Update ChangeLog and version files for release
[official-gcc.git] / gcc / graphite-isl-ast-to-gimple.c
blobfba6cfb1851c6f53e0d2cee4d3e9a16037d55804
1 /* Translation of isl AST to Gimple.
2 Copyright (C) 2014-2016 Free Software Foundation, Inc.
3 Contributed by Roman Gareev <gareevroman@gmail.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #define USES_ISL
23 #include "config.h"
25 #ifdef HAVE_isl
27 #define INCLUDE_MAP
28 #include "system.h"
29 #include "coretypes.h"
30 #include "backend.h"
31 #include "cfghooks.h"
32 #include "tree.h"
33 #include "gimple.h"
34 #include "params.h"
35 #include "fold-const.h"
36 #include "gimple-fold.h"
37 #include "gimple-iterator.h"
38 #include "gimplify.h"
39 #include "gimplify-me.h"
40 #include "tree-eh.h"
41 #include "tree-ssa-loop.h"
42 #include "tree-ssa-operands.h"
43 #include "tree-ssa-propagate.h"
44 #include "tree-pass.h"
45 #include "cfgloop.h"
46 #include "tree-data-ref.h"
47 #include "tree-ssa-loop-manip.h"
48 #include "tree-scalar-evolution.h"
49 #include "gimple-ssa.h"
50 #include "tree-phinodes.h"
51 #include "tree-into-ssa.h"
52 #include "ssa-iterators.h"
53 #include "tree-cfg.h"
54 #include "gimple-pretty-print.h"
55 #include "cfganal.h"
56 #include "value-prof.h"
57 #include "graphite.h"
59 /* We always try to use signed 128 bit types, but fall back to smaller types
60 in case a platform does not provide types of these sizes. In the future we
61 should use isl to derive the optimal type for each subexpression. */
63 static int max_mode_int_precision =
64 GET_MODE_PRECISION (mode_for_size (MAX_FIXED_MODE_SIZE, MODE_INT, 0));
65 static int graphite_expression_type_precision = 128 <= max_mode_int_precision ?
66 128 : max_mode_int_precision;
68 struct ast_build_info
70 ast_build_info()
71 : is_parallelizable(false)
72 { }
73 bool is_parallelizable;
76 /* Converts a GMP constant VAL to a tree and returns it. */
78 static tree
79 gmp_cst_to_tree (tree type, mpz_t val)
81 tree t = type ? type : integer_type_node;
82 mpz_t tmp;
84 mpz_init (tmp);
85 mpz_set (tmp, val);
86 wide_int wi = wi::from_mpz (t, tmp, true);
87 mpz_clear (tmp);
89 return wide_int_to_tree (t, wi);
92 /* Verifies properties that GRAPHITE should maintain during translation. */
94 static inline void
95 graphite_verify (void)
97 checking_verify_loop_structure ();
98 checking_verify_loop_closed_ssa (true);
101 /* IVS_PARAMS maps isl's scattering and parameter identifiers
102 to corresponding trees. */
104 typedef std::map<isl_id *, tree> ivs_params;
106 /* Free all memory allocated for isl's identifiers. */
108 static void ivs_params_clear (ivs_params &ip)
110 std::map<isl_id *, tree>::iterator it;
111 for (it = ip.begin ();
112 it != ip.end (); it++)
114 isl_id_free (it->first);
118 #ifdef HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS
120 /* Set the "separate" option for the schedule node. */
122 static isl_schedule_node *
123 set_separate_option (__isl_take isl_schedule_node *node, void *user)
125 if (user)
126 return node;
128 if (isl_schedule_node_get_type (node) != isl_schedule_node_band)
129 return node;
131 /* Set the "separate" option unless it is set earlier to another option. */
132 if (isl_schedule_node_band_member_get_ast_loop_type (node, 0)
133 == isl_ast_loop_default)
134 return isl_schedule_node_band_member_set_ast_loop_type
135 (node, 0, isl_ast_loop_separate);
137 return node;
140 /* Print SCHEDULE under an AST form on file F. */
142 void
143 print_schedule_ast (FILE *f, __isl_keep isl_schedule *schedule, scop_p scop)
145 isl_set *set = isl_set_params (isl_set_copy (scop->param_context));
146 isl_ast_build *context = isl_ast_build_from_context (set);
147 isl_ast_node *ast
148 = isl_ast_build_node_from_schedule (context, isl_schedule_copy (schedule));
149 isl_ast_build_free (context);
150 print_isl_ast (f, ast);
151 isl_ast_node_free (ast);
154 DEBUG_FUNCTION void
155 debug_schedule_ast (__isl_keep isl_schedule *s, scop_p scop)
157 print_schedule_ast (stderr, s, scop);
160 #endif
162 enum phi_node_kind
164 unknown_phi,
165 loop_phi,
166 close_phi,
167 cond_phi
170 class translate_isl_ast_to_gimple
172 public:
173 translate_isl_ast_to_gimple (sese_info_p r)
174 : region (r), codegen_error (false) { }
175 edge translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node,
176 edge next_e, ivs_params &ip);
177 edge translate_isl_ast_node_for (loop_p context_loop,
178 __isl_keep isl_ast_node *node,
179 edge next_e, ivs_params &ip);
180 edge translate_isl_ast_for_loop (loop_p context_loop,
181 __isl_keep isl_ast_node *node_for,
182 edge next_e,
183 tree type, tree lb, tree ub,
184 ivs_params &ip);
185 edge translate_isl_ast_node_if (loop_p context_loop,
186 __isl_keep isl_ast_node *node,
187 edge next_e, ivs_params &ip);
188 edge translate_isl_ast_node_user (__isl_keep isl_ast_node *node,
189 edge next_e, ivs_params &ip);
190 edge translate_isl_ast_node_block (loop_p context_loop,
191 __isl_keep isl_ast_node *node,
192 edge next_e, ivs_params &ip);
193 tree unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
194 ivs_params &ip);
195 tree binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
196 ivs_params &ip);
197 tree ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
198 ivs_params &ip);
199 tree nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr,
200 ivs_params &ip);
201 tree gcc_expression_from_isl_expression (tree type,
202 __isl_take isl_ast_expr *,
203 ivs_params &ip);
204 tree gcc_expression_from_isl_ast_expr_id (tree type,
205 __isl_keep isl_ast_expr *expr_id,
206 ivs_params &ip);
207 tree gcc_expression_from_isl_expr_int (tree type,
208 __isl_take isl_ast_expr *expr);
209 tree gcc_expression_from_isl_expr_op (tree type,
210 __isl_take isl_ast_expr *expr,
211 ivs_params &ip);
212 struct loop *graphite_create_new_loop (edge entry_edge,
213 __isl_keep isl_ast_node *node_for,
214 loop_p outer, tree type,
215 tree lb, tree ub, ivs_params &ip);
216 edge graphite_create_new_loop_guard (edge entry_edge,
217 __isl_keep isl_ast_node *node_for,
218 tree *type,
219 tree *lb, tree *ub, ivs_params &ip);
220 edge graphite_create_new_guard (edge entry_edge,
221 __isl_take isl_ast_expr *if_cond,
222 ivs_params &ip);
223 void build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb,
224 __isl_keep isl_ast_expr *user_expr, ivs_params &ip,
225 sese_l &region);
226 void translate_pending_phi_nodes (void);
227 void add_parameters_to_ivs_params (scop_p scop, ivs_params &ip);
228 __isl_give isl_ast_build *generate_isl_context (scop_p scop);
230 #ifdef HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS
231 __isl_give isl_ast_node * scop_to_isl_ast (scop_p scop);
232 #else
233 int get_max_schedule_dimensions (scop_p scop);
234 __isl_give isl_map *extend_schedule (__isl_take isl_map *schedule,
235 int nb_schedule_dims);
236 __isl_give isl_union_map *generate_isl_schedule (scop_p scop);
237 __isl_give isl_ast_build *set_options (__isl_take isl_ast_build *control,
238 __isl_keep isl_union_map *schedule);
239 __isl_give isl_ast_node *scop_to_isl_ast (scop_p scop, ivs_params &ip);
240 #endif
242 bool is_valid_rename (tree rename, basic_block def_bb, basic_block use_bb,
243 phi_node_kind, tree old_name, basic_block old_bb) const;
244 tree get_rename (basic_block new_bb, tree old_name,
245 basic_block old_bb, phi_node_kind) const;
246 tree get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop,
247 basic_block new_bb, basic_block old_bb,
248 vec<tree> iv_map);
249 basic_block get_def_bb_for_const (basic_block bb, basic_block old_bb) const;
250 tree get_new_name (basic_block new_bb, tree op,
251 basic_block old_bb, phi_node_kind) const;
252 void collect_all_ssa_names (tree new_expr, vec<tree> *vec_ssa);
253 bool copy_loop_phi_args (gphi *old_phi, init_back_edge_pair_t &ibp_old_bb,
254 gphi *new_phi, init_back_edge_pair_t &ibp_new_bb,
255 bool postpone);
256 bool copy_loop_phi_nodes (basic_block bb, basic_block new_bb);
257 bool add_close_phis_to_merge_points (gphi *old_phi, gphi *new_phi,
258 tree default_value);
259 tree add_close_phis_to_outer_loops (tree last_merge_name, edge merge_e,
260 gimple *old_close_phi);
261 bool copy_loop_close_phi_args (basic_block old_bb, basic_block new_bb,
262 bool postpone);
263 bool copy_loop_close_phi_nodes (basic_block old_bb, basic_block new_bb);
264 bool copy_cond_phi_args (gphi *phi, gphi *new_phi, vec<tree> iv_map,
265 bool postpone);
266 bool copy_cond_phi_nodes (basic_block bb, basic_block new_bb,
267 vec<tree> iv_map);
268 bool graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
269 vec<tree> iv_map);
270 edge copy_bb_and_scalar_dependences (basic_block bb, edge next_e,
271 vec<tree> iv_map);
272 edge edge_for_new_close_phis (basic_block bb);
273 bool add_phi_arg_for_new_expr (tree old_phi_args[2], tree new_phi_args[2],
274 edge old_bb_dominating_edge,
275 edge old_bb_non_dominating_edge,
276 gphi *phi, gphi *new_phi,
277 basic_block new_bb);
278 bool rename_uses (gimple *copy, gimple_stmt_iterator *gsi_tgt,
279 basic_block old_bb, loop_p loop, vec<tree> iv_map);
280 void set_rename (tree old_name, tree expr);
281 void set_rename_for_each_def (gimple *stmt);
282 void gsi_insert_earliest (gimple_seq seq);
283 tree rename_all_uses (tree new_expr, basic_block new_bb, basic_block old_bb);
284 bool codegen_error_p () const { return codegen_error; }
285 bool is_constant (tree op) const
287 return TREE_CODE (op) == INTEGER_CST
288 || TREE_CODE (op) == REAL_CST
289 || TREE_CODE (op) == COMPLEX_CST
290 || TREE_CODE (op) == VECTOR_CST;
293 private:
294 /* The region to be translated. */
295 sese_info_p region;
297 /* This flag is set when an error occurred during the translation of isl AST
298 to Gimple. */
299 bool codegen_error;
301 /* A vector of all the edges at if_condition merge points. */
302 auto_vec<edge, 2> merge_points;
305 /* Return the tree variable that corresponds to the given isl ast identifier
306 expression (an isl_ast_expr of type isl_ast_expr_id).
308 FIXME: We should replace blind conversion of id's type with derivation
309 of the optimal type when we get the corresponding isl support. Blindly
310 converting type sizes may be problematic when we switch to smaller
311 types. */
313 tree translate_isl_ast_to_gimple::
314 gcc_expression_from_isl_ast_expr_id (tree type,
315 __isl_take isl_ast_expr *expr_id,
316 ivs_params &ip)
318 gcc_assert (isl_ast_expr_get_type (expr_id) == isl_ast_expr_id);
319 isl_id *tmp_isl_id = isl_ast_expr_get_id (expr_id);
320 std::map<isl_id *, tree>::iterator res;
321 res = ip.find (tmp_isl_id);
322 isl_id_free (tmp_isl_id);
323 gcc_assert (res != ip.end () &&
324 "Could not map isl_id to tree expression");
325 isl_ast_expr_free (expr_id);
326 tree t = res->second;
327 tree *val = region->parameter_rename_map->get(t);
329 if (!val)
330 val = &t;
331 return fold_convert (type, *val);
334 /* Converts an isl_ast_expr_int expression E to a GCC expression tree of
335 type TYPE. */
337 tree translate_isl_ast_to_gimple::
338 gcc_expression_from_isl_expr_int (tree type, __isl_take isl_ast_expr *expr)
340 gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_int);
341 isl_val *val = isl_ast_expr_get_val (expr);
342 mpz_t val_mpz_t;
343 mpz_init (val_mpz_t);
344 tree res;
345 if (isl_val_get_num_gmp (val, val_mpz_t) == -1)
346 res = NULL_TREE;
347 else
348 res = gmp_cst_to_tree (type, val_mpz_t);
349 isl_val_free (val);
350 isl_ast_expr_free (expr);
351 mpz_clear (val_mpz_t);
352 return res;
355 /* Converts a binary isl_ast_expr_op expression E to a GCC expression tree of
356 type TYPE. */
358 tree translate_isl_ast_to_gimple::
359 binary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
361 isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
362 tree tree_lhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);
363 arg_expr = isl_ast_expr_get_op_arg (expr, 1);
364 tree tree_rhs_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);
366 enum isl_ast_op_type expr_type = isl_ast_expr_get_op_type (expr);
367 isl_ast_expr_free (expr);
369 if (codegen_error_p ())
370 return NULL_TREE;
372 switch (expr_type)
374 case isl_ast_op_add:
375 return fold_build2 (PLUS_EXPR, type, tree_lhs_expr, tree_rhs_expr);
377 case isl_ast_op_sub:
378 return fold_build2 (MINUS_EXPR, type, tree_lhs_expr, tree_rhs_expr);
380 case isl_ast_op_mul:
381 return fold_build2 (MULT_EXPR, type, tree_lhs_expr, tree_rhs_expr);
383 case isl_ast_op_div:
384 /* As isl operates on arbitrary precision numbers, we may end up with
385 division by 2^64 that is folded to 0. */
386 if (integer_zerop (tree_rhs_expr))
388 codegen_error = true;
389 return NULL_TREE;
391 return fold_build2 (EXACT_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);
393 case isl_ast_op_pdiv_q:
394 /* As isl operates on arbitrary precision numbers, we may end up with
395 division by 2^64 that is folded to 0. */
396 if (integer_zerop (tree_rhs_expr))
398 codegen_error = true;
399 return NULL_TREE;
401 return fold_build2 (TRUNC_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);
403 #if HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS
404 /* isl 0.15 or later. */
405 case isl_ast_op_zdiv_r:
406 #endif
407 case isl_ast_op_pdiv_r:
408 /* As isl operates on arbitrary precision numbers, we may end up with
409 division by 2^64 that is folded to 0. */
410 if (integer_zerop (tree_rhs_expr))
412 codegen_error = true;
413 return NULL_TREE;
415 return fold_build2 (TRUNC_MOD_EXPR, type, tree_lhs_expr, tree_rhs_expr);
417 case isl_ast_op_fdiv_q:
418 /* As isl operates on arbitrary precision numbers, we may end up with
419 division by 2^64 that is folded to 0. */
420 if (integer_zerop (tree_rhs_expr))
422 codegen_error = true;
423 return NULL_TREE;
425 return fold_build2 (FLOOR_DIV_EXPR, type, tree_lhs_expr, tree_rhs_expr);
427 case isl_ast_op_and:
428 return fold_build2 (TRUTH_ANDIF_EXPR, type,
429 tree_lhs_expr, tree_rhs_expr);
431 case isl_ast_op_or:
432 return fold_build2 (TRUTH_ORIF_EXPR, type, tree_lhs_expr, tree_rhs_expr);
434 case isl_ast_op_eq:
435 return fold_build2 (EQ_EXPR, type, tree_lhs_expr, tree_rhs_expr);
437 case isl_ast_op_le:
438 return fold_build2 (LE_EXPR, type, tree_lhs_expr, tree_rhs_expr);
440 case isl_ast_op_lt:
441 return fold_build2 (LT_EXPR, type, tree_lhs_expr, tree_rhs_expr);
443 case isl_ast_op_ge:
444 return fold_build2 (GE_EXPR, type, tree_lhs_expr, tree_rhs_expr);
446 case isl_ast_op_gt:
447 return fold_build2 (GT_EXPR, type, tree_lhs_expr, tree_rhs_expr);
449 default:
450 gcc_unreachable ();
454 /* Converts a ternary isl_ast_expr_op expression E to a GCC expression tree of
455 type TYPE. */
457 tree translate_isl_ast_to_gimple::
458 ternary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
460 enum isl_ast_op_type t = isl_ast_expr_get_op_type (expr);
461 gcc_assert (t == isl_ast_op_cond || t == isl_ast_op_select);
462 isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
463 tree a = gcc_expression_from_isl_expression (type, arg_expr, ip);
464 arg_expr = isl_ast_expr_get_op_arg (expr, 1);
465 tree b = gcc_expression_from_isl_expression (type, arg_expr, ip);
466 arg_expr = isl_ast_expr_get_op_arg (expr, 2);
467 tree c = gcc_expression_from_isl_expression (type, arg_expr, ip);
468 isl_ast_expr_free (expr);
470 if (codegen_error_p ())
471 return NULL_TREE;
473 return fold_build3 (COND_EXPR, type, a, b, c);
476 /* Converts a unary isl_ast_expr_op expression E to a GCC expression tree of
477 type TYPE. */
479 tree translate_isl_ast_to_gimple::
480 unary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
482 gcc_assert (isl_ast_expr_get_op_type (expr) == isl_ast_op_minus);
483 isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
484 tree tree_expr = gcc_expression_from_isl_expression (type, arg_expr, ip);
485 isl_ast_expr_free (expr);
486 return codegen_error_p () ? NULL_TREE
487 : fold_build1 (NEGATE_EXPR, type, tree_expr);
490 /* Converts an isl_ast_expr_op expression E with unknown number of arguments
491 to a GCC expression tree of type TYPE. */
493 tree translate_isl_ast_to_gimple::
494 nary_op_to_tree (tree type, __isl_take isl_ast_expr *expr, ivs_params &ip)
496 enum tree_code op_code;
497 switch (isl_ast_expr_get_op_type (expr))
499 case isl_ast_op_max:
500 op_code = MAX_EXPR;
501 break;
503 case isl_ast_op_min:
504 op_code = MIN_EXPR;
505 break;
507 default:
508 gcc_unreachable ();
510 isl_ast_expr *arg_expr = isl_ast_expr_get_op_arg (expr, 0);
511 tree res = gcc_expression_from_isl_expression (type, arg_expr, ip);
513 if (codegen_error_p ())
515 isl_ast_expr_free (expr);
516 return NULL_TREE;
519 int i;
520 for (i = 1; i < isl_ast_expr_get_op_n_arg (expr); i++)
522 arg_expr = isl_ast_expr_get_op_arg (expr, i);
523 tree t = gcc_expression_from_isl_expression (type, arg_expr, ip);
525 if (codegen_error_p ())
527 isl_ast_expr_free (expr);
528 return NULL_TREE;
531 res = fold_build2 (op_code, type, res, t);
533 isl_ast_expr_free (expr);
534 return res;
537 /* Converts an isl_ast_expr_op expression E to a GCC expression tree of
538 type TYPE. */
540 tree translate_isl_ast_to_gimple::
541 gcc_expression_from_isl_expr_op (tree type, __isl_take isl_ast_expr *expr,
542 ivs_params &ip)
544 if (codegen_error_p ())
546 isl_ast_expr_free (expr);
547 return NULL_TREE;
550 gcc_assert (isl_ast_expr_get_type (expr) == isl_ast_expr_op);
551 switch (isl_ast_expr_get_op_type (expr))
553 /* These isl ast expressions are not supported yet. */
554 case isl_ast_op_error:
555 case isl_ast_op_call:
556 case isl_ast_op_and_then:
557 case isl_ast_op_or_else:
558 gcc_unreachable ();
560 case isl_ast_op_max:
561 case isl_ast_op_min:
562 return nary_op_to_tree (type, expr, ip);
564 case isl_ast_op_add:
565 case isl_ast_op_sub:
566 case isl_ast_op_mul:
567 case isl_ast_op_div:
568 case isl_ast_op_pdiv_q:
569 case isl_ast_op_pdiv_r:
570 case isl_ast_op_fdiv_q:
571 #if HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS
572 /* isl 0.15 or later. */
573 case isl_ast_op_zdiv_r:
574 #endif
575 case isl_ast_op_and:
576 case isl_ast_op_or:
577 case isl_ast_op_eq:
578 case isl_ast_op_le:
579 case isl_ast_op_lt:
580 case isl_ast_op_ge:
581 case isl_ast_op_gt:
582 return binary_op_to_tree (type, expr, ip);
584 case isl_ast_op_minus:
585 return unary_op_to_tree (type, expr, ip);
587 case isl_ast_op_cond:
588 case isl_ast_op_select:
589 return ternary_op_to_tree (type, expr, ip);
591 default:
592 gcc_unreachable ();
595 return NULL_TREE;
598 /* Converts an isl AST expression E back to a GCC expression tree of
599 type TYPE. */
601 tree translate_isl_ast_to_gimple::
602 gcc_expression_from_isl_expression (tree type, __isl_take isl_ast_expr *expr,
603 ivs_params &ip)
605 if (codegen_error_p ())
607 isl_ast_expr_free (expr);
608 return NULL_TREE;
611 switch (isl_ast_expr_get_type (expr))
613 case isl_ast_expr_id:
614 return gcc_expression_from_isl_ast_expr_id (type, expr, ip);
616 case isl_ast_expr_int:
617 return gcc_expression_from_isl_expr_int (type, expr);
619 case isl_ast_expr_op:
620 return gcc_expression_from_isl_expr_op (type, expr, ip);
622 default:
623 gcc_unreachable ();
626 return NULL_TREE;
629 /* Creates a new LOOP corresponding to isl_ast_node_for. Inserts an
630 induction variable for the new LOOP. New LOOP is attached to CFG
631 starting at ENTRY_EDGE. LOOP is inserted into the loop tree and
632 becomes the child loop of the OUTER_LOOP. NEWIVS_INDEX binds
633 isl's scattering name to the induction variable created for the
634 loop of STMT. The new induction variable is inserted in the NEWIVS
635 vector and is of type TYPE. */
637 struct loop *translate_isl_ast_to_gimple::
638 graphite_create_new_loop (edge entry_edge, __isl_keep isl_ast_node *node_for,
639 loop_p outer, tree type, tree lb, tree ub,
640 ivs_params &ip)
642 isl_ast_expr *for_inc = isl_ast_node_for_get_inc (node_for);
643 tree stride = gcc_expression_from_isl_expression (type, for_inc, ip);
645 /* To fail code generation, we generate wrong code until we discard it. */
646 if (codegen_error_p ())
647 stride = integer_zero_node;
649 tree ivvar = create_tmp_var (type, "graphite_IV");
650 tree iv, iv_after_increment;
651 loop_p loop = create_empty_loop_on_edge
652 (entry_edge, lb, stride, ub, ivvar, &iv, &iv_after_increment,
653 outer ? outer : entry_edge->src->loop_father);
655 isl_ast_expr *for_iterator = isl_ast_node_for_get_iterator (node_for);
656 isl_id *id = isl_ast_expr_get_id (for_iterator);
657 std::map<isl_id *, tree>::iterator res;
658 res = ip.find (id);
659 if (ip.count (id))
660 isl_id_free (res->first);
661 ip[id] = iv;
662 isl_ast_expr_free (for_iterator);
663 return loop;
666 /* Create the loop for a isl_ast_node_for.
668 - NEXT_E is the edge where new generated code should be attached. */
670 edge translate_isl_ast_to_gimple::
671 translate_isl_ast_for_loop (loop_p context_loop,
672 __isl_keep isl_ast_node *node_for, edge next_e,
673 tree type, tree lb, tree ub,
674 ivs_params &ip)
676 gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for);
677 struct loop *loop = graphite_create_new_loop (next_e, node_for, context_loop,
678 type, lb, ub, ip);
679 edge last_e = single_exit (loop);
680 edge to_body = single_succ_edge (loop->header);
681 basic_block after = to_body->dest;
683 /* Translate the body of the loop. */
684 isl_ast_node *for_body = isl_ast_node_for_get_body (node_for);
685 next_e = translate_isl_ast (loop, for_body, to_body, ip);
686 isl_ast_node_free (for_body);
688 /* Early return if we failed to translate loop body. */
689 if (!next_e || codegen_error_p ())
690 return NULL;
692 if (next_e->dest != after)
693 redirect_edge_succ_nodup (next_e, after);
694 set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src);
696 if (flag_loop_parallelize_all)
698 isl_id *id = isl_ast_node_get_annotation (node_for);
699 gcc_assert (id);
700 ast_build_info *for_info = (ast_build_info *) isl_id_get_user (id);
701 loop->can_be_parallel = for_info->is_parallelizable;
702 free (for_info);
703 isl_id_free (id);
706 return last_e;
709 /* We use this function to get the upper bound because of the form,
710 which is used by isl to represent loops:
712 for (iterator = init; cond; iterator += inc)
720 The loop condition is an arbitrary expression, which contains the
721 current loop iterator.
723 (e.g. iterator + 3 < B && C > iterator + A)
725 We have to know the upper bound of the iterator to generate a loop
726 in Gimple form. It can be obtained from the special representation
727 of the loop condition, which is generated by isl,
728 if the ast_build_atomic_upper_bound option is set. In this case,
729 isl generates a loop condition that consists of the current loop
730 iterator, + an operator (< or <=) and an expression not involving
731 the iterator, which is processed and returned by this function.
733 (e.g iterator <= upper-bound-expression-without-iterator) */
735 static __isl_give isl_ast_expr *
736 get_upper_bound (__isl_keep isl_ast_node *node_for)
738 gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for);
739 isl_ast_expr *for_cond = isl_ast_node_for_get_cond (node_for);
740 gcc_assert (isl_ast_expr_get_type (for_cond) == isl_ast_expr_op);
741 isl_ast_expr *res;
742 switch (isl_ast_expr_get_op_type (for_cond))
744 case isl_ast_op_le:
745 res = isl_ast_expr_get_op_arg (for_cond, 1);
746 break;
748 case isl_ast_op_lt:
750 /* (iterator < ub) => (iterator <= ub - 1). */
751 isl_val *one =
752 isl_val_int_from_si (isl_ast_expr_get_ctx (for_cond), 1);
753 isl_ast_expr *ub = isl_ast_expr_get_op_arg (for_cond, 1);
754 res = isl_ast_expr_sub (ub, isl_ast_expr_from_val (one));
755 break;
758 default:
759 gcc_unreachable ();
761 isl_ast_expr_free (for_cond);
762 return res;
765 /* All loops generated by create_empty_loop_on_edge have the form of
766 a post-test loop:
771 body of the loop;
772 } while (lower bound < upper bound);
774 We create a new if region protecting the loop to be executed, if
775 the execution count is zero (lower bound > upper bound). */
777 edge translate_isl_ast_to_gimple::
778 graphite_create_new_loop_guard (edge entry_edge,
779 __isl_keep isl_ast_node *node_for, tree *type,
780 tree *lb, tree *ub, ivs_params &ip)
782 gcc_assert (isl_ast_node_get_type (node_for) == isl_ast_node_for);
783 tree cond_expr;
784 edge exit_edge;
786 *type =
787 build_nonstandard_integer_type (graphite_expression_type_precision, 0);
788 isl_ast_expr *for_init = isl_ast_node_for_get_init (node_for);
789 *lb = gcc_expression_from_isl_expression (*type, for_init, ip);
791 /* To fail code generation, we generate wrong code until we discard it. */
792 if (codegen_error_p ())
793 *lb = integer_zero_node;
795 isl_ast_expr *upper_bound = get_upper_bound (node_for);
796 *ub = gcc_expression_from_isl_expression (*type, upper_bound, ip);
798 /* To fail code generation, we generate wrong code until we discard it. */
799 if (codegen_error_p ())
800 *ub = integer_zero_node;
802 /* When ub is simply a constant or a parameter, use lb <= ub. */
803 if (TREE_CODE (*ub) == INTEGER_CST || TREE_CODE (*ub) == SSA_NAME)
804 cond_expr = fold_build2 (LE_EXPR, boolean_type_node, *lb, *ub);
805 else
807 tree one = (POINTER_TYPE_P (*type)
808 ? convert_to_ptrofftype (integer_one_node)
809 : fold_convert (*type, integer_one_node));
810 /* Adding +1 and using LT_EXPR helps with loop latches that have a
811 loop iteration count of "PARAMETER - 1". For PARAMETER == 0 this
812 becomes 2^k-1 due to integer overflow, and the condition lb <= ub
813 is true, even if we do not want this. However lb < ub + 1 is false,
814 as expected. */
815 tree ub_one = fold_build2 (POINTER_TYPE_P (*type) ? POINTER_PLUS_EXPR
816 : PLUS_EXPR, *type, *ub, one);
818 cond_expr = fold_build2 (LT_EXPR, boolean_type_node, *lb, ub_one);
821 if (integer_onep (cond_expr))
822 exit_edge = entry_edge;
823 else
824 exit_edge = create_empty_if_region_on_edge (entry_edge,
825 unshare_expr (cond_expr));
827 return exit_edge;
830 /* Translates an isl_ast_node_for to Gimple. */
832 edge translate_isl_ast_to_gimple::
833 translate_isl_ast_node_for (loop_p context_loop, __isl_keep isl_ast_node *node,
834 edge next_e, ivs_params &ip)
836 gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_for);
837 tree type, lb, ub;
838 edge last_e = graphite_create_new_loop_guard (next_e, node, &type,
839 &lb, &ub, ip);
841 if (last_e == next_e)
843 /* There was no guard generated. */
844 last_e = single_succ_edge (split_edge (last_e));
846 translate_isl_ast_for_loop (context_loop, node, next_e,
847 type, lb, ub, ip);
848 return last_e;
851 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
852 merge_points.safe_push (last_e);
854 last_e = single_succ_edge (split_edge (last_e));
855 translate_isl_ast_for_loop (context_loop, node, true_e, type, lb, ub, ip);
857 return last_e;
860 /* Inserts in iv_map a tuple (OLD_LOOP->num, NEW_NAME) for the induction
861 variables of the loops around GBB in SESE.
863 FIXME: Instead of using a vec<tree> that maps each loop id to a possible
864 chrec, we could consider using a map<int, tree> that maps loop ids to the
865 corresponding tree expressions. */
867 void translate_isl_ast_to_gimple::
868 build_iv_mapping (vec<tree> iv_map, gimple_poly_bb_p gbb,
869 __isl_keep isl_ast_expr *user_expr, ivs_params &ip,
870 sese_l &region)
872 gcc_assert (isl_ast_expr_get_type (user_expr) == isl_ast_expr_op &&
873 isl_ast_expr_get_op_type (user_expr) == isl_ast_op_call);
874 int i;
875 isl_ast_expr *arg_expr;
876 for (i = 1; i < isl_ast_expr_get_op_n_arg (user_expr); i++)
878 arg_expr = isl_ast_expr_get_op_arg (user_expr, i);
879 tree type =
880 build_nonstandard_integer_type (graphite_expression_type_precision, 0);
881 tree t = gcc_expression_from_isl_expression (type, arg_expr, ip);
883 /* To fail code generation, we generate wrong code until we discard it. */
884 if (codegen_error_p ())
885 t = integer_zero_node;
887 loop_p old_loop = gbb_loop_at_index (gbb, region, i - 1);
888 iv_map[old_loop->num] = t;
892 /* Translates an isl_ast_node_user to Gimple.
894 FIXME: We should remove iv_map.create (loop->num + 1), if it is possible. */
896 edge translate_isl_ast_to_gimple::
897 translate_isl_ast_node_user (__isl_keep isl_ast_node *node,
898 edge next_e, ivs_params &ip)
900 gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_user);
902 isl_ast_expr *user_expr = isl_ast_node_user_get_expr (node);
903 isl_ast_expr *name_expr = isl_ast_expr_get_op_arg (user_expr, 0);
904 gcc_assert (isl_ast_expr_get_type (name_expr) == isl_ast_expr_id);
906 isl_id *name_id = isl_ast_expr_get_id (name_expr);
907 poly_bb_p pbb = (poly_bb_p) isl_id_get_user (name_id);
908 gcc_assert (pbb);
910 gimple_poly_bb_p gbb = PBB_BLACK_BOX (pbb);
912 isl_ast_expr_free (name_expr);
913 isl_id_free (name_id);
915 gcc_assert (GBB_BB (gbb) != ENTRY_BLOCK_PTR_FOR_FN (cfun) &&
916 "The entry block should not even appear within a scop");
918 const int nb_loops = number_of_loops (cfun);
919 vec<tree> iv_map;
920 iv_map.create (nb_loops);
921 iv_map.safe_grow_cleared (nb_loops);
923 build_iv_mapping (iv_map, gbb, user_expr, ip, pbb->scop->scop_info->region);
924 isl_ast_expr_free (user_expr);
926 basic_block old_bb = GBB_BB (gbb);
927 if (dump_file)
929 fprintf (dump_file,
930 "[codegen] copying from bb_%d on edge (bb_%d, bb_%d)\n",
931 old_bb->index, next_e->src->index, next_e->dest->index);
932 print_loops_bb (dump_file, GBB_BB (gbb), 0, 3);
936 next_e = copy_bb_and_scalar_dependences (old_bb, next_e, iv_map);
938 iv_map.release ();
940 if (codegen_error_p ())
941 return NULL;
943 if (dump_file)
945 fprintf (dump_file, "[codegen] (after copy) new basic block\n");
946 print_loops_bb (dump_file, next_e->src, 0, 3);
949 return next_e;
952 /* Translates an isl_ast_node_block to Gimple. */
954 edge translate_isl_ast_to_gimple::
955 translate_isl_ast_node_block (loop_p context_loop,
956 __isl_keep isl_ast_node *node,
957 edge next_e, ivs_params &ip)
959 gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_block);
960 isl_ast_node_list *node_list = isl_ast_node_block_get_children (node);
961 int i;
962 for (i = 0; i < isl_ast_node_list_n_ast_node (node_list); i++)
964 isl_ast_node *tmp_node = isl_ast_node_list_get_ast_node (node_list, i);
965 next_e = translate_isl_ast (context_loop, tmp_node, next_e, ip);
966 isl_ast_node_free (tmp_node);
968 isl_ast_node_list_free (node_list);
969 return next_e;
972 /* Creates a new if region corresponding to isl's cond. */
974 edge translate_isl_ast_to_gimple::
975 graphite_create_new_guard (edge entry_edge, __isl_take isl_ast_expr *if_cond,
976 ivs_params &ip)
978 tree type =
979 build_nonstandard_integer_type (graphite_expression_type_precision, 0);
980 tree cond_expr = gcc_expression_from_isl_expression (type, if_cond, ip);
982 /* To fail code generation, we generate wrong code until we discard it. */
983 if (codegen_error_p ())
984 cond_expr = integer_zero_node;
986 edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr);
987 return exit_edge;
990 /* Translates an isl_ast_node_if to Gimple. */
992 edge translate_isl_ast_to_gimple::
993 translate_isl_ast_node_if (loop_p context_loop,
994 __isl_keep isl_ast_node *node,
995 edge next_e, ivs_params &ip)
997 gcc_assert (isl_ast_node_get_type (node) == isl_ast_node_if);
998 isl_ast_expr *if_cond = isl_ast_node_if_get_cond (node);
999 edge last_e = graphite_create_new_guard (next_e, if_cond, ip);
1000 edge true_e = get_true_edge_from_guard_bb (next_e->dest);
1001 merge_points.safe_push (last_e);
1003 isl_ast_node *then_node = isl_ast_node_if_get_then (node);
1004 translate_isl_ast (context_loop, then_node, true_e, ip);
1005 isl_ast_node_free (then_node);
1007 edge false_e = get_false_edge_from_guard_bb (next_e->dest);
1008 isl_ast_node *else_node = isl_ast_node_if_get_else (node);
1009 if (isl_ast_node_get_type (else_node) != isl_ast_node_error)
1010 translate_isl_ast (context_loop, else_node, false_e, ip);
1012 isl_ast_node_free (else_node);
1013 return last_e;
1016 /* Translates an isl AST node NODE to GCC representation in the
1017 context of a SESE. */
1019 edge translate_isl_ast_to_gimple::
1020 translate_isl_ast (loop_p context_loop, __isl_keep isl_ast_node *node,
1021 edge next_e, ivs_params &ip)
1023 if (codegen_error_p ())
1024 return NULL;
1026 switch (isl_ast_node_get_type (node))
1028 case isl_ast_node_error:
1029 gcc_unreachable ();
1031 case isl_ast_node_for:
1032 return translate_isl_ast_node_for (context_loop, node,
1033 next_e, ip);
1035 case isl_ast_node_if:
1036 return translate_isl_ast_node_if (context_loop, node,
1037 next_e, ip);
1039 case isl_ast_node_user:
1040 return translate_isl_ast_node_user (node, next_e, ip);
1042 case isl_ast_node_block:
1043 return translate_isl_ast_node_block (context_loop, node,
1044 next_e, ip);
1046 #ifdef HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS
1047 case isl_ast_node_mark:
1049 isl_ast_node *n = isl_ast_node_mark_get_node (node);
1050 edge e = translate_isl_ast (context_loop, n, next_e, ip);
1051 isl_ast_node_free (n);
1052 return e;
1054 #endif
1056 default:
1057 gcc_unreachable ();
1061 /* Return true when BB contains loop close phi nodes. A loop close phi node is
1062 at the exit of loop which takes one argument that is the last value of the
1063 variable being used out of the loop. */
1065 static bool
1066 bb_contains_loop_close_phi_nodes (basic_block bb)
1068 return single_pred_p (bb)
1069 && bb->loop_father != single_pred_edge (bb)->src->loop_father;
1072 /* Return true when BB contains loop phi nodes. A loop phi node is the loop
1073 header containing phi nodes which has one init-edge and one back-edge. */
1075 static bool
1076 bb_contains_loop_phi_nodes (basic_block bb)
1078 if (EDGE_COUNT (bb->preds) != 2)
1079 return false;
1081 unsigned depth = loop_depth (bb->loop_father);
1083 edge preds[2] = { (*bb->preds)[0], (*bb->preds)[1] };
1085 if (depth > loop_depth (preds[0]->src->loop_father)
1086 || depth > loop_depth (preds[1]->src->loop_father))
1087 return true;
1089 /* When one of the edges correspond to the same loop father and other
1090 doesn't. */
1091 if (bb->loop_father != preds[0]->src->loop_father
1092 && bb->loop_father == preds[1]->src->loop_father)
1093 return true;
1095 if (bb->loop_father != preds[1]->src->loop_father
1096 && bb->loop_father == preds[0]->src->loop_father)
1097 return true;
1099 return false;
1102 /* Check if USE is defined in a basic block from where the definition of USE can
1103 propagate from all the paths. FIXME: Verify checks for virtual operands. */
1105 static bool
1106 is_loop_closed_ssa_use (basic_block bb, tree use)
1108 if (TREE_CODE (use) != SSA_NAME || virtual_operand_p (use))
1109 return true;
1111 /* For close-phi nodes def always comes from a loop which has a back-edge. */
1112 if (bb_contains_loop_close_phi_nodes (bb))
1113 return true;
1115 gimple *def = SSA_NAME_DEF_STMT (use);
1116 basic_block def_bb = gimple_bb (def);
1117 return (!def_bb
1118 || flow_bb_inside_loop_p (def_bb->loop_father, bb));
1121 /* Return the number of phi nodes in BB. */
1123 static int
1124 number_of_phi_nodes (basic_block bb)
1126 int num_phis = 0;
1127 for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
1128 gsi_next (&psi))
1129 num_phis++;
1130 return num_phis;
1133 /* Returns true if BB uses name in one of its PHIs. */
1135 static bool
1136 phi_uses_name (basic_block bb, tree name)
1138 for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
1139 gsi_next (&psi))
1141 gphi *phi = psi.phi ();
1142 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
1144 tree use_arg = gimple_phi_arg_def (phi, i);
1145 if (use_arg == name)
1146 return true;
1149 return false;
1152 /* Return true if RENAME (defined in BB) is a valid use in NEW_BB. The
1153 definition should flow into use, and the use should respect the loop-closed
1154 SSA form. */
1156 bool translate_isl_ast_to_gimple::
1157 is_valid_rename (tree rename, basic_block def_bb, basic_block use_bb,
1158 phi_node_kind phi_kind, tree old_name, basic_block old_bb) const
1160 /* The def of the rename must either dominate the uses or come from a
1161 back-edge. Also the def must respect the loop closed ssa form. */
1162 if (!is_loop_closed_ssa_use (use_bb, rename))
1164 if (dump_file)
1166 fprintf (dump_file, "[codegen] rename not in loop closed ssa: ");
1167 print_generic_expr (dump_file, rename, 0);
1168 fprintf (dump_file, "\n");
1170 return false;
1173 if (dominated_by_p (CDI_DOMINATORS, use_bb, def_bb))
1174 return true;
1176 if (bb_contains_loop_phi_nodes (use_bb) && phi_kind == loop_phi)
1178 /* The loop-header dominates the loop-body. */
1179 if (!dominated_by_p (CDI_DOMINATORS, def_bb, use_bb))
1180 return false;
1182 /* RENAME would be used in loop-phi. */
1183 gcc_assert (number_of_phi_nodes (use_bb));
1185 /* For definitions coming from back edges, we should check that
1186 old_name is used in a loop PHI node.
1187 FIXME: Verify if this is true. */
1188 if (phi_uses_name (old_bb, old_name))
1189 return true;
1191 return false;
1194 /* Returns the expression associated to OLD_NAME (which is used in OLD_BB), in
1195 NEW_BB from RENAME_MAP. PHI_KIND determines the kind of phi node. */
1197 tree translate_isl_ast_to_gimple::
1198 get_rename (basic_block new_bb, tree old_name, basic_block old_bb,
1199 phi_node_kind phi_kind) const
1201 gcc_assert (TREE_CODE (old_name) == SSA_NAME);
1202 vec <tree> *renames = region->rename_map->get (old_name);
1204 if (!renames || renames->is_empty ())
1205 return NULL_TREE;
1207 if (1 == renames->length ())
1209 tree rename = (*renames)[0];
1210 if (TREE_CODE (rename) == SSA_NAME)
1212 basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (rename));
1213 if (is_valid_rename (rename, bb, new_bb, phi_kind, old_name, old_bb)
1214 && (phi_kind == close_phi
1215 || flow_bb_inside_loop_p (bb->loop_father, new_bb)))
1216 return rename;
1217 return NULL_TREE;
1220 if (is_constant (rename))
1221 return rename;
1223 return NULL_TREE;
1226 /* More than one renames corresponding to the old_name. Find the rename for
1227 which the definition flows into usage at new_bb. */
1228 int i;
1229 tree t1 = NULL_TREE, t2;
1230 basic_block t1_bb = NULL;
1231 FOR_EACH_VEC_ELT (*renames, i, t2)
1233 basic_block t2_bb = gimple_bb (SSA_NAME_DEF_STMT (t2));
1235 /* Defined in the same basic block as used. */
1236 if (t2_bb == new_bb)
1237 return t2;
1239 /* NEW_BB and T2_BB are in two unrelated if-clauses. */
1240 if (!dominated_by_p (CDI_DOMINATORS, new_bb, t2_bb))
1241 continue;
1243 if (!flow_bb_inside_loop_p (t2_bb->loop_father, new_bb))
1244 continue;
1246 /* Compute the nearest dominator. */
1247 if (!t1 || dominated_by_p (CDI_DOMINATORS, t2_bb, t1_bb))
1249 t1_bb = t2_bb;
1250 t1 = t2;
1254 return t1;
1257 /* Register in RENAME_MAP the rename tuple (OLD_NAME, EXPR).
1258 When OLD_NAME and EXPR are the same we assert. */
1260 void translate_isl_ast_to_gimple::
1261 set_rename (tree old_name, tree expr)
1263 if (dump_file)
1265 fprintf (dump_file, "[codegen] setting rename: old_name = ");
1266 print_generic_expr (dump_file, old_name, 0);
1267 fprintf (dump_file, ", new_name = ");
1268 print_generic_expr (dump_file, expr, 0);
1269 fprintf (dump_file, "\n");
1272 if (old_name == expr)
1273 return;
1275 vec <tree> *renames = region->rename_map->get (old_name);
1277 if (renames)
1278 renames->safe_push (expr);
1279 else
1281 vec<tree> r;
1282 r.create (2);
1283 r.safe_push (expr);
1284 region->rename_map->put (old_name, r);
1287 tree t;
1288 int i;
1289 /* For a parameter of a scop we don't want to rename it. */
1290 FOR_EACH_VEC_ELT (region->params, i, t)
1291 if (old_name == t)
1292 region->parameter_rename_map->put(old_name, expr);
1295 /* Return an iterator to the instructions comes last in the execution order.
1296 Either GSI1 and GSI2 should belong to the same basic block or one of their
1297 respective basic blocks should dominate the other. */
1299 gimple_stmt_iterator
1300 later_of_the_two (gimple_stmt_iterator gsi1, gimple_stmt_iterator gsi2)
1302 basic_block bb1 = gsi_bb (gsi1);
1303 basic_block bb2 = gsi_bb (gsi2);
1305 /* Find the iterator which is the latest. */
1306 if (bb1 == bb2)
1308 /* For empty basic blocks gsis point to the end of the sequence. Since
1309 there is no operator== defined for gimple_stmt_iterator and for gsis
1310 not pointing to a valid statement gsi_next would assert. */
1311 gimple_stmt_iterator gsi = gsi1;
1312 do {
1313 if (gsi_stmt (gsi) == gsi_stmt (gsi2))
1314 return gsi2;
1315 gsi_next (&gsi);
1316 } while (!gsi_end_p (gsi));
1318 return gsi1;
1321 /* Find the basic block closest to the basic block which defines stmt. */
1322 if (dominated_by_p (CDI_DOMINATORS, bb1, bb2))
1323 return gsi1;
1325 gcc_assert (dominated_by_p (CDI_DOMINATORS, bb2, bb1));
1326 return gsi2;
1329 /* Insert each statement from SEQ at its earliest insertion p. */
1331 void translate_isl_ast_to_gimple::
1332 gsi_insert_earliest (gimple_seq seq)
1334 update_modified_stmts (seq);
1335 sese_l &codegen_region = region->if_region->true_region->region;
1336 basic_block begin_bb = get_entry_bb (codegen_region);
1338 /* Inserting the gimple statements in a vector because gimple_seq behave
1339 in strage ways when inserting the stmts from it into different basic
1340 blocks one at a time. */
1341 auto_vec<gimple *, 3> stmts;
1342 for (gimple_stmt_iterator gsi = gsi_start (seq); !gsi_end_p (gsi);
1343 gsi_next (&gsi))
1344 stmts.safe_push (gsi_stmt (gsi));
1346 int i;
1347 gimple *use_stmt;
1348 FOR_EACH_VEC_ELT (stmts, i, use_stmt)
1350 gcc_assert (gimple_code (use_stmt) != GIMPLE_PHI);
1351 gimple_stmt_iterator gsi_def_stmt = gsi_start_bb_nondebug (begin_bb);
1353 use_operand_p use_p;
1354 ssa_op_iter op_iter;
1355 FOR_EACH_SSA_USE_OPERAND (use_p, use_stmt, op_iter, SSA_OP_USE)
1357 /* Iterator to the current def of use_p. For function parameters or
1358 anything where def is not found, insert at the beginning of the
1359 generated region. */
1360 gimple_stmt_iterator gsi_stmt = gsi_def_stmt;
1362 tree op = USE_FROM_PTR (use_p);
1363 gimple *stmt = SSA_NAME_DEF_STMT (op);
1364 if (stmt && (gimple_code (stmt) != GIMPLE_NOP))
1365 gsi_stmt = gsi_for_stmt (stmt);
1367 /* For region parameters, insert at the beginning of the generated
1368 region. */
1369 if (!bb_in_sese_p (gsi_bb (gsi_stmt), codegen_region))
1370 gsi_stmt = gsi_def_stmt;
1372 gsi_def_stmt = later_of_the_two (gsi_stmt, gsi_def_stmt);
1375 if (!gsi_stmt (gsi_def_stmt))
1377 gimple_stmt_iterator gsi = gsi_after_labels (gsi_bb (gsi_def_stmt));
1378 gsi_insert_before (&gsi, use_stmt, GSI_NEW_STMT);
1380 else if (gimple_code (gsi_stmt (gsi_def_stmt)) == GIMPLE_PHI)
1382 gimple_stmt_iterator bsi
1383 = gsi_start_bb_nondebug (gsi_bb (gsi_def_stmt));
1384 /* Insert right after the PHI statements. */
1385 gsi_insert_before (&bsi, use_stmt, GSI_NEW_STMT);
1387 else
1388 gsi_insert_after (&gsi_def_stmt, use_stmt, GSI_NEW_STMT);
1390 if (dump_file)
1392 fprintf (dump_file, "[codegen] inserting statement: ");
1393 print_gimple_stmt (dump_file, use_stmt, 0, TDF_VOPS | TDF_MEMSYMS);
1394 print_loops_bb (dump_file, gimple_bb (use_stmt), 0, 3);
1399 /* Collect all the operands of NEW_EXPR by recursively visiting each
1400 operand. */
1402 void translate_isl_ast_to_gimple::
1403 collect_all_ssa_names (tree new_expr, vec<tree> *vec_ssa)
1405 if (new_expr == NULL_TREE)
1406 return;
1408 /* Rename all uses in new_expr. */
1409 if (TREE_CODE (new_expr) == SSA_NAME)
1411 vec_ssa->safe_push (new_expr);
1412 return;
1415 /* Iterate over SSA_NAMES in NEW_EXPR. */
1416 for (int i = 0; i < (TREE_CODE_LENGTH (TREE_CODE (new_expr))); i++)
1418 tree op = TREE_OPERAND (new_expr, i);
1419 collect_all_ssa_names (op, vec_ssa);
1423 /* This is abridged version of the function copied from:
1424 tree.c:substitute_in_expr (tree exp, tree f, tree r). */
1426 static tree
1427 substitute_ssa_name (tree exp, tree f, tree r)
1429 enum tree_code code = TREE_CODE (exp);
1430 tree op0, op1, op2, op3;
1431 tree new_tree;
1433 /* We handle TREE_LIST and COMPONENT_REF separately. */
1434 if (code == TREE_LIST)
1436 op0 = substitute_ssa_name (TREE_CHAIN (exp), f, r);
1437 op1 = substitute_ssa_name (TREE_VALUE (exp), f, r);
1438 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1439 return exp;
1441 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1443 else if (code == COMPONENT_REF)
1445 tree inner;
1447 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1448 and it is the right field, replace it with R. */
1449 for (inner = TREE_OPERAND (exp, 0);
1450 REFERENCE_CLASS_P (inner);
1451 inner = TREE_OPERAND (inner, 0))
1454 /* The field. */
1455 op1 = TREE_OPERAND (exp, 1);
1457 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
1458 return r;
1460 /* If this expression hasn't been completed let, leave it alone. */
1461 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
1462 return exp;
1464 op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
1465 if (op0 == TREE_OPERAND (exp, 0))
1466 return exp;
1468 new_tree
1469 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
1471 else
1472 switch (TREE_CODE_CLASS (code))
1474 case tcc_constant:
1475 return exp;
1477 case tcc_declaration:
1478 if (exp == f)
1479 return r;
1480 else
1481 return exp;
1483 case tcc_expression:
1484 if (exp == f)
1485 return r;
1487 /* Fall through... */
1489 case tcc_exceptional:
1490 case tcc_unary:
1491 case tcc_binary:
1492 case tcc_comparison:
1493 case tcc_reference:
1494 switch (TREE_CODE_LENGTH (code))
1496 case 0:
1497 if (exp == f)
1498 return r;
1499 return exp;
1501 case 1:
1502 op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
1503 if (op0 == TREE_OPERAND (exp, 0))
1504 return exp;
1506 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
1507 break;
1509 case 2:
1510 op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
1511 op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);
1513 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1514 return exp;
1516 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
1517 break;
1519 case 3:
1520 op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
1521 op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);
1522 op2 = substitute_ssa_name (TREE_OPERAND (exp, 2), f, r);
1524 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1525 && op2 == TREE_OPERAND (exp, 2))
1526 return exp;
1528 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
1529 break;
1531 case 4:
1532 op0 = substitute_ssa_name (TREE_OPERAND (exp, 0), f, r);
1533 op1 = substitute_ssa_name (TREE_OPERAND (exp, 1), f, r);
1534 op2 = substitute_ssa_name (TREE_OPERAND (exp, 2), f, r);
1535 op3 = substitute_ssa_name (TREE_OPERAND (exp, 3), f, r);
1537 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
1538 && op2 == TREE_OPERAND (exp, 2)
1539 && op3 == TREE_OPERAND (exp, 3))
1540 return exp;
1542 new_tree
1543 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
1544 break;
1546 default:
1547 gcc_unreachable ();
1549 break;
1551 case tcc_vl_exp:
1552 default:
1553 gcc_unreachable ();
1556 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
1558 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
1559 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
1561 return new_tree;
1564 /* Rename all the operands of NEW_EXPR by recursively visiting each operand. */
1566 tree translate_isl_ast_to_gimple::
1567 rename_all_uses (tree new_expr, basic_block new_bb, basic_block old_bb)
1569 auto_vec<tree, 2> ssa_names;
1570 collect_all_ssa_names (new_expr, &ssa_names);
1571 tree t;
1572 int i;
1573 FOR_EACH_VEC_ELT (ssa_names, i, t)
1574 if (tree r = get_rename (new_bb, t, old_bb, unknown_phi))
1575 new_expr = substitute_ssa_name (new_expr, t, r);
1577 return new_expr;
1580 /* For ops which are scev_analyzeable, we can regenerate a new name from its
1581 scalar evolution around LOOP. */
1583 tree translate_isl_ast_to_gimple::
1584 get_rename_from_scev (tree old_name, gimple_seq *stmts, loop_p loop,
1585 basic_block new_bb, basic_block old_bb,
1586 vec<tree> iv_map)
1588 tree scev = scalar_evolution_in_region (region->region, loop, old_name);
1590 /* At this point we should know the exact scev for each
1591 scalar SSA_NAME used in the scop: all the other scalar
1592 SSA_NAMEs should have been translated out of SSA using
1593 arrays with one element. */
1594 tree new_expr;
1595 if (chrec_contains_undetermined (scev))
1597 codegen_error = true;
1598 return build_zero_cst (TREE_TYPE (old_name));
1601 new_expr = chrec_apply_map (scev, iv_map);
1603 /* The apply should produce an expression tree containing
1604 the uses of the new induction variables. We should be
1605 able to use new_expr instead of the old_name in the newly
1606 generated loop nest. */
1607 if (chrec_contains_undetermined (new_expr)
1608 || tree_contains_chrecs (new_expr, NULL))
1610 codegen_error = true;
1611 return build_zero_cst (TREE_TYPE (old_name));
1614 if (TREE_CODE (new_expr) == SSA_NAME)
1616 basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (new_expr));
1617 if (bb && !dominated_by_p (CDI_DOMINATORS, new_bb, bb))
1619 codegen_error = true;
1620 return build_zero_cst (TREE_TYPE (old_name));
1624 new_expr = rename_all_uses (new_expr, new_bb, old_bb);
1626 /* We check all the operands and all of them should dominate the use at
1627 new_expr. */
1628 auto_vec <tree, 2> new_ssa_names;
1629 collect_all_ssa_names (new_expr, &new_ssa_names);
1630 int i;
1631 tree new_ssa_name;
1632 FOR_EACH_VEC_ELT (new_ssa_names, i, new_ssa_name)
1634 if (TREE_CODE (new_ssa_name) == SSA_NAME)
1636 basic_block bb = gimple_bb (SSA_NAME_DEF_STMT (new_ssa_name));
1637 if (bb && !dominated_by_p (CDI_DOMINATORS, new_bb, bb))
1639 codegen_error = true;
1640 return build_zero_cst (TREE_TYPE (old_name));
1645 /* Replace the old_name with the new_expr. */
1646 return force_gimple_operand (unshare_expr (new_expr), stmts,
1647 true, NULL_TREE);
1650 /* Renames the scalar uses of the statement COPY, using the
1651 substitution map RENAME_MAP, inserting the gimplification code at
1652 GSI_TGT, for the translation REGION, with the original copied
1653 statement in LOOP, and using the induction variable renaming map
1654 IV_MAP. Returns true when something has been renamed. */
1656 bool translate_isl_ast_to_gimple::
1657 rename_uses (gimple *copy, gimple_stmt_iterator *gsi_tgt, basic_block old_bb,
1658 loop_p loop, vec<tree> iv_map)
1660 bool changed = false;
1662 if (is_gimple_debug (copy))
1664 if (gimple_debug_bind_p (copy))
1665 gimple_debug_bind_reset_value (copy);
1666 else if (gimple_debug_source_bind_p (copy))
1667 return false;
1668 else
1669 gcc_unreachable ();
1671 return false;
1674 if (dump_file)
1676 fprintf (dump_file, "[codegen] renaming uses of stmt: ");
1677 print_gimple_stmt (dump_file, copy, 0, 0);
1680 use_operand_p use_p;
1681 ssa_op_iter op_iter;
1682 FOR_EACH_SSA_USE_OPERAND (use_p, copy, op_iter, SSA_OP_USE)
1684 tree old_name = USE_FROM_PTR (use_p);
1686 if (dump_file)
1688 fprintf (dump_file, "[codegen] renaming old_name = ");
1689 print_generic_expr (dump_file, old_name, 0);
1690 fprintf (dump_file, "\n");
1693 if (TREE_CODE (old_name) != SSA_NAME
1694 || SSA_NAME_IS_DEFAULT_DEF (old_name))
1695 continue;
1697 changed = true;
1698 tree new_expr = get_rename (gsi_tgt->bb, old_name,
1699 old_bb, unknown_phi);
1701 if (new_expr)
1703 tree type_old_name = TREE_TYPE (old_name);
1704 tree type_new_expr = TREE_TYPE (new_expr);
1706 if (dump_file)
1708 fprintf (dump_file, "[codegen] from rename_map: new_name = ");
1709 print_generic_expr (dump_file, new_expr, 0);
1710 fprintf (dump_file, "\n");
1713 if (type_old_name != type_new_expr
1714 || TREE_CODE (new_expr) != SSA_NAME)
1716 tree var = create_tmp_var (type_old_name, "var");
1718 if (!useless_type_conversion_p (type_old_name, type_new_expr))
1719 new_expr = fold_convert (type_old_name, new_expr);
1721 gimple_seq stmts;
1722 new_expr = force_gimple_operand (new_expr, &stmts, true, var);
1723 gsi_insert_earliest (stmts);
1726 replace_exp (use_p, new_expr);
1727 continue;
1730 gimple_seq stmts;
1731 new_expr = get_rename_from_scev (old_name, &stmts, loop, gimple_bb (copy),
1732 old_bb, iv_map);
1733 if (!new_expr || codegen_error_p ())
1734 return false;
1736 if (dump_file)
1738 fprintf (dump_file, "[codegen] not in rename map, scev: ");
1739 print_generic_expr (dump_file, new_expr, 0);
1740 fprintf (dump_file, "\n");
1743 gsi_insert_earliest (stmts);
1744 replace_exp (use_p, new_expr);
1746 if (TREE_CODE (new_expr) == INTEGER_CST
1747 && is_gimple_assign (copy))
1749 tree rhs = gimple_assign_rhs1 (copy);
1751 if (TREE_CODE (rhs) == ADDR_EXPR)
1752 recompute_tree_invariant_for_addr_expr (rhs);
1755 set_rename (old_name, new_expr);
1758 return changed;
1761 /* Returns a basic block that could correspond to where a constant was defined
1762 in the original code. In the original code OLD_BB had the definition, we
1763 need to find which basic block out of the copies of old_bb, in the new
1764 region, should a definition correspond to if it has to reach BB. */
1766 basic_block translate_isl_ast_to_gimple::
1767 get_def_bb_for_const (basic_block bb, basic_block old_bb) const
1769 vec <basic_block> *bbs = region->copied_bb_map->get (old_bb);
1771 if (!bbs || bbs->is_empty ())
1772 return NULL;
1774 if (1 == bbs->length ())
1775 return (*bbs)[0];
1777 int i;
1778 basic_block b1 = NULL, b2;
1779 FOR_EACH_VEC_ELT (*bbs, i, b2)
1781 if (b2 == bb)
1782 return bb;
1784 /* BB and B2 are in two unrelated if-clauses. */
1785 if (!dominated_by_p (CDI_DOMINATORS, bb, b2))
1786 continue;
1788 /* Compute the nearest dominator. */
1789 if (!b1 || dominated_by_p (CDI_DOMINATORS, b2, b1))
1790 b1 = b2;
1793 return b1;
1796 /* Get the new name of OP (from OLD_BB) to be used in NEW_BB. PHI_KIND
1797 determines the kind of phi node. */
1799 tree translate_isl_ast_to_gimple::
1800 get_new_name (basic_block new_bb, tree op,
1801 basic_block old_bb, phi_node_kind phi_kind) const
1803 /* For constants the names are the same. */
1804 if (TREE_CODE (op) != SSA_NAME)
1805 return op;
1807 return get_rename (new_bb, op, old_bb, phi_kind);
1810 /* Return a debug location for OP. */
1812 static location_t
1813 get_loc (tree op)
1815 location_t loc = UNKNOWN_LOCATION;
1817 if (TREE_CODE (op) == SSA_NAME)
1818 loc = gimple_location (SSA_NAME_DEF_STMT (op));
1819 return loc;
1822 /* Returns the incoming edges of basic_block BB in the pair. The first edge is
1823 the init edge (from outside the loop) and the second one is the back edge
1824 from the same loop. */
1826 std::pair<edge, edge>
1827 get_edges (basic_block bb)
1829 std::pair<edge, edge> edges;
1830 edge e;
1831 edge_iterator ei;
1832 FOR_EACH_EDGE (e, ei, bb->preds)
1833 if (bb->loop_father != e->src->loop_father)
1834 edges.first = e;
1835 else
1836 edges.second = e;
1837 return edges;
1840 /* Copy the PHI arguments from OLD_PHI to the NEW_PHI. The arguments to NEW_PHI
1841 must be found unless they can be POSTPONEd for later. */
1843 bool translate_isl_ast_to_gimple::
1844 copy_loop_phi_args (gphi *old_phi, init_back_edge_pair_t &ibp_old_bb,
1845 gphi *new_phi, init_back_edge_pair_t &ibp_new_bb,
1846 bool postpone)
1848 gcc_assert (gimple_phi_num_args (old_phi) == gimple_phi_num_args (new_phi));
1850 basic_block new_bb = gimple_bb (new_phi);
1851 for (unsigned i = 0; i < gimple_phi_num_args (old_phi); i++)
1853 edge e;
1854 if (gimple_phi_arg_edge (old_phi, i) == ibp_old_bb.first)
1855 e = ibp_new_bb.first;
1856 else
1857 e = ibp_new_bb.second;
1859 tree old_name = gimple_phi_arg_def (old_phi, i);
1860 tree new_name = get_new_name (new_bb, old_name,
1861 gimple_bb (old_phi), loop_phi);
1862 if (new_name)
1864 add_phi_arg (new_phi, new_name, e, get_loc (old_name));
1865 continue;
1868 gimple *old_def_stmt = SSA_NAME_DEF_STMT (old_name);
1869 if (!old_def_stmt || gimple_code (old_def_stmt) == GIMPLE_NOP)
1870 /* If the phi arg was a function arg, or wasn't defined, just use the
1871 old name. */
1872 add_phi_arg (new_phi, old_name, e, get_loc (old_name));
1873 else if (postpone)
1875 /* Postpone code gen for later for those back-edges we don't have the
1876 names yet. */
1877 region->incomplete_phis.safe_push (std::make_pair (old_phi, new_phi));
1878 if (dump_file)
1879 fprintf (dump_file, "[codegen] postpone loop phi nodes.\n");
1881 else
1882 /* Either we should add the arg to phi or, we should postpone. */
1883 return false;
1885 return true;
1888 /* Copy loop phi nodes from BB to NEW_BB. */
1890 bool translate_isl_ast_to_gimple::
1891 copy_loop_phi_nodes (basic_block bb, basic_block new_bb)
1893 if (dump_file)
1894 fprintf (dump_file, "[codegen] copying loop phi nodes in bb_%d.\n",
1895 new_bb->index);
1897 /* Loop phi nodes should have only two arguments. */
1898 gcc_assert (2 == EDGE_COUNT (bb->preds));
1900 /* First edge is the init edge and second is the back edge. */
1901 init_back_edge_pair_t ibp_old_bb = get_edges (bb);
1903 /* First edge is the init edge and second is the back edge. */
1904 init_back_edge_pair_t ibp_new_bb = get_edges (new_bb);
1906 for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
1907 gsi_next (&psi))
1909 gphi *phi = psi.phi ();
1910 tree res = gimple_phi_result (phi);
1911 if (virtual_operand_p (res))
1912 continue;
1913 if (is_gimple_reg (res) && scev_analyzable_p (res, region->region))
1914 continue;
1916 gphi *new_phi = create_phi_node (SSA_NAME_VAR (res), new_bb);
1917 tree new_res = create_new_def_for (res, new_phi,
1918 gimple_phi_result_ptr (new_phi));
1919 set_rename (res, new_res);
1920 codegen_error = !copy_loop_phi_args (phi, ibp_old_bb, new_phi,
1921 ibp_new_bb, true);
1922 update_stmt (new_phi);
1924 if (dump_file)
1926 fprintf (dump_file, "[codegen] creating loop-phi node: ");
1927 print_gimple_stmt (dump_file, new_phi, 0, 0);
1931 return true;
1934 /* Return the init value of PHI, the value coming from outside the loop. */
1936 static tree
1937 get_loop_init_value (gphi *phi)
1940 loop_p loop = gimple_bb (phi)->loop_father;
1942 edge e;
1943 edge_iterator ei;
1944 FOR_EACH_EDGE (e, ei, gimple_bb (phi)->preds)
1945 if (e->src->loop_father != loop)
1946 return gimple_phi_arg_def (phi, e->dest_idx);
1948 return NULL_TREE;
1951 /* Find the init value (the value which comes from outside the loop), of one of
1952 the operands of DEF which is defined by a loop phi. */
1954 static tree
1955 find_init_value (gimple *def)
1957 if (gimple_code (def) == GIMPLE_PHI)
1958 return get_loop_init_value (as_a <gphi*> (def));
1960 if (gimple_vuse (def))
1961 return NULL_TREE;
1963 ssa_op_iter iter;
1964 use_operand_p use_p;
1965 FOR_EACH_SSA_USE_OPERAND (use_p, def, iter, SSA_OP_USE)
1967 tree use = USE_FROM_PTR (use_p);
1968 if (TREE_CODE (use) == SSA_NAME)
1970 if (tree res = find_init_value (SSA_NAME_DEF_STMT (use)))
1971 return res;
1975 return NULL_TREE;
1978 /* Return the init value, the value coming from outside the loop. */
1980 static tree
1981 find_init_value_close_phi (gphi *phi)
1983 gcc_assert (gimple_phi_num_args (phi) == 1);
1984 tree use_arg = gimple_phi_arg_def (phi, 0);
1985 gimple *def = SSA_NAME_DEF_STMT (use_arg);
1986 return find_init_value (def);
1990 tree translate_isl_ast_to_gimple::
1991 add_close_phis_to_outer_loops (tree last_merge_name, edge last_e,
1992 gimple *old_close_phi)
1994 sese_l &codegen_region = region->if_region->true_region->region;
1995 gimple *stmt = SSA_NAME_DEF_STMT (last_merge_name);
1996 basic_block bb = gimple_bb (stmt);
1997 if (!bb_in_sese_p (bb, codegen_region))
1998 return last_merge_name;
2000 loop_p loop = bb->loop_father;
2001 if (!loop_in_sese_p (loop, codegen_region))
2002 return last_merge_name;
2004 edge e = single_exit (loop);
2006 if (dominated_by_p (CDI_DOMINATORS, e->dest, last_e->src))
2007 return last_merge_name;
2009 tree old_name = gimple_phi_arg_def (old_close_phi, 0);
2010 tree old_close_phi_name = gimple_phi_result (old_close_phi);
2012 bb = e->dest;
2013 if (!bb_contains_loop_close_phi_nodes (bb) || !single_succ_p (bb))
2014 bb = split_edge (e);
2016 gphi *close_phi = create_phi_node (SSA_NAME_VAR (last_merge_name), bb);
2017 tree res = create_new_def_for (last_merge_name, close_phi,
2018 gimple_phi_result_ptr (close_phi));
2019 set_rename (old_close_phi_name, res);
2020 add_phi_arg (close_phi, last_merge_name, e, get_loc (old_name));
2021 last_merge_name = res;
2023 return add_close_phis_to_outer_loops (last_merge_name, last_e, old_close_phi);
2026 /* Add phi nodes to all merge points of all the diamonds enclosing the loop of
2027 the close phi node PHI. */
2029 bool translate_isl_ast_to_gimple::
2030 add_close_phis_to_merge_points (gphi *old_close_phi, gphi *new_close_phi,
2031 tree default_value)
2033 sese_l &codegen_region = region->if_region->true_region->region;
2034 basic_block default_value_bb = get_entry_bb (codegen_region);
2035 if (SSA_NAME == TREE_CODE (default_value))
2037 gimple *stmt = SSA_NAME_DEF_STMT (default_value);
2038 if (!stmt || gimple_code (stmt) == GIMPLE_NOP)
2039 return false;
2040 default_value_bb = gimple_bb (stmt);
2043 basic_block new_close_phi_bb = gimple_bb (new_close_phi);
2045 tree old_close_phi_name = gimple_phi_result (old_close_phi);
2046 tree new_close_phi_name = gimple_phi_result (new_close_phi);
2047 tree last_merge_name = new_close_phi_name;
2048 tree old_name = gimple_phi_arg_def (old_close_phi, 0);
2050 int i;
2051 edge merge_e;
2052 FOR_EACH_VEC_ELT_REVERSE (merge_points, i, merge_e)
2054 basic_block new_merge_bb = merge_e->src;
2055 if (!dominated_by_p (CDI_DOMINATORS, new_merge_bb, default_value_bb))
2056 continue;
2058 last_merge_name = add_close_phis_to_outer_loops (last_merge_name, merge_e,
2059 old_close_phi);
2061 gphi *merge_phi = create_phi_node (SSA_NAME_VAR (old_close_phi_name), new_merge_bb);
2062 tree merge_res = create_new_def_for (old_close_phi_name, merge_phi,
2063 gimple_phi_result_ptr (merge_phi));
2064 set_rename (old_close_phi_name, merge_res);
2066 edge from_loop = NULL, from_default_value = NULL;
2067 edge e;
2068 edge_iterator ei;
2069 FOR_EACH_EDGE (e, ei, new_merge_bb->preds)
2070 if (dominated_by_p (CDI_DOMINATORS, e->src, new_close_phi_bb))
2071 from_loop = e;
2072 else
2073 from_default_value = e;
2075 /* Because CDI_POST_DOMINATORS are not updated, we only rely on
2076 CDI_DOMINATORS, which may not handle all cases where new_close_phi_bb
2077 is contained in another condition. */
2078 if (!from_default_value || !from_loop)
2079 return false;
2081 add_phi_arg (merge_phi, last_merge_name, from_loop, get_loc (old_name));
2082 add_phi_arg (merge_phi, default_value, from_default_value, get_loc (old_name));
2084 if (dump_file)
2086 fprintf (dump_file, "[codegen] Adding guard-phi: ");
2087 print_gimple_stmt (dump_file, merge_phi, 0, 0);
2090 update_stmt (merge_phi);
2091 last_merge_name = merge_res;
2094 return true;
2097 /* Copy all the loop-close phi args from BB to NEW_BB. */
2099 bool translate_isl_ast_to_gimple::
2100 copy_loop_close_phi_args (basic_block old_bb, basic_block new_bb, bool postpone)
2102 for (gphi_iterator psi = gsi_start_phis (old_bb); !gsi_end_p (psi);
2103 gsi_next (&psi))
2105 gphi *old_close_phi = psi.phi ();
2106 tree res = gimple_phi_result (old_close_phi);
2107 if (virtual_operand_p (res))
2108 continue;
2110 if (is_gimple_reg (res) && scev_analyzable_p (res, region->region))
2111 /* Loop close phi nodes should not be scev_analyzable_p. */
2112 gcc_unreachable ();
2114 gphi *new_close_phi = create_phi_node (SSA_NAME_VAR (res), new_bb);
2115 tree new_res = create_new_def_for (res, new_close_phi,
2116 gimple_phi_result_ptr (new_close_phi));
2117 set_rename (res, new_res);
2119 tree old_name = gimple_phi_arg_def (old_close_phi, 0);
2120 tree new_name = get_new_name (new_bb, old_name, old_bb, close_phi);
2122 /* Predecessor basic blocks of a loop close phi should have been code
2123 generated before. FIXME: This is fixable by merging PHIs from inner
2124 loops as well. See: gfortran.dg/graphite/interchange-3.f90. */
2125 if (!new_name)
2126 return false;
2128 add_phi_arg (new_close_phi, new_name, single_pred_edge (new_bb),
2129 get_loc (old_name));
2130 if (dump_file)
2132 fprintf (dump_file, "[codegen] Adding loop close phi: ");
2133 print_gimple_stmt (dump_file, new_close_phi, 0, 0);
2136 update_stmt (new_close_phi);
2138 /* When there is no loop guard around this codegenerated loop, there is no
2139 need to collect the close-phi arg. */
2140 if (merge_points.is_empty ())
2141 continue;
2143 /* Add a PHI in the succ_new_bb for each close phi of the loop. */
2144 tree default_value = find_init_value_close_phi (new_close_phi);
2146 /* A close phi must come from a loop-phi having a default value. */
2147 if (!default_value)
2149 if (!postpone)
2150 return false;
2152 region->incomplete_phis.safe_push (std::make_pair (old_close_phi,
2153 new_close_phi));
2154 if (dump_file)
2156 fprintf (dump_file, "[codegen] postpone close phi nodes: ");
2157 print_gimple_stmt (dump_file, new_close_phi, 0, 0);
2159 continue;
2162 if (!add_close_phis_to_merge_points (old_close_phi, new_close_phi,
2163 default_value))
2164 return false;
2167 return true;
2170 /* Copy loop close phi nodes from BB to NEW_BB. */
2172 bool translate_isl_ast_to_gimple::
2173 copy_loop_close_phi_nodes (basic_block old_bb, basic_block new_bb)
2175 if (dump_file)
2176 fprintf (dump_file, "[codegen] copying loop close phi nodes in bb_%d.\n",
2177 new_bb->index);
2178 /* Loop close phi nodes should have only one argument. */
2179 gcc_assert (1 == EDGE_COUNT (old_bb->preds));
2181 return copy_loop_close_phi_args (old_bb, new_bb, true);
2185 /* Add NEW_NAME as the ARGNUM-th arg of NEW_PHI which is in NEW_BB.
2186 DOMINATING_PRED is the predecessor basic block of OLD_BB which dominates the
2187 other pred of OLD_BB as well. If no such basic block exists then it is NULL.
2188 NON_DOMINATING_PRED is a pred which does not dominate OLD_BB, it cannot be
2189 NULL.
2191 Case1: OLD_BB->preds {BB1, BB2} and BB1 does not dominate BB2 and vice versa.
2192 In this case DOMINATING_PRED = NULL.
2194 Case2: OLD_BB->preds {BB1, BB2} and BB1 dominates BB2.
2196 Returns true on successful copy of the args, false otherwise. */
2198 bool translate_isl_ast_to_gimple::
2199 add_phi_arg_for_new_expr (tree old_phi_args[2], tree new_phi_args[2],
2200 edge old_bb_dominating_edge,
2201 edge old_bb_non_dominating_edge,
2202 gphi *phi, gphi *new_phi,
2203 basic_block new_bb)
2205 basic_block def_pred[2] = { NULL, NULL };
2206 int not_found_bb_index = -1;
2207 for (int i = 0; i < 2; i++)
2209 /* If the corresponding def_bb could not be found the entry will be
2210 NULL. */
2211 if (TREE_CODE (old_phi_args[i]) == INTEGER_CST)
2212 def_pred[i] = get_def_bb_for_const (new_bb,
2213 gimple_phi_arg_edge (phi, i)->src);
2214 else if (new_phi_args[i] && (TREE_CODE (new_phi_args[i]) == SSA_NAME))
2215 def_pred[i] = gimple_bb (SSA_NAME_DEF_STMT (new_phi_args[i]));
2217 if (!def_pred[i])
2219 /* When non are available bail out. */
2220 if (not_found_bb_index != -1)
2221 return false;
2222 not_found_bb_index = i;
2226 /* Here we are pattern matching on the structure of CFG w.r.t. old one. */
2227 if (old_bb_dominating_edge)
2229 if (not_found_bb_index != -1)
2230 return false;
2232 basic_block new_pred1 = (*new_bb->preds)[0]->src;
2233 basic_block new_pred2 = (*new_bb->preds)[1]->src;
2234 vec <basic_block> *bbs
2235 = region->copied_bb_map->get (old_bb_non_dominating_edge->src);
2237 /* Could not find a mapping. */
2238 if (!bbs)
2239 return false;
2241 basic_block new_pred = NULL;
2242 basic_block b;
2243 int i;
2244 FOR_EACH_VEC_ELT (*bbs, i, b)
2246 if (dominated_by_p (CDI_DOMINATORS, new_pred1, b))
2248 /* FIXME: If we have already found new_pred then we have to
2249 disambiguate, bail out for now. */
2250 if (new_pred)
2251 return false;
2252 new_pred = new_pred1;
2254 if (dominated_by_p (CDI_DOMINATORS, new_pred2, b))
2256 /* FIXME: If we have already found new_pred then we have to either
2257 it dominates both or we have to disambiguate, bail out. */
2258 if (new_pred)
2259 return false;
2260 new_pred = new_pred2;
2264 if (!new_pred)
2265 return false;
2267 edge new_non_dominating_edge = find_edge (new_pred, new_bb);
2268 gcc_assert (new_non_dominating_edge);
2269 /* FIXME: Validate each args just like in loop-phis. */
2270 /* By the process of elimination we first insert insert phi-edge for
2271 non-dominating pred which is computed above and then we insert the
2272 remaining one. */
2273 int inserted_edge = 0;
2274 for (; inserted_edge < 2; inserted_edge++)
2276 edge new_bb_pred_edge = gimple_phi_arg_edge (new_phi, inserted_edge);
2277 if (new_non_dominating_edge == new_bb_pred_edge)
2279 add_phi_arg (new_phi, new_phi_args[inserted_edge],
2280 new_non_dominating_edge,
2281 get_loc (old_phi_args[inserted_edge]));
2282 break;
2285 if (inserted_edge == 2)
2286 return false;
2288 int edge_dominating = inserted_edge == 0 ? 1 : 0;
2290 edge new_dominating_edge = NULL;
2291 for (inserted_edge = 0; inserted_edge < 2; inserted_edge++)
2293 edge e = gimple_phi_arg_edge (new_phi, inserted_edge);
2294 if (e != new_non_dominating_edge)
2296 new_dominating_edge = e;
2297 add_phi_arg (new_phi, new_phi_args[edge_dominating],
2298 new_dominating_edge,
2299 get_loc (old_phi_args[inserted_edge]));
2300 break;
2303 gcc_assert (new_dominating_edge);
2305 else
2307 /* Classic diamond structure: both edges are non-dominating. We need to
2308 find one unique edge then the other can be found be elimination. If
2309 any definition (def_pred) dominates both the preds of new_bb then we
2310 bail out. Entries of def_pred maybe NULL, in that case we must
2311 uniquely find pred with help of only one entry. */
2312 edge new_e[2] = { NULL, NULL };
2313 for (int i = 0; i < 2; i++)
2315 edge e;
2316 edge_iterator ei;
2317 FOR_EACH_EDGE (e, ei, new_bb->preds)
2318 if (def_pred[i]
2319 && dominated_by_p (CDI_DOMINATORS, e->src, def_pred[i]))
2321 if (new_e[i])
2322 /* We do not know how to handle the case when def_pred
2323 dominates more than a predecessor. */
2324 return false;
2325 new_e[i] = e;
2329 gcc_assert (new_e[0] || new_e[1]);
2331 /* Find the other edge by process of elimination. */
2332 if (not_found_bb_index != -1)
2334 gcc_assert (!new_e[not_found_bb_index]);
2335 int found_bb_index = not_found_bb_index == 1 ? 0 : 1;
2336 edge e;
2337 edge_iterator ei;
2338 FOR_EACH_EDGE (e, ei, new_bb->preds)
2340 if (new_e[found_bb_index] == e)
2341 continue;
2342 new_e[not_found_bb_index] = e;
2346 /* Add edges to phi args. */
2347 for (int i = 0; i < 2; i++)
2348 add_phi_arg (new_phi, new_phi_args[i], new_e[i],
2349 get_loc (old_phi_args[i]));
2352 return true;
2355 /* Copy the arguments of cond-phi node PHI, to NEW_PHI in the codegenerated
2356 region. If postpone is true and it isn't possible to copy any arg of PHI,
2357 the PHI is added to the REGION->INCOMPLETE_PHIS to be codegenerated later.
2358 Returns false if the copying was unsuccessful. */
2360 bool translate_isl_ast_to_gimple::
2361 copy_cond_phi_args (gphi *phi, gphi *new_phi, vec<tree> iv_map, bool postpone)
2363 if (dump_file)
2364 fprintf (dump_file, "[codegen] copying cond phi args.\n");
2365 gcc_assert (2 == gimple_phi_num_args (phi));
2367 basic_block new_bb = gimple_bb (new_phi);
2368 loop_p loop = gimple_bb (phi)->loop_father;
2370 basic_block old_bb = gimple_bb (phi);
2371 edge old_bb_non_dominating_edge = NULL, old_bb_dominating_edge = NULL;
2373 edge e;
2374 edge_iterator ei;
2375 FOR_EACH_EDGE (e, ei, old_bb->preds)
2376 if (!dominated_by_p (CDI_DOMINATORS, old_bb, e->src))
2377 old_bb_non_dominating_edge = e;
2378 else
2379 old_bb_dominating_edge = e;
2381 gcc_assert (!dominated_by_p (CDI_DOMINATORS, old_bb,
2382 old_bb_non_dominating_edge->src));
2384 tree new_phi_args[2];
2385 tree old_phi_args[2];
2387 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
2389 tree old_name = gimple_phi_arg_def (phi, i);
2390 tree new_name = get_new_name (new_bb, old_name, old_bb, cond_phi);
2391 old_phi_args[i] = old_name;
2392 if (new_name)
2394 new_phi_args [i] = new_name;
2395 continue;
2398 /* If the phi-arg was a parameter. */
2399 if (vec_find (region->params, old_name) != -1)
2401 new_phi_args [i] = old_name;
2402 if (dump_file)
2404 fprintf (dump_file,
2405 "[codegen] parameter argument to phi, new_expr: ");
2406 print_generic_expr (dump_file, new_phi_args[i], 0);
2407 fprintf (dump_file, "\n");
2409 continue;
2412 gimple *old_def_stmt = SSA_NAME_DEF_STMT (old_name);
2413 if (!old_def_stmt || gimple_code (old_def_stmt) == GIMPLE_NOP)
2414 /* FIXME: If the phi arg was a function arg, or wasn't defined, just use
2415 the old name. */
2416 return false;
2418 if (postpone)
2420 /* If the phi-arg is scev-analyzeable but only in the first stage. */
2421 if (is_gimple_reg (old_name)
2422 && scev_analyzable_p (old_name, region->region))
2424 gimple_seq stmts;
2425 tree new_expr = get_rename_from_scev (old_name, &stmts, loop,
2426 new_bb, old_bb, iv_map);
2427 if (codegen_error_p ())
2428 return false;
2430 gcc_assert (new_expr);
2431 if (dump_file)
2433 fprintf (dump_file,
2434 "[codegen] scev analyzeable, new_expr: ");
2435 print_generic_expr (dump_file, new_expr, 0);
2436 fprintf (dump_file, "\n");
2438 gsi_insert_earliest (stmts);
2439 new_phi_args[i] = new_expr;
2440 continue;
2443 /* Postpone code gen for later for back-edges. */
2444 region->incomplete_phis.safe_push (std::make_pair (phi, new_phi));
2446 if (dump_file)
2448 fprintf (dump_file, "[codegen] postpone cond phi nodes: ");
2449 print_gimple_stmt (dump_file, new_phi, 0, 0);
2452 new_phi_args [i] = NULL_TREE;
2453 continue;
2455 else
2456 /* Either we should add the arg to phi or, we should postpone. */
2457 return false;
2460 /* If none of the args have been determined in the first stage then wait until
2461 later. */
2462 if (postpone && !new_phi_args[0] && !new_phi_args[1])
2463 return true;
2465 return add_phi_arg_for_new_expr (old_phi_args, new_phi_args,
2466 old_bb_dominating_edge,
2467 old_bb_non_dominating_edge,
2468 phi, new_phi, new_bb);
2471 /* Copy cond phi nodes from BB to NEW_BB. A cond-phi node is a basic block
2472 containing phi nodes coming from two predecessors, and none of them are back
2473 edges. */
2475 bool translate_isl_ast_to_gimple::
2476 copy_cond_phi_nodes (basic_block bb, basic_block new_bb, vec<tree> iv_map)
2479 gcc_assert (!bb_contains_loop_close_phi_nodes (bb));
2481 /* TODO: Handle cond phi nodes with more than 2 predecessors. */
2482 if (EDGE_COUNT (bb->preds) != 2)
2483 return false;
2485 if (dump_file)
2486 fprintf (dump_file, "[codegen] copying cond phi nodes in bb_%d.\n",
2487 new_bb->index);
2489 for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
2490 gsi_next (&psi))
2492 gphi *phi = psi.phi ();
2493 tree res = gimple_phi_result (phi);
2494 if (virtual_operand_p (res))
2495 continue;
2497 gphi *new_phi = create_phi_node (SSA_NAME_VAR (res), new_bb);
2498 tree new_res = create_new_def_for (res, new_phi,
2499 gimple_phi_result_ptr (new_phi));
2500 set_rename (res, new_res);
2502 if (!copy_cond_phi_args (phi, new_phi, iv_map, true))
2503 return false;
2505 update_stmt (new_phi);
2508 return true;
2511 /* Return true if STMT should be copied from region to the new code-generated
2512 region. LABELs, CONDITIONS, induction-variables and region parameters need
2513 not be copied. */
2515 static bool
2516 should_copy_to_new_region (gimple *stmt, sese_info_p region)
2518 /* Do not copy labels or conditions. */
2519 if (gimple_code (stmt) == GIMPLE_LABEL
2520 || gimple_code (stmt) == GIMPLE_COND)
2521 return false;
2523 tree lhs;
2524 /* Do not copy induction variables. */
2525 if (is_gimple_assign (stmt)
2526 && (lhs = gimple_assign_lhs (stmt))
2527 && TREE_CODE (lhs) == SSA_NAME
2528 && is_gimple_reg (lhs)
2529 && scev_analyzable_p (lhs, region->region))
2530 return false;
2532 /* Do not copy parameters that have been generated in the header of the
2533 scop. */
2534 if (is_gimple_assign (stmt)
2535 && (lhs = gimple_assign_lhs (stmt))
2536 && TREE_CODE (lhs) == SSA_NAME
2537 && region->parameter_rename_map->get(lhs))
2538 return false;
2540 return true;
2543 /* Create new names for all the definitions created by COPY and add replacement
2544 mappings for each new name. */
2546 void translate_isl_ast_to_gimple::
2547 set_rename_for_each_def (gimple *stmt)
2549 def_operand_p def_p;
2550 ssa_op_iter op_iter;
2551 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_ALL_DEFS)
2553 tree old_name = DEF_FROM_PTR (def_p);
2554 tree new_name = create_new_def_for (old_name, stmt, def_p);
2555 set_rename (old_name, new_name);
2559 /* Duplicates the statements of basic block BB into basic block NEW_BB
2560 and compute the new induction variables according to the IV_MAP. */
2562 bool translate_isl_ast_to_gimple::
2563 graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
2564 vec<tree> iv_map)
2566 /* Iterator poining to the place where new statement (s) will be inserted. */
2567 gimple_stmt_iterator gsi_tgt = gsi_last_bb (new_bb);
2569 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2570 gsi_next (&gsi))
2572 gimple *stmt = gsi_stmt (gsi);
2573 if (!should_copy_to_new_region (stmt, region))
2574 continue;
2576 /* Create a new copy of STMT and duplicate STMT's virtual
2577 operands. */
2578 gimple *copy = gimple_copy (stmt);
2579 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
2581 if (dump_file)
2583 fprintf (dump_file, "[codegen] inserting statement: ");
2584 print_gimple_stmt (dump_file, copy, 0, 0);
2587 maybe_duplicate_eh_stmt (copy, stmt);
2588 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
2590 /* Crete new names for each def in the copied stmt. */
2591 set_rename_for_each_def (copy);
2593 loop_p loop = bb->loop_father;
2594 if (rename_uses (copy, &gsi_tgt, bb, loop, iv_map))
2596 fold_stmt_inplace (&gsi_tgt);
2597 gcc_assert (gsi_stmt (gsi_tgt) == copy);
2600 if (codegen_error_p ())
2601 return false;
2603 /* For each SSA_NAME in the parameter_rename_map rename their usage. */
2604 ssa_op_iter iter;
2605 use_operand_p use_p;
2606 if (!is_gimple_debug (copy))
2607 FOR_EACH_SSA_USE_OPERAND (use_p, copy, iter, SSA_OP_USE)
2609 tree old_name = USE_FROM_PTR (use_p);
2611 if (TREE_CODE (old_name) != SSA_NAME
2612 || SSA_NAME_IS_DEFAULT_DEF (old_name))
2613 continue;
2615 tree *new_expr = region->parameter_rename_map->get (old_name);
2616 if (!new_expr)
2617 continue;
2619 replace_exp (use_p, *new_expr);
2622 update_stmt (copy);
2625 return true;
2629 /* Given a basic block containing close-phi it returns the new basic block where
2630 to insert a copy of the close-phi nodes. All the uses in close phis should
2631 come from a single loop otherwise it returns NULL. */
2633 edge translate_isl_ast_to_gimple::
2634 edge_for_new_close_phis (basic_block bb)
2636 /* Make sure that NEW_BB is the new_loop->exit->dest. We find the definition
2637 of close phi in the original code and then find the mapping of basic block
2638 defining that variable. If there are multiple close-phis and they are
2639 defined in different loops (in the original or in the new code) because of
2640 loop splitting, then we bail out. */
2641 loop_p new_loop = NULL;
2642 for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
2643 gsi_next (&psi))
2645 gphi *phi = psi.phi ();
2646 tree name = gimple_phi_arg_def (phi, 0);
2647 basic_block old_loop_bb = gimple_bb (SSA_NAME_DEF_STMT (name));
2649 vec <basic_block> *bbs = region->copied_bb_map->get (old_loop_bb);
2650 if (!bbs || bbs->length () != 1)
2651 /* This is one of the places which shows preserving original structure
2652 is not always possible, as we may need to insert close PHI for a loop
2653 where the latch does not have any mapping, or the mapping is
2654 ambiguous. */
2655 return NULL;
2657 if (!new_loop)
2658 new_loop = (*bbs)[0]->loop_father;
2659 else if (new_loop != (*bbs)[0]->loop_father)
2660 return NULL;
2663 if (!new_loop)
2664 return NULL;
2666 return single_exit (new_loop);
2669 /* Copies BB and includes in the copied BB all the statements that can
2670 be reached following the use-def chains from the memory accesses,
2671 and returns the next edge following this new block. */
2673 edge translate_isl_ast_to_gimple::
2674 copy_bb_and_scalar_dependences (basic_block bb, edge next_e, vec<tree> iv_map)
2676 int num_phis = number_of_phi_nodes (bb);
2678 if (region->copied_bb_map->get (bb))
2680 /* FIXME: we should be able to handle phi nodes with args coming from
2681 outside the region. */
2682 if (num_phis)
2684 codegen_error = true;
2685 return NULL;
2689 basic_block new_bb = NULL;
2690 if (bb_contains_loop_close_phi_nodes (bb))
2692 if (dump_file)
2693 fprintf (dump_file, "[codegen] bb_%d contains close phi nodes.\n",
2694 bb->index);
2696 edge e = edge_for_new_close_phis (bb);
2697 if (!e)
2699 codegen_error = true;
2700 return NULL;
2703 basic_block phi_bb = e->dest;
2705 if (!bb_contains_loop_close_phi_nodes (phi_bb) || !single_succ_p (phi_bb))
2706 phi_bb = split_edge (e);
2708 gcc_assert (single_pred_edge (phi_bb)->src->loop_father
2709 != single_pred_edge (phi_bb)->dest->loop_father);
2711 if (!copy_loop_close_phi_nodes (bb, phi_bb))
2713 codegen_error = true;
2714 return NULL;
2717 if (e == next_e)
2718 new_bb = phi_bb;
2719 else
2720 new_bb = split_edge (next_e);
2722 else
2724 new_bb = split_edge (next_e);
2725 if (num_phis > 0 && bb_contains_loop_phi_nodes (bb))
2727 basic_block phi_bb = next_e->dest->loop_father->header;
2729 /* At this point we are unable to codegenerate by still preserving the SSA
2730 structure because maybe the loop is completely unrolled and the PHIs
2731 and cross-bb scalar dependencies are untrackable w.r.t. the original
2732 code. See gfortran.dg/graphite/pr29832.f90. */
2733 if (EDGE_COUNT (bb->preds) != EDGE_COUNT (phi_bb->preds))
2735 codegen_error = true;
2736 return NULL;
2739 /* In case isl did some loop peeling, like this:
2741 S_8(0);
2742 for (int c1 = 1; c1 <= 5; c1 += 1) {
2743 S_8(c1);
2745 S_8(6);
2747 there should be no loop-phi nodes in S_8(0).
2749 FIXME: We need to reason about dynamic instances of S_8, i.e., the
2750 values of all scalar variables: for the moment we instantiate only
2751 SCEV analyzable expressions on the iteration domain, and we need to
2752 extend that to reductions that cannot be analyzed by SCEV. */
2753 if (!bb_in_sese_p (phi_bb, region->if_region->true_region->region))
2755 codegen_error = true;
2756 return NULL;
2759 if (dump_file)
2760 fprintf (dump_file, "[codegen] bb_%d contains loop phi nodes.\n",
2761 bb->index);
2762 if (!copy_loop_phi_nodes (bb, phi_bb))
2764 codegen_error = true;
2765 return NULL;
2768 else if (num_phis > 0)
2770 if (dump_file)
2771 fprintf (dump_file, "[codegen] bb_%d contains cond phi nodes.\n",
2772 bb->index);
2774 basic_block phi_bb = single_pred (new_bb);
2775 loop_p loop_father = new_bb->loop_father;
2777 /* Move back until we find the block with two predecessors. */
2778 while (single_pred_p (phi_bb))
2779 phi_bb = single_pred_edge (phi_bb)->src;
2781 /* If a corresponding merge-point was not found, then abort codegen. */
2782 if (phi_bb->loop_father != loop_father
2783 || !bb_in_sese_p (phi_bb, region->if_region->true_region->region)
2784 || !copy_cond_phi_nodes (bb, phi_bb, iv_map))
2786 codegen_error = true;
2787 return NULL;
2792 if (dump_file)
2793 fprintf (dump_file, "[codegen] copying from bb_%d to bb_%d.\n",
2794 bb->index, new_bb->index);
2796 vec <basic_block> *copied_bbs = region->copied_bb_map->get (bb);
2797 if (copied_bbs)
2798 copied_bbs->safe_push (new_bb);
2799 else
2801 vec<basic_block> bbs;
2802 bbs.create (2);
2803 bbs.safe_push (new_bb);
2804 region->copied_bb_map->put (bb, bbs);
2807 if (!graphite_copy_stmts_from_block (bb, new_bb, iv_map))
2809 codegen_error = true;
2810 return NULL;
2813 return single_succ_edge (new_bb);
2816 /* Patch the missing arguments of the phi nodes. */
2818 void translate_isl_ast_to_gimple::
2819 translate_pending_phi_nodes ()
2821 int i;
2822 phi_rename *rename;
2823 FOR_EACH_VEC_ELT (region->incomplete_phis, i, rename)
2825 gphi *old_phi = rename->first;
2826 gphi *new_phi = rename->second;
2827 basic_block old_bb = gimple_bb (old_phi);
2828 basic_block new_bb = gimple_bb (new_phi);
2830 /* First edge is the init edge and second is the back edge. */
2831 init_back_edge_pair_t ibp_old_bb = get_edges (old_bb);
2832 init_back_edge_pair_t ibp_new_bb = get_edges (new_bb);
2834 if (dump_file)
2836 fprintf (dump_file, "[codegen] translating pending old-phi: ");
2837 print_gimple_stmt (dump_file, old_phi, 0, 0);
2840 auto_vec <tree, 1> iv_map;
2841 if (bb_contains_loop_phi_nodes (new_bb))
2842 codegen_error = !copy_loop_phi_args (old_phi, ibp_old_bb, new_phi,
2843 ibp_new_bb, false);
2844 else if (bb_contains_loop_close_phi_nodes (new_bb))
2845 codegen_error = !copy_loop_close_phi_args (old_bb, new_bb, false);
2846 else
2847 codegen_error = !copy_cond_phi_args (old_phi, new_phi, iv_map, false);
2849 if (dump_file)
2851 fprintf (dump_file, "[codegen] to new-phi: ");
2852 print_gimple_stmt (dump_file, new_phi, 0, 0);
2854 if (codegen_error_p ())
2855 return;
2859 /* Add isl's parameter identifiers and corresponding trees to ivs_params. */
2861 void translate_isl_ast_to_gimple::
2862 add_parameters_to_ivs_params (scop_p scop, ivs_params &ip)
2864 sese_info_p region = scop->scop_info;
2865 unsigned nb_parameters = isl_set_dim (scop->param_context, isl_dim_param);
2866 gcc_assert (nb_parameters == region->params.length ());
2867 unsigned i;
2868 for (i = 0; i < nb_parameters; i++)
2870 isl_id *tmp_id = isl_set_get_dim_id (scop->param_context,
2871 isl_dim_param, i);
2872 ip[tmp_id] = region->params[i];
2877 /* Generates a build, which specifies the constraints on the parameters. */
2879 __isl_give isl_ast_build *translate_isl_ast_to_gimple::
2880 generate_isl_context (scop_p scop)
2882 isl_set *context_isl = isl_set_params (isl_set_copy (scop->param_context));
2883 return isl_ast_build_from_context (context_isl);
2886 /* This method is executed before the construction of a for node. */
2887 __isl_give isl_id *
2888 ast_build_before_for (__isl_keep isl_ast_build *build, void *user)
2890 isl_union_map *dependences = (isl_union_map *) user;
2891 ast_build_info *for_info = XNEW (struct ast_build_info);
2892 isl_union_map *schedule = isl_ast_build_get_schedule (build);
2893 isl_space *schedule_space = isl_ast_build_get_schedule_space (build);
2894 int dimension = isl_space_dim (schedule_space, isl_dim_out);
2895 for_info->is_parallelizable =
2896 !carries_deps (schedule, dependences, dimension);
2897 isl_union_map_free (schedule);
2898 isl_space_free (schedule_space);
2899 isl_id *id = isl_id_alloc (isl_ast_build_get_ctx (build), "", for_info);
2900 return id;
2903 #ifdef HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS
2905 /* Generate isl AST from schedule of SCOP. */
2907 __isl_give isl_ast_node *translate_isl_ast_to_gimple::
2908 scop_to_isl_ast (scop_p scop)
2910 gcc_assert (scop->transformed_schedule);
2912 /* Set the separate option to reduce control flow overhead. */
2913 isl_schedule *schedule = isl_schedule_map_schedule_node_bottom_up
2914 (isl_schedule_copy (scop->transformed_schedule), set_separate_option, NULL);
2915 isl_ast_build *context_isl = generate_isl_context (scop);
2917 if (flag_loop_parallelize_all)
2919 scop_get_dependences (scop);
2920 context_isl =
2921 isl_ast_build_set_before_each_for (context_isl, ast_build_before_for,
2922 scop->dependence);
2925 isl_ast_node *ast_isl = isl_ast_build_node_from_schedule
2926 (context_isl, schedule);
2927 isl_ast_build_free (context_isl);
2928 return ast_isl;
2931 #else
2932 /* Get the maximal number of schedule dimensions in the scop SCOP. */
2934 int translate_isl_ast_to_gimple::
2935 get_max_schedule_dimensions (scop_p scop)
2937 int i;
2938 poly_bb_p pbb;
2939 int schedule_dims = 0;
2941 FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
2943 int pbb_schedule_dims = isl_map_dim (pbb->transformed, isl_dim_out);
2944 if (pbb_schedule_dims > schedule_dims)
2945 schedule_dims = pbb_schedule_dims;
2948 return schedule_dims;
2951 /* Extend the schedule to NB_SCHEDULE_DIMS schedule dimensions.
2953 For schedules with different dimensionality, the isl AST generator can not
2954 define an order and will just randomly choose an order. The solution to this
2955 problem is to extend all schedules to the maximal number of schedule
2956 dimensions (using '0's for the remaining values). */
2958 __isl_give isl_map *translate_isl_ast_to_gimple::
2959 extend_schedule (__isl_take isl_map *schedule, int nb_schedule_dims)
2961 int tmp_dims = isl_map_dim (schedule, isl_dim_out);
2962 schedule =
2963 isl_map_add_dims (schedule, isl_dim_out, nb_schedule_dims - tmp_dims);
2964 isl_val *zero =
2965 isl_val_int_from_si (isl_map_get_ctx (schedule), 0);
2966 int i;
2967 for (i = tmp_dims; i < nb_schedule_dims; i++)
2969 schedule
2970 = isl_map_fix_val (schedule, isl_dim_out, i, isl_val_copy (zero));
2972 isl_val_free (zero);
2973 return schedule;
2976 /* Generates a schedule, which specifies an order used to
2977 visit elements in a domain. */
2979 __isl_give isl_union_map *translate_isl_ast_to_gimple::
2980 generate_isl_schedule (scop_p scop)
2982 int nb_schedule_dims = get_max_schedule_dimensions (scop);
2983 int i;
2984 poly_bb_p pbb;
2985 isl_union_map *schedule_isl =
2986 isl_union_map_empty (isl_set_get_space (scop->param_context));
2988 FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
2990 /* Dead code elimination: when the domain of a PBB is empty,
2991 don't generate code for the PBB. */
2992 if (isl_set_is_empty (pbb->domain))
2993 continue;
2995 isl_map *bb_schedule = isl_map_copy (pbb->transformed);
2996 bb_schedule = isl_map_intersect_domain (bb_schedule,
2997 isl_set_copy (pbb->domain));
2998 bb_schedule = extend_schedule (bb_schedule, nb_schedule_dims);
2999 bb_schedule = isl_map_coalesce (bb_schedule);
3000 schedule_isl
3001 = isl_union_map_union (schedule_isl,
3002 isl_union_map_from_map (bb_schedule));
3003 schedule_isl = isl_union_map_coalesce (schedule_isl);
3005 return schedule_isl;
3008 /* Set the separate option for all dimensions.
3009 This helps to reduce control overhead. */
3011 __isl_give isl_ast_build *translate_isl_ast_to_gimple::
3012 set_options (__isl_take isl_ast_build *control,
3013 __isl_keep isl_union_map *schedule)
3015 isl_ctx *ctx = isl_union_map_get_ctx (schedule);
3016 isl_space *range_space = isl_space_set_alloc (ctx, 0, 1);
3017 range_space =
3018 isl_space_set_tuple_name (range_space, isl_dim_set, "separate");
3019 isl_union_set *range =
3020 isl_union_set_from_set (isl_set_universe (range_space));
3021 isl_union_set *domain = isl_union_map_range (isl_union_map_copy (schedule));
3022 domain = isl_union_set_universe (domain);
3023 isl_union_map *options = isl_union_map_from_domain_and_range (domain, range);
3024 return isl_ast_build_set_options (control, options);
3027 /* Generate isl AST from schedule of SCOP. Also, collects IVS_PARAMS in IP. */
3029 __isl_give isl_ast_node *translate_isl_ast_to_gimple::
3030 scop_to_isl_ast (scop_p scop, ivs_params &ip)
3032 /* Generate loop upper bounds that consist of the current loop iterator, an
3033 operator (< or <=) and an expression not involving the iterator. If this
3034 option is not set, then the current loop iterator may appear several times
3035 in the upper bound. See the isl manual for more details. */
3036 isl_options_set_ast_build_atomic_upper_bound (scop->isl_context, true);
3038 add_parameters_to_ivs_params (scop, ip);
3039 isl_union_map *schedule_isl = generate_isl_schedule (scop);
3040 isl_ast_build *context_isl = generate_isl_context (scop);
3041 context_isl = set_options (context_isl, schedule_isl);
3042 if (flag_loop_parallelize_all)
3044 isl_union_map *dependence = scop_get_dependences (scop);
3045 context_isl =
3046 isl_ast_build_set_before_each_for (context_isl, ast_build_before_for,
3047 dependence);
3050 isl_ast_node *ast_isl = isl_ast_build_ast_from_schedule (context_isl,
3051 schedule_isl);
3052 if (scop->schedule)
3054 isl_schedule_free (scop->schedule);
3055 scop->schedule = NULL;
3058 isl_ast_build_free (context_isl);
3059 return ast_isl;
3061 #endif
3063 /* Copy def from sese REGION to the newly created TO_REGION. TR is defined by
3064 DEF_STMT. GSI points to entry basic block of the TO_REGION. */
3066 static void
3067 copy_def (tree tr, gimple *def_stmt, sese_info_p region, sese_info_p to_region,
3068 gimple_stmt_iterator *gsi)
3070 if (!defined_in_sese_p (tr, region->region))
3071 return;
3073 ssa_op_iter iter;
3074 use_operand_p use_p;
3075 FOR_EACH_SSA_USE_OPERAND (use_p, def_stmt, iter, SSA_OP_USE)
3077 tree use_tr = USE_FROM_PTR (use_p);
3079 /* Do not copy parameters that have been generated in the header of the
3080 scop. */
3081 if (region->parameter_rename_map->get(use_tr))
3082 continue;
3084 gimple *def_of_use = SSA_NAME_DEF_STMT (use_tr);
3085 if (!def_of_use)
3086 continue;
3088 copy_def (use_tr, def_of_use, region, to_region, gsi);
3091 gimple *copy = gimple_copy (def_stmt);
3092 gsi_insert_after (gsi, copy, GSI_NEW_STMT);
3094 /* Create new names for all the definitions created by COPY and
3095 add replacement mappings for each new name. */
3096 def_operand_p def_p;
3097 ssa_op_iter op_iter;
3098 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
3100 tree old_name = DEF_FROM_PTR (def_p);
3101 tree new_name = create_new_def_for (old_name, copy, def_p);
3102 region->parameter_rename_map->put(old_name, new_name);
3105 update_stmt (copy);
3108 static void
3109 copy_internal_parameters (sese_info_p region, sese_info_p to_region)
3111 /* For all the parameters which definitino is in the if_region->false_region,
3112 insert code on true_region (if_region->true_region->entry). */
3114 int i;
3115 tree tr;
3116 gimple_stmt_iterator gsi = gsi_start_bb(to_region->region.entry->dest);
3118 FOR_EACH_VEC_ELT (region->params, i, tr)
3120 // If def is not in region.
3121 gimple *def_stmt = SSA_NAME_DEF_STMT (tr);
3122 if (def_stmt)
3123 copy_def (tr, def_stmt, region, to_region, &gsi);
3127 /* GIMPLE Loop Generator: generates loops in GIMPLE form for the given SCOP.
3128 Return true if code generation succeeded. */
3130 bool
3131 graphite_regenerate_ast_isl (scop_p scop)
3133 sese_info_p region = scop->scop_info;
3134 translate_isl_ast_to_gimple t (region);
3136 ifsese if_region = NULL;
3137 isl_ast_node *root_node;
3138 ivs_params ip;
3140 timevar_push (TV_GRAPHITE_CODE_GEN);
3141 #ifdef HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS
3142 t.add_parameters_to_ivs_params (scop, ip);
3143 root_node = t.scop_to_isl_ast (scop);
3144 #else
3145 root_node = t.scop_to_isl_ast (scop, ip);
3146 #endif
3148 if (dump_file && (dump_flags & TDF_DETAILS))
3150 #ifdef HAVE_ISL_OPTIONS_SET_SCHEDULE_SERIALIZE_SCCS
3151 fprintf (dump_file, "[scheduler] original schedule:\n");
3152 print_isl_schedule (dump_file, scop->original_schedule);
3153 fprintf (dump_file, "[scheduler] isl transformed schedule:\n");
3154 print_isl_schedule (dump_file, scop->transformed_schedule);
3156 fprintf (dump_file, "[scheduler] original ast:\n");
3157 print_schedule_ast (dump_file, scop->original_schedule, scop);
3158 #endif
3159 fprintf (dump_file, "[scheduler] AST generated by isl:\n");
3160 print_isl_ast (dump_file, root_node);
3163 recompute_all_dominators ();
3164 graphite_verify ();
3166 if_region = move_sese_in_condition (region);
3167 region->if_region = if_region;
3168 recompute_all_dominators ();
3170 loop_p context_loop = region->region.entry->src->loop_father;
3172 /* Copy all the parameters which are defined in the region. */
3173 copy_internal_parameters(if_region->false_region, if_region->true_region);
3175 edge e = single_succ_edge (if_region->true_region->region.entry->dest);
3176 basic_block bb = split_edge (e);
3178 /* Update the true_region exit edge. */
3179 region->if_region->true_region->region.exit = single_succ_edge (bb);
3181 t.translate_isl_ast (context_loop, root_node, e, ip);
3182 if (t.codegen_error_p ())
3184 if (dump_file)
3185 fprintf (dump_file, "codegen error: "
3186 "reverting back to the original code.\n");
3187 set_ifsese_condition (if_region, integer_zero_node);
3189 else
3191 t.translate_pending_phi_nodes ();
3192 if (!t.codegen_error_p ())
3194 sese_insert_phis_for_liveouts (region,
3195 if_region->region->region.exit->src,
3196 if_region->false_region->region.exit,
3197 if_region->true_region->region.exit);
3198 mark_virtual_operands_for_renaming (cfun);
3199 update_ssa (TODO_update_ssa);
3202 graphite_verify ();
3203 scev_reset ();
3204 recompute_all_dominators ();
3205 graphite_verify ();
3207 if (dump_file)
3208 fprintf (dump_file, "[codegen] isl AST to Gimple succeeded.\n");
3210 else
3212 if (dump_file)
3213 fprintf (dump_file, "[codegen] unsuccessful in translating"
3214 " pending phis, reverting back to the original code.\n");
3215 set_ifsese_condition (if_region, integer_zero_node);
3219 free (if_region->true_region);
3220 free (if_region->region);
3221 free (if_region);
3223 ivs_params_clear (ip);
3224 isl_ast_node_free (root_node);
3225 timevar_pop (TV_GRAPHITE_CODE_GEN);
3227 if (dump_file && (dump_flags & TDF_DETAILS))
3229 loop_p loop;
3230 int num_no_dependency = 0;
3232 FOR_EACH_LOOP (loop, 0)
3233 if (loop->can_be_parallel)
3234 num_no_dependency++;
3236 fprintf (dump_file, "%d loops carried no dependency.\n",
3237 num_no_dependency);
3240 return !t.codegen_error_p ();
3243 #endif /* HAVE_isl */