Update ChangeLog and version files for release
[official-gcc.git] / gcc / shrink-wrap.c
blobfe795196709810920b20a4ac2610687e8693149f
1 /* Shrink-wrapping related optimizations.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This file handles shrink-wrapping related optimizations. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "tm_p.h"
32 #include "regs.h"
33 #include "emit-rtl.h"
34 #include "output.h"
35 #include "tree-pass.h"
36 #include "cfgrtl.h"
37 #include "params.h"
38 #include "bb-reorder.h"
39 #include "shrink-wrap.h"
40 #include "regcprop.h"
41 #include "rtl-iter.h"
42 #include "valtrack.h"
45 /* Return true if INSN requires the stack frame to be set up.
46 PROLOGUE_USED contains the hard registers used in the function
47 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
48 prologue to set up for the function. */
49 bool
50 requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
51 HARD_REG_SET set_up_by_prologue)
53 df_ref def, use;
54 HARD_REG_SET hardregs;
55 unsigned regno;
57 if (CALL_P (insn))
58 return !SIBLING_CALL_P (insn);
60 /* We need a frame to get the unique CFA expected by the unwinder. */
61 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
62 return true;
64 CLEAR_HARD_REG_SET (hardregs);
65 FOR_EACH_INSN_DEF (def, insn)
67 rtx dreg = DF_REF_REG (def);
69 if (!REG_P (dreg))
70 continue;
72 add_to_hard_reg_set (&hardregs, GET_MODE (dreg), REGNO (dreg));
74 if (hard_reg_set_intersect_p (hardregs, prologue_used))
75 return true;
76 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
77 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
78 if (TEST_HARD_REG_BIT (hardregs, regno)
79 && df_regs_ever_live_p (regno))
80 return true;
82 FOR_EACH_INSN_USE (use, insn)
84 rtx reg = DF_REF_REG (use);
86 if (!REG_P (reg))
87 continue;
89 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
90 REGNO (reg));
92 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
93 return true;
95 return false;
98 /* See whether there has a single live edge from BB, which dest uses
99 [REGNO, END_REGNO). Return the live edge if its dest bb has
100 one or two predecessors. Otherwise return NULL. */
102 static edge
103 live_edge_for_reg (basic_block bb, int regno, int end_regno)
105 edge e, live_edge;
106 edge_iterator ei;
107 bitmap live;
108 int i;
110 live_edge = NULL;
111 FOR_EACH_EDGE (e, ei, bb->succs)
113 live = df_get_live_in (e->dest);
114 for (i = regno; i < end_regno; i++)
115 if (REGNO_REG_SET_P (live, i))
117 if (live_edge && live_edge != e)
118 return NULL;
119 live_edge = e;
123 /* We can sometimes encounter dead code. Don't try to move it
124 into the exit block. */
125 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
126 return NULL;
128 /* Reject targets of abnormal edges. This is needed for correctness
129 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
130 exception edges even though it is generally treated as call-saved
131 for the majority of the compilation. Moving across abnormal edges
132 isn't going to be interesting for shrink-wrap usage anyway. */
133 if (live_edge->flags & EDGE_ABNORMAL)
134 return NULL;
136 /* When live_edge->dest->preds == 2, we can create a new block on
137 the edge to make it meet the requirement. */
138 if (EDGE_COUNT (live_edge->dest->preds) > 2)
139 return NULL;
141 return live_edge;
144 /* Try to move INSN from BB to a successor. Return true on success.
145 USES and DEFS are the set of registers that are used and defined
146 after INSN in BB. SPLIT_P indicates whether a live edge from BB
147 is splitted or not. */
149 static bool
150 move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
151 const HARD_REG_SET uses,
152 const HARD_REG_SET defs,
153 bool *split_p,
154 struct dead_debug_local *debug)
156 rtx set, src, dest;
157 bitmap live_out, live_in, bb_uses, bb_defs;
158 unsigned int i, dregno, end_dregno;
159 unsigned int sregno = FIRST_PSEUDO_REGISTER;
160 unsigned int end_sregno = FIRST_PSEUDO_REGISTER;
161 basic_block next_block;
162 edge live_edge;
163 rtx_insn *dinsn;
164 df_ref def;
166 /* Look for a simple register assignment. We don't use single_set here
167 because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
168 destinations. */
169 if (!INSN_P (insn))
170 return false;
171 set = PATTERN (insn);
172 if (GET_CODE (set) != SET)
173 return false;
174 src = SET_SRC (set);
175 dest = SET_DEST (set);
177 /* For the destination, we want only a register. Also disallow STACK
178 or FRAME related adjustments. They are likely part of the prologue,
179 so keep them in the entry block. */
180 if (!REG_P (dest)
181 || dest == stack_pointer_rtx
182 || dest == frame_pointer_rtx
183 || dest == hard_frame_pointer_rtx)
184 return false;
186 /* For the source, we want one of:
187 (1) A (non-overlapping) register
188 (2) A constant,
189 (3) An expression involving no more than one register.
191 That last point comes from the code following, which was originally
192 written to handle only register move operations, and still only handles
193 a single source register when checking for overlaps. Happily, the
194 same checks can be applied to expressions like (plus reg const). */
196 if (CONSTANT_P (src))
198 else if (!REG_P (src))
200 rtx src_inner = NULL_RTX;
202 if (can_throw_internal (insn))
203 return false;
205 subrtx_var_iterator::array_type array;
206 FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)
208 rtx x = *iter;
209 switch (GET_RTX_CLASS (GET_CODE (x)))
211 case RTX_CONST_OBJ:
212 case RTX_COMPARE:
213 case RTX_COMM_COMPARE:
214 case RTX_BIN_ARITH:
215 case RTX_COMM_ARITH:
216 case RTX_UNARY:
217 case RTX_TERNARY:
218 /* Constant or expression. Continue. */
219 break;
221 case RTX_OBJ:
222 case RTX_EXTRA:
223 switch (GET_CODE (x))
225 case UNSPEC:
226 case SUBREG:
227 case STRICT_LOW_PART:
228 case PC:
229 case LO_SUM:
230 /* Ok. Continue. */
231 break;
233 case REG:
234 /* Fail if we see a second inner register. */
235 if (src_inner != NULL)
236 return false;
237 src_inner = x;
238 break;
240 default:
241 return false;
243 break;
245 default:
246 return false;
250 if (src_inner != NULL)
251 src = src_inner;
254 /* Make sure that the source register isn't defined later in BB. */
255 if (REG_P (src))
257 sregno = REGNO (src);
258 end_sregno = END_REGNO (src);
259 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
260 return false;
263 /* Make sure that the destination register isn't referenced later in BB. */
264 dregno = REGNO (dest);
265 end_dregno = END_REGNO (dest);
266 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
267 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
268 return false;
270 /* See whether there is a successor block to which we could move INSN. */
271 live_edge = live_edge_for_reg (bb, dregno, end_dregno);
272 if (!live_edge)
273 return false;
275 next_block = live_edge->dest;
276 /* Create a new basic block on the edge. */
277 if (EDGE_COUNT (next_block->preds) == 2)
279 /* split_edge for a block with only one successor is meaningless. */
280 if (EDGE_COUNT (bb->succs) == 1)
281 return false;
283 /* If DF_LIVE doesn't exist, i.e. at -O1, just give up. */
284 if (!df_live)
285 return false;
287 basic_block old_dest = live_edge->dest;
288 next_block = split_edge (live_edge);
290 /* We create a new basic block. Call df_grow_bb_info to make sure
291 all data structures are allocated. */
292 df_grow_bb_info (df_live);
294 bitmap_and (df_get_live_in (next_block), df_get_live_out (bb),
295 df_get_live_in (old_dest));
296 df_set_bb_dirty (next_block);
298 /* We should not split more than once for a function. */
299 if (*split_p)
300 return false;
302 *split_p = true;
305 /* At this point we are committed to moving INSN, but let's try to
306 move it as far as we can. */
309 if (MAY_HAVE_DEBUG_INSNS)
311 FOR_BB_INSNS_REVERSE (bb, dinsn)
312 if (DEBUG_INSN_P (dinsn))
314 df_ref use;
315 FOR_EACH_INSN_USE (use, dinsn)
316 if (refers_to_regno_p (dregno, end_dregno,
317 DF_REF_REG (use), (rtx *) NULL))
318 dead_debug_add (debug, use, DF_REF_REGNO (use));
320 else if (dinsn == insn)
321 break;
323 live_out = df_get_live_out (bb);
324 live_in = df_get_live_in (next_block);
325 bb = next_block;
327 /* Check whether BB uses DEST or clobbers DEST. We need to add
328 INSN to BB if so. Either way, DEST is no longer live on entry,
329 except for any part that overlaps SRC (next loop). */
330 bb_uses = &DF_LR_BB_INFO (bb)->use;
331 bb_defs = &DF_LR_BB_INFO (bb)->def;
332 if (df_live)
334 for (i = dregno; i < end_dregno; i++)
336 if (*split_p
337 || REGNO_REG_SET_P (bb_uses, i)
338 || REGNO_REG_SET_P (bb_defs, i)
339 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
340 next_block = NULL;
341 CLEAR_REGNO_REG_SET (live_out, i);
342 CLEAR_REGNO_REG_SET (live_in, i);
345 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
346 Either way, SRC is now live on entry. */
347 for (i = sregno; i < end_sregno; i++)
349 if (*split_p
350 || REGNO_REG_SET_P (bb_defs, i)
351 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
352 next_block = NULL;
353 SET_REGNO_REG_SET (live_out, i);
354 SET_REGNO_REG_SET (live_in, i);
357 else
359 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
360 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
361 at -O1, just give up searching NEXT_BLOCK. */
362 next_block = NULL;
363 for (i = dregno; i < end_dregno; i++)
365 CLEAR_REGNO_REG_SET (live_out, i);
366 CLEAR_REGNO_REG_SET (live_in, i);
369 for (i = sregno; i < end_sregno; i++)
371 SET_REGNO_REG_SET (live_out, i);
372 SET_REGNO_REG_SET (live_in, i);
376 /* If we don't need to add the move to BB, look for a single
377 successor block. */
378 if (next_block)
380 live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
381 if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
382 break;
383 next_block = live_edge->dest;
386 while (next_block);
388 /* For the new created basic block, there is no dataflow info at all.
389 So skip the following dataflow update and check. */
390 if (!(*split_p))
392 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
393 (next loop). */
394 for (i = dregno; i < end_dregno; i++)
396 CLEAR_REGNO_REG_SET (bb_uses, i);
397 SET_REGNO_REG_SET (bb_defs, i);
400 /* BB now uses SRC. */
401 for (i = sregno; i < end_sregno; i++)
402 SET_REGNO_REG_SET (bb_uses, i);
405 /* Insert debug temps for dead REGs used in subsequent debug insns. */
406 if (debug->used && !bitmap_empty_p (debug->used))
407 FOR_EACH_INSN_DEF (def, insn)
408 dead_debug_insert_temp (debug, DF_REF_REGNO (def), insn,
409 DEBUG_TEMP_BEFORE_WITH_VALUE);
411 emit_insn_after (PATTERN (insn), bb_note (bb));
412 delete_insn (insn);
413 return true;
416 /* Look for register copies in the first block of the function, and move
417 them down into successor blocks if the register is used only on one
418 path. This exposes more opportunities for shrink-wrapping. These
419 kinds of sets often occur when incoming argument registers are moved
420 to call-saved registers because their values are live across one or
421 more calls during the function. */
423 static void
424 prepare_shrink_wrap (basic_block entry_block)
426 rtx_insn *insn, *curr;
427 rtx x;
428 HARD_REG_SET uses, defs;
429 df_ref def, use;
430 bool split_p = false;
431 unsigned int i;
432 struct dead_debug_local debug;
434 if (JUMP_P (BB_END (entry_block)))
436 /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
437 to sink the copies from parameter to callee saved register out of
438 entry block. copyprop_hardreg_forward_bb_without_debug_insn is called
439 to release some dependences. */
440 copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
443 dead_debug_local_init (&debug, NULL, NULL);
444 CLEAR_HARD_REG_SET (uses);
445 CLEAR_HARD_REG_SET (defs);
447 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
448 if (NONDEBUG_INSN_P (insn)
449 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
450 &split_p, &debug))
452 /* Add all defined registers to DEFs. */
453 FOR_EACH_INSN_DEF (def, insn)
455 x = DF_REF_REG (def);
456 if (REG_P (x) && HARD_REGISTER_P (x))
457 for (i = REGNO (x); i < END_REGNO (x); i++)
458 SET_HARD_REG_BIT (defs, i);
461 /* Add all used registers to USESs. */
462 FOR_EACH_INSN_USE (use, insn)
464 x = DF_REF_REG (use);
465 if (REG_P (x) && HARD_REGISTER_P (x))
466 for (i = REGNO (x); i < END_REGNO (x); i++)
467 SET_HARD_REG_BIT (uses, i);
471 dead_debug_local_finish (&debug, NULL);
474 /* Return whether basic block PRO can get the prologue. It can not if it
475 has incoming complex edges that need a prologue inserted (we make a new
476 block for the prologue, so those edges would need to be redirected, which
477 does not work). It also can not if there exist registers live on entry
478 to PRO that are clobbered by the prologue. */
480 static bool
481 can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
483 edge e;
484 edge_iterator ei;
485 FOR_EACH_EDGE (e, ei, pro->preds)
486 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
487 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
488 return false;
490 HARD_REG_SET live;
491 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro));
492 if (hard_reg_set_intersect_p (live, prologue_clobbered))
493 return false;
495 return true;
498 /* Return whether we can duplicate basic block BB for shrink wrapping. We
499 cannot if the block cannot be duplicated at all, or if any of its incoming
500 edges are complex and come from a block that does not require a prologue
501 (we cannot redirect such edges), or if the block is too big to copy.
502 PRO is the basic block before which we would put the prologue, MAX_SIZE is
503 the maximum size block we allow to be copied. */
505 static bool
506 can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
508 if (!can_duplicate_block_p (bb))
509 return false;
511 edge e;
512 edge_iterator ei;
513 FOR_EACH_EDGE (e, ei, bb->preds)
514 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
515 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
516 return false;
518 unsigned size = 0;
520 rtx_insn *insn;
521 FOR_BB_INSNS (bb, insn)
522 if (NONDEBUG_INSN_P (insn))
524 size += get_attr_min_length (insn);
525 if (size > max_size)
526 return false;
529 return true;
532 /* If the source of edge E has more than one successor, the verifier for
533 branch probabilities gets confused by the fake edges we make where
534 simple_return statements will be inserted later (because those are not
535 marked as fallthrough edges). Fix this by creating an extra block just
536 for that fallthrough. */
538 static edge
539 fix_fake_fallthrough_edge (edge e)
541 if (EDGE_COUNT (e->src->succs) <= 1)
542 return e;
544 basic_block old_bb = e->src;
545 rtx_insn *end = BB_END (old_bb);
546 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
547 basic_block new_bb = create_basic_block (note, note, old_bb);
548 BB_COPY_PARTITION (new_bb, old_bb);
549 BB_END (old_bb) = end;
551 redirect_edge_succ (e, new_bb);
552 e->flags |= EDGE_FALLTHRU;
553 e->flags &= ~EDGE_FAKE;
555 return make_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
558 /* Try to perform a kind of shrink-wrapping, making sure the
559 prologue/epilogue is emitted only around those parts of the
560 function that require it.
562 There will be exactly one prologue, and it will be executed either
563 zero or one time, on any path. Depending on where the prologue is
564 placed, some of the basic blocks can be reached via both paths with
565 and without a prologue. Such blocks will be duplicated here, and the
566 edges changed to match.
568 Paths that go to the exit without going through the prologue will use
569 a simple_return instead of the epilogue. We maximize the number of
570 those, making sure to only duplicate blocks that can be duplicated.
571 If the prologue can then still be placed in multiple locations, we
572 place it as early as possible.
574 An example, where we duplicate blocks with control flow (legend:
575 _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
576 be taken to point down or to the right, to simplify the diagram; here,
577 block 3 needs a prologue, the rest does not):
583 |\ |\
584 | 3 becomes | 3
585 |/ | \
586 4 7 4
587 |\ |\ |\
588 | 5 | 8 | 5
589 |/ |/ |/
590 6 9 6
591 | | |
592 R S R
595 (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
596 edge 2->3).
598 Another example, where part of a loop is duplicated (again, bb 3 is
599 the only block that needs a prologue):
602 B 3<-- B ->3<--
603 | | | | | | |
604 | v | becomes | | v |
605 2---4--- 2---5-- 4---
606 | | |
607 R S R
610 (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).
612 ENTRY_EDGE is the edge where the prologue will be placed, possibly
613 changed by this function. BB_WITH is a bitmap that, if we do shrink-
614 wrap, will on return contain the interesting blocks that run with
615 prologue. PROLOGUE_SEQ is the prologue we will insert. */
617 void
618 try_shrink_wrapping (edge *entry_edge, bitmap_head *bb_with,
619 rtx_insn *prologue_seq)
621 /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
622 no sense to shrink-wrap: then do not shrink-wrap! */
624 if (!SHRINK_WRAPPING_ENABLED)
625 return;
627 if (crtl->profile && !targetm.profile_before_prologue ())
628 return;
630 if (crtl->calls_eh_return)
631 return;
633 bool empty_prologue = true;
634 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
635 if (!(NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END))
637 empty_prologue = false;
638 break;
640 if (empty_prologue)
641 return;
643 /* Move some code down to expose more shrink-wrapping opportunities. */
645 basic_block entry = (*entry_edge)->dest;
646 prepare_shrink_wrap (entry);
648 if (dump_file)
649 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
651 /* Compute the registers set and used in the prologue. */
653 HARD_REG_SET prologue_clobbered, prologue_used;
654 CLEAR_HARD_REG_SET (prologue_clobbered);
655 CLEAR_HARD_REG_SET (prologue_used);
656 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
657 if (NONDEBUG_INSN_P (insn))
659 HARD_REG_SET this_used;
660 CLEAR_HARD_REG_SET (this_used);
661 note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
662 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
663 IOR_HARD_REG_SET (prologue_used, this_used);
664 note_stores (PATTERN (insn), record_hard_reg_sets, &prologue_clobbered);
666 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
667 if (frame_pointer_needed)
668 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
670 /* Find out what registers are set up by the prologue; any use of these
671 cannot happen before the prologue. */
673 struct hard_reg_set_container set_up_by_prologue;
674 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
675 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, STACK_POINTER_REGNUM);
676 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
677 if (frame_pointer_needed)
678 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
679 HARD_FRAME_POINTER_REGNUM);
680 if (pic_offset_table_rtx
681 && (unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
682 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
683 PIC_OFFSET_TABLE_REGNUM);
684 if (crtl->drap_reg)
685 add_to_hard_reg_set (&set_up_by_prologue.set,
686 GET_MODE (crtl->drap_reg),
687 REGNO (crtl->drap_reg));
688 if (targetm.set_up_by_prologue)
689 targetm.set_up_by_prologue (&set_up_by_prologue);
691 /* We will insert the prologue before the basic block PRO. PRO should
692 dominate all basic blocks that need the prologue to be executed
693 before them. First, make PRO the "tightest wrap" possible. */
695 calculate_dominance_info (CDI_DOMINATORS);
697 basic_block pro = 0;
699 basic_block bb;
700 edge e;
701 edge_iterator ei;
702 FOR_EACH_BB_FN (bb, cfun)
704 rtx_insn *insn;
705 FOR_BB_INSNS (bb, insn)
706 if (NONDEBUG_INSN_P (insn)
707 && requires_stack_frame_p (insn, prologue_used,
708 set_up_by_prologue.set))
710 if (dump_file)
711 fprintf (dump_file, "Block %d needs the prologue.\n", bb->index);
712 pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
713 break;
717 /* If nothing needs a prologue, just put it at the start. This really
718 shouldn't happen, but we cannot fix it here. */
720 if (pro == 0)
722 if (dump_file)
723 fprintf(dump_file, "Nothing needs a prologue, but it isn't empty; "
724 "putting it at the start.\n");
725 pro = entry;
728 if (dump_file)
729 fprintf (dump_file, "After wrapping required blocks, PRO is now %d\n",
730 pro->index);
732 /* Now see if we can put the prologue at the start of PRO. Putting it
733 there might require duplicating a block that cannot be duplicated,
734 or in some cases we cannot insert the prologue there at all. If PRO
735 wont't do, try again with the immediate dominator of PRO, and so on.
737 The blocks that need duplicating are those reachable from PRO but
738 not dominated by it. We keep in BB_WITH a bitmap of the blocks
739 reachable from PRO that we already found, and in VEC a stack of
740 those we still need to consider (to find successors). */
742 bitmap_set_bit (bb_with, pro->index);
744 vec<basic_block> vec;
745 vec.create (n_basic_blocks_for_fn (cfun));
746 vec.quick_push (pro);
748 unsigned max_grow_size = get_uncond_jump_length ();
749 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
751 while (!vec.is_empty () && pro != entry)
753 while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
755 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
757 if (bitmap_set_bit (bb_with, pro->index))
758 vec.quick_push (pro);
761 basic_block bb = vec.pop ();
762 if (!can_dup_for_shrink_wrapping (bb, pro, max_grow_size))
763 while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
765 gcc_assert (pro != entry);
767 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
769 if (bitmap_set_bit (bb_with, pro->index))
770 vec.quick_push (pro);
773 FOR_EACH_EDGE (e, ei, bb->succs)
774 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
775 && bitmap_set_bit (bb_with, e->dest->index))
776 vec.quick_push (e->dest);
779 if (dump_file)
780 fprintf (dump_file, "Avoiding non-duplicatable blocks, PRO is now %d\n",
781 pro->index);
783 /* If we can move PRO back without having to duplicate more blocks, do so.
784 We do this because putting the prologue earlier is better for scheduling.
786 We can move back to a block PRE if every path from PRE will eventually
787 need a prologue, that is, PRO is a post-dominator of PRE. PRE needs
788 to dominate every block reachable from itself. We keep in BB_TMP a
789 bitmap of the blocks reachable from PRE that we already found, and in
790 VEC a stack of those we still need to consider.
792 Any block reachable from PRE is also reachable from all predecessors
793 of PRE, so if we find we need to move PRE back further we can leave
794 everything not considered so far on the stack. Any block dominated
795 by PRE is also dominated by all other dominators of PRE, so anything
796 found good for some PRE does not need to be reconsidered later.
798 We don't need to update BB_WITH because none of the new blocks found
799 can jump to a block that does not need the prologue. */
801 if (pro != entry)
803 calculate_dominance_info (CDI_POST_DOMINATORS);
805 bitmap bb_tmp = BITMAP_ALLOC (NULL);
806 bitmap_copy (bb_tmp, bb_with);
807 basic_block last_ok = pro;
808 vec.truncate (0);
810 while (pro != entry)
812 basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
813 if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
814 break;
816 if (bitmap_set_bit (bb_tmp, pre->index))
817 vec.quick_push (pre);
819 bool ok = true;
820 while (!vec.is_empty ())
822 if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
824 ok = false;
825 break;
828 basic_block bb = vec.pop ();
829 FOR_EACH_EDGE (e, ei, bb->succs)
830 if (bitmap_set_bit (bb_tmp, e->dest->index))
831 vec.quick_push (e->dest);
834 if (ok && can_get_prologue (pre, prologue_clobbered))
835 last_ok = pre;
837 pro = pre;
840 pro = last_ok;
842 BITMAP_FREE (bb_tmp);
843 free_dominance_info (CDI_POST_DOMINATORS);
846 vec.release ();
848 if (dump_file)
849 fprintf (dump_file, "Bumping back to anticipatable blocks, PRO is now %d\n",
850 pro->index);
852 if (pro == entry)
854 free_dominance_info (CDI_DOMINATORS);
855 return;
858 /* Compute what fraction of the frequency and count of the blocks that run
859 both with and without prologue are for running with prologue. This gives
860 the correct answer for reducible flow graphs; for irreducible flow graphs
861 our profile is messed up beyond repair anyway. */
863 gcov_type num = 0;
864 gcov_type den = 0;
866 FOR_EACH_EDGE (e, ei, pro->preds)
867 if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
869 num += EDGE_FREQUENCY (e);
870 den += e->src->frequency;
873 if (den == 0)
874 den = 1;
876 /* All is okay, so do it. */
878 crtl->shrink_wrapped = true;
879 if (dump_file)
880 fprintf (dump_file, "Performing shrink-wrapping.\n");
882 /* Copy the blocks that can run both with and without prologue. The
883 originals run with prologue, the copies without. Store a pointer to
884 the copy in the ->aux field of the original. */
886 FOR_EACH_BB_FN (bb, cfun)
887 if (bitmap_bit_p (bb_with, bb->index)
888 && !dominated_by_p (CDI_DOMINATORS, bb, pro))
890 basic_block dup = duplicate_block (bb, 0, 0);
892 bb->aux = dup;
894 if (JUMP_P (BB_END (dup)) && !any_condjump_p (BB_END (dup)))
895 emit_barrier_after_bb (dup);
897 if (EDGE_COUNT (dup->succs) == 0)
898 emit_barrier_after_bb (dup);
900 if (dump_file)
901 fprintf (dump_file, "Duplicated %d to %d\n", bb->index, dup->index);
903 bb->frequency = RDIV (num * bb->frequency, den);
904 dup->frequency -= bb->frequency;
905 bb->count = RDIV (num * bb->count, den);
906 dup->count -= bb->count;
909 /* Now change the edges to point to the copies, where appropriate. */
911 FOR_EACH_BB_FN (bb, cfun)
912 if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
914 basic_block src = bb;
915 if (bitmap_bit_p (bb_with, bb->index))
916 src = (basic_block) bb->aux;
918 FOR_EACH_EDGE (e, ei, src->succs)
920 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
921 continue;
923 if (bitmap_bit_p (bb_with, e->dest->index)
924 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
926 if (dump_file)
927 fprintf (dump_file, "Redirecting edge %d->%d to %d\n",
928 e->src->index, e->dest->index,
929 ((basic_block) e->dest->aux)->index);
930 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
932 else if (e->flags & EDGE_FALLTHRU
933 && bitmap_bit_p (bb_with, bb->index))
934 force_nonfallthru (e);
938 /* Also redirect the function entry edge if necessary. */
940 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
941 if (bitmap_bit_p (bb_with, e->dest->index)
942 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
944 basic_block split_bb = split_edge (e);
945 e = single_succ_edge (split_bb);
946 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
949 /* Change all the exits that should get a simple_return to FAKE.
950 They will be converted later. */
952 FOR_EACH_BB_FN (bb, cfun)
953 if (!bitmap_bit_p (bb_with, bb->index))
954 FOR_EACH_EDGE (e, ei, bb->succs)
955 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
957 e = fix_fake_fallthrough_edge (e);
959 e->flags &= ~EDGE_FALLTHRU;
960 if (!(e->flags & EDGE_SIBCALL))
961 e->flags |= EDGE_FAKE;
963 emit_barrier_after_bb (e->src);
966 /* Finally, we want a single edge to put the prologue on. Make a new
967 block before the PRO block; the edge beteen them is the edge we want.
968 Then redirect those edges into PRO that come from blocks without the
969 prologue, to point to the new block instead. The new prologue block
970 is put at the end of the insn chain. */
972 basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
973 BB_COPY_PARTITION (new_bb, pro);
974 if (dump_file)
975 fprintf (dump_file, "Made prologue block %d\n", new_bb->index);
977 for (ei = ei_start (pro->preds); (e = ei_safe_edge (ei)); )
979 if (bitmap_bit_p (bb_with, e->src->index)
980 || dominated_by_p (CDI_DOMINATORS, e->src, pro))
982 ei_next (&ei);
983 continue;
986 new_bb->count += RDIV (e->src->count * e->probability, REG_BR_PROB_BASE);
987 new_bb->frequency += EDGE_FREQUENCY (e);
989 redirect_edge_and_branch_force (e, new_bb);
990 if (dump_file)
991 fprintf (dump_file, "Redirected edge from %d\n", e->src->index);
994 *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
995 force_nonfallthru (*entry_edge);
997 free_dominance_info (CDI_DOMINATORS);
1000 /* If we're allowed to generate a simple return instruction, then by
1001 definition we don't need a full epilogue. If the last basic
1002 block before the exit block does not contain active instructions,
1003 examine its predecessors and try to emit (conditional) return
1004 instructions. */
1006 edge
1007 get_unconverted_simple_return (edge exit_fallthru_edge, bitmap_head bb_flags,
1008 vec<edge> *unconverted_simple_returns,
1009 rtx_insn **returnjump)
1011 if (optimize)
1013 unsigned i, last;
1015 /* convert_jumps_to_returns may add to preds of the exit block
1016 (but won't remove). Stop at end of current preds. */
1017 last = EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds);
1018 for (i = 0; i < last; i++)
1020 edge e = EDGE_I (EXIT_BLOCK_PTR_FOR_FN (cfun)->preds, i);
1021 if (LABEL_P (BB_HEAD (e->src))
1022 && !bitmap_bit_p (&bb_flags, e->src->index)
1023 && !active_insn_between (BB_HEAD (e->src), BB_END (e->src)))
1024 *unconverted_simple_returns
1025 = convert_jumps_to_returns (e->src, true,
1026 *unconverted_simple_returns);
1030 if (exit_fallthru_edge != NULL
1031 && EDGE_COUNT (exit_fallthru_edge->src->preds) != 0
1032 && !bitmap_bit_p (&bb_flags, exit_fallthru_edge->src->index))
1034 basic_block last_bb;
1036 last_bb = emit_return_for_exit (exit_fallthru_edge, true);
1037 *returnjump = BB_END (last_bb);
1038 exit_fallthru_edge = NULL;
1040 return exit_fallthru_edge;
1043 /* If there were branches to an empty LAST_BB which we tried to
1044 convert to conditional simple_returns, but couldn't for some
1045 reason, create a block to hold a simple_return insn and redirect
1046 those remaining edges. */
1048 void
1049 convert_to_simple_return (edge entry_edge, edge orig_entry_edge,
1050 bitmap_head bb_flags, rtx_insn *returnjump,
1051 vec<edge> unconverted_simple_returns)
1053 edge e;
1054 edge_iterator ei;
1056 if (!unconverted_simple_returns.is_empty ())
1058 basic_block simple_return_block_hot = NULL;
1059 basic_block simple_return_block_cold = NULL;
1060 edge pending_edge_hot = NULL;
1061 edge pending_edge_cold = NULL;
1062 basic_block exit_pred;
1063 int i;
1065 gcc_assert (entry_edge != orig_entry_edge);
1067 /* See if we can reuse the last insn that was emitted for the
1068 epilogue. */
1069 if (returnjump != NULL_RTX
1070 && JUMP_LABEL (returnjump) == simple_return_rtx)
1072 e = split_block (BLOCK_FOR_INSN (returnjump), PREV_INSN (returnjump));
1073 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
1074 simple_return_block_hot = e->dest;
1075 else
1076 simple_return_block_cold = e->dest;
1079 /* Also check returns we might need to add to tail blocks. */
1080 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1081 if (EDGE_COUNT (e->src->preds) != 0
1082 && (e->flags & EDGE_FAKE) != 0
1083 && !bitmap_bit_p (&bb_flags, e->src->index))
1085 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
1086 pending_edge_hot = e;
1087 else
1088 pending_edge_cold = e;
1091 /* Save a pointer to the exit's predecessor BB for use in
1092 inserting new BBs at the end of the function. Do this
1093 after the call to split_block above which may split
1094 the original exit pred. */
1095 exit_pred = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
1097 FOR_EACH_VEC_ELT (unconverted_simple_returns, i, e)
1099 basic_block *pdest_bb;
1100 edge pending;
1102 if (BB_PARTITION (e->src) == BB_HOT_PARTITION)
1104 pdest_bb = &simple_return_block_hot;
1105 pending = pending_edge_hot;
1107 else
1109 pdest_bb = &simple_return_block_cold;
1110 pending = pending_edge_cold;
1113 if (*pdest_bb == NULL && pending != NULL)
1115 emit_return_into_block (true, pending->src);
1116 pending->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);
1117 *pdest_bb = pending->src;
1119 else if (*pdest_bb == NULL)
1121 basic_block bb;
1123 bb = create_basic_block (NULL, NULL, exit_pred);
1124 BB_COPY_PARTITION (bb, e->src);
1125 rtx_insn *ret = targetm.gen_simple_return ();
1126 rtx_jump_insn *start = emit_jump_insn_after (ret, BB_END (bb));
1127 JUMP_LABEL (start) = simple_return_rtx;
1128 emit_barrier_after (start);
1130 *pdest_bb = bb;
1131 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
1133 redirect_edge_and_branch_force (e, *pdest_bb);
1135 unconverted_simple_returns.release ();
1138 if (entry_edge != orig_entry_edge)
1140 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1141 if (EDGE_COUNT (e->src->preds) != 0
1142 && (e->flags & EDGE_FAKE) != 0
1143 && !bitmap_bit_p (&bb_flags, e->src->index))
1145 e = fix_fake_fallthrough_edge (e);
1147 emit_return_into_block (true, e->src);
1148 e->flags &= ~(EDGE_FALLTHRU | EDGE_FAKE);