Merge -r 127928:132243 from trunk
[official-gcc.git] / gcc / ada / s-addope.ads
blob99026bd218ef70959dea4a2b224446301247eb29
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S Y S T E M . A D D R E S S _ O P E R A T I O N S --
6 -- --
7 -- S p e c --
8 -- --
9 -- Copyright (C) 2004-2007, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 2, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING. If not, write --
19 -- to the Free Software Foundation, 51 Franklin Street, Fifth Floor, --
20 -- Boston, MA 02110-1301, USA. --
21 -- --
22 -- As a special exception, if other files instantiate generics from this --
23 -- unit, or you link this unit with other files to produce an executable, --
24 -- this unit does not by itself cause the resulting executable to be --
25 -- covered by the GNU General Public License. This exception does not --
26 -- however invalidate any other reasons why the executable file might be --
27 -- covered by the GNU Public License. --
28 -- --
29 -- GNAT was originally developed by the GNAT team at New York University. --
30 -- Extensive contributions were provided by Ada Core Technologies Inc. --
31 -- --
32 ------------------------------------------------------------------------------
34 -- This package provides arithmetic and logical operations on type Address.
35 -- It is intended for use by other packages in the System hierarchy. For
36 -- applications requiring this capability, see System.Storage_Elements or
37 -- the operations introduced in System.Aux_DEC;
39 -- The reason we need this package is that arithmetic operations may not
40 -- be available in the case where type Address is non-private and the
41 -- operations have been made abstract in the spec of System (to avoid
42 -- inappropriate use by applications programs). In addition, the logical
43 -- operations may not be available if type Address is a signed integer.
45 pragma Warnings (Off);
46 pragma Compiler_Unit;
47 pragma Warnings (On);
49 package System.Address_Operations is
50 pragma Pure;
52 -- The semantics of the arithmetic operations are those that apply to
53 -- a modular type with the same length as Address, i.e. they provide
54 -- twos complement wrap around arithmetic treating the address value
55 -- as an unsigned value, with no overflow checking.
57 -- Note that we do not use the infix names for these operations to
58 -- avoid problems with ambiguities coming from declarations in package
59 -- Standard (which may or may not be visible depending on the exact
60 -- form of the declaration of type System.Address).
62 -- For addition, subtraction, and multiplication, the effect of overflow
63 -- is 2's complement wrapping (as though the type Address were unsigned).
65 -- For division and modulus operations, the caller is responsible for
66 -- ensuring that the Right argument is non-zero, and the effect of the
67 -- call is not specified if a zero argument is passed.
69 function AddA (Left, Right : Address) return Address;
70 function SubA (Left, Right : Address) return Address;
71 function MulA (Left, Right : Address) return Address;
72 function DivA (Left, Right : Address) return Address;
73 function ModA (Left, Right : Address) return Address;
75 -- The semantics of the logical operations are those that apply to
76 -- a modular type with the same length as Address, i.e. they provide
77 -- bit-wise operations on all bits of the value (including the sign
78 -- bit if Address is a signed integer type).
80 function AndA (Left, Right : Address) return Address;
81 function OrA (Left, Right : Address) return Address;
83 pragma Inline_Always (AddA);
84 pragma Inline_Always (SubA);
85 pragma Inline_Always (MulA);
86 pragma Inline_Always (DivA);
87 pragma Inline_Always (ModA);
88 pragma Inline_Always (AndA);
89 pragma Inline_Always (OrA);
91 end System.Address_Operations;