Merge -r 127928:132243 from trunk
[official-gcc.git] / gcc / ada / sem_aggr.adb
blobf6ae6e56276c4e546bcb34fef8c9bde06b95ac06
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A G G R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Atree; use Atree;
27 with Checks; use Checks;
28 with Einfo; use Einfo;
29 with Elists; use Elists;
30 with Errout; use Errout;
31 with Exp_Tss; use Exp_Tss;
32 with Exp_Util; use Exp_Util;
33 with Freeze; use Freeze;
34 with Itypes; use Itypes;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Namet.Sp; use Namet.Sp;
39 with Nmake; use Nmake;
40 with Nlists; use Nlists;
41 with Opt; use Opt;
42 with Sem; use Sem;
43 with Sem_Cat; use Sem_Cat;
44 with Sem_Ch3; use Sem_Ch3;
45 with Sem_Ch13; use Sem_Ch13;
46 with Sem_Eval; use Sem_Eval;
47 with Sem_Res; use Sem_Res;
48 with Sem_Util; use Sem_Util;
49 with Sem_Type; use Sem_Type;
50 with Sem_Warn; use Sem_Warn;
51 with Sinfo; use Sinfo;
52 with Snames; use Snames;
53 with Stringt; use Stringt;
54 with Stand; use Stand;
55 with Targparm; use Targparm;
56 with Tbuild; use Tbuild;
57 with Uintp; use Uintp;
59 package body Sem_Aggr is
61 type Case_Bounds is record
62 Choice_Lo : Node_Id;
63 Choice_Hi : Node_Id;
64 Choice_Node : Node_Id;
65 end record;
67 type Case_Table_Type is array (Nat range <>) of Case_Bounds;
68 -- Table type used by Check_Case_Choices procedure
70 -----------------------
71 -- Local Subprograms --
72 -----------------------
74 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type);
75 -- Sort the Case Table using the Lower Bound of each Choice as the key.
76 -- A simple insertion sort is used since the number of choices in a case
77 -- statement of variant part will usually be small and probably in near
78 -- sorted order.
80 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id);
81 -- Ada 2005 (AI-231): Check bad usage of null for a component for which
82 -- null exclusion (NOT NULL) is specified. Typ can be an E_Array_Type for
83 -- the array case (the component type of the array will be used) or an
84 -- E_Component/E_Discriminant entity in the record case, in which case the
85 -- type of the component will be used for the test. If Typ is any other
86 -- kind of entity, the call is ignored. Expr is the component node in the
87 -- aggregate which is known to have a null value. A warning message will be
88 -- issued if the component is null excluding.
90 -- It would be better to pass the proper type for Typ ???
92 ------------------------------------------------------
93 -- Subprograms used for RECORD AGGREGATE Processing --
94 ------------------------------------------------------
96 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id);
97 -- This procedure performs all the semantic checks required for record
98 -- aggregates. Note that for aggregates analysis and resolution go
99 -- hand in hand. Aggregate analysis has been delayed up to here and
100 -- it is done while resolving the aggregate.
102 -- N is the N_Aggregate node.
103 -- Typ is the record type for the aggregate resolution
105 -- While performing the semantic checks, this procedure builds a new
106 -- Component_Association_List where each record field appears alone in a
107 -- Component_Choice_List along with its corresponding expression. The
108 -- record fields in the Component_Association_List appear in the same order
109 -- in which they appear in the record type Typ.
111 -- Once this new Component_Association_List is built and all the semantic
112 -- checks performed, the original aggregate subtree is replaced with the
113 -- new named record aggregate just built. Note that subtree substitution is
114 -- performed with Rewrite so as to be able to retrieve the original
115 -- aggregate.
117 -- The aggregate subtree manipulation performed by Resolve_Record_Aggregate
118 -- yields the aggregate format expected by Gigi. Typically, this kind of
119 -- tree manipulations are done in the expander. However, because the
120 -- semantic checks that need to be performed on record aggregates really go
121 -- hand in hand with the record aggregate normalization, the aggregate
122 -- subtree transformation is performed during resolution rather than
123 -- expansion. Had we decided otherwise we would have had to duplicate most
124 -- of the code in the expansion procedure Expand_Record_Aggregate. Note,
125 -- however, that all the expansion concerning aggregates for tagged records
126 -- is done in Expand_Record_Aggregate.
128 -- The algorithm of Resolve_Record_Aggregate proceeds as follows:
130 -- 1. Make sure that the record type against which the record aggregate
131 -- has to be resolved is not abstract. Furthermore if the type is
132 -- a null aggregate make sure the input aggregate N is also null.
134 -- 2. Verify that the structure of the aggregate is that of a record
135 -- aggregate. Specifically, look for component associations and ensure
136 -- that each choice list only has identifiers or the N_Others_Choice
137 -- node. Also make sure that if present, the N_Others_Choice occurs
138 -- last and by itself.
140 -- 3. If Typ contains discriminants, the values for each discriminant
141 -- is looked for. If the record type Typ has variants, we check
142 -- that the expressions corresponding to each discriminant ruling
143 -- the (possibly nested) variant parts of Typ, are static. This
144 -- allows us to determine the variant parts to which the rest of
145 -- the aggregate must conform. The names of discriminants with their
146 -- values are saved in a new association list, New_Assoc_List which
147 -- is later augmented with the names and values of the remaining
148 -- components in the record type.
150 -- During this phase we also make sure that every discriminant is
151 -- assigned exactly one value. Note that when several values
152 -- for a given discriminant are found, semantic processing continues
153 -- looking for further errors. In this case it's the first
154 -- discriminant value found which we will be recorded.
156 -- IMPORTANT NOTE: For derived tagged types this procedure expects
157 -- First_Discriminant and Next_Discriminant to give the correct list
158 -- of discriminants, in the correct order.
160 -- 4. After all the discriminant values have been gathered, we can
161 -- set the Etype of the record aggregate. If Typ contains no
162 -- discriminants this is straightforward: the Etype of N is just
163 -- Typ, otherwise a new implicit constrained subtype of Typ is
164 -- built to be the Etype of N.
166 -- 5. Gather the remaining record components according to the discriminant
167 -- values. This involves recursively traversing the record type
168 -- structure to see what variants are selected by the given discriminant
169 -- values. This processing is a little more convoluted if Typ is a
170 -- derived tagged types since we need to retrieve the record structure
171 -- of all the ancestors of Typ.
173 -- 6. After gathering the record components we look for their values
174 -- in the record aggregate and emit appropriate error messages
175 -- should we not find such values or should they be duplicated.
177 -- 7. We then make sure no illegal component names appear in the
178 -- record aggregate and make sure that the type of the record
179 -- components appearing in a same choice list is the same.
180 -- Finally we ensure that the others choice, if present, is
181 -- used to provide the value of at least a record component.
183 -- 8. The original aggregate node is replaced with the new named
184 -- aggregate built in steps 3 through 6, as explained earlier.
186 -- Given the complexity of record aggregate resolution, the primary
187 -- goal of this routine is clarity and simplicity rather than execution
188 -- and storage efficiency. If there are only positional components in the
189 -- aggregate the running time is linear. If there are associations
190 -- the running time is still linear as long as the order of the
191 -- associations is not too far off the order of the components in the
192 -- record type. If this is not the case the running time is at worst
193 -- quadratic in the size of the association list.
195 procedure Check_Misspelled_Component
196 (Elements : Elist_Id;
197 Component : Node_Id);
198 -- Give possible misspelling diagnostic if Component is likely to be
199 -- a misspelling of one of the components of the Assoc_List.
200 -- This is called by Resolv_Aggr_Expr after producing
201 -- an invalid component error message.
203 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id);
204 -- An optimization: determine whether a discriminated subtype has a
205 -- static constraint, and contains array components whose length is also
206 -- static, either because they are constrained by the discriminant, or
207 -- because the original component bounds are static.
209 -----------------------------------------------------
210 -- Subprograms used for ARRAY AGGREGATE Processing --
211 -----------------------------------------------------
213 function Resolve_Array_Aggregate
214 (N : Node_Id;
215 Index : Node_Id;
216 Index_Constr : Node_Id;
217 Component_Typ : Entity_Id;
218 Others_Allowed : Boolean)
219 return Boolean;
220 -- This procedure performs the semantic checks for an array aggregate.
221 -- True is returned if the aggregate resolution succeeds.
222 -- The procedure works by recursively checking each nested aggregate.
223 -- Specifically, after checking a sub-aggregate nested at the i-th level
224 -- we recursively check all the subaggregates at the i+1-st level (if any).
225 -- Note that for aggregates analysis and resolution go hand in hand.
226 -- Aggregate analysis has been delayed up to here and it is done while
227 -- resolving the aggregate.
229 -- N is the current N_Aggregate node to be checked.
231 -- Index is the index node corresponding to the array sub-aggregate that
232 -- we are currently checking (RM 4.3.3 (8)). Its Etype is the
233 -- corresponding index type (or subtype).
235 -- Index_Constr is the node giving the applicable index constraint if
236 -- any (RM 4.3.3 (10)). It "is a constraint provided by certain
237 -- contexts [...] that can be used to determine the bounds of the array
238 -- value specified by the aggregate". If Others_Allowed below is False
239 -- there is no applicable index constraint and this node is set to Index.
241 -- Component_Typ is the array component type.
243 -- Others_Allowed indicates whether an others choice is allowed
244 -- in the context where the top-level aggregate appeared.
246 -- The algorithm of Resolve_Array_Aggregate proceeds as follows:
248 -- 1. Make sure that the others choice, if present, is by itself and
249 -- appears last in the sub-aggregate. Check that we do not have
250 -- positional and named components in the array sub-aggregate (unless
251 -- the named association is an others choice). Finally if an others
252 -- choice is present, make sure it is allowed in the aggregate contex.
254 -- 2. If the array sub-aggregate contains discrete_choices:
256 -- (A) Verify their validity. Specifically verify that:
258 -- (a) If a null range is present it must be the only possible
259 -- choice in the array aggregate.
261 -- (b) Ditto for a non static range.
263 -- (c) Ditto for a non static expression.
265 -- In addition this step analyzes and resolves each discrete_choice,
266 -- making sure that its type is the type of the corresponding Index.
267 -- If we are not at the lowest array aggregate level (in the case of
268 -- multi-dimensional aggregates) then invoke Resolve_Array_Aggregate
269 -- recursively on each component expression. Otherwise, resolve the
270 -- bottom level component expressions against the expected component
271 -- type ONLY IF the component corresponds to a single discrete choice
272 -- which is not an others choice (to see why read the DELAYED
273 -- COMPONENT RESOLUTION below).
275 -- (B) Determine the bounds of the sub-aggregate and lowest and
276 -- highest choice values.
278 -- 3. For positional aggregates:
280 -- (A) Loop over the component expressions either recursively invoking
281 -- Resolve_Array_Aggregate on each of these for multi-dimensional
282 -- array aggregates or resolving the bottom level component
283 -- expressions against the expected component type.
285 -- (B) Determine the bounds of the positional sub-aggregates.
287 -- 4. Try to determine statically whether the evaluation of the array
288 -- sub-aggregate raises Constraint_Error. If yes emit proper
289 -- warnings. The precise checks are the following:
291 -- (A) Check that the index range defined by aggregate bounds is
292 -- compatible with corresponding index subtype.
293 -- We also check against the base type. In fact it could be that
294 -- Low/High bounds of the base type are static whereas those of
295 -- the index subtype are not. Thus if we can statically catch
296 -- a problem with respect to the base type we are guaranteed
297 -- that the same problem will arise with the index subtype
299 -- (B) If we are dealing with a named aggregate containing an others
300 -- choice and at least one discrete choice then make sure the range
301 -- specified by the discrete choices does not overflow the
302 -- aggregate bounds. We also check against the index type and base
303 -- type bounds for the same reasons given in (A).
305 -- (C) If we are dealing with a positional aggregate with an others
306 -- choice make sure the number of positional elements specified
307 -- does not overflow the aggregate bounds. We also check against
308 -- the index type and base type bounds as mentioned in (A).
310 -- Finally construct an N_Range node giving the sub-aggregate bounds.
311 -- Set the Aggregate_Bounds field of the sub-aggregate to be this
312 -- N_Range. The routine Array_Aggr_Subtype below uses such N_Ranges
313 -- to build the appropriate aggregate subtype. Aggregate_Bounds
314 -- information is needed during expansion.
316 -- DELAYED COMPONENT RESOLUTION: The resolution of bottom level component
317 -- expressions in an array aggregate may call Duplicate_Subexpr or some
318 -- other routine that inserts code just outside the outermost aggregate.
319 -- If the array aggregate contains discrete choices or an others choice,
320 -- this may be wrong. Consider for instance the following example.
322 -- type Rec is record
323 -- V : Integer := 0;
324 -- end record;
326 -- type Acc_Rec is access Rec;
327 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => new Rec);
329 -- Then the transformation of "new Rec" that occurs during resolution
330 -- entails the following code modifications
332 -- P7b : constant Acc_Rec := new Rec;
333 -- RecIP (P7b.all);
334 -- Arr : array (1..3) of Acc_Rec := (1 .. 3 => P7b);
336 -- This code transformation is clearly wrong, since we need to call
337 -- "new Rec" for each of the 3 array elements. To avoid this problem we
338 -- delay resolution of the components of non positional array aggregates
339 -- to the expansion phase. As an optimization, if the discrete choice
340 -- specifies a single value we do not delay resolution.
342 function Array_Aggr_Subtype (N : Node_Id; Typ : Node_Id) return Entity_Id;
343 -- This routine returns the type or subtype of an array aggregate.
345 -- N is the array aggregate node whose type we return.
347 -- Typ is the context type in which N occurs.
349 -- This routine creates an implicit array subtype whose bounds are
350 -- those defined by the aggregate. When this routine is invoked
351 -- Resolve_Array_Aggregate has already processed aggregate N. Thus the
352 -- Aggregate_Bounds of each sub-aggregate, is an N_Range node giving the
353 -- sub-aggregate bounds. When building the aggregate itype, this function
354 -- traverses the array aggregate N collecting such Aggregate_Bounds and
355 -- constructs the proper array aggregate itype.
357 -- Note that in the case of multidimensional aggregates each inner
358 -- sub-aggregate corresponding to a given array dimension, may provide a
359 -- different bounds. If it is possible to determine statically that
360 -- some sub-aggregates corresponding to the same index do not have the
361 -- same bounds, then a warning is emitted. If such check is not possible
362 -- statically (because some sub-aggregate bounds are dynamic expressions)
363 -- then this job is left to the expander. In all cases the particular
364 -- bounds that this function will chose for a given dimension is the first
365 -- N_Range node for a sub-aggregate corresponding to that dimension.
367 -- Note that the Raises_Constraint_Error flag of an array aggregate
368 -- whose evaluation is determined to raise CE by Resolve_Array_Aggregate,
369 -- is set in Resolve_Array_Aggregate but the aggregate is not
370 -- immediately replaced with a raise CE. In fact, Array_Aggr_Subtype must
371 -- first construct the proper itype for the aggregate (Gigi needs
372 -- this). After constructing the proper itype we will eventually replace
373 -- the top-level aggregate with a raise CE (done in Resolve_Aggregate).
374 -- Of course in cases such as:
376 -- type Arr is array (integer range <>) of Integer;
377 -- A : Arr := (positive range -1 .. 2 => 0);
379 -- The bounds of the aggregate itype are cooked up to look reasonable
380 -- (in this particular case the bounds will be 1 .. 2).
382 procedure Aggregate_Constraint_Checks
383 (Exp : Node_Id;
384 Check_Typ : Entity_Id);
385 -- Checks expression Exp against subtype Check_Typ. If Exp is an
386 -- aggregate and Check_Typ a constrained record type with discriminants,
387 -- we generate the appropriate discriminant checks. If Exp is an array
388 -- aggregate then emit the appropriate length checks. If Exp is a scalar
389 -- type, or a string literal, Exp is changed into Check_Typ'(Exp) to
390 -- ensure that range checks are performed at run time.
392 procedure Make_String_Into_Aggregate (N : Node_Id);
393 -- A string literal can appear in a context in which a one dimensional
394 -- array of characters is expected. This procedure simply rewrites the
395 -- string as an aggregate, prior to resolution.
397 ---------------------------------
398 -- Aggregate_Constraint_Checks --
399 ---------------------------------
401 procedure Aggregate_Constraint_Checks
402 (Exp : Node_Id;
403 Check_Typ : Entity_Id)
405 Exp_Typ : constant Entity_Id := Etype (Exp);
407 begin
408 if Raises_Constraint_Error (Exp) then
409 return;
410 end if;
412 -- This is really expansion activity, so make sure that expansion
413 -- is on and is allowed.
415 if not Expander_Active or else In_Default_Expression then
416 return;
417 end if;
419 -- First check if we have to insert discriminant checks
421 if Has_Discriminants (Exp_Typ) then
422 Apply_Discriminant_Check (Exp, Check_Typ);
424 -- Next emit length checks for array aggregates
426 elsif Is_Array_Type (Exp_Typ) then
427 Apply_Length_Check (Exp, Check_Typ);
429 -- Finally emit scalar and string checks. If we are dealing with a
430 -- scalar literal we need to check by hand because the Etype of
431 -- literals is not necessarily correct.
433 elsif Is_Scalar_Type (Exp_Typ)
434 and then Compile_Time_Known_Value (Exp)
435 then
436 if Is_Out_Of_Range (Exp, Base_Type (Check_Typ)) then
437 Apply_Compile_Time_Constraint_Error
438 (Exp, "value not in range of}?", CE_Range_Check_Failed,
439 Ent => Base_Type (Check_Typ),
440 Typ => Base_Type (Check_Typ));
442 elsif Is_Out_Of_Range (Exp, Check_Typ) then
443 Apply_Compile_Time_Constraint_Error
444 (Exp, "value not in range of}?", CE_Range_Check_Failed,
445 Ent => Check_Typ,
446 Typ => Check_Typ);
448 elsif not Range_Checks_Suppressed (Check_Typ) then
449 Apply_Scalar_Range_Check (Exp, Check_Typ);
450 end if;
452 -- Verify that target type is also scalar, to prevent view anomalies
453 -- in instantiations.
455 elsif (Is_Scalar_Type (Exp_Typ)
456 or else Nkind (Exp) = N_String_Literal)
457 and then Is_Scalar_Type (Check_Typ)
458 and then Exp_Typ /= Check_Typ
459 then
460 if Is_Entity_Name (Exp)
461 and then Ekind (Entity (Exp)) = E_Constant
462 then
463 -- If expression is a constant, it is worthwhile checking whether
464 -- it is a bound of the type.
466 if (Is_Entity_Name (Type_Low_Bound (Check_Typ))
467 and then Entity (Exp) = Entity (Type_Low_Bound (Check_Typ)))
468 or else (Is_Entity_Name (Type_High_Bound (Check_Typ))
469 and then Entity (Exp) = Entity (Type_High_Bound (Check_Typ)))
470 then
471 return;
473 else
474 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
475 Analyze_And_Resolve (Exp, Check_Typ);
476 Check_Unset_Reference (Exp);
477 end if;
478 else
479 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
480 Analyze_And_Resolve (Exp, Check_Typ);
481 Check_Unset_Reference (Exp);
482 end if;
484 -- Ada 2005 (AI-230): Generate a conversion to an anonymous access
485 -- component's type to force the appropriate accessibility checks.
487 -- Ada 2005 (AI-231): Generate conversion to the null-excluding
488 -- type to force the corresponding run-time check
490 elsif Is_Access_Type (Check_Typ)
491 and then ((Is_Local_Anonymous_Access (Check_Typ))
492 or else (Can_Never_Be_Null (Check_Typ)
493 and then not Can_Never_Be_Null (Exp_Typ)))
494 then
495 Rewrite (Exp, Convert_To (Check_Typ, Relocate_Node (Exp)));
496 Analyze_And_Resolve (Exp, Check_Typ);
497 Check_Unset_Reference (Exp);
498 end if;
499 end Aggregate_Constraint_Checks;
501 ------------------------
502 -- Array_Aggr_Subtype --
503 ------------------------
505 function Array_Aggr_Subtype
506 (N : Node_Id;
507 Typ : Entity_Id)
508 return Entity_Id
510 Aggr_Dimension : constant Pos := Number_Dimensions (Typ);
511 -- Number of aggregate index dimensions
513 Aggr_Range : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
514 -- Constrained N_Range of each index dimension in our aggregate itype
516 Aggr_Low : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
517 Aggr_High : array (1 .. Aggr_Dimension) of Node_Id := (others => Empty);
518 -- Low and High bounds for each index dimension in our aggregate itype
520 Is_Fully_Positional : Boolean := True;
522 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos);
523 -- N is an array (sub-)aggregate. Dim is the dimension corresponding to
524 -- (sub-)aggregate N. This procedure collects the constrained N_Range
525 -- nodes corresponding to each index dimension of our aggregate itype.
526 -- These N_Range nodes are collected in Aggr_Range above.
528 -- Likewise collect in Aggr_Low & Aggr_High above the low and high
529 -- bounds of each index dimension. If, when collecting, two bounds
530 -- corresponding to the same dimension are static and found to differ,
531 -- then emit a warning, and mark N as raising Constraint_Error.
533 -------------------------
534 -- Collect_Aggr_Bounds --
535 -------------------------
537 procedure Collect_Aggr_Bounds (N : Node_Id; Dim : Pos) is
538 This_Range : constant Node_Id := Aggregate_Bounds (N);
539 -- The aggregate range node of this specific sub-aggregate
541 This_Low : constant Node_Id := Low_Bound (Aggregate_Bounds (N));
542 This_High : constant Node_Id := High_Bound (Aggregate_Bounds (N));
543 -- The aggregate bounds of this specific sub-aggregate
545 Assoc : Node_Id;
546 Expr : Node_Id;
548 begin
549 -- Collect the first N_Range for a given dimension that you find.
550 -- For a given dimension they must be all equal anyway.
552 if No (Aggr_Range (Dim)) then
553 Aggr_Low (Dim) := This_Low;
554 Aggr_High (Dim) := This_High;
555 Aggr_Range (Dim) := This_Range;
557 else
558 if Compile_Time_Known_Value (This_Low) then
559 if not Compile_Time_Known_Value (Aggr_Low (Dim)) then
560 Aggr_Low (Dim) := This_Low;
562 elsif Expr_Value (This_Low) /= Expr_Value (Aggr_Low (Dim)) then
563 Set_Raises_Constraint_Error (N);
564 Error_Msg_N ("sub-aggregate low bound mismatch?", N);
565 Error_Msg_N
566 ("\Constraint_Error will be raised at run-time?", N);
567 end if;
568 end if;
570 if Compile_Time_Known_Value (This_High) then
571 if not Compile_Time_Known_Value (Aggr_High (Dim)) then
572 Aggr_High (Dim) := This_High;
574 elsif
575 Expr_Value (This_High) /= Expr_Value (Aggr_High (Dim))
576 then
577 Set_Raises_Constraint_Error (N);
578 Error_Msg_N ("sub-aggregate high bound mismatch?", N);
579 Error_Msg_N
580 ("\Constraint_Error will be raised at run-time?", N);
581 end if;
582 end if;
583 end if;
585 if Dim < Aggr_Dimension then
587 -- Process positional components
589 if Present (Expressions (N)) then
590 Expr := First (Expressions (N));
591 while Present (Expr) loop
592 Collect_Aggr_Bounds (Expr, Dim + 1);
593 Next (Expr);
594 end loop;
595 end if;
597 -- Process component associations
599 if Present (Component_Associations (N)) then
600 Is_Fully_Positional := False;
602 Assoc := First (Component_Associations (N));
603 while Present (Assoc) loop
604 Expr := Expression (Assoc);
605 Collect_Aggr_Bounds (Expr, Dim + 1);
606 Next (Assoc);
607 end loop;
608 end if;
609 end if;
610 end Collect_Aggr_Bounds;
612 -- Array_Aggr_Subtype variables
614 Itype : Entity_Id;
615 -- the final itype of the overall aggregate
617 Index_Constraints : constant List_Id := New_List;
618 -- The list of index constraints of the aggregate itype
620 -- Start of processing for Array_Aggr_Subtype
622 begin
623 -- Make sure that the list of index constraints is properly attached
624 -- to the tree, and then collect the aggregate bounds.
626 Set_Parent (Index_Constraints, N);
627 Collect_Aggr_Bounds (N, 1);
629 -- Build the list of constrained indices of our aggregate itype
631 for J in 1 .. Aggr_Dimension loop
632 Create_Index : declare
633 Index_Base : constant Entity_Id :=
634 Base_Type (Etype (Aggr_Range (J)));
635 Index_Typ : Entity_Id;
637 begin
638 -- Construct the Index subtype, and associate it with the range
639 -- construct that generates it.
641 Index_Typ :=
642 Create_Itype (Subtype_Kind (Ekind (Index_Base)), Aggr_Range (J));
644 Set_Etype (Index_Typ, Index_Base);
646 if Is_Character_Type (Index_Base) then
647 Set_Is_Character_Type (Index_Typ);
648 end if;
650 Set_Size_Info (Index_Typ, (Index_Base));
651 Set_RM_Size (Index_Typ, RM_Size (Index_Base));
652 Set_First_Rep_Item (Index_Typ, First_Rep_Item (Index_Base));
653 Set_Scalar_Range (Index_Typ, Aggr_Range (J));
655 if Is_Discrete_Or_Fixed_Point_Type (Index_Typ) then
656 Set_RM_Size (Index_Typ, UI_From_Int (Minimum_Size (Index_Typ)));
657 end if;
659 Set_Etype (Aggr_Range (J), Index_Typ);
661 Append (Aggr_Range (J), To => Index_Constraints);
662 end Create_Index;
663 end loop;
665 -- Now build the Itype
667 Itype := Create_Itype (E_Array_Subtype, N);
669 Set_First_Rep_Item (Itype, First_Rep_Item (Typ));
670 Set_Convention (Itype, Convention (Typ));
671 Set_Depends_On_Private (Itype, Has_Private_Component (Typ));
672 Set_Etype (Itype, Base_Type (Typ));
673 Set_Has_Alignment_Clause (Itype, Has_Alignment_Clause (Typ));
674 Set_Is_Aliased (Itype, Is_Aliased (Typ));
675 Set_Depends_On_Private (Itype, Depends_On_Private (Typ));
677 Copy_Suppress_Status (Index_Check, Typ, Itype);
678 Copy_Suppress_Status (Length_Check, Typ, Itype);
680 Set_First_Index (Itype, First (Index_Constraints));
681 Set_Is_Constrained (Itype, True);
682 Set_Is_Internal (Itype, True);
683 Init_Size_Align (Itype);
685 -- A simple optimization: purely positional aggregates of static
686 -- components should be passed to gigi unexpanded whenever possible,
687 -- and regardless of the staticness of the bounds themselves. Subse-
688 -- quent checks in exp_aggr verify that type is not packed, etc.
690 Set_Size_Known_At_Compile_Time (Itype,
691 Is_Fully_Positional
692 and then Comes_From_Source (N)
693 and then Size_Known_At_Compile_Time (Component_Type (Typ)));
695 -- We always need a freeze node for a packed array subtype, so that
696 -- we can build the Packed_Array_Type corresponding to the subtype.
697 -- If expansion is disabled, the packed array subtype is not built,
698 -- and we must not generate a freeze node for the type, or else it
699 -- will appear incomplete to gigi.
701 if Is_Packed (Itype) and then not In_Default_Expression
702 and then Expander_Active
703 then
704 Freeze_Itype (Itype, N);
705 end if;
707 return Itype;
708 end Array_Aggr_Subtype;
710 --------------------------------
711 -- Check_Misspelled_Component --
712 --------------------------------
714 procedure Check_Misspelled_Component
715 (Elements : Elist_Id;
716 Component : Node_Id)
718 Max_Suggestions : constant := 2;
720 Nr_Of_Suggestions : Natural := 0;
721 Suggestion_1 : Entity_Id := Empty;
722 Suggestion_2 : Entity_Id := Empty;
723 Component_Elmt : Elmt_Id;
725 begin
726 -- All the components of List are matched against Component and
727 -- a count is maintained of possible misspellings. When at the
728 -- end of the analysis there are one or two (not more!) possible
729 -- misspellings, these misspellings will be suggested as
730 -- possible correction.
732 Component_Elmt := First_Elmt (Elements);
733 while Nr_Of_Suggestions <= Max_Suggestions
734 and then Present (Component_Elmt)
735 loop
736 if Is_Bad_Spelling_Of
737 (Chars (Node (Component_Elmt)),
738 Chars (Component))
739 then
740 Nr_Of_Suggestions := Nr_Of_Suggestions + 1;
742 case Nr_Of_Suggestions is
743 when 1 => Suggestion_1 := Node (Component_Elmt);
744 when 2 => Suggestion_2 := Node (Component_Elmt);
745 when others => exit;
746 end case;
747 end if;
749 Next_Elmt (Component_Elmt);
750 end loop;
752 -- Report at most two suggestions
754 if Nr_Of_Suggestions = 1 then
755 Error_Msg_NE
756 ("\possible misspelling of&", Component, Suggestion_1);
758 elsif Nr_Of_Suggestions = 2 then
759 Error_Msg_Node_2 := Suggestion_2;
760 Error_Msg_NE
761 ("\possible misspelling of& or&", Component, Suggestion_1);
762 end if;
763 end Check_Misspelled_Component;
765 ----------------------------------------
766 -- Check_Static_Discriminated_Subtype --
767 ----------------------------------------
769 procedure Check_Static_Discriminated_Subtype (T : Entity_Id; V : Node_Id) is
770 Disc : constant Entity_Id := First_Discriminant (T);
771 Comp : Entity_Id;
772 Ind : Entity_Id;
774 begin
775 if Has_Record_Rep_Clause (T) then
776 return;
778 elsif Present (Next_Discriminant (Disc)) then
779 return;
781 elsif Nkind (V) /= N_Integer_Literal then
782 return;
783 end if;
785 Comp := First_Component (T);
786 while Present (Comp) loop
787 if Is_Scalar_Type (Etype (Comp)) then
788 null;
790 elsif Is_Private_Type (Etype (Comp))
791 and then Present (Full_View (Etype (Comp)))
792 and then Is_Scalar_Type (Full_View (Etype (Comp)))
793 then
794 null;
796 elsif Is_Array_Type (Etype (Comp)) then
797 if Is_Bit_Packed_Array (Etype (Comp)) then
798 return;
799 end if;
801 Ind := First_Index (Etype (Comp));
802 while Present (Ind) loop
803 if Nkind (Ind) /= N_Range
804 or else Nkind (Low_Bound (Ind)) /= N_Integer_Literal
805 or else Nkind (High_Bound (Ind)) /= N_Integer_Literal
806 then
807 return;
808 end if;
810 Next_Index (Ind);
811 end loop;
813 else
814 return;
815 end if;
817 Next_Component (Comp);
818 end loop;
820 -- On exit, all components have statically known sizes
822 Set_Size_Known_At_Compile_Time (T);
823 end Check_Static_Discriminated_Subtype;
825 --------------------------------
826 -- Make_String_Into_Aggregate --
827 --------------------------------
829 procedure Make_String_Into_Aggregate (N : Node_Id) is
830 Exprs : constant List_Id := New_List;
831 Loc : constant Source_Ptr := Sloc (N);
832 Str : constant String_Id := Strval (N);
833 Strlen : constant Nat := String_Length (Str);
834 C : Char_Code;
835 C_Node : Node_Id;
836 New_N : Node_Id;
837 P : Source_Ptr;
839 begin
840 P := Loc + 1;
841 for J in 1 .. Strlen loop
842 C := Get_String_Char (Str, J);
843 Set_Character_Literal_Name (C);
845 C_Node :=
846 Make_Character_Literal (P,
847 Chars => Name_Find,
848 Char_Literal_Value => UI_From_CC (C));
849 Set_Etype (C_Node, Any_Character);
850 Append_To (Exprs, C_Node);
852 P := P + 1;
853 -- something special for wide strings ???
854 end loop;
856 New_N := Make_Aggregate (Loc, Expressions => Exprs);
857 Set_Analyzed (New_N);
858 Set_Etype (New_N, Any_Composite);
860 Rewrite (N, New_N);
861 end Make_String_Into_Aggregate;
863 -----------------------
864 -- Resolve_Aggregate --
865 -----------------------
867 procedure Resolve_Aggregate (N : Node_Id; Typ : Entity_Id) is
868 Pkind : constant Node_Kind := Nkind (Parent (N));
870 Aggr_Subtyp : Entity_Id;
871 -- The actual aggregate subtype. This is not necessarily the same as Typ
872 -- which is the subtype of the context in which the aggregate was found.
874 begin
875 -- Check for aggregates not allowed in configurable run-time mode.
876 -- We allow all cases of aggregates that do not come from source,
877 -- since these are all assumed to be small (e.g. bounds of a string
878 -- literal). We also allow aggregates of types we know to be small.
880 if not Support_Aggregates_On_Target
881 and then Comes_From_Source (N)
882 and then (not Known_Static_Esize (Typ) or else Esize (Typ) > 64)
883 then
884 Error_Msg_CRT ("aggregate", N);
885 end if;
887 -- Ada 2005 (AI-287): Limited aggregates allowed
889 if Is_Limited_Type (Typ) and then Ada_Version < Ada_05 then
890 Error_Msg_N ("aggregate type cannot be limited", N);
891 Explain_Limited_Type (Typ, N);
893 elsif Is_Class_Wide_Type (Typ) then
894 Error_Msg_N ("type of aggregate cannot be class-wide", N);
896 elsif Typ = Any_String
897 or else Typ = Any_Composite
898 then
899 Error_Msg_N ("no unique type for aggregate", N);
900 Set_Etype (N, Any_Composite);
902 elsif Is_Array_Type (Typ) and then Null_Record_Present (N) then
903 Error_Msg_N ("null record forbidden in array aggregate", N);
905 elsif Is_Record_Type (Typ) then
906 Resolve_Record_Aggregate (N, Typ);
908 elsif Is_Array_Type (Typ) then
910 -- First a special test, for the case of a positional aggregate
911 -- of characters which can be replaced by a string literal.
912 -- Do not perform this transformation if this was a string literal
913 -- to start with, whose components needed constraint checks, or if
914 -- the component type is non-static, because it will require those
915 -- checks and be transformed back into an aggregate.
917 if Number_Dimensions (Typ) = 1
918 and then
919 (Root_Type (Component_Type (Typ)) = Standard_Character
920 or else
921 Root_Type (Component_Type (Typ)) = Standard_Wide_Character
922 or else
923 Root_Type (Component_Type (Typ)) = Standard_Wide_Wide_Character)
924 and then No (Component_Associations (N))
925 and then not Is_Limited_Composite (Typ)
926 and then not Is_Private_Composite (Typ)
927 and then not Is_Bit_Packed_Array (Typ)
928 and then Nkind (Original_Node (Parent (N))) /= N_String_Literal
929 and then Is_Static_Subtype (Component_Type (Typ))
930 then
931 declare
932 Expr : Node_Id;
934 begin
935 Expr := First (Expressions (N));
936 while Present (Expr) loop
937 exit when Nkind (Expr) /= N_Character_Literal;
938 Next (Expr);
939 end loop;
941 if No (Expr) then
942 Start_String;
944 Expr := First (Expressions (N));
945 while Present (Expr) loop
946 Store_String_Char (UI_To_CC (Char_Literal_Value (Expr)));
947 Next (Expr);
948 end loop;
950 Rewrite (N,
951 Make_String_Literal (Sloc (N), End_String));
953 Analyze_And_Resolve (N, Typ);
954 return;
955 end if;
956 end;
957 end if;
959 -- Here if we have a real aggregate to deal with
961 Array_Aggregate : declare
962 Aggr_Resolved : Boolean;
964 Aggr_Typ : constant Entity_Id := Etype (Typ);
965 -- This is the unconstrained array type, which is the type
966 -- against which the aggregate is to be resolved. Typ itself
967 -- is the array type of the context which may not be the same
968 -- subtype as the subtype for the final aggregate.
970 begin
971 -- In the following we determine whether an others choice is
972 -- allowed inside the array aggregate. The test checks the context
973 -- in which the array aggregate occurs. If the context does not
974 -- permit it, or the aggregate type is unconstrained, an others
975 -- choice is not allowed.
977 -- If expansion is disabled (generic context, or semantics-only
978 -- mode) actual subtypes cannot be constructed, and the type of
979 -- an object may be its unconstrained nominal type. However, if
980 -- the context is an assignment, we assume that "others" is
981 -- allowed, because the target of the assignment will have a
982 -- constrained subtype when fully compiled.
984 -- Note that there is no node for Explicit_Actual_Parameter.
985 -- To test for this context we therefore have to test for node
986 -- N_Parameter_Association which itself appears only if there is a
987 -- formal parameter. Consequently we also need to test for
988 -- N_Procedure_Call_Statement or N_Function_Call.
990 Set_Etype (N, Aggr_Typ); -- may be overridden later on
992 if Is_Constrained (Typ) and then
993 (Pkind = N_Assignment_Statement or else
994 Pkind = N_Parameter_Association or else
995 Pkind = N_Function_Call or else
996 Pkind = N_Procedure_Call_Statement or else
997 Pkind = N_Generic_Association or else
998 Pkind = N_Formal_Object_Declaration or else
999 Pkind = N_Simple_Return_Statement or else
1000 Pkind = N_Object_Declaration or else
1001 Pkind = N_Component_Declaration or else
1002 Pkind = N_Parameter_Specification or else
1003 Pkind = N_Qualified_Expression or else
1004 Pkind = N_Aggregate or else
1005 Pkind = N_Extension_Aggregate or else
1006 Pkind = N_Component_Association)
1007 then
1008 Aggr_Resolved :=
1009 Resolve_Array_Aggregate
1011 Index => First_Index (Aggr_Typ),
1012 Index_Constr => First_Index (Typ),
1013 Component_Typ => Component_Type (Typ),
1014 Others_Allowed => True);
1016 elsif not Expander_Active
1017 and then Pkind = N_Assignment_Statement
1018 then
1019 Aggr_Resolved :=
1020 Resolve_Array_Aggregate
1022 Index => First_Index (Aggr_Typ),
1023 Index_Constr => First_Index (Typ),
1024 Component_Typ => Component_Type (Typ),
1025 Others_Allowed => True);
1026 else
1027 Aggr_Resolved :=
1028 Resolve_Array_Aggregate
1030 Index => First_Index (Aggr_Typ),
1031 Index_Constr => First_Index (Aggr_Typ),
1032 Component_Typ => Component_Type (Typ),
1033 Others_Allowed => False);
1034 end if;
1036 if not Aggr_Resolved then
1037 Aggr_Subtyp := Any_Composite;
1038 else
1039 Aggr_Subtyp := Array_Aggr_Subtype (N, Typ);
1040 end if;
1042 Set_Etype (N, Aggr_Subtyp);
1043 end Array_Aggregate;
1045 elsif Is_Private_Type (Typ)
1046 and then Present (Full_View (Typ))
1047 and then In_Inlined_Body
1048 and then Is_Composite_Type (Full_View (Typ))
1049 then
1050 Resolve (N, Full_View (Typ));
1052 else
1053 Error_Msg_N ("illegal context for aggregate", N);
1054 end if;
1056 -- If we can determine statically that the evaluation of the
1057 -- aggregate raises Constraint_Error, then replace the
1058 -- aggregate with an N_Raise_Constraint_Error node, but set the
1059 -- Etype to the right aggregate subtype. Gigi needs this.
1061 if Raises_Constraint_Error (N) then
1062 Aggr_Subtyp := Etype (N);
1063 Rewrite (N,
1064 Make_Raise_Constraint_Error (Sloc (N),
1065 Reason => CE_Range_Check_Failed));
1066 Set_Raises_Constraint_Error (N);
1067 Set_Etype (N, Aggr_Subtyp);
1068 Set_Analyzed (N);
1069 end if;
1070 end Resolve_Aggregate;
1072 -----------------------------
1073 -- Resolve_Array_Aggregate --
1074 -----------------------------
1076 function Resolve_Array_Aggregate
1077 (N : Node_Id;
1078 Index : Node_Id;
1079 Index_Constr : Node_Id;
1080 Component_Typ : Entity_Id;
1081 Others_Allowed : Boolean)
1082 return Boolean
1084 Loc : constant Source_Ptr := Sloc (N);
1086 Failure : constant Boolean := False;
1087 Success : constant Boolean := True;
1089 Index_Typ : constant Entity_Id := Etype (Index);
1090 Index_Typ_Low : constant Node_Id := Type_Low_Bound (Index_Typ);
1091 Index_Typ_High : constant Node_Id := Type_High_Bound (Index_Typ);
1092 -- The type of the index corresponding to the array sub-aggregate
1093 -- along with its low and upper bounds
1095 Index_Base : constant Entity_Id := Base_Type (Index_Typ);
1096 Index_Base_Low : constant Node_Id := Type_Low_Bound (Index_Base);
1097 Index_Base_High : constant Node_Id := Type_High_Bound (Index_Base);
1098 -- ditto for the base type
1100 function Add (Val : Uint; To : Node_Id) return Node_Id;
1101 -- Creates a new expression node where Val is added to expression To.
1102 -- Tries to constant fold whenever possible. To must be an already
1103 -- analyzed expression.
1105 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id);
1106 -- Checks that AH (the upper bound of an array aggregate) is <= BH
1107 -- (the upper bound of the index base type). If the check fails a
1108 -- warning is emitted, the Raises_Constraint_Error Flag of N is set,
1109 -- and AH is replaced with a duplicate of BH.
1111 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id);
1112 -- Checks that range AL .. AH is compatible with range L .. H. Emits a
1113 -- warning if not and sets the Raises_Constraint_Error Flag in N.
1115 procedure Check_Length (L, H : Node_Id; Len : Uint);
1116 -- Checks that range L .. H contains at least Len elements. Emits a
1117 -- warning if not and sets the Raises_Constraint_Error Flag in N.
1119 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean;
1120 -- Returns True if range L .. H is dynamic or null
1122 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean);
1123 -- Given expression node From, this routine sets OK to False if it
1124 -- cannot statically evaluate From. Otherwise it stores this static
1125 -- value into Value.
1127 function Resolve_Aggr_Expr
1128 (Expr : Node_Id;
1129 Single_Elmt : Boolean)
1130 return Boolean;
1131 -- Resolves aggregate expression Expr. Returs False if resolution
1132 -- fails. If Single_Elmt is set to False, the expression Expr may be
1133 -- used to initialize several array aggregate elements (this can
1134 -- happen for discrete choices such as "L .. H => Expr" or the others
1135 -- choice). In this event we do not resolve Expr unless expansion is
1136 -- disabled. To know why, see the DELAYED COMPONENT RESOLUTION
1137 -- note above.
1139 ---------
1140 -- Add --
1141 ---------
1143 function Add (Val : Uint; To : Node_Id) return Node_Id is
1144 Expr_Pos : Node_Id;
1145 Expr : Node_Id;
1146 To_Pos : Node_Id;
1148 begin
1149 if Raises_Constraint_Error (To) then
1150 return To;
1151 end if;
1153 -- First test if we can do constant folding
1155 if Compile_Time_Known_Value (To)
1156 or else Nkind (To) = N_Integer_Literal
1157 then
1158 Expr_Pos := Make_Integer_Literal (Loc, Expr_Value (To) + Val);
1159 Set_Is_Static_Expression (Expr_Pos);
1160 Set_Etype (Expr_Pos, Etype (To));
1161 Set_Analyzed (Expr_Pos, Analyzed (To));
1163 if not Is_Enumeration_Type (Index_Typ) then
1164 Expr := Expr_Pos;
1166 -- If we are dealing with enumeration return
1167 -- Index_Typ'Val (Expr_Pos)
1169 else
1170 Expr :=
1171 Make_Attribute_Reference
1172 (Loc,
1173 Prefix => New_Reference_To (Index_Typ, Loc),
1174 Attribute_Name => Name_Val,
1175 Expressions => New_List (Expr_Pos));
1176 end if;
1178 return Expr;
1179 end if;
1181 -- If we are here no constant folding possible
1183 if not Is_Enumeration_Type (Index_Base) then
1184 Expr :=
1185 Make_Op_Add (Loc,
1186 Left_Opnd => Duplicate_Subexpr (To),
1187 Right_Opnd => Make_Integer_Literal (Loc, Val));
1189 -- If we are dealing with enumeration return
1190 -- Index_Typ'Val (Index_Typ'Pos (To) + Val)
1192 else
1193 To_Pos :=
1194 Make_Attribute_Reference
1195 (Loc,
1196 Prefix => New_Reference_To (Index_Typ, Loc),
1197 Attribute_Name => Name_Pos,
1198 Expressions => New_List (Duplicate_Subexpr (To)));
1200 Expr_Pos :=
1201 Make_Op_Add (Loc,
1202 Left_Opnd => To_Pos,
1203 Right_Opnd => Make_Integer_Literal (Loc, Val));
1205 Expr :=
1206 Make_Attribute_Reference
1207 (Loc,
1208 Prefix => New_Reference_To (Index_Typ, Loc),
1209 Attribute_Name => Name_Val,
1210 Expressions => New_List (Expr_Pos));
1211 end if;
1213 return Expr;
1214 end Add;
1216 -----------------
1217 -- Check_Bound --
1218 -----------------
1220 procedure Check_Bound (BH : Node_Id; AH : in out Node_Id) is
1221 Val_BH : Uint;
1222 Val_AH : Uint;
1224 OK_BH : Boolean;
1225 OK_AH : Boolean;
1227 begin
1228 Get (Value => Val_BH, From => BH, OK => OK_BH);
1229 Get (Value => Val_AH, From => AH, OK => OK_AH);
1231 if OK_BH and then OK_AH and then Val_BH < Val_AH then
1232 Set_Raises_Constraint_Error (N);
1233 Error_Msg_N ("upper bound out of range?", AH);
1234 Error_Msg_N ("\Constraint_Error will be raised at run-time?", AH);
1236 -- You need to set AH to BH or else in the case of enumerations
1237 -- indices we will not be able to resolve the aggregate bounds.
1239 AH := Duplicate_Subexpr (BH);
1240 end if;
1241 end Check_Bound;
1243 ------------------
1244 -- Check_Bounds --
1245 ------------------
1247 procedure Check_Bounds (L, H : Node_Id; AL, AH : Node_Id) is
1248 Val_L : Uint;
1249 Val_H : Uint;
1250 Val_AL : Uint;
1251 Val_AH : Uint;
1253 OK_L : Boolean;
1254 OK_H : Boolean;
1256 OK_AL : Boolean;
1257 OK_AH : Boolean;
1258 pragma Warnings (Off, OK_AL);
1259 pragma Warnings (Off, OK_AH);
1261 begin
1262 if Raises_Constraint_Error (N)
1263 or else Dynamic_Or_Null_Range (AL, AH)
1264 then
1265 return;
1266 end if;
1268 Get (Value => Val_L, From => L, OK => OK_L);
1269 Get (Value => Val_H, From => H, OK => OK_H);
1271 Get (Value => Val_AL, From => AL, OK => OK_AL);
1272 Get (Value => Val_AH, From => AH, OK => OK_AH);
1274 if OK_L and then Val_L > Val_AL then
1275 Set_Raises_Constraint_Error (N);
1276 Error_Msg_N ("lower bound of aggregate out of range?", N);
1277 Error_Msg_N ("\Constraint_Error will be raised at run-time?", N);
1278 end if;
1280 if OK_H and then Val_H < Val_AH then
1281 Set_Raises_Constraint_Error (N);
1282 Error_Msg_N ("upper bound of aggregate out of range?", N);
1283 Error_Msg_N ("\Constraint_Error will be raised at run-time?", N);
1284 end if;
1285 end Check_Bounds;
1287 ------------------
1288 -- Check_Length --
1289 ------------------
1291 procedure Check_Length (L, H : Node_Id; Len : Uint) is
1292 Val_L : Uint;
1293 Val_H : Uint;
1295 OK_L : Boolean;
1296 OK_H : Boolean;
1298 Range_Len : Uint;
1300 begin
1301 if Raises_Constraint_Error (N) then
1302 return;
1303 end if;
1305 Get (Value => Val_L, From => L, OK => OK_L);
1306 Get (Value => Val_H, From => H, OK => OK_H);
1308 if not OK_L or else not OK_H then
1309 return;
1310 end if;
1312 -- If null range length is zero
1314 if Val_L > Val_H then
1315 Range_Len := Uint_0;
1316 else
1317 Range_Len := Val_H - Val_L + 1;
1318 end if;
1320 if Range_Len < Len then
1321 Set_Raises_Constraint_Error (N);
1322 Error_Msg_N ("too many elements?", N);
1323 Error_Msg_N ("\Constraint_Error will be raised at run-time?", N);
1324 end if;
1325 end Check_Length;
1327 ---------------------------
1328 -- Dynamic_Or_Null_Range --
1329 ---------------------------
1331 function Dynamic_Or_Null_Range (L, H : Node_Id) return Boolean is
1332 Val_L : Uint;
1333 Val_H : Uint;
1335 OK_L : Boolean;
1336 OK_H : Boolean;
1338 begin
1339 Get (Value => Val_L, From => L, OK => OK_L);
1340 Get (Value => Val_H, From => H, OK => OK_H);
1342 return not OK_L or else not OK_H
1343 or else not Is_OK_Static_Expression (L)
1344 or else not Is_OK_Static_Expression (H)
1345 or else Val_L > Val_H;
1346 end Dynamic_Or_Null_Range;
1348 ---------
1349 -- Get --
1350 ---------
1352 procedure Get (Value : out Uint; From : Node_Id; OK : out Boolean) is
1353 begin
1354 OK := True;
1356 if Compile_Time_Known_Value (From) then
1357 Value := Expr_Value (From);
1359 -- If expression From is something like Some_Type'Val (10) then
1360 -- Value = 10
1362 elsif Nkind (From) = N_Attribute_Reference
1363 and then Attribute_Name (From) = Name_Val
1364 and then Compile_Time_Known_Value (First (Expressions (From)))
1365 then
1366 Value := Expr_Value (First (Expressions (From)));
1368 else
1369 Value := Uint_0;
1370 OK := False;
1371 end if;
1372 end Get;
1374 -----------------------
1375 -- Resolve_Aggr_Expr --
1376 -----------------------
1378 function Resolve_Aggr_Expr
1379 (Expr : Node_Id;
1380 Single_Elmt : Boolean)
1381 return Boolean
1383 Nxt_Ind : constant Node_Id := Next_Index (Index);
1384 Nxt_Ind_Constr : constant Node_Id := Next_Index (Index_Constr);
1385 -- Index is the current index corresponding to the expresion
1387 Resolution_OK : Boolean := True;
1388 -- Set to False if resolution of the expression failed
1390 begin
1391 -- If the array type against which we are resolving the aggregate
1392 -- has several dimensions, the expressions nested inside the
1393 -- aggregate must be further aggregates (or strings).
1395 if Present (Nxt_Ind) then
1396 if Nkind (Expr) /= N_Aggregate then
1398 -- A string literal can appear where a one-dimensional array
1399 -- of characters is expected. If the literal looks like an
1400 -- operator, it is still an operator symbol, which will be
1401 -- transformed into a string when analyzed.
1403 if Is_Character_Type (Component_Typ)
1404 and then No (Next_Index (Nxt_Ind))
1405 and then (Nkind (Expr) = N_String_Literal
1406 or else Nkind (Expr) = N_Operator_Symbol)
1407 then
1408 -- A string literal used in a multidimensional array
1409 -- aggregate in place of the final one-dimensional
1410 -- aggregate must not be enclosed in parentheses.
1412 if Paren_Count (Expr) /= 0 then
1413 Error_Msg_N ("no parenthesis allowed here", Expr);
1414 end if;
1416 Make_String_Into_Aggregate (Expr);
1418 else
1419 Error_Msg_N ("nested array aggregate expected", Expr);
1420 return Failure;
1421 end if;
1422 end if;
1424 -- Ada 2005 (AI-231): Propagate the type to the nested aggregate.
1425 -- Required to check the null-exclusion attribute (if present).
1426 -- This value may be overridden later on.
1428 Set_Etype (Expr, Etype (N));
1430 Resolution_OK := Resolve_Array_Aggregate
1431 (Expr, Nxt_Ind, Nxt_Ind_Constr, Component_Typ, Others_Allowed);
1433 -- Do not resolve the expressions of discrete or others choices
1434 -- unless the expression covers a single component, or the expander
1435 -- is inactive.
1437 elsif Single_Elmt
1438 or else not Expander_Active
1439 or else In_Default_Expression
1440 then
1441 Analyze_And_Resolve (Expr, Component_Typ);
1442 Check_Non_Static_Context (Expr);
1443 Aggregate_Constraint_Checks (Expr, Component_Typ);
1444 Check_Unset_Reference (Expr);
1445 end if;
1447 if Raises_Constraint_Error (Expr)
1448 and then Nkind (Parent (Expr)) /= N_Component_Association
1449 then
1450 Set_Raises_Constraint_Error (N);
1451 end if;
1453 return Resolution_OK;
1454 end Resolve_Aggr_Expr;
1456 -- Variables local to Resolve_Array_Aggregate
1458 Assoc : Node_Id;
1459 Choice : Node_Id;
1460 Expr : Node_Id;
1462 Discard : Node_Id;
1463 pragma Warnings (Off, Discard);
1465 Aggr_Low : Node_Id := Empty;
1466 Aggr_High : Node_Id := Empty;
1467 -- The actual low and high bounds of this sub-aggregate
1469 Choices_Low : Node_Id := Empty;
1470 Choices_High : Node_Id := Empty;
1471 -- The lowest and highest discrete choices values for a named aggregate
1473 Nb_Elements : Uint := Uint_0;
1474 -- The number of elements in a positional aggregate
1476 Others_Present : Boolean := False;
1478 Nb_Choices : Nat := 0;
1479 -- Contains the overall number of named choices in this sub-aggregate
1481 Nb_Discrete_Choices : Nat := 0;
1482 -- The overall number of discrete choices (not counting others choice)
1484 Case_Table_Size : Nat;
1485 -- Contains the size of the case table needed to sort aggregate choices
1487 -- Start of processing for Resolve_Array_Aggregate
1489 begin
1490 -- STEP 1: make sure the aggregate is correctly formatted
1492 if Present (Component_Associations (N)) then
1493 Assoc := First (Component_Associations (N));
1494 while Present (Assoc) loop
1495 Choice := First (Choices (Assoc));
1496 while Present (Choice) loop
1497 if Nkind (Choice) = N_Others_Choice then
1498 Others_Present := True;
1500 if Choice /= First (Choices (Assoc))
1501 or else Present (Next (Choice))
1502 then
1503 Error_Msg_N
1504 ("OTHERS must appear alone in a choice list", Choice);
1505 return Failure;
1506 end if;
1508 if Present (Next (Assoc)) then
1509 Error_Msg_N
1510 ("OTHERS must appear last in an aggregate", Choice);
1511 return Failure;
1512 end if;
1514 if Ada_Version = Ada_83
1515 and then Assoc /= First (Component_Associations (N))
1516 and then (Nkind (Parent (N)) = N_Assignment_Statement
1517 or else
1518 Nkind (Parent (N)) = N_Object_Declaration)
1519 then
1520 Error_Msg_N
1521 ("(Ada 83) illegal context for OTHERS choice", N);
1522 end if;
1523 end if;
1525 Nb_Choices := Nb_Choices + 1;
1526 Next (Choice);
1527 end loop;
1529 Next (Assoc);
1530 end loop;
1531 end if;
1533 -- At this point we know that the others choice, if present, is by
1534 -- itself and appears last in the aggregate. Check if we have mixed
1535 -- positional and discrete associations (other than the others choice).
1537 if Present (Expressions (N))
1538 and then (Nb_Choices > 1
1539 or else (Nb_Choices = 1 and then not Others_Present))
1540 then
1541 Error_Msg_N
1542 ("named association cannot follow positional association",
1543 First (Choices (First (Component_Associations (N)))));
1544 return Failure;
1545 end if;
1547 -- Test for the validity of an others choice if present
1549 if Others_Present and then not Others_Allowed then
1550 Error_Msg_N
1551 ("OTHERS choice not allowed here",
1552 First (Choices (First (Component_Associations (N)))));
1553 return Failure;
1554 end if;
1556 -- Protect against cascaded errors
1558 if Etype (Index_Typ) = Any_Type then
1559 return Failure;
1560 end if;
1562 -- STEP 2: Process named components
1564 if No (Expressions (N)) then
1566 if Others_Present then
1567 Case_Table_Size := Nb_Choices - 1;
1568 else
1569 Case_Table_Size := Nb_Choices;
1570 end if;
1572 Step_2 : declare
1573 Low : Node_Id;
1574 High : Node_Id;
1575 -- Denote the lowest and highest values in an aggregate choice
1577 Hi_Val : Uint;
1578 Lo_Val : Uint;
1579 -- High end of one range and Low end of the next. Should be
1580 -- contiguous if there is no hole in the list of values.
1582 Missing_Values : Boolean;
1583 -- Set True if missing index values
1585 S_Low : Node_Id := Empty;
1586 S_High : Node_Id := Empty;
1587 -- if a choice in an aggregate is a subtype indication these
1588 -- denote the lowest and highest values of the subtype
1590 Table : Case_Table_Type (1 .. Case_Table_Size);
1591 -- Used to sort all the different choice values
1593 Single_Choice : Boolean;
1594 -- Set to true every time there is a single discrete choice in a
1595 -- discrete association
1597 Prev_Nb_Discrete_Choices : Nat;
1598 -- Used to keep track of the number of discrete choices
1599 -- in the current association.
1601 begin
1602 -- STEP 2 (A): Check discrete choices validity
1604 Assoc := First (Component_Associations (N));
1605 while Present (Assoc) loop
1606 Prev_Nb_Discrete_Choices := Nb_Discrete_Choices;
1607 Choice := First (Choices (Assoc));
1608 loop
1609 Analyze (Choice);
1611 if Nkind (Choice) = N_Others_Choice then
1612 Single_Choice := False;
1613 exit;
1615 -- Test for subtype mark without constraint
1617 elsif Is_Entity_Name (Choice) and then
1618 Is_Type (Entity (Choice))
1619 then
1620 if Base_Type (Entity (Choice)) /= Index_Base then
1621 Error_Msg_N
1622 ("invalid subtype mark in aggregate choice",
1623 Choice);
1624 return Failure;
1625 end if;
1627 elsif Nkind (Choice) = N_Subtype_Indication then
1628 Resolve_Discrete_Subtype_Indication (Choice, Index_Base);
1630 -- Does the subtype indication evaluation raise CE ?
1632 Get_Index_Bounds (Subtype_Mark (Choice), S_Low, S_High);
1633 Get_Index_Bounds (Choice, Low, High);
1634 Check_Bounds (S_Low, S_High, Low, High);
1636 else -- Choice is a range or an expression
1637 Resolve (Choice, Index_Base);
1638 Check_Unset_Reference (Choice);
1639 Check_Non_Static_Context (Choice);
1641 -- Do not range check a choice. This check is redundant
1642 -- since this test is already performed when we check
1643 -- that the bounds of the array aggregate are within
1644 -- range.
1646 Set_Do_Range_Check (Choice, False);
1647 end if;
1649 -- If we could not resolve the discrete choice stop here
1651 if Etype (Choice) = Any_Type then
1652 return Failure;
1654 -- If the discrete choice raises CE get its original bounds
1656 elsif Nkind (Choice) = N_Raise_Constraint_Error then
1657 Set_Raises_Constraint_Error (N);
1658 Get_Index_Bounds (Original_Node (Choice), Low, High);
1660 -- Otherwise get its bounds as usual
1662 else
1663 Get_Index_Bounds (Choice, Low, High);
1664 end if;
1666 if (Dynamic_Or_Null_Range (Low, High)
1667 or else (Nkind (Choice) = N_Subtype_Indication
1668 and then
1669 Dynamic_Or_Null_Range (S_Low, S_High)))
1670 and then Nb_Choices /= 1
1671 then
1672 Error_Msg_N
1673 ("dynamic or empty choice in aggregate " &
1674 "must be the only choice", Choice);
1675 return Failure;
1676 end if;
1678 Nb_Discrete_Choices := Nb_Discrete_Choices + 1;
1679 Table (Nb_Discrete_Choices).Choice_Lo := Low;
1680 Table (Nb_Discrete_Choices).Choice_Hi := High;
1682 Next (Choice);
1684 if No (Choice) then
1686 -- Check if we have a single discrete choice and whether
1687 -- this discrete choice specifies a single value.
1689 Single_Choice :=
1690 (Nb_Discrete_Choices = Prev_Nb_Discrete_Choices + 1)
1691 and then (Low = High);
1693 exit;
1694 end if;
1695 end loop;
1697 -- Ada 2005 (AI-231)
1699 if Ada_Version >= Ada_05
1700 and then Known_Null (Expression (Assoc))
1701 then
1702 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
1703 end if;
1705 -- Ada 2005 (AI-287): In case of default initialized component
1706 -- we delay the resolution to the expansion phase
1708 if Box_Present (Assoc) then
1710 -- Ada 2005 (AI-287): In case of default initialization
1711 -- of a component the expander will generate calls to
1712 -- the corresponding initialization subprogram.
1714 null;
1716 elsif not Resolve_Aggr_Expr (Expression (Assoc),
1717 Single_Elmt => Single_Choice)
1718 then
1719 return Failure;
1720 end if;
1722 Next (Assoc);
1723 end loop;
1725 -- If aggregate contains more than one choice then these must be
1726 -- static. Sort them and check that they are contiguous
1728 if Nb_Discrete_Choices > 1 then
1729 Sort_Case_Table (Table);
1730 Missing_Values := False;
1732 Outer : for J in 1 .. Nb_Discrete_Choices - 1 loop
1733 if Expr_Value (Table (J).Choice_Hi) >=
1734 Expr_Value (Table (J + 1).Choice_Lo)
1735 then
1736 Error_Msg_N
1737 ("duplicate choice values in array aggregate",
1738 Table (J).Choice_Hi);
1739 return Failure;
1741 elsif not Others_Present then
1743 Hi_Val := Expr_Value (Table (J).Choice_Hi);
1744 Lo_Val := Expr_Value (Table (J + 1).Choice_Lo);
1746 -- If missing values, output error messages
1748 if Lo_Val - Hi_Val > 1 then
1750 -- Header message if not first missing value
1752 if not Missing_Values then
1753 Error_Msg_N
1754 ("missing index value(s) in array aggregate", N);
1755 Missing_Values := True;
1756 end if;
1758 -- Output values of missing indexes
1760 Lo_Val := Lo_Val - 1;
1761 Hi_Val := Hi_Val + 1;
1763 -- Enumeration type case
1765 if Is_Enumeration_Type (Index_Typ) then
1766 Error_Msg_Name_1 :=
1767 Chars
1768 (Get_Enum_Lit_From_Pos
1769 (Index_Typ, Hi_Val, Loc));
1771 if Lo_Val = Hi_Val then
1772 Error_Msg_N ("\ %", N);
1773 else
1774 Error_Msg_Name_2 :=
1775 Chars
1776 (Get_Enum_Lit_From_Pos
1777 (Index_Typ, Lo_Val, Loc));
1778 Error_Msg_N ("\ % .. %", N);
1779 end if;
1781 -- Integer types case
1783 else
1784 Error_Msg_Uint_1 := Hi_Val;
1786 if Lo_Val = Hi_Val then
1787 Error_Msg_N ("\ ^", N);
1788 else
1789 Error_Msg_Uint_2 := Lo_Val;
1790 Error_Msg_N ("\ ^ .. ^", N);
1791 end if;
1792 end if;
1793 end if;
1794 end if;
1795 end loop Outer;
1797 if Missing_Values then
1798 Set_Etype (N, Any_Composite);
1799 return Failure;
1800 end if;
1801 end if;
1803 -- STEP 2 (B): Compute aggregate bounds and min/max choices values
1805 if Nb_Discrete_Choices > 0 then
1806 Choices_Low := Table (1).Choice_Lo;
1807 Choices_High := Table (Nb_Discrete_Choices).Choice_Hi;
1808 end if;
1810 if Others_Present then
1811 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
1813 else
1814 Aggr_Low := Choices_Low;
1815 Aggr_High := Choices_High;
1816 end if;
1817 end Step_2;
1819 -- STEP 3: Process positional components
1821 else
1822 -- STEP 3 (A): Process positional elements
1824 Expr := First (Expressions (N));
1825 Nb_Elements := Uint_0;
1826 while Present (Expr) loop
1827 Nb_Elements := Nb_Elements + 1;
1829 -- Ada 2005 (AI-231)
1831 if Ada_Version >= Ada_05
1832 and then Known_Null (Expr)
1833 then
1834 Check_Can_Never_Be_Null (Etype (N), Expr);
1835 end if;
1837 if not Resolve_Aggr_Expr (Expr, Single_Elmt => True) then
1838 return Failure;
1839 end if;
1841 Next (Expr);
1842 end loop;
1844 if Others_Present then
1845 Assoc := Last (Component_Associations (N));
1847 -- Ada 2005 (AI-231)
1849 if Ada_Version >= Ada_05
1850 and then Known_Null (Assoc)
1851 then
1852 Check_Can_Never_Be_Null (Etype (N), Expression (Assoc));
1853 end if;
1855 -- Ada 2005 (AI-287): In case of default initialized component
1856 -- we delay the resolution to the expansion phase.
1858 if Box_Present (Assoc) then
1860 -- Ada 2005 (AI-287): In case of default initialization
1861 -- of a component the expander will generate calls to
1862 -- the corresponding initialization subprogram.
1864 null;
1866 elsif not Resolve_Aggr_Expr (Expression (Assoc),
1867 Single_Elmt => False)
1868 then
1869 return Failure;
1870 end if;
1871 end if;
1873 -- STEP 3 (B): Compute the aggregate bounds
1875 if Others_Present then
1876 Get_Index_Bounds (Index_Constr, Aggr_Low, Aggr_High);
1878 else
1879 if Others_Allowed then
1880 Get_Index_Bounds (Index_Constr, Aggr_Low, Discard);
1881 else
1882 Aggr_Low := Index_Typ_Low;
1883 end if;
1885 Aggr_High := Add (Nb_Elements - 1, To => Aggr_Low);
1886 Check_Bound (Index_Base_High, Aggr_High);
1887 end if;
1888 end if;
1890 -- STEP 4: Perform static aggregate checks and save the bounds
1892 -- Check (A)
1894 Check_Bounds (Index_Typ_Low, Index_Typ_High, Aggr_Low, Aggr_High);
1895 Check_Bounds (Index_Base_Low, Index_Base_High, Aggr_Low, Aggr_High);
1897 -- Check (B)
1899 if Others_Present and then Nb_Discrete_Choices > 0 then
1900 Check_Bounds (Aggr_Low, Aggr_High, Choices_Low, Choices_High);
1901 Check_Bounds (Index_Typ_Low, Index_Typ_High,
1902 Choices_Low, Choices_High);
1903 Check_Bounds (Index_Base_Low, Index_Base_High,
1904 Choices_Low, Choices_High);
1906 -- Check (C)
1908 elsif Others_Present and then Nb_Elements > 0 then
1909 Check_Length (Aggr_Low, Aggr_High, Nb_Elements);
1910 Check_Length (Index_Typ_Low, Index_Typ_High, Nb_Elements);
1911 Check_Length (Index_Base_Low, Index_Base_High, Nb_Elements);
1912 end if;
1914 if Raises_Constraint_Error (Aggr_Low)
1915 or else Raises_Constraint_Error (Aggr_High)
1916 then
1917 Set_Raises_Constraint_Error (N);
1918 end if;
1920 Aggr_Low := Duplicate_Subexpr (Aggr_Low);
1922 -- Do not duplicate Aggr_High if Aggr_High = Aggr_Low + Nb_Elements
1923 -- since the addition node returned by Add is not yet analyzed. Attach
1924 -- to tree and analyze first. Reset analyzed flag to insure it will get
1925 -- analyzed when it is a literal bound whose type must be properly set.
1927 if Others_Present or else Nb_Discrete_Choices > 0 then
1928 Aggr_High := Duplicate_Subexpr (Aggr_High);
1930 if Etype (Aggr_High) = Universal_Integer then
1931 Set_Analyzed (Aggr_High, False);
1932 end if;
1933 end if;
1935 Set_Aggregate_Bounds
1936 (N, Make_Range (Loc, Low_Bound => Aggr_Low, High_Bound => Aggr_High));
1938 -- The bounds may contain expressions that must be inserted upwards.
1939 -- Attach them fully to the tree. After analysis, remove side effects
1940 -- from upper bound, if still needed.
1942 Set_Parent (Aggregate_Bounds (N), N);
1943 Analyze_And_Resolve (Aggregate_Bounds (N), Index_Typ);
1944 Check_Unset_Reference (Aggregate_Bounds (N));
1946 if not Others_Present and then Nb_Discrete_Choices = 0 then
1947 Set_High_Bound (Aggregate_Bounds (N),
1948 Duplicate_Subexpr (High_Bound (Aggregate_Bounds (N))));
1949 end if;
1951 return Success;
1952 end Resolve_Array_Aggregate;
1954 ---------------------------------
1955 -- Resolve_Extension_Aggregate --
1956 ---------------------------------
1958 -- There are two cases to consider:
1960 -- a) If the ancestor part is a type mark, the components needed are
1961 -- the difference between the components of the expected type and the
1962 -- components of the given type mark.
1964 -- b) If the ancestor part is an expression, it must be unambiguous,
1965 -- and once we have its type we can also compute the needed components
1966 -- as in the previous case. In both cases, if the ancestor type is not
1967 -- the immediate ancestor, we have to build this ancestor recursively.
1969 -- In both cases discriminants of the ancestor type do not play a
1970 -- role in the resolution of the needed components, because inherited
1971 -- discriminants cannot be used in a type extension. As a result we can
1972 -- compute independently the list of components of the ancestor type and
1973 -- of the expected type.
1975 procedure Resolve_Extension_Aggregate (N : Node_Id; Typ : Entity_Id) is
1976 A : constant Node_Id := Ancestor_Part (N);
1977 A_Type : Entity_Id;
1978 I : Interp_Index;
1979 It : Interp;
1981 function Valid_Ancestor_Type return Boolean;
1982 -- Verify that the type of the ancestor part is a non-private ancestor
1983 -- of the expected type.
1985 -------------------------
1986 -- Valid_Ancestor_Type --
1987 -------------------------
1989 function Valid_Ancestor_Type return Boolean is
1990 Imm_Type : Entity_Id;
1992 begin
1993 Imm_Type := Base_Type (Typ);
1994 while Is_Derived_Type (Imm_Type)
1995 and then Etype (Imm_Type) /= Base_Type (A_Type)
1996 loop
1997 Imm_Type := Etype (Base_Type (Imm_Type));
1998 end loop;
2000 if Etype (Imm_Type) /= Base_Type (A_Type) then
2001 Error_Msg_NE ("expect ancestor type of &", A, Typ);
2002 return False;
2003 else
2004 return True;
2005 end if;
2006 end Valid_Ancestor_Type;
2008 -- Start of processing for Resolve_Extension_Aggregate
2010 begin
2011 Analyze (A);
2013 if not Is_Tagged_Type (Typ) then
2014 Error_Msg_N ("type of extension aggregate must be tagged", N);
2015 return;
2017 elsif Is_Limited_Type (Typ) then
2019 -- Ada 2005 (AI-287): Limited aggregates are allowed
2021 if Ada_Version < Ada_05 then
2022 Error_Msg_N ("aggregate type cannot be limited", N);
2023 Explain_Limited_Type (Typ, N);
2024 return;
2025 end if;
2027 elsif Is_Class_Wide_Type (Typ) then
2028 Error_Msg_N ("aggregate cannot be of a class-wide type", N);
2029 return;
2030 end if;
2032 if Is_Entity_Name (A)
2033 and then Is_Type (Entity (A))
2034 then
2035 A_Type := Get_Full_View (Entity (A));
2037 if Valid_Ancestor_Type then
2038 Set_Entity (A, A_Type);
2039 Set_Etype (A, A_Type);
2041 Validate_Ancestor_Part (N);
2042 Resolve_Record_Aggregate (N, Typ);
2043 end if;
2045 elsif Nkind (A) /= N_Aggregate then
2046 if Is_Overloaded (A) then
2047 A_Type := Any_Type;
2049 Get_First_Interp (A, I, It);
2050 while Present (It.Typ) loop
2051 if Is_Tagged_Type (It.Typ)
2052 and then not Is_Limited_Type (It.Typ)
2053 then
2054 if A_Type /= Any_Type then
2055 Error_Msg_N ("cannot resolve expression", A);
2056 return;
2057 else
2058 A_Type := It.Typ;
2059 end if;
2060 end if;
2062 Get_Next_Interp (I, It);
2063 end loop;
2065 if A_Type = Any_Type then
2066 Error_Msg_N
2067 ("ancestor part must be non-limited tagged type", A);
2068 return;
2069 end if;
2071 else
2072 A_Type := Etype (A);
2073 end if;
2075 if Valid_Ancestor_Type then
2076 Resolve (A, A_Type);
2077 Check_Unset_Reference (A);
2078 Check_Non_Static_Context (A);
2080 if Is_Class_Wide_Type (Etype (A))
2081 and then Nkind (Original_Node (A)) = N_Function_Call
2082 then
2083 -- If the ancestor part is a dispatching call, it appears
2084 -- statically to be a legal ancestor, but it yields any
2085 -- member of the class, and it is not possible to determine
2086 -- whether it is an ancestor of the extension aggregate (much
2087 -- less which ancestor). It is not possible to determine the
2088 -- required components of the extension part.
2090 -- This check implements AI-306, which in fact was motivated
2091 -- by an ACT query to the ARG after this test was added.
2093 Error_Msg_N ("ancestor part must be statically tagged", A);
2094 else
2095 Resolve_Record_Aggregate (N, Typ);
2096 end if;
2097 end if;
2099 else
2100 Error_Msg_N ("no unique type for this aggregate", A);
2101 end if;
2102 end Resolve_Extension_Aggregate;
2104 ------------------------------
2105 -- Resolve_Record_Aggregate --
2106 ------------------------------
2108 procedure Resolve_Record_Aggregate (N : Node_Id; Typ : Entity_Id) is
2109 Assoc : Node_Id;
2110 -- N_Component_Association node belonging to the input aggregate N
2112 Expr : Node_Id;
2113 Positional_Expr : Node_Id;
2114 Component : Entity_Id;
2115 Component_Elmt : Elmt_Id;
2117 Components : constant Elist_Id := New_Elmt_List;
2118 -- Components is the list of the record components whose value must
2119 -- be provided in the aggregate. This list does include discriminants.
2121 New_Assoc_List : constant List_Id := New_List;
2122 New_Assoc : Node_Id;
2123 -- New_Assoc_List is the newly built list of N_Component_Association
2124 -- nodes. New_Assoc is one such N_Component_Association node in it.
2125 -- Please note that while Assoc and New_Assoc contain the same
2126 -- kind of nodes, they are used to iterate over two different
2127 -- N_Component_Association lists.
2129 Others_Etype : Entity_Id := Empty;
2130 -- This variable is used to save the Etype of the last record component
2131 -- that takes its value from the others choice. Its purpose is:
2133 -- (a) make sure the others choice is useful
2135 -- (b) make sure the type of all the components whose value is
2136 -- subsumed by the others choice are the same.
2138 -- This variable is updated as a side effect of function Get_Value
2140 Is_Box_Present : Boolean := False;
2141 Others_Box : Boolean := False;
2142 -- Ada 2005 (AI-287): Variables used in case of default initialization
2143 -- to provide a functionality similar to Others_Etype. Box_Present
2144 -- indicates that the component takes its default initialization;
2145 -- Others_Box indicates that at least one component takes its default
2146 -- initialization. Similar to Others_Etype, they are also updated as a
2147 -- side effect of function Get_Value.
2149 procedure Add_Association
2150 (Component : Entity_Id;
2151 Expr : Node_Id;
2152 Is_Box_Present : Boolean := False);
2153 -- Builds a new N_Component_Association node which associates
2154 -- Component to expression Expr and adds it to the new association
2155 -- list New_Assoc_List being built.
2157 function Discr_Present (Discr : Entity_Id) return Boolean;
2158 -- If aggregate N is a regular aggregate this routine will return True.
2159 -- Otherwise, if N is an extension aggregate, Discr is a discriminant
2160 -- whose value may already have been specified by N's ancestor part,
2161 -- this routine checks whether this is indeed the case and if so
2162 -- returns False, signaling that no value for Discr should appear in the
2163 -- N's aggregate part. Also, in this case, the routine appends to
2164 -- New_Assoc_List Discr the discriminant value specified in the ancestor
2165 -- part.
2167 function Get_Value
2168 (Compon : Node_Id;
2169 From : List_Id;
2170 Consider_Others_Choice : Boolean := False)
2171 return Node_Id;
2172 -- Given a record component stored in parameter Compon, the
2173 -- following function returns its value as it appears in the list
2174 -- From, which is a list of N_Component_Association nodes. If no
2175 -- component association has a choice for the searched component,
2176 -- the value provided by the others choice is returned, if there
2177 -- is one and Consider_Others_Choice is set to true. Otherwise
2178 -- Empty is returned. If there is more than one component association
2179 -- giving a value for the searched record component, an error message
2180 -- is emitted and the first found value is returned.
2182 -- If Consider_Others_Choice is set and the returned expression comes
2183 -- from the others choice, then Others_Etype is set as a side effect.
2184 -- An error message is emitted if the components taking their value
2185 -- from the others choice do not have same type.
2187 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id);
2188 -- Analyzes and resolves expression Expr against the Etype of the
2189 -- Component. This routine also applies all appropriate checks to Expr.
2190 -- It finally saves a Expr in the newly created association list that
2191 -- will be attached to the final record aggregate. Note that if the
2192 -- Parent pointer of Expr is not set then Expr was produced with a
2193 -- New_Copy_Tree or some such.
2195 ---------------------
2196 -- Add_Association --
2197 ---------------------
2199 procedure Add_Association
2200 (Component : Entity_Id;
2201 Expr : Node_Id;
2202 Is_Box_Present : Boolean := False)
2204 Choice_List : constant List_Id := New_List;
2205 New_Assoc : Node_Id;
2207 begin
2208 Append (New_Occurrence_Of (Component, Sloc (Expr)), Choice_List);
2209 New_Assoc :=
2210 Make_Component_Association (Sloc (Expr),
2211 Choices => Choice_List,
2212 Expression => Expr,
2213 Box_Present => Is_Box_Present);
2214 Append (New_Assoc, New_Assoc_List);
2215 end Add_Association;
2217 -------------------
2218 -- Discr_Present --
2219 -------------------
2221 function Discr_Present (Discr : Entity_Id) return Boolean is
2222 Regular_Aggr : constant Boolean := Nkind (N) /= N_Extension_Aggregate;
2224 Loc : Source_Ptr;
2226 Ancestor : Node_Id;
2227 Discr_Expr : Node_Id;
2229 Ancestor_Typ : Entity_Id;
2230 Orig_Discr : Entity_Id;
2231 D : Entity_Id;
2232 D_Val : Elmt_Id := No_Elmt; -- stop junk warning
2234 Ancestor_Is_Subtyp : Boolean;
2236 begin
2237 if Regular_Aggr then
2238 return True;
2239 end if;
2241 Ancestor := Ancestor_Part (N);
2242 Ancestor_Typ := Etype (Ancestor);
2243 Loc := Sloc (Ancestor);
2245 Ancestor_Is_Subtyp :=
2246 Is_Entity_Name (Ancestor) and then Is_Type (Entity (Ancestor));
2248 -- If the ancestor part has no discriminants clearly N's aggregate
2249 -- part must provide a value for Discr.
2251 if not Has_Discriminants (Ancestor_Typ) then
2252 return True;
2254 -- If the ancestor part is an unconstrained subtype mark then the
2255 -- Discr must be present in N's aggregate part.
2257 elsif Ancestor_Is_Subtyp
2258 and then not Is_Constrained (Entity (Ancestor))
2259 then
2260 return True;
2261 end if;
2263 -- Now look to see if Discr was specified in the ancestor part
2265 if Ancestor_Is_Subtyp then
2266 D_Val := First_Elmt (Discriminant_Constraint (Entity (Ancestor)));
2267 end if;
2269 Orig_Discr := Original_Record_Component (Discr);
2271 D := First_Discriminant (Ancestor_Typ);
2272 while Present (D) loop
2274 -- If Ancestor has already specified Disc value than insert its
2275 -- value in the final aggregate.
2277 if Original_Record_Component (D) = Orig_Discr then
2278 if Ancestor_Is_Subtyp then
2279 Discr_Expr := New_Copy_Tree (Node (D_Val));
2280 else
2281 Discr_Expr :=
2282 Make_Selected_Component (Loc,
2283 Prefix => Duplicate_Subexpr (Ancestor),
2284 Selector_Name => New_Occurrence_Of (Discr, Loc));
2285 end if;
2287 Resolve_Aggr_Expr (Discr_Expr, Discr);
2288 return False;
2289 end if;
2291 Next_Discriminant (D);
2293 if Ancestor_Is_Subtyp then
2294 Next_Elmt (D_Val);
2295 end if;
2296 end loop;
2298 return True;
2299 end Discr_Present;
2301 ---------------
2302 -- Get_Value --
2303 ---------------
2305 function Get_Value
2306 (Compon : Node_Id;
2307 From : List_Id;
2308 Consider_Others_Choice : Boolean := False)
2309 return Node_Id
2311 Assoc : Node_Id;
2312 Expr : Node_Id := Empty;
2313 Selector_Name : Node_Id;
2315 begin
2316 Is_Box_Present := False;
2318 if Present (From) then
2319 Assoc := First (From);
2320 else
2321 return Empty;
2322 end if;
2324 while Present (Assoc) loop
2325 Selector_Name := First (Choices (Assoc));
2326 while Present (Selector_Name) loop
2327 if Nkind (Selector_Name) = N_Others_Choice then
2328 if Consider_Others_Choice and then No (Expr) then
2330 -- We need to duplicate the expression for each
2331 -- successive component covered by the others choice.
2332 -- This is redundant if the others_choice covers only
2333 -- one component (small optimization possible???), but
2334 -- indispensable otherwise, because each one must be
2335 -- expanded individually to preserve side-effects.
2337 -- Ada 2005 (AI-287): In case of default initialization
2338 -- of components, we duplicate the corresponding default
2339 -- expression (from the record type declaration). The
2340 -- copy must carry the sloc of the association (not the
2341 -- original expression) to prevent spurious elaboration
2342 -- checks when the default includes function calls.
2344 if Box_Present (Assoc) then
2345 Others_Box := True;
2346 Is_Box_Present := True;
2348 if Expander_Active then
2349 return
2350 New_Copy_Tree
2351 (Expression (Parent (Compon)),
2352 New_Sloc => Sloc (Assoc));
2353 else
2354 return Expression (Parent (Compon));
2355 end if;
2357 else
2358 if Present (Others_Etype) and then
2359 Base_Type (Others_Etype) /= Base_Type (Etype
2360 (Compon))
2361 then
2362 Error_Msg_N ("components in OTHERS choice must " &
2363 "have same type", Selector_Name);
2364 end if;
2366 Others_Etype := Etype (Compon);
2368 if Expander_Active then
2369 return New_Copy_Tree (Expression (Assoc));
2370 else
2371 return Expression (Assoc);
2372 end if;
2373 end if;
2374 end if;
2376 elsif Chars (Compon) = Chars (Selector_Name) then
2377 if No (Expr) then
2379 -- Ada 2005 (AI-231)
2381 if Ada_Version >= Ada_05
2382 and then Known_Null (Expression (Assoc))
2383 then
2384 Check_Can_Never_Be_Null (Compon, Expression (Assoc));
2385 end if;
2387 -- We need to duplicate the expression when several
2388 -- components are grouped together with a "|" choice.
2389 -- For instance "filed1 | filed2 => Expr"
2391 -- Ada 2005 (AI-287)
2393 if Box_Present (Assoc) then
2394 Is_Box_Present := True;
2396 -- Duplicate the default expression of the component
2397 -- from the record type declaration, so a new copy
2398 -- can be attached to the association.
2400 -- Note that we always copy the default expression,
2401 -- even when the association has a single choice, in
2402 -- order to create a proper association for the
2403 -- expanded aggregate.
2405 Expr := New_Copy_Tree (Expression (Parent (Compon)));
2407 else
2408 if Present (Next (Selector_Name)) then
2409 Expr := New_Copy_Tree (Expression (Assoc));
2410 else
2411 Expr := Expression (Assoc);
2412 end if;
2413 end if;
2415 Generate_Reference (Compon, Selector_Name);
2417 else
2418 Error_Msg_NE
2419 ("more than one value supplied for &",
2420 Selector_Name, Compon);
2422 end if;
2423 end if;
2425 Next (Selector_Name);
2426 end loop;
2428 Next (Assoc);
2429 end loop;
2431 return Expr;
2432 end Get_Value;
2434 procedure Check_Non_Limited_Type (Expr : Node_Id);
2435 -- Relax check to allow the default initialization of limited types.
2436 -- For example:
2437 -- record
2438 -- C : Lim := (..., others => <>);
2439 -- end record;
2441 ----------------------------
2442 -- Check_Non_Limited_Type --
2443 ----------------------------
2445 procedure Check_Non_Limited_Type (Expr : Node_Id) is
2446 begin
2447 if Is_Limited_Type (Etype (Expr))
2448 and then Comes_From_Source (Expr)
2449 and then not In_Instance_Body
2450 then
2451 if not OK_For_Limited_Init (Expr) then
2452 Error_Msg_N
2453 ("initialization not allowed for limited types", N);
2454 Explain_Limited_Type (Etype (Expr), Expr);
2455 end if;
2456 end if;
2457 end Check_Non_Limited_Type;
2459 -----------------------
2460 -- Resolve_Aggr_Expr --
2461 -----------------------
2463 procedure Resolve_Aggr_Expr (Expr : Node_Id; Component : Node_Id) is
2464 New_C : Entity_Id := Component;
2465 Expr_Type : Entity_Id := Empty;
2467 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean;
2468 -- If the expression is an aggregate (possibly qualified) then its
2469 -- expansion is delayed until the enclosing aggregate is expanded
2470 -- into assignments. In that case, do not generate checks on the
2471 -- expression, because they will be generated later, and will other-
2472 -- wise force a copy (to remove side-effects) that would leave a
2473 -- dynamic-sized aggregate in the code, something that gigi cannot
2474 -- handle.
2476 Relocate : Boolean;
2477 -- Set to True if the resolved Expr node needs to be relocated
2478 -- when attached to the newly created association list. This node
2479 -- need not be relocated if its parent pointer is not set.
2480 -- In fact in this case Expr is the output of a New_Copy_Tree call.
2481 -- if Relocate is True then we have analyzed the expression node
2482 -- in the original aggregate and hence it needs to be relocated
2483 -- when moved over the new association list.
2485 function Has_Expansion_Delayed (Expr : Node_Id) return Boolean is
2486 Kind : constant Node_Kind := Nkind (Expr);
2488 begin
2489 return ((Kind = N_Aggregate
2490 or else Kind = N_Extension_Aggregate)
2491 and then Present (Etype (Expr))
2492 and then Is_Record_Type (Etype (Expr))
2493 and then Expansion_Delayed (Expr))
2495 or else (Kind = N_Qualified_Expression
2496 and then Has_Expansion_Delayed (Expression (Expr)));
2497 end Has_Expansion_Delayed;
2499 -- Start of processing for Resolve_Aggr_Expr
2501 begin
2502 -- If the type of the component is elementary or the type of the
2503 -- aggregate does not contain discriminants, use the type of the
2504 -- component to resolve Expr.
2506 if Is_Elementary_Type (Etype (Component))
2507 or else not Has_Discriminants (Etype (N))
2508 then
2509 Expr_Type := Etype (Component);
2511 -- Otherwise we have to pick up the new type of the component from
2512 -- the new costrained subtype of the aggregate. In fact components
2513 -- which are of a composite type might be constrained by a
2514 -- discriminant, and we want to resolve Expr against the subtype were
2515 -- all discriminant occurrences are replaced with their actual value.
2517 else
2518 New_C := First_Component (Etype (N));
2519 while Present (New_C) loop
2520 if Chars (New_C) = Chars (Component) then
2521 Expr_Type := Etype (New_C);
2522 exit;
2523 end if;
2525 Next_Component (New_C);
2526 end loop;
2528 pragma Assert (Present (Expr_Type));
2530 -- For each range in an array type where a discriminant has been
2531 -- replaced with the constraint, check that this range is within
2532 -- the range of the base type. This checks is done in the init
2533 -- proc for regular objects, but has to be done here for
2534 -- aggregates since no init proc is called for them.
2536 if Is_Array_Type (Expr_Type) then
2537 declare
2538 Index : Node_Id;
2539 -- Range of the current constrained index in the array
2541 Orig_Index : Node_Id := First_Index (Etype (Component));
2542 -- Range corresponding to the range Index above in the
2543 -- original unconstrained record type. The bounds of this
2544 -- range may be governed by discriminants.
2546 Unconstr_Index : Node_Id := First_Index (Etype (Expr_Type));
2547 -- Range corresponding to the range Index above for the
2548 -- unconstrained array type. This range is needed to apply
2549 -- range checks.
2551 begin
2552 Index := First_Index (Expr_Type);
2553 while Present (Index) loop
2554 if Depends_On_Discriminant (Orig_Index) then
2555 Apply_Range_Check (Index, Etype (Unconstr_Index));
2556 end if;
2558 Next_Index (Index);
2559 Next_Index (Orig_Index);
2560 Next_Index (Unconstr_Index);
2561 end loop;
2562 end;
2563 end if;
2564 end if;
2566 -- If the Parent pointer of Expr is not set, Expr is an expression
2567 -- duplicated by New_Tree_Copy (this happens for record aggregates
2568 -- that look like (Field1 | Filed2 => Expr) or (others => Expr)).
2569 -- Such a duplicated expression must be attached to the tree
2570 -- before analysis and resolution to enforce the rule that a tree
2571 -- fragment should never be analyzed or resolved unless it is
2572 -- attached to the current compilation unit.
2574 if No (Parent (Expr)) then
2575 Set_Parent (Expr, N);
2576 Relocate := False;
2577 else
2578 Relocate := True;
2579 end if;
2581 Analyze_And_Resolve (Expr, Expr_Type);
2582 Check_Non_Limited_Type (Expr);
2583 Check_Non_Static_Context (Expr);
2584 Check_Unset_Reference (Expr);
2586 if not Has_Expansion_Delayed (Expr) then
2587 Aggregate_Constraint_Checks (Expr, Expr_Type);
2588 end if;
2590 if Raises_Constraint_Error (Expr) then
2591 Set_Raises_Constraint_Error (N);
2592 end if;
2594 if Relocate then
2595 Add_Association (New_C, Relocate_Node (Expr));
2596 else
2597 Add_Association (New_C, Expr);
2598 end if;
2599 end Resolve_Aggr_Expr;
2601 -- Start of processing for Resolve_Record_Aggregate
2603 begin
2604 -- We may end up calling Duplicate_Subexpr on expressions that are
2605 -- attached to New_Assoc_List. For this reason we need to attach it
2606 -- to the tree by setting its parent pointer to N. This parent point
2607 -- will change in STEP 8 below.
2609 Set_Parent (New_Assoc_List, N);
2611 -- STEP 1: abstract type and null record verification
2613 if Is_Abstract_Type (Typ) then
2614 Error_Msg_N ("type of aggregate cannot be abstract", N);
2615 end if;
2617 if No (First_Entity (Typ)) and then Null_Record_Present (N) then
2618 Set_Etype (N, Typ);
2619 return;
2621 elsif Present (First_Entity (Typ))
2622 and then Null_Record_Present (N)
2623 and then not Is_Tagged_Type (Typ)
2624 then
2625 Error_Msg_N ("record aggregate cannot be null", N);
2626 return;
2628 elsif No (First_Entity (Typ)) then
2629 Error_Msg_N ("record aggregate must be null", N);
2630 return;
2631 end if;
2633 -- STEP 2: Verify aggregate structure
2635 Step_2 : declare
2636 Selector_Name : Node_Id;
2637 Bad_Aggregate : Boolean := False;
2639 begin
2640 if Present (Component_Associations (N)) then
2641 Assoc := First (Component_Associations (N));
2642 else
2643 Assoc := Empty;
2644 end if;
2646 while Present (Assoc) loop
2647 Selector_Name := First (Choices (Assoc));
2648 while Present (Selector_Name) loop
2649 if Nkind (Selector_Name) = N_Identifier then
2650 null;
2652 elsif Nkind (Selector_Name) = N_Others_Choice then
2653 if Selector_Name /= First (Choices (Assoc))
2654 or else Present (Next (Selector_Name))
2655 then
2656 Error_Msg_N ("OTHERS must appear alone in a choice list",
2657 Selector_Name);
2658 return;
2660 elsif Present (Next (Assoc)) then
2661 Error_Msg_N ("OTHERS must appear last in an aggregate",
2662 Selector_Name);
2663 return;
2665 -- (Ada2005): If this is an association with a box,
2666 -- indicate that the association need not represent
2667 -- any component.
2669 elsif Box_Present (Assoc) then
2670 Others_Box := True;
2671 end if;
2673 else
2674 Error_Msg_N
2675 ("selector name should be identifier or OTHERS",
2676 Selector_Name);
2677 Bad_Aggregate := True;
2678 end if;
2680 Next (Selector_Name);
2681 end loop;
2683 Next (Assoc);
2684 end loop;
2686 if Bad_Aggregate then
2687 return;
2688 end if;
2689 end Step_2;
2691 -- STEP 3: Find discriminant Values
2693 Step_3 : declare
2694 Discrim : Entity_Id;
2695 Missing_Discriminants : Boolean := False;
2697 begin
2698 if Present (Expressions (N)) then
2699 Positional_Expr := First (Expressions (N));
2700 else
2701 Positional_Expr := Empty;
2702 end if;
2704 if Has_Discriminants (Typ) then
2705 Discrim := First_Discriminant (Typ);
2706 else
2707 Discrim := Empty;
2708 end if;
2710 -- First find the discriminant values in the positional components
2712 while Present (Discrim) and then Present (Positional_Expr) loop
2713 if Discr_Present (Discrim) then
2714 Resolve_Aggr_Expr (Positional_Expr, Discrim);
2716 -- Ada 2005 (AI-231)
2718 if Ada_Version >= Ada_05
2719 and then Known_Null (Positional_Expr)
2720 then
2721 Check_Can_Never_Be_Null (Discrim, Positional_Expr);
2722 end if;
2724 Next (Positional_Expr);
2725 end if;
2727 if Present (Get_Value (Discrim, Component_Associations (N))) then
2728 Error_Msg_NE
2729 ("more than one value supplied for discriminant&",
2730 N, Discrim);
2731 end if;
2733 Next_Discriminant (Discrim);
2734 end loop;
2736 -- Find remaining discriminant values, if any, among named components
2738 while Present (Discrim) loop
2739 Expr := Get_Value (Discrim, Component_Associations (N), True);
2741 if not Discr_Present (Discrim) then
2742 if Present (Expr) then
2743 Error_Msg_NE
2744 ("more than one value supplied for discriminant&",
2745 N, Discrim);
2746 end if;
2748 elsif No (Expr) then
2749 Error_Msg_NE
2750 ("no value supplied for discriminant &", N, Discrim);
2751 Missing_Discriminants := True;
2753 else
2754 Resolve_Aggr_Expr (Expr, Discrim);
2755 end if;
2757 Next_Discriminant (Discrim);
2758 end loop;
2760 if Missing_Discriminants then
2761 return;
2762 end if;
2764 -- At this point and until the beginning of STEP 6, New_Assoc_List
2765 -- contains only the discriminants and their values.
2767 end Step_3;
2769 -- STEP 4: Set the Etype of the record aggregate
2771 -- ??? This code is pretty much a copy of Sem_Ch3.Build_Subtype. That
2772 -- routine should really be exported in sem_util or some such and used
2773 -- in sem_ch3 and here rather than have a copy of the code which is a
2774 -- maintenance nightmare.
2776 -- ??? Performace WARNING. The current implementation creates a new
2777 -- itype for all aggregates whose base type is discriminated.
2778 -- This means that for record aggregates nested inside an array
2779 -- aggregate we will create a new itype for each record aggregate
2780 -- if the array cmponent type has discriminants. For large aggregates
2781 -- this may be a problem. What should be done in this case is
2782 -- to reuse itypes as much as possible.
2784 if Has_Discriminants (Typ) then
2785 Build_Constrained_Itype : declare
2786 Loc : constant Source_Ptr := Sloc (N);
2787 Indic : Node_Id;
2788 Subtyp_Decl : Node_Id;
2789 Def_Id : Entity_Id;
2791 C : constant List_Id := New_List;
2793 begin
2794 New_Assoc := First (New_Assoc_List);
2795 while Present (New_Assoc) loop
2796 Append (Duplicate_Subexpr (Expression (New_Assoc)), To => C);
2797 Next (New_Assoc);
2798 end loop;
2800 Indic :=
2801 Make_Subtype_Indication (Loc,
2802 Subtype_Mark => New_Occurrence_Of (Base_Type (Typ), Loc),
2803 Constraint => Make_Index_Or_Discriminant_Constraint (Loc, C));
2805 Def_Id := Create_Itype (Ekind (Typ), N);
2807 Subtyp_Decl :=
2808 Make_Subtype_Declaration (Loc,
2809 Defining_Identifier => Def_Id,
2810 Subtype_Indication => Indic);
2811 Set_Parent (Subtyp_Decl, Parent (N));
2813 -- Itypes must be analyzed with checks off (see itypes.ads)
2815 Analyze (Subtyp_Decl, Suppress => All_Checks);
2817 Set_Etype (N, Def_Id);
2818 Check_Static_Discriminated_Subtype
2819 (Def_Id, Expression (First (New_Assoc_List)));
2820 end Build_Constrained_Itype;
2822 else
2823 Set_Etype (N, Typ);
2824 end if;
2826 -- STEP 5: Get remaining components according to discriminant values
2828 Step_5 : declare
2829 Record_Def : Node_Id;
2830 Parent_Typ : Entity_Id;
2831 Root_Typ : Entity_Id;
2832 Parent_Typ_List : Elist_Id;
2833 Parent_Elmt : Elmt_Id;
2834 Errors_Found : Boolean := False;
2835 Dnode : Node_Id;
2837 begin
2838 if Is_Derived_Type (Typ) and then Is_Tagged_Type (Typ) then
2839 Parent_Typ_List := New_Elmt_List;
2841 -- If this is an extension aggregate, the component list must
2842 -- include all components that are not in the given ancestor
2843 -- type. Otherwise, the component list must include components
2844 -- of all ancestors, starting with the root.
2846 if Nkind (N) = N_Extension_Aggregate then
2847 Root_Typ := Base_Type (Etype (Ancestor_Part (N)));
2848 else
2849 Root_Typ := Root_Type (Typ);
2851 if Nkind (Parent (Base_Type (Root_Typ)))
2852 = N_Private_Type_Declaration
2853 then
2854 Error_Msg_NE
2855 ("type of aggregate has private ancestor&!",
2856 N, Root_Typ);
2857 Error_Msg_N ("must use extension aggregate!", N);
2858 return;
2859 end if;
2861 Dnode := Declaration_Node (Base_Type (Root_Typ));
2863 -- If we don't get a full declaration, then we have some
2864 -- error which will get signalled later so skip this part.
2865 -- Otherwise, gather components of root that apply to the
2866 -- aggregate type. We use the base type in case there is an
2867 -- applicable stored constraint that renames the discriminants
2868 -- of the root.
2870 if Nkind (Dnode) = N_Full_Type_Declaration then
2871 Record_Def := Type_Definition (Dnode);
2872 Gather_Components (Base_Type (Typ),
2873 Component_List (Record_Def),
2874 Governed_By => New_Assoc_List,
2875 Into => Components,
2876 Report_Errors => Errors_Found);
2877 end if;
2878 end if;
2880 Parent_Typ := Base_Type (Typ);
2881 while Parent_Typ /= Root_Typ loop
2882 Prepend_Elmt (Parent_Typ, To => Parent_Typ_List);
2883 Parent_Typ := Etype (Parent_Typ);
2885 if Nkind (Parent (Base_Type (Parent_Typ))) =
2886 N_Private_Type_Declaration
2887 or else Nkind (Parent (Base_Type (Parent_Typ))) =
2888 N_Private_Extension_Declaration
2889 then
2890 if Nkind (N) /= N_Extension_Aggregate then
2891 Error_Msg_NE
2892 ("type of aggregate has private ancestor&!",
2893 N, Parent_Typ);
2894 Error_Msg_N ("must use extension aggregate!", N);
2895 return;
2897 elsif Parent_Typ /= Root_Typ then
2898 Error_Msg_NE
2899 ("ancestor part of aggregate must be private type&",
2900 Ancestor_Part (N), Parent_Typ);
2901 return;
2902 end if;
2903 end if;
2904 end loop;
2906 -- Now collect components from all other ancestors
2908 Parent_Elmt := First_Elmt (Parent_Typ_List);
2909 while Present (Parent_Elmt) loop
2910 Parent_Typ := Node (Parent_Elmt);
2911 Record_Def := Type_Definition (Parent (Base_Type (Parent_Typ)));
2912 Gather_Components (Empty,
2913 Component_List (Record_Extension_Part (Record_Def)),
2914 Governed_By => New_Assoc_List,
2915 Into => Components,
2916 Report_Errors => Errors_Found);
2918 Next_Elmt (Parent_Elmt);
2919 end loop;
2921 else
2922 Record_Def := Type_Definition (Parent (Base_Type (Typ)));
2924 if Null_Present (Record_Def) then
2925 null;
2926 else
2927 Gather_Components (Base_Type (Typ),
2928 Component_List (Record_Def),
2929 Governed_By => New_Assoc_List,
2930 Into => Components,
2931 Report_Errors => Errors_Found);
2932 end if;
2933 end if;
2935 if Errors_Found then
2936 return;
2937 end if;
2938 end Step_5;
2940 -- STEP 6: Find component Values
2942 Component := Empty;
2943 Component_Elmt := First_Elmt (Components);
2945 -- First scan the remaining positional associations in the aggregate.
2946 -- Remember that at this point Positional_Expr contains the current
2947 -- positional association if any is left after looking for discriminant
2948 -- values in step 3.
2950 while Present (Positional_Expr) and then Present (Component_Elmt) loop
2951 Component := Node (Component_Elmt);
2952 Resolve_Aggr_Expr (Positional_Expr, Component);
2954 -- Ada 2005 (AI-231)
2956 if Ada_Version >= Ada_05
2957 and then Known_Null (Positional_Expr)
2958 then
2959 Check_Can_Never_Be_Null (Component, Positional_Expr);
2960 end if;
2962 if Present (Get_Value (Component, Component_Associations (N))) then
2963 Error_Msg_NE
2964 ("more than one value supplied for Component &", N, Component);
2965 end if;
2967 Next (Positional_Expr);
2968 Next_Elmt (Component_Elmt);
2969 end loop;
2971 if Present (Positional_Expr) then
2972 Error_Msg_N
2973 ("too many components for record aggregate", Positional_Expr);
2974 end if;
2976 -- Now scan for the named arguments of the aggregate
2978 while Present (Component_Elmt) loop
2979 Component := Node (Component_Elmt);
2980 Expr := Get_Value (Component, Component_Associations (N), True);
2982 -- Note: The previous call to Get_Value sets the value of the
2983 -- variable Is_Box_Present.
2985 -- Ada 2005 (AI-287): Handle components with default initialization.
2986 -- Note: This feature was originally added to Ada 2005 for limited
2987 -- but it was finally allowed with any type.
2989 if Is_Box_Present then
2990 Check_Box_Component : declare
2991 Ctyp : constant Entity_Id := Etype (Component);
2993 begin
2994 -- If there is a default expression for the aggregate, copy
2995 -- it into a new association.
2997 -- If the component has an initialization procedure (IP) we
2998 -- pass the component to the expander, which will generate
2999 -- the call to such IP.
3001 -- If the component has discriminants, their values must
3002 -- be taken from their subtype. This is indispensable for
3003 -- constraints that are given by the current instance of an
3004 -- enclosing type, to allow the expansion of the aggregate
3005 -- to replace the reference to the current instance by the
3006 -- target object of the aggregate.
3008 if Present (Parent (Component))
3009 and then
3010 Nkind (Parent (Component)) = N_Component_Declaration
3011 and then Present (Expression (Parent (Component)))
3012 then
3013 Expr :=
3014 New_Copy_Tree (Expression (Parent (Component)),
3015 New_Sloc => Sloc (N));
3017 Add_Association
3018 (Component => Component,
3019 Expr => Expr);
3020 Set_Has_Self_Reference (N);
3022 -- A box-defaulted access component gets the value null. Also
3023 -- included are components of private types whose underlying
3024 -- type is an access type. In either case set the type of the
3025 -- literal, for subsequent use in semantic checks.
3027 elsif Present (Underlying_Type (Ctyp))
3028 and then Is_Access_Type (Underlying_Type (Ctyp))
3029 then
3030 if not Is_Private_Type (Ctyp) then
3031 Expr := Make_Null (Sloc (N));
3032 Set_Etype (Expr, Ctyp);
3033 Add_Association
3034 (Component => Component,
3035 Expr => Expr);
3037 -- If the component's type is private with an access type as
3038 -- its underlying type then we have to create an unchecked
3039 -- conversion to satisfy type checking.
3041 else
3042 declare
3043 Qual_Null : constant Node_Id :=
3044 Make_Qualified_Expression (Sloc (N),
3045 Subtype_Mark =>
3046 New_Occurrence_Of
3047 (Underlying_Type (Ctyp), Sloc (N)),
3048 Expression => Make_Null (Sloc (N)));
3050 Convert_Null : constant Node_Id :=
3051 Unchecked_Convert_To
3052 (Ctyp, Qual_Null);
3054 begin
3055 Analyze_And_Resolve (Convert_Null, Ctyp);
3056 Add_Association
3057 (Component => Component, Expr => Convert_Null);
3058 end;
3059 end if;
3061 elsif Has_Non_Null_Base_Init_Proc (Ctyp)
3062 or else not Expander_Active
3063 then
3064 if Is_Record_Type (Ctyp)
3065 and then Has_Discriminants (Ctyp)
3066 then
3067 -- We build a partially initialized aggregate with the
3068 -- values of the discriminants and box initialization
3069 -- for the rest, if other components are present.
3071 declare
3072 Loc : constant Source_Ptr := Sloc (N);
3073 Assoc : Node_Id;
3074 Discr : Entity_Id;
3075 Discr_Elmt : Elmt_Id;
3076 Discr_Val : Node_Id;
3077 Expr : Node_Id;
3079 begin
3080 Expr := Make_Aggregate (Loc, New_List, New_List);
3082 Discr_Elmt :=
3083 First_Elmt (Discriminant_Constraint (Ctyp));
3084 while Present (Discr_Elmt) loop
3085 Discr_Val := Node (Discr_Elmt);
3087 -- The constraint may be given by a discriminant
3088 -- of the enclosing type, in which case we have
3089 -- to retrieve its value, which is part of the
3090 -- current aggregate.
3092 if Is_Entity_Name (Discr_Val)
3093 and then
3094 Ekind (Entity (Discr_Val)) = E_Discriminant
3095 then
3096 Discr := Entity (Discr_Val);
3098 Assoc := First (New_Assoc_List);
3099 while Present (Assoc) loop
3100 if Present
3101 (Entity (First (Choices (Assoc))))
3102 and then
3103 Entity (First (Choices (Assoc))) = Discr
3104 then
3105 Discr_Val := Expression (Assoc);
3106 exit;
3107 end if;
3108 Next (Assoc);
3109 end loop;
3110 end if;
3112 Append
3113 (New_Copy_Tree (Discr_Val), Expressions (Expr));
3115 -- If the discriminant constraint is a current
3116 -- instance, mark the current aggregate so that
3117 -- the self-reference can be expanded later.
3119 if Nkind (Discr_Val) = N_Attribute_Reference
3120 and then Is_Entity_Name (Prefix (Discr_Val))
3121 and then Is_Type (Entity (Prefix (Discr_Val)))
3122 and then Etype (N) = Entity (Prefix (Discr_Val))
3123 then
3124 Set_Has_Self_Reference (N);
3125 end if;
3127 Next_Elmt (Discr_Elmt);
3128 end loop;
3130 declare
3131 Comp : Entity_Id;
3133 begin
3134 -- Look for a component that is not a discriminant
3135 -- before creating an others box association.
3137 Comp := First_Component (Ctyp);
3138 while Present (Comp) loop
3139 if Ekind (Comp) = E_Component then
3140 Append
3141 (Make_Component_Association (Loc,
3142 Choices =>
3143 New_List (Make_Others_Choice (Loc)),
3144 Expression => Empty,
3145 Box_Present => True),
3146 Component_Associations (Expr));
3147 exit;
3148 end if;
3150 Next_Component (Comp);
3151 end loop;
3152 end;
3154 Add_Association
3155 (Component => Component,
3156 Expr => Expr);
3157 end;
3159 else
3160 Add_Association
3161 (Component => Component,
3162 Expr => Empty,
3163 Is_Box_Present => True);
3164 end if;
3166 -- Otherwise we only need to resolve the expression if the
3167 -- component has partially initialized values (required to
3168 -- expand the corresponding assignments and run-time checks).
3170 elsif Present (Expr)
3171 and then Is_Partially_Initialized_Type (Ctyp)
3172 then
3173 Resolve_Aggr_Expr (Expr, Component);
3174 end if;
3175 end Check_Box_Component;
3177 elsif No (Expr) then
3179 -- Ignore hidden components associated with the position of the
3180 -- interface tags: these are initialized dynamically.
3182 if not Present (Related_Type (Component)) then
3183 Error_Msg_NE
3184 ("no value supplied for component &!", N, Component);
3185 end if;
3187 else
3188 Resolve_Aggr_Expr (Expr, Component);
3189 end if;
3191 Next_Elmt (Component_Elmt);
3192 end loop;
3194 -- STEP 7: check for invalid components + check type in choice list
3196 Step_7 : declare
3197 Selectr : Node_Id;
3198 -- Selector name
3200 Typech : Entity_Id;
3201 -- Type of first component in choice list
3203 begin
3204 if Present (Component_Associations (N)) then
3205 Assoc := First (Component_Associations (N));
3206 else
3207 Assoc := Empty;
3208 end if;
3210 Verification : while Present (Assoc) loop
3211 Selectr := First (Choices (Assoc));
3212 Typech := Empty;
3214 if Nkind (Selectr) = N_Others_Choice then
3216 -- Ada 2005 (AI-287): others choice may have expression or box
3218 if No (Others_Etype)
3219 and then not Others_Box
3220 then
3221 Error_Msg_N
3222 ("OTHERS must represent at least one component", Selectr);
3223 end if;
3225 exit Verification;
3226 end if;
3228 while Present (Selectr) loop
3229 New_Assoc := First (New_Assoc_List);
3230 while Present (New_Assoc) loop
3231 Component := First (Choices (New_Assoc));
3232 exit when Chars (Selectr) = Chars (Component);
3233 Next (New_Assoc);
3234 end loop;
3236 -- If no association, this is not a legal component of
3237 -- of the type in question, except if its association
3238 -- is provided with a box.
3240 if No (New_Assoc) then
3241 if Box_Present (Parent (Selectr)) then
3243 -- This may still be a bogus component with a box. Scan
3244 -- list of components to verify that a component with
3245 -- that name exists.
3247 declare
3248 C : Entity_Id;
3250 begin
3251 C := First_Component (Typ);
3252 while Present (C) loop
3253 if Chars (C) = Chars (Selectr) then
3254 exit;
3255 end if;
3257 Next_Component (C);
3258 end loop;
3260 if No (C) then
3261 Error_Msg_Node_2 := Typ;
3262 Error_Msg_N ("& is not a component of}", Selectr);
3263 end if;
3264 end;
3266 elsif Chars (Selectr) /= Name_uTag
3267 and then Chars (Selectr) /= Name_uParent
3268 and then Chars (Selectr) /= Name_uController
3269 then
3270 if not Has_Discriminants (Typ) then
3271 Error_Msg_Node_2 := Typ;
3272 Error_Msg_N ("& is not a component of}", Selectr);
3273 else
3274 Error_Msg_N
3275 ("& is not a component of the aggregate subtype",
3276 Selectr);
3277 end if;
3279 Check_Misspelled_Component (Components, Selectr);
3280 end if;
3282 elsif No (Typech) then
3283 Typech := Base_Type (Etype (Component));
3285 elsif Typech /= Base_Type (Etype (Component)) then
3286 if not Box_Present (Parent (Selectr)) then
3287 Error_Msg_N
3288 ("components in choice list must have same type",
3289 Selectr);
3290 end if;
3291 end if;
3293 Next (Selectr);
3294 end loop;
3296 Next (Assoc);
3297 end loop Verification;
3298 end Step_7;
3300 -- STEP 8: replace the original aggregate
3302 Step_8 : declare
3303 New_Aggregate : constant Node_Id := New_Copy (N);
3305 begin
3306 Set_Expressions (New_Aggregate, No_List);
3307 Set_Etype (New_Aggregate, Etype (N));
3308 Set_Component_Associations (New_Aggregate, New_Assoc_List);
3310 Rewrite (N, New_Aggregate);
3311 end Step_8;
3312 end Resolve_Record_Aggregate;
3314 -----------------------------
3315 -- Check_Can_Never_Be_Null --
3316 -----------------------------
3318 procedure Check_Can_Never_Be_Null (Typ : Entity_Id; Expr : Node_Id) is
3319 Comp_Typ : Entity_Id;
3321 begin
3322 pragma Assert
3323 (Ada_Version >= Ada_05
3324 and then Present (Expr)
3325 and then Known_Null (Expr));
3327 case Ekind (Typ) is
3328 when E_Array_Type =>
3329 Comp_Typ := Component_Type (Typ);
3331 when E_Component |
3332 E_Discriminant =>
3333 Comp_Typ := Etype (Typ);
3335 when others =>
3336 return;
3337 end case;
3339 if Can_Never_Be_Null (Comp_Typ) then
3341 -- Here we know we have a constraint error. Note that we do not use
3342 -- Apply_Compile_Time_Constraint_Error here to the Expr, which might
3343 -- seem the more natural approach. That's because in some cases the
3344 -- components are rewritten, and the replacement would be missed.
3346 Insert_Action
3347 (Compile_Time_Constraint_Error
3348 (Expr,
3349 "(Ada 2005) null not allowed in null-excluding component?"),
3350 Make_Raise_Constraint_Error (Sloc (Expr),
3351 Reason => CE_Access_Check_Failed));
3353 -- Set proper type for bogus component (why is this needed???)
3355 Set_Etype (Expr, Comp_Typ);
3356 Set_Analyzed (Expr);
3357 end if;
3358 end Check_Can_Never_Be_Null;
3360 ---------------------
3361 -- Sort_Case_Table --
3362 ---------------------
3364 procedure Sort_Case_Table (Case_Table : in out Case_Table_Type) is
3365 L : constant Int := Case_Table'First;
3366 U : constant Int := Case_Table'Last;
3367 K : Int;
3368 J : Int;
3369 T : Case_Bounds;
3371 begin
3372 K := L;
3373 while K /= U loop
3374 T := Case_Table (K + 1);
3376 J := K + 1;
3377 while J /= L
3378 and then Expr_Value (Case_Table (J - 1).Choice_Lo) >
3379 Expr_Value (T.Choice_Lo)
3380 loop
3381 Case_Table (J) := Case_Table (J - 1);
3382 J := J - 1;
3383 end loop;
3385 Case_Table (J) := T;
3386 K := K + 1;
3387 end loop;
3388 end Sort_Case_Table;
3390 end Sem_Aggr;