the prologue code to extend
2232 the stack part so that we can recreate the full value.
2234 PRETEND_BYTES is the size of the registers we need to store.
2235 CURRENT_FUNCTION_PRETEND_ARGS_SIZE is the amount of extra
2236 stack space that the prologue should allocate.
2238 Internally, gcc assumes that the argument pointer is aligned
2239 to STACK_BOUNDARY bits. This is used both for alignment
2240 optimizations (see init_emit) and to locate arguments that are
2241 aligned to more than PARM_BOUNDARY bits. We must preserve this
2242 invariant by rounding CURRENT_FUNCTION_PRETEND_ARGS_SIZE up to
2243 a stack boundary. */
2245 /* We assume at most one partial arg, and it must be the first
2246 argument on the stack. */
2247 gcc_assert (!all->extra_pretend_bytes && !all->pretend_args_size);
2249 pretend_bytes = partial;
2250 all->pretend_args_size = CEIL_ROUND (pretend_bytes, STACK_BYTES);
2252 /* We want to align relative to the actual stack pointer, so
2253 don't include this in the stack size until later. */
2254 all->extra_pretend_bytes = all->pretend_args_size;
2258 locate_and_pad_parm (data->promoted_mode, data->passed_type, in_regs,
2259 entry_parm ? data->partial : 0, current_function_decl,
2260 &all->stack_args_size, &data->locate);
2262 /* Adjust offsets to include the pretend args. */
2263 pretend_bytes = all->extra_pretend_bytes - pretend_bytes;
2264 data->locate.slot_offset.constant += pretend_bytes;
2265 data->locate.offset.constant += pretend_bytes;
2267 data->entry_parm = entry_parm;
2270 /* A subroutine of assign_parms. If there is actually space on the stack
2271 for this parm, count it in stack_args_size and return true. */
2273 static bool
2274 assign_parm_is_stack_parm (struct assign_parm_data_all *all,
2275 struct assign_parm_data_one *data)
2277 /* Trivially true if we've no incoming register. */
2278 if (data->entry_parm == NULL)
2280 /* Also true if we're partially in registers and partially not,
2281 since we've arranged to drop the entire argument on the stack. */
2282 else if (data->partial != 0)
2284 /* Also true if the target says that it's passed in both registers
2285 and on the stack. */
2286 else if (GET_CODE (data->entry_parm) == PARALLEL
2287 && XEXP (XVECEXP (data->entry_parm, 0, 0), 0) == NULL_RTX)
2289 /* Also true if the target says that there's stack allocated for
2290 all register parameters. */
2291 else if (all->reg_parm_stack_space > 0)
2293 /* Otherwise, no, this parameter has no ABI defined stack slot. */
2294 else
2295 return false;
2297 all->stack_args_size.constant += data->locate.size.constant;
2298 if (data->locate.size.var)
2299 ADD_PARM_SIZE (all->stack_args_size, data->locate.size.var);
2301 return true;
2304 /* A subroutine of assign_parms. Given that this parameter is allocated
2305 stack space by the ABI, find it. */
2307 static void
2308 assign_parm_find_stack_rtl (tree parm, struct assign_parm_data_one *data)
2310 rtx offset_rtx, stack_parm;
2311 unsigned int align, boundary;
2313 /* If we're passing this arg using a reg, make its stack home the
2314 aligned stack slot. */
2315 if (data->entry_parm)
2316 offset_rtx = ARGS_SIZE_RTX (data->locate.slot_offset);
2317 else
2318 offset_rtx = ARGS_SIZE_RTX (data->locate.offset);
2320 stack_parm = current_function_internal_arg_pointer;
2321 if (offset_rtx != const0_rtx)
2322 stack_parm = gen_rtx_PLUS (Pmode, stack_parm, offset_rtx);
2323 stack_parm = gen_rtx_MEM (data->promoted_mode, stack_parm);
2325 set_mem_attributes (stack_parm, parm, 1);
2327 boundary = data->locate.boundary;
2328 align = BITS_PER_UNIT;
2330 /* If we're padding upward, we know that the alignment of the slot
2331 is FUNCTION_ARG_BOUNDARY. If we're using slot_offset, we're
2332 intentionally forcing upward padding. Otherwise we have to come
2333 up with a guess at the alignment based on OFFSET_RTX. */
2334 if (data->locate.where_pad != downward || data->entry_parm)
2335 align = boundary;
2336 else if (GET_CODE (offset_rtx) == CONST_INT)
2338 align = INTVAL (offset_rtx) * BITS_PER_UNIT | boundary;
2339 align = align & -align;
2341 set_mem_align (stack_parm, align);
2343 if (data->entry_parm)
2344 set_reg_attrs_for_parm (data->entry_parm, stack_parm);
2346 data->stack_parm = stack_parm;
2349 /* A subroutine of assign_parms. Adjust DATA->ENTRY_RTL such that it's
2350 always valid and contiguous. */
2352 static void
2353 assign_parm_adjust_entry_rtl (struct assign_parm_data_one *data)
2355 rtx entry_parm = data->entry_parm;
2356 rtx stack_parm = data->stack_parm;
2358 /* If this parm was passed part in regs and part in memory, pretend it
2359 arrived entirely in memory by pushing the register-part onto the stack.
2360 In the special case of a DImode or DFmode that is split, we could put
2361 it together in a pseudoreg directly, but for now that's not worth
2362 bothering with. */
2363 if (data->partial != 0)
2365 /* Handle calls that pass values in multiple non-contiguous
2366 locations. The Irix 6 ABI has examples of this. */
2367 if (GET_CODE (entry_parm) == PARALLEL)
2368 emit_group_store (validize_mem (stack_parm), entry_parm,
2369 data->passed_type,
2370 int_size_in_bytes (data->passed_type));
2371 else
2373 gcc_assert (data->partial % UNITS_PER_WORD == 0);
2374 move_block_from_reg (REGNO (entry_parm), validize_mem (stack_parm),
2375 data->partial / UNITS_PER_WORD);
2378 entry_parm = stack_parm;
2381 /* If we didn't decide this parm came in a register, by default it came
2382 on the stack. */
2383 else if (entry_parm == NULL)
2384 entry_parm = stack_parm;
2386 /* When an argument is passed in multiple locations, we can't make use
2387 of this information, but we can save some copying if the whole argument
2388 is passed in a single register. */
2389 else if (GET_CODE (entry_parm) == PARALLEL
2390 && data->nominal_mode != BLKmode
2391 && data->passed_mode != BLKmode)
2393 size_t i, len = XVECLEN (entry_parm, 0);
2395 for (i = 0; i < len; i++)
2396 if (XEXP (XVECEXP (entry_parm, 0, i), 0) != NULL_RTX
2397 && REG_P (XEXP (XVECEXP (entry_parm, 0, i), 0))
2398 && (GET_MODE (XEXP (XVECEXP (entry_parm, 0, i), 0))
2399 == data->passed_mode)
2400 && INTVAL (XEXP (XVECEXP (entry_parm, 0, i), 1)) == 0)
2402 entry_parm = XEXP (XVECEXP (entry_parm, 0, i), 0);
2403 break;
2407 data->entry_parm = entry_parm;
2410 /* A subroutine of assign_parms. Adjust DATA->STACK_RTL such that it's
2411 always valid and properly aligned. */
2413 static void
2414 assign_parm_adjust_stack_rtl (struct assign_parm_data_one *data)
2416 rtx stack_parm = data->stack_parm;
2418 /* If we can't trust the parm stack slot to be aligned enough for its
2419 ultimate type, don't use that slot after entry. We'll make another
2420 stack slot, if we need one. */
2421 if (stack_parm
2422 && ((STRICT_ALIGNMENT
2423 && GET_MODE_ALIGNMENT (data->nominal_mode) > MEM_ALIGN (stack_parm))
2424 || (data->nominal_type
2425 && TYPE_ALIGN (data->nominal_type) > MEM_ALIGN (stack_parm)
2426 && MEM_ALIGN (stack_parm) < PREFERRED_STACK_BOUNDARY)))
2427 stack_parm = NULL;
2429 /* If parm was passed in memory, and we need to convert it on entry,
2430 don't store it back in that same slot. */
2431 else if (data->entry_parm == stack_parm
2432 && data->nominal_mode != BLKmode
2433 && data->nominal_mode != data->passed_mode)
2434 stack_parm = NULL;
2436 /* If stack protection is in effect for this function, don't leave any
2437 pointers in their passed stack slots. */
2438 else if (cfun->stack_protect_guard
2439 && (flag_stack_protect == 2
2440 || data->passed_pointer
2441 || POINTER_TYPE_P (data->nominal_type)))
2442 stack_parm = NULL;
2444 data->stack_parm = stack_parm;
2447 /* A subroutine of assign_parms. Return true if the current parameter
2448 should be stored as a BLKmode in the current frame. */
2450 static bool
2451 assign_parm_setup_block_p (struct assign_parm_data_one *data)
2453 if (data->nominal_mode == BLKmode)
2454 return true;
2455 if (GET_CODE (data->entry_parm) == PARALLEL)
2456 return true;
2458 #ifdef BLOCK_REG_PADDING
2459 /* Only assign_parm_setup_block knows how to deal with register arguments
2460 that are padded at the least significant end. */
2461 if (REG_P (data->entry_parm)
2462 && GET_MODE_SIZE (data->promoted_mode) < UNITS_PER_WORD
2463 && (BLOCK_REG_PADDING (data->passed_mode, data->passed_type, 1)
2464 == (BYTES_BIG_ENDIAN ? upward : downward)))
2465 return true;
2466 #endif
2468 return false;
2471 /* A subroutine of assign_parms. Arrange for the parameter to be
2472 present and valid in DATA->STACK_RTL. */
2474 static void
2475 assign_parm_setup_block (struct assign_parm_data_all *all,
2476 tree parm, struct assign_parm_data_one *data)
2478 rtx entry_parm = data->entry_parm;
2479 rtx stack_parm = data->stack_parm;
2480 HOST_WIDE_INT size;
2481 HOST_WIDE_INT size_stored;
2482 rtx orig_entry_parm = entry_parm;
2484 if (GET_CODE (entry_parm) == PARALLEL)
2485 entry_parm = emit_group_move_into_temps (entry_parm);
2487 /* If we've a non-block object that's nevertheless passed in parts,
2488 reconstitute it in register operations rather than on the stack. */
2489 if (GET_CODE (entry_parm) == PARALLEL
2490 && data->nominal_mode != BLKmode)
2492 rtx elt0 = XEXP (XVECEXP (orig_entry_parm, 0, 0), 0);
2494 if ((XVECLEN (entry_parm, 0) > 1
2495 || hard_regno_nregs[REGNO (elt0)][GET_MODE (elt0)] > 1)
2496 && use_register_for_decl (parm))
2498 rtx parmreg = gen_reg_rtx (data->nominal_mode);
2500 push_to_sequence2 (all->first_conversion_insn,
2501 all->last_conversion_insn);
2503 /* For values returned in multiple registers, handle possible
2504 incompatible calls to emit_group_store.
2506 For example, the following would be invalid, and would have to
2507 be fixed by the conditional below:
2509 emit_group_store ((reg:SF), (parallel:DF))
2510 emit_group_store ((reg:SI), (parallel:DI))
2512 An example of this are doubles in e500 v2:
2513 (parallel:DF (expr_list (reg:SI) (const_int 0))
2514 (expr_list (reg:SI) (const_int 4))). */
2515 if (data->nominal_mode != data->passed_mode)
2517 rtx t = gen_reg_rtx (GET_MODE (entry_parm));
2518 emit_group_store (t, entry_parm, NULL_TREE,
2519 GET_MODE_SIZE (GET_MODE (entry_parm)));
2520 convert_move (parmreg, t, 0);
2522 else
2523 emit_group_store (parmreg, entry_parm, data->nominal_type,
2524 int_size_in_bytes (data->nominal_type));
2526 all->first_conversion_insn = get_insns ();
2527 all->last_conversion_insn = get_last_insn ();
2528 end_sequence ();
2530 SET_DECL_RTL (parm, parmreg);
2531 return;
2535 size = int_size_in_bytes (data->passed_type);
2536 size_stored = CEIL_ROUND (size, UNITS_PER_WORD);
2537 if (stack_parm == 0)
2539 DECL_ALIGN (parm) = MAX (DECL_ALIGN (parm), BITS_PER_WORD);
2540 stack_parm = assign_stack_local (BLKmode, size_stored,
2541 DECL_ALIGN (parm));
2542 if (GET_MODE_SIZE (GET_MODE (entry_parm)) == size)
2543 PUT_MODE (stack_parm, GET_MODE (entry_parm));
2544 set_mem_attributes (stack_parm, parm, 1);
2547 /* If a BLKmode arrives in registers, copy it to a stack slot. Handle
2548 calls that pass values in multiple non-contiguous locations. */
2549 if (REG_P (entry_parm) || GET_CODE (entry_parm) == PARALLEL)
2551 rtx mem;
2553 /* Note that we will be storing an integral number of words.
2554 So we have to be careful to ensure that we allocate an
2555 integral number of words. We do this above when we call
2556 assign_stack_local if space was not allocated in the argument
2557 list. If it was, this will not work if PARM_BOUNDARY is not
2558 a multiple of BITS_PER_WORD. It isn't clear how to fix this
2559 if it becomes a problem. Exception is when BLKmode arrives
2560 with arguments not conforming to word_mode. */
2562 if (data->stack_parm == 0)
2564 else if (GET_CODE (entry_parm) == PARALLEL)
2566 else
2567 gcc_assert (!size || !(PARM_BOUNDARY % BITS_PER_WORD));
2569 mem = validize_mem (stack_parm);
2571 /* Handle values in multiple non-contiguous locations. */
2572 if (GET_CODE (entry_parm) == PARALLEL)
2574 push_to_sequence2 (all->first_conversion_insn,
2575 all->last_conversion_insn);
2576 emit_group_store (mem, entry_parm, data->passed_type, size);
2577 all->first_conversion_insn = get_insns ();
2578 all->last_conversion_insn = get_last_insn ();
2579 end_sequence ();
2582 else if (size == 0)
2585 /* If SIZE is that of a mode no bigger than a word, just use
2586 that mode's store operation. */
2587 else if (size <= UNITS_PER_WORD)
2589 enum machine_mode mode
2590 = mode_for_size (size * BITS_PER_UNIT, MODE_INT, 0);
2592 if (mode != BLKmode
2593 #ifdef BLOCK_REG_PADDING
2594 && (size == UNITS_PER_WORD
2595 || (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2596 != (BYTES_BIG_ENDIAN ? upward : downward)))
2597 #endif
2600 rtx reg;
2602 /* We are really truncating a word_mode value containing
2603 SIZE bytes into a value of mode MODE. If such an
2604 operation requires no actual instructions, we can refer
2605 to the value directly in mode MODE, otherwise we must
2606 start with the register in word_mode and explicitly
2607 convert it. */
2608 if (TRULY_NOOP_TRUNCATION (size * BITS_PER_UNIT, BITS_PER_WORD))
2609 reg = gen_rtx_REG (mode, REGNO (entry_parm));
2610 else
2612 reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2613 reg = convert_to_mode (mode, copy_to_reg (reg), 1);
2615 emit_move_insn (change_address (mem, mode, 0), reg);
2618 /* Blocks smaller than a word on a BYTES_BIG_ENDIAN
2619 machine must be aligned to the left before storing
2620 to memory. Note that the previous test doesn't
2621 handle all cases (e.g. SIZE == 3). */
2622 else if (size != UNITS_PER_WORD
2623 #ifdef BLOCK_REG_PADDING
2624 && (BLOCK_REG_PADDING (mode, data->passed_type, 1)
2625 == downward)
2626 #else
2627 && BYTES_BIG_ENDIAN
2628 #endif
2631 rtx tem, x;
2632 int by = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
2633 rtx reg = gen_rtx_REG (word_mode, REGNO (entry_parm));
2635 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
2636 build_int_cst (NULL_TREE, by),
2637 NULL_RTX, 1);
2638 tem = change_address (mem, word_mode, 0);
2639 emit_move_insn (tem, x);
2641 else
2642 move_block_from_reg (REGNO (entry_parm), mem,
2643 size_stored / UNITS_PER_WORD);
2645 else
2646 move_block_from_reg (REGNO (entry_parm), mem,
2647 size_stored / UNITS_PER_WORD);
2649 else if (data->stack_parm == 0)
2651 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2652 emit_block_move (stack_parm, data->entry_parm, GEN_INT (size),
2653 BLOCK_OP_NORMAL);
2654 all->first_conversion_insn = get_insns ();
2655 all->last_conversion_insn = get_last_insn ();
2656 end_sequence ();
2659 data->stack_parm = stack_parm;
2660 SET_DECL_RTL (parm, stack_parm);
2663 /* A subroutine of assign_parms. Allocate a pseudo to hold the current
2664 parameter. Get it there. Perform all ABI specified conversions. */
2666 static void
2667 assign_parm_setup_reg (struct assign_parm_data_all *all, tree parm,
2668 struct assign_parm_data_one *data)
2670 rtx parmreg;
2671 enum machine_mode promoted_nominal_mode;
2672 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (parm));
2673 bool did_conversion = false;
2675 /* Store the parm in a pseudoregister during the function, but we may
2676 need to do it in a wider mode. */
2678 /* This is not really promoting for a call. However we need to be
2679 consistent with assign_parm_find_data_types and expand_expr_real_1. */
2680 promoted_nominal_mode
2681 = promote_mode (data->nominal_type, data->nominal_mode, &unsignedp, 1);
2683 parmreg = gen_reg_rtx (promoted_nominal_mode);
2685 if (!DECL_ARTIFICIAL (parm))
2686 mark_user_reg (parmreg);
2688 /* If this was an item that we received a pointer to,
2689 set DECL_RTL appropriately. */
2690 if (data->passed_pointer)
2692 rtx x = gen_rtx_MEM (TYPE_MODE (TREE_TYPE (data->passed_type)), parmreg);
2693 set_mem_attributes (x, parm, 1);
2694 SET_DECL_RTL (parm, x);
2696 else
2697 SET_DECL_RTL (parm, parmreg);
2699 /* Copy the value into the register. */
2700 if (data->nominal_mode != data->passed_mode
2701 || promoted_nominal_mode != data->promoted_mode)
2703 int save_tree_used;
2705 /* ENTRY_PARM has been converted to PROMOTED_MODE, its
2706 mode, by the caller. We now have to convert it to
2707 NOMINAL_MODE, if different. However, PARMREG may be in
2708 a different mode than NOMINAL_MODE if it is being stored
2709 promoted.
2711 If ENTRY_PARM is a hard register, it might be in a register
2712 not valid for operating in its mode (e.g., an odd-numbered
2713 register for a DFmode). In that case, moves are the only
2714 thing valid, so we can't do a convert from there. This
2715 occurs when the calling sequence allow such misaligned
2716 usages.
2718 In addition, the conversion may involve a call, which could
2719 clobber parameters which haven't been copied to pseudo
2720 registers yet. Therefore, we must first copy the parm to
2721 a pseudo reg here, and save the conversion until after all
2722 parameters have been moved. */
2724 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2726 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2728 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2729 tempreg = convert_to_mode (data->nominal_mode, tempreg, unsignedp);
2731 if (GET_CODE (tempreg) == SUBREG
2732 && GET_MODE (tempreg) == data->nominal_mode
2733 && REG_P (SUBREG_REG (tempreg))
2734 && data->nominal_mode == data->passed_mode
2735 && GET_MODE (SUBREG_REG (tempreg)) == GET_MODE (data->entry_parm)
2736 && GET_MODE_SIZE (GET_MODE (tempreg))
2737 < GET_MODE_SIZE (GET_MODE (data->entry_parm)))
2739 /* The argument is already sign/zero extended, so note it
2740 into the subreg. */
2741 SUBREG_PROMOTED_VAR_P (tempreg) = 1;
2742 SUBREG_PROMOTED_UNSIGNED_SET (tempreg, unsignedp);
2745 /* TREE_USED gets set erroneously during expand_assignment. */
2746 save_tree_used = TREE_USED (parm);
2747 expand_assignment (parm, make_tree (data->nominal_type, tempreg), false);
2748 TREE_USED (parm) = save_tree_used;
2749 all->first_conversion_insn = get_insns ();
2750 all->last_conversion_insn = get_last_insn ();
2751 end_sequence ();
2753 did_conversion = true;
2755 else
2756 emit_move_insn (parmreg, validize_mem (data->entry_parm));
2758 /* If we were passed a pointer but the actual value can safely live
2759 in a register, put it in one. */
2760 if (data->passed_pointer
2761 && TYPE_MODE (TREE_TYPE (parm)) != BLKmode
2762 /* If by-reference argument was promoted, demote it. */
2763 && (TYPE_MODE (TREE_TYPE (parm)) != GET_MODE (DECL_RTL (parm))
2764 || use_register_for_decl (parm)))
2766 /* We can't use nominal_mode, because it will have been set to
2767 Pmode above. We must use the actual mode of the parm. */
2768 parmreg = gen_reg_rtx (TYPE_MODE (TREE_TYPE (parm)));
2769 mark_user_reg (parmreg);
2771 if (GET_MODE (parmreg) != GET_MODE (DECL_RTL (parm)))
2773 rtx tempreg = gen_reg_rtx (GET_MODE (DECL_RTL (parm)));
2774 int unsigned_p = TYPE_UNSIGNED (TREE_TYPE (parm));
2776 push_to_sequence2 (all->first_conversion_insn,
2777 all->last_conversion_insn);
2778 emit_move_insn (tempreg, DECL_RTL (parm));
2779 tempreg = convert_to_mode (GET_MODE (parmreg), tempreg, unsigned_p);
2780 emit_move_insn (parmreg, tempreg);
2781 all->first_conversion_insn = get_insns ();
2782 all->last_conversion_insn = get_last_insn ();
2783 end_sequence ();
2785 did_conversion = true;
2787 else
2788 emit_move_insn (parmreg, DECL_RTL (parm));
2790 SET_DECL_RTL (parm, parmreg);
2792 /* STACK_PARM is the pointer, not the parm, and PARMREG is
2793 now the parm. */
2794 data->stack_parm = NULL;
2797 /* Mark the register as eliminable if we did no conversion and it was
2798 copied from memory at a fixed offset, and the arg pointer was not
2799 copied to a pseudo-reg. If the arg pointer is a pseudo reg or the
2800 offset formed an invalid address, such memory-equivalences as we
2801 make here would screw up life analysis for it. */
2802 if (data->nominal_mode == data->passed_mode
2803 && !did_conversion
2804 && data->stack_parm != 0
2805 && MEM_P (data->stack_parm)
2806 && data->locate.offset.var == 0
2807 && reg_mentioned_p (virtual_incoming_args_rtx,
2808 XEXP (data->stack_parm, 0)))
2810 rtx linsn = get_last_insn ();
2811 rtx sinsn, set;
2813 /* Mark complex types separately. */
2814 if (GET_CODE (parmreg) == CONCAT)
2816 enum machine_mode submode
2817 = GET_MODE_INNER (GET_MODE (parmreg));
2818 int regnor = REGNO (XEXP (parmreg, 0));
2819 int regnoi = REGNO (XEXP (parmreg, 1));
2820 rtx stackr = adjust_address_nv (data->stack_parm, submode, 0);
2821 rtx stacki = adjust_address_nv (data->stack_parm, submode,
2822 GET_MODE_SIZE (submode));
2824 /* Scan backwards for the set of the real and
2825 imaginary parts. */
2826 for (sinsn = linsn; sinsn != 0;
2827 sinsn = prev_nonnote_insn (sinsn))
2829 set = single_set (sinsn);
2830 if (set == 0)
2831 continue;
2833 if (SET_DEST (set) == regno_reg_rtx [regnoi])
2834 set_unique_reg_note (sinsn, REG_EQUIV, stacki);
2835 else if (SET_DEST (set) == regno_reg_rtx [regnor])
2836 set_unique_reg_note (sinsn, REG_EQUIV, stackr);
2839 else if ((set = single_set (linsn)) != 0
2840 && SET_DEST (set) == parmreg)
2841 set_unique_reg_note (linsn, REG_EQUIV, data->stack_parm);
2844 /* For pointer data type, suggest pointer register. */
2845 if (POINTER_TYPE_P (TREE_TYPE (parm)))
2846 mark_reg_pointer (parmreg,
2847 TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
2850 /* A subroutine of assign_parms. Allocate stack space to hold the current
2851 parameter. Get it there. Perform all ABI specified conversions. */
2853 static void
2854 assign_parm_setup_stack (struct assign_parm_data_all *all, tree parm,
2855 struct assign_parm_data_one *data)
2857 /* Value must be stored in the stack slot STACK_PARM during function
2858 execution. */
2859 bool to_conversion = false;
2861 if (data->promoted_mode != data->nominal_mode)
2863 /* Conversion is required. */
2864 rtx tempreg = gen_reg_rtx (GET_MODE (data->entry_parm));
2866 emit_move_insn (tempreg, validize_mem (data->entry_parm));
2868 push_to_sequence2 (all->first_conversion_insn, all->last_conversion_insn);
2869 to_conversion = true;
2871 data->entry_parm = convert_to_mode (data->nominal_mode, tempreg,
2872 TYPE_UNSIGNED (TREE_TYPE (parm)));
2874 if (data->stack_parm)
2875 /* ??? This may need a big-endian conversion on sparc64. */
2876 data->stack_parm
2877 = adjust_address (data->stack_parm, data->nominal_mode, 0);
2880 if (data->entry_parm != data->stack_parm)
2882 rtx src, dest;
2884 if (data->stack_parm == 0)
2886 data->stack_parm
2887 = assign_stack_local (GET_MODE (data->entry_parm),
2888 GET_MODE_SIZE (GET_MODE (data->entry_parm)),
2889 TYPE_ALIGN (data->passed_type));
2890 set_mem_attributes (data->stack_parm, parm, 1);
2893 dest = validize_mem (data->stack_parm);
2894 src = validize_mem (data->entry_parm);
2896 if (MEM_P (src))
2898 /* Use a block move to handle potentially misaligned entry_parm. */
2899 if (!to_conversion)
2900 push_to_sequence2 (all->first_conversion_insn,
2901 all->last_conversion_insn);
2902 to_conversion = true;
2904 emit_block_move (dest, src,
2905 GEN_INT (int_size_in_bytes (data->passed_type)),
2906 BLOCK_OP_NORMAL);
2908 else
2909 emit_move_insn (dest, src);
2912 if (to_conversion)
2914 all->first_conversion_insn = get_insns ();
2915 all->last_conversion_insn = get_last_insn ();
2916 end_sequence ();
2919 SET_DECL_RTL (parm, data->stack_parm);
2922 /* A subroutine of assign_parms. If the ABI splits complex arguments, then
2923 undo the frobbing that we did in assign_parms_augmented_arg_list. */
2925 static void
2926 assign_parms_unsplit_complex (struct assign_parm_data_all *all, tree fnargs)
2928 tree parm;
2929 tree orig_fnargs = all->orig_fnargs;
2931 for (parm = orig_fnargs; parm; parm = TREE_CHAIN (parm))
2933 if (TREE_CODE (TREE_TYPE (parm)) == COMPLEX_TYPE
2934 && targetm.calls.split_complex_arg (TREE_TYPE (parm)))
2936 rtx tmp, real, imag;
2937 enum machine_mode inner = GET_MODE_INNER (DECL_MODE (parm));
2939 real = DECL_RTL (fnargs);
2940 imag = DECL_RTL (TREE_CHAIN (fnargs));
2941 if (inner != GET_MODE (real))
2943 real = gen_lowpart_SUBREG (inner, real);
2944 imag = gen_lowpart_SUBREG (inner, imag);
2947 if (TREE_ADDRESSABLE (parm))
2949 rtx rmem, imem;
2950 HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (parm));
2952 /* split_complex_arg put the real and imag parts in
2953 pseudos. Move them to memory. */
2954 tmp = assign_stack_local (DECL_MODE (parm), size,
2955 TYPE_ALIGN (TREE_TYPE (parm)));
2956 set_mem_attributes (tmp, parm, 1);
2957 rmem = adjust_address_nv (tmp, inner, 0);
2958 imem = adjust_address_nv (tmp, inner, GET_MODE_SIZE (inner));
2959 push_to_sequence2 (all->first_conversion_insn,
2960 all->last_conversion_insn);
2961 emit_move_insn (rmem, real);
2962 emit_move_insn (imem, imag);
2963 all->first_conversion_insn = get_insns ();
2964 all->last_conversion_insn = get_last_insn ();
2965 end_sequence ();
2967 else
2968 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2969 SET_DECL_RTL (parm, tmp);
2971 real = DECL_INCOMING_RTL (fnargs);
2972 imag = DECL_INCOMING_RTL (TREE_CHAIN (fnargs));
2973 if (inner != GET_MODE (real))
2975 real = gen_lowpart_SUBREG (inner, real);
2976 imag = gen_lowpart_SUBREG (inner, imag);
2978 tmp = gen_rtx_CONCAT (DECL_MODE (parm), real, imag);
2979 set_decl_incoming_rtl (parm, tmp, false);
2980 fnargs = TREE_CHAIN (fnargs);
2982 else
2984 SET_DECL_RTL (parm, DECL_RTL (fnargs));
2985 set_decl_incoming_rtl (parm, DECL_INCOMING_RTL (fnargs), false);
2987 /* Set MEM_EXPR to the original decl, i.e. to PARM,
2988 instead of the copy of decl, i.e. FNARGS. */
2989 if (DECL_INCOMING_RTL (parm) && MEM_P (DECL_INCOMING_RTL (parm)))
2990 set_mem_expr (DECL_INCOMING_RTL (parm), parm);
2993 fnargs = TREE_CHAIN (fnargs);
2997 /* Assign RTL expressions to the function's parameters. This may involve
2998 copying them into registers and using those registers as the DECL_RTL. */
3000 static void
3001 assign_parms (tree fndecl)
3003 struct assign_parm_data_all all;
3004 tree fnargs, parm;
3006 current_function_internal_arg_pointer
3007 = targetm.calls.internal_arg_pointer ();
3009 assign_parms_initialize_all (&all);
3010 fnargs = assign_parms_augmented_arg_list (&all);
3012 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3014 struct assign_parm_data_one data;
3016 /* Extract the type of PARM; adjust it according to ABI. */
3017 assign_parm_find_data_types (&all, parm, &data);
3019 /* Early out for errors and void parameters. */
3020 if (data.passed_mode == VOIDmode)
3022 SET_DECL_RTL (parm, const0_rtx);
3023 DECL_INCOMING_RTL (parm) = DECL_RTL (parm);
3024 continue;
3027 if (current_function_stdarg && !TREE_CHAIN (parm))
3028 assign_parms_setup_varargs (&all, &data, false);
3030 /* Find out where the parameter arrives in this function. */
3031 assign_parm_find_entry_rtl (&all, &data);
3033 /* Find out where stack space for this parameter might be. */
3034 if (assign_parm_is_stack_parm (&all, &data))
3036 assign_parm_find_stack_rtl (parm, &data);
3037 assign_parm_adjust_entry_rtl (&data);
3040 /* Record permanently how this parm was passed. */
3041 set_decl_incoming_rtl (parm, data.entry_parm, data.passed_pointer);
3043 /* Update info on where next arg arrives in registers. */
3044 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3045 data.passed_type, data.named_arg);
3047 assign_parm_adjust_stack_rtl (&data);
3049 if (assign_parm_setup_block_p (&data))
3050 assign_parm_setup_block (&all, parm, &data);
3051 else if (data.passed_pointer || use_register_for_decl (parm))
3052 assign_parm_setup_reg (&all, parm, &data);
3053 else
3054 assign_parm_setup_stack (&all, parm, &data);
3057 if (targetm.calls.split_complex_arg && fnargs != all.orig_fnargs)
3058 assign_parms_unsplit_complex (&all, fnargs);
3060 /* Output all parameter conversion instructions (possibly including calls)
3061 now that all parameters have been copied out of hard registers. */
3062 emit_insn (all.first_conversion_insn);
3064 /* If we are receiving a struct value address as the first argument, set up
3065 the RTL for the function result. As this might require code to convert
3066 the transmitted address to Pmode, we do this here to ensure that possible
3067 preliminary conversions of the address have been emitted already. */
3068 if (all.function_result_decl)
3070 tree result = DECL_RESULT (current_function_decl);
3071 rtx addr = DECL_RTL (all.function_result_decl);
3072 rtx x;
3074 if (DECL_BY_REFERENCE (result))
3075 x = addr;
3076 else
3078 addr = convert_memory_address (Pmode, addr);
3079 x = gen_rtx_MEM (DECL_MODE (result), addr);
3080 set_mem_attributes (x, result, 1);
3082 SET_DECL_RTL (result, x);
3085 /* We have aligned all the args, so add space for the pretend args. */
3086 current_function_pretend_args_size = all.pretend_args_size;
3087 all.stack_args_size.constant += all.extra_pretend_bytes;
3088 current_function_args_size = all.stack_args_size.constant;
3090 /* Adjust function incoming argument size for alignment and
3091 minimum length. */
3093 #ifdef REG_PARM_STACK_SPACE
3094 current_function_args_size = MAX (current_function_args_size,
3095 REG_PARM_STACK_SPACE (fndecl));
3096 #endif
3098 current_function_args_size = CEIL_ROUND (current_function_args_size,
3099 PARM_BOUNDARY / BITS_PER_UNIT);
3101 #ifdef ARGS_GROW_DOWNWARD
3102 current_function_arg_offset_rtx
3103 = (all.stack_args_size.var == 0 ? GEN_INT (-all.stack_args_size.constant)
3104 : expand_expr (size_diffop (all.stack_args_size.var,
3105 size_int (-all.stack_args_size.constant)),
3106 NULL_RTX, VOIDmode, 0));
3107 #else
3108 current_function_arg_offset_rtx = ARGS_SIZE_RTX (all.stack_args_size);
3109 #endif
3111 /* See how many bytes, if any, of its args a function should try to pop
3112 on return. */
3114 current_function_pops_args = RETURN_POPS_ARGS (fndecl, TREE_TYPE (fndecl),
3115 current_function_args_size);
3117 /* For stdarg.h function, save info about
3118 regs and stack space used by the named args. */
3120 current_function_args_info = all.args_so_far;
3122 /* Set the rtx used for the function return value. Put this in its
3123 own variable so any optimizers that need this information don't have
3124 to include tree.h. Do this here so it gets done when an inlined
3125 function gets output. */
3127 current_function_return_rtx
3128 = (DECL_RTL_SET_P (DECL_RESULT (fndecl))
3129 ? DECL_RTL (DECL_RESULT (fndecl)) : NULL_RTX);
3131 /* If scalar return value was computed in a pseudo-reg, or was a named
3132 return value that got dumped to the stack, copy that to the hard
3133 return register. */
3134 if (DECL_RTL_SET_P (DECL_RESULT (fndecl)))
3136 tree decl_result = DECL_RESULT (fndecl);
3137 rtx decl_rtl = DECL_RTL (decl_result);
3139 if (REG_P (decl_rtl)
3140 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
3141 : DECL_REGISTER (decl_result))
3143 rtx real_decl_rtl;
3145 real_decl_rtl = targetm.calls.function_value (TREE_TYPE (decl_result),
3146 fndecl, true);
3147 REG_FUNCTION_VALUE_P (real_decl_rtl) = 1;
3148 /* The delay slot scheduler assumes that current_function_return_rtx
3149 holds the hard register containing the return value, not a
3150 temporary pseudo. */
3151 current_function_return_rtx = real_decl_rtl;
3156 /* A subroutine of gimplify_parameters, invoked via walk_tree.
3157 For all seen types, gimplify their sizes. */
3159 static tree
3160 gimplify_parm_type (tree *tp, int *walk_subtrees, void *data)
3162 tree t = *tp;
3164 *walk_subtrees = 0;
3165 if (TYPE_P (t))
3167 if (POINTER_TYPE_P (t))
3168 *walk_subtrees = 1;
3169 else if (TYPE_SIZE (t) && !TREE_CONSTANT (TYPE_SIZE (t))
3170 && !TYPE_SIZES_GIMPLIFIED (t))
3172 gimplify_type_sizes (t, (tree *) data);
3173 *walk_subtrees = 1;
3177 return NULL;
3180 /* Gimplify the parameter list for current_function_decl. This involves
3181 evaluating SAVE_EXPRs of variable sized parameters and generating code
3182 to implement callee-copies reference parameters. Returns a list of
3183 statements to add to the beginning of the function, or NULL if nothing
3184 to do. */
3186 tree
3187 gimplify_parameters (void)
3189 struct assign_parm_data_all all;
3190 tree fnargs, parm, stmts = NULL;
3192 assign_parms_initialize_all (&all);
3193 fnargs = assign_parms_augmented_arg_list (&all);
3195 for (parm = fnargs; parm; parm = TREE_CHAIN (parm))
3197 struct assign_parm_data_one data;
3199 /* Extract the type of PARM; adjust it according to ABI. */
3200 assign_parm_find_data_types (&all, parm, &data);
3202 /* Early out for errors and void parameters. */
3203 if (data.passed_mode == VOIDmode || DECL_SIZE (parm) == NULL)
3204 continue;
3206 /* Update info on where next arg arrives in registers. */
3207 FUNCTION_ARG_ADVANCE (all.args_so_far, data.promoted_mode,
3208 data.passed_type, data.named_arg);
3210 /* ??? Once upon a time variable_size stuffed parameter list
3211 SAVE_EXPRs (amongst others) onto a pending sizes list. This
3212 turned out to be less than manageable in the gimple world.
3213 Now we have to hunt them down ourselves. */
3214 walk_tree_without_duplicates (&data.passed_type,
3215 gimplify_parm_type, &stmts);
3217 if (!TREE_CONSTANT (DECL_SIZE (parm)))
3219 gimplify_one_sizepos (&DECL_SIZE (parm), &stmts);
3220 gimplify_one_sizepos (&DECL_SIZE_UNIT (parm), &stmts);
3223 if (data.passed_pointer)
3225 tree type = TREE_TYPE (data.passed_type);
3226 if (reference_callee_copied (&all.args_so_far, TYPE_MODE (type),
3227 type, data.named_arg))
3229 tree local, t;
3231 /* For constant sized objects, this is trivial; for
3232 variable-sized objects, we have to play games. */
3233 if (TREE_CONSTANT (DECL_SIZE (parm)))
3235 local = create_tmp_var (type, get_name (parm));
3236 DECL_IGNORED_P (local) = 0;
3238 else
3240 tree ptr_type, addr;
3242 ptr_type = build_pointer_type (type);
3243 addr = create_tmp_var (ptr_type, get_name (parm));
3244 DECL_IGNORED_P (addr) = 0;
3245 local = build_fold_indirect_ref (addr);
3247 t = built_in_decls[BUILT_IN_ALLOCA];
3248 t = build_call_expr (t, 1, DECL_SIZE_UNIT (parm));
3249 t = fold_convert (ptr_type, t);
3250 t = build_gimple_modify_stmt (addr, t);
3251 gimplify_and_add (t, &stmts);
3254 t = build_gimple_modify_stmt (local, parm);
3255 gimplify_and_add (t, &stmts);
3257 SET_DECL_VALUE_EXPR (parm, local);
3258 DECL_HAS_VALUE_EXPR_P (parm) = 1;
3263 return stmts;
3266 /* Compute the size and offset from the start of the stacked arguments for a
3267 parm passed in mode PASSED_MODE and with type TYPE.
3269 INITIAL_OFFSET_PTR points to the current offset into the stacked
3270 arguments.
3272 The starting offset and size for this parm are returned in
3273 LOCATE->OFFSET and LOCATE->SIZE, respectively. When IN_REGS is
3274 nonzero, the offset is that of stack slot, which is returned in
3275 LOCATE->SLOT_OFFSET. LOCATE->ALIGNMENT_PAD is the amount of
3276 padding required from the initial offset ptr to the stack slot.
3278 IN_REGS is nonzero if the argument will be passed in registers. It will
3279 never be set if REG_PARM_STACK_SPACE is not defined.
3281 FNDECL is the function in which the argument was defined.
3283 There are two types of rounding that are done. The first, controlled by
3284 FUNCTION_ARG_BOUNDARY, forces the offset from the start of the argument
3285 list to be aligned to the specific boundary (in bits). This rounding
3286 affects the initial and starting offsets, but not the argument size.
3288 The second, controlled by FUNCTION_ARG_PADDING and PARM_BOUNDARY,
3289 optionally rounds the size of the parm to PARM_BOUNDARY. The
3290 initial offset is not affected by this rounding, while the size always
3291 is and the starting offset may be. */
3293 /* LOCATE->OFFSET will be negative for ARGS_GROW_DOWNWARD case;
3294 INITIAL_OFFSET_PTR is positive because locate_and_pad_parm's
3295 callers pass in the total size of args so far as
3296 INITIAL_OFFSET_PTR. LOCATE->SIZE is always positive. */
3298 void
3299 locate_and_pad_parm (enum machine_mode passed_mode, tree type, int in_regs,
3300 int partial, tree fndecl ATTRIBUTE_UNUSED,
3301 struct args_size *initial_offset_ptr,
3302 struct locate_and_pad_arg_data *locate)
3304 tree sizetree;
3305 enum direction where_pad;
3306 unsigned int boundary;
3307 int reg_parm_stack_space = 0;
3308 int part_size_in_regs;
3310 #ifdef REG_PARM_STACK_SPACE
3311 reg_parm_stack_space = REG_PARM_STACK_SPACE (fndecl);
3313 /* If we have found a stack parm before we reach the end of the
3314 area reserved for registers, skip that area. */
3315 if (! in_regs)
3317 if (reg_parm_stack_space > 0)
3319 if (initial_offset_ptr->var)
3321 initial_offset_ptr->var
3322 = size_binop (MAX_EXPR, ARGS_SIZE_TREE (*initial_offset_ptr),
3323 ssize_int (reg_parm_stack_space));
3324 initial_offset_ptr->constant = 0;
3326 else if (initial_offset_ptr->constant < reg_parm_stack_space)
3327 initial_offset_ptr->constant = reg_parm_stack_space;
3330 #endif /* REG_PARM_STACK_SPACE */
3332 part_size_in_regs = (reg_parm_stack_space == 0 ? partial : 0);
3334 sizetree
3335 = type ? size_in_bytes (type) : size_int (GET_MODE_SIZE (passed_mode));
3336 where_pad = FUNCTION_ARG_PADDING (passed_mode, type);
3337 boundary = FUNCTION_ARG_BOUNDARY (passed_mode, type);
3338 locate->where_pad = where_pad;
3339 locate->boundary = boundary;
3341 /* Remember if the outgoing parameter requires extra alignment on the
3342 calling function side. */
3343 if (boundary > PREFERRED_STACK_BOUNDARY)
3344 boundary = PREFERRED_STACK_BOUNDARY;
3345 if (cfun->stack_alignment_needed < boundary)
3346 cfun->stack_alignment_needed = boundary;
3348 #ifdef ARGS_GROW_DOWNWARD
3349 locate->slot_offset.constant = -initial_offset_ptr->constant;
3350 if (initial_offset_ptr->var)
3351 locate->slot_offset.var = size_binop (MINUS_EXPR, ssize_int (0),
3352 initial_offset_ptr->var);
3355 tree s2 = sizetree;
3356 if (where_pad != none
3357 && (!host_integerp (sizetree, 1)
3358 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3359 s2 = round_up (s2, PARM_BOUNDARY / BITS_PER_UNIT);
3360 SUB_PARM_SIZE (locate->slot_offset, s2);
3363 locate->slot_offset.constant += part_size_in_regs;
3365 if (!in_regs
3366 #ifdef REG_PARM_STACK_SPACE
3367 || REG_PARM_STACK_SPACE (fndecl) > 0
3368 #endif
3370 pad_to_arg_alignment (&locate->slot_offset, boundary,
3371 &locate->alignment_pad);
3373 locate->size.constant = (-initial_offset_ptr->constant
3374 - locate->slot_offset.constant);
3375 if (initial_offset_ptr->var)
3376 locate->size.var = size_binop (MINUS_EXPR,
3377 size_binop (MINUS_EXPR,
3378 ssize_int (0),
3379 initial_offset_ptr->var),
3380 locate->slot_offset.var);
3382 /* Pad_below needs the pre-rounded size to know how much to pad
3383 below. */
3384 locate->offset = locate->slot_offset;
3385 if (where_pad == downward)
3386 pad_below (&locate->offset, passed_mode, sizetree);
3388 #else /* !ARGS_GROW_DOWNWARD */
3389 if (!in_regs
3390 #ifdef REG_PARM_STACK_SPACE
3391 || REG_PARM_STACK_SPACE (fndecl) > 0
3392 #endif
3394 pad_to_arg_alignment (initial_offset_ptr, boundary,
3395 &locate->alignment_pad);
3396 locate->slot_offset = *initial_offset_ptr;
3398 #ifdef PUSH_ROUNDING
3399 if (passed_mode != BLKmode)
3400 sizetree = size_int (PUSH_ROUNDING (TREE_INT_CST_LOW (sizetree)));
3401 #endif
3403 /* Pad_below needs the pre-rounded size to know how much to pad below
3404 so this must be done before rounding up. */
3405 locate->offset = locate->slot_offset;
3406 if (where_pad == downward)
3407 pad_below (&locate->offset, passed_mode, sizetree);
3409 if (where_pad != none
3410 && (!host_integerp (sizetree, 1)
3411 || (tree_low_cst (sizetree, 1) * BITS_PER_UNIT) % PARM_BOUNDARY))
3412 sizetree = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3414 ADD_PARM_SIZE (locate->size, sizetree);
3416 locate->size.constant -= part_size_in_regs;
3417 #endif /* ARGS_GROW_DOWNWARD */
3420 /* Round the stack offset in *OFFSET_PTR up to a multiple of BOUNDARY.
3421 BOUNDARY is measured in bits, but must be a multiple of a storage unit. */
3423 static void
3424 pad_to_arg_alignment (struct args_size *offset_ptr, int boundary,
3425 struct args_size *alignment_pad)
3427 tree save_var = NULL_TREE;
3428 HOST_WIDE_INT save_constant = 0;
3429 int boundary_in_bytes = boundary / BITS_PER_UNIT;
3430 HOST_WIDE_INT sp_offset = STACK_POINTER_OFFSET;
3432 #ifdef SPARC_STACK_BOUNDARY_HACK
3433 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
3434 the real alignment of %sp. However, when it does this, the
3435 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
3436 if (SPARC_STACK_BOUNDARY_HACK)
3437 sp_offset = 0;
3438 #endif
3440 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3442 save_var = offset_ptr->var;
3443 save_constant = offset_ptr->constant;
3446 alignment_pad->var = NULL_TREE;
3447 alignment_pad->constant = 0;
3449 if (boundary > BITS_PER_UNIT)
3451 if (offset_ptr->var)
3453 tree sp_offset_tree = ssize_int (sp_offset);
3454 tree offset = size_binop (PLUS_EXPR,
3455 ARGS_SIZE_TREE (*offset_ptr),
3456 sp_offset_tree);
3457 #ifdef ARGS_GROW_DOWNWARD
3458 tree rounded = round_down (offset, boundary / BITS_PER_UNIT);
3459 #else
3460 tree rounded = round_up (offset, boundary / BITS_PER_UNIT);
3461 #endif
3463 offset_ptr->var = size_binop (MINUS_EXPR, rounded, sp_offset_tree);
3464 /* ARGS_SIZE_TREE includes constant term. */
3465 offset_ptr->constant = 0;
3466 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3467 alignment_pad->var = size_binop (MINUS_EXPR, offset_ptr->var,
3468 save_var);
3470 else
3472 offset_ptr->constant = -sp_offset +
3473 #ifdef ARGS_GROW_DOWNWARD
3474 FLOOR_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3475 #else
3476 CEIL_ROUND (offset_ptr->constant + sp_offset, boundary_in_bytes);
3477 #endif
3478 if (boundary > PARM_BOUNDARY && boundary > STACK_BOUNDARY)
3479 alignment_pad->constant = offset_ptr->constant - save_constant;
3484 static void
3485 pad_below (struct args_size *offset_ptr, enum machine_mode passed_mode, tree sizetree)
3487 if (passed_mode != BLKmode)
3489 if (GET_MODE_BITSIZE (passed_mode) % PARM_BOUNDARY)
3490 offset_ptr->constant
3491 += (((GET_MODE_BITSIZE (passed_mode) + PARM_BOUNDARY - 1)
3492 / PARM_BOUNDARY * PARM_BOUNDARY / BITS_PER_UNIT)
3493 - GET_MODE_SIZE (passed_mode));
3495 else
3497 if (TREE_CODE (sizetree) != INTEGER_CST
3498 || (TREE_INT_CST_LOW (sizetree) * BITS_PER_UNIT) % PARM_BOUNDARY)
3500 /* Round the size up to multiple of PARM_BOUNDARY bits. */
3501 tree s2 = round_up (sizetree, PARM_BOUNDARY / BITS_PER_UNIT);
3502 /* Add it in. */
3503 ADD_PARM_SIZE (*offset_ptr, s2);
3504 SUB_PARM_SIZE (*offset_ptr, sizetree);
3510 /* True if register REGNO was alive at a place where `setjmp' was
3511 called and was set more than once or is an argument. Such regs may
3512 be clobbered by `longjmp'. */
3514 static bool
3515 regno_clobbered_at_setjmp (bitmap setjmp_crosses, int regno)
3517 /* There appear to be cases where some local vars never reach the
3518 backend but have bogus regnos. */
3519 if (regno >= max_reg_num ())
3520 return false;
3522 return ((REG_N_SETS (regno) > 1
3523 || REGNO_REG_SET_P (df_get_live_out (ENTRY_BLOCK_PTR), regno))
3524 && REGNO_REG_SET_P (setjmp_crosses, regno));
3527 /* Walk the tree of blocks describing the binding levels within a
3528 function and warn about variables the might be killed by setjmp or
3529 vfork. This is done after calling flow_analysis before register
3530 allocation since that will clobber the pseudo-regs to hard
3531 regs. */
3533 static void
3534 setjmp_vars_warning (bitmap setjmp_crosses, tree block)
3536 tree decl, sub;
3538 for (decl = BLOCK_VARS (block); decl; decl = TREE_CHAIN (decl))
3540 if (TREE_CODE (decl) == VAR_DECL
3541 && DECL_RTL_SET_P (decl)
3542 && REG_P (DECL_RTL (decl))
3543 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3544 warning (OPT_Wclobbered, "variable %q+D might be clobbered by"
3545 " %<longjmp%> or %<vfork%>", decl);
3548 for (sub = BLOCK_SUBBLOCKS (block); sub; sub = BLOCK_CHAIN (sub))
3549 setjmp_vars_warning (setjmp_crosses, sub);
3552 /* Do the appropriate part of setjmp_vars_warning
3553 but for arguments instead of local variables. */
3555 static void
3556 setjmp_args_warning (bitmap setjmp_crosses)
3558 tree decl;
3559 for (decl = DECL_ARGUMENTS (current_function_decl);
3560 decl; decl = TREE_CHAIN (decl))
3561 if (DECL_RTL (decl) != 0
3562 && REG_P (DECL_RTL (decl))
3563 && regno_clobbered_at_setjmp (setjmp_crosses, REGNO (DECL_RTL (decl))))
3564 warning (OPT_Wclobbered,
3565 "argument %q+D might be clobbered by %<longjmp%> or %<vfork%>",
3566 decl);
3569 /* Generate warning messages for variables live across setjmp. */
3571 void
3572 generate_setjmp_warnings (void)
3574 bitmap setjmp_crosses = regstat_get_setjmp_crosses ();
3576 if (n_basic_blocks == NUM_FIXED_BLOCKS
3577 || bitmap_empty_p (setjmp_crosses))
3578 return;
3580 setjmp_vars_warning (setjmp_crosses, DECL_INITIAL (current_function_decl));
3581 setjmp_args_warning (setjmp_crosses);
3585 /* Identify BLOCKs referenced by more than one NOTE_INSN_BLOCK_{BEG,END},
3586 and create duplicate blocks. */
3587 /* ??? Need an option to either create block fragments or to create
3588 abstract origin duplicates of a source block. It really depends
3589 on what optimization has been performed. */
3591 void
3592 reorder_blocks (void)
3594 tree block = DECL_INITIAL (current_function_decl);
3595 VEC(tree,heap) *block_stack;
3597 if (block == NULL_TREE)
3598 return;
3600 block_stack = VEC_alloc (tree, heap, 10);
3602 /* Reset the TREE_ASM_WRITTEN bit for all blocks. */
3603 clear_block_marks (block);
3605 /* Prune the old trees away, so that they don't get in the way. */
3606 BLOCK_SUBBLOCKS (block) = NULL_TREE;
3607 BLOCK_CHAIN (block) = NULL_TREE;
3609 /* Recreate the block tree from the note nesting. */
3610 reorder_blocks_1 (get_insns (), block, &block_stack);
3611 BLOCK_SUBBLOCKS (block) = blocks_nreverse (BLOCK_SUBBLOCKS (block));
3613 VEC_free (tree, heap, block_stack);
3616 /* Helper function for reorder_blocks. Reset TREE_ASM_WRITTEN. */
3618 void
3619 clear_block_marks (tree block)
3621 while (block)
3623 TREE_ASM_WRITTEN (block) = 0;
3624 clear_block_marks (BLOCK_SUBBLOCKS (block));
3625 block = BLOCK_CHAIN (block);
3629 static void
3630 reorder_blocks_1 (rtx insns, tree current_block, VEC(tree,heap) **p_block_stack)
3632 rtx insn;
3634 for (insn = insns; insn; insn = NEXT_INSN (insn))
3636 if (NOTE_P (insn))
3638 if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_BEG)
3640 tree block = NOTE_BLOCK (insn);
3641 tree origin;
3643 origin = (BLOCK_FRAGMENT_ORIGIN (block)
3644 ? BLOCK_FRAGMENT_ORIGIN (block)
3645 : block);
3647 /* If we have seen this block before, that means it now
3648 spans multiple address regions. Create a new fragment. */
3649 if (TREE_ASM_WRITTEN (block))
3651 tree new_block = copy_node (block);
3653 BLOCK_FRAGMENT_ORIGIN (new_block) = origin;
3654 BLOCK_FRAGMENT_CHAIN (new_block)
3655 = BLOCK_FRAGMENT_CHAIN (origin);
3656 BLOCK_FRAGMENT_CHAIN (origin) = new_block;
3658 NOTE_BLOCK (insn) = new_block;
3659 block = new_block;
3662 BLOCK_SUBBLOCKS (block) = 0;
3663 TREE_ASM_WRITTEN (block) = 1;
3664 /* When there's only one block for the entire function,
3665 current_block == block and we mustn't do this, it
3666 will cause infinite recursion. */
3667 if (block != current_block)
3669 if (block != origin)
3670 gcc_assert (BLOCK_SUPERCONTEXT (origin) == current_block);
3672 BLOCK_SUPERCONTEXT (block) = current_block;
3673 BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (current_block);
3674 BLOCK_SUBBLOCKS (current_block) = block;
3675 current_block = origin;
3677 VEC_safe_push (tree, heap, *p_block_stack, block);
3679 else if (NOTE_KIND (insn) == NOTE_INSN_BLOCK_END)
3681 NOTE_BLOCK (insn) = VEC_pop (tree, *p_block_stack);
3682 BLOCK_SUBBLOCKS (current_block)
3683 = blocks_nreverse (BLOCK_SUBBLOCKS (current_block));
3684 current_block = BLOCK_SUPERCONTEXT (current_block);
3690 /* Reverse the order of elements in the chain T of blocks,
3691 and return the new head of the chain (old last element). */
3693 tree
3694 blocks_nreverse (tree t)
3696 tree prev = 0, decl, next;
3697 for (decl = t; decl; decl = next)
3699 next = BLOCK_CHAIN (decl);
3700 BLOCK_CHAIN (decl) = prev;
3701 prev = decl;
3703 return prev;
3706 /* Count the subblocks of the list starting with BLOCK. If VECTOR is
3707 non-NULL, list them all into VECTOR, in a depth-first preorder
3708 traversal of the block tree. Also clear TREE_ASM_WRITTEN in all
3709 blocks. */
3711 static int
3712 all_blocks (tree block, tree *vector)
3714 int n_blocks = 0;
3716 while (block)
3718 TREE_ASM_WRITTEN (block) = 0;
3720 /* Record this block. */
3721 if (vector)
3722 vector[n_blocks] = block;
3724 ++n_blocks;
3726 /* Record the subblocks, and their subblocks... */
3727 n_blocks += all_blocks (BLOCK_SUBBLOCKS (block),
3728 vector ? vector + n_blocks : 0);
3729 block = BLOCK_CHAIN (block);
3732 return n_blocks;
3735 /* Return a vector containing all the blocks rooted at BLOCK. The
3736 number of elements in the vector is stored in N_BLOCKS_P. The
3737 vector is dynamically allocated; it is the caller's responsibility
3738 to call `free' on the pointer returned. */
3740 static tree *
3741 get_block_vector (tree block, int *n_blocks_p)
3743 tree *block_vector;
3745 *n_blocks_p = all_blocks (block, NULL);
3746 block_vector = XNEWVEC (tree, *n_blocks_p);
3747 all_blocks (block, block_vector);
3749 return block_vector;
3752 static GTY(()) int next_block_index = 2;
3754 /* Set BLOCK_NUMBER for all the blocks in FN. */
3756 void
3757 number_blocks (tree fn)
3759 int i;
3760 int n_blocks;
3761 tree *block_vector;
3763 /* For SDB and XCOFF debugging output, we start numbering the blocks
3764 from 1 within each function, rather than keeping a running
3765 count. */
3766 #if defined (SDB_DEBUGGING_INFO) || defined (XCOFF_DEBUGGING_INFO)
3767 if (write_symbols == SDB_DEBUG || write_symbols == XCOFF_DEBUG)
3768 next_block_index = 1;
3769 #endif
3771 block_vector = get_block_vector (DECL_INITIAL (fn), &n_blocks);
3773 /* The top-level BLOCK isn't numbered at all. */
3774 for (i = 1; i < n_blocks; ++i)
3775 /* We number the blocks from two. */
3776 BLOCK_NUMBER (block_vector[i]) = next_block_index++;
3778 free (block_vector);
3780 return;
3783 /* If VAR is present in a subblock of BLOCK, return the subblock. */
3785 tree
3786 debug_find_var_in_block_tree (tree var, tree block)
3788 tree t;
3790 for (t = BLOCK_VARS (block); t; t = TREE_CHAIN (t))
3791 if (t == var)
3792 return block;
3794 for (t = BLOCK_SUBBLOCKS (block); t; t = TREE_CHAIN (t))
3796 tree ret = debug_find_var_in_block_tree (var, t);
3797 if (ret)
3798 return ret;
3801 return NULL_TREE;
3804 /* Keep track of whether we're in a dummy function context. If we are,
3805 we don't want to invoke the set_current_function hook, because we'll
3806 get into trouble if the hook calls target_reinit () recursively or
3807 when the initial initialization is not yet complete. */
3809 static bool in_dummy_function;
3811 /* Invoke the target hook when setting cfun. */
3813 static void
3814 invoke_set_current_function_hook (tree fndecl)
3816 if (!in_dummy_function)
3817 targetm.set_current_function (fndecl);
3820 /* cfun should never be set directly; use this function. */
3822 void
3823 set_cfun (struct function *new_cfun)
3825 if (cfun != new_cfun)
3827 cfun = new_cfun;
3828 invoke_set_current_function_hook (new_cfun ? new_cfun->decl : NULL_TREE);
3832 /* Keep track of the cfun stack. */
3834 typedef struct function *function_p;
3836 DEF_VEC_P(function_p);
3837 DEF_VEC_ALLOC_P(function_p,heap);
3839 /* Initialized with NOGC, making this poisonous to the garbage collector. */
3841 static VEC(function_p,heap) *cfun_stack;
3843 /* We save the value of in_system_header here when pushing the first
3844 function on the cfun stack, and we restore it from here when
3845 popping the last function. */
3847 static bool saved_in_system_header;
3849 /* Push the current cfun onto the stack, and set cfun to new_cfun. */
3851 void
3852 push_cfun (struct function *new_cfun)
3854 if (cfun == NULL)
3855 saved_in_system_header = in_system_header;
3856 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3857 if (new_cfun)
3858 in_system_header = DECL_IN_SYSTEM_HEADER (new_cfun->decl);
3859 set_cfun (new_cfun);
3862 /* Pop cfun from the stack. */
3864 void
3865 pop_cfun (void)
3867 struct function *new_cfun = VEC_pop (function_p, cfun_stack);
3868 in_system_header = ((new_cfun == NULL) ? saved_in_system_header
3869 : DECL_IN_SYSTEM_HEADER (new_cfun->decl));
3870 set_cfun (new_cfun);
3873 /* Return value of funcdef and increase it. */
3875 get_next_funcdef_no (void)
3877 return funcdef_no++;
3880 /* Allocate a function structure for FNDECL and set its contents
3881 to the defaults. Set cfun to the newly-allocated object.
3882 Some of the helper functions invoked during initialization assume
3883 that cfun has already been set. Therefore, assign the new object
3884 directly into cfun and invoke the back end hook explicitly at the
3885 very end, rather than initializing a temporary and calling set_cfun
3886 on it.
3888 ABSTRACT_P is true if this is a function that will never be seen by
3889 the middle-end. Such functions are front-end concepts (like C++
3890 function templates) that do not correspond directly to functions
3891 placed in object files. */
3893 void
3894 allocate_struct_function (tree fndecl, bool abstract_p)
3896 tree result;
3897 tree fntype = fndecl ? TREE_TYPE (fndecl) : NULL_TREE;
3899 cfun = ggc_alloc_cleared (sizeof (struct function));
3901 cfun->stack_alignment_needed = STACK_BOUNDARY;
3902 cfun->preferred_stack_boundary = STACK_BOUNDARY;
3904 current_function_funcdef_no = get_next_funcdef_no ();
3906 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
3908 init_eh_for_function ();
3910 lang_hooks.function.init (cfun);
3911 if (init_machine_status)
3912 cfun->machine = (*init_machine_status) ();
3914 if (fndecl != NULL)
3916 DECL_STRUCT_FUNCTION (fndecl) = cfun;
3917 cfun->decl = fndecl;
3919 result = DECL_RESULT (fndecl);
3920 if (!abstract_p && aggregate_value_p (result, fndecl))
3922 #ifdef PCC_STATIC_STRUCT_RETURN
3923 current_function_returns_pcc_struct = 1;
3924 #endif
3925 current_function_returns_struct = 1;
3928 current_function_stdarg
3929 = (fntype
3930 && TYPE_ARG_TYPES (fntype) != 0
3931 && (TREE_VALUE (tree_last (TYPE_ARG_TYPES (fntype)))
3932 != void_type_node));
3934 /* Assume all registers in stdarg functions need to be saved. */
3935 cfun->va_list_gpr_size = VA_LIST_MAX_GPR_SIZE;
3936 cfun->va_list_fpr_size = VA_LIST_MAX_FPR_SIZE;
3939 invoke_set_current_function_hook (fndecl);
3942 /* This is like allocate_struct_function, but pushes a new cfun for FNDECL
3943 instead of just setting it. */
3945 void
3946 push_struct_function (tree fndecl)
3948 if (cfun == NULL)
3949 saved_in_system_header = in_system_header;
3950 VEC_safe_push (function_p, heap, cfun_stack, cfun);
3951 if (fndecl)
3952 in_system_header = DECL_IN_SYSTEM_HEADER (fndecl);
3953 allocate_struct_function (fndecl, false);
3956 /* Reset cfun, and other non-struct-function variables to defaults as
3957 appropriate for emitting rtl at the start of a function. */
3959 static void
3960 prepare_function_start (void)
3962 init_emit ();
3963 init_varasm_status (cfun);
3964 init_expr ();
3966 cse_not_expected = ! optimize;
3968 /* Caller save not needed yet. */
3969 caller_save_needed = 0;
3971 /* We haven't done register allocation yet. */
3972 reg_renumber = 0;
3974 /* Indicate that we have not instantiated virtual registers yet. */
3975 virtuals_instantiated = 0;
3977 /* Indicate that we want CONCATs now. */
3978 generating_concat_p = 1;
3980 /* Indicate we have no need of a frame pointer yet. */
3981 frame_pointer_needed = 0;
3984 /* Initialize the rtl expansion mechanism so that we can do simple things
3985 like generate sequences. This is used to provide a context during global
3986 initialization of some passes. You must call expand_dummy_function_end
3987 to exit this context. */
3989 void
3990 init_dummy_function_start (void)
3992 gcc_assert (!in_dummy_function);
3993 in_dummy_function = true;
3994 push_struct_function (NULL_TREE);
3995 prepare_function_start ();
3998 /* Generate RTL for the start of the function SUBR (a FUNCTION_DECL tree node)
3999 and initialize static variables for generating RTL for the statements
4000 of the function. */
4002 void
4003 init_function_start (tree subr)
4005 if (subr && DECL_STRUCT_FUNCTION (subr))
4006 set_cfun (DECL_STRUCT_FUNCTION (subr));
4007 else
4008 allocate_struct_function (subr, false);
4009 prepare_function_start ();
4011 /* Warn if this value is an aggregate type,
4012 regardless of which calling convention we are using for it. */
4013 if (AGGREGATE_TYPE_P (TREE_TYPE (DECL_RESULT (subr))))
4014 warning (OPT_Waggregate_return, "function returns an aggregate");
4017 /* Make sure all values used by the optimization passes have sane
4018 defaults. */
4019 unsigned int
4020 init_function_for_compilation (void)
4022 reg_renumber = 0;
4024 /* No prologue/epilogue insns yet. Make sure that these vectors are
4025 empty. */
4026 gcc_assert (VEC_length (int, prologue) == 0);
4027 gcc_assert (VEC_length (int, epilogue) == 0);
4028 gcc_assert (VEC_length (int, sibcall_epilogue) == 0);
4029 return 0;
4032 struct tree_opt_pass pass_init_function =
4034 NULL, /* name */
4035 NULL, /* gate */
4036 init_function_for_compilation, /* execute */
4037 NULL, /* sub */
4038 NULL, /* next */
4039 0, /* static_pass_number */
4040 0, /* tv_id */
4041 0, /* properties_required */
4042 0, /* properties_provided */
4043 0, /* properties_destroyed */
4044 0, /* todo_flags_start */
4045 0, /* todo_flags_finish */
4046 0 /* letter */
4050 void
4051 expand_main_function (void)
4053 #if (defined(INVOKE__main) \
4054 || (!defined(HAS_INIT_SECTION) \
4055 && !defined(INIT_SECTION_ASM_OP) \
4056 && !defined(INIT_ARRAY_SECTION_ASM_OP)))
4057 emit_library_call (init_one_libfunc (NAME__MAIN), LCT_NORMAL, VOIDmode, 0);
4058 #endif
4061 /* Expand code to initialize the stack_protect_guard. This is invoked at
4062 the beginning of a function to be protected. */
4064 #ifndef HAVE_stack_protect_set
4065 # define HAVE_stack_protect_set 0
4066 # define gen_stack_protect_set(x,y) (gcc_unreachable (), NULL_RTX)
4067 #endif
4069 void
4070 stack_protect_prologue (void)
4072 tree guard_decl = targetm.stack_protect_guard ();
4073 rtx x, y;
4075 /* Avoid expand_expr here, because we don't want guard_decl pulled
4076 into registers unless absolutely necessary. And we know that
4077 cfun->stack_protect_guard is a local stack slot, so this skips
4078 all the fluff. */
4079 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4080 y = validize_mem (DECL_RTL (guard_decl));
4082 /* Allow the target to copy from Y to X without leaking Y into a
4083 register. */
4084 if (HAVE_stack_protect_set)
4086 rtx insn = gen_stack_protect_set (x, y);
4087 if (insn)
4089 emit_insn (insn);
4090 return;
4094 /* Otherwise do a straight move. */
4095 emit_move_insn (x, y);
4098 /* Expand code to verify the stack_protect_guard. This is invoked at
4099 the end of a function to be protected. */
4101 #ifndef HAVE_stack_protect_test
4102 # define HAVE_stack_protect_test 0
4103 # define gen_stack_protect_test(x, y, z) (gcc_unreachable (), NULL_RTX)
4104 #endif
4106 void
4107 stack_protect_epilogue (void)
4109 tree guard_decl = targetm.stack_protect_guard ();
4110 rtx label = gen_label_rtx ();
4111 rtx x, y, tmp;
4113 /* Avoid expand_expr here, because we don't want guard_decl pulled
4114 into registers unless absolutely necessary. And we know that
4115 cfun->stack_protect_guard is a local stack slot, so this skips
4116 all the fluff. */
4117 x = validize_mem (DECL_RTL (cfun->stack_protect_guard));
4118 y = validize_mem (DECL_RTL (guard_decl));
4120 /* Allow the target to compare Y with X without leaking either into
4121 a register. */
4122 switch (HAVE_stack_protect_test != 0)
4124 case 1:
4125 tmp = gen_stack_protect_test (x, y, label);
4126 if (tmp)
4128 emit_insn (tmp);
4129 break;
4131 /* FALLTHRU */
4133 default:
4134 emit_cmp_and_jump_insns (x, y, EQ, NULL_RTX, ptr_mode, 1, label);
4135 break;
4138 /* The noreturn predictor has been moved to the tree level. The rtl-level
4139 predictors estimate this branch about 20%, which isn't enough to get
4140 things moved out of line. Since this is the only extant case of adding
4141 a noreturn function at the rtl level, it doesn't seem worth doing ought
4142 except adding the prediction by hand. */
4143 tmp = get_last_insn ();
4144 if (JUMP_P (tmp))
4145 predict_insn_def (tmp, PRED_NORETURN, TAKEN);
4147 expand_expr_stmt (targetm.stack_protect_fail ());
4148 emit_label (label);
4151 /* Start the RTL for a new function, and set variables used for
4152 emitting RTL.
4153 SUBR is the FUNCTION_DECL node.
4154 PARMS_HAVE_CLEANUPS is nonzero if there are cleanups associated with
4155 the function's parameters, which must be run at any return statement. */
4157 void
4158 expand_function_start (tree subr)
4160 /* Make sure volatile mem refs aren't considered
4161 valid operands of arithmetic insns. */
4162 init_recog_no_volatile ();
4164 current_function_profile
4165 = (profile_flag
4166 && ! DECL_NO_INSTRUMENT_FUNCTION_ENTRY_EXIT (subr));
4168 current_function_limit_stack
4169 = (stack_limit_rtx != NULL_RTX && ! DECL_NO_LIMIT_STACK (subr));
4171 /* Make the label for return statements to jump to. Do not special
4172 case machines with special return instructions -- they will be
4173 handled later during jump, ifcvt, or epilogue creation. */
4174 return_label = gen_label_rtx ();
4176 /* Initialize rtx used to return the value. */
4177 /* Do this before assign_parms so that we copy the struct value address
4178 before any library calls that assign parms might generate. */
4180 /* Decide whether to return the value in memory or in a register. */
4181 if (aggregate_value_p (DECL_RESULT (subr), subr))
4183 /* Returning something that won't go in a register. */
4184 rtx value_address = 0;
4186 #ifdef PCC_STATIC_STRUCT_RETURN
4187 if (current_function_returns_pcc_struct)
4189 int size = int_size_in_bytes (TREE_TYPE (DECL_RESULT (subr)));
4190 value_address = assemble_static_space (size);
4192 else
4193 #endif
4195 rtx sv = targetm.calls.struct_value_rtx (TREE_TYPE (subr), 2);
4196 /* Expect to be passed the address of a place to store the value.
4197 If it is passed as an argument, assign_parms will take care of
4198 it. */
4199 if (sv)
4201 value_address = gen_reg_rtx (Pmode);
4202 emit_move_insn (value_address, sv);
4205 if (value_address)
4207 rtx x = value_address;
4208 if (!DECL_BY_REFERENCE (DECL_RESULT (subr)))
4210 x = gen_rtx_MEM (DECL_MODE (DECL_RESULT (subr)), x);
4211 set_mem_attributes (x, DECL_RESULT (subr), 1);
4213 SET_DECL_RTL (DECL_RESULT (subr), x);
4216 else if (DECL_MODE (DECL_RESULT (subr)) == VOIDmode)
4217 /* If return mode is void, this decl rtl should not be used. */
4218 SET_DECL_RTL (DECL_RESULT (subr), NULL_RTX);
4219 else
4221 /* Compute the return values into a pseudo reg, which we will copy
4222 into the true return register after the cleanups are done. */
4223 tree return_type = TREE_TYPE (DECL_RESULT (subr));
4224 if (TYPE_MODE (return_type) != BLKmode
4225 && targetm.calls.return_in_msb (return_type))
4226 /* expand_function_end will insert the appropriate padding in
4227 this case. Use the return value's natural (unpadded) mode
4228 within the function proper. */
4229 SET_DECL_RTL (DECL_RESULT (subr),
4230 gen_reg_rtx (TYPE_MODE (return_type)));
4231 else
4233 /* In order to figure out what mode to use for the pseudo, we
4234 figure out what the mode of the eventual return register will
4235 actually be, and use that. */
4236 rtx hard_reg = hard_function_value (return_type, subr, 0, 1);
4238 /* Structures that are returned in registers are not
4239 aggregate_value_p, so we may see a PARALLEL or a REG. */
4240 if (REG_P (hard_reg))
4241 SET_DECL_RTL (DECL_RESULT (subr),
4242 gen_reg_rtx (GET_MODE (hard_reg)));
4243 else
4245 gcc_assert (GET_CODE (hard_reg) == PARALLEL);
4246 SET_DECL_RTL (DECL_RESULT (subr), gen_group_rtx (hard_reg));
4250 /* Set DECL_REGISTER flag so that expand_function_end will copy the
4251 result to the real return register(s). */
4252 DECL_REGISTER (DECL_RESULT (subr)) = 1;
4255 /* Initialize rtx for parameters and local variables.
4256 In some cases this requires emitting insns. */
4257 assign_parms (subr);
4259 /* If function gets a static chain arg, store it. */
4260 if (cfun->static_chain_decl)
4262 tree parm = cfun->static_chain_decl;
4263 rtx local = gen_reg_rtx (Pmode);
4265 set_decl_incoming_rtl (parm, static_chain_incoming_rtx, false);
4266 SET_DECL_RTL (parm, local);
4267 mark_reg_pointer (local, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (parm))));
4269 emit_move_insn (local, static_chain_incoming_rtx);
4272 /* If the function receives a non-local goto, then store the
4273 bits we need to restore the frame pointer. */
4274 if (cfun->nonlocal_goto_save_area)
4276 tree t_save;
4277 rtx r_save;
4279 /* ??? We need to do this save early. Unfortunately here is
4280 before the frame variable gets declared. Help out... */
4281 expand_var (TREE_OPERAND (cfun->nonlocal_goto_save_area, 0));
4283 t_save = build4 (ARRAY_REF, ptr_type_node,
4284 cfun->nonlocal_goto_save_area,
4285 integer_zero_node, NULL_TREE, NULL_TREE);
4286 r_save = expand_expr (t_save, NULL_RTX, VOIDmode, EXPAND_WRITE);
4287 r_save = convert_memory_address (Pmode, r_save);
4289 emit_move_insn (r_save, virtual_stack_vars_rtx);
4290 update_nonlocal_goto_save_area ();
4293 /* The following was moved from init_function_start.
4294 The move is supposed to make sdb output more accurate. */
4295 /* Indicate the beginning of the function body,
4296 as opposed to parm setup. */
4297 emit_note (NOTE_INSN_FUNCTION_BEG);
4299 gcc_assert (NOTE_P (get_last_insn ()));
4301 parm_birth_insn = get_last_insn ();
4303 if (current_function_profile)
4305 #ifdef PROFILE_HOOK
4306 PROFILE_HOOK (current_function_funcdef_no);
4307 #endif
4310 /* After the display initializations is where the stack checking
4311 probe should go. */
4312 if(flag_stack_check)
4313 stack_check_probe_note = emit_note (NOTE_INSN_DELETED);
4315 /* Make sure there is a line number after the function entry setup code. */
4316 force_next_line_note ();
4319 /* Undo the effects of init_dummy_function_start. */
4320 void
4321 expand_dummy_function_end (void)
4323 gcc_assert (in_dummy_function);
4325 /* End any sequences that failed to be closed due to syntax errors. */
4326 while (in_sequence_p ())
4327 end_sequence ();
4329 /* Outside function body, can't compute type's actual size
4330 until next function's body starts. */
4332 free_after_parsing (cfun);
4333 free_after_compilation (cfun);
4334 pop_cfun ();
4335 in_dummy_function = false;
4338 /* Call DOIT for each hard register used as a return value from
4339 the current function. */
4341 void
4342 diddle_return_value (void (*doit) (rtx, void *), void *arg)
4344 rtx outgoing = current_function_return_rtx;
4346 if (! outgoing)
4347 return;
4349 if (REG_P (outgoing))
4350 (*doit) (outgoing, arg);
4351 else if (GET_CODE (outgoing) == PARALLEL)
4353 int i;
4355 for (i = 0; i < XVECLEN (outgoing, 0); i++)
4357 rtx x = XEXP (XVECEXP (outgoing, 0, i), 0);
4359 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
4360 (*doit) (x, arg);
4365 static void
4366 do_clobber_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4368 emit_insn (gen_rtx_CLOBBER (VOIDmode, reg));
4371 void
4372 clobber_return_register (void)
4374 diddle_return_value (do_clobber_return_reg, NULL);
4376 /* In case we do use pseudo to return value, clobber it too. */
4377 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4379 tree decl_result = DECL_RESULT (current_function_decl);
4380 rtx decl_rtl = DECL_RTL (decl_result);
4381 if (REG_P (decl_rtl) && REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER)
4383 do_clobber_return_reg (decl_rtl, NULL);
4388 static void
4389 do_use_return_reg (rtx reg, void *arg ATTRIBUTE_UNUSED)
4391 emit_insn (gen_rtx_USE (VOIDmode, reg));
4394 static void
4395 use_return_register (void)
4397 diddle_return_value (do_use_return_reg, NULL);
4400 /* Possibly warn about unused parameters. */
4401 void
4402 do_warn_unused_parameter (tree fn)
4404 tree decl;
4406 for (decl = DECL_ARGUMENTS (fn);
4407 decl; decl = TREE_CHAIN (decl))
4408 if (!TREE_USED (decl) && TREE_CODE (decl) == PARM_DECL
4409 && DECL_NAME (decl) && !DECL_ARTIFICIAL (decl)
4410 && !TREE_NO_WARNING (decl))
4411 warning (OPT_Wunused_parameter, "unused parameter %q+D", decl);
4414 static GTY(()) rtx initial_trampoline;
4416 /* Generate RTL for the end of the current function. */
4418 void
4419 expand_function_end (void)
4421 rtx clobber_after;
4423 /* If arg_pointer_save_area was referenced only from a nested
4424 function, we will not have initialized it yet. Do that now. */
4425 if (arg_pointer_save_area && ! cfun->arg_pointer_save_area_init)
4426 get_arg_pointer_save_area (cfun);
4428 /* If we are doing stack checking and this function makes calls,
4429 do a stack probe at the start of the function to ensure we have enough
4430 space for another stack frame. */
4431 if (flag_stack_check && ! STACK_CHECK_BUILTIN)
4433 rtx insn, seq;
4435 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4436 if (CALL_P (insn))
4438 start_sequence ();
4439 probe_stack_range (STACK_CHECK_PROTECT,
4440 GEN_INT (STACK_CHECK_MAX_FRAME_SIZE));
4441 seq = get_insns ();
4442 end_sequence ();
4443 emit_insn_before (seq, stack_check_probe_note);
4444 break;
4448 /* End any sequences that failed to be closed due to syntax errors. */
4449 while (in_sequence_p ())
4450 end_sequence ();
4452 clear_pending_stack_adjust ();
4453 do_pending_stack_adjust ();
4455 /* Output a linenumber for the end of the function.
4456 SDB depends on this. */
4457 force_next_line_note ();
4458 set_curr_insn_source_location (input_location);
4460 /* Before the return label (if any), clobber the return
4461 registers so that they are not propagated live to the rest of
4462 the function. This can only happen with functions that drop
4463 through; if there had been a return statement, there would
4464 have either been a return rtx, or a jump to the return label.
4466 We delay actual code generation after the current_function_value_rtx
4467 is computed. */
4468 clobber_after = get_last_insn ();
4470 /* Output the label for the actual return from the function. */
4471 emit_label (return_label);
4473 if (USING_SJLJ_EXCEPTIONS)
4475 /* Let except.c know where it should emit the call to unregister
4476 the function context for sjlj exceptions. */
4477 if (flag_exceptions)
4478 sjlj_emit_function_exit_after (get_last_insn ());
4480 else
4482 /* We want to ensure that instructions that may trap are not
4483 moved into the epilogue by scheduling, because we don't
4484 always emit unwind information for the epilogue. */
4485 if (flag_non_call_exceptions)
4486 emit_insn (gen_blockage ());
4489 /* If this is an implementation of throw, do what's necessary to
4490 communicate between __builtin_eh_return and the epilogue. */
4491 expand_eh_return ();
4493 /* If scalar return value was computed in a pseudo-reg, or was a named
4494 return value that got dumped to the stack, copy that to the hard
4495 return register. */
4496 if (DECL_RTL_SET_P (DECL_RESULT (current_function_decl)))
4498 tree decl_result = DECL_RESULT (current_function_decl);
4499 rtx decl_rtl = DECL_RTL (decl_result);
4501 if (REG_P (decl_rtl)
4502 ? REGNO (decl_rtl) >= FIRST_PSEUDO_REGISTER
4503 : DECL_REGISTER (decl_result))
4505 rtx real_decl_rtl = current_function_return_rtx;
4507 /* This should be set in assign_parms. */
4508 gcc_assert (REG_FUNCTION_VALUE_P (real_decl_rtl));
4510 /* If this is a BLKmode structure being returned in registers,
4511 then use the mode computed in expand_return. Note that if
4512 decl_rtl is memory, then its mode may have been changed,
4513 but that current_function_return_rtx has not. */
4514 if (GET_MODE (real_decl_rtl) == BLKmode)
4515 PUT_MODE (real_decl_rtl, GET_MODE (decl_rtl));
4517 /* If a non-BLKmode return value should be padded at the least
4518 significant end of the register, shift it left by the appropriate
4519 amount. BLKmode results are handled using the group load/store
4520 machinery. */
4521 if (TYPE_MODE (TREE_TYPE (decl_result)) != BLKmode
4522 && targetm.calls.return_in_msb (TREE_TYPE (decl_result)))
4524 emit_move_insn (gen_rtx_REG (GET_MODE (decl_rtl),
4525 REGNO (real_decl_rtl)),
4526 decl_rtl);
4527 shift_return_value (GET_MODE (decl_rtl), true, real_decl_rtl);
4529 /* If a named return value dumped decl_return to memory, then
4530 we may need to re-do the PROMOTE_MODE signed/unsigned
4531 extension. */
4532 else if (GET_MODE (real_decl_rtl) != GET_MODE (decl_rtl))
4534 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (decl_result));
4536 if (targetm.calls.promote_function_return (TREE_TYPE (current_function_decl)))
4537 promote_mode (TREE_TYPE (decl_result), GET_MODE (decl_rtl),
4538 &unsignedp, 1);
4540 convert_move (real_decl_rtl, decl_rtl, unsignedp);
4542 else if (GET_CODE (real_decl_rtl) == PARALLEL)
4544 /* If expand_function_start has created a PARALLEL for decl_rtl,
4545 move the result to the real return registers. Otherwise, do
4546 a group load from decl_rtl for a named return. */
4547 if (GET_CODE (decl_rtl) == PARALLEL)
4548 emit_group_move (real_decl_rtl, decl_rtl);
4549 else
4550 emit_group_load (real_decl_rtl, decl_rtl,
4551 TREE_TYPE (decl_result),
4552 int_size_in_bytes (TREE_TYPE (decl_result)));
4554 /* In the case of complex integer modes smaller than a word, we'll
4555 need to generate some non-trivial bitfield insertions. Do that
4556 on a pseudo and not the hard register. */
4557 else if (GET_CODE (decl_rtl) == CONCAT
4558 && GET_MODE_CLASS (GET_MODE (decl_rtl)) == MODE_COMPLEX_INT
4559 && GET_MODE_BITSIZE (GET_MODE (decl_rtl)) <= BITS_PER_WORD)
4561 int old_generating_concat_p;
4562 rtx tmp;
4564 old_generating_concat_p = generating_concat_p;
4565 generating_concat_p = 0;
4566 tmp = gen_reg_rtx (GET_MODE (decl_rtl));
4567 generating_concat_p = old_generating_concat_p;
4569 emit_move_insn (tmp, decl_rtl);
4570 emit_move_insn (real_decl_rtl, tmp);
4572 else
4573 emit_move_insn (real_decl_rtl, decl_rtl);
4577 /* If returning a structure, arrange to return the address of the value
4578 in a place where debuggers expect to find it.
4580 If returning a structure PCC style,
4581 the caller also depends on this value.
4582 And current_function_returns_pcc_struct is not necessarily set. */
4583 if (current_function_returns_struct
4584 || current_function_returns_pcc_struct)
4586 rtx value_address = DECL_RTL (DECL_RESULT (current_function_decl));
4587 tree type = TREE_TYPE (DECL_RESULT (current_function_decl));
4588 rtx outgoing;
4590 if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
4591 type = TREE_TYPE (type);
4592 else
4593 value_address = XEXP (value_address, 0);
4595 outgoing = targetm.calls.function_value (build_pointer_type (type),
4596 current_function_decl, true);
4598 /* Mark this as a function return value so integrate will delete the
4599 assignment and USE below when inlining this function. */
4600 REG_FUNCTION_VALUE_P (outgoing) = 1;
4602 /* The address may be ptr_mode and OUTGOING may be Pmode. */
4603 value_address = convert_memory_address (GET_MODE (outgoing),
4604 value_address);
4606 emit_move_insn (outgoing, value_address);
4608 /* Show return register used to hold result (in this case the address
4609 of the result. */
4610 current_function_return_rtx = outgoing;
4613 /* Emit the actual code to clobber return register. */
4615 rtx seq;
4617 start_sequence ();
4618 clobber_return_register ();
4619 expand_naked_return ();
4620 seq = get_insns ();
4621 end_sequence ();
4623 emit_insn_after (seq, clobber_after);
4626 /* Output the label for the naked return from the function. */
4627 emit_label (naked_return_label);
4629 /* @@@ This is a kludge. We want to ensure that instructions that
4630 may trap are not moved into the epilogue by scheduling, because
4631 we don't always emit unwind information for the epilogue. */
4632 if (! USING_SJLJ_EXCEPTIONS && flag_non_call_exceptions)
4633 emit_insn (gen_blockage ());
4635 /* If stack protection is enabled for this function, check the guard. */
4636 if (cfun->stack_protect_guard)
4637 stack_protect_epilogue ();
4639 /* If we had calls to alloca, and this machine needs
4640 an accurate stack pointer to exit the function,
4641 insert some code to save and restore the stack pointer. */
4642 if (! EXIT_IGNORE_STACK
4643 && current_function_calls_alloca)
4645 rtx tem = 0;
4647 emit_stack_save (SAVE_FUNCTION, &tem, parm_birth_insn);
4648 emit_stack_restore (SAVE_FUNCTION, tem, NULL_RTX);
4651 /* ??? This should no longer be necessary since stupid is no longer with
4652 us, but there are some parts of the compiler (eg reload_combine, and
4653 sh mach_dep_reorg) that still try and compute their own lifetime info
4654 instead of using the general framework. */
4655 use_return_register ();
4659 get_arg_pointer_save_area (struct function *f)
4661 rtx ret = f->x_arg_pointer_save_area;
4663 if (! ret)
4665 ret = assign_stack_local_1 (Pmode, GET_MODE_SIZE (Pmode), 0, f);
4666 f->x_arg_pointer_save_area = ret;
4669 if (f == cfun && ! f->arg_pointer_save_area_init)
4671 rtx seq;
4673 /* Save the arg pointer at the beginning of the function. The
4674 generated stack slot may not be a valid memory address, so we
4675 have to check it and fix it if necessary. */
4676 start_sequence ();
4677 emit_move_insn (validize_mem (ret), virtual_incoming_args_rtx);
4678 seq = get_insns ();
4679 end_sequence ();
4681 push_topmost_sequence ();
4682 emit_insn_after (seq, entry_of_function ());
4683 pop_topmost_sequence ();
4686 return ret;
4689 /* Extend a vector that records the INSN_UIDs of INSNS
4690 (a list of one or more insns). */
4692 static void
4693 record_insns (rtx insns, VEC(int,heap) **vecp)
4695 rtx tmp;
4697 for (tmp = insns; tmp != NULL_RTX; tmp = NEXT_INSN (tmp))
4698 VEC_safe_push (int, heap, *vecp, INSN_UID (tmp));
4701 /* Set the locator of the insn chain starting at INSN to LOC. */
4702 static void
4703 set_insn_locators (rtx insn, int loc)
4705 while (insn != NULL_RTX)
4707 if (INSN_P (insn))
4708 INSN_LOCATOR (insn) = loc;
4709 insn = NEXT_INSN (insn);
4713 /* Determine how many INSN_UIDs in VEC are part of INSN. Because we can
4714 be running after reorg, SEQUENCE rtl is possible. */
4716 static int
4717 contains (const_rtx insn, VEC(int,heap) **vec)
4719 int i, j;
4721 if (NONJUMP_INSN_P (insn)
4722 && GET_CODE (PATTERN (insn)) == SEQUENCE)
4724 int count = 0;
4725 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
4726 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4727 if (INSN_UID (XVECEXP (PATTERN (insn), 0, i))
4728 == VEC_index (int, *vec, j))
4729 count++;
4730 return count;
4732 else
4734 for (j = VEC_length (int, *vec) - 1; j >= 0; --j)
4735 if (INSN_UID (insn) == VEC_index (int, *vec, j))
4736 return 1;
4738 return 0;
4742 prologue_epilogue_contains (const_rtx insn)
4744 if (contains (insn, &prologue))
4745 return 1;
4746 if (contains (insn, &epilogue))
4747 return 1;
4748 return 0;
4752 sibcall_epilogue_contains (const_rtx insn)
4754 if (sibcall_epilogue)
4755 return contains (insn, &sibcall_epilogue);
4756 return 0;
4759 #ifdef HAVE_return
4760 /* Insert gen_return at the end of block BB. This also means updating
4761 block_for_insn appropriately. */
4763 static void
4764 emit_return_into_block (basic_block bb)
4766 emit_jump_insn_after (gen_return (), BB_END (bb));
4768 #endif /* HAVE_return */
4770 #if defined(HAVE_epilogue) && defined(INCOMING_RETURN_ADDR_RTX)
4772 /* These functions convert the epilogue into a variant that does not
4773 modify the stack pointer. This is used in cases where a function
4774 returns an object whose size is not known until it is computed.
4775 The called function leaves the object on the stack, leaves the
4776 stack depressed, and returns a pointer to the object.
4778 What we need to do is track all modifications and references to the
4779 stack pointer, deleting the modifications and changing the
4780 references to point to the location the stack pointer would have
4781 pointed to had the modifications taken place.
4783 These functions need to be portable so we need to make as few
4784 assumptions about the epilogue as we can. However, the epilogue
4785 basically contains three things: instructions to reset the stack
4786 pointer, instructions to reload registers, possibly including the
4787 frame pointer, and an instruction to return to the caller.
4789 We must be sure of what a relevant epilogue insn is doing. We also
4790 make no attempt to validate the insns we make since if they are
4791 invalid, we probably can't do anything valid. The intent is that
4792 these routines get "smarter" as more and more machines start to use
4793 them and they try operating on different epilogues.
4795 We use the following structure to track what the part of the
4796 epilogue that we've already processed has done. We keep two copies
4797 of the SP equivalence, one for use during the insn we are
4798 processing and one for use in the next insn. The difference is
4799 because one part of a PARALLEL may adjust SP and the other may use
4800 it. */
4802 struct epi_info
4804 rtx sp_equiv_reg; /* REG that SP is set from, perhaps SP. */
4805 HOST_WIDE_INT sp_offset; /* Offset from SP_EQUIV_REG of present SP. */
4806 rtx new_sp_equiv_reg; /* REG to be used at end of insn. */
4807 HOST_WIDE_INT new_sp_offset; /* Offset to be used at end of insn. */
4808 rtx equiv_reg_src; /* If nonzero, the value that SP_EQUIV_REG
4809 should be set to once we no longer need
4810 its value. */
4811 rtx const_equiv[FIRST_PSEUDO_REGISTER]; /* Any known constant equivalences
4812 for registers. */
4815 static void handle_epilogue_set (rtx, struct epi_info *);
4816 static void update_epilogue_consts (rtx, const_rtx, void *);
4817 static void emit_equiv_load (struct epi_info *);
4819 /* Modify INSN, a list of one or more insns that is part of the epilogue, to
4820 no modifications to the stack pointer. Return the new list of insns. */
4822 static rtx
4823 keep_stack_depressed (rtx insns)
4825 int j;
4826 struct epi_info info;
4827 rtx insn, next;
4829 /* If the epilogue is just a single instruction, it must be OK as is. */
4830 if (NEXT_INSN (insns) == NULL_RTX)
4831 return insns;
4833 /* Otherwise, start a sequence, initialize the information we have, and
4834 process all the insns we were given. */
4835 start_sequence ();
4837 info.sp_equiv_reg = stack_pointer_rtx;
4838 info.sp_offset = 0;
4839 info.equiv_reg_src = 0;
4841 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
4842 info.const_equiv[j] = 0;
4844 insn = insns;
4845 next = NULL_RTX;
4846 while (insn != NULL_RTX)
4848 next = NEXT_INSN (insn);
4850 if (!INSN_P (insn))
4852 add_insn (insn);
4853 insn = next;
4854 continue;
4857 /* If this insn references the register that SP is equivalent to and
4858 we have a pending load to that register, we must force out the load
4859 first and then indicate we no longer know what SP's equivalent is. */
4860 if (info.equiv_reg_src != 0
4861 && reg_referenced_p (info.sp_equiv_reg, PATTERN (insn)))
4863 emit_equiv_load (&info);
4864 info.sp_equiv_reg = 0;
4867 info.new_sp_equiv_reg = info.sp_equiv_reg;
4868 info.new_sp_offset = info.sp_offset;
4870 /* If this is a (RETURN) and the return address is on the stack,
4871 update the address and change to an indirect jump. */
4872 if (GET_CODE (PATTERN (insn)) == RETURN
4873 || (GET_CODE (PATTERN (insn)) == PARALLEL
4874 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == RETURN))
4876 rtx retaddr = INCOMING_RETURN_ADDR_RTX;
4877 rtx base = 0;
4878 HOST_WIDE_INT offset = 0;
4879 rtx jump_insn, jump_set;
4881 /* If the return address is in a register, we can emit the insn
4882 unchanged. Otherwise, it must be a MEM and we see what the
4883 base register and offset are. In any case, we have to emit any
4884 pending load to the equivalent reg of SP, if any. */
4885 if (REG_P (retaddr))
4887 emit_equiv_load (&info);
4888 add_insn (insn);
4889 insn = next;
4890 continue;
4892 else
4894 rtx ret_ptr;
4895 gcc_assert (MEM_P (retaddr));
4897 ret_ptr = XEXP (retaddr, 0);
4899 if (REG_P (ret_ptr))
4901 base = gen_rtx_REG (Pmode, REGNO (ret_ptr));
4902 offset = 0;
4904 else
4906 gcc_assert (GET_CODE (ret_ptr) == PLUS
4907 && REG_P (XEXP (ret_ptr, 0))
4908 && GET_CODE (XEXP (ret_ptr, 1)) == CONST_INT);
4909 base = gen_rtx_REG (Pmode, REGNO (XEXP (ret_ptr, 0)));
4910 offset = INTVAL (XEXP (ret_ptr, 1));
4914 /* If the base of the location containing the return pointer
4915 is SP, we must update it with the replacement address. Otherwise,
4916 just build the necessary MEM. */
4917 retaddr = plus_constant (base, offset);
4918 if (base == stack_pointer_rtx)
4919 retaddr = simplify_replace_rtx (retaddr, stack_pointer_rtx,
4920 plus_constant (info.sp_equiv_reg,
4921 info.sp_offset));
4923 retaddr = gen_rtx_MEM (Pmode, retaddr);
4924 MEM_NOTRAP_P (retaddr) = 1;
4926 /* If there is a pending load to the equivalent register for SP
4927 and we reference that register, we must load our address into
4928 a scratch register and then do that load. */
4929 if (info.equiv_reg_src
4930 && reg_overlap_mentioned_p (info.equiv_reg_src, retaddr))
4932 unsigned int regno;
4933 rtx reg;
4935 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
4936 if (HARD_REGNO_MODE_OK (regno, Pmode)
4937 && !fixed_regs[regno]
4938 && TEST_HARD_REG_BIT (regs_invalidated_by_call, regno)
4939 && !REGNO_REG_SET_P
4940 (DF_LR_IN (EXIT_BLOCK_PTR), regno)
4941 && !refers_to_regno_p (regno,
4942 end_hard_regno (Pmode, regno),
4943 info.equiv_reg_src, NULL)
4944 && info.const_equiv[regno] == 0)
4945 break;
4947 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
4949 reg = gen_rtx_REG (Pmode, regno);
4950 emit_move_insn (reg, retaddr);
4951 retaddr = reg;
4954 emit_equiv_load (&info);
4955 jump_insn = emit_jump_insn (gen_indirect_jump (retaddr));
4957 /* Show the SET in the above insn is a RETURN. */
4958 jump_set = single_set (jump_insn);
4959 gcc_assert (jump_set);
4960 SET_IS_RETURN_P (jump_set) = 1;
4963 /* If SP is not mentioned in the pattern and its equivalent register, if
4964 any, is not modified, just emit it. Otherwise, if neither is set,
4965 replace the reference to SP and emit the insn. If none of those are
4966 true, handle each SET individually. */
4967 else if (!reg_mentioned_p (stack_pointer_rtx, PATTERN (insn))
4968 && (info.sp_equiv_reg == stack_pointer_rtx
4969 || !reg_set_p (info.sp_equiv_reg, insn)))
4970 add_insn (insn);
4971 else if (! reg_set_p (stack_pointer_rtx, insn)
4972 && (info.sp_equiv_reg == stack_pointer_rtx
4973 || !reg_set_p (info.sp_equiv_reg, insn)))
4975 int changed;
4977 changed = validate_replace_rtx (stack_pointer_rtx,
4978 plus_constant (info.sp_equiv_reg,
4979 info.sp_offset),
4980 insn);
4981 gcc_assert (changed);
4983 add_insn (insn);
4985 else if (GET_CODE (PATTERN (insn)) == SET)
4986 handle_epilogue_set (PATTERN (insn), &info);
4987 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
4989 for (j = 0; j < XVECLEN (PATTERN (insn), 0); j++)
4990 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET)
4991 handle_epilogue_set (XVECEXP (PATTERN (insn), 0, j), &info);
4993 else
4994 add_insn (insn);
4996 info.sp_equiv_reg = info.new_sp_equiv_reg;
4997 info.sp_offset = info.new_sp_offset;
4999 /* Now update any constants this insn sets. */
5000 note_stores (PATTERN (insn), update_epilogue_consts, &info);
5001 insn = next;
5004 insns = get_insns ();
5005 end_sequence ();
5006 return insns;
5009 /* SET is a SET from an insn in the epilogue. P is a pointer to the epi_info
5010 structure that contains information about what we've seen so far. We
5011 process this SET by either updating that data or by emitting one or
5012 more insns. */
5014 static void
5015 handle_epilogue_set (rtx set, struct epi_info *p)
5017 /* First handle the case where we are setting SP. Record what it is being
5018 set from, which we must be able to determine */
5019 if (reg_set_p (stack_pointer_rtx, set))
5021 gcc_assert (SET_DEST (set) == stack_pointer_rtx);
5023 if (GET_CODE (SET_SRC (set)) == PLUS)
5025 p->new_sp_equiv_reg = XEXP (SET_SRC (set), 0);
5026 if (GET_CODE (XEXP (SET_SRC (set), 1)) == CONST_INT)
5027 p->new_sp_offset = INTVAL (XEXP (SET_SRC (set), 1));
5028 else
5030 gcc_assert (REG_P (XEXP (SET_SRC (set), 1))
5031 && (REGNO (XEXP (SET_SRC (set), 1))
5032 < FIRST_PSEUDO_REGISTER)
5033 && p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5034 p->new_sp_offset
5035 = INTVAL (p->const_equiv[REGNO (XEXP (SET_SRC (set), 1))]);
5038 else
5039 p->new_sp_equiv_reg = SET_SRC (set), p->new_sp_offset = 0;
5041 /* If we are adjusting SP, we adjust from the old data. */
5042 if (p->new_sp_equiv_reg == stack_pointer_rtx)
5044 p->new_sp_equiv_reg = p->sp_equiv_reg;
5045 p->new_sp_offset += p->sp_offset;
5048 gcc_assert (p->new_sp_equiv_reg && REG_P (p->new_sp_equiv_reg));
5050 return;
5053 /* Next handle the case where we are setting SP's equivalent
5054 register. We must not already have a value to set it to. We
5055 could update, but there seems little point in handling that case.
5056 Note that we have to allow for the case where we are setting the
5057 register set in the previous part of a PARALLEL inside a single
5058 insn. But use the old offset for any updates within this insn.
5059 We must allow for the case where the register is being set in a
5060 different (usually wider) mode than Pmode). */
5061 else if (p->new_sp_equiv_reg != 0 && reg_set_p (p->new_sp_equiv_reg, set))
5063 gcc_assert (!p->equiv_reg_src
5064 && REG_P (p->new_sp_equiv_reg)
5065 && REG_P (SET_DEST (set))
5066 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (set)))
5067 <= BITS_PER_WORD)
5068 && REGNO (p->new_sp_equiv_reg) == REGNO (SET_DEST (set)));
5069 p->equiv_reg_src
5070 = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5071 plus_constant (p->sp_equiv_reg,
5072 p->sp_offset));
5075 /* Otherwise, replace any references to SP in the insn to its new value
5076 and emit the insn. */
5077 else
5079 SET_SRC (set) = simplify_replace_rtx (SET_SRC (set), stack_pointer_rtx,
5080 plus_constant (p->sp_equiv_reg,
5081 p->sp_offset));
5082 SET_DEST (set) = simplify_replace_rtx (SET_DEST (set), stack_pointer_rtx,
5083 plus_constant (p->sp_equiv_reg,
5084 p->sp_offset));
5085 emit_insn (set);
5089 /* Update the tracking information for registers set to constants. */
5091 static void
5092 update_epilogue_consts (rtx dest, const_rtx x, void *data)
5094 struct epi_info *p = (struct epi_info *) data;
5095 rtx new;
5097 if (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER)
5098 return;
5100 /* If we are either clobbering a register or doing a partial set,
5101 show we don't know the value. */
5102 else if (GET_CODE (x) == CLOBBER || ! rtx_equal_p (dest, SET_DEST (x)))
5103 p->const_equiv[REGNO (dest)] = 0;
5105 /* If we are setting it to a constant, record that constant. */
5106 else if (GET_CODE (SET_SRC (x)) == CONST_INT)
5107 p->const_equiv[REGNO (dest)] = SET_SRC (x);
5109 /* If this is a binary operation between a register we have been tracking
5110 and a constant, see if we can compute a new constant value. */
5111 else if (ARITHMETIC_P (SET_SRC (x))
5112 && REG_P (XEXP (SET_SRC (x), 0))
5113 && REGNO (XEXP (SET_SRC (x), 0)) < FIRST_PSEUDO_REGISTER
5114 && p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))] != 0
5115 && GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
5116 && 0 != (new = simplify_binary_operation
5117 (GET_CODE (SET_SRC (x)), GET_MODE (dest),
5118 p->const_equiv[REGNO (XEXP (SET_SRC (x), 0))],
5119 XEXP (SET_SRC (x), 1)))
5120 && GET_CODE (new) == CONST_INT)
5121 p->const_equiv[REGNO (dest)] = new;
5123 /* Otherwise, we can't do anything with this value. */
5124 else
5125 p->const_equiv[REGNO (dest)] = 0;
5128 /* Emit an insn to do the load shown in p->equiv_reg_src, if needed. */
5130 static void
5131 emit_equiv_load (struct epi_info *p)
5133 if (p->equiv_reg_src != 0)
5135 rtx dest = p->sp_equiv_reg;
5137 if (GET_MODE (p->equiv_reg_src) != GET_MODE (dest))
5138 dest = gen_rtx_REG (GET_MODE (p->equiv_reg_src),
5139 REGNO (p->sp_equiv_reg));
5141 emit_move_insn (dest, p->equiv_reg_src);
5142 p->equiv_reg_src = 0;
5145 #endif
5147 /* Generate the prologue and epilogue RTL if the machine supports it. Thread
5148 this into place with notes indicating where the prologue ends and where
5149 the epilogue begins. Update the basic block information when possible. */
5151 static void
5152 thread_prologue_and_epilogue_insns (void)
5154 int inserted = 0;
5155 edge e;
5156 #if defined (HAVE_sibcall_epilogue) || defined (HAVE_epilogue) || defined (HAVE_return) || defined (HAVE_prologue)
5157 rtx seq;
5158 #endif
5159 #if defined (HAVE_epilogue) || defined(HAVE_return)
5160 rtx epilogue_end = NULL_RTX;
5161 #endif
5162 edge_iterator ei;
5164 #ifdef HAVE_prologue
5165 if (HAVE_prologue)
5167 start_sequence ();
5168 seq = gen_prologue ();
5169 emit_insn (seq);
5171 /* Insert an explicit USE for the frame pointer
5172 if the profiling is on and the frame pointer is required. */
5173 if (current_function_profile && frame_pointer_needed)
5174 emit_insn (gen_rtx_USE (VOIDmode, hard_frame_pointer_rtx));
5176 /* Retain a map of the prologue insns. */
5177 record_insns (seq, &prologue);
5178 emit_note (NOTE_INSN_PROLOGUE_END);
5180 #ifndef PROFILE_BEFORE_PROLOGUE
5181 /* Ensure that instructions are not moved into the prologue when
5182 profiling is on. The call to the profiling routine can be
5183 emitted within the live range of a call-clobbered register. */
5184 if (current_function_profile)
5185 emit_insn (gen_blockage ());
5186 #endif
5188 seq = get_insns ();
5189 end_sequence ();
5190 set_insn_locators (seq, prologue_locator);
5192 /* Can't deal with multiple successors of the entry block
5193 at the moment. Function should always have at least one
5194 entry point. */
5195 gcc_assert (single_succ_p (ENTRY_BLOCK_PTR));
5197 insert_insn_on_edge (seq, single_succ_edge (ENTRY_BLOCK_PTR));
5198 inserted = 1;
5200 #endif
5202 /* If the exit block has no non-fake predecessors, we don't need
5203 an epilogue. */
5204 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5205 if ((e->flags & EDGE_FAKE) == 0)
5206 break;
5207 if (e == NULL)
5208 goto epilogue_done;
5210 #ifdef HAVE_return
5211 if (optimize && HAVE_return)
5213 /* If we're allowed to generate a simple return instruction,
5214 then by definition we don't need a full epilogue. Examine
5215 the block that falls through to EXIT. If it does not
5216 contain any code, examine its predecessors and try to
5217 emit (conditional) return instructions. */
5219 basic_block last;
5220 rtx label;
5222 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5223 if (e->flags & EDGE_FALLTHRU)
5224 break;
5225 if (e == NULL)
5226 goto epilogue_done;
5227 last = e->src;
5229 /* Verify that there are no active instructions in the last block. */
5230 label = BB_END (last);
5231 while (label && !LABEL_P (label))
5233 if (active_insn_p (label))
5234 break;
5235 label = PREV_INSN (label);
5238 if (BB_HEAD (last) == label && LABEL_P (label))
5240 edge_iterator ei2;
5242 for (ei2 = ei_start (last->preds); (e = ei_safe_edge (ei2)); )
5244 basic_block bb = e->src;
5245 rtx jump;
5247 if (bb == ENTRY_BLOCK_PTR)
5249 ei_next (&ei2);
5250 continue;
5253 jump = BB_END (bb);
5254 if (!JUMP_P (jump) || JUMP_LABEL (jump) != label)
5256 ei_next (&ei2);
5257 continue;
5260 /* If we have an unconditional jump, we can replace that
5261 with a simple return instruction. */
5262 if (simplejump_p (jump))
5264 emit_return_into_block (bb);
5265 delete_insn (jump);
5268 /* If we have a conditional jump, we can try to replace
5269 that with a conditional return instruction. */
5270 else if (condjump_p (jump))
5272 if (! redirect_jump (jump, 0, 0))
5274 ei_next (&ei2);
5275 continue;
5278 /* If this block has only one successor, it both jumps
5279 and falls through to the fallthru block, so we can't
5280 delete the edge. */
5281 if (single_succ_p (bb))
5283 ei_next (&ei2);
5284 continue;
5287 else
5289 ei_next (&ei2);
5290 continue;
5293 /* Fix up the CFG for the successful change we just made. */
5294 redirect_edge_succ (e, EXIT_BLOCK_PTR);
5297 /* Emit a return insn for the exit fallthru block. Whether
5298 this is still reachable will be determined later. */
5300 emit_barrier_after (BB_END (last));
5301 emit_return_into_block (last);
5302 epilogue_end = BB_END (last);
5303 single_succ_edge (last)->flags &= ~EDGE_FALLTHRU;
5304 goto epilogue_done;
5307 #endif
5308 /* Find the edge that falls through to EXIT. Other edges may exist
5309 due to RETURN instructions, but those don't need epilogues.
5310 There really shouldn't be a mixture -- either all should have
5311 been converted or none, however... */
5313 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5314 if (e->flags & EDGE_FALLTHRU)
5315 break;
5316 if (e == NULL)
5317 goto epilogue_done;
5319 #ifdef HAVE_epilogue
5320 if (HAVE_epilogue)
5322 start_sequence ();
5323 epilogue_end = emit_note (NOTE_INSN_EPILOGUE_BEG);
5325 seq = gen_epilogue ();
5327 #ifdef INCOMING_RETURN_ADDR_RTX
5328 /* If this function returns with the stack depressed and we can support
5329 it, massage the epilogue to actually do that. */
5330 if (TREE_CODE (TREE_TYPE (current_function_decl)) == FUNCTION_TYPE
5331 && TYPE_RETURNS_STACK_DEPRESSED (TREE_TYPE (current_function_decl)))
5332 seq = keep_stack_depressed (seq);
5333 #endif
5335 emit_jump_insn (seq);
5337 /* Retain a map of the epilogue insns. */
5338 record_insns (seq, &epilogue);
5339 set_insn_locators (seq, epilogue_locator);
5341 seq = get_insns ();
5342 end_sequence ();
5344 insert_insn_on_edge (seq, e);
5345 inserted = 1;
5347 else
5348 #endif
5350 basic_block cur_bb;
5352 if (! next_active_insn (BB_END (e->src)))
5353 goto epilogue_done;
5354 /* We have a fall-through edge to the exit block, the source is not
5355 at the end of the function, and there will be an assembler epilogue
5356 at the end of the function.
5357 We can't use force_nonfallthru here, because that would try to
5358 use return. Inserting a jump 'by hand' is extremely messy, so
5359 we take advantage of cfg_layout_finalize using
5360 fixup_fallthru_exit_predecessor. */
5361 cfg_layout_initialize (0);
5362 FOR_EACH_BB (cur_bb)
5363 if (cur_bb->index >= NUM_FIXED_BLOCKS
5364 && cur_bb->next_bb->index >= NUM_FIXED_BLOCKS)
5365 cur_bb->aux = cur_bb->next_bb;
5366 cfg_layout_finalize ();
5368 epilogue_done:
5370 if (inserted)
5372 commit_edge_insertions ();
5374 /* The epilogue insns we inserted may cause the exit edge to no longer
5375 be fallthru. */
5376 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
5378 if (((e->flags & EDGE_FALLTHRU) != 0)
5379 && returnjump_p (BB_END (e->src)))
5380 e->flags &= ~EDGE_FALLTHRU;
5384 #ifdef HAVE_sibcall_epilogue
5385 /* Emit sibling epilogues before any sibling call sites. */
5386 for (ei = ei_start (EXIT_BLOCK_PTR->preds); (e = ei_safe_edge (ei)); )
5388 basic_block bb = e->src;
5389 rtx insn = BB_END (bb);
5391 if (!CALL_P (insn)
5392 || ! SIBLING_CALL_P (insn))
5394 ei_next (&ei);
5395 continue;
5398 start_sequence ();
5399 emit_insn (gen_sibcall_epilogue ());
5400 seq = get_insns ();
5401 end_sequence ();
5403 /* Retain a map of the epilogue insns. Used in life analysis to
5404 avoid getting rid of sibcall epilogue insns. Do this before we
5405 actually emit the sequence. */
5406 record_insns (seq, &sibcall_epilogue);
5407 set_insn_locators (seq, epilogue_locator);
5409 emit_insn_before (seq, insn);
5410 ei_next (&ei);
5412 #endif
5414 #ifdef HAVE_epilogue
5415 if (epilogue_end)
5417 rtx insn, next;
5419 /* Similarly, move any line notes that appear after the epilogue.
5420 There is no need, however, to be quite so anal about the existence
5421 of such a note. Also possibly move
5422 NOTE_INSN_FUNCTION_BEG notes, as those can be relevant for debug
5423 info generation. */
5424 for (insn = epilogue_end; insn; insn = next)
5426 next = NEXT_INSN (insn);
5427 if (NOTE_P (insn)
5428 && (NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG))
5429 reorder_insns (insn, insn, PREV_INSN (epilogue_end));
5432 #endif
5434 /* Threading the prologue and epilogue changes the artificial refs
5435 in the entry and exit blocks. */
5436 epilogue_completed = 1;
5437 df_update_entry_exit_and_calls ();
5440 /* Reposition the prologue-end and epilogue-begin notes after instruction
5441 scheduling and delayed branch scheduling. */
5443 void
5444 reposition_prologue_and_epilogue_notes (void)
5446 #if defined (HAVE_prologue) || defined (HAVE_epilogue)
5447 rtx insn, last, note;
5448 int len;
5450 if ((len = VEC_length (int, prologue)) > 0)
5452 last = 0, note = 0;
5454 /* Scan from the beginning until we reach the last prologue insn.
5455 We apparently can't depend on basic_block_{head,end} after
5456 reorg has run. */
5457 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
5459 if (NOTE_P (insn))
5461 if (NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END)
5462 note = insn;
5464 else if (contains (insn, &prologue))
5466 last = insn;
5467 if (--len == 0)
5468 break;
5472 if (last)
5474 /* Find the prologue-end note if we haven't already, and
5475 move it to just after the last prologue insn. */
5476 if (note == 0)
5478 for (note = last; (note = NEXT_INSN (note));)
5479 if (NOTE_P (note)
5480 && NOTE_KIND (note) == NOTE_INSN_PROLOGUE_END)
5481 break;
5484 /* Avoid placing note between CODE_LABEL and BASIC_BLOCK note. */
5485 if (LABEL_P (last))
5486 last = NEXT_INSN (last);
5487 reorder_insns (note, note, last);
5491 if ((len = VEC_length (int, epilogue)) > 0)
5493 last = 0, note = 0;
5495 /* Scan from the end until we reach the first epilogue insn.
5496 We apparently can't depend on basic_block_{head,end} after
5497 reorg has run. */
5498 for (insn = get_last_insn (); insn; insn = PREV_INSN (insn))
5500 if (NOTE_P (insn))
5502 if (NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
5503 note = insn;
5505 else if (contains (insn, &epilogue))
5507 last = insn;
5508 if (--len == 0)
5509 break;
5513 if (last)
5515 /* Find the epilogue-begin note if we haven't already, and
5516 move it to just before the first epilogue insn. */
5517 if (note == 0)
5519 for (note = insn; (note = PREV_INSN (note));)
5520 if (NOTE_P (note)
5521 && NOTE_KIND (note) == NOTE_INSN_EPILOGUE_BEG)
5522 break;
5525 if (PREV_INSN (last) != note)
5526 reorder_insns (note, note, PREV_INSN (last));
5529 #endif /* HAVE_prologue or HAVE_epilogue */
5532 /* Returns the name of the current function. */
5533 const char *
5534 current_function_name (void)
5536 return lang_hooks.decl_printable_name (cfun->decl, 2);
5539 /* Returns the raw (mangled) name of the current function. */
5540 const char *
5541 current_function_assembler_name (void)
5543 return IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (cfun->decl));
5547 /* This recursive function finds and returns CALL expression in X. */
5548 static rtx
5549 get_call (rtx x)
5551 int i;
5552 rtx call_rtx;
5553 const char *fmt;
5554 enum rtx_code code = GET_CODE (x);
5556 /* Ignore registers in memory. */
5557 if (code == CALL)
5558 return x;
5560 fmt = GET_RTX_FORMAT (code);
5561 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5563 if (fmt [i] == 'e')
5565 if ((call_rtx = get_call (XEXP (x, i))) != NULL_RTX)
5566 return call_rtx;
5568 else if (fmt [i] == 'E')
5570 int j;
5572 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
5573 if ((call_rtx = get_call (XVECEXP (x, i, j))) != NULL_RTX)
5574 return call_rtx;
5577 return NULL_RTX;
5580 /* This function returns call unsaved registers invalidated (if
5581 CLOBBERED_P) or used by function called by INSN through REGS. */
5582 void
5583 get_call_invalidated_used_regs (const_rtx insn, HARD_REG_SET *regs,
5584 bool clobbered_p)
5586 rtx x;
5587 struct cgraph_node *node;
5588 tree decl = NULL;
5590 gcc_assert (CALL_P (insn));
5592 x = get_call (PATTERN (insn));
5593 if (x != NULL_RTX)
5595 x = XEXP (x, 0);
5596 gcc_assert (GET_CODE (x) == MEM);
5597 x = XEXP (x, 0);
5598 if (GET_CODE (x) == SYMBOL_REF)
5599 decl = SYMBOL_REF_DECL (x);
5600 if (decl != NULL && TREE_CODE (decl) != FUNCTION_DECL)
5601 decl = NULL;
5603 node = decl == NULL ? NULL : cgraph_node (decl);
5604 if (! flag_ira || ! flag_ira_ipra || node == NULL
5605 /* This is a call of the function itself. We don't know used
5606 register yet. So take the worst case. */
5607 || node->decl == cfun->decl)
5609 if (clobbered_p)
5610 COPY_HARD_REG_SET (*regs, regs_invalidated_by_call);
5611 else
5612 COPY_HARD_REG_SET (*regs, call_used_reg_set);
5614 else
5616 COPY_HARD_REG_SET (*regs, node->function_used_regs);
5617 if (clobbered_p)
5618 AND_HARD_REG_SET (*regs, regs_invalidated_by_call);
5624 static unsigned int
5625 rest_of_handle_check_leaf_regs (void)
5627 #ifdef LEAF_REGISTERS
5628 current_function_uses_only_leaf_regs
5629 = optimize > 0 && only_leaf_regs_used () && leaf_function_p ();
5630 #endif
5631 return 0;
5634 /* Insert a TYPE into the used types hash table of CFUN. */
5635 static void
5636 used_types_insert_helper (tree type, struct function *func)
5638 if (type != NULL && func != NULL)
5640 void **slot;
5642 if (func->used_types_hash == NULL)
5643 func->used_types_hash = htab_create_ggc (37, htab_hash_pointer,
5644 htab_eq_pointer, NULL);
5645 slot = htab_find_slot (func->used_types_hash, type, INSERT);
5646 if (*slot == NULL)
5647 *slot = type;
5651 /* Given a type, insert it into the used hash table in cfun. */
5652 void
5653 used_types_insert (tree t)
5655 while (POINTER_TYPE_P (t) || TREE_CODE (t) == ARRAY_TYPE)
5656 t = TREE_TYPE (t);
5657 t = TYPE_MAIN_VARIANT (t);
5658 if (debug_info_level > DINFO_LEVEL_NONE)
5659 used_types_insert_helper (t, cfun);
5662 struct tree_opt_pass pass_leaf_regs =
5664 NULL, /* name */
5665 NULL, /* gate */
5666 rest_of_handle_check_leaf_regs, /* execute */
5667 NULL, /* sub */
5668 NULL, /* next */
5669 0, /* static_pass_number */
5670 0, /* tv_id */
5671 0, /* properties_required */
5672 0, /* properties_provided */
5673 0, /* properties_destroyed */
5674 0, /* todo_flags_start */
5675 0, /* todo_flags_finish */
5676 0 /* letter */
5679 static unsigned int
5680 rest_of_handle_thread_prologue_and_epilogue (void)
5682 if (optimize)
5683 cleanup_cfg (CLEANUP_EXPENSIVE);
5684 /* On some machines, the prologue and epilogue code, or parts thereof,
5685 can be represented as RTL. Doing so lets us schedule insns between
5686 it and the rest of the code and also allows delayed branch
5687 scheduling to operate in the epilogue. */
5689 thread_prologue_and_epilogue_insns ();
5690 return 0;
5693 struct tree_opt_pass pass_thread_prologue_and_epilogue =
5695 "pro_and_epilogue", /* name */
5696 NULL, /* gate */
5697 rest_of_handle_thread_prologue_and_epilogue, /* execute */
5698 NULL, /* sub */
5699 NULL, /* next */
5700 0, /* static_pass_number */
5701 TV_THREAD_PROLOGUE_AND_EPILOGUE, /* tv_id */
5702 0, /* properties_required */
5703 0, /* properties_provided */
5704 0, /* properties_destroyed */
5705 TODO_verify_flow, /* todo_flags_start */
5706 TODO_dump_func |
5707 TODO_df_verify |
5708 TODO_df_finish | TODO_verify_rtl_sharing |
5709 TODO_ggc_collect, /* todo_flags_finish */
5710 'w' /* letter */
5714 /* This mini-pass fixes fall-out from SSA in asm statements that have
5715 in-out constraints. Say you start with
5717 orig = inout;
5718 asm ("": "+mr" (inout));
5719 use (orig);
5721 which is transformed very early to use explicit output and match operands:
5723 orig = inout;
5724 asm ("": "=mr" (inout) : "0" (inout));
5725 use (orig);
5727 Or, after SSA and copyprop,
5729 asm ("": "=mr" (inout_2) : "0" (inout_1));
5730 use (inout_1);
5732 Clearly inout_2 and inout_1 can't be coalesced easily anymore, as
5733 they represent two separate values, so they will get different pseudo
5734 registers during expansion. Then, since the two operands need to match
5735 per the constraints, but use different pseudo registers, reload can
5736 only register a reload for these operands. But reloads can only be
5737 satisfied by hardregs, not by memory, so we need a register for this
5738 reload, just because we are presented with non-matching operands.
5739 So, even though we allow memory for this operand, no memory can be
5740 used for it, just because the two operands don't match. This can
5741 cause reload failures on register-starved targets.
5743 So it's a symptom of reload not being able to use memory for reloads
5744 or, alternatively it's also a symptom of both operands not coming into
5745 reload as matching (in which case the pseudo could go to memory just
5746 fine, as the alternative allows it, and no reload would be necessary).
5747 We fix the latter problem here, by transforming
5749 asm ("": "=mr" (inout_2) : "0" (inout_1));
5751 back to
5753 inout_2 = inout_1;
5754 asm ("": "=mr" (inout_2) : "0" (inout_2)); */
5756 static void
5757 match_asm_constraints_1 (rtx insn, rtx *p_sets, int noutputs)
5759 int i;
5760 bool changed = false;
5761 rtx op = SET_SRC (p_sets[0]);
5762 int ninputs = ASM_OPERANDS_INPUT_LENGTH (op);
5763 rtvec inputs = ASM_OPERANDS_INPUT_VEC (op);
5765 for (i = 0; i < ninputs; i++)
5767 rtx input, output, insns;
5768 const char *constraint = ASM_OPERANDS_INPUT_CONSTRAINT (op, i);
5769 char *end;
5770 int match, j;
5772 match = strtoul (constraint, &end, 10);
5773 if (end == constraint)
5774 continue;
5776 gcc_assert (match < noutputs);
5777 output = SET_DEST (p_sets[match]);
5778 input = RTVEC_ELT (inputs, i);
5779 /* Only do the transformation for pseudos. */
5780 if (! REG_P (output)
5781 || rtx_equal_p (output, input)
5782 || (GET_MODE (input) != VOIDmode
5783 && GET_MODE (input) != GET_MODE (output)))
5784 continue;
5786 /* We can't do anything if the output is also used as input,
5787 as we're going to overwrite it. */
5788 for (j = 0; j < ninputs; j++)
5789 if (reg_overlap_mentioned_p (output, RTVEC_ELT (inputs, j)))
5790 break;
5791 if (j != ninputs)
5792 continue;
5794 start_sequence ();
5795 emit_move_insn (output, input);
5796 insns = get_insns ();
5797 end_sequence ();
5798 emit_insn_before (insns, insn);
5800 /* Now replace all mentions of the input with output. We can't
5801 just replace the occurence in inputs[i], as the register might
5802 also be used in some other input (or even in an address of an
5803 output), which would mean possibly increasing the number of
5804 inputs by one (namely 'output' in addition), which might pose
5805 a too complicated problem for reload to solve. E.g. this situation:
5807 asm ("" : "=r" (output), "=m" (input) : "0" (input))
5809 Here 'input' is used in two occurrences as input (once for the
5810 input operand, once for the address in the second output operand).
5811 If we would replace only the occurence of the input operand (to
5812 make the matching) we would be left with this:
5814 output = input
5815 asm ("" : "=r" (output), "=m" (input) : "0" (output))
5817 Now we suddenly have two different input values (containing the same
5818 value, but different pseudos) where we formerly had only one.
5819 With more complicated asms this might lead to reload failures
5820 which wouldn't have happen without this pass. So, iterate over
5821 all operands and replace all occurrences of the register used. */
5822 for (j = 0; j < noutputs; j++)
5823 if (!rtx_equal_p (SET_DEST (p_sets[j]), input)
5824 && reg_overlap_mentioned_p (input, SET_DEST (p_sets[j])))
5825 SET_DEST (p_sets[j]) = replace_rtx (SET_DEST (p_sets[j]),
5826 input, output);
5827 for (j = 0; j < ninputs; j++)
5828 if (reg_overlap_mentioned_p (input, RTVEC_ELT (inputs, j)))
5829 RTVEC_ELT (inputs, j) = replace_rtx (RTVEC_ELT (inputs, j),
5830 input, output);
5832 changed = true;
5835 if (changed)
5836 df_insn_rescan (insn);
5839 static unsigned
5840 rest_of_match_asm_constraints (void)
5842 basic_block bb;
5843 rtx insn, pat, *p_sets;
5844 int noutputs;
5846 if (!cfun->has_asm_statement)
5847 return 0;
5849 df_set_flags (DF_DEFER_INSN_RESCAN);
5850 FOR_EACH_BB (bb)
5852 FOR_BB_INSNS (bb, insn)
5854 if (!INSN_P (insn))
5855 continue;
5857 pat = PATTERN (insn);
5858 if (GET_CODE (pat) == PARALLEL)
5859 p_sets = &XVECEXP (pat, 0, 0), noutputs = XVECLEN (pat, 0);
5860 else if (GET_CODE (pat) == SET)
5861 p_sets = &PATTERN (insn), noutputs = 1;
5862 else
5863 continue;
5865 if (GET_CODE (*p_sets) == SET
5866 && GET_CODE (SET_SRC (*p_sets)) == ASM_OPERANDS)
5867 match_asm_constraints_1 (insn, p_sets, noutputs);
5871 return TODO_df_finish;
5874 struct tree_opt_pass pass_match_asm_constraints =
5876 "asmcons", /* name */
5877 NULL, /* gate */
5878 rest_of_match_asm_constraints, /* execute */
5879 NULL, /* sub */
5880 NULL, /* next */
5881 0, /* static_pass_number */
5882 0, /* tv_id */
5883 0, /* properties_required */
5884 0, /* properties_provided */
5885 0, /* properties_destroyed */
5886 0, /* todo_flags_start */
5887 TODO_dump_func, /* todo_flags_finish */
5888 0 /* letter */
5892 #include "gt-function.h"