Merge -r 127928:132243 from trunk
[official-gcc.git] / gcc / ada / sem_attr.ads
blob45cb8e0a6fa05a4b99c70ff121d60a59891079c9
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A T T R --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- GNAT was originally developed by the GNAT team at New York University. --
23 -- Extensive contributions were provided by Ada Core Technologies Inc. --
24 -- --
25 ------------------------------------------------------------------------------
27 -- Attribute handling is isolated in a separate package to ease the addition
28 -- of implementation defined attributes. Logically this processing belongs
29 -- in chapter 4. See Sem_Ch4 for a description of the relation of the
30 -- Analyze and Resolve routines for expression components.
32 -- This spec also documents all GNAT implementation defined pragmas
34 with Exp_Tss; use Exp_Tss;
35 with Namet; use Namet;
36 with Snames; use Snames;
37 with Types; use Types;
39 package Sem_Attr is
41 -----------------------------------------
42 -- Implementation Dependent Attributes --
43 -----------------------------------------
45 -- This section describes the implementation dependent attributes
46 -- provided in GNAT, as well as constructing an array of flags
47 -- indicating which attributes these are.
49 Attribute_Impl_Def : Attribute_Class_Array := Attribute_Class_Array'(
51 ------------------
52 -- Abort_Signal --
53 ------------------
55 Attribute_Abort_Signal => True,
56 -- Standard'Abort_Signal (Standard is the only allowed prefix) provides
57 -- the entity for the special exception used to signal task abort or
58 -- asynchronous transfer of control. Normally this attribute should only
59 -- be used in the tasking runtime (it is highly peculiar, and completely
60 -- outside the normal semantics of Ada, for a user program to intercept
61 -- the abort exception).
63 ------------------
64 -- Address_Size --
65 ------------------
67 Attribute_Address_Size => True,
68 -- Standard'Address_Size (Standard is the only allowed prefix) is
69 -- a static constant giving the number of bits in an Address. It
70 -- is used primarily for constructing the definition of Memory_Size
71 -- in package Standard, but may be freely used in user programs.
72 -- This is a static attribute.
74 ---------------
75 -- Asm_Input --
76 ---------------
78 Attribute_Asm_Input => True,
79 -- Used only in conjunction with the Asm subprograms in package
80 -- Machine_Code to construct machine instructions. See documentation
81 -- in package Machine_Code in file s-maccod.ads.
83 ----------------
84 -- Asm_Output --
85 ----------------
87 Attribute_Asm_Output => True,
88 -- Used only in conjunction with the Asm subprograms in package
89 -- Machine_Code to construct machine instructions. See documentation
90 -- in package Machine_Code in file s-maccod.ads.
92 ---------------
93 -- AST_Entry --
94 ---------------
96 Attribute_AST_Entry => True,
97 -- E'Ast_Entry, where E is a task entry, yields a value of the
98 -- predefined type System.DEC.AST_Handler, that enables the given
99 -- entry to be called when an AST occurs. If the name to which the
100 -- attribute applies has not been specified with the pragma AST_Entry,
101 -- the attribute returns the value No_Ast_Handler, and no AST occurs.
102 -- If the entry is for a task that is not callable (T'Callable False),
103 -- the exception program error is raised. If an AST occurs for an
104 -- entry of a task that is terminated, the program is erroneous.
106 -- The attribute AST_Entry is supported only in OpenVMS versions
107 -- of GNAT. It will be rejected as illegal in other GNAT versions.
109 ---------
110 -- Bit --
111 ---------
113 Attribute_Bit => True,
114 -- Obj'Bit, where Obj is any object, yields the bit offset within the
115 -- storage unit (byte) that contains the first bit of storage allocated
116 -- for the object. The attribute value is of type Universal_Integer,
117 -- and is always a non-negative number not exceeding the value of
118 -- System.Storage_Unit.
120 -- For an object that is a variable or a constant allocated in a
121 -- register, the value is zero. (The use of this attribute does not
122 -- force the allocation of a variable to memory).
124 -- For an object that is a formal parameter, this attribute applies to
125 -- either the matching actual parameter or to a copy of the matching
126 -- actual parameter.
128 -- For an access object the value is zero. Note that Obj.all'Bit is
129 -- subject to an Access_Check for the designated object. Similarly
130 -- for a record component X.C'Bit is subject to a discriminant check
131 -- and X(I).Bit and X(I1..I2)'Bit are subject to index checks.
133 -- This attribute is designed to be compatible with the DEC Ada
134 -- definition and implementation of the Bit attribute.
136 ------------------
137 -- Code_Address --
138 ------------------
140 Attribute_Code_Address => True,
141 -- The reference subp'Code_Address, where subp is a subprogram entity,
142 -- gives the address of the first generated instruction for the sub-
143 -- program. This is often, but not always the same as the 'Address
144 -- value, which is the address to be used in a call. The differences
145 -- occur in the case of a nested procedure (where Address yields the
146 -- address of the trampoline code used to load the static link), and on
147 -- some systems which use procedure descriptors (in which case Address
148 -- yields the address of the descriptor).
150 -----------------------
151 -- Default_Bit_Order --
152 -----------------------
154 Attribute_Default_Bit_Order => True,
155 -- Standard'Default_Bit_Order (Standard is the only permissible prefix),
156 -- provides the value System.Default_Bit_Order as a Pos value (0 for
157 -- High_Order_First, 1 for Low_Order_First). This is used to construct
158 -- the definition of Default_Bit_Order in package System. This is a
159 -- static attribute.
161 ---------------
162 -- Elab_Body --
163 ---------------
165 Attribute_Elab_Body => True,
166 -- This attribute can only be applied to a program unit name. It returns
167 -- the entity for the corresponding elaboration procedure for elabor-
168 -- ating the body of the referenced unit. This is used in the main
169 -- generated elaboration procedure by the binder, and is not normally
170 -- used in any other context, but there may be specialized situations in
171 -- which it is useful to be able to call this elaboration procedure from
172 -- Ada code, e.g. if it is necessary to do selective reelaboration to
173 -- fix some error.
175 ---------------
176 -- Elab_Spec --
177 ---------------
179 Attribute_Elab_Spec => True,
180 -- This attribute can only be applied to a program unit name. It
181 -- returns the entity for the corresponding elaboration procedure
182 -- for elaborating the spec of the referenced unit. This is used
183 -- in the main generated elaboration procedure by the binder, and
184 -- is not normally used in any other context, but there may be
185 -- specialized situations in which it is useful to be able to
186 -- call this elaboration procedure from Ada code, e.g. if it
187 -- is necessary to do selective reelaboration to fix some error.
189 ----------------
190 -- Elaborated --
191 ----------------
193 Attribute_Elaborated => True,
194 -- Lunit'Elaborated, where Lunit is a library unit, yields a boolean
195 -- value indicating whether or not the body of the designated library
196 -- unit has been elaborated yet.
198 --------------
199 -- Enum_Rep --
200 --------------
202 Attribute_Enum_Rep => True,
203 -- For every enumeration subtype S, S'Enum_Rep denotes a function
204 -- with the following specification:
206 -- function S'Enum_Rep (Arg : S'Base) return universal_integer;
208 -- The function returns the representation value for the given
209 -- enumeration value. This will be equal to the 'Pos value in the
210 -- absence of an enumeration representation clause. This is a static
211 -- attribute (i.e. the result is static if the argument is static).
213 -----------------
214 -- Fixed_Value --
215 -----------------
217 Attribute_Fixed_Value => True,
218 -- For every fixed-point type S, S'Fixed_Value denotes a function
219 -- with the following specification:
221 -- function S'Fixed_Value (Arg : universal_integer) return S;
223 -- The value returned is the fixed-point value V such that
225 -- V = Arg * S'Small
227 -- The effect is thus equivalent to first converting the argument to
228 -- the integer type used to represent S, and then doing an unchecked
229 -- conversion to the fixed-point type. This attribute is primarily
230 -- intended for use in implementation of the input-output functions for
231 -- fixed-point values.
233 -----------------------
234 -- Has_Discriminants --
235 -----------------------
237 Attribute_Has_Discriminants => True,
238 -- Gtyp'Has_Discriminants, where Gtyp is a generic formal type, yields
239 -- a Boolean value indicating whether or not the actual instantiation
240 -- type has discriminants.
242 ---------
243 -- Img --
244 ---------
246 Attribute_Img => True,
247 -- The 'Img function is defined for any prefix, P, that denotes an
248 -- object of scalar type T. P'Img is equivalent to T'Image (P). This
249 -- is convenient for debugging. For example:
251 -- Put_Line ("X = " & X'Img);
253 -- has the same meaning as the more verbose:
255 -- Put_Line ("X = " & Temperature_Type'Image (X));
257 -- where Temperature_Type is the subtype of the object X.
259 -------------------
260 -- Integer_Value --
261 -------------------
263 Attribute_Integer_Value => True,
264 -- For every integer type S, S'Integer_Value denotes a function
265 -- with the following specification:
267 -- function S'Integer_Value (Arg : universal_fixed) return S;
269 -- The value returned is the integer value V, such that
271 -- Arg = V * fixed-type'Small
273 -- The effect is thus equivalent to first doing an unchecked convert
274 -- from the fixed-point type to its corresponding implementation type,
275 -- and then converting the result to the target integer type. This
276 -- attribute is primarily intended for use in implementation of the
277 -- standard input-output functions for fixed-point values.
279 ------------------
280 -- Machine_Size --
281 ------------------
283 Attribute_Machine_Size => True,
284 -- This attribute is identical to the Object_Size attribute. It is
285 -- provided for compatibility with the DEC attribute of this name.
287 -----------------------
288 -- Maximum_Alignment --
289 -----------------------
291 Attribute_Maximum_Alignment => True,
292 -- Standard'Maximum_Alignment (Standard is the only permissible prefix)
293 -- provides the maximum useful alignment value for the target. This
294 -- is a static value that can be used to specify the alignment for an
295 -- object, guaranteeing that it is properly aligned in all cases. The
296 -- time this is useful is when an external object is imported and its
297 -- alignment requirements are unknown. This is a static attribute.
299 --------------------
300 -- Mechanism_Code --
301 --------------------
303 Attribute_Mechanism_Code => True,
304 -- function'Mechanism_Code yeilds an integer code for the mechanism
305 -- used for the result of function, and subprogram'Mechanism_Code (n)
306 -- yields the mechanism used for formal parameter number n (a static
307 -- integer value, 1 = first parameter). The code returned is:
309 -- 1 = by copy (value)
310 -- 2 = by reference
311 -- 3 = by descriptor (default descriptor type)
312 -- 4 = by descriptor (UBS unaligned bit string)
313 -- 5 = by descriptor (UBSB aligned bit string with arbitrary bounds)
314 -- 6 = by descriptor (UBA unaligned bit array)
315 -- 7 = by descriptor (S string, also scalar access type parameter)
316 -- 8 = by descriptor (SB string with arbitrary bounds)
317 -- 9 = by descriptor (A contiguous array)
318 -- 10 = by descriptor (NCA non-contiguous array)
320 --------------------
321 -- Null_Parameter --
322 --------------------
324 Attribute_Null_Parameter => True,
325 -- A reference T'Null_Parameter denotes an (imaginary) object of type or
326 -- subtype T allocated at (machine) address zero. The attribute is
327 -- allowed only as the default expression of a formal parameter, or as
328 -- an actual expression of a subporgram call. In either case, the
329 -- subprogram must be imported.
331 -- The identity of the object is represented by the address zero in the
332 -- argument list, independent of the passing mechanism (explicit or
333 -- default).
335 -- The reason that this capability is needed is that for a record or
336 -- other composite object passed by reference, there is no other way of
337 -- specifying that a zero address should be passed.
339 -----------------
340 -- Object_Size --
341 -----------------
343 Attribute_Object_Size => True,
344 -- Type'Object_Size is the same as Type'Size for all types except
345 -- fixed-point types and discrete types. For fixed-point types and
346 -- discrete types, this attribute gives the size used for default
347 -- allocation of objects and components of the size. See section in
348 -- Einfo ("Handling of type'Size values") for further details.
350 -------------------------
351 -- Passed_By_Reference --
352 -------------------------
354 Attribute_Passed_By_Reference => True,
355 -- T'Passed_By_Reference for any subtype T returns a boolean value that
356 -- is true if the type is normally passed by reference and false if the
357 -- type is normally passed by copy in calls. For scalar types, the
358 -- result is always False and is static. For non-scalar types, the
359 -- result is non-static (since it is computed by Gigi).
361 ------------------
362 -- Range_Length --
363 ------------------
365 Attribute_Range_Length => True,
366 -- T'Range_Length for any discrete type T yields the number of values
367 -- represented by the subtype (zero for a null range). The result is
368 -- static for static subtypes. Note that Range_Length applied to the
369 -- index subtype of a one dimensional array always gives the same result
370 -- as Range applied to the array itself. The result is of type universal
371 -- integer.
373 ------------------
374 -- Storage_Unit --
375 ------------------
377 Attribute_Storage_Unit => True,
378 -- Standard'Storage_Unit (Standard is the only permissible prefix)
379 -- provides the value System.Storage_Unit, and is intended primarily
380 -- for constructing this definition in package System (see note above
381 -- in Default_Bit_Order description). The is a static attribute.
383 ---------------
384 -- Stub_Type --
385 ---------------
387 Attribute_Stub_Type => True,
388 -- The GNAT implementation of remote access-to-classwide types is
389 -- organised as described in AARM E.4(20.t): a value of an RACW type
390 -- (designating a remote object) is represented as a normal access
391 -- value, pointing to a "stub" object which in turn contains the
392 -- necessary information to contact the designated remote object. A
393 -- call on any dispatching operation of such a stub object does the
394 -- remote call, if necessary, using the information in the stub object
395 -- to locate the target partition, etc.
397 -- For a prefix T that denotes a remote access-to-classwide type,
398 -- T'Stub_Type denotes the type of the corresponding stub objects.
400 -- By construction, the layout of T'Stub_Type is identical to that of
401 -- System.Partition_Interface.RACW_Stub_Type (see implementation notes
402 -- in body of Exp_Dist).
404 -----------------
405 -- Target_Name --
406 -----------------
408 Attribute_Target_Name => True,
409 -- Standard'Target_Name yields the string identifying the target for the
410 -- compilation, taken from Sdefault.Target_Name.
412 ----------------
413 -- To_Address --
414 ----------------
416 Attribute_To_Address => True,
417 -- System'To_Address (Address is the only permissible prefix) is a
418 -- function that takes any integer value, and converts it into an
419 -- address value. The semantics is to first convert the integer value to
420 -- type Integer_Address according to normal conversion rules, and then
421 -- to convert this to an address using the same semantics as the
422 -- System.Storage_Elements.To_Address function. The important difference
423 -- is that this is a static attribute so it can be used in
424 -- initializations in preealborate packages.
426 ----------------
427 -- Type_Class --
428 ----------------
430 Attribute_Type_Class => True,
431 -- T'Type_Class for any type or subtype T yields the value of the type
432 -- class for the full type of T. If T is a generic formal type, then the
433 -- value is the value for the corresponding actual subtype. The value of
434 -- this attribute is of type System.Aux_DEC.Type_Class, which has the
435 -- following definition:
437 -- type Type_Class is
438 -- (Type_Class_Enumeration,
439 -- Type_Class_Integer,
440 -- Type_Class_Fixed_Point,
441 -- Type_Class_Floating_Point,
442 -- Type_Class_Array,
443 -- Type_Class_Record,
444 -- Type_Class_Access,
445 -- Type_Class_Task,
446 -- Type_Class_Address);
448 -- Protected types yield the value Type_Class_Task, which thus applies
449 -- to all concurrent types. This attribute is designed to be compatible
450 -- with the DEC Ada attribute of the same name.
452 -- Note: if pragma Extend_System is used to merge the definitions of
453 -- Aux_DEC into System, then the type Type_Class can be referenced
454 -- as an entity within System, as can its enumeration literals.
456 -----------------
457 -- UET_Address --
458 -----------------
460 Attribute_UET_Address => True,
461 -- Unit'UET_Address, where Unit is a program unit, yields the address
462 -- of the unit exception table for the specified unit. This is only
463 -- used in the internal implementation of exception handling. See the
464 -- implementation of unit Ada.Exceptions for details on its use.
466 ------------------------------
467 -- Universal_Literal_String --
468 ------------------------------
470 Attribute_Universal_Literal_String => True,
471 -- The prefix of 'Universal_Literal_String must be a named number. The
472 -- static result is the string consisting of the characters of the
473 -- number as defined in the original source. This allows the user
474 -- program to access the actual text of named numbers without
475 -- intermediate conversions and without the need to enclose the strings
476 -- in quotes (which would preclude their use as numbers). This is used
477 -- internally for the construction of values of the floating-point
478 -- attributes from the file ttypef.ads, but may also be used by user
479 -- programs.
481 -------------------------
482 -- Unrestricted_Access --
483 -------------------------
485 Attribute_Unrestricted_Access => True,
486 -- The Unrestricted_Access attribute is similar to Access except that
487 -- all accessibility and aliased view checks are omitted. This is very
488 -- much a user-beware attribute. Basically its status is very similar
489 -- to Address, for which it is a desirable replacement where the value
490 -- desired is an access type. In other words, its effect is identical
491 -- to first taking 'Address and then doing an unchecked conversion to
492 -- a desired access type. Note that in GNAT, but not necessarily in
493 -- other implementations, the use of static chains for inner level
494 -- subprograms means that Unrestricted_Access applied to a subprogram
495 -- yields a value that can be called as long as the subprogram is in
496 -- scope (normal Ada 95 accessibility rules restrict this usage).
498 ---------------
499 -- VADS_Size --
500 ---------------
502 Attribute_VADS_Size => True,
503 -- Typ'VADS_Size yields the Size value typically yielded by some Ada 83
504 -- compilers. The differences between VADS_Size and Size is that for
505 -- scalar types for which no Size has been specified, VADS_Size yields
506 -- the Object_Size rather than the Value_Size. For example, while
507 -- Natural'Size is typically 31, the value of Natural'VADS_Size is 32.
508 -- For all other types, Size and VADS_Size yield the same value.
510 ----------------
511 -- Value_Size --
512 ----------------
514 Attribute_Value_Size => True,
515 -- Type'Value_Size is the number of bits required to represent value of
516 -- the given subtype. It is the same as Type'Size, but, unlike Size, may
517 -- be set for non-first subtypes. See section in Einfo ("Handling of
518 -- type'Size values") for further details.
520 ---------------
521 -- Word_Size --
522 ---------------
524 Attribute_Word_Size => True,
525 -- Standard'Word_Size (Standard is the only permissible prefix)
526 -- provides the value System.Word_Size, and is intended primarily
527 -- for constructing this definition in package System (see note above
528 -- in Default_Bit_Order description). This is a static attribute.
530 others => False);
532 -----------------
533 -- Subprograms --
534 -----------------
536 procedure Analyze_Attribute (N : Node_Id);
537 -- Performs bottom up semantic analysis of an attribute. Note that the
538 -- parser has already checked that type returning attributes appear only
539 -- in appropriate contexts (i.e. in subtype marks, or as prefixes for
540 -- other attributes).
542 function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean;
543 -- Determine whether the name of an attribute reference categorizes its
544 -- prefix as an lvalue. The following attributes fall under this bracket
545 -- by directly or indirectly modifying their prefixes.
546 -- Access
547 -- Address
548 -- Input
549 -- Read
550 -- Unchecked_Access
551 -- Unrestricted_Access
553 procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id);
554 -- Performs type resolution of attribute. If the attribute yields a
555 -- universal value, mark its type as that of the context. On the other
556 -- hand, if the context itself is universal (as in T'Val (T'Pos (X)), mark
557 -- the type as being the largest type of that class that can be used at
558 -- run-time. This is correct since either the value gets folded (in which
559 -- case it doesn't matter what type of the class we give if, since the
560 -- folding uses universal arithmetic anyway) or it doesn't get folded (in
561 -- which case it is going to be dealt with at runtime, and the largest type
562 -- is right).
564 function Stream_Attribute_Available
565 (Typ : Entity_Id;
566 Nam : TSS_Name_Type;
567 Partial_View : Entity_Id := Empty) return Boolean;
568 -- For a limited type Typ, return True iff the given attribute is
569 -- available. For Ada 05, availability is defined by 13.13.2(36/1). For Ada
570 -- 95, an attribute is considered to be available if it has been specified
571 -- using an attribute definition clause for the type, or for its full view,
572 -- or for an ancestor of either. Parameter Partial_View is used only
573 -- internally, when checking for an attribute definition clause that is not
574 -- visible (Ada 95 only).
576 end Sem_Attr;