PR tree-optimization/80426
[official-gcc.git] / gcc / tree-vrp.c
blob697cd88502ebdf0c02b6ee0961668e743ba0ca96
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "intl.h"
51 #include "cfgloop.h"
52 #include "tree-scalar-evolution.h"
53 #include "tree-ssa-propagate.h"
54 #include "tree-chrec.h"
55 #include "tree-ssa-threadupdate.h"
56 #include "tree-ssa-scopedtables.h"
57 #include "tree-ssa-threadedge.h"
58 #include "omp-general.h"
59 #include "target.h"
60 #include "case-cfn-macros.h"
61 #include "params.h"
62 #include "alloc-pool.h"
63 #include "domwalk.h"
64 #include "tree-cfgcleanup.h"
66 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
68 /* Allocation pools for tree-vrp allocations. */
69 static object_allocator<value_range> vrp_value_range_pool ("Tree VRP value ranges");
70 static bitmap_obstack vrp_equiv_obstack;
72 /* Set of SSA names found live during the RPO traversal of the function
73 for still active basic-blocks. */
74 static sbitmap *live;
76 /* Return true if the SSA name NAME is live on the edge E. */
78 static bool
79 live_on_edge (edge e, tree name)
81 return (live[e->dest->index]
82 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
85 /* Local functions. */
86 static int compare_values (tree val1, tree val2);
87 static int compare_values_warnv (tree val1, tree val2, bool *);
88 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
89 tree, tree, bool, bool *,
90 bool *);
92 /* Location information for ASSERT_EXPRs. Each instance of this
93 structure describes an ASSERT_EXPR for an SSA name. Since a single
94 SSA name may have more than one assertion associated with it, these
95 locations are kept in a linked list attached to the corresponding
96 SSA name. */
97 struct assert_locus
99 /* Basic block where the assertion would be inserted. */
100 basic_block bb;
102 /* Some assertions need to be inserted on an edge (e.g., assertions
103 generated by COND_EXPRs). In those cases, BB will be NULL. */
104 edge e;
106 /* Pointer to the statement that generated this assertion. */
107 gimple_stmt_iterator si;
109 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
110 enum tree_code comp_code;
112 /* Value being compared against. */
113 tree val;
115 /* Expression to compare. */
116 tree expr;
118 /* Next node in the linked list. */
119 assert_locus *next;
122 /* If bit I is present, it means that SSA name N_i has a list of
123 assertions that should be inserted in the IL. */
124 static bitmap need_assert_for;
126 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
127 holds a list of ASSERT_LOCUS_T nodes that describe where
128 ASSERT_EXPRs for SSA name N_I should be inserted. */
129 static assert_locus **asserts_for;
131 /* Value range array. After propagation, VR_VALUE[I] holds the range
132 of values that SSA name N_I may take. */
133 static unsigned num_vr_values;
134 static value_range **vr_value;
135 static bool values_propagated;
137 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
138 number of executable edges we saw the last time we visited the
139 node. */
140 static int *vr_phi_edge_counts;
142 struct switch_update {
143 gswitch *stmt;
144 tree vec;
147 static vec<edge> to_remove_edges;
148 static vec<switch_update> to_update_switch_stmts;
151 /* Return the maximum value for TYPE. */
153 static inline tree
154 vrp_val_max (const_tree type)
156 if (!INTEGRAL_TYPE_P (type))
157 return NULL_TREE;
159 return TYPE_MAX_VALUE (type);
162 /* Return the minimum value for TYPE. */
164 static inline tree
165 vrp_val_min (const_tree type)
167 if (!INTEGRAL_TYPE_P (type))
168 return NULL_TREE;
170 return TYPE_MIN_VALUE (type);
173 /* Return whether VAL is equal to the maximum value of its type. This
174 will be true for a positive overflow infinity. We can't do a
175 simple equality comparison with TYPE_MAX_VALUE because C typedefs
176 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
177 to the integer constant with the same value in the type. */
179 static inline bool
180 vrp_val_is_max (const_tree val)
182 tree type_max = vrp_val_max (TREE_TYPE (val));
183 return (val == type_max
184 || (type_max != NULL_TREE
185 && operand_equal_p (val, type_max, 0)));
188 /* Return whether VAL is equal to the minimum value of its type. This
189 will be true for a negative overflow infinity. */
191 static inline bool
192 vrp_val_is_min (const_tree val)
194 tree type_min = vrp_val_min (TREE_TYPE (val));
195 return (val == type_min
196 || (type_min != NULL_TREE
197 && operand_equal_p (val, type_min, 0)));
201 /* Return whether TYPE should use an overflow infinity distinct from
202 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
203 represent a signed overflow during VRP computations. An infinity
204 is distinct from a half-range, which will go from some number to
205 TYPE_{MIN,MAX}_VALUE. */
207 static inline bool
208 needs_overflow_infinity (const_tree type)
210 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
213 /* Return whether TYPE can support our overflow infinity
214 representation: we use the TREE_OVERFLOW flag, which only exists
215 for constants. If TYPE doesn't support this, we don't optimize
216 cases which would require signed overflow--we drop them to
217 VARYING. */
219 static inline bool
220 supports_overflow_infinity (const_tree type)
222 tree min = vrp_val_min (type), max = vrp_val_max (type);
223 gcc_checking_assert (needs_overflow_infinity (type));
224 return (min != NULL_TREE
225 && CONSTANT_CLASS_P (min)
226 && max != NULL_TREE
227 && CONSTANT_CLASS_P (max));
230 /* VAL is the maximum or minimum value of a type. Return a
231 corresponding overflow infinity. */
233 static inline tree
234 make_overflow_infinity (tree val)
236 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
237 val = copy_node (val);
238 TREE_OVERFLOW (val) = 1;
239 return val;
242 /* Return a negative overflow infinity for TYPE. */
244 static inline tree
245 negative_overflow_infinity (tree type)
247 gcc_checking_assert (supports_overflow_infinity (type));
248 return make_overflow_infinity (vrp_val_min (type));
251 /* Return a positive overflow infinity for TYPE. */
253 static inline tree
254 positive_overflow_infinity (tree type)
256 gcc_checking_assert (supports_overflow_infinity (type));
257 return make_overflow_infinity (vrp_val_max (type));
260 /* Return whether VAL is a negative overflow infinity. */
262 static inline bool
263 is_negative_overflow_infinity (const_tree val)
265 return (TREE_OVERFLOW_P (val)
266 && needs_overflow_infinity (TREE_TYPE (val))
267 && vrp_val_is_min (val));
270 /* Return whether VAL is a positive overflow infinity. */
272 static inline bool
273 is_positive_overflow_infinity (const_tree val)
275 return (TREE_OVERFLOW_P (val)
276 && needs_overflow_infinity (TREE_TYPE (val))
277 && vrp_val_is_max (val));
280 /* Return whether VAL is a positive or negative overflow infinity. */
282 static inline bool
283 is_overflow_infinity (const_tree val)
285 return (TREE_OVERFLOW_P (val)
286 && needs_overflow_infinity (TREE_TYPE (val))
287 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
290 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
292 static inline bool
293 stmt_overflow_infinity (gimple *stmt)
295 if (is_gimple_assign (stmt)
296 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
297 GIMPLE_SINGLE_RHS)
298 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
299 return false;
302 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
303 the same value with TREE_OVERFLOW clear. This can be used to avoid
304 confusing a regular value with an overflow value. */
306 static inline tree
307 avoid_overflow_infinity (tree val)
309 if (!is_overflow_infinity (val))
310 return val;
312 if (vrp_val_is_max (val))
313 return vrp_val_max (TREE_TYPE (val));
314 else
316 gcc_checking_assert (vrp_val_is_min (val));
317 return vrp_val_min (TREE_TYPE (val));
322 /* Set value range VR to VR_UNDEFINED. */
324 static inline void
325 set_value_range_to_undefined (value_range *vr)
327 vr->type = VR_UNDEFINED;
328 vr->min = vr->max = NULL_TREE;
329 if (vr->equiv)
330 bitmap_clear (vr->equiv);
334 /* Set value range VR to VR_VARYING. */
336 static inline void
337 set_value_range_to_varying (value_range *vr)
339 vr->type = VR_VARYING;
340 vr->min = vr->max = NULL_TREE;
341 if (vr->equiv)
342 bitmap_clear (vr->equiv);
346 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
348 static void
349 set_value_range (value_range *vr, enum value_range_type t, tree min,
350 tree max, bitmap equiv)
352 /* Check the validity of the range. */
353 if (flag_checking
354 && (t == VR_RANGE || t == VR_ANTI_RANGE))
356 int cmp;
358 gcc_assert (min && max);
360 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
361 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
363 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
364 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
366 cmp = compare_values (min, max);
367 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
370 if (flag_checking
371 && (t == VR_UNDEFINED || t == VR_VARYING))
373 gcc_assert (min == NULL_TREE && max == NULL_TREE);
374 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
377 vr->type = t;
378 vr->min = min;
379 vr->max = max;
381 /* Since updating the equivalence set involves deep copying the
382 bitmaps, only do it if absolutely necessary. */
383 if (vr->equiv == NULL
384 && equiv != NULL)
385 vr->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
387 if (equiv != vr->equiv)
389 if (equiv && !bitmap_empty_p (equiv))
390 bitmap_copy (vr->equiv, equiv);
391 else
392 bitmap_clear (vr->equiv);
397 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
398 This means adjusting T, MIN and MAX representing the case of a
399 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
400 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
401 In corner cases where MAX+1 or MIN-1 wraps this will fall back
402 to varying.
403 This routine exists to ease canonicalization in the case where we
404 extract ranges from var + CST op limit. */
406 static void
407 set_and_canonicalize_value_range (value_range *vr, enum value_range_type t,
408 tree min, tree max, bitmap equiv)
410 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
411 if (t == VR_UNDEFINED)
413 set_value_range_to_undefined (vr);
414 return;
416 else if (t == VR_VARYING)
418 set_value_range_to_varying (vr);
419 return;
422 /* Nothing to canonicalize for symbolic ranges. */
423 if (TREE_CODE (min) != INTEGER_CST
424 || TREE_CODE (max) != INTEGER_CST)
426 set_value_range (vr, t, min, max, equiv);
427 return;
430 /* Wrong order for min and max, to swap them and the VR type we need
431 to adjust them. */
432 if (tree_int_cst_lt (max, min))
434 tree one, tmp;
436 /* For one bit precision if max < min, then the swapped
437 range covers all values, so for VR_RANGE it is varying and
438 for VR_ANTI_RANGE empty range, so drop to varying as well. */
439 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
441 set_value_range_to_varying (vr);
442 return;
445 one = build_int_cst (TREE_TYPE (min), 1);
446 tmp = int_const_binop (PLUS_EXPR, max, one);
447 max = int_const_binop (MINUS_EXPR, min, one);
448 min = tmp;
450 /* There's one corner case, if we had [C+1, C] before we now have
451 that again. But this represents an empty value range, so drop
452 to varying in this case. */
453 if (tree_int_cst_lt (max, min))
455 set_value_range_to_varying (vr);
456 return;
459 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
462 /* Anti-ranges that can be represented as ranges should be so. */
463 if (t == VR_ANTI_RANGE)
465 bool is_min = vrp_val_is_min (min);
466 bool is_max = vrp_val_is_max (max);
468 if (is_min && is_max)
470 /* We cannot deal with empty ranges, drop to varying.
471 ??? This could be VR_UNDEFINED instead. */
472 set_value_range_to_varying (vr);
473 return;
475 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
476 && (is_min || is_max))
478 /* Non-empty boolean ranges can always be represented
479 as a singleton range. */
480 if (is_min)
481 min = max = vrp_val_max (TREE_TYPE (min));
482 else
483 min = max = vrp_val_min (TREE_TYPE (min));
484 t = VR_RANGE;
486 else if (is_min
487 /* As a special exception preserve non-null ranges. */
488 && !(TYPE_UNSIGNED (TREE_TYPE (min))
489 && integer_zerop (max)))
491 tree one = build_int_cst (TREE_TYPE (max), 1);
492 min = int_const_binop (PLUS_EXPR, max, one);
493 max = vrp_val_max (TREE_TYPE (max));
494 t = VR_RANGE;
496 else if (is_max)
498 tree one = build_int_cst (TREE_TYPE (min), 1);
499 max = int_const_binop (MINUS_EXPR, min, one);
500 min = vrp_val_min (TREE_TYPE (min));
501 t = VR_RANGE;
505 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
506 to make sure VRP iteration terminates, otherwise we can get into
507 oscillations. */
509 set_value_range (vr, t, min, max, equiv);
512 /* Copy value range FROM into value range TO. */
514 static inline void
515 copy_value_range (value_range *to, value_range *from)
517 set_value_range (to, from->type, from->min, from->max, from->equiv);
520 /* Set value range VR to a single value. This function is only called
521 with values we get from statements, and exists to clear the
522 TREE_OVERFLOW flag so that we don't think we have an overflow
523 infinity when we shouldn't. */
525 static inline void
526 set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
528 gcc_assert (is_gimple_min_invariant (val));
529 if (TREE_OVERFLOW_P (val))
530 val = drop_tree_overflow (val);
531 set_value_range (vr, VR_RANGE, val, val, equiv);
534 /* Set value range VR to a non-negative range of type TYPE.
535 OVERFLOW_INFINITY indicates whether to use an overflow infinity
536 rather than TYPE_MAX_VALUE; this should be true if we determine
537 that the range is nonnegative based on the assumption that signed
538 overflow does not occur. */
540 static inline void
541 set_value_range_to_nonnegative (value_range *vr, tree type,
542 bool overflow_infinity)
544 tree zero;
546 if (overflow_infinity && !supports_overflow_infinity (type))
548 set_value_range_to_varying (vr);
549 return;
552 zero = build_int_cst (type, 0);
553 set_value_range (vr, VR_RANGE, zero,
554 (overflow_infinity
555 ? positive_overflow_infinity (type)
556 : TYPE_MAX_VALUE (type)),
557 vr->equiv);
560 /* Set value range VR to a non-NULL range of type TYPE. */
562 static inline void
563 set_value_range_to_nonnull (value_range *vr, tree type)
565 tree zero = build_int_cst (type, 0);
566 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
570 /* Set value range VR to a NULL range of type TYPE. */
572 static inline void
573 set_value_range_to_null (value_range *vr, tree type)
575 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
579 /* Set value range VR to a range of a truthvalue of type TYPE. */
581 static inline void
582 set_value_range_to_truthvalue (value_range *vr, tree type)
584 if (TYPE_PRECISION (type) == 1)
585 set_value_range_to_varying (vr);
586 else
587 set_value_range (vr, VR_RANGE,
588 build_int_cst (type, 0), build_int_cst (type, 1),
589 vr->equiv);
593 /* If abs (min) < abs (max), set VR to [-max, max], if
594 abs (min) >= abs (max), set VR to [-min, min]. */
596 static void
597 abs_extent_range (value_range *vr, tree min, tree max)
599 int cmp;
601 gcc_assert (TREE_CODE (min) == INTEGER_CST);
602 gcc_assert (TREE_CODE (max) == INTEGER_CST);
603 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
604 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
605 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
606 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
607 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
609 set_value_range_to_varying (vr);
610 return;
612 cmp = compare_values (min, max);
613 if (cmp == -1)
614 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
615 else if (cmp == 0 || cmp == 1)
617 max = min;
618 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
620 else
622 set_value_range_to_varying (vr);
623 return;
625 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
629 /* Return value range information for VAR.
631 If we have no values ranges recorded (ie, VRP is not running), then
632 return NULL. Otherwise create an empty range if none existed for VAR. */
634 static value_range *
635 get_value_range (const_tree var)
637 static const value_range vr_const_varying
638 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
639 value_range *vr;
640 tree sym;
641 unsigned ver = SSA_NAME_VERSION (var);
643 /* If we have no recorded ranges, then return NULL. */
644 if (! vr_value)
645 return NULL;
647 /* If we query the range for a new SSA name return an unmodifiable VARYING.
648 We should get here at most from the substitute-and-fold stage which
649 will never try to change values. */
650 if (ver >= num_vr_values)
651 return CONST_CAST (value_range *, &vr_const_varying);
653 vr = vr_value[ver];
654 if (vr)
655 return vr;
657 /* After propagation finished do not allocate new value-ranges. */
658 if (values_propagated)
659 return CONST_CAST (value_range *, &vr_const_varying);
661 /* Create a default value range. */
662 vr_value[ver] = vr = vrp_value_range_pool.allocate ();
663 memset (vr, 0, sizeof (*vr));
665 /* Defer allocating the equivalence set. */
666 vr->equiv = NULL;
668 /* If VAR is a default definition of a parameter, the variable can
669 take any value in VAR's type. */
670 if (SSA_NAME_IS_DEFAULT_DEF (var))
672 sym = SSA_NAME_VAR (var);
673 if (TREE_CODE (sym) == PARM_DECL)
675 /* Try to use the "nonnull" attribute to create ~[0, 0]
676 anti-ranges for pointers. Note that this is only valid with
677 default definitions of PARM_DECLs. */
678 if (POINTER_TYPE_P (TREE_TYPE (sym))
679 && (nonnull_arg_p (sym)
680 || get_ptr_nonnull (var)))
681 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
682 else if (INTEGRAL_TYPE_P (TREE_TYPE (sym)))
684 wide_int min, max;
685 value_range_type rtype = get_range_info (var, &min, &max);
686 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
687 set_value_range (vr, rtype,
688 wide_int_to_tree (TREE_TYPE (var), min),
689 wide_int_to_tree (TREE_TYPE (var), max),
690 NULL);
691 else
692 set_value_range_to_varying (vr);
694 else
695 set_value_range_to_varying (vr);
697 else if (TREE_CODE (sym) == RESULT_DECL
698 && DECL_BY_REFERENCE (sym))
699 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
702 return vr;
705 /* Set value-ranges of all SSA names defined by STMT to varying. */
707 static void
708 set_defs_to_varying (gimple *stmt)
710 ssa_op_iter i;
711 tree def;
712 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
714 value_range *vr = get_value_range (def);
715 /* Avoid writing to vr_const_varying get_value_range may return. */
716 if (vr->type != VR_VARYING)
717 set_value_range_to_varying (vr);
722 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
724 static inline bool
725 vrp_operand_equal_p (const_tree val1, const_tree val2)
727 if (val1 == val2)
728 return true;
729 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
730 return false;
731 return is_overflow_infinity (val1) == is_overflow_infinity (val2);
734 /* Return true, if the bitmaps B1 and B2 are equal. */
736 static inline bool
737 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
739 return (b1 == b2
740 || ((!b1 || bitmap_empty_p (b1))
741 && (!b2 || bitmap_empty_p (b2)))
742 || (b1 && b2
743 && bitmap_equal_p (b1, b2)));
746 /* Update the value range and equivalence set for variable VAR to
747 NEW_VR. Return true if NEW_VR is different from VAR's previous
748 value.
750 NOTE: This function assumes that NEW_VR is a temporary value range
751 object created for the sole purpose of updating VAR's range. The
752 storage used by the equivalence set from NEW_VR will be freed by
753 this function. Do not call update_value_range when NEW_VR
754 is the range object associated with another SSA name. */
756 static inline bool
757 update_value_range (const_tree var, value_range *new_vr)
759 value_range *old_vr;
760 bool is_new;
762 /* If there is a value-range on the SSA name from earlier analysis
763 factor that in. */
764 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
766 wide_int min, max;
767 value_range_type rtype = get_range_info (var, &min, &max);
768 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
770 tree nr_min, nr_max;
771 /* Range info on SSA names doesn't carry overflow information
772 so make sure to preserve the overflow bit on the lattice. */
773 if (rtype == VR_RANGE
774 && needs_overflow_infinity (TREE_TYPE (var))
775 && (new_vr->type == VR_VARYING
776 || (new_vr->type == VR_RANGE
777 && is_negative_overflow_infinity (new_vr->min)))
778 && wi::eq_p (vrp_val_min (TREE_TYPE (var)), min))
779 nr_min = negative_overflow_infinity (TREE_TYPE (var));
780 else
781 nr_min = wide_int_to_tree (TREE_TYPE (var), min);
782 if (rtype == VR_RANGE
783 && needs_overflow_infinity (TREE_TYPE (var))
784 && (new_vr->type == VR_VARYING
785 || (new_vr->type == VR_RANGE
786 && is_positive_overflow_infinity (new_vr->max)))
787 && wi::eq_p (vrp_val_max (TREE_TYPE (var)), max))
788 nr_max = positive_overflow_infinity (TREE_TYPE (var));
789 else
790 nr_max = wide_int_to_tree (TREE_TYPE (var), max);
791 value_range nr = VR_INITIALIZER;
792 set_and_canonicalize_value_range (&nr, rtype, nr_min, nr_max, NULL);
793 vrp_intersect_ranges (new_vr, &nr);
797 /* Update the value range, if necessary. */
798 old_vr = get_value_range (var);
799 is_new = old_vr->type != new_vr->type
800 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
801 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
802 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
804 if (is_new)
806 /* Do not allow transitions up the lattice. The following
807 is slightly more awkward than just new_vr->type < old_vr->type
808 because VR_RANGE and VR_ANTI_RANGE need to be considered
809 the same. We may not have is_new when transitioning to
810 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
811 called. */
812 if (new_vr->type == VR_UNDEFINED)
814 BITMAP_FREE (new_vr->equiv);
815 set_value_range_to_varying (old_vr);
816 set_value_range_to_varying (new_vr);
817 return true;
819 else
820 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
821 new_vr->equiv);
824 BITMAP_FREE (new_vr->equiv);
826 return is_new;
830 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
831 point where equivalence processing can be turned on/off. */
833 static void
834 add_equivalence (bitmap *equiv, const_tree var)
836 unsigned ver = SSA_NAME_VERSION (var);
837 value_range *vr = get_value_range (var);
839 if (*equiv == NULL)
840 *equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
841 bitmap_set_bit (*equiv, ver);
842 if (vr && vr->equiv)
843 bitmap_ior_into (*equiv, vr->equiv);
847 /* Return true if VR is ~[0, 0]. */
849 static inline bool
850 range_is_nonnull (value_range *vr)
852 return vr->type == VR_ANTI_RANGE
853 && integer_zerop (vr->min)
854 && integer_zerop (vr->max);
858 /* Return true if VR is [0, 0]. */
860 static inline bool
861 range_is_null (value_range *vr)
863 return vr->type == VR_RANGE
864 && integer_zerop (vr->min)
865 && integer_zerop (vr->max);
868 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
869 a singleton. */
871 static inline bool
872 range_int_cst_p (value_range *vr)
874 return (vr->type == VR_RANGE
875 && TREE_CODE (vr->max) == INTEGER_CST
876 && TREE_CODE (vr->min) == INTEGER_CST);
879 /* Return true if VR is a INTEGER_CST singleton. */
881 static inline bool
882 range_int_cst_singleton_p (value_range *vr)
884 return (range_int_cst_p (vr)
885 && !is_overflow_infinity (vr->min)
886 && !is_overflow_infinity (vr->max)
887 && tree_int_cst_equal (vr->min, vr->max));
890 /* Return true if value range VR involves at least one symbol. */
892 static inline bool
893 symbolic_range_p (value_range *vr)
895 return (!is_gimple_min_invariant (vr->min)
896 || !is_gimple_min_invariant (vr->max));
899 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
900 otherwise. We only handle additive operations and set NEG to true if the
901 symbol is negated and INV to the invariant part, if any. */
903 static tree
904 get_single_symbol (tree t, bool *neg, tree *inv)
906 bool neg_;
907 tree inv_;
909 *inv = NULL_TREE;
910 *neg = false;
912 if (TREE_CODE (t) == PLUS_EXPR
913 || TREE_CODE (t) == POINTER_PLUS_EXPR
914 || TREE_CODE (t) == MINUS_EXPR)
916 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
918 neg_ = (TREE_CODE (t) == MINUS_EXPR);
919 inv_ = TREE_OPERAND (t, 0);
920 t = TREE_OPERAND (t, 1);
922 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
924 neg_ = false;
925 inv_ = TREE_OPERAND (t, 1);
926 t = TREE_OPERAND (t, 0);
928 else
929 return NULL_TREE;
931 else
933 neg_ = false;
934 inv_ = NULL_TREE;
937 if (TREE_CODE (t) == NEGATE_EXPR)
939 t = TREE_OPERAND (t, 0);
940 neg_ = !neg_;
943 if (TREE_CODE (t) != SSA_NAME)
944 return NULL_TREE;
946 *neg = neg_;
947 *inv = inv_;
948 return t;
951 /* The reverse operation: build a symbolic expression with TYPE
952 from symbol SYM, negated according to NEG, and invariant INV. */
954 static tree
955 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
957 const bool pointer_p = POINTER_TYPE_P (type);
958 tree t = sym;
960 if (neg)
961 t = build1 (NEGATE_EXPR, type, t);
963 if (integer_zerop (inv))
964 return t;
966 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
969 /* Return true if value range VR involves exactly one symbol SYM. */
971 static bool
972 symbolic_range_based_on_p (value_range *vr, const_tree sym)
974 bool neg, min_has_symbol, max_has_symbol;
975 tree inv;
977 if (is_gimple_min_invariant (vr->min))
978 min_has_symbol = false;
979 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
980 min_has_symbol = true;
981 else
982 return false;
984 if (is_gimple_min_invariant (vr->max))
985 max_has_symbol = false;
986 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
987 max_has_symbol = true;
988 else
989 return false;
991 return (min_has_symbol || max_has_symbol);
994 /* Return true if value range VR uses an overflow infinity. */
996 static inline bool
997 overflow_infinity_range_p (value_range *vr)
999 return (vr->type == VR_RANGE
1000 && (is_overflow_infinity (vr->min)
1001 || is_overflow_infinity (vr->max)));
1004 /* Return false if we can not make a valid comparison based on VR;
1005 this will be the case if it uses an overflow infinity and overflow
1006 is not undefined (i.e., -fno-strict-overflow is in effect).
1007 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1008 uses an overflow infinity. */
1010 static bool
1011 usable_range_p (value_range *vr, bool *strict_overflow_p)
1013 gcc_assert (vr->type == VR_RANGE);
1014 if (is_overflow_infinity (vr->min))
1016 *strict_overflow_p = true;
1017 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
1018 return false;
1020 if (is_overflow_infinity (vr->max))
1022 *strict_overflow_p = true;
1023 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
1024 return false;
1026 return true;
1029 /* Return true if the result of assignment STMT is know to be non-zero.
1030 If the return value is based on the assumption that signed overflow is
1031 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1032 *STRICT_OVERFLOW_P.*/
1034 static bool
1035 gimple_assign_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1037 enum tree_code code = gimple_assign_rhs_code (stmt);
1038 switch (get_gimple_rhs_class (code))
1040 case GIMPLE_UNARY_RHS:
1041 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1042 gimple_expr_type (stmt),
1043 gimple_assign_rhs1 (stmt),
1044 strict_overflow_p);
1045 case GIMPLE_BINARY_RHS:
1046 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1047 gimple_expr_type (stmt),
1048 gimple_assign_rhs1 (stmt),
1049 gimple_assign_rhs2 (stmt),
1050 strict_overflow_p);
1051 case GIMPLE_TERNARY_RHS:
1052 return false;
1053 case GIMPLE_SINGLE_RHS:
1054 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1055 strict_overflow_p);
1056 case GIMPLE_INVALID_RHS:
1057 gcc_unreachable ();
1058 default:
1059 gcc_unreachable ();
1063 /* Return true if STMT is known to compute a non-zero value.
1064 If the return value is based on the assumption that signed overflow is
1065 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1066 *STRICT_OVERFLOW_P.*/
1068 static bool
1069 gimple_stmt_nonzero_warnv_p (gimple *stmt, bool *strict_overflow_p)
1071 switch (gimple_code (stmt))
1073 case GIMPLE_ASSIGN:
1074 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1075 case GIMPLE_CALL:
1077 tree fndecl = gimple_call_fndecl (stmt);
1078 if (!fndecl) return false;
1079 if (flag_delete_null_pointer_checks && !flag_check_new
1080 && DECL_IS_OPERATOR_NEW (fndecl)
1081 && !TREE_NOTHROW (fndecl))
1082 return true;
1083 /* References are always non-NULL. */
1084 if (flag_delete_null_pointer_checks
1085 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1086 return true;
1087 if (flag_delete_null_pointer_checks &&
1088 lookup_attribute ("returns_nonnull",
1089 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1090 return true;
1092 gcall *call_stmt = as_a<gcall *> (stmt);
1093 unsigned rf = gimple_call_return_flags (call_stmt);
1094 if (rf & ERF_RETURNS_ARG)
1096 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
1097 if (argnum < gimple_call_num_args (call_stmt))
1099 tree arg = gimple_call_arg (call_stmt, argnum);
1100 if (SSA_VAR_P (arg)
1101 && infer_nonnull_range_by_attribute (stmt, arg))
1102 return true;
1105 return gimple_alloca_call_p (stmt);
1107 default:
1108 gcc_unreachable ();
1112 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1113 obtained so far. */
1115 static bool
1116 vrp_stmt_computes_nonzero (gimple *stmt, bool *strict_overflow_p)
1118 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1119 return true;
1121 /* If we have an expression of the form &X->a, then the expression
1122 is nonnull if X is nonnull. */
1123 if (is_gimple_assign (stmt)
1124 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1126 tree expr = gimple_assign_rhs1 (stmt);
1127 tree base = get_base_address (TREE_OPERAND (expr, 0));
1129 if (base != NULL_TREE
1130 && TREE_CODE (base) == MEM_REF
1131 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1133 value_range *vr = get_value_range (TREE_OPERAND (base, 0));
1134 if (range_is_nonnull (vr))
1135 return true;
1139 return false;
1142 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1143 a gimple invariant, or SSA_NAME +- CST. */
1145 static bool
1146 valid_value_p (tree expr)
1148 if (TREE_CODE (expr) == SSA_NAME)
1149 return true;
1151 if (TREE_CODE (expr) == PLUS_EXPR
1152 || TREE_CODE (expr) == MINUS_EXPR)
1153 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1154 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1156 return is_gimple_min_invariant (expr);
1159 /* Return
1160 1 if VAL < VAL2
1161 0 if !(VAL < VAL2)
1162 -2 if those are incomparable. */
1163 static inline int
1164 operand_less_p (tree val, tree val2)
1166 /* LT is folded faster than GE and others. Inline the common case. */
1167 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1169 if (! is_positive_overflow_infinity (val2))
1170 return tree_int_cst_lt (val, val2);
1172 else
1174 tree tcmp;
1176 fold_defer_overflow_warnings ();
1178 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1180 fold_undefer_and_ignore_overflow_warnings ();
1182 if (!tcmp
1183 || TREE_CODE (tcmp) != INTEGER_CST)
1184 return -2;
1186 if (!integer_zerop (tcmp))
1187 return 1;
1190 /* val >= val2, not considering overflow infinity. */
1191 if (is_negative_overflow_infinity (val))
1192 return is_negative_overflow_infinity (val2) ? 0 : 1;
1193 else if (is_positive_overflow_infinity (val2))
1194 return is_positive_overflow_infinity (val) ? 0 : 1;
1196 return 0;
1199 /* Compare two values VAL1 and VAL2. Return
1201 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1202 -1 if VAL1 < VAL2,
1203 0 if VAL1 == VAL2,
1204 +1 if VAL1 > VAL2, and
1205 +2 if VAL1 != VAL2
1207 This is similar to tree_int_cst_compare but supports pointer values
1208 and values that cannot be compared at compile time.
1210 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1211 true if the return value is only valid if we assume that signed
1212 overflow is undefined. */
1214 static int
1215 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1217 if (val1 == val2)
1218 return 0;
1220 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1221 both integers. */
1222 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1223 == POINTER_TYPE_P (TREE_TYPE (val2)));
1225 /* Convert the two values into the same type. This is needed because
1226 sizetype causes sign extension even for unsigned types. */
1227 val2 = fold_convert (TREE_TYPE (val1), val2);
1228 STRIP_USELESS_TYPE_CONVERSION (val2);
1230 const bool overflow_undefined
1231 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
1232 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
1233 tree inv1, inv2;
1234 bool neg1, neg2;
1235 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
1236 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
1238 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1239 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
1240 if (sym1 && sym2)
1242 /* Both values must use the same name with the same sign. */
1243 if (sym1 != sym2 || neg1 != neg2)
1244 return -2;
1246 /* [-]NAME + CST == [-]NAME + CST. */
1247 if (inv1 == inv2)
1248 return 0;
1250 /* If overflow is defined we cannot simplify more. */
1251 if (!overflow_undefined)
1252 return -2;
1254 if (strict_overflow_p != NULL
1255 && (!inv1 || !TREE_NO_WARNING (val1))
1256 && (!inv2 || !TREE_NO_WARNING (val2)))
1257 *strict_overflow_p = true;
1259 if (!inv1)
1260 inv1 = build_int_cst (TREE_TYPE (val1), 0);
1261 if (!inv2)
1262 inv2 = build_int_cst (TREE_TYPE (val2), 0);
1264 return compare_values_warnv (inv1, inv2, strict_overflow_p);
1267 const bool cst1 = is_gimple_min_invariant (val1);
1268 const bool cst2 = is_gimple_min_invariant (val2);
1270 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1271 it might be possible to say something depending on the constants. */
1272 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
1274 if (!overflow_undefined)
1275 return -2;
1277 if (strict_overflow_p != NULL
1278 && (!sym1 || !TREE_NO_WARNING (val1))
1279 && (!sym2 || !TREE_NO_WARNING (val2)))
1280 *strict_overflow_p = true;
1282 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
1283 tree cst = cst1 ? val1 : val2;
1284 tree inv = cst1 ? inv2 : inv1;
1286 /* Compute the difference between the constants. If it overflows or
1287 underflows, this means that we can trivially compare the NAME with
1288 it and, consequently, the two values with each other. */
1289 wide_int diff = wi::sub (cst, inv);
1290 if (wi::cmp (0, inv, sgn) != wi::cmp (diff, cst, sgn))
1292 const int res = wi::cmp (cst, inv, sgn);
1293 return cst1 ? res : -res;
1296 return -2;
1299 /* We cannot say anything more for non-constants. */
1300 if (!cst1 || !cst2)
1301 return -2;
1303 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1305 /* We cannot compare overflowed values, except for overflow
1306 infinities. */
1307 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1309 if (strict_overflow_p != NULL)
1310 *strict_overflow_p = true;
1311 if (is_negative_overflow_infinity (val1))
1312 return is_negative_overflow_infinity (val2) ? 0 : -1;
1313 else if (is_negative_overflow_infinity (val2))
1314 return 1;
1315 else if (is_positive_overflow_infinity (val1))
1316 return is_positive_overflow_infinity (val2) ? 0 : 1;
1317 else if (is_positive_overflow_infinity (val2))
1318 return -1;
1319 return -2;
1322 return tree_int_cst_compare (val1, val2);
1324 else
1326 tree t;
1328 /* First see if VAL1 and VAL2 are not the same. */
1329 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1330 return 0;
1332 /* If VAL1 is a lower address than VAL2, return -1. */
1333 if (operand_less_p (val1, val2) == 1)
1334 return -1;
1336 /* If VAL1 is a higher address than VAL2, return +1. */
1337 if (operand_less_p (val2, val1) == 1)
1338 return 1;
1340 /* If VAL1 is different than VAL2, return +2.
1341 For integer constants we either have already returned -1 or 1
1342 or they are equivalent. We still might succeed in proving
1343 something about non-trivial operands. */
1344 if (TREE_CODE (val1) != INTEGER_CST
1345 || TREE_CODE (val2) != INTEGER_CST)
1347 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1348 if (t && integer_onep (t))
1349 return 2;
1352 return -2;
1356 /* Compare values like compare_values_warnv, but treat comparisons of
1357 nonconstants which rely on undefined overflow as incomparable. */
1359 static int
1360 compare_values (tree val1, tree val2)
1362 bool sop;
1363 int ret;
1365 sop = false;
1366 ret = compare_values_warnv (val1, val2, &sop);
1367 if (sop
1368 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1369 ret = -2;
1370 return ret;
1374 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1375 0 if VAL is not inside [MIN, MAX],
1376 -2 if we cannot tell either way.
1378 Benchmark compile/20001226-1.c compilation time after changing this
1379 function. */
1381 static inline int
1382 value_inside_range (tree val, tree min, tree max)
1384 int cmp1, cmp2;
1386 cmp1 = operand_less_p (val, min);
1387 if (cmp1 == -2)
1388 return -2;
1389 if (cmp1 == 1)
1390 return 0;
1392 cmp2 = operand_less_p (max, val);
1393 if (cmp2 == -2)
1394 return -2;
1396 return !cmp2;
1400 /* Return true if value ranges VR0 and VR1 have a non-empty
1401 intersection.
1403 Benchmark compile/20001226-1.c compilation time after changing this
1404 function.
1407 static inline bool
1408 value_ranges_intersect_p (value_range *vr0, value_range *vr1)
1410 /* The value ranges do not intersect if the maximum of the first range is
1411 less than the minimum of the second range or vice versa.
1412 When those relations are unknown, we can't do any better. */
1413 if (operand_less_p (vr0->max, vr1->min) != 0)
1414 return false;
1415 if (operand_less_p (vr1->max, vr0->min) != 0)
1416 return false;
1417 return true;
1421 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1422 include the value zero, -2 if we cannot tell. */
1424 static inline int
1425 range_includes_zero_p (tree min, tree max)
1427 tree zero = build_int_cst (TREE_TYPE (min), 0);
1428 return value_inside_range (zero, min, max);
1431 /* Return true if *VR is know to only contain nonnegative values. */
1433 static inline bool
1434 value_range_nonnegative_p (value_range *vr)
1436 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1437 which would return a useful value should be encoded as a
1438 VR_RANGE. */
1439 if (vr->type == VR_RANGE)
1441 int result = compare_values (vr->min, integer_zero_node);
1442 return (result == 0 || result == 1);
1445 return false;
1448 /* If *VR has a value rante that is a single constant value return that,
1449 otherwise return NULL_TREE. */
1451 static tree
1452 value_range_constant_singleton (value_range *vr)
1454 if (vr->type == VR_RANGE
1455 && vrp_operand_equal_p (vr->min, vr->max)
1456 && is_gimple_min_invariant (vr->min))
1457 return vr->min;
1459 return NULL_TREE;
1462 /* If OP has a value range with a single constant value return that,
1463 otherwise return NULL_TREE. This returns OP itself if OP is a
1464 constant. */
1466 static tree
1467 op_with_constant_singleton_value_range (tree op)
1469 if (is_gimple_min_invariant (op))
1470 return op;
1472 if (TREE_CODE (op) != SSA_NAME)
1473 return NULL_TREE;
1475 return value_range_constant_singleton (get_value_range (op));
1478 /* Return true if op is in a boolean [0, 1] value-range. */
1480 static bool
1481 op_with_boolean_value_range_p (tree op)
1483 value_range *vr;
1485 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1486 return true;
1488 if (integer_zerop (op)
1489 || integer_onep (op))
1490 return true;
1492 if (TREE_CODE (op) != SSA_NAME)
1493 return false;
1495 vr = get_value_range (op);
1496 return (vr->type == VR_RANGE
1497 && integer_zerop (vr->min)
1498 && integer_onep (vr->max));
1501 /* Extract value range information for VAR when (OP COND_CODE LIMIT) is
1502 true and store it in *VR_P. */
1504 static void
1505 extract_range_for_var_from_comparison_expr (tree var, enum tree_code cond_code,
1506 tree op, tree limit,
1507 value_range *vr_p)
1509 tree min, max, type;
1510 value_range *limit_vr;
1511 limit = avoid_overflow_infinity (limit);
1512 type = TREE_TYPE (var);
1513 gcc_assert (limit != var);
1515 /* For pointer arithmetic, we only keep track of pointer equality
1516 and inequality. */
1517 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1519 set_value_range_to_varying (vr_p);
1520 return;
1523 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1524 try to use LIMIT's range to avoid creating symbolic ranges
1525 unnecessarily. */
1526 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1528 /* LIMIT's range is only interesting if it has any useful information. */
1529 if (! limit_vr
1530 || limit_vr->type == VR_UNDEFINED
1531 || limit_vr->type == VR_VARYING
1532 || (symbolic_range_p (limit_vr)
1533 && ! (limit_vr->type == VR_RANGE
1534 && (limit_vr->min == limit_vr->max
1535 || operand_equal_p (limit_vr->min, limit_vr->max, 0)))))
1536 limit_vr = NULL;
1538 /* Initially, the new range has the same set of equivalences of
1539 VAR's range. This will be revised before returning the final
1540 value. Since assertions may be chained via mutually exclusive
1541 predicates, we will need to trim the set of equivalences before
1542 we are done. */
1543 gcc_assert (vr_p->equiv == NULL);
1544 add_equivalence (&vr_p->equiv, var);
1546 /* Extract a new range based on the asserted comparison for VAR and
1547 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1548 will only use it for equality comparisons (EQ_EXPR). For any
1549 other kind of assertion, we cannot derive a range from LIMIT's
1550 anti-range that can be used to describe the new range. For
1551 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1552 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1553 no single range for x_2 that could describe LE_EXPR, so we might
1554 as well build the range [b_4, +INF] for it.
1555 One special case we handle is extracting a range from a
1556 range test encoded as (unsigned)var + CST <= limit. */
1557 if (TREE_CODE (op) == NOP_EXPR
1558 || TREE_CODE (op) == PLUS_EXPR)
1560 if (TREE_CODE (op) == PLUS_EXPR)
1562 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)),
1563 TREE_OPERAND (op, 1));
1564 max = int_const_binop (PLUS_EXPR, limit, min);
1565 op = TREE_OPERAND (op, 0);
1567 else
1569 min = build_int_cst (TREE_TYPE (var), 0);
1570 max = limit;
1573 /* Make sure to not set TREE_OVERFLOW on the final type
1574 conversion. We are willingly interpreting large positive
1575 unsigned values as negative signed values here. */
1576 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1577 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1579 /* We can transform a max, min range to an anti-range or
1580 vice-versa. Use set_and_canonicalize_value_range which does
1581 this for us. */
1582 if (cond_code == LE_EXPR)
1583 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1584 min, max, vr_p->equiv);
1585 else if (cond_code == GT_EXPR)
1586 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1587 min, max, vr_p->equiv);
1588 else
1589 gcc_unreachable ();
1591 else if (cond_code == EQ_EXPR)
1593 enum value_range_type range_type;
1595 if (limit_vr)
1597 range_type = limit_vr->type;
1598 min = limit_vr->min;
1599 max = limit_vr->max;
1601 else
1603 range_type = VR_RANGE;
1604 min = limit;
1605 max = limit;
1608 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1610 /* When asserting the equality VAR == LIMIT and LIMIT is another
1611 SSA name, the new range will also inherit the equivalence set
1612 from LIMIT. */
1613 if (TREE_CODE (limit) == SSA_NAME)
1614 add_equivalence (&vr_p->equiv, limit);
1616 else if (cond_code == NE_EXPR)
1618 /* As described above, when LIMIT's range is an anti-range and
1619 this assertion is an inequality (NE_EXPR), then we cannot
1620 derive anything from the anti-range. For instance, if
1621 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1622 not imply that VAR's range is [0, 0]. So, in the case of
1623 anti-ranges, we just assert the inequality using LIMIT and
1624 not its anti-range.
1626 If LIMIT_VR is a range, we can only use it to build a new
1627 anti-range if LIMIT_VR is a single-valued range. For
1628 instance, if LIMIT_VR is [0, 1], the predicate
1629 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1630 Rather, it means that for value 0 VAR should be ~[0, 0]
1631 and for value 1, VAR should be ~[1, 1]. We cannot
1632 represent these ranges.
1634 The only situation in which we can build a valid
1635 anti-range is when LIMIT_VR is a single-valued range
1636 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1637 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1638 if (limit_vr
1639 && limit_vr->type == VR_RANGE
1640 && compare_values (limit_vr->min, limit_vr->max) == 0)
1642 min = limit_vr->min;
1643 max = limit_vr->max;
1645 else
1647 /* In any other case, we cannot use LIMIT's range to build a
1648 valid anti-range. */
1649 min = max = limit;
1652 /* If MIN and MAX cover the whole range for their type, then
1653 just use the original LIMIT. */
1654 if (INTEGRAL_TYPE_P (type)
1655 && vrp_val_is_min (min)
1656 && vrp_val_is_max (max))
1657 min = max = limit;
1659 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1660 min, max, vr_p->equiv);
1662 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1664 min = TYPE_MIN_VALUE (type);
1666 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1667 max = limit;
1668 else
1670 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1671 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1672 LT_EXPR. */
1673 max = limit_vr->max;
1676 /* If the maximum value forces us to be out of bounds, simply punt.
1677 It would be pointless to try and do anything more since this
1678 all should be optimized away above us. */
1679 if ((cond_code == LT_EXPR
1680 && compare_values (max, min) == 0)
1681 || is_overflow_infinity (max))
1682 set_value_range_to_varying (vr_p);
1683 else
1685 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1686 if (cond_code == LT_EXPR)
1688 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1689 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1690 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1691 build_int_cst (TREE_TYPE (max), -1));
1692 else
1693 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1694 build_int_cst (TREE_TYPE (max), 1));
1695 if (EXPR_P (max))
1696 TREE_NO_WARNING (max) = 1;
1699 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1702 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1704 max = TYPE_MAX_VALUE (type);
1706 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1707 min = limit;
1708 else
1710 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1711 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1712 GT_EXPR. */
1713 min = limit_vr->min;
1716 /* If the minimum value forces us to be out of bounds, simply punt.
1717 It would be pointless to try and do anything more since this
1718 all should be optimized away above us. */
1719 if ((cond_code == GT_EXPR
1720 && compare_values (min, max) == 0)
1721 || is_overflow_infinity (min))
1722 set_value_range_to_varying (vr_p);
1723 else
1725 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1726 if (cond_code == GT_EXPR)
1728 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1729 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1730 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1731 build_int_cst (TREE_TYPE (min), -1));
1732 else
1733 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1734 build_int_cst (TREE_TYPE (min), 1));
1735 if (EXPR_P (min))
1736 TREE_NO_WARNING (min) = 1;
1739 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1742 else
1743 gcc_unreachable ();
1745 /* Finally intersect the new range with what we already know about var. */
1746 vrp_intersect_ranges (vr_p, get_value_range (var));
1749 /* Extract value range information from an ASSERT_EXPR EXPR and store
1750 it in *VR_P. */
1752 static void
1753 extract_range_from_assert (value_range *vr_p, tree expr)
1755 tree var = ASSERT_EXPR_VAR (expr);
1756 tree cond = ASSERT_EXPR_COND (expr);
1757 tree limit, op;
1758 enum tree_code cond_code;
1759 gcc_assert (COMPARISON_CLASS_P (cond));
1761 /* Find VAR in the ASSERT_EXPR conditional. */
1762 if (var == TREE_OPERAND (cond, 0)
1763 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1764 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1766 /* If the predicate is of the form VAR COMP LIMIT, then we just
1767 take LIMIT from the RHS and use the same comparison code. */
1768 cond_code = TREE_CODE (cond);
1769 limit = TREE_OPERAND (cond, 1);
1770 op = TREE_OPERAND (cond, 0);
1772 else
1774 /* If the predicate is of the form LIMIT COMP VAR, then we need
1775 to flip around the comparison code to create the proper range
1776 for VAR. */
1777 cond_code = swap_tree_comparison (TREE_CODE (cond));
1778 limit = TREE_OPERAND (cond, 0);
1779 op = TREE_OPERAND (cond, 1);
1781 extract_range_for_var_from_comparison_expr (var, cond_code, op,
1782 limit, vr_p);
1785 /* Extract range information from SSA name VAR and store it in VR. If
1786 VAR has an interesting range, use it. Otherwise, create the
1787 range [VAR, VAR] and return it. This is useful in situations where
1788 we may have conditionals testing values of VARYING names. For
1789 instance,
1791 x_3 = y_5;
1792 if (x_3 > y_5)
1795 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1796 always false. */
1798 static void
1799 extract_range_from_ssa_name (value_range *vr, tree var)
1801 value_range *var_vr = get_value_range (var);
1803 if (var_vr->type != VR_VARYING)
1804 copy_value_range (vr, var_vr);
1805 else
1806 set_value_range (vr, VR_RANGE, var, var, NULL);
1808 add_equivalence (&vr->equiv, var);
1812 /* Wrapper around int_const_binop. If the operation overflows and we
1813 are not using wrapping arithmetic, then adjust the result to be
1814 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1815 NULL_TREE if we need to use an overflow infinity representation but
1816 the type does not support it. */
1818 static tree
1819 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1821 tree res;
1823 res = int_const_binop (code, val1, val2);
1825 /* If we are using unsigned arithmetic, operate symbolically
1826 on -INF and +INF as int_const_binop only handles signed overflow. */
1827 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1829 int checkz = compare_values (res, val1);
1830 bool overflow = false;
1832 /* Ensure that res = val1 [+*] val2 >= val1
1833 or that res = val1 - val2 <= val1. */
1834 if ((code == PLUS_EXPR
1835 && !(checkz == 1 || checkz == 0))
1836 || (code == MINUS_EXPR
1837 && !(checkz == 0 || checkz == -1)))
1839 overflow = true;
1841 /* Checking for multiplication overflow is done by dividing the
1842 output of the multiplication by the first input of the
1843 multiplication. If the result of that division operation is
1844 not equal to the second input of the multiplication, then the
1845 multiplication overflowed. */
1846 else if (code == MULT_EXPR && !integer_zerop (val1))
1848 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1849 res,
1850 val1);
1851 int check = compare_values (tmp, val2);
1853 if (check != 0)
1854 overflow = true;
1857 if (overflow)
1859 res = copy_node (res);
1860 TREE_OVERFLOW (res) = 1;
1864 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1865 /* If the singed operation wraps then int_const_binop has done
1866 everything we want. */
1868 /* Signed division of -1/0 overflows and by the time it gets here
1869 returns NULL_TREE. */
1870 else if (!res)
1871 return NULL_TREE;
1872 else if ((TREE_OVERFLOW (res)
1873 && !TREE_OVERFLOW (val1)
1874 && !TREE_OVERFLOW (val2))
1875 || is_overflow_infinity (val1)
1876 || is_overflow_infinity (val2))
1878 /* If the operation overflowed but neither VAL1 nor VAL2 are
1879 overflown, return -INF or +INF depending on the operation
1880 and the combination of signs of the operands. */
1881 int sgn1 = tree_int_cst_sgn (val1);
1882 int sgn2 = tree_int_cst_sgn (val2);
1884 if (needs_overflow_infinity (TREE_TYPE (res))
1885 && !supports_overflow_infinity (TREE_TYPE (res)))
1886 return NULL_TREE;
1888 /* We have to punt on adding infinities of different signs,
1889 since we can't tell what the sign of the result should be.
1890 Likewise for subtracting infinities of the same sign. */
1891 if (((code == PLUS_EXPR && sgn1 != sgn2)
1892 || (code == MINUS_EXPR && sgn1 == sgn2))
1893 && is_overflow_infinity (val1)
1894 && is_overflow_infinity (val2))
1895 return NULL_TREE;
1897 /* Don't try to handle division or shifting of infinities. */
1898 if ((code == TRUNC_DIV_EXPR
1899 || code == FLOOR_DIV_EXPR
1900 || code == CEIL_DIV_EXPR
1901 || code == EXACT_DIV_EXPR
1902 || code == ROUND_DIV_EXPR
1903 || code == RSHIFT_EXPR)
1904 && (is_overflow_infinity (val1)
1905 || is_overflow_infinity (val2)))
1906 return NULL_TREE;
1908 /* Notice that we only need to handle the restricted set of
1909 operations handled by extract_range_from_binary_expr.
1910 Among them, only multiplication, addition and subtraction
1911 can yield overflow without overflown operands because we
1912 are working with integral types only... except in the
1913 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1914 for division too. */
1916 /* For multiplication, the sign of the overflow is given
1917 by the comparison of the signs of the operands. */
1918 if ((code == MULT_EXPR && sgn1 == sgn2)
1919 /* For addition, the operands must be of the same sign
1920 to yield an overflow. Its sign is therefore that
1921 of one of the operands, for example the first. For
1922 infinite operands X + -INF is negative, not positive. */
1923 || (code == PLUS_EXPR
1924 && (sgn1 >= 0
1925 ? !is_negative_overflow_infinity (val2)
1926 : is_positive_overflow_infinity (val2)))
1927 /* For subtraction, non-infinite operands must be of
1928 different signs to yield an overflow. Its sign is
1929 therefore that of the first operand or the opposite of
1930 that of the second operand. A first operand of 0 counts
1931 as positive here, for the corner case 0 - (-INF), which
1932 overflows, but must yield +INF. For infinite operands 0
1933 - INF is negative, not positive. */
1934 || (code == MINUS_EXPR
1935 && (sgn1 >= 0
1936 ? !is_positive_overflow_infinity (val2)
1937 : is_negative_overflow_infinity (val2)))
1938 /* We only get in here with positive shift count, so the
1939 overflow direction is the same as the sign of val1.
1940 Actually rshift does not overflow at all, but we only
1941 handle the case of shifting overflowed -INF and +INF. */
1942 || (code == RSHIFT_EXPR
1943 && sgn1 >= 0)
1944 /* For division, the only case is -INF / -1 = +INF. */
1945 || code == TRUNC_DIV_EXPR
1946 || code == FLOOR_DIV_EXPR
1947 || code == CEIL_DIV_EXPR
1948 || code == EXACT_DIV_EXPR
1949 || code == ROUND_DIV_EXPR)
1950 return (needs_overflow_infinity (TREE_TYPE (res))
1951 ? positive_overflow_infinity (TREE_TYPE (res))
1952 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1953 else
1954 return (needs_overflow_infinity (TREE_TYPE (res))
1955 ? negative_overflow_infinity (TREE_TYPE (res))
1956 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1959 return res;
1963 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
1964 bitmask if some bit is unset, it means for all numbers in the range
1965 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1966 bitmask if some bit is set, it means for all numbers in the range
1967 the bit is 1, otherwise it might be 0 or 1. */
1969 static bool
1970 zero_nonzero_bits_from_vr (const tree expr_type,
1971 value_range *vr,
1972 wide_int *may_be_nonzero,
1973 wide_int *must_be_nonzero)
1975 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1976 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1977 if (!range_int_cst_p (vr)
1978 || is_overflow_infinity (vr->min)
1979 || is_overflow_infinity (vr->max))
1980 return false;
1982 if (range_int_cst_singleton_p (vr))
1984 *may_be_nonzero = vr->min;
1985 *must_be_nonzero = *may_be_nonzero;
1987 else if (tree_int_cst_sgn (vr->min) >= 0
1988 || tree_int_cst_sgn (vr->max) < 0)
1990 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
1991 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
1992 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
1993 if (xor_mask != 0)
1995 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
1996 may_be_nonzero->get_precision ());
1997 *may_be_nonzero = *may_be_nonzero | mask;
1998 *must_be_nonzero = must_be_nonzero->and_not (mask);
2002 return true;
2005 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2006 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2007 false otherwise. If *AR can be represented with a single range
2008 *VR1 will be VR_UNDEFINED. */
2010 static bool
2011 ranges_from_anti_range (value_range *ar,
2012 value_range *vr0, value_range *vr1)
2014 tree type = TREE_TYPE (ar->min);
2016 vr0->type = VR_UNDEFINED;
2017 vr1->type = VR_UNDEFINED;
2019 if (ar->type != VR_ANTI_RANGE
2020 || TREE_CODE (ar->min) != INTEGER_CST
2021 || TREE_CODE (ar->max) != INTEGER_CST
2022 || !vrp_val_min (type)
2023 || !vrp_val_max (type))
2024 return false;
2026 if (!vrp_val_is_min (ar->min))
2028 vr0->type = VR_RANGE;
2029 vr0->min = vrp_val_min (type);
2030 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
2032 if (!vrp_val_is_max (ar->max))
2034 vr1->type = VR_RANGE;
2035 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
2036 vr1->max = vrp_val_max (type);
2038 if (vr0->type == VR_UNDEFINED)
2040 *vr0 = *vr1;
2041 vr1->type = VR_UNDEFINED;
2044 return vr0->type != VR_UNDEFINED;
2047 /* Helper to extract a value-range *VR for a multiplicative operation
2048 *VR0 CODE *VR1. */
2050 static void
2051 extract_range_from_multiplicative_op_1 (value_range *vr,
2052 enum tree_code code,
2053 value_range *vr0, value_range *vr1)
2055 enum value_range_type type;
2056 tree val[4];
2057 size_t i;
2058 tree min, max;
2059 bool sop;
2060 int cmp;
2062 /* Multiplications, divisions and shifts are a bit tricky to handle,
2063 depending on the mix of signs we have in the two ranges, we
2064 need to operate on different values to get the minimum and
2065 maximum values for the new range. One approach is to figure
2066 out all the variations of range combinations and do the
2067 operations.
2069 However, this involves several calls to compare_values and it
2070 is pretty convoluted. It's simpler to do the 4 operations
2071 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2072 MAX1) and then figure the smallest and largest values to form
2073 the new range. */
2074 gcc_assert (code == MULT_EXPR
2075 || code == TRUNC_DIV_EXPR
2076 || code == FLOOR_DIV_EXPR
2077 || code == CEIL_DIV_EXPR
2078 || code == EXACT_DIV_EXPR
2079 || code == ROUND_DIV_EXPR
2080 || code == RSHIFT_EXPR
2081 || code == LSHIFT_EXPR);
2082 gcc_assert ((vr0->type == VR_RANGE
2083 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2084 && vr0->type == vr1->type);
2086 type = vr0->type;
2088 /* Compute the 4 cross operations. */
2089 sop = false;
2090 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2091 if (val[0] == NULL_TREE)
2092 sop = true;
2094 if (vr1->max == vr1->min)
2095 val[1] = NULL_TREE;
2096 else
2098 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2099 if (val[1] == NULL_TREE)
2100 sop = true;
2103 if (vr0->max == vr0->min)
2104 val[2] = NULL_TREE;
2105 else
2107 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2108 if (val[2] == NULL_TREE)
2109 sop = true;
2112 if (vr0->min == vr0->max || vr1->min == vr1->max)
2113 val[3] = NULL_TREE;
2114 else
2116 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2117 if (val[3] == NULL_TREE)
2118 sop = true;
2121 if (sop)
2123 set_value_range_to_varying (vr);
2124 return;
2127 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2128 of VAL[i]. */
2129 min = val[0];
2130 max = val[0];
2131 for (i = 1; i < 4; i++)
2133 if (!is_gimple_min_invariant (min)
2134 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2135 || !is_gimple_min_invariant (max)
2136 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2137 break;
2139 if (val[i])
2141 if (!is_gimple_min_invariant (val[i])
2142 || (TREE_OVERFLOW (val[i])
2143 && !is_overflow_infinity (val[i])))
2145 /* If we found an overflowed value, set MIN and MAX
2146 to it so that we set the resulting range to
2147 VARYING. */
2148 min = max = val[i];
2149 break;
2152 if (compare_values (val[i], min) == -1)
2153 min = val[i];
2155 if (compare_values (val[i], max) == 1)
2156 max = val[i];
2160 /* If either MIN or MAX overflowed, then set the resulting range to
2161 VARYING. But we do accept an overflow infinity
2162 representation. */
2163 if (min == NULL_TREE
2164 || !is_gimple_min_invariant (min)
2165 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2166 || max == NULL_TREE
2167 || !is_gimple_min_invariant (max)
2168 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2170 set_value_range_to_varying (vr);
2171 return;
2174 /* We punt if:
2175 1) [-INF, +INF]
2176 2) [-INF, +-INF(OVF)]
2177 3) [+-INF(OVF), +INF]
2178 4) [+-INF(OVF), +-INF(OVF)]
2179 We learn nothing when we have INF and INF(OVF) on both sides.
2180 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2181 overflow. */
2182 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2183 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2185 set_value_range_to_varying (vr);
2186 return;
2189 cmp = compare_values (min, max);
2190 if (cmp == -2 || cmp == 1)
2192 /* If the new range has its limits swapped around (MIN > MAX),
2193 then the operation caused one of them to wrap around, mark
2194 the new range VARYING. */
2195 set_value_range_to_varying (vr);
2197 else
2198 set_value_range (vr, type, min, max, NULL);
2201 /* Extract range information from a binary operation CODE based on
2202 the ranges of each of its operands *VR0 and *VR1 with resulting
2203 type EXPR_TYPE. The resulting range is stored in *VR. */
2205 static void
2206 extract_range_from_binary_expr_1 (value_range *vr,
2207 enum tree_code code, tree expr_type,
2208 value_range *vr0_, value_range *vr1_)
2210 value_range vr0 = *vr0_, vr1 = *vr1_;
2211 value_range vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2212 enum value_range_type type;
2213 tree min = NULL_TREE, max = NULL_TREE;
2214 int cmp;
2216 if (!INTEGRAL_TYPE_P (expr_type)
2217 && !POINTER_TYPE_P (expr_type))
2219 set_value_range_to_varying (vr);
2220 return;
2223 /* Not all binary expressions can be applied to ranges in a
2224 meaningful way. Handle only arithmetic operations. */
2225 if (code != PLUS_EXPR
2226 && code != MINUS_EXPR
2227 && code != POINTER_PLUS_EXPR
2228 && code != MULT_EXPR
2229 && code != TRUNC_DIV_EXPR
2230 && code != FLOOR_DIV_EXPR
2231 && code != CEIL_DIV_EXPR
2232 && code != EXACT_DIV_EXPR
2233 && code != ROUND_DIV_EXPR
2234 && code != TRUNC_MOD_EXPR
2235 && code != RSHIFT_EXPR
2236 && code != LSHIFT_EXPR
2237 && code != MIN_EXPR
2238 && code != MAX_EXPR
2239 && code != BIT_AND_EXPR
2240 && code != BIT_IOR_EXPR
2241 && code != BIT_XOR_EXPR)
2243 set_value_range_to_varying (vr);
2244 return;
2247 /* If both ranges are UNDEFINED, so is the result. */
2248 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2250 set_value_range_to_undefined (vr);
2251 return;
2253 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2254 code. At some point we may want to special-case operations that
2255 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2256 operand. */
2257 else if (vr0.type == VR_UNDEFINED)
2258 set_value_range_to_varying (&vr0);
2259 else if (vr1.type == VR_UNDEFINED)
2260 set_value_range_to_varying (&vr1);
2262 /* We get imprecise results from ranges_from_anti_range when
2263 code is EXACT_DIV_EXPR. We could mask out bits in the resulting
2264 range, but then we also need to hack up vrp_meet. It's just
2265 easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
2266 if (code == EXACT_DIV_EXPR
2267 && vr0.type == VR_ANTI_RANGE
2268 && vr0.min == vr0.max
2269 && integer_zerop (vr0.min))
2271 set_value_range_to_nonnull (vr, expr_type);
2272 return;
2275 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2276 and express ~[] op X as ([]' op X) U ([]'' op X). */
2277 if (vr0.type == VR_ANTI_RANGE
2278 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2280 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2281 if (vrtem1.type != VR_UNDEFINED)
2283 value_range vrres = VR_INITIALIZER;
2284 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2285 &vrtem1, vr1_);
2286 vrp_meet (vr, &vrres);
2288 return;
2290 /* Likewise for X op ~[]. */
2291 if (vr1.type == VR_ANTI_RANGE
2292 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2294 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2295 if (vrtem1.type != VR_UNDEFINED)
2297 value_range vrres = VR_INITIALIZER;
2298 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2299 vr0_, &vrtem1);
2300 vrp_meet (vr, &vrres);
2302 return;
2305 /* The type of the resulting value range defaults to VR0.TYPE. */
2306 type = vr0.type;
2308 /* Refuse to operate on VARYING ranges, ranges of different kinds
2309 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2310 because we may be able to derive a useful range even if one of
2311 the operands is VR_VARYING or symbolic range. Similarly for
2312 divisions, MIN/MAX and PLUS/MINUS.
2314 TODO, we may be able to derive anti-ranges in some cases. */
2315 if (code != BIT_AND_EXPR
2316 && code != BIT_IOR_EXPR
2317 && code != TRUNC_DIV_EXPR
2318 && code != FLOOR_DIV_EXPR
2319 && code != CEIL_DIV_EXPR
2320 && code != EXACT_DIV_EXPR
2321 && code != ROUND_DIV_EXPR
2322 && code != TRUNC_MOD_EXPR
2323 && code != MIN_EXPR
2324 && code != MAX_EXPR
2325 && code != PLUS_EXPR
2326 && code != MINUS_EXPR
2327 && code != RSHIFT_EXPR
2328 && (vr0.type == VR_VARYING
2329 || vr1.type == VR_VARYING
2330 || vr0.type != vr1.type
2331 || symbolic_range_p (&vr0)
2332 || symbolic_range_p (&vr1)))
2334 set_value_range_to_varying (vr);
2335 return;
2338 /* Now evaluate the expression to determine the new range. */
2339 if (POINTER_TYPE_P (expr_type))
2341 if (code == MIN_EXPR || code == MAX_EXPR)
2343 /* For MIN/MAX expressions with pointers, we only care about
2344 nullness, if both are non null, then the result is nonnull.
2345 If both are null, then the result is null. Otherwise they
2346 are varying. */
2347 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2348 set_value_range_to_nonnull (vr, expr_type);
2349 else if (range_is_null (&vr0) && range_is_null (&vr1))
2350 set_value_range_to_null (vr, expr_type);
2351 else
2352 set_value_range_to_varying (vr);
2354 else if (code == POINTER_PLUS_EXPR)
2356 /* For pointer types, we are really only interested in asserting
2357 whether the expression evaluates to non-NULL. */
2358 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2359 set_value_range_to_nonnull (vr, expr_type);
2360 else if (range_is_null (&vr0) && range_is_null (&vr1))
2361 set_value_range_to_null (vr, expr_type);
2362 else
2363 set_value_range_to_varying (vr);
2365 else if (code == BIT_AND_EXPR)
2367 /* For pointer types, we are really only interested in asserting
2368 whether the expression evaluates to non-NULL. */
2369 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2370 set_value_range_to_nonnull (vr, expr_type);
2371 else if (range_is_null (&vr0) || range_is_null (&vr1))
2372 set_value_range_to_null (vr, expr_type);
2373 else
2374 set_value_range_to_varying (vr);
2376 else
2377 set_value_range_to_varying (vr);
2379 return;
2382 /* For integer ranges, apply the operation to each end of the
2383 range and see what we end up with. */
2384 if (code == PLUS_EXPR || code == MINUS_EXPR)
2386 const bool minus_p = (code == MINUS_EXPR);
2387 tree min_op0 = vr0.min;
2388 tree min_op1 = minus_p ? vr1.max : vr1.min;
2389 tree max_op0 = vr0.max;
2390 tree max_op1 = minus_p ? vr1.min : vr1.max;
2391 tree sym_min_op0 = NULL_TREE;
2392 tree sym_min_op1 = NULL_TREE;
2393 tree sym_max_op0 = NULL_TREE;
2394 tree sym_max_op1 = NULL_TREE;
2395 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2397 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2398 single-symbolic ranges, try to compute the precise resulting range,
2399 but only if we know that this resulting range will also be constant
2400 or single-symbolic. */
2401 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2402 && (TREE_CODE (min_op0) == INTEGER_CST
2403 || (sym_min_op0
2404 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2405 && (TREE_CODE (min_op1) == INTEGER_CST
2406 || (sym_min_op1
2407 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2408 && (!(sym_min_op0 && sym_min_op1)
2409 || (sym_min_op0 == sym_min_op1
2410 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2411 && (TREE_CODE (max_op0) == INTEGER_CST
2412 || (sym_max_op0
2413 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2414 && (TREE_CODE (max_op1) == INTEGER_CST
2415 || (sym_max_op1
2416 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2417 && (!(sym_max_op0 && sym_max_op1)
2418 || (sym_max_op0 == sym_max_op1
2419 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2421 const signop sgn = TYPE_SIGN (expr_type);
2422 const unsigned int prec = TYPE_PRECISION (expr_type);
2423 wide_int type_min, type_max, wmin, wmax;
2424 int min_ovf = 0;
2425 int max_ovf = 0;
2427 /* Get the lower and upper bounds of the type. */
2428 if (TYPE_OVERFLOW_WRAPS (expr_type))
2430 type_min = wi::min_value (prec, sgn);
2431 type_max = wi::max_value (prec, sgn);
2433 else
2435 type_min = vrp_val_min (expr_type);
2436 type_max = vrp_val_max (expr_type);
2439 /* Combine the lower bounds, if any. */
2440 if (min_op0 && min_op1)
2442 if (minus_p)
2444 wmin = wi::sub (min_op0, min_op1);
2446 /* Check for overflow. */
2447 if (wi::cmp (0, min_op1, sgn)
2448 != wi::cmp (wmin, min_op0, sgn))
2449 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2451 else
2453 wmin = wi::add (min_op0, min_op1);
2455 /* Check for overflow. */
2456 if (wi::cmp (min_op1, 0, sgn)
2457 != wi::cmp (wmin, min_op0, sgn))
2458 min_ovf = wi::cmp (min_op0, wmin, sgn);
2461 else if (min_op0)
2462 wmin = min_op0;
2463 else if (min_op1)
2465 if (minus_p)
2467 wmin = wi::neg (min_op1);
2469 /* Check for overflow. */
2470 if (sgn == SIGNED && wi::neg_p (min_op1) && wi::neg_p (wmin))
2471 min_ovf = 1;
2472 else if (sgn == UNSIGNED && wi::ne_p (min_op1, 0))
2473 min_ovf = -1;
2475 else
2476 wmin = min_op1;
2478 else
2479 wmin = wi::shwi (0, prec);
2481 /* Combine the upper bounds, if any. */
2482 if (max_op0 && max_op1)
2484 if (minus_p)
2486 wmax = wi::sub (max_op0, max_op1);
2488 /* Check for overflow. */
2489 if (wi::cmp (0, max_op1, sgn)
2490 != wi::cmp (wmax, max_op0, sgn))
2491 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2493 else
2495 wmax = wi::add (max_op0, max_op1);
2497 if (wi::cmp (max_op1, 0, sgn)
2498 != wi::cmp (wmax, max_op0, sgn))
2499 max_ovf = wi::cmp (max_op0, wmax, sgn);
2502 else if (max_op0)
2503 wmax = max_op0;
2504 else if (max_op1)
2506 if (minus_p)
2508 wmax = wi::neg (max_op1);
2510 /* Check for overflow. */
2511 if (sgn == SIGNED && wi::neg_p (max_op1) && wi::neg_p (wmax))
2512 max_ovf = 1;
2513 else if (sgn == UNSIGNED && wi::ne_p (max_op1, 0))
2514 max_ovf = -1;
2516 else
2517 wmax = max_op1;
2519 else
2520 wmax = wi::shwi (0, prec);
2522 /* Check for type overflow. */
2523 if (min_ovf == 0)
2525 if (wi::cmp (wmin, type_min, sgn) == -1)
2526 min_ovf = -1;
2527 else if (wi::cmp (wmin, type_max, sgn) == 1)
2528 min_ovf = 1;
2530 if (max_ovf == 0)
2532 if (wi::cmp (wmax, type_min, sgn) == -1)
2533 max_ovf = -1;
2534 else if (wi::cmp (wmax, type_max, sgn) == 1)
2535 max_ovf = 1;
2538 /* If we have overflow for the constant part and the resulting
2539 range will be symbolic, drop to VR_VARYING. */
2540 if ((min_ovf && sym_min_op0 != sym_min_op1)
2541 || (max_ovf && sym_max_op0 != sym_max_op1))
2543 set_value_range_to_varying (vr);
2544 return;
2547 if (TYPE_OVERFLOW_WRAPS (expr_type))
2549 /* If overflow wraps, truncate the values and adjust the
2550 range kind and bounds appropriately. */
2551 wide_int tmin = wide_int::from (wmin, prec, sgn);
2552 wide_int tmax = wide_int::from (wmax, prec, sgn);
2553 if (min_ovf == max_ovf)
2555 /* No overflow or both overflow or underflow. The
2556 range kind stays VR_RANGE. */
2557 min = wide_int_to_tree (expr_type, tmin);
2558 max = wide_int_to_tree (expr_type, tmax);
2560 else if ((min_ovf == -1 && max_ovf == 0)
2561 || (max_ovf == 1 && min_ovf == 0))
2563 /* Min underflow or max overflow. The range kind
2564 changes to VR_ANTI_RANGE. */
2565 bool covers = false;
2566 wide_int tem = tmin;
2567 type = VR_ANTI_RANGE;
2568 tmin = tmax + 1;
2569 if (wi::cmp (tmin, tmax, sgn) < 0)
2570 covers = true;
2571 tmax = tem - 1;
2572 if (wi::cmp (tmax, tem, sgn) > 0)
2573 covers = true;
2574 /* If the anti-range would cover nothing, drop to varying.
2575 Likewise if the anti-range bounds are outside of the
2576 types values. */
2577 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2579 set_value_range_to_varying (vr);
2580 return;
2582 min = wide_int_to_tree (expr_type, tmin);
2583 max = wide_int_to_tree (expr_type, tmax);
2585 else
2587 /* Other underflow and/or overflow, drop to VR_VARYING. */
2588 set_value_range_to_varying (vr);
2589 return;
2592 else
2594 /* If overflow does not wrap, saturate to the types min/max
2595 value. */
2596 if (min_ovf == -1)
2598 if (needs_overflow_infinity (expr_type)
2599 && supports_overflow_infinity (expr_type))
2600 min = negative_overflow_infinity (expr_type);
2601 else
2602 min = wide_int_to_tree (expr_type, type_min);
2604 else if (min_ovf == 1)
2606 if (needs_overflow_infinity (expr_type)
2607 && supports_overflow_infinity (expr_type))
2608 min = positive_overflow_infinity (expr_type);
2609 else
2610 min = wide_int_to_tree (expr_type, type_max);
2612 else
2613 min = wide_int_to_tree (expr_type, wmin);
2615 if (max_ovf == -1)
2617 if (needs_overflow_infinity (expr_type)
2618 && supports_overflow_infinity (expr_type))
2619 max = negative_overflow_infinity (expr_type);
2620 else
2621 max = wide_int_to_tree (expr_type, type_min);
2623 else if (max_ovf == 1)
2625 if (needs_overflow_infinity (expr_type)
2626 && supports_overflow_infinity (expr_type))
2627 max = positive_overflow_infinity (expr_type);
2628 else
2629 max = wide_int_to_tree (expr_type, type_max);
2631 else
2632 max = wide_int_to_tree (expr_type, wmax);
2635 if (needs_overflow_infinity (expr_type)
2636 && supports_overflow_infinity (expr_type))
2638 if ((min_op0 && is_negative_overflow_infinity (min_op0))
2639 || (min_op1
2640 && (minus_p
2641 ? is_positive_overflow_infinity (min_op1)
2642 : is_negative_overflow_infinity (min_op1))))
2643 min = negative_overflow_infinity (expr_type);
2644 if ((max_op0 && is_positive_overflow_infinity (max_op0))
2645 || (max_op1
2646 && (minus_p
2647 ? is_negative_overflow_infinity (max_op1)
2648 : is_positive_overflow_infinity (max_op1))))
2649 max = positive_overflow_infinity (expr_type);
2652 /* If the result lower bound is constant, we're done;
2653 otherwise, build the symbolic lower bound. */
2654 if (sym_min_op0 == sym_min_op1)
2656 else if (sym_min_op0)
2657 min = build_symbolic_expr (expr_type, sym_min_op0,
2658 neg_min_op0, min);
2659 else if (sym_min_op1)
2661 /* We may not negate if that might introduce
2662 undefined overflow. */
2663 if (! minus_p
2664 || neg_min_op1
2665 || TYPE_OVERFLOW_WRAPS (expr_type))
2666 min = build_symbolic_expr (expr_type, sym_min_op1,
2667 neg_min_op1 ^ minus_p, min);
2668 else
2669 min = NULL_TREE;
2672 /* Likewise for the upper bound. */
2673 if (sym_max_op0 == sym_max_op1)
2675 else if (sym_max_op0)
2676 max = build_symbolic_expr (expr_type, sym_max_op0,
2677 neg_max_op0, max);
2678 else if (sym_max_op1)
2680 /* We may not negate if that might introduce
2681 undefined overflow. */
2682 if (! minus_p
2683 || neg_max_op1
2684 || TYPE_OVERFLOW_WRAPS (expr_type))
2685 max = build_symbolic_expr (expr_type, sym_max_op1,
2686 neg_max_op1 ^ minus_p, max);
2687 else
2688 max = NULL_TREE;
2691 else
2693 /* For other cases, for example if we have a PLUS_EXPR with two
2694 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2695 to compute a precise range for such a case.
2696 ??? General even mixed range kind operations can be expressed
2697 by for example transforming ~[3, 5] + [1, 2] to range-only
2698 operations and a union primitive:
2699 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2700 [-INF+1, 4] U [6, +INF(OVF)]
2701 though usually the union is not exactly representable with
2702 a single range or anti-range as the above is
2703 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2704 but one could use a scheme similar to equivalences for this. */
2705 set_value_range_to_varying (vr);
2706 return;
2709 else if (code == MIN_EXPR
2710 || code == MAX_EXPR)
2712 if (vr0.type == VR_RANGE
2713 && !symbolic_range_p (&vr0))
2715 type = VR_RANGE;
2716 if (vr1.type == VR_RANGE
2717 && !symbolic_range_p (&vr1))
2719 /* For operations that make the resulting range directly
2720 proportional to the original ranges, apply the operation to
2721 the same end of each range. */
2722 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2723 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2725 else if (code == MIN_EXPR)
2727 min = vrp_val_min (expr_type);
2728 max = vr0.max;
2730 else if (code == MAX_EXPR)
2732 min = vr0.min;
2733 max = vrp_val_max (expr_type);
2736 else if (vr1.type == VR_RANGE
2737 && !symbolic_range_p (&vr1))
2739 type = VR_RANGE;
2740 if (code == MIN_EXPR)
2742 min = vrp_val_min (expr_type);
2743 max = vr1.max;
2745 else if (code == MAX_EXPR)
2747 min = vr1.min;
2748 max = vrp_val_max (expr_type);
2751 else
2753 set_value_range_to_varying (vr);
2754 return;
2757 else if (code == MULT_EXPR)
2759 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2760 drop to varying. This test requires 2*prec bits if both
2761 operands are signed and 2*prec + 2 bits if either is not. */
2763 signop sign = TYPE_SIGN (expr_type);
2764 unsigned int prec = TYPE_PRECISION (expr_type);
2766 if (range_int_cst_p (&vr0)
2767 && range_int_cst_p (&vr1)
2768 && TYPE_OVERFLOW_WRAPS (expr_type))
2770 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2771 typedef generic_wide_int
2772 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2773 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2774 vrp_int size = sizem1 + 1;
2776 /* Extend the values using the sign of the result to PREC2.
2777 From here on out, everthing is just signed math no matter
2778 what the input types were. */
2779 vrp_int min0 = vrp_int_cst (vr0.min);
2780 vrp_int max0 = vrp_int_cst (vr0.max);
2781 vrp_int min1 = vrp_int_cst (vr1.min);
2782 vrp_int max1 = vrp_int_cst (vr1.max);
2783 /* Canonicalize the intervals. */
2784 if (sign == UNSIGNED)
2786 if (wi::ltu_p (size, min0 + max0))
2788 min0 -= size;
2789 max0 -= size;
2792 if (wi::ltu_p (size, min1 + max1))
2794 min1 -= size;
2795 max1 -= size;
2799 vrp_int prod0 = min0 * min1;
2800 vrp_int prod1 = min0 * max1;
2801 vrp_int prod2 = max0 * min1;
2802 vrp_int prod3 = max0 * max1;
2804 /* Sort the 4 products so that min is in prod0 and max is in
2805 prod3. */
2806 /* min0min1 > max0max1 */
2807 if (prod0 > prod3)
2808 std::swap (prod0, prod3);
2810 /* min0max1 > max0min1 */
2811 if (prod1 > prod2)
2812 std::swap (prod1, prod2);
2814 if (prod0 > prod1)
2815 std::swap (prod0, prod1);
2817 if (prod2 > prod3)
2818 std::swap (prod2, prod3);
2820 /* diff = max - min. */
2821 prod2 = prod3 - prod0;
2822 if (wi::geu_p (prod2, sizem1))
2824 /* the range covers all values. */
2825 set_value_range_to_varying (vr);
2826 return;
2829 /* The following should handle the wrapping and selecting
2830 VR_ANTI_RANGE for us. */
2831 min = wide_int_to_tree (expr_type, prod0);
2832 max = wide_int_to_tree (expr_type, prod3);
2833 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2834 return;
2837 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2838 drop to VR_VARYING. It would take more effort to compute a
2839 precise range for such a case. For example, if we have
2840 op0 == 65536 and op1 == 65536 with their ranges both being
2841 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2842 we cannot claim that the product is in ~[0,0]. Note that we
2843 are guaranteed to have vr0.type == vr1.type at this
2844 point. */
2845 if (vr0.type == VR_ANTI_RANGE
2846 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2848 set_value_range_to_varying (vr);
2849 return;
2852 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2853 return;
2855 else if (code == RSHIFT_EXPR
2856 || code == LSHIFT_EXPR)
2858 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2859 then drop to VR_VARYING. Outside of this range we get undefined
2860 behavior from the shift operation. We cannot even trust
2861 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2862 shifts, and the operation at the tree level may be widened. */
2863 if (range_int_cst_p (&vr1)
2864 && compare_tree_int (vr1.min, 0) >= 0
2865 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2867 if (code == RSHIFT_EXPR)
2869 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2870 useful ranges just from the shift count. E.g.
2871 x >> 63 for signed 64-bit x is always [-1, 0]. */
2872 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2874 vr0.type = type = VR_RANGE;
2875 vr0.min = vrp_val_min (expr_type);
2876 vr0.max = vrp_val_max (expr_type);
2878 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2879 return;
2881 /* We can map lshifts by constants to MULT_EXPR handling. */
2882 else if (code == LSHIFT_EXPR
2883 && range_int_cst_singleton_p (&vr1))
2885 bool saved_flag_wrapv;
2886 value_range vr1p = VR_INITIALIZER;
2887 vr1p.type = VR_RANGE;
2888 vr1p.min = (wide_int_to_tree
2889 (expr_type,
2890 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
2891 TYPE_PRECISION (expr_type))));
2892 vr1p.max = vr1p.min;
2893 /* We have to use a wrapping multiply though as signed overflow
2894 on lshifts is implementation defined in C89. */
2895 saved_flag_wrapv = flag_wrapv;
2896 flag_wrapv = 1;
2897 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2898 &vr0, &vr1p);
2899 flag_wrapv = saved_flag_wrapv;
2900 return;
2902 else if (code == LSHIFT_EXPR
2903 && range_int_cst_p (&vr0))
2905 int prec = TYPE_PRECISION (expr_type);
2906 int overflow_pos = prec;
2907 int bound_shift;
2908 wide_int low_bound, high_bound;
2909 bool uns = TYPE_UNSIGNED (expr_type);
2910 bool in_bounds = false;
2912 if (!uns)
2913 overflow_pos -= 1;
2915 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
2916 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2917 overflow. However, for that to happen, vr1.max needs to be
2918 zero, which means vr1 is a singleton range of zero, which
2919 means it should be handled by the previous LSHIFT_EXPR
2920 if-clause. */
2921 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2922 wide_int complement = ~(bound - 1);
2924 if (uns)
2926 low_bound = bound;
2927 high_bound = complement;
2928 if (wi::ltu_p (vr0.max, low_bound))
2930 /* [5, 6] << [1, 2] == [10, 24]. */
2931 /* We're shifting out only zeroes, the value increases
2932 monotonically. */
2933 in_bounds = true;
2935 else if (wi::ltu_p (high_bound, vr0.min))
2937 /* [0xffffff00, 0xffffffff] << [1, 2]
2938 == [0xfffffc00, 0xfffffffe]. */
2939 /* We're shifting out only ones, the value decreases
2940 monotonically. */
2941 in_bounds = true;
2944 else
2946 /* [-1, 1] << [1, 2] == [-4, 4]. */
2947 low_bound = complement;
2948 high_bound = bound;
2949 if (wi::lts_p (vr0.max, high_bound)
2950 && wi::lts_p (low_bound, vr0.min))
2952 /* For non-negative numbers, we're shifting out only
2953 zeroes, the value increases monotonically.
2954 For negative numbers, we're shifting out only ones, the
2955 value decreases monotomically. */
2956 in_bounds = true;
2960 if (in_bounds)
2962 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2963 return;
2967 set_value_range_to_varying (vr);
2968 return;
2970 else if (code == TRUNC_DIV_EXPR
2971 || code == FLOOR_DIV_EXPR
2972 || code == CEIL_DIV_EXPR
2973 || code == EXACT_DIV_EXPR
2974 || code == ROUND_DIV_EXPR)
2976 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2978 /* For division, if op1 has VR_RANGE but op0 does not, something
2979 can be deduced just from that range. Say [min, max] / [4, max]
2980 gives [min / 4, max / 4] range. */
2981 if (vr1.type == VR_RANGE
2982 && !symbolic_range_p (&vr1)
2983 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2985 vr0.type = type = VR_RANGE;
2986 vr0.min = vrp_val_min (expr_type);
2987 vr0.max = vrp_val_max (expr_type);
2989 else
2991 set_value_range_to_varying (vr);
2992 return;
2996 /* For divisions, if flag_non_call_exceptions is true, we must
2997 not eliminate a division by zero. */
2998 if (cfun->can_throw_non_call_exceptions
2999 && (vr1.type != VR_RANGE
3000 || range_includes_zero_p (vr1.min, vr1.max) != 0))
3002 set_value_range_to_varying (vr);
3003 return;
3006 /* For divisions, if op0 is VR_RANGE, we can deduce a range
3007 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
3008 include 0. */
3009 if (vr0.type == VR_RANGE
3010 && (vr1.type != VR_RANGE
3011 || range_includes_zero_p (vr1.min, vr1.max) != 0))
3013 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
3014 int cmp;
3016 min = NULL_TREE;
3017 max = NULL_TREE;
3018 if (TYPE_UNSIGNED (expr_type)
3019 || value_range_nonnegative_p (&vr1))
3021 /* For unsigned division or when divisor is known
3022 to be non-negative, the range has to cover
3023 all numbers from 0 to max for positive max
3024 and all numbers from min to 0 for negative min. */
3025 cmp = compare_values (vr0.max, zero);
3026 if (cmp == -1)
3028 /* When vr0.max < 0, vr1.min != 0 and value
3029 ranges for dividend and divisor are available. */
3030 if (vr1.type == VR_RANGE
3031 && !symbolic_range_p (&vr0)
3032 && !symbolic_range_p (&vr1)
3033 && compare_values (vr1.min, zero) != 0)
3034 max = int_const_binop (code, vr0.max, vr1.min);
3035 else
3036 max = zero;
3038 else if (cmp == 0 || cmp == 1)
3039 max = vr0.max;
3040 else
3041 type = VR_VARYING;
3042 cmp = compare_values (vr0.min, zero);
3043 if (cmp == 1)
3045 /* For unsigned division when value ranges for dividend
3046 and divisor are available. */
3047 if (vr1.type == VR_RANGE
3048 && !symbolic_range_p (&vr0)
3049 && !symbolic_range_p (&vr1)
3050 && compare_values (vr1.max, zero) != 0)
3051 min = int_const_binop (code, vr0.min, vr1.max);
3052 else
3053 min = zero;
3055 else if (cmp == 0 || cmp == -1)
3056 min = vr0.min;
3057 else
3058 type = VR_VARYING;
3060 else
3062 /* Otherwise the range is -max .. max or min .. -min
3063 depending on which bound is bigger in absolute value,
3064 as the division can change the sign. */
3065 abs_extent_range (vr, vr0.min, vr0.max);
3066 return;
3068 if (type == VR_VARYING)
3070 set_value_range_to_varying (vr);
3071 return;
3074 else if (!symbolic_range_p (&vr0) && !symbolic_range_p (&vr1))
3076 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3077 return;
3080 else if (code == TRUNC_MOD_EXPR)
3082 if (range_is_null (&vr1))
3084 set_value_range_to_undefined (vr);
3085 return;
3087 /* ABS (A % B) < ABS (B) and either
3088 0 <= A % B <= A or A <= A % B <= 0. */
3089 type = VR_RANGE;
3090 signop sgn = TYPE_SIGN (expr_type);
3091 unsigned int prec = TYPE_PRECISION (expr_type);
3092 wide_int wmin, wmax, tmp;
3093 wide_int zero = wi::zero (prec);
3094 wide_int one = wi::one (prec);
3095 if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
3097 wmax = wi::sub (vr1.max, one);
3098 if (sgn == SIGNED)
3100 tmp = wi::sub (wi::minus_one (prec), vr1.min);
3101 wmax = wi::smax (wmax, tmp);
3104 else
3106 wmax = wi::max_value (prec, sgn);
3107 /* X % INT_MIN may be INT_MAX. */
3108 if (sgn == UNSIGNED)
3109 wmax = wmax - one;
3112 if (sgn == UNSIGNED)
3113 wmin = zero;
3114 else
3116 wmin = -wmax;
3117 if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
3119 tmp = vr0.min;
3120 if (wi::gts_p (tmp, zero))
3121 tmp = zero;
3122 wmin = wi::smax (wmin, tmp);
3126 if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
3128 tmp = vr0.max;
3129 if (sgn == SIGNED && wi::neg_p (tmp))
3130 tmp = zero;
3131 wmax = wi::min (wmax, tmp, sgn);
3134 min = wide_int_to_tree (expr_type, wmin);
3135 max = wide_int_to_tree (expr_type, wmax);
3137 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3139 bool int_cst_range0, int_cst_range1;
3140 wide_int may_be_nonzero0, may_be_nonzero1;
3141 wide_int must_be_nonzero0, must_be_nonzero1;
3143 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
3144 &may_be_nonzero0,
3145 &must_be_nonzero0);
3146 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
3147 &may_be_nonzero1,
3148 &must_be_nonzero1);
3150 type = VR_RANGE;
3151 if (code == BIT_AND_EXPR)
3153 min = wide_int_to_tree (expr_type,
3154 must_be_nonzero0 & must_be_nonzero1);
3155 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
3156 /* If both input ranges contain only negative values we can
3157 truncate the result range maximum to the minimum of the
3158 input range maxima. */
3159 if (int_cst_range0 && int_cst_range1
3160 && tree_int_cst_sgn (vr0.max) < 0
3161 && tree_int_cst_sgn (vr1.max) < 0)
3163 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3164 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3166 /* If either input range contains only non-negative values
3167 we can truncate the result range maximum to the respective
3168 maximum of the input range. */
3169 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3170 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3171 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3172 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3173 max = wide_int_to_tree (expr_type, wmax);
3174 cmp = compare_values (min, max);
3175 /* PR68217: In case of signed & sign-bit-CST should
3176 result in [-INF, 0] instead of [-INF, INF]. */
3177 if (cmp == -2 || cmp == 1)
3179 wide_int sign_bit
3180 = wi::set_bit_in_zero (TYPE_PRECISION (expr_type) - 1,
3181 TYPE_PRECISION (expr_type));
3182 if (!TYPE_UNSIGNED (expr_type)
3183 && ((value_range_constant_singleton (&vr0)
3184 && !wi::cmps (vr0.min, sign_bit))
3185 || (value_range_constant_singleton (&vr1)
3186 && !wi::cmps (vr1.min, sign_bit))))
3188 min = TYPE_MIN_VALUE (expr_type);
3189 max = build_int_cst (expr_type, 0);
3193 else if (code == BIT_IOR_EXPR)
3195 max = wide_int_to_tree (expr_type,
3196 may_be_nonzero0 | may_be_nonzero1);
3197 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
3198 /* If the input ranges contain only positive values we can
3199 truncate the minimum of the result range to the maximum
3200 of the input range minima. */
3201 if (int_cst_range0 && int_cst_range1
3202 && tree_int_cst_sgn (vr0.min) >= 0
3203 && tree_int_cst_sgn (vr1.min) >= 0)
3205 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3206 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3208 /* If either input range contains only negative values
3209 we can truncate the minimum of the result range to the
3210 respective minimum range. */
3211 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3212 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3213 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3214 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3215 min = wide_int_to_tree (expr_type, wmin);
3217 else if (code == BIT_XOR_EXPR)
3219 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
3220 | ~(may_be_nonzero0 | may_be_nonzero1));
3221 wide_int result_one_bits
3222 = (must_be_nonzero0.and_not (may_be_nonzero1)
3223 | must_be_nonzero1.and_not (may_be_nonzero0));
3224 max = wide_int_to_tree (expr_type, ~result_zero_bits);
3225 min = wide_int_to_tree (expr_type, result_one_bits);
3226 /* If the range has all positive or all negative values the
3227 result is better than VARYING. */
3228 if (tree_int_cst_sgn (min) < 0
3229 || tree_int_cst_sgn (max) >= 0)
3231 else
3232 max = min = NULL_TREE;
3235 else
3236 gcc_unreachable ();
3238 /* If either MIN or MAX overflowed, then set the resulting range to
3239 VARYING. But we do accept an overflow infinity representation. */
3240 if (min == NULL_TREE
3241 || (TREE_OVERFLOW_P (min) && !is_overflow_infinity (min))
3242 || max == NULL_TREE
3243 || (TREE_OVERFLOW_P (max) && !is_overflow_infinity (max)))
3245 set_value_range_to_varying (vr);
3246 return;
3249 /* We punt if:
3250 1) [-INF, +INF]
3251 2) [-INF, +-INF(OVF)]
3252 3) [+-INF(OVF), +INF]
3253 4) [+-INF(OVF), +-INF(OVF)]
3254 We learn nothing when we have INF and INF(OVF) on both sides.
3255 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3256 overflow. */
3257 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3258 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3260 set_value_range_to_varying (vr);
3261 return;
3264 cmp = compare_values (min, max);
3265 if (cmp == -2 || cmp == 1)
3267 /* If the new range has its limits swapped around (MIN > MAX),
3268 then the operation caused one of them to wrap around, mark
3269 the new range VARYING. */
3270 set_value_range_to_varying (vr);
3272 else
3273 set_value_range (vr, type, min, max, NULL);
3276 /* Extract range information from a binary expression OP0 CODE OP1 based on
3277 the ranges of each of its operands with resulting type EXPR_TYPE.
3278 The resulting range is stored in *VR. */
3280 static void
3281 extract_range_from_binary_expr (value_range *vr,
3282 enum tree_code code,
3283 tree expr_type, tree op0, tree op1)
3285 value_range vr0 = VR_INITIALIZER;
3286 value_range vr1 = VR_INITIALIZER;
3288 /* Get value ranges for each operand. For constant operands, create
3289 a new value range with the operand to simplify processing. */
3290 if (TREE_CODE (op0) == SSA_NAME)
3291 vr0 = *(get_value_range (op0));
3292 else if (is_gimple_min_invariant (op0))
3293 set_value_range_to_value (&vr0, op0, NULL);
3294 else
3295 set_value_range_to_varying (&vr0);
3297 if (TREE_CODE (op1) == SSA_NAME)
3298 vr1 = *(get_value_range (op1));
3299 else if (is_gimple_min_invariant (op1))
3300 set_value_range_to_value (&vr1, op1, NULL);
3301 else
3302 set_value_range_to_varying (&vr1);
3304 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3306 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3307 and based on the other operand, for example if it was deduced from a
3308 symbolic comparison. When a bound of the range of the first operand
3309 is invariant, we set the corresponding bound of the new range to INF
3310 in order to avoid recursing on the range of the second operand. */
3311 if (vr->type == VR_VARYING
3312 && (code == PLUS_EXPR || code == MINUS_EXPR)
3313 && TREE_CODE (op1) == SSA_NAME
3314 && vr0.type == VR_RANGE
3315 && symbolic_range_based_on_p (&vr0, op1))
3317 const bool minus_p = (code == MINUS_EXPR);
3318 value_range n_vr1 = VR_INITIALIZER;
3320 /* Try with VR0 and [-INF, OP1]. */
3321 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3322 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3324 /* Try with VR0 and [OP1, +INF]. */
3325 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3326 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3328 /* Try with VR0 and [OP1, OP1]. */
3329 else
3330 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3332 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3335 if (vr->type == VR_VARYING
3336 && (code == PLUS_EXPR || code == MINUS_EXPR)
3337 && TREE_CODE (op0) == SSA_NAME
3338 && vr1.type == VR_RANGE
3339 && symbolic_range_based_on_p (&vr1, op0))
3341 const bool minus_p = (code == MINUS_EXPR);
3342 value_range n_vr0 = VR_INITIALIZER;
3344 /* Try with [-INF, OP0] and VR1. */
3345 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3346 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3348 /* Try with [OP0, +INF] and VR1. */
3349 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3350 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3352 /* Try with [OP0, OP0] and VR1. */
3353 else
3354 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3356 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3359 /* If we didn't derive a range for MINUS_EXPR, and
3360 op1's range is ~[op0,op0] or vice-versa, then we
3361 can derive a non-null range. This happens often for
3362 pointer subtraction. */
3363 if (vr->type == VR_VARYING
3364 && code == MINUS_EXPR
3365 && TREE_CODE (op0) == SSA_NAME
3366 && ((vr0.type == VR_ANTI_RANGE
3367 && vr0.min == op1
3368 && vr0.min == vr0.max)
3369 || (vr1.type == VR_ANTI_RANGE
3370 && vr1.min == op0
3371 && vr1.min == vr1.max)))
3372 set_value_range_to_nonnull (vr, TREE_TYPE (op0));
3375 /* Extract range information from a unary operation CODE based on
3376 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3377 The resulting range is stored in *VR. */
3379 void
3380 extract_range_from_unary_expr (value_range *vr,
3381 enum tree_code code, tree type,
3382 value_range *vr0_, tree op0_type)
3384 value_range vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3386 /* VRP only operates on integral and pointer types. */
3387 if (!(INTEGRAL_TYPE_P (op0_type)
3388 || POINTER_TYPE_P (op0_type))
3389 || !(INTEGRAL_TYPE_P (type)
3390 || POINTER_TYPE_P (type)))
3392 set_value_range_to_varying (vr);
3393 return;
3396 /* If VR0 is UNDEFINED, so is the result. */
3397 if (vr0.type == VR_UNDEFINED)
3399 set_value_range_to_undefined (vr);
3400 return;
3403 /* Handle operations that we express in terms of others. */
3404 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3406 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3407 copy_value_range (vr, &vr0);
3408 return;
3410 else if (code == NEGATE_EXPR)
3412 /* -X is simply 0 - X, so re-use existing code that also handles
3413 anti-ranges fine. */
3414 value_range zero = VR_INITIALIZER;
3415 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3416 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3417 return;
3419 else if (code == BIT_NOT_EXPR)
3421 /* ~X is simply -1 - X, so re-use existing code that also handles
3422 anti-ranges fine. */
3423 value_range minusone = VR_INITIALIZER;
3424 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3425 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3426 type, &minusone, &vr0);
3427 return;
3430 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3431 and express op ~[] as (op []') U (op []''). */
3432 if (vr0.type == VR_ANTI_RANGE
3433 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3435 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
3436 if (vrtem1.type != VR_UNDEFINED)
3438 value_range vrres = VR_INITIALIZER;
3439 extract_range_from_unary_expr (&vrres, code, type,
3440 &vrtem1, op0_type);
3441 vrp_meet (vr, &vrres);
3443 return;
3446 if (CONVERT_EXPR_CODE_P (code))
3448 tree inner_type = op0_type;
3449 tree outer_type = type;
3451 /* If the expression evaluates to a pointer, we are only interested in
3452 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3453 if (POINTER_TYPE_P (type))
3455 if (range_is_nonnull (&vr0))
3456 set_value_range_to_nonnull (vr, type);
3457 else if (range_is_null (&vr0))
3458 set_value_range_to_null (vr, type);
3459 else
3460 set_value_range_to_varying (vr);
3461 return;
3464 /* If VR0 is varying and we increase the type precision, assume
3465 a full range for the following transformation. */
3466 if (vr0.type == VR_VARYING
3467 && INTEGRAL_TYPE_P (inner_type)
3468 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3470 vr0.type = VR_RANGE;
3471 vr0.min = TYPE_MIN_VALUE (inner_type);
3472 vr0.max = TYPE_MAX_VALUE (inner_type);
3475 /* If VR0 is a constant range or anti-range and the conversion is
3476 not truncating we can convert the min and max values and
3477 canonicalize the resulting range. Otherwise we can do the
3478 conversion if the size of the range is less than what the
3479 precision of the target type can represent and the range is
3480 not an anti-range. */
3481 if ((vr0.type == VR_RANGE
3482 || vr0.type == VR_ANTI_RANGE)
3483 && TREE_CODE (vr0.min) == INTEGER_CST
3484 && TREE_CODE (vr0.max) == INTEGER_CST
3485 && (!is_overflow_infinity (vr0.min)
3486 || (vr0.type == VR_RANGE
3487 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3488 && needs_overflow_infinity (outer_type)
3489 && supports_overflow_infinity (outer_type)))
3490 && (!is_overflow_infinity (vr0.max)
3491 || (vr0.type == VR_RANGE
3492 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3493 && needs_overflow_infinity (outer_type)
3494 && supports_overflow_infinity (outer_type)))
3495 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3496 || (vr0.type == VR_RANGE
3497 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3498 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3499 size_int (TYPE_PRECISION (outer_type)))))))
3501 tree new_min, new_max;
3502 if (is_overflow_infinity (vr0.min))
3503 new_min = negative_overflow_infinity (outer_type);
3504 else
3505 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3506 0, false);
3507 if (is_overflow_infinity (vr0.max))
3508 new_max = positive_overflow_infinity (outer_type);
3509 else
3510 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3511 0, false);
3512 set_and_canonicalize_value_range (vr, vr0.type,
3513 new_min, new_max, NULL);
3514 return;
3517 set_value_range_to_varying (vr);
3518 return;
3520 else if (code == ABS_EXPR)
3522 tree min, max;
3523 int cmp;
3525 /* Pass through vr0 in the easy cases. */
3526 if (TYPE_UNSIGNED (type)
3527 || value_range_nonnegative_p (&vr0))
3529 copy_value_range (vr, &vr0);
3530 return;
3533 /* For the remaining varying or symbolic ranges we can't do anything
3534 useful. */
3535 if (vr0.type == VR_VARYING
3536 || symbolic_range_p (&vr0))
3538 set_value_range_to_varying (vr);
3539 return;
3542 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3543 useful range. */
3544 if (!TYPE_OVERFLOW_UNDEFINED (type)
3545 && ((vr0.type == VR_RANGE
3546 && vrp_val_is_min (vr0.min))
3547 || (vr0.type == VR_ANTI_RANGE
3548 && !vrp_val_is_min (vr0.min))))
3550 set_value_range_to_varying (vr);
3551 return;
3554 /* ABS_EXPR may flip the range around, if the original range
3555 included negative values. */
3556 if (is_overflow_infinity (vr0.min))
3557 min = positive_overflow_infinity (type);
3558 else if (!vrp_val_is_min (vr0.min))
3559 min = fold_unary_to_constant (code, type, vr0.min);
3560 else if (!needs_overflow_infinity (type))
3561 min = TYPE_MAX_VALUE (type);
3562 else if (supports_overflow_infinity (type))
3563 min = positive_overflow_infinity (type);
3564 else
3566 set_value_range_to_varying (vr);
3567 return;
3570 if (is_overflow_infinity (vr0.max))
3571 max = positive_overflow_infinity (type);
3572 else if (!vrp_val_is_min (vr0.max))
3573 max = fold_unary_to_constant (code, type, vr0.max);
3574 else if (!needs_overflow_infinity (type))
3575 max = TYPE_MAX_VALUE (type);
3576 else if (supports_overflow_infinity (type)
3577 /* We shouldn't generate [+INF, +INF] as set_value_range
3578 doesn't like this and ICEs. */
3579 && !is_positive_overflow_infinity (min))
3580 max = positive_overflow_infinity (type);
3581 else
3583 set_value_range_to_varying (vr);
3584 return;
3587 cmp = compare_values (min, max);
3589 /* If a VR_ANTI_RANGEs contains zero, then we have
3590 ~[-INF, min(MIN, MAX)]. */
3591 if (vr0.type == VR_ANTI_RANGE)
3593 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3595 /* Take the lower of the two values. */
3596 if (cmp != 1)
3597 max = min;
3599 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3600 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3601 flag_wrapv is set and the original anti-range doesn't include
3602 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3603 if (TYPE_OVERFLOW_WRAPS (type))
3605 tree type_min_value = TYPE_MIN_VALUE (type);
3607 min = (vr0.min != type_min_value
3608 ? int_const_binop (PLUS_EXPR, type_min_value,
3609 build_int_cst (TREE_TYPE (type_min_value), 1))
3610 : type_min_value);
3612 else
3614 if (overflow_infinity_range_p (&vr0))
3615 min = negative_overflow_infinity (type);
3616 else
3617 min = TYPE_MIN_VALUE (type);
3620 else
3622 /* All else has failed, so create the range [0, INF], even for
3623 flag_wrapv since TYPE_MIN_VALUE is in the original
3624 anti-range. */
3625 vr0.type = VR_RANGE;
3626 min = build_int_cst (type, 0);
3627 if (needs_overflow_infinity (type))
3629 if (supports_overflow_infinity (type))
3630 max = positive_overflow_infinity (type);
3631 else
3633 set_value_range_to_varying (vr);
3634 return;
3637 else
3638 max = TYPE_MAX_VALUE (type);
3642 /* If the range contains zero then we know that the minimum value in the
3643 range will be zero. */
3644 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3646 if (cmp == 1)
3647 max = min;
3648 min = build_int_cst (type, 0);
3650 else
3652 /* If the range was reversed, swap MIN and MAX. */
3653 if (cmp == 1)
3654 std::swap (min, max);
3657 cmp = compare_values (min, max);
3658 if (cmp == -2 || cmp == 1)
3660 /* If the new range has its limits swapped around (MIN > MAX),
3661 then the operation caused one of them to wrap around, mark
3662 the new range VARYING. */
3663 set_value_range_to_varying (vr);
3665 else
3666 set_value_range (vr, vr0.type, min, max, NULL);
3667 return;
3670 /* For unhandled operations fall back to varying. */
3671 set_value_range_to_varying (vr);
3672 return;
3676 /* Extract range information from a unary expression CODE OP0 based on
3677 the range of its operand with resulting type TYPE.
3678 The resulting range is stored in *VR. */
3680 static void
3681 extract_range_from_unary_expr (value_range *vr, enum tree_code code,
3682 tree type, tree op0)
3684 value_range vr0 = VR_INITIALIZER;
3686 /* Get value ranges for the operand. For constant operands, create
3687 a new value range with the operand to simplify processing. */
3688 if (TREE_CODE (op0) == SSA_NAME)
3689 vr0 = *(get_value_range (op0));
3690 else if (is_gimple_min_invariant (op0))
3691 set_value_range_to_value (&vr0, op0, NULL);
3692 else
3693 set_value_range_to_varying (&vr0);
3695 extract_range_from_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0));
3699 /* Extract range information from a conditional expression STMT based on
3700 the ranges of each of its operands and the expression code. */
3702 static void
3703 extract_range_from_cond_expr (value_range *vr, gassign *stmt)
3705 tree op0, op1;
3706 value_range vr0 = VR_INITIALIZER;
3707 value_range vr1 = VR_INITIALIZER;
3709 /* Get value ranges for each operand. For constant operands, create
3710 a new value range with the operand to simplify processing. */
3711 op0 = gimple_assign_rhs2 (stmt);
3712 if (TREE_CODE (op0) == SSA_NAME)
3713 vr0 = *(get_value_range (op0));
3714 else if (is_gimple_min_invariant (op0))
3715 set_value_range_to_value (&vr0, op0, NULL);
3716 else
3717 set_value_range_to_varying (&vr0);
3719 op1 = gimple_assign_rhs3 (stmt);
3720 if (TREE_CODE (op1) == SSA_NAME)
3721 vr1 = *(get_value_range (op1));
3722 else if (is_gimple_min_invariant (op1))
3723 set_value_range_to_value (&vr1, op1, NULL);
3724 else
3725 set_value_range_to_varying (&vr1);
3727 /* The resulting value range is the union of the operand ranges */
3728 copy_value_range (vr, &vr0);
3729 vrp_meet (vr, &vr1);
3733 /* Extract range information from a comparison expression EXPR based
3734 on the range of its operand and the expression code. */
3736 static void
3737 extract_range_from_comparison (value_range *vr, enum tree_code code,
3738 tree type, tree op0, tree op1)
3740 bool sop = false;
3741 tree val;
3743 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3744 NULL);
3746 /* A disadvantage of using a special infinity as an overflow
3747 representation is that we lose the ability to record overflow
3748 when we don't have an infinity. So we have to ignore a result
3749 which relies on overflow. */
3751 if (val && !is_overflow_infinity (val) && !sop)
3753 /* Since this expression was found on the RHS of an assignment,
3754 its type may be different from _Bool. Convert VAL to EXPR's
3755 type. */
3756 val = fold_convert (type, val);
3757 if (is_gimple_min_invariant (val))
3758 set_value_range_to_value (vr, val, vr->equiv);
3759 else
3760 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3762 else
3763 /* The result of a comparison is always true or false. */
3764 set_value_range_to_truthvalue (vr, type);
3767 /* Helper function for simplify_internal_call_using_ranges and
3768 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3769 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3770 always overflow. Set *OVF to true if it is known to always
3771 overflow. */
3773 static bool
3774 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3775 tree op0, tree op1, bool *ovf)
3777 value_range vr0 = VR_INITIALIZER;
3778 value_range vr1 = VR_INITIALIZER;
3779 if (TREE_CODE (op0) == SSA_NAME)
3780 vr0 = *get_value_range (op0);
3781 else if (TREE_CODE (op0) == INTEGER_CST)
3782 set_value_range_to_value (&vr0, op0, NULL);
3783 else
3784 set_value_range_to_varying (&vr0);
3786 if (TREE_CODE (op1) == SSA_NAME)
3787 vr1 = *get_value_range (op1);
3788 else if (TREE_CODE (op1) == INTEGER_CST)
3789 set_value_range_to_value (&vr1, op1, NULL);
3790 else
3791 set_value_range_to_varying (&vr1);
3793 if (!range_int_cst_p (&vr0)
3794 || TREE_OVERFLOW (vr0.min)
3795 || TREE_OVERFLOW (vr0.max))
3797 vr0.min = vrp_val_min (TREE_TYPE (op0));
3798 vr0.max = vrp_val_max (TREE_TYPE (op0));
3800 if (!range_int_cst_p (&vr1)
3801 || TREE_OVERFLOW (vr1.min)
3802 || TREE_OVERFLOW (vr1.max))
3804 vr1.min = vrp_val_min (TREE_TYPE (op1));
3805 vr1.max = vrp_val_max (TREE_TYPE (op1));
3807 *ovf = arith_overflowed_p (subcode, type, vr0.min,
3808 subcode == MINUS_EXPR ? vr1.max : vr1.min);
3809 if (arith_overflowed_p (subcode, type, vr0.max,
3810 subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3811 return false;
3812 if (subcode == MULT_EXPR)
3814 if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3815 || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3816 return false;
3818 if (*ovf)
3820 /* So far we found that there is an overflow on the boundaries.
3821 That doesn't prove that there is an overflow even for all values
3822 in between the boundaries. For that compute widest_int range
3823 of the result and see if it doesn't overlap the range of
3824 type. */
3825 widest_int wmin, wmax;
3826 widest_int w[4];
3827 int i;
3828 w[0] = wi::to_widest (vr0.min);
3829 w[1] = wi::to_widest (vr0.max);
3830 w[2] = wi::to_widest (vr1.min);
3831 w[3] = wi::to_widest (vr1.max);
3832 for (i = 0; i < 4; i++)
3834 widest_int wt;
3835 switch (subcode)
3837 case PLUS_EXPR:
3838 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3839 break;
3840 case MINUS_EXPR:
3841 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3842 break;
3843 case MULT_EXPR:
3844 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3845 break;
3846 default:
3847 gcc_unreachable ();
3849 if (i == 0)
3851 wmin = wt;
3852 wmax = wt;
3854 else
3856 wmin = wi::smin (wmin, wt);
3857 wmax = wi::smax (wmax, wt);
3860 /* The result of op0 CODE op1 is known to be in range
3861 [wmin, wmax]. */
3862 widest_int wtmin = wi::to_widest (vrp_val_min (type));
3863 widest_int wtmax = wi::to_widest (vrp_val_max (type));
3864 /* If all values in [wmin, wmax] are smaller than
3865 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3866 the arithmetic operation will always overflow. */
3867 if (wmax < wtmin || wmin > wtmax)
3868 return true;
3869 return false;
3871 return true;
3874 /* Try to derive a nonnegative or nonzero range out of STMT relying
3875 primarily on generic routines in fold in conjunction with range data.
3876 Store the result in *VR */
3878 static void
3879 extract_range_basic (value_range *vr, gimple *stmt)
3881 bool sop = false;
3882 tree type = gimple_expr_type (stmt);
3884 if (is_gimple_call (stmt))
3886 tree arg;
3887 int mini, maxi, zerov = 0, prec;
3888 enum tree_code subcode = ERROR_MARK;
3889 combined_fn cfn = gimple_call_combined_fn (stmt);
3891 switch (cfn)
3893 case CFN_BUILT_IN_CONSTANT_P:
3894 /* If the call is __builtin_constant_p and the argument is a
3895 function parameter resolve it to false. This avoids bogus
3896 array bound warnings.
3897 ??? We could do this as early as inlining is finished. */
3898 arg = gimple_call_arg (stmt, 0);
3899 if (TREE_CODE (arg) == SSA_NAME
3900 && SSA_NAME_IS_DEFAULT_DEF (arg)
3901 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL
3902 && cfun->after_inlining)
3904 set_value_range_to_null (vr, type);
3905 return;
3907 break;
3908 /* Both __builtin_ffs* and __builtin_popcount return
3909 [0, prec]. */
3910 CASE_CFN_FFS:
3911 CASE_CFN_POPCOUNT:
3912 arg = gimple_call_arg (stmt, 0);
3913 prec = TYPE_PRECISION (TREE_TYPE (arg));
3914 mini = 0;
3915 maxi = prec;
3916 if (TREE_CODE (arg) == SSA_NAME)
3918 value_range *vr0 = get_value_range (arg);
3919 /* If arg is non-zero, then ffs or popcount
3920 are non-zero. */
3921 if (((vr0->type == VR_RANGE
3922 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3923 || (vr0->type == VR_ANTI_RANGE
3924 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3925 && !is_overflow_infinity (vr0->min)
3926 && !is_overflow_infinity (vr0->max))
3927 mini = 1;
3928 /* If some high bits are known to be zero,
3929 we can decrease the maximum. */
3930 if (vr0->type == VR_RANGE
3931 && TREE_CODE (vr0->max) == INTEGER_CST
3932 && !operand_less_p (vr0->min,
3933 build_zero_cst (TREE_TYPE (vr0->min)))
3934 && !is_overflow_infinity (vr0->max))
3935 maxi = tree_floor_log2 (vr0->max) + 1;
3937 goto bitop_builtin;
3938 /* __builtin_parity* returns [0, 1]. */
3939 CASE_CFN_PARITY:
3940 mini = 0;
3941 maxi = 1;
3942 goto bitop_builtin;
3943 /* __builtin_c[lt]z* return [0, prec-1], except for
3944 when the argument is 0, but that is undefined behavior.
3945 On many targets where the CLZ RTL or optab value is defined
3946 for 0 the value is prec, so include that in the range
3947 by default. */
3948 CASE_CFN_CLZ:
3949 arg = gimple_call_arg (stmt, 0);
3950 prec = TYPE_PRECISION (TREE_TYPE (arg));
3951 mini = 0;
3952 maxi = prec;
3953 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3954 != CODE_FOR_nothing
3955 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3956 zerov)
3957 /* Handle only the single common value. */
3958 && zerov != prec)
3959 /* Magic value to give up, unless vr0 proves
3960 arg is non-zero. */
3961 mini = -2;
3962 if (TREE_CODE (arg) == SSA_NAME)
3964 value_range *vr0 = get_value_range (arg);
3965 /* From clz of VR_RANGE minimum we can compute
3966 result maximum. */
3967 if (vr0->type == VR_RANGE
3968 && TREE_CODE (vr0->min) == INTEGER_CST
3969 && !is_overflow_infinity (vr0->min))
3971 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3972 if (maxi != prec)
3973 mini = 0;
3975 else if (vr0->type == VR_ANTI_RANGE
3976 && integer_zerop (vr0->min)
3977 && !is_overflow_infinity (vr0->min))
3979 maxi = prec - 1;
3980 mini = 0;
3982 if (mini == -2)
3983 break;
3984 /* From clz of VR_RANGE maximum we can compute
3985 result minimum. */
3986 if (vr0->type == VR_RANGE
3987 && TREE_CODE (vr0->max) == INTEGER_CST
3988 && !is_overflow_infinity (vr0->max))
3990 mini = prec - 1 - tree_floor_log2 (vr0->max);
3991 if (mini == prec)
3992 break;
3995 if (mini == -2)
3996 break;
3997 goto bitop_builtin;
3998 /* __builtin_ctz* return [0, prec-1], except for
3999 when the argument is 0, but that is undefined behavior.
4000 If there is a ctz optab for this mode and
4001 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
4002 otherwise just assume 0 won't be seen. */
4003 CASE_CFN_CTZ:
4004 arg = gimple_call_arg (stmt, 0);
4005 prec = TYPE_PRECISION (TREE_TYPE (arg));
4006 mini = 0;
4007 maxi = prec - 1;
4008 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
4009 != CODE_FOR_nothing
4010 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
4011 zerov))
4013 /* Handle only the two common values. */
4014 if (zerov == -1)
4015 mini = -1;
4016 else if (zerov == prec)
4017 maxi = prec;
4018 else
4019 /* Magic value to give up, unless vr0 proves
4020 arg is non-zero. */
4021 mini = -2;
4023 if (TREE_CODE (arg) == SSA_NAME)
4025 value_range *vr0 = get_value_range (arg);
4026 /* If arg is non-zero, then use [0, prec - 1]. */
4027 if (((vr0->type == VR_RANGE
4028 && integer_nonzerop (vr0->min))
4029 || (vr0->type == VR_ANTI_RANGE
4030 && integer_zerop (vr0->min)))
4031 && !is_overflow_infinity (vr0->min))
4033 mini = 0;
4034 maxi = prec - 1;
4036 /* If some high bits are known to be zero,
4037 we can decrease the result maximum. */
4038 if (vr0->type == VR_RANGE
4039 && TREE_CODE (vr0->max) == INTEGER_CST
4040 && !is_overflow_infinity (vr0->max))
4042 maxi = tree_floor_log2 (vr0->max);
4043 /* For vr0 [0, 0] give up. */
4044 if (maxi == -1)
4045 break;
4048 if (mini == -2)
4049 break;
4050 goto bitop_builtin;
4051 /* __builtin_clrsb* returns [0, prec-1]. */
4052 CASE_CFN_CLRSB:
4053 arg = gimple_call_arg (stmt, 0);
4054 prec = TYPE_PRECISION (TREE_TYPE (arg));
4055 mini = 0;
4056 maxi = prec - 1;
4057 goto bitop_builtin;
4058 bitop_builtin:
4059 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
4060 build_int_cst (type, maxi), NULL);
4061 return;
4062 case CFN_UBSAN_CHECK_ADD:
4063 subcode = PLUS_EXPR;
4064 break;
4065 case CFN_UBSAN_CHECK_SUB:
4066 subcode = MINUS_EXPR;
4067 break;
4068 case CFN_UBSAN_CHECK_MUL:
4069 subcode = MULT_EXPR;
4070 break;
4071 case CFN_GOACC_DIM_SIZE:
4072 case CFN_GOACC_DIM_POS:
4073 /* Optimizing these two internal functions helps the loop
4074 optimizer eliminate outer comparisons. Size is [1,N]
4075 and pos is [0,N-1]. */
4077 bool is_pos = cfn == CFN_GOACC_DIM_POS;
4078 int axis = oacc_get_ifn_dim_arg (stmt);
4079 int size = oacc_get_fn_dim_size (current_function_decl, axis);
4081 if (!size)
4082 /* If it's dynamic, the backend might know a hardware
4083 limitation. */
4084 size = targetm.goacc.dim_limit (axis);
4086 tree type = TREE_TYPE (gimple_call_lhs (stmt));
4087 set_value_range (vr, VR_RANGE,
4088 build_int_cst (type, is_pos ? 0 : 1),
4089 size ? build_int_cst (type, size - is_pos)
4090 : vrp_val_max (type), NULL);
4092 return;
4093 case CFN_BUILT_IN_STRLEN:
4094 if (tree lhs = gimple_call_lhs (stmt))
4095 if (ptrdiff_type_node
4096 && (TYPE_PRECISION (ptrdiff_type_node)
4097 == TYPE_PRECISION (TREE_TYPE (lhs))))
4099 tree type = TREE_TYPE (lhs);
4100 tree max = vrp_val_max (ptrdiff_type_node);
4101 wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
4102 tree range_min = build_zero_cst (type);
4103 tree range_max = wide_int_to_tree (type, wmax - 1);
4104 set_value_range (vr, VR_RANGE, range_min, range_max, NULL);
4105 return;
4107 break;
4108 default:
4109 break;
4111 if (subcode != ERROR_MARK)
4113 bool saved_flag_wrapv = flag_wrapv;
4114 /* Pretend the arithmetics is wrapping. If there is
4115 any overflow, we'll complain, but will actually do
4116 wrapping operation. */
4117 flag_wrapv = 1;
4118 extract_range_from_binary_expr (vr, subcode, type,
4119 gimple_call_arg (stmt, 0),
4120 gimple_call_arg (stmt, 1));
4121 flag_wrapv = saved_flag_wrapv;
4123 /* If for both arguments vrp_valueize returned non-NULL,
4124 this should have been already folded and if not, it
4125 wasn't folded because of overflow. Avoid removing the
4126 UBSAN_CHECK_* calls in that case. */
4127 if (vr->type == VR_RANGE
4128 && (vr->min == vr->max
4129 || operand_equal_p (vr->min, vr->max, 0)))
4130 set_value_range_to_varying (vr);
4131 return;
4134 /* Handle extraction of the two results (result of arithmetics and
4135 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4136 internal function. Similarly from ATOMIC_COMPARE_EXCHANGE. */
4137 else if (is_gimple_assign (stmt)
4138 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
4139 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
4140 && INTEGRAL_TYPE_P (type))
4142 enum tree_code code = gimple_assign_rhs_code (stmt);
4143 tree op = gimple_assign_rhs1 (stmt);
4144 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
4146 gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
4147 if (is_gimple_call (g) && gimple_call_internal_p (g))
4149 enum tree_code subcode = ERROR_MARK;
4150 switch (gimple_call_internal_fn (g))
4152 case IFN_ADD_OVERFLOW:
4153 subcode = PLUS_EXPR;
4154 break;
4155 case IFN_SUB_OVERFLOW:
4156 subcode = MINUS_EXPR;
4157 break;
4158 case IFN_MUL_OVERFLOW:
4159 subcode = MULT_EXPR;
4160 break;
4161 case IFN_ATOMIC_COMPARE_EXCHANGE:
4162 if (code == IMAGPART_EXPR)
4164 /* This is the boolean return value whether compare and
4165 exchange changed anything or not. */
4166 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
4167 build_int_cst (type, 1), NULL);
4168 return;
4170 break;
4171 default:
4172 break;
4174 if (subcode != ERROR_MARK)
4176 tree op0 = gimple_call_arg (g, 0);
4177 tree op1 = gimple_call_arg (g, 1);
4178 if (code == IMAGPART_EXPR)
4180 bool ovf = false;
4181 if (check_for_binary_op_overflow (subcode, type,
4182 op0, op1, &ovf))
4183 set_value_range_to_value (vr,
4184 build_int_cst (type, ovf),
4185 NULL);
4186 else if (TYPE_PRECISION (type) == 1
4187 && !TYPE_UNSIGNED (type))
4188 set_value_range_to_varying (vr);
4189 else
4190 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
4191 build_int_cst (type, 1), NULL);
4193 else if (types_compatible_p (type, TREE_TYPE (op0))
4194 && types_compatible_p (type, TREE_TYPE (op1)))
4196 bool saved_flag_wrapv = flag_wrapv;
4197 /* Pretend the arithmetics is wrapping. If there is
4198 any overflow, IMAGPART_EXPR will be set. */
4199 flag_wrapv = 1;
4200 extract_range_from_binary_expr (vr, subcode, type,
4201 op0, op1);
4202 flag_wrapv = saved_flag_wrapv;
4204 else
4206 value_range vr0 = VR_INITIALIZER;
4207 value_range vr1 = VR_INITIALIZER;
4208 bool saved_flag_wrapv = flag_wrapv;
4209 /* Pretend the arithmetics is wrapping. If there is
4210 any overflow, IMAGPART_EXPR will be set. */
4211 flag_wrapv = 1;
4212 extract_range_from_unary_expr (&vr0, NOP_EXPR,
4213 type, op0);
4214 extract_range_from_unary_expr (&vr1, NOP_EXPR,
4215 type, op1);
4216 extract_range_from_binary_expr_1 (vr, subcode, type,
4217 &vr0, &vr1);
4218 flag_wrapv = saved_flag_wrapv;
4220 return;
4225 if (INTEGRAL_TYPE_P (type)
4226 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
4227 set_value_range_to_nonnegative (vr, type,
4228 sop || stmt_overflow_infinity (stmt));
4229 else if (vrp_stmt_computes_nonzero (stmt, &sop)
4230 && !sop)
4231 set_value_range_to_nonnull (vr, type);
4232 else
4233 set_value_range_to_varying (vr);
4237 /* Try to compute a useful range out of assignment STMT and store it
4238 in *VR. */
4240 static void
4241 extract_range_from_assignment (value_range *vr, gassign *stmt)
4243 enum tree_code code = gimple_assign_rhs_code (stmt);
4245 if (code == ASSERT_EXPR)
4246 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
4247 else if (code == SSA_NAME)
4248 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
4249 else if (TREE_CODE_CLASS (code) == tcc_binary)
4250 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
4251 gimple_expr_type (stmt),
4252 gimple_assign_rhs1 (stmt),
4253 gimple_assign_rhs2 (stmt));
4254 else if (TREE_CODE_CLASS (code) == tcc_unary)
4255 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
4256 gimple_expr_type (stmt),
4257 gimple_assign_rhs1 (stmt));
4258 else if (code == COND_EXPR)
4259 extract_range_from_cond_expr (vr, stmt);
4260 else if (TREE_CODE_CLASS (code) == tcc_comparison)
4261 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
4262 gimple_expr_type (stmt),
4263 gimple_assign_rhs1 (stmt),
4264 gimple_assign_rhs2 (stmt));
4265 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
4266 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
4267 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
4268 else
4269 set_value_range_to_varying (vr);
4271 if (vr->type == VR_VARYING)
4272 extract_range_basic (vr, stmt);
4275 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4276 would be profitable to adjust VR using scalar evolution information
4277 for VAR. If so, update VR with the new limits. */
4279 static void
4280 adjust_range_with_scev (value_range *vr, struct loop *loop,
4281 gimple *stmt, tree var)
4283 tree init, step, chrec, tmin, tmax, min, max, type, tem;
4284 enum ev_direction dir;
4286 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4287 better opportunities than a regular range, but I'm not sure. */
4288 if (vr->type == VR_ANTI_RANGE)
4289 return;
4291 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
4293 /* Like in PR19590, scev can return a constant function. */
4294 if (is_gimple_min_invariant (chrec))
4296 set_value_range_to_value (vr, chrec, vr->equiv);
4297 return;
4300 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4301 return;
4303 init = initial_condition_in_loop_num (chrec, loop->num);
4304 tem = op_with_constant_singleton_value_range (init);
4305 if (tem)
4306 init = tem;
4307 step = evolution_part_in_loop_num (chrec, loop->num);
4308 tem = op_with_constant_singleton_value_range (step);
4309 if (tem)
4310 step = tem;
4312 /* If STEP is symbolic, we can't know whether INIT will be the
4313 minimum or maximum value in the range. Also, unless INIT is
4314 a simple expression, compare_values and possibly other functions
4315 in tree-vrp won't be able to handle it. */
4316 if (step == NULL_TREE
4317 || !is_gimple_min_invariant (step)
4318 || !valid_value_p (init))
4319 return;
4321 dir = scev_direction (chrec);
4322 if (/* Do not adjust ranges if we do not know whether the iv increases
4323 or decreases, ... */
4324 dir == EV_DIR_UNKNOWN
4325 /* ... or if it may wrap. */
4326 || scev_probably_wraps_p (NULL_TREE, init, step, stmt,
4327 get_chrec_loop (chrec), true))
4328 return;
4330 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4331 negative_overflow_infinity and positive_overflow_infinity,
4332 because we have concluded that the loop probably does not
4333 wrap. */
4335 type = TREE_TYPE (var);
4336 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4337 tmin = lower_bound_in_type (type, type);
4338 else
4339 tmin = TYPE_MIN_VALUE (type);
4340 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4341 tmax = upper_bound_in_type (type, type);
4342 else
4343 tmax = TYPE_MAX_VALUE (type);
4345 /* Try to use estimated number of iterations for the loop to constrain the
4346 final value in the evolution. */
4347 if (TREE_CODE (step) == INTEGER_CST
4348 && is_gimple_val (init)
4349 && (TREE_CODE (init) != SSA_NAME
4350 || get_value_range (init)->type == VR_RANGE))
4352 widest_int nit;
4354 /* We are only entering here for loop header PHI nodes, so using
4355 the number of latch executions is the correct thing to use. */
4356 if (max_loop_iterations (loop, &nit))
4358 value_range maxvr = VR_INITIALIZER;
4359 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4360 bool overflow;
4362 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4363 &overflow);
4364 /* If the multiplication overflowed we can't do a meaningful
4365 adjustment. Likewise if the result doesn't fit in the type
4366 of the induction variable. For a signed type we have to
4367 check whether the result has the expected signedness which
4368 is that of the step as number of iterations is unsigned. */
4369 if (!overflow
4370 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4371 && (sgn == UNSIGNED
4372 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4374 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4375 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4376 TREE_TYPE (init), init, tem);
4377 /* Likewise if the addition did. */
4378 if (maxvr.type == VR_RANGE)
4380 value_range initvr = VR_INITIALIZER;
4382 if (TREE_CODE (init) == SSA_NAME)
4383 initvr = *(get_value_range (init));
4384 else if (is_gimple_min_invariant (init))
4385 set_value_range_to_value (&initvr, init, NULL);
4386 else
4387 return;
4389 /* Check if init + nit * step overflows. Though we checked
4390 scev {init, step}_loop doesn't wrap, it is not enough
4391 because the loop may exit immediately. Overflow could
4392 happen in the plus expression in this case. */
4393 if ((dir == EV_DIR_DECREASES
4394 && (is_negative_overflow_infinity (maxvr.min)
4395 || compare_values (maxvr.min, initvr.min) != -1))
4396 || (dir == EV_DIR_GROWS
4397 && (is_positive_overflow_infinity (maxvr.max)
4398 || compare_values (maxvr.max, initvr.max) != 1)))
4399 return;
4401 tmin = maxvr.min;
4402 tmax = maxvr.max;
4408 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4410 min = tmin;
4411 max = tmax;
4413 /* For VARYING or UNDEFINED ranges, just about anything we get
4414 from scalar evolutions should be better. */
4416 if (dir == EV_DIR_DECREASES)
4417 max = init;
4418 else
4419 min = init;
4421 else if (vr->type == VR_RANGE)
4423 min = vr->min;
4424 max = vr->max;
4426 if (dir == EV_DIR_DECREASES)
4428 /* INIT is the maximum value. If INIT is lower than VR->MAX
4429 but no smaller than VR->MIN, set VR->MAX to INIT. */
4430 if (compare_values (init, max) == -1)
4431 max = init;
4433 /* According to the loop information, the variable does not
4434 overflow. If we think it does, probably because of an
4435 overflow due to arithmetic on a different INF value,
4436 reset now. */
4437 if (is_negative_overflow_infinity (min)
4438 || compare_values (min, tmin) == -1)
4439 min = tmin;
4442 else
4444 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4445 if (compare_values (init, min) == 1)
4446 min = init;
4448 if (is_positive_overflow_infinity (max)
4449 || compare_values (tmax, max) == -1)
4450 max = tmax;
4453 else
4454 return;
4456 /* If we just created an invalid range with the minimum
4457 greater than the maximum, we fail conservatively.
4458 This should happen only in unreachable
4459 parts of code, or for invalid programs. */
4460 if (compare_values (min, max) == 1
4461 || (is_negative_overflow_infinity (min)
4462 && is_positive_overflow_infinity (max)))
4463 return;
4465 /* Even for valid range info, sometimes overflow flag will leak in.
4466 As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
4467 drop them except for +-overflow_infinity which still need special
4468 handling in vrp pass. */
4469 if (TREE_OVERFLOW_P (min)
4470 && ! is_negative_overflow_infinity (min))
4471 min = drop_tree_overflow (min);
4472 if (TREE_OVERFLOW_P (max)
4473 && ! is_positive_overflow_infinity (max))
4474 max = drop_tree_overflow (max);
4476 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4480 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4482 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4483 all the values in the ranges.
4485 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4487 - Return NULL_TREE if it is not always possible to determine the
4488 value of the comparison.
4490 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4491 overflow infinity was used in the test. */
4494 static tree
4495 compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1,
4496 bool *strict_overflow_p)
4498 /* VARYING or UNDEFINED ranges cannot be compared. */
4499 if (vr0->type == VR_VARYING
4500 || vr0->type == VR_UNDEFINED
4501 || vr1->type == VR_VARYING
4502 || vr1->type == VR_UNDEFINED)
4503 return NULL_TREE;
4505 /* Anti-ranges need to be handled separately. */
4506 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4508 /* If both are anti-ranges, then we cannot compute any
4509 comparison. */
4510 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4511 return NULL_TREE;
4513 /* These comparisons are never statically computable. */
4514 if (comp == GT_EXPR
4515 || comp == GE_EXPR
4516 || comp == LT_EXPR
4517 || comp == LE_EXPR)
4518 return NULL_TREE;
4520 /* Equality can be computed only between a range and an
4521 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4522 if (vr0->type == VR_RANGE)
4524 /* To simplify processing, make VR0 the anti-range. */
4525 value_range *tmp = vr0;
4526 vr0 = vr1;
4527 vr1 = tmp;
4530 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4532 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4533 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4534 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4536 return NULL_TREE;
4539 if (!usable_range_p (vr0, strict_overflow_p)
4540 || !usable_range_p (vr1, strict_overflow_p))
4541 return NULL_TREE;
4543 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4544 operands around and change the comparison code. */
4545 if (comp == GT_EXPR || comp == GE_EXPR)
4547 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4548 std::swap (vr0, vr1);
4551 if (comp == EQ_EXPR)
4553 /* Equality may only be computed if both ranges represent
4554 exactly one value. */
4555 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4556 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4558 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4559 strict_overflow_p);
4560 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4561 strict_overflow_p);
4562 if (cmp_min == 0 && cmp_max == 0)
4563 return boolean_true_node;
4564 else if (cmp_min != -2 && cmp_max != -2)
4565 return boolean_false_node;
4567 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4568 else if (compare_values_warnv (vr0->min, vr1->max,
4569 strict_overflow_p) == 1
4570 || compare_values_warnv (vr1->min, vr0->max,
4571 strict_overflow_p) == 1)
4572 return boolean_false_node;
4574 return NULL_TREE;
4576 else if (comp == NE_EXPR)
4578 int cmp1, cmp2;
4580 /* If VR0 is completely to the left or completely to the right
4581 of VR1, they are always different. Notice that we need to
4582 make sure that both comparisons yield similar results to
4583 avoid comparing values that cannot be compared at
4584 compile-time. */
4585 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4586 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4587 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4588 return boolean_true_node;
4590 /* If VR0 and VR1 represent a single value and are identical,
4591 return false. */
4592 else if (compare_values_warnv (vr0->min, vr0->max,
4593 strict_overflow_p) == 0
4594 && compare_values_warnv (vr1->min, vr1->max,
4595 strict_overflow_p) == 0
4596 && compare_values_warnv (vr0->min, vr1->min,
4597 strict_overflow_p) == 0
4598 && compare_values_warnv (vr0->max, vr1->max,
4599 strict_overflow_p) == 0)
4600 return boolean_false_node;
4602 /* Otherwise, they may or may not be different. */
4603 else
4604 return NULL_TREE;
4606 else if (comp == LT_EXPR || comp == LE_EXPR)
4608 int tst;
4610 /* If VR0 is to the left of VR1, return true. */
4611 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4612 if ((comp == LT_EXPR && tst == -1)
4613 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4615 if (overflow_infinity_range_p (vr0)
4616 || overflow_infinity_range_p (vr1))
4617 *strict_overflow_p = true;
4618 return boolean_true_node;
4621 /* If VR0 is to the right of VR1, return false. */
4622 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4623 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4624 || (comp == LE_EXPR && tst == 1))
4626 if (overflow_infinity_range_p (vr0)
4627 || overflow_infinity_range_p (vr1))
4628 *strict_overflow_p = true;
4629 return boolean_false_node;
4632 /* Otherwise, we don't know. */
4633 return NULL_TREE;
4636 gcc_unreachable ();
4640 /* Given a value range VR, a value VAL and a comparison code COMP, return
4641 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4642 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4643 always returns false. Return NULL_TREE if it is not always
4644 possible to determine the value of the comparison. Also set
4645 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4646 infinity was used in the test. */
4648 static tree
4649 compare_range_with_value (enum tree_code comp, value_range *vr, tree val,
4650 bool *strict_overflow_p)
4652 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4653 return NULL_TREE;
4655 /* Anti-ranges need to be handled separately. */
4656 if (vr->type == VR_ANTI_RANGE)
4658 /* For anti-ranges, the only predicates that we can compute at
4659 compile time are equality and inequality. */
4660 if (comp == GT_EXPR
4661 || comp == GE_EXPR
4662 || comp == LT_EXPR
4663 || comp == LE_EXPR)
4664 return NULL_TREE;
4666 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4667 if (value_inside_range (val, vr->min, vr->max) == 1)
4668 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4670 return NULL_TREE;
4673 if (!usable_range_p (vr, strict_overflow_p))
4674 return NULL_TREE;
4676 if (comp == EQ_EXPR)
4678 /* EQ_EXPR may only be computed if VR represents exactly
4679 one value. */
4680 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4682 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4683 if (cmp == 0)
4684 return boolean_true_node;
4685 else if (cmp == -1 || cmp == 1 || cmp == 2)
4686 return boolean_false_node;
4688 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4689 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4690 return boolean_false_node;
4692 return NULL_TREE;
4694 else if (comp == NE_EXPR)
4696 /* If VAL is not inside VR, then they are always different. */
4697 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4698 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4699 return boolean_true_node;
4701 /* If VR represents exactly one value equal to VAL, then return
4702 false. */
4703 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4704 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4705 return boolean_false_node;
4707 /* Otherwise, they may or may not be different. */
4708 return NULL_TREE;
4710 else if (comp == LT_EXPR || comp == LE_EXPR)
4712 int tst;
4714 /* If VR is to the left of VAL, return true. */
4715 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4716 if ((comp == LT_EXPR && tst == -1)
4717 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4719 if (overflow_infinity_range_p (vr))
4720 *strict_overflow_p = true;
4721 return boolean_true_node;
4724 /* If VR is to the right of VAL, return false. */
4725 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4726 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4727 || (comp == LE_EXPR && tst == 1))
4729 if (overflow_infinity_range_p (vr))
4730 *strict_overflow_p = true;
4731 return boolean_false_node;
4734 /* Otherwise, we don't know. */
4735 return NULL_TREE;
4737 else if (comp == GT_EXPR || comp == GE_EXPR)
4739 int tst;
4741 /* If VR is to the right of VAL, return true. */
4742 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4743 if ((comp == GT_EXPR && tst == 1)
4744 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4746 if (overflow_infinity_range_p (vr))
4747 *strict_overflow_p = true;
4748 return boolean_true_node;
4751 /* If VR is to the left of VAL, return false. */
4752 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4753 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4754 || (comp == GE_EXPR && tst == -1))
4756 if (overflow_infinity_range_p (vr))
4757 *strict_overflow_p = true;
4758 return boolean_false_node;
4761 /* Otherwise, we don't know. */
4762 return NULL_TREE;
4765 gcc_unreachable ();
4769 /* Debugging dumps. */
4771 void dump_value_range (FILE *, const value_range *);
4772 void debug_value_range (value_range *);
4773 void dump_all_value_ranges (FILE *);
4774 void debug_all_value_ranges (void);
4775 void dump_vr_equiv (FILE *, bitmap);
4776 void debug_vr_equiv (bitmap);
4779 /* Dump value range VR to FILE. */
4781 void
4782 dump_value_range (FILE *file, const value_range *vr)
4784 if (vr == NULL)
4785 fprintf (file, "[]");
4786 else if (vr->type == VR_UNDEFINED)
4787 fprintf (file, "UNDEFINED");
4788 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4790 tree type = TREE_TYPE (vr->min);
4792 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4794 if (is_negative_overflow_infinity (vr->min))
4795 fprintf (file, "-INF(OVF)");
4796 else if (INTEGRAL_TYPE_P (type)
4797 && !TYPE_UNSIGNED (type)
4798 && vrp_val_is_min (vr->min))
4799 fprintf (file, "-INF");
4800 else
4801 print_generic_expr (file, vr->min, 0);
4803 fprintf (file, ", ");
4805 if (is_positive_overflow_infinity (vr->max))
4806 fprintf (file, "+INF(OVF)");
4807 else if (INTEGRAL_TYPE_P (type)
4808 && vrp_val_is_max (vr->max))
4809 fprintf (file, "+INF");
4810 else
4811 print_generic_expr (file, vr->max, 0);
4813 fprintf (file, "]");
4815 if (vr->equiv)
4817 bitmap_iterator bi;
4818 unsigned i, c = 0;
4820 fprintf (file, " EQUIVALENCES: { ");
4822 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4824 print_generic_expr (file, ssa_name (i), 0);
4825 fprintf (file, " ");
4826 c++;
4829 fprintf (file, "} (%u elements)", c);
4832 else if (vr->type == VR_VARYING)
4833 fprintf (file, "VARYING");
4834 else
4835 fprintf (file, "INVALID RANGE");
4839 /* Dump value range VR to stderr. */
4841 DEBUG_FUNCTION void
4842 debug_value_range (value_range *vr)
4844 dump_value_range (stderr, vr);
4845 fprintf (stderr, "\n");
4849 /* Dump value ranges of all SSA_NAMEs to FILE. */
4851 void
4852 dump_all_value_ranges (FILE *file)
4854 size_t i;
4856 for (i = 0; i < num_vr_values; i++)
4858 if (vr_value[i])
4860 print_generic_expr (file, ssa_name (i), 0);
4861 fprintf (file, ": ");
4862 dump_value_range (file, vr_value[i]);
4863 fprintf (file, "\n");
4867 fprintf (file, "\n");
4871 /* Dump all value ranges to stderr. */
4873 DEBUG_FUNCTION void
4874 debug_all_value_ranges (void)
4876 dump_all_value_ranges (stderr);
4880 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4881 create a new SSA name N and return the assertion assignment
4882 'N = ASSERT_EXPR <V, V OP W>'. */
4884 static gimple *
4885 build_assert_expr_for (tree cond, tree v)
4887 tree a;
4888 gassign *assertion;
4890 gcc_assert (TREE_CODE (v) == SSA_NAME
4891 && COMPARISON_CLASS_P (cond));
4893 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4894 assertion = gimple_build_assign (NULL_TREE, a);
4896 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4897 operand of the ASSERT_EXPR. Create it so the new name and the old one
4898 are registered in the replacement table so that we can fix the SSA web
4899 after adding all the ASSERT_EXPRs. */
4900 create_new_def_for (v, assertion, NULL);
4902 return assertion;
4906 /* Return false if EXPR is a predicate expression involving floating
4907 point values. */
4909 static inline bool
4910 fp_predicate (gimple *stmt)
4912 GIMPLE_CHECK (stmt, GIMPLE_COND);
4914 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4917 /* If the range of values taken by OP can be inferred after STMT executes,
4918 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4919 describes the inferred range. Return true if a range could be
4920 inferred. */
4922 static bool
4923 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
4925 *val_p = NULL_TREE;
4926 *comp_code_p = ERROR_MARK;
4928 /* Do not attempt to infer anything in names that flow through
4929 abnormal edges. */
4930 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4931 return false;
4933 /* If STMT is the last statement of a basic block with no normal
4934 successors, there is no point inferring anything about any of its
4935 operands. We would not be able to find a proper insertion point
4936 for the assertion, anyway. */
4937 if (stmt_ends_bb_p (stmt))
4939 edge_iterator ei;
4940 edge e;
4942 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4943 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4944 break;
4945 if (e == NULL)
4946 return false;
4949 if (infer_nonnull_range (stmt, op))
4951 *val_p = build_int_cst (TREE_TYPE (op), 0);
4952 *comp_code_p = NE_EXPR;
4953 return true;
4956 return false;
4960 void dump_asserts_for (FILE *, tree);
4961 void debug_asserts_for (tree);
4962 void dump_all_asserts (FILE *);
4963 void debug_all_asserts (void);
4965 /* Dump all the registered assertions for NAME to FILE. */
4967 void
4968 dump_asserts_for (FILE *file, tree name)
4970 assert_locus *loc;
4972 fprintf (file, "Assertions to be inserted for ");
4973 print_generic_expr (file, name, 0);
4974 fprintf (file, "\n");
4976 loc = asserts_for[SSA_NAME_VERSION (name)];
4977 while (loc)
4979 fprintf (file, "\t");
4980 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4981 fprintf (file, "\n\tBB #%d", loc->bb->index);
4982 if (loc->e)
4984 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4985 loc->e->dest->index);
4986 dump_edge_info (file, loc->e, dump_flags, 0);
4988 fprintf (file, "\n\tPREDICATE: ");
4989 print_generic_expr (file, loc->expr, 0);
4990 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4991 print_generic_expr (file, loc->val, 0);
4992 fprintf (file, "\n\n");
4993 loc = loc->next;
4996 fprintf (file, "\n");
5000 /* Dump all the registered assertions for NAME to stderr. */
5002 DEBUG_FUNCTION void
5003 debug_asserts_for (tree name)
5005 dump_asserts_for (stderr, name);
5009 /* Dump all the registered assertions for all the names to FILE. */
5011 void
5012 dump_all_asserts (FILE *file)
5014 unsigned i;
5015 bitmap_iterator bi;
5017 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
5018 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5019 dump_asserts_for (file, ssa_name (i));
5020 fprintf (file, "\n");
5024 /* Dump all the registered assertions for all the names to stderr. */
5026 DEBUG_FUNCTION void
5027 debug_all_asserts (void)
5029 dump_all_asserts (stderr);
5033 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
5034 'EXPR COMP_CODE VAL' at a location that dominates block BB or
5035 E->DEST, then register this location as a possible insertion point
5036 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
5038 BB, E and SI provide the exact insertion point for the new
5039 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
5040 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
5041 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
5042 must not be NULL. */
5044 static void
5045 register_new_assert_for (tree name, tree expr,
5046 enum tree_code comp_code,
5047 tree val,
5048 basic_block bb,
5049 edge e,
5050 gimple_stmt_iterator si)
5052 assert_locus *n, *loc, *last_loc;
5053 basic_block dest_bb;
5055 gcc_checking_assert (bb == NULL || e == NULL);
5057 if (e == NULL)
5058 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
5059 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
5061 /* Never build an assert comparing against an integer constant with
5062 TREE_OVERFLOW set. This confuses our undefined overflow warning
5063 machinery. */
5064 if (TREE_OVERFLOW_P (val))
5065 val = drop_tree_overflow (val);
5067 /* The new assertion A will be inserted at BB or E. We need to
5068 determine if the new location is dominated by a previously
5069 registered location for A. If we are doing an edge insertion,
5070 assume that A will be inserted at E->DEST. Note that this is not
5071 necessarily true.
5073 If E is a critical edge, it will be split. But even if E is
5074 split, the new block will dominate the same set of blocks that
5075 E->DEST dominates.
5077 The reverse, however, is not true, blocks dominated by E->DEST
5078 will not be dominated by the new block created to split E. So,
5079 if the insertion location is on a critical edge, we will not use
5080 the new location to move another assertion previously registered
5081 at a block dominated by E->DEST. */
5082 dest_bb = (bb) ? bb : e->dest;
5084 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
5085 VAL at a block dominating DEST_BB, then we don't need to insert a new
5086 one. Similarly, if the same assertion already exists at a block
5087 dominated by DEST_BB and the new location is not on a critical
5088 edge, then update the existing location for the assertion (i.e.,
5089 move the assertion up in the dominance tree).
5091 Note, this is implemented as a simple linked list because there
5092 should not be more than a handful of assertions registered per
5093 name. If this becomes a performance problem, a table hashed by
5094 COMP_CODE and VAL could be implemented. */
5095 loc = asserts_for[SSA_NAME_VERSION (name)];
5096 last_loc = loc;
5097 while (loc)
5099 if (loc->comp_code == comp_code
5100 && (loc->val == val
5101 || operand_equal_p (loc->val, val, 0))
5102 && (loc->expr == expr
5103 || operand_equal_p (loc->expr, expr, 0)))
5105 /* If E is not a critical edge and DEST_BB
5106 dominates the existing location for the assertion, move
5107 the assertion up in the dominance tree by updating its
5108 location information. */
5109 if ((e == NULL || !EDGE_CRITICAL_P (e))
5110 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
5112 loc->bb = dest_bb;
5113 loc->e = e;
5114 loc->si = si;
5115 return;
5119 /* Update the last node of the list and move to the next one. */
5120 last_loc = loc;
5121 loc = loc->next;
5124 /* If we didn't find an assertion already registered for
5125 NAME COMP_CODE VAL, add a new one at the end of the list of
5126 assertions associated with NAME. */
5127 n = XNEW (struct assert_locus);
5128 n->bb = dest_bb;
5129 n->e = e;
5130 n->si = si;
5131 n->comp_code = comp_code;
5132 n->val = val;
5133 n->expr = expr;
5134 n->next = NULL;
5136 if (last_loc)
5137 last_loc->next = n;
5138 else
5139 asserts_for[SSA_NAME_VERSION (name)] = n;
5141 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
5144 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5145 Extract a suitable test code and value and store them into *CODE_P and
5146 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5148 If no extraction was possible, return FALSE, otherwise return TRUE.
5150 If INVERT is true, then we invert the result stored into *CODE_P. */
5152 static bool
5153 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
5154 tree cond_op0, tree cond_op1,
5155 bool invert, enum tree_code *code_p,
5156 tree *val_p)
5158 enum tree_code comp_code;
5159 tree val;
5161 /* Otherwise, we have a comparison of the form NAME COMP VAL
5162 or VAL COMP NAME. */
5163 if (name == cond_op1)
5165 /* If the predicate is of the form VAL COMP NAME, flip
5166 COMP around because we need to register NAME as the
5167 first operand in the predicate. */
5168 comp_code = swap_tree_comparison (cond_code);
5169 val = cond_op0;
5171 else if (name == cond_op0)
5173 /* The comparison is of the form NAME COMP VAL, so the
5174 comparison code remains unchanged. */
5175 comp_code = cond_code;
5176 val = cond_op1;
5178 else
5179 gcc_unreachable ();
5181 /* Invert the comparison code as necessary. */
5182 if (invert)
5183 comp_code = invert_tree_comparison (comp_code, 0);
5185 /* VRP only handles integral and pointer types. */
5186 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
5187 && ! POINTER_TYPE_P (TREE_TYPE (val)))
5188 return false;
5190 /* Do not register always-false predicates.
5191 FIXME: this works around a limitation in fold() when dealing with
5192 enumerations. Given 'enum { N1, N2 } x;', fold will not
5193 fold 'if (x > N2)' to 'if (0)'. */
5194 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
5195 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
5197 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
5198 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
5200 if (comp_code == GT_EXPR
5201 && (!max
5202 || compare_values (val, max) == 0))
5203 return false;
5205 if (comp_code == LT_EXPR
5206 && (!min
5207 || compare_values (val, min) == 0))
5208 return false;
5210 *code_p = comp_code;
5211 *val_p = val;
5212 return true;
5215 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5216 (otherwise return VAL). VAL and MASK must be zero-extended for
5217 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5218 (to transform signed values into unsigned) and at the end xor
5219 SGNBIT back. */
5221 static wide_int
5222 masked_increment (const wide_int &val_in, const wide_int &mask,
5223 const wide_int &sgnbit, unsigned int prec)
5225 wide_int bit = wi::one (prec), res;
5226 unsigned int i;
5228 wide_int val = val_in ^ sgnbit;
5229 for (i = 0; i < prec; i++, bit += bit)
5231 res = mask;
5232 if ((res & bit) == 0)
5233 continue;
5234 res = bit - 1;
5235 res = (val + bit).and_not (res);
5236 res &= mask;
5237 if (wi::gtu_p (res, val))
5238 return res ^ sgnbit;
5240 return val ^ sgnbit;
5243 /* Helper for overflow_comparison_p
5245 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
5246 OP1's defining statement to see if it ultimately has the form
5247 OP0 CODE (OP0 PLUS INTEGER_CST)
5249 If so, return TRUE indicating this is an overflow test and store into
5250 *NEW_CST an updated constant that can be used in a narrowed range test.
5252 REVERSED indicates if the comparison was originally:
5254 OP1 CODE' OP0.
5256 This affects how we build the updated constant. */
5258 static bool
5259 overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
5260 bool follow_assert_exprs, bool reversed, tree *new_cst)
5262 /* See if this is a relational operation between two SSA_NAMES with
5263 unsigned, overflow wrapping values. If so, check it more deeply. */
5264 if ((code == LT_EXPR || code == LE_EXPR
5265 || code == GE_EXPR || code == GT_EXPR)
5266 && TREE_CODE (op0) == SSA_NAME
5267 && TREE_CODE (op1) == SSA_NAME
5268 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5269 && TYPE_UNSIGNED (TREE_TYPE (op0))
5270 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
5272 gimple *op1_def = SSA_NAME_DEF_STMT (op1);
5274 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
5275 if (follow_assert_exprs)
5277 while (gimple_assign_single_p (op1_def)
5278 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
5280 op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
5281 if (TREE_CODE (op1) != SSA_NAME)
5282 break;
5283 op1_def = SSA_NAME_DEF_STMT (op1);
5287 /* Now look at the defining statement of OP1 to see if it adds
5288 or subtracts a nonzero constant from another operand. */
5289 if (op1_def
5290 && is_gimple_assign (op1_def)
5291 && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
5292 && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
5293 && !integer_zerop (gimple_assign_rhs2 (op1_def)))
5295 tree target = gimple_assign_rhs1 (op1_def);
5297 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
5298 for one where TARGET appears on the RHS. */
5299 if (follow_assert_exprs)
5301 /* Now see if that "other operand" is op0, following the chain
5302 of ASSERT_EXPRs if necessary. */
5303 gimple *op0_def = SSA_NAME_DEF_STMT (op0);
5304 while (op0 != target
5305 && gimple_assign_single_p (op0_def)
5306 && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
5308 op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
5309 if (TREE_CODE (op0) != SSA_NAME)
5310 break;
5311 op0_def = SSA_NAME_DEF_STMT (op0);
5315 /* If we did not find our target SSA_NAME, then this is not
5316 an overflow test. */
5317 if (op0 != target)
5318 return false;
5320 tree type = TREE_TYPE (op0);
5321 wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
5322 tree inc = gimple_assign_rhs2 (op1_def);
5323 if (reversed)
5324 *new_cst = wide_int_to_tree (type, max + inc);
5325 else
5326 *new_cst = wide_int_to_tree (type, max - inc);
5327 return true;
5330 return false;
5333 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
5334 OP1's defining statement to see if it ultimately has the form
5335 OP0 CODE (OP0 PLUS INTEGER_CST)
5337 If so, return TRUE indicating this is an overflow test and store into
5338 *NEW_CST an updated constant that can be used in a narrowed range test.
5340 These statements are left as-is in the IL to facilitate discovery of
5341 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
5342 the alternate range representation is often useful within VRP. */
5344 static bool
5345 overflow_comparison_p (tree_code code, tree name, tree val,
5346 bool use_equiv_p, tree *new_cst)
5348 if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
5349 return true;
5350 return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
5351 use_equiv_p, true, new_cst);
5355 /* Try to register an edge assertion for SSA name NAME on edge E for
5356 the condition COND contributing to the conditional jump pointed to by BSI.
5357 Invert the condition COND if INVERT is true. */
5359 static void
5360 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
5361 enum tree_code cond_code,
5362 tree cond_op0, tree cond_op1, bool invert)
5364 tree val;
5365 enum tree_code comp_code;
5367 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5368 cond_op0,
5369 cond_op1,
5370 invert, &comp_code, &val))
5371 return;
5373 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5374 reachable from E. */
5375 if (live_on_edge (e, name))
5377 tree x;
5378 if (overflow_comparison_p (comp_code, name, val, false, &x))
5380 enum tree_code new_code
5381 = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
5382 ? GT_EXPR : LE_EXPR);
5383 register_new_assert_for (name, name, new_code, x, NULL, e, bsi);
5385 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
5388 /* In the case of NAME <= CST and NAME being defined as
5389 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5390 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5391 This catches range and anti-range tests. */
5392 if ((comp_code == LE_EXPR
5393 || comp_code == GT_EXPR)
5394 && TREE_CODE (val) == INTEGER_CST
5395 && TYPE_UNSIGNED (TREE_TYPE (val)))
5397 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5398 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5400 /* Extract CST2 from the (optional) addition. */
5401 if (is_gimple_assign (def_stmt)
5402 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5404 name2 = gimple_assign_rhs1 (def_stmt);
5405 cst2 = gimple_assign_rhs2 (def_stmt);
5406 if (TREE_CODE (name2) == SSA_NAME
5407 && TREE_CODE (cst2) == INTEGER_CST)
5408 def_stmt = SSA_NAME_DEF_STMT (name2);
5411 /* Extract NAME2 from the (optional) sign-changing cast. */
5412 if (gimple_assign_cast_p (def_stmt))
5414 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5415 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5416 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5417 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5418 name3 = gimple_assign_rhs1 (def_stmt);
5421 /* If name3 is used later, create an ASSERT_EXPR for it. */
5422 if (name3 != NULL_TREE
5423 && TREE_CODE (name3) == SSA_NAME
5424 && (cst2 == NULL_TREE
5425 || TREE_CODE (cst2) == INTEGER_CST)
5426 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
5427 && live_on_edge (e, name3))
5429 tree tmp;
5431 /* Build an expression for the range test. */
5432 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5433 if (cst2 != NULL_TREE)
5434 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5436 if (dump_file)
5438 fprintf (dump_file, "Adding assert for ");
5439 print_generic_expr (dump_file, name3, 0);
5440 fprintf (dump_file, " from ");
5441 print_generic_expr (dump_file, tmp, 0);
5442 fprintf (dump_file, "\n");
5445 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
5448 /* If name2 is used later, create an ASSERT_EXPR for it. */
5449 if (name2 != NULL_TREE
5450 && TREE_CODE (name2) == SSA_NAME
5451 && TREE_CODE (cst2) == INTEGER_CST
5452 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5453 && live_on_edge (e, name2))
5455 tree tmp;
5457 /* Build an expression for the range test. */
5458 tmp = name2;
5459 if (TREE_TYPE (name) != TREE_TYPE (name2))
5460 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5461 if (cst2 != NULL_TREE)
5462 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5464 if (dump_file)
5466 fprintf (dump_file, "Adding assert for ");
5467 print_generic_expr (dump_file, name2, 0);
5468 fprintf (dump_file, " from ");
5469 print_generic_expr (dump_file, tmp, 0);
5470 fprintf (dump_file, "\n");
5473 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
5477 /* In the case of post-in/decrement tests like if (i++) ... and uses
5478 of the in/decremented value on the edge the extra name we want to
5479 assert for is not on the def chain of the name compared. Instead
5480 it is in the set of use stmts.
5481 Similar cases happen for conversions that were simplified through
5482 fold_{sign_changed,widened}_comparison. */
5483 if ((comp_code == NE_EXPR
5484 || comp_code == EQ_EXPR)
5485 && TREE_CODE (val) == INTEGER_CST)
5487 imm_use_iterator ui;
5488 gimple *use_stmt;
5489 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5491 if (!is_gimple_assign (use_stmt))
5492 continue;
5494 /* Cut off to use-stmts that are dominating the predecessor. */
5495 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
5496 continue;
5498 tree name2 = gimple_assign_lhs (use_stmt);
5499 if (TREE_CODE (name2) != SSA_NAME
5500 || !live_on_edge (e, name2))
5501 continue;
5503 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5504 tree cst;
5505 if (code == PLUS_EXPR
5506 || code == MINUS_EXPR)
5508 cst = gimple_assign_rhs2 (use_stmt);
5509 if (TREE_CODE (cst) != INTEGER_CST)
5510 continue;
5511 cst = int_const_binop (code, val, cst);
5513 else if (CONVERT_EXPR_CODE_P (code))
5515 /* For truncating conversions we cannot record
5516 an inequality. */
5517 if (comp_code == NE_EXPR
5518 && (TYPE_PRECISION (TREE_TYPE (name2))
5519 < TYPE_PRECISION (TREE_TYPE (name))))
5520 continue;
5521 cst = fold_convert (TREE_TYPE (name2), val);
5523 else
5524 continue;
5526 if (TREE_OVERFLOW_P (cst))
5527 cst = drop_tree_overflow (cst);
5528 register_new_assert_for (name2, name2, comp_code, cst,
5529 NULL, e, bsi);
5533 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5534 && TREE_CODE (val) == INTEGER_CST)
5536 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5537 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5538 tree val2 = NULL_TREE;
5539 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5540 wide_int mask = wi::zero (prec);
5541 unsigned int nprec = prec;
5542 enum tree_code rhs_code = ERROR_MARK;
5544 if (is_gimple_assign (def_stmt))
5545 rhs_code = gimple_assign_rhs_code (def_stmt);
5547 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
5548 assert that A != CST1 -+ CST2. */
5549 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
5550 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
5552 tree op0 = gimple_assign_rhs1 (def_stmt);
5553 tree op1 = gimple_assign_rhs2 (def_stmt);
5554 if (TREE_CODE (op0) == SSA_NAME
5555 && TREE_CODE (op1) == INTEGER_CST
5556 && live_on_edge (e, op0))
5558 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
5559 ? MINUS_EXPR : PLUS_EXPR);
5560 op1 = int_const_binop (reverse_op, val, op1);
5561 if (TREE_OVERFLOW (op1))
5562 op1 = drop_tree_overflow (op1);
5563 register_new_assert_for (op0, op0, comp_code, op1, NULL, e, bsi);
5567 /* Add asserts for NAME cmp CST and NAME being defined
5568 as NAME = (int) NAME2. */
5569 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5570 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5571 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5572 && gimple_assign_cast_p (def_stmt))
5574 name2 = gimple_assign_rhs1 (def_stmt);
5575 if (CONVERT_EXPR_CODE_P (rhs_code)
5576 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5577 && TYPE_UNSIGNED (TREE_TYPE (name2))
5578 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5579 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5580 || !tree_int_cst_equal (val,
5581 TYPE_MIN_VALUE (TREE_TYPE (val))))
5582 && live_on_edge (e, name2))
5584 tree tmp, cst;
5585 enum tree_code new_comp_code = comp_code;
5587 cst = fold_convert (TREE_TYPE (name2),
5588 TYPE_MIN_VALUE (TREE_TYPE (val)));
5589 /* Build an expression for the range test. */
5590 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5591 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5592 fold_convert (TREE_TYPE (name2), val));
5593 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5595 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5596 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5597 build_int_cst (TREE_TYPE (name2), 1));
5600 if (dump_file)
5602 fprintf (dump_file, "Adding assert for ");
5603 print_generic_expr (dump_file, name2, 0);
5604 fprintf (dump_file, " from ");
5605 print_generic_expr (dump_file, tmp, 0);
5606 fprintf (dump_file, "\n");
5609 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5610 e, bsi);
5614 /* Add asserts for NAME cmp CST and NAME being defined as
5615 NAME = NAME2 >> CST2.
5617 Extract CST2 from the right shift. */
5618 if (rhs_code == RSHIFT_EXPR)
5620 name2 = gimple_assign_rhs1 (def_stmt);
5621 cst2 = gimple_assign_rhs2 (def_stmt);
5622 if (TREE_CODE (name2) == SSA_NAME
5623 && tree_fits_uhwi_p (cst2)
5624 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5625 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5626 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5627 && live_on_edge (e, name2))
5629 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5630 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5633 if (val2 != NULL_TREE
5634 && TREE_CODE (val2) == INTEGER_CST
5635 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5636 TREE_TYPE (val),
5637 val2, cst2), val))
5639 enum tree_code new_comp_code = comp_code;
5640 tree tmp, new_val;
5642 tmp = name2;
5643 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5645 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5647 tree type = build_nonstandard_integer_type (prec, 1);
5648 tmp = build1 (NOP_EXPR, type, name2);
5649 val2 = fold_convert (type, val2);
5651 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5652 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5653 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5655 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5657 wide_int minval
5658 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5659 new_val = val2;
5660 if (minval == new_val)
5661 new_val = NULL_TREE;
5663 else
5665 wide_int maxval
5666 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5667 mask |= val2;
5668 if (mask == maxval)
5669 new_val = NULL_TREE;
5670 else
5671 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5674 if (new_val)
5676 if (dump_file)
5678 fprintf (dump_file, "Adding assert for ");
5679 print_generic_expr (dump_file, name2, 0);
5680 fprintf (dump_file, " from ");
5681 print_generic_expr (dump_file, tmp, 0);
5682 fprintf (dump_file, "\n");
5685 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5686 NULL, e, bsi);
5690 /* Add asserts for NAME cmp CST and NAME being defined as
5691 NAME = NAME2 & CST2.
5693 Extract CST2 from the and.
5695 Also handle
5696 NAME = (unsigned) NAME2;
5697 casts where NAME's type is unsigned and has smaller precision
5698 than NAME2's type as if it was NAME = NAME2 & MASK. */
5699 names[0] = NULL_TREE;
5700 names[1] = NULL_TREE;
5701 cst2 = NULL_TREE;
5702 if (rhs_code == BIT_AND_EXPR
5703 || (CONVERT_EXPR_CODE_P (rhs_code)
5704 && INTEGRAL_TYPE_P (TREE_TYPE (val))
5705 && TYPE_UNSIGNED (TREE_TYPE (val))
5706 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5707 > prec))
5709 name2 = gimple_assign_rhs1 (def_stmt);
5710 if (rhs_code == BIT_AND_EXPR)
5711 cst2 = gimple_assign_rhs2 (def_stmt);
5712 else
5714 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5715 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5717 if (TREE_CODE (name2) == SSA_NAME
5718 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5719 && TREE_CODE (cst2) == INTEGER_CST
5720 && !integer_zerop (cst2)
5721 && (nprec > 1
5722 || TYPE_UNSIGNED (TREE_TYPE (val))))
5724 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
5725 if (gimple_assign_cast_p (def_stmt2))
5727 names[1] = gimple_assign_rhs1 (def_stmt2);
5728 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5729 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5730 || (TYPE_PRECISION (TREE_TYPE (name2))
5731 != TYPE_PRECISION (TREE_TYPE (names[1])))
5732 || !live_on_edge (e, names[1]))
5733 names[1] = NULL_TREE;
5735 if (live_on_edge (e, name2))
5736 names[0] = name2;
5739 if (names[0] || names[1])
5741 wide_int minv, maxv, valv, cst2v;
5742 wide_int tem, sgnbit;
5743 bool valid_p = false, valn, cst2n;
5744 enum tree_code ccode = comp_code;
5746 valv = wide_int::from (val, nprec, UNSIGNED);
5747 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5748 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5749 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5750 /* If CST2 doesn't have most significant bit set,
5751 but VAL is negative, we have comparison like
5752 if ((x & 0x123) > -4) (always true). Just give up. */
5753 if (!cst2n && valn)
5754 ccode = ERROR_MARK;
5755 if (cst2n)
5756 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5757 else
5758 sgnbit = wi::zero (nprec);
5759 minv = valv & cst2v;
5760 switch (ccode)
5762 case EQ_EXPR:
5763 /* Minimum unsigned value for equality is VAL & CST2
5764 (should be equal to VAL, otherwise we probably should
5765 have folded the comparison into false) and
5766 maximum unsigned value is VAL | ~CST2. */
5767 maxv = valv | ~cst2v;
5768 valid_p = true;
5769 break;
5771 case NE_EXPR:
5772 tem = valv | ~cst2v;
5773 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5774 if (valv == 0)
5776 cst2n = false;
5777 sgnbit = wi::zero (nprec);
5778 goto gt_expr;
5780 /* If (VAL | ~CST2) is all ones, handle it as
5781 (X & CST2) < VAL. */
5782 if (tem == -1)
5784 cst2n = false;
5785 valn = false;
5786 sgnbit = wi::zero (nprec);
5787 goto lt_expr;
5789 if (!cst2n && wi::neg_p (cst2v))
5790 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5791 if (sgnbit != 0)
5793 if (valv == sgnbit)
5795 cst2n = true;
5796 valn = true;
5797 goto gt_expr;
5799 if (tem == wi::mask (nprec - 1, false, nprec))
5801 cst2n = true;
5802 goto lt_expr;
5804 if (!cst2n)
5805 sgnbit = wi::zero (nprec);
5807 break;
5809 case GE_EXPR:
5810 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5811 is VAL and maximum unsigned value is ~0. For signed
5812 comparison, if CST2 doesn't have most significant bit
5813 set, handle it similarly. If CST2 has MSB set,
5814 the minimum is the same, and maximum is ~0U/2. */
5815 if (minv != valv)
5817 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5818 VAL. */
5819 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5820 if (minv == valv)
5821 break;
5823 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5824 valid_p = true;
5825 break;
5827 case GT_EXPR:
5828 gt_expr:
5829 /* Find out smallest MINV where MINV > VAL
5830 && (MINV & CST2) == MINV, if any. If VAL is signed and
5831 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5832 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5833 if (minv == valv)
5834 break;
5835 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5836 valid_p = true;
5837 break;
5839 case LE_EXPR:
5840 /* Minimum unsigned value for <= is 0 and maximum
5841 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5842 Otherwise, find smallest VAL2 where VAL2 > VAL
5843 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5844 as maximum.
5845 For signed comparison, if CST2 doesn't have most
5846 significant bit set, handle it similarly. If CST2 has
5847 MSB set, the maximum is the same and minimum is INT_MIN. */
5848 if (minv == valv)
5849 maxv = valv;
5850 else
5852 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5853 if (maxv == valv)
5854 break;
5855 maxv -= 1;
5857 maxv |= ~cst2v;
5858 minv = sgnbit;
5859 valid_p = true;
5860 break;
5862 case LT_EXPR:
5863 lt_expr:
5864 /* Minimum unsigned value for < is 0 and maximum
5865 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5866 Otherwise, find smallest VAL2 where VAL2 > VAL
5867 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5868 as maximum.
5869 For signed comparison, if CST2 doesn't have most
5870 significant bit set, handle it similarly. If CST2 has
5871 MSB set, the maximum is the same and minimum is INT_MIN. */
5872 if (minv == valv)
5874 if (valv == sgnbit)
5875 break;
5876 maxv = valv;
5878 else
5880 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5881 if (maxv == valv)
5882 break;
5884 maxv -= 1;
5885 maxv |= ~cst2v;
5886 minv = sgnbit;
5887 valid_p = true;
5888 break;
5890 default:
5891 break;
5893 if (valid_p
5894 && (maxv - minv) != -1)
5896 tree tmp, new_val, type;
5897 int i;
5899 for (i = 0; i < 2; i++)
5900 if (names[i])
5902 wide_int maxv2 = maxv;
5903 tmp = names[i];
5904 type = TREE_TYPE (names[i]);
5905 if (!TYPE_UNSIGNED (type))
5907 type = build_nonstandard_integer_type (nprec, 1);
5908 tmp = build1 (NOP_EXPR, type, names[i]);
5910 if (minv != 0)
5912 tmp = build2 (PLUS_EXPR, type, tmp,
5913 wide_int_to_tree (type, -minv));
5914 maxv2 = maxv - minv;
5916 new_val = wide_int_to_tree (type, maxv2);
5918 if (dump_file)
5920 fprintf (dump_file, "Adding assert for ");
5921 print_generic_expr (dump_file, names[i], 0);
5922 fprintf (dump_file, " from ");
5923 print_generic_expr (dump_file, tmp, 0);
5924 fprintf (dump_file, "\n");
5927 register_new_assert_for (names[i], tmp, LE_EXPR,
5928 new_val, NULL, e, bsi);
5935 /* OP is an operand of a truth value expression which is known to have
5936 a particular value. Register any asserts for OP and for any
5937 operands in OP's defining statement.
5939 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5940 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5942 static void
5943 register_edge_assert_for_1 (tree op, enum tree_code code,
5944 edge e, gimple_stmt_iterator bsi)
5946 gimple *op_def;
5947 tree val;
5948 enum tree_code rhs_code;
5950 /* We only care about SSA_NAMEs. */
5951 if (TREE_CODE (op) != SSA_NAME)
5952 return;
5954 /* We know that OP will have a zero or nonzero value. If OP is used
5955 more than once go ahead and register an assert for OP. */
5956 if (live_on_edge (e, op))
5958 val = build_int_cst (TREE_TYPE (op), 0);
5959 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5962 /* Now look at how OP is set. If it's set from a comparison,
5963 a truth operation or some bit operations, then we may be able
5964 to register information about the operands of that assignment. */
5965 op_def = SSA_NAME_DEF_STMT (op);
5966 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5967 return;
5969 rhs_code = gimple_assign_rhs_code (op_def);
5971 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5973 bool invert = (code == EQ_EXPR ? true : false);
5974 tree op0 = gimple_assign_rhs1 (op_def);
5975 tree op1 = gimple_assign_rhs2 (op_def);
5977 if (TREE_CODE (op0) == SSA_NAME)
5978 register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1, invert);
5979 if (TREE_CODE (op1) == SSA_NAME)
5980 register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1, invert);
5982 else if ((code == NE_EXPR
5983 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5984 || (code == EQ_EXPR
5985 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5987 /* Recurse on each operand. */
5988 tree op0 = gimple_assign_rhs1 (op_def);
5989 tree op1 = gimple_assign_rhs2 (op_def);
5990 if (TREE_CODE (op0) == SSA_NAME
5991 && has_single_use (op0))
5992 register_edge_assert_for_1 (op0, code, e, bsi);
5993 if (TREE_CODE (op1) == SSA_NAME
5994 && has_single_use (op1))
5995 register_edge_assert_for_1 (op1, code, e, bsi);
5997 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5998 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
6000 /* Recurse, flipping CODE. */
6001 code = invert_tree_comparison (code, false);
6002 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
6004 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
6006 /* Recurse through the copy. */
6007 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
6009 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
6011 /* Recurse through the type conversion, unless it is a narrowing
6012 conversion or conversion from non-integral type. */
6013 tree rhs = gimple_assign_rhs1 (op_def);
6014 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
6015 && (TYPE_PRECISION (TREE_TYPE (rhs))
6016 <= TYPE_PRECISION (TREE_TYPE (op))))
6017 register_edge_assert_for_1 (rhs, code, e, bsi);
6021 /* Try to register an edge assertion for SSA name NAME on edge E for
6022 the condition COND contributing to the conditional jump pointed to by
6023 SI. */
6025 static void
6026 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
6027 enum tree_code cond_code, tree cond_op0,
6028 tree cond_op1)
6030 tree val;
6031 enum tree_code comp_code;
6032 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
6034 /* Do not attempt to infer anything in names that flow through
6035 abnormal edges. */
6036 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
6037 return;
6039 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
6040 cond_op0, cond_op1,
6041 is_else_edge,
6042 &comp_code, &val))
6043 return;
6045 /* Register ASSERT_EXPRs for name. */
6046 register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
6047 cond_op1, is_else_edge);
6050 /* If COND is effectively an equality test of an SSA_NAME against
6051 the value zero or one, then we may be able to assert values
6052 for SSA_NAMEs which flow into COND. */
6054 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
6055 statement of NAME we can assert both operands of the BIT_AND_EXPR
6056 have nonzero value. */
6057 if (((comp_code == EQ_EXPR && integer_onep (val))
6058 || (comp_code == NE_EXPR && integer_zerop (val))))
6060 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
6062 if (is_gimple_assign (def_stmt)
6063 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
6065 tree op0 = gimple_assign_rhs1 (def_stmt);
6066 tree op1 = gimple_assign_rhs2 (def_stmt);
6067 register_edge_assert_for_1 (op0, NE_EXPR, e, si);
6068 register_edge_assert_for_1 (op1, NE_EXPR, e, si);
6072 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
6073 statement of NAME we can assert both operands of the BIT_IOR_EXPR
6074 have zero value. */
6075 if (((comp_code == EQ_EXPR && integer_zerop (val))
6076 || (comp_code == NE_EXPR && integer_onep (val))))
6078 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
6080 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
6081 necessarily zero value, or if type-precision is one. */
6082 if (is_gimple_assign (def_stmt)
6083 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
6084 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
6085 || comp_code == EQ_EXPR)))
6087 tree op0 = gimple_assign_rhs1 (def_stmt);
6088 tree op1 = gimple_assign_rhs2 (def_stmt);
6089 register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
6090 register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
6096 /* Determine whether the outgoing edges of BB should receive an
6097 ASSERT_EXPR for each of the operands of BB's LAST statement.
6098 The last statement of BB must be a COND_EXPR.
6100 If any of the sub-graphs rooted at BB have an interesting use of
6101 the predicate operands, an assert location node is added to the
6102 list of assertions for the corresponding operands. */
6104 static void
6105 find_conditional_asserts (basic_block bb, gcond *last)
6107 gimple_stmt_iterator bsi;
6108 tree op;
6109 edge_iterator ei;
6110 edge e;
6111 ssa_op_iter iter;
6113 bsi = gsi_for_stmt (last);
6115 /* Look for uses of the operands in each of the sub-graphs
6116 rooted at BB. We need to check each of the outgoing edges
6117 separately, so that we know what kind of ASSERT_EXPR to
6118 insert. */
6119 FOR_EACH_EDGE (e, ei, bb->succs)
6121 if (e->dest == bb)
6122 continue;
6124 /* Register the necessary assertions for each operand in the
6125 conditional predicate. */
6126 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
6127 register_edge_assert_for (op, e, bsi,
6128 gimple_cond_code (last),
6129 gimple_cond_lhs (last),
6130 gimple_cond_rhs (last));
6134 struct case_info
6136 tree expr;
6137 basic_block bb;
6140 /* Compare two case labels sorting first by the destination bb index
6141 and then by the case value. */
6143 static int
6144 compare_case_labels (const void *p1, const void *p2)
6146 const struct case_info *ci1 = (const struct case_info *) p1;
6147 const struct case_info *ci2 = (const struct case_info *) p2;
6148 int idx1 = ci1->bb->index;
6149 int idx2 = ci2->bb->index;
6151 if (idx1 < idx2)
6152 return -1;
6153 else if (idx1 == idx2)
6155 /* Make sure the default label is first in a group. */
6156 if (!CASE_LOW (ci1->expr))
6157 return -1;
6158 else if (!CASE_LOW (ci2->expr))
6159 return 1;
6160 else
6161 return tree_int_cst_compare (CASE_LOW (ci1->expr),
6162 CASE_LOW (ci2->expr));
6164 else
6165 return 1;
6168 /* Determine whether the outgoing edges of BB should receive an
6169 ASSERT_EXPR for each of the operands of BB's LAST statement.
6170 The last statement of BB must be a SWITCH_EXPR.
6172 If any of the sub-graphs rooted at BB have an interesting use of
6173 the predicate operands, an assert location node is added to the
6174 list of assertions for the corresponding operands. */
6176 static void
6177 find_switch_asserts (basic_block bb, gswitch *last)
6179 gimple_stmt_iterator bsi;
6180 tree op;
6181 edge e;
6182 struct case_info *ci;
6183 size_t n = gimple_switch_num_labels (last);
6184 #if GCC_VERSION >= 4000
6185 unsigned int idx;
6186 #else
6187 /* Work around GCC 3.4 bug (PR 37086). */
6188 volatile unsigned int idx;
6189 #endif
6191 bsi = gsi_for_stmt (last);
6192 op = gimple_switch_index (last);
6193 if (TREE_CODE (op) != SSA_NAME)
6194 return;
6196 /* Build a vector of case labels sorted by destination label. */
6197 ci = XNEWVEC (struct case_info, n);
6198 for (idx = 0; idx < n; ++idx)
6200 ci[idx].expr = gimple_switch_label (last, idx);
6201 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
6203 edge default_edge = find_edge (bb, ci[0].bb);
6204 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
6206 for (idx = 0; idx < n; ++idx)
6208 tree min, max;
6209 tree cl = ci[idx].expr;
6210 basic_block cbb = ci[idx].bb;
6212 min = CASE_LOW (cl);
6213 max = CASE_HIGH (cl);
6215 /* If there are multiple case labels with the same destination
6216 we need to combine them to a single value range for the edge. */
6217 if (idx + 1 < n && cbb == ci[idx + 1].bb)
6219 /* Skip labels until the last of the group. */
6220 do {
6221 ++idx;
6222 } while (idx < n && cbb == ci[idx].bb);
6223 --idx;
6225 /* Pick up the maximum of the case label range. */
6226 if (CASE_HIGH (ci[idx].expr))
6227 max = CASE_HIGH (ci[idx].expr);
6228 else
6229 max = CASE_LOW (ci[idx].expr);
6232 /* Can't extract a useful assertion out of a range that includes the
6233 default label. */
6234 if (min == NULL_TREE)
6235 continue;
6237 /* Find the edge to register the assert expr on. */
6238 e = find_edge (bb, cbb);
6240 /* Register the necessary assertions for the operand in the
6241 SWITCH_EXPR. */
6242 register_edge_assert_for (op, e, bsi,
6243 max ? GE_EXPR : EQ_EXPR,
6244 op, fold_convert (TREE_TYPE (op), min));
6245 if (max)
6246 register_edge_assert_for (op, e, bsi, LE_EXPR, op,
6247 fold_convert (TREE_TYPE (op), max));
6250 XDELETEVEC (ci);
6252 if (!live_on_edge (default_edge, op))
6253 return;
6255 /* Now register along the default label assertions that correspond to the
6256 anti-range of each label. */
6257 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
6258 if (insertion_limit == 0)
6259 return;
6261 /* We can't do this if the default case shares a label with another case. */
6262 tree default_cl = gimple_switch_default_label (last);
6263 for (idx = 1; idx < n; idx++)
6265 tree min, max;
6266 tree cl = gimple_switch_label (last, idx);
6267 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
6268 continue;
6270 min = CASE_LOW (cl);
6271 max = CASE_HIGH (cl);
6273 /* Combine contiguous case ranges to reduce the number of assertions
6274 to insert. */
6275 for (idx = idx + 1; idx < n; idx++)
6277 tree next_min, next_max;
6278 tree next_cl = gimple_switch_label (last, idx);
6279 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
6280 break;
6282 next_min = CASE_LOW (next_cl);
6283 next_max = CASE_HIGH (next_cl);
6285 wide_int difference = wi::sub (next_min, max ? max : min);
6286 if (wi::eq_p (difference, 1))
6287 max = next_max ? next_max : next_min;
6288 else
6289 break;
6291 idx--;
6293 if (max == NULL_TREE)
6295 /* Register the assertion OP != MIN. */
6296 min = fold_convert (TREE_TYPE (op), min);
6297 register_edge_assert_for (op, default_edge, bsi, NE_EXPR, op, min);
6299 else
6301 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
6302 which will give OP the anti-range ~[MIN,MAX]. */
6303 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
6304 min = fold_convert (TREE_TYPE (uop), min);
6305 max = fold_convert (TREE_TYPE (uop), max);
6307 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
6308 tree rhs = int_const_binop (MINUS_EXPR, max, min);
6309 register_new_assert_for (op, lhs, GT_EXPR, rhs,
6310 NULL, default_edge, bsi);
6313 if (--insertion_limit == 0)
6314 break;
6319 /* Traverse all the statements in block BB looking for statements that
6320 may generate useful assertions for the SSA names in their operand.
6321 If a statement produces a useful assertion A for name N_i, then the
6322 list of assertions already generated for N_i is scanned to
6323 determine if A is actually needed.
6325 If N_i already had the assertion A at a location dominating the
6326 current location, then nothing needs to be done. Otherwise, the
6327 new location for A is recorded instead.
6329 1- For every statement S in BB, all the variables used by S are
6330 added to bitmap FOUND_IN_SUBGRAPH.
6332 2- If statement S uses an operand N in a way that exposes a known
6333 value range for N, then if N was not already generated by an
6334 ASSERT_EXPR, create a new assert location for N. For instance,
6335 if N is a pointer and the statement dereferences it, we can
6336 assume that N is not NULL.
6338 3- COND_EXPRs are a special case of #2. We can derive range
6339 information from the predicate but need to insert different
6340 ASSERT_EXPRs for each of the sub-graphs rooted at the
6341 conditional block. If the last statement of BB is a conditional
6342 expression of the form 'X op Y', then
6344 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6346 b) If the conditional is the only entry point to the sub-graph
6347 corresponding to the THEN_CLAUSE, recurse into it. On
6348 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6349 an ASSERT_EXPR is added for the corresponding variable.
6351 c) Repeat step (b) on the ELSE_CLAUSE.
6353 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6355 For instance,
6357 if (a == 9)
6358 b = a;
6359 else
6360 b = c + 1;
6362 In this case, an assertion on the THEN clause is useful to
6363 determine that 'a' is always 9 on that edge. However, an assertion
6364 on the ELSE clause would be unnecessary.
6366 4- If BB does not end in a conditional expression, then we recurse
6367 into BB's dominator children.
6369 At the end of the recursive traversal, every SSA name will have a
6370 list of locations where ASSERT_EXPRs should be added. When a new
6371 location for name N is found, it is registered by calling
6372 register_new_assert_for. That function keeps track of all the
6373 registered assertions to prevent adding unnecessary assertions.
6374 For instance, if a pointer P_4 is dereferenced more than once in a
6375 dominator tree, only the location dominating all the dereference of
6376 P_4 will receive an ASSERT_EXPR. */
6378 static void
6379 find_assert_locations_1 (basic_block bb, sbitmap live)
6381 gimple *last;
6383 last = last_stmt (bb);
6385 /* If BB's last statement is a conditional statement involving integer
6386 operands, determine if we need to add ASSERT_EXPRs. */
6387 if (last
6388 && gimple_code (last) == GIMPLE_COND
6389 && !fp_predicate (last)
6390 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6391 find_conditional_asserts (bb, as_a <gcond *> (last));
6393 /* If BB's last statement is a switch statement involving integer
6394 operands, determine if we need to add ASSERT_EXPRs. */
6395 if (last
6396 && gimple_code (last) == GIMPLE_SWITCH
6397 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6398 find_switch_asserts (bb, as_a <gswitch *> (last));
6400 /* Traverse all the statements in BB marking used names and looking
6401 for statements that may infer assertions for their used operands. */
6402 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6403 gsi_prev (&si))
6405 gimple *stmt;
6406 tree op;
6407 ssa_op_iter i;
6409 stmt = gsi_stmt (si);
6411 if (is_gimple_debug (stmt))
6412 continue;
6414 /* See if we can derive an assertion for any of STMT's operands. */
6415 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6417 tree value;
6418 enum tree_code comp_code;
6420 /* If op is not live beyond this stmt, do not bother to insert
6421 asserts for it. */
6422 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6423 continue;
6425 /* If OP is used in such a way that we can infer a value
6426 range for it, and we don't find a previous assertion for
6427 it, create a new assertion location node for OP. */
6428 if (infer_value_range (stmt, op, &comp_code, &value))
6430 /* If we are able to infer a nonzero value range for OP,
6431 then walk backwards through the use-def chain to see if OP
6432 was set via a typecast.
6434 If so, then we can also infer a nonzero value range
6435 for the operand of the NOP_EXPR. */
6436 if (comp_code == NE_EXPR && integer_zerop (value))
6438 tree t = op;
6439 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
6441 while (is_gimple_assign (def_stmt)
6442 && CONVERT_EXPR_CODE_P
6443 (gimple_assign_rhs_code (def_stmt))
6444 && TREE_CODE
6445 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6446 && POINTER_TYPE_P
6447 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6449 t = gimple_assign_rhs1 (def_stmt);
6450 def_stmt = SSA_NAME_DEF_STMT (t);
6452 /* Note we want to register the assert for the
6453 operand of the NOP_EXPR after SI, not after the
6454 conversion. */
6455 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
6456 register_new_assert_for (t, t, comp_code, value,
6457 bb, NULL, si);
6461 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6465 /* Update live. */
6466 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6467 bitmap_set_bit (live, SSA_NAME_VERSION (op));
6468 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6469 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6472 /* Traverse all PHI nodes in BB, updating live. */
6473 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6474 gsi_next (&si))
6476 use_operand_p arg_p;
6477 ssa_op_iter i;
6478 gphi *phi = si.phi ();
6479 tree res = gimple_phi_result (phi);
6481 if (virtual_operand_p (res))
6482 continue;
6484 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6486 tree arg = USE_FROM_PTR (arg_p);
6487 if (TREE_CODE (arg) == SSA_NAME)
6488 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6491 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6495 /* Do an RPO walk over the function computing SSA name liveness
6496 on-the-fly and deciding on assert expressions to insert. */
6498 static void
6499 find_assert_locations (void)
6501 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6502 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6503 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6504 int rpo_cnt, i;
6506 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6507 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6508 for (i = 0; i < rpo_cnt; ++i)
6509 bb_rpo[rpo[i]] = i;
6511 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6512 the order we compute liveness and insert asserts we otherwise
6513 fail to insert asserts into the loop latch. */
6514 loop_p loop;
6515 FOR_EACH_LOOP (loop, 0)
6517 i = loop->latch->index;
6518 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6519 for (gphi_iterator gsi = gsi_start_phis (loop->header);
6520 !gsi_end_p (gsi); gsi_next (&gsi))
6522 gphi *phi = gsi.phi ();
6523 if (virtual_operand_p (gimple_phi_result (phi)))
6524 continue;
6525 tree arg = gimple_phi_arg_def (phi, j);
6526 if (TREE_CODE (arg) == SSA_NAME)
6528 if (live[i] == NULL)
6530 live[i] = sbitmap_alloc (num_ssa_names);
6531 bitmap_clear (live[i]);
6533 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6538 for (i = rpo_cnt - 1; i >= 0; --i)
6540 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6541 edge e;
6542 edge_iterator ei;
6544 if (!live[rpo[i]])
6546 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6547 bitmap_clear (live[rpo[i]]);
6550 /* Process BB and update the live information with uses in
6551 this block. */
6552 find_assert_locations_1 (bb, live[rpo[i]]);
6554 /* Merge liveness into the predecessor blocks and free it. */
6555 if (!bitmap_empty_p (live[rpo[i]]))
6557 int pred_rpo = i;
6558 FOR_EACH_EDGE (e, ei, bb->preds)
6560 int pred = e->src->index;
6561 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6562 continue;
6564 if (!live[pred])
6566 live[pred] = sbitmap_alloc (num_ssa_names);
6567 bitmap_clear (live[pred]);
6569 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6571 if (bb_rpo[pred] < pred_rpo)
6572 pred_rpo = bb_rpo[pred];
6575 /* Record the RPO number of the last visited block that needs
6576 live information from this block. */
6577 last_rpo[rpo[i]] = pred_rpo;
6579 else
6581 sbitmap_free (live[rpo[i]]);
6582 live[rpo[i]] = NULL;
6585 /* We can free all successors live bitmaps if all their
6586 predecessors have been visited already. */
6587 FOR_EACH_EDGE (e, ei, bb->succs)
6588 if (last_rpo[e->dest->index] == i
6589 && live[e->dest->index])
6591 sbitmap_free (live[e->dest->index]);
6592 live[e->dest->index] = NULL;
6596 XDELETEVEC (rpo);
6597 XDELETEVEC (bb_rpo);
6598 XDELETEVEC (last_rpo);
6599 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6600 if (live[i])
6601 sbitmap_free (live[i]);
6602 XDELETEVEC (live);
6605 /* Create an ASSERT_EXPR for NAME and insert it in the location
6606 indicated by LOC. Return true if we made any edge insertions. */
6608 static bool
6609 process_assert_insertions_for (tree name, assert_locus *loc)
6611 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6612 gimple *stmt;
6613 tree cond;
6614 gimple *assert_stmt;
6615 edge_iterator ei;
6616 edge e;
6618 /* If we have X <=> X do not insert an assert expr for that. */
6619 if (loc->expr == loc->val)
6620 return false;
6622 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6623 assert_stmt = build_assert_expr_for (cond, name);
6624 if (loc->e)
6626 /* We have been asked to insert the assertion on an edge. This
6627 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6628 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6629 || (gimple_code (gsi_stmt (loc->si))
6630 == GIMPLE_SWITCH));
6632 gsi_insert_on_edge (loc->e, assert_stmt);
6633 return true;
6636 /* If the stmt iterator points at the end then this is an insertion
6637 at the beginning of a block. */
6638 if (gsi_end_p (loc->si))
6640 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
6641 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
6642 return false;
6645 /* Otherwise, we can insert right after LOC->SI iff the
6646 statement must not be the last statement in the block. */
6647 stmt = gsi_stmt (loc->si);
6648 if (!stmt_ends_bb_p (stmt))
6650 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6651 return false;
6654 /* If STMT must be the last statement in BB, we can only insert new
6655 assertions on the non-abnormal edge out of BB. Note that since
6656 STMT is not control flow, there may only be one non-abnormal/eh edge
6657 out of BB. */
6658 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6659 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
6661 gsi_insert_on_edge (e, assert_stmt);
6662 return true;
6665 gcc_unreachable ();
6668 /* Qsort helper for sorting assert locations. */
6670 static int
6671 compare_assert_loc (const void *pa, const void *pb)
6673 assert_locus * const a = *(assert_locus * const *)pa;
6674 assert_locus * const b = *(assert_locus * const *)pb;
6675 if (! a->e && b->e)
6676 return 1;
6677 else if (a->e && ! b->e)
6678 return -1;
6680 /* Sort after destination index. */
6681 if (! a->e && ! b->e)
6683 else if (a->e->dest->index > b->e->dest->index)
6684 return 1;
6685 else if (a->e->dest->index < b->e->dest->index)
6686 return -1;
6688 /* Sort after comp_code. */
6689 if (a->comp_code > b->comp_code)
6690 return 1;
6691 else if (a->comp_code < b->comp_code)
6692 return -1;
6694 /* Break the tie using hashing and source/bb index. */
6695 hashval_t ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
6696 hashval_t hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
6697 if (ha == hb)
6698 return (a->e && b->e
6699 ? a->e->src->index - b->e->src->index
6700 : a->bb->index - b->bb->index);
6701 return ha - hb;
6704 /* Process all the insertions registered for every name N_i registered
6705 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6706 found in ASSERTS_FOR[i]. */
6708 static void
6709 process_assert_insertions (void)
6711 unsigned i;
6712 bitmap_iterator bi;
6713 bool update_edges_p = false;
6714 int num_asserts = 0;
6716 if (dump_file && (dump_flags & TDF_DETAILS))
6717 dump_all_asserts (dump_file);
6719 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6721 assert_locus *loc = asserts_for[i];
6722 gcc_assert (loc);
6724 auto_vec<assert_locus *, 16> asserts;
6725 for (; loc; loc = loc->next)
6726 asserts.safe_push (loc);
6727 asserts.qsort (compare_assert_loc);
6729 /* Push down common asserts to successors and remove redundant ones. */
6730 unsigned ecnt = 0;
6731 assert_locus *common = NULL;
6732 unsigned commonj = 0;
6733 for (unsigned j = 0; j < asserts.length (); ++j)
6735 loc = asserts[j];
6736 if (! loc->e)
6737 common = NULL;
6738 else if (! common
6739 || loc->e->dest != common->e->dest
6740 || loc->comp_code != common->comp_code
6741 || ! operand_equal_p (loc->val, common->val, 0)
6742 || ! operand_equal_p (loc->expr, common->expr, 0))
6744 commonj = j;
6745 common = loc;
6746 ecnt = 1;
6748 else if (loc->e == asserts[j-1]->e)
6750 /* Remove duplicate asserts. */
6751 if (commonj == j - 1)
6753 commonj = j;
6754 common = loc;
6756 free (asserts[j-1]);
6757 asserts[j-1] = NULL;
6759 else
6761 ecnt++;
6762 if (EDGE_COUNT (common->e->dest->preds) == ecnt)
6764 /* We have the same assertion on all incoming edges of a BB.
6765 Insert it at the beginning of that block. */
6766 loc->bb = loc->e->dest;
6767 loc->e = NULL;
6768 loc->si = gsi_none ();
6769 common = NULL;
6770 /* Clear asserts commoned. */
6771 for (; commonj != j; ++commonj)
6772 if (asserts[commonj])
6774 free (asserts[commonj]);
6775 asserts[commonj] = NULL;
6781 for (unsigned j = 0; j < asserts.length (); ++j)
6783 loc = asserts[j];
6784 if (! loc)
6785 continue;
6786 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6787 num_asserts++;
6788 free (loc);
6792 if (update_edges_p)
6793 gsi_commit_edge_inserts ();
6795 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6796 num_asserts);
6800 /* Traverse the flowgraph looking for conditional jumps to insert range
6801 expressions. These range expressions are meant to provide information
6802 to optimizations that need to reason in terms of value ranges. They
6803 will not be expanded into RTL. For instance, given:
6805 x = ...
6806 y = ...
6807 if (x < y)
6808 y = x - 2;
6809 else
6810 x = y + 3;
6812 this pass will transform the code into:
6814 x = ...
6815 y = ...
6816 if (x < y)
6818 x = ASSERT_EXPR <x, x < y>
6819 y = x - 2
6821 else
6823 y = ASSERT_EXPR <y, x >= y>
6824 x = y + 3
6827 The idea is that once copy and constant propagation have run, other
6828 optimizations will be able to determine what ranges of values can 'x'
6829 take in different paths of the code, simply by checking the reaching
6830 definition of 'x'. */
6832 static void
6833 insert_range_assertions (void)
6835 need_assert_for = BITMAP_ALLOC (NULL);
6836 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
6838 calculate_dominance_info (CDI_DOMINATORS);
6840 find_assert_locations ();
6841 if (!bitmap_empty_p (need_assert_for))
6843 process_assert_insertions ();
6844 update_ssa (TODO_update_ssa_no_phi);
6847 if (dump_file && (dump_flags & TDF_DETAILS))
6849 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6850 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6853 free (asserts_for);
6854 BITMAP_FREE (need_assert_for);
6857 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6858 and "struct" hacks. If VRP can determine that the
6859 array subscript is a constant, check if it is outside valid
6860 range. If the array subscript is a RANGE, warn if it is
6861 non-overlapping with valid range.
6862 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6864 static void
6865 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6867 value_range *vr = NULL;
6868 tree low_sub, up_sub;
6869 tree low_bound, up_bound, up_bound_p1;
6871 if (TREE_NO_WARNING (ref))
6872 return;
6874 low_sub = up_sub = TREE_OPERAND (ref, 1);
6875 up_bound = array_ref_up_bound (ref);
6877 /* Can not check flexible arrays. */
6878 if (!up_bound
6879 || TREE_CODE (up_bound) != INTEGER_CST)
6880 return;
6882 /* Accesses to trailing arrays via pointers may access storage
6883 beyond the types array bounds. */
6884 if (warn_array_bounds < 2
6885 && array_at_struct_end_p (ref))
6886 return;
6888 low_bound = array_ref_low_bound (ref);
6889 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6890 build_int_cst (TREE_TYPE (up_bound), 1));
6892 /* Empty array. */
6893 if (tree_int_cst_equal (low_bound, up_bound_p1))
6895 warning_at (location, OPT_Warray_bounds,
6896 "array subscript is above array bounds");
6897 TREE_NO_WARNING (ref) = 1;
6900 if (TREE_CODE (low_sub) == SSA_NAME)
6902 vr = get_value_range (low_sub);
6903 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6905 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6906 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6910 if (vr && vr->type == VR_ANTI_RANGE)
6912 if (TREE_CODE (up_sub) == INTEGER_CST
6913 && (ignore_off_by_one
6914 ? tree_int_cst_lt (up_bound, up_sub)
6915 : tree_int_cst_le (up_bound, up_sub))
6916 && TREE_CODE (low_sub) == INTEGER_CST
6917 && tree_int_cst_le (low_sub, low_bound))
6919 warning_at (location, OPT_Warray_bounds,
6920 "array subscript is outside array bounds");
6921 TREE_NO_WARNING (ref) = 1;
6924 else if (TREE_CODE (up_sub) == INTEGER_CST
6925 && (ignore_off_by_one
6926 ? !tree_int_cst_le (up_sub, up_bound_p1)
6927 : !tree_int_cst_le (up_sub, up_bound)))
6929 if (dump_file && (dump_flags & TDF_DETAILS))
6931 fprintf (dump_file, "Array bound warning for ");
6932 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6933 fprintf (dump_file, "\n");
6935 warning_at (location, OPT_Warray_bounds,
6936 "array subscript is above array bounds");
6937 TREE_NO_WARNING (ref) = 1;
6939 else if (TREE_CODE (low_sub) == INTEGER_CST
6940 && tree_int_cst_lt (low_sub, low_bound))
6942 if (dump_file && (dump_flags & TDF_DETAILS))
6944 fprintf (dump_file, "Array bound warning for ");
6945 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6946 fprintf (dump_file, "\n");
6948 warning_at (location, OPT_Warray_bounds,
6949 "array subscript is below array bounds");
6950 TREE_NO_WARNING (ref) = 1;
6954 /* Searches if the expr T, located at LOCATION computes
6955 address of an ARRAY_REF, and call check_array_ref on it. */
6957 static void
6958 search_for_addr_array (tree t, location_t location)
6960 /* Check each ARRAY_REFs in the reference chain. */
6963 if (TREE_CODE (t) == ARRAY_REF)
6964 check_array_ref (location, t, true /*ignore_off_by_one*/);
6966 t = TREE_OPERAND (t, 0);
6968 while (handled_component_p (t));
6970 if (TREE_CODE (t) == MEM_REF
6971 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6972 && !TREE_NO_WARNING (t))
6974 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6975 tree low_bound, up_bound, el_sz;
6976 offset_int idx;
6977 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6978 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6979 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6980 return;
6982 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6983 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6984 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6985 if (!low_bound
6986 || TREE_CODE (low_bound) != INTEGER_CST
6987 || !up_bound
6988 || TREE_CODE (up_bound) != INTEGER_CST
6989 || !el_sz
6990 || TREE_CODE (el_sz) != INTEGER_CST)
6991 return;
6993 idx = mem_ref_offset (t);
6994 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6995 if (idx < 0)
6997 if (dump_file && (dump_flags & TDF_DETAILS))
6999 fprintf (dump_file, "Array bound warning for ");
7000 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
7001 fprintf (dump_file, "\n");
7003 warning_at (location, OPT_Warray_bounds,
7004 "array subscript is below array bounds");
7005 TREE_NO_WARNING (t) = 1;
7007 else if (idx > (wi::to_offset (up_bound)
7008 - wi::to_offset (low_bound) + 1))
7010 if (dump_file && (dump_flags & TDF_DETAILS))
7012 fprintf (dump_file, "Array bound warning for ");
7013 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
7014 fprintf (dump_file, "\n");
7016 warning_at (location, OPT_Warray_bounds,
7017 "array subscript is above array bounds");
7018 TREE_NO_WARNING (t) = 1;
7023 /* walk_tree() callback that checks if *TP is
7024 an ARRAY_REF inside an ADDR_EXPR (in which an array
7025 subscript one outside the valid range is allowed). Call
7026 check_array_ref for each ARRAY_REF found. The location is
7027 passed in DATA. */
7029 static tree
7030 check_array_bounds (tree *tp, int *walk_subtree, void *data)
7032 tree t = *tp;
7033 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
7034 location_t location;
7036 if (EXPR_HAS_LOCATION (t))
7037 location = EXPR_LOCATION (t);
7038 else
7040 location_t *locp = (location_t *) wi->info;
7041 location = *locp;
7044 *walk_subtree = TRUE;
7046 if (TREE_CODE (t) == ARRAY_REF)
7047 check_array_ref (location, t, false /*ignore_off_by_one*/);
7049 else if (TREE_CODE (t) == ADDR_EXPR)
7051 search_for_addr_array (t, location);
7052 *walk_subtree = FALSE;
7055 return NULL_TREE;
7058 /* Walk over all statements of all reachable BBs and call check_array_bounds
7059 on them. */
7061 static void
7062 check_all_array_refs (void)
7064 basic_block bb;
7065 gimple_stmt_iterator si;
7067 FOR_EACH_BB_FN (bb, cfun)
7069 edge_iterator ei;
7070 edge e;
7071 bool executable = false;
7073 /* Skip blocks that were found to be unreachable. */
7074 FOR_EACH_EDGE (e, ei, bb->preds)
7075 executable |= !!(e->flags & EDGE_EXECUTABLE);
7076 if (!executable)
7077 continue;
7079 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7081 gimple *stmt = gsi_stmt (si);
7082 struct walk_stmt_info wi;
7083 if (!gimple_has_location (stmt)
7084 || is_gimple_debug (stmt))
7085 continue;
7087 memset (&wi, 0, sizeof (wi));
7089 location_t loc = gimple_location (stmt);
7090 wi.info = &loc;
7092 walk_gimple_op (gsi_stmt (si),
7093 check_array_bounds,
7094 &wi);
7099 /* Return true if all imm uses of VAR are either in STMT, or
7100 feed (optionally through a chain of single imm uses) GIMPLE_COND
7101 in basic block COND_BB. */
7103 static bool
7104 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
7106 use_operand_p use_p, use2_p;
7107 imm_use_iterator iter;
7109 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
7110 if (USE_STMT (use_p) != stmt)
7112 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
7113 if (is_gimple_debug (use_stmt))
7114 continue;
7115 while (is_gimple_assign (use_stmt)
7116 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
7117 && single_imm_use (gimple_assign_lhs (use_stmt),
7118 &use2_p, &use_stmt2))
7119 use_stmt = use_stmt2;
7120 if (gimple_code (use_stmt) != GIMPLE_COND
7121 || gimple_bb (use_stmt) != cond_bb)
7122 return false;
7124 return true;
7127 /* Handle
7128 _4 = x_3 & 31;
7129 if (_4 != 0)
7130 goto <bb 6>;
7131 else
7132 goto <bb 7>;
7133 <bb 6>:
7134 __builtin_unreachable ();
7135 <bb 7>:
7136 x_5 = ASSERT_EXPR <x_3, ...>;
7137 If x_3 has no other immediate uses (checked by caller),
7138 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
7139 from the non-zero bitmask. */
7141 static void
7142 maybe_set_nonzero_bits (basic_block bb, tree var)
7144 edge e = single_pred_edge (bb);
7145 basic_block cond_bb = e->src;
7146 gimple *stmt = last_stmt (cond_bb);
7147 tree cst;
7149 if (stmt == NULL
7150 || gimple_code (stmt) != GIMPLE_COND
7151 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
7152 ? EQ_EXPR : NE_EXPR)
7153 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
7154 || !integer_zerop (gimple_cond_rhs (stmt)))
7155 return;
7157 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
7158 if (!is_gimple_assign (stmt)
7159 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
7160 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
7161 return;
7162 if (gimple_assign_rhs1 (stmt) != var)
7164 gimple *stmt2;
7166 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
7167 return;
7168 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
7169 if (!gimple_assign_cast_p (stmt2)
7170 || gimple_assign_rhs1 (stmt2) != var
7171 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
7172 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
7173 != TYPE_PRECISION (TREE_TYPE (var))))
7174 return;
7176 cst = gimple_assign_rhs2 (stmt);
7177 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
7180 /* Convert range assertion expressions into the implied copies and
7181 copy propagate away the copies. Doing the trivial copy propagation
7182 here avoids the need to run the full copy propagation pass after
7183 VRP.
7185 FIXME, this will eventually lead to copy propagation removing the
7186 names that had useful range information attached to them. For
7187 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
7188 then N_i will have the range [3, +INF].
7190 However, by converting the assertion into the implied copy
7191 operation N_i = N_j, we will then copy-propagate N_j into the uses
7192 of N_i and lose the range information. We may want to hold on to
7193 ASSERT_EXPRs a little while longer as the ranges could be used in
7194 things like jump threading.
7196 The problem with keeping ASSERT_EXPRs around is that passes after
7197 VRP need to handle them appropriately.
7199 Another approach would be to make the range information a first
7200 class property of the SSA_NAME so that it can be queried from
7201 any pass. This is made somewhat more complex by the need for
7202 multiple ranges to be associated with one SSA_NAME. */
7204 static void
7205 remove_range_assertions (void)
7207 basic_block bb;
7208 gimple_stmt_iterator si;
7209 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
7210 a basic block preceeded by GIMPLE_COND branching to it and
7211 __builtin_trap, -1 if not yet checked, 0 otherwise. */
7212 int is_unreachable;
7214 /* Note that the BSI iterator bump happens at the bottom of the
7215 loop and no bump is necessary if we're removing the statement
7216 referenced by the current BSI. */
7217 FOR_EACH_BB_FN (bb, cfun)
7218 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
7220 gimple *stmt = gsi_stmt (si);
7222 if (is_gimple_assign (stmt)
7223 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
7225 tree lhs = gimple_assign_lhs (stmt);
7226 tree rhs = gimple_assign_rhs1 (stmt);
7227 tree var;
7229 var = ASSERT_EXPR_VAR (rhs);
7231 if (TREE_CODE (var) == SSA_NAME
7232 && !POINTER_TYPE_P (TREE_TYPE (lhs))
7233 && SSA_NAME_RANGE_INFO (lhs))
7235 if (is_unreachable == -1)
7237 is_unreachable = 0;
7238 if (single_pred_p (bb)
7239 && assert_unreachable_fallthru_edge_p
7240 (single_pred_edge (bb)))
7241 is_unreachable = 1;
7243 /* Handle
7244 if (x_7 >= 10 && x_7 < 20)
7245 __builtin_unreachable ();
7246 x_8 = ASSERT_EXPR <x_7, ...>;
7247 if the only uses of x_7 are in the ASSERT_EXPR and
7248 in the condition. In that case, we can copy the
7249 range info from x_8 computed in this pass also
7250 for x_7. */
7251 if (is_unreachable
7252 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
7253 single_pred (bb)))
7255 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
7256 SSA_NAME_RANGE_INFO (lhs)->get_min (),
7257 SSA_NAME_RANGE_INFO (lhs)->get_max ());
7258 maybe_set_nonzero_bits (bb, var);
7262 /* Propagate the RHS into every use of the LHS. For SSA names
7263 also propagate abnormals as it merely restores the original
7264 IL in this case (an replace_uses_by would assert). */
7265 if (TREE_CODE (var) == SSA_NAME)
7267 imm_use_iterator iter;
7268 use_operand_p use_p;
7269 gimple *use_stmt;
7270 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7271 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7272 SET_USE (use_p, var);
7274 else
7275 replace_uses_by (lhs, var);
7277 /* And finally, remove the copy, it is not needed. */
7278 gsi_remove (&si, true);
7279 release_defs (stmt);
7281 else
7283 if (!is_gimple_debug (gsi_stmt (si)))
7284 is_unreachable = 0;
7285 gsi_next (&si);
7291 /* Return true if STMT is interesting for VRP. */
7293 static bool
7294 stmt_interesting_for_vrp (gimple *stmt)
7296 if (gimple_code (stmt) == GIMPLE_PHI)
7298 tree res = gimple_phi_result (stmt);
7299 return (!virtual_operand_p (res)
7300 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
7301 || POINTER_TYPE_P (TREE_TYPE (res))));
7303 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7305 tree lhs = gimple_get_lhs (stmt);
7307 /* In general, assignments with virtual operands are not useful
7308 for deriving ranges, with the obvious exception of calls to
7309 builtin functions. */
7310 if (lhs && TREE_CODE (lhs) == SSA_NAME
7311 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7312 || POINTER_TYPE_P (TREE_TYPE (lhs)))
7313 && (is_gimple_call (stmt)
7314 || !gimple_vuse (stmt)))
7315 return true;
7316 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7317 switch (gimple_call_internal_fn (stmt))
7319 case IFN_ADD_OVERFLOW:
7320 case IFN_SUB_OVERFLOW:
7321 case IFN_MUL_OVERFLOW:
7322 case IFN_ATOMIC_COMPARE_EXCHANGE:
7323 /* These internal calls return _Complex integer type,
7324 but are interesting to VRP nevertheless. */
7325 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7326 return true;
7327 break;
7328 default:
7329 break;
7332 else if (gimple_code (stmt) == GIMPLE_COND
7333 || gimple_code (stmt) == GIMPLE_SWITCH)
7334 return true;
7336 return false;
7339 /* Initialize VRP lattice. */
7341 static void
7342 vrp_initialize_lattice ()
7344 values_propagated = false;
7345 num_vr_values = num_ssa_names;
7346 vr_value = XCNEWVEC (value_range *, num_vr_values);
7347 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
7348 bitmap_obstack_initialize (&vrp_equiv_obstack);
7351 /* Initialization required by ssa_propagate engine. */
7353 static void
7354 vrp_initialize ()
7356 basic_block bb;
7358 FOR_EACH_BB_FN (bb, cfun)
7360 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7361 gsi_next (&si))
7363 gphi *phi = si.phi ();
7364 if (!stmt_interesting_for_vrp (phi))
7366 tree lhs = PHI_RESULT (phi);
7367 set_value_range_to_varying (get_value_range (lhs));
7368 prop_set_simulate_again (phi, false);
7370 else
7371 prop_set_simulate_again (phi, true);
7374 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
7375 gsi_next (&si))
7377 gimple *stmt = gsi_stmt (si);
7379 /* If the statement is a control insn, then we do not
7380 want to avoid simulating the statement once. Failure
7381 to do so means that those edges will never get added. */
7382 if (stmt_ends_bb_p (stmt))
7383 prop_set_simulate_again (stmt, true);
7384 else if (!stmt_interesting_for_vrp (stmt))
7386 set_defs_to_varying (stmt);
7387 prop_set_simulate_again (stmt, false);
7389 else
7390 prop_set_simulate_again (stmt, true);
7395 /* Return the singleton value-range for NAME or NAME. */
7397 static inline tree
7398 vrp_valueize (tree name)
7400 if (TREE_CODE (name) == SSA_NAME)
7402 value_range *vr = get_value_range (name);
7403 if (vr->type == VR_RANGE
7404 && (TREE_CODE (vr->min) == SSA_NAME
7405 || is_gimple_min_invariant (vr->min))
7406 && vrp_operand_equal_p (vr->min, vr->max))
7407 return vr->min;
7409 return name;
7412 /* Return the singleton value-range for NAME if that is a constant
7413 but signal to not follow SSA edges. */
7415 static inline tree
7416 vrp_valueize_1 (tree name)
7418 if (TREE_CODE (name) == SSA_NAME)
7420 /* If the definition may be simulated again we cannot follow
7421 this SSA edge as the SSA propagator does not necessarily
7422 re-visit the use. */
7423 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
7424 if (!gimple_nop_p (def_stmt)
7425 && prop_simulate_again_p (def_stmt))
7426 return NULL_TREE;
7427 value_range *vr = get_value_range (name);
7428 if (range_int_cst_singleton_p (vr))
7429 return vr->min;
7431 return name;
7434 /* Visit assignment STMT. If it produces an interesting range, record
7435 the range in VR and set LHS to OUTPUT_P. */
7437 static void
7438 vrp_visit_assignment_or_call (gimple *stmt, tree *output_p, value_range *vr)
7440 tree lhs;
7441 enum gimple_code code = gimple_code (stmt);
7442 lhs = gimple_get_lhs (stmt);
7443 *output_p = NULL_TREE;
7445 /* We only keep track of ranges in integral and pointer types. */
7446 if (TREE_CODE (lhs) == SSA_NAME
7447 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7448 /* It is valid to have NULL MIN/MAX values on a type. See
7449 build_range_type. */
7450 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7451 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7452 || POINTER_TYPE_P (TREE_TYPE (lhs))))
7454 *output_p = lhs;
7456 /* Try folding the statement to a constant first. */
7457 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7458 vrp_valueize_1);
7459 if (tem)
7461 if (TREE_CODE (tem) == SSA_NAME
7462 && (SSA_NAME_IS_DEFAULT_DEF (tem)
7463 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem))))
7465 extract_range_from_ssa_name (vr, tem);
7466 return;
7468 else if (is_gimple_min_invariant (tem))
7470 set_value_range_to_value (vr, tem, NULL);
7471 return;
7474 /* Then dispatch to value-range extracting functions. */
7475 if (code == GIMPLE_CALL)
7476 extract_range_basic (vr, stmt);
7477 else
7478 extract_range_from_assignment (vr, as_a <gassign *> (stmt));
7482 /* Helper that gets the value range of the SSA_NAME with version I
7483 or a symbolic range containing the SSA_NAME only if the value range
7484 is varying or undefined. */
7486 static inline value_range
7487 get_vr_for_comparison (int i)
7489 value_range vr = *get_value_range (ssa_name (i));
7491 /* If name N_i does not have a valid range, use N_i as its own
7492 range. This allows us to compare against names that may
7493 have N_i in their ranges. */
7494 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7496 vr.type = VR_RANGE;
7497 vr.min = ssa_name (i);
7498 vr.max = ssa_name (i);
7501 return vr;
7504 /* Compare all the value ranges for names equivalent to VAR with VAL
7505 using comparison code COMP. Return the same value returned by
7506 compare_range_with_value, including the setting of
7507 *STRICT_OVERFLOW_P. */
7509 static tree
7510 compare_name_with_value (enum tree_code comp, tree var, tree val,
7511 bool *strict_overflow_p, bool use_equiv_p)
7513 bitmap_iterator bi;
7514 unsigned i;
7515 bitmap e;
7516 tree retval, t;
7517 int used_strict_overflow;
7518 bool sop;
7519 value_range equiv_vr;
7521 /* Get the set of equivalences for VAR. */
7522 e = get_value_range (var)->equiv;
7524 /* Start at -1. Set it to 0 if we do a comparison without relying
7525 on overflow, or 1 if all comparisons rely on overflow. */
7526 used_strict_overflow = -1;
7528 /* Compare vars' value range with val. */
7529 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7530 sop = false;
7531 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7532 if (retval)
7533 used_strict_overflow = sop ? 1 : 0;
7535 /* If the equiv set is empty we have done all work we need to do. */
7536 if (e == NULL)
7538 if (retval
7539 && used_strict_overflow > 0)
7540 *strict_overflow_p = true;
7541 return retval;
7544 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7546 tree name = ssa_name (i);
7547 if (! name)
7548 continue;
7550 if (! use_equiv_p
7551 && ! SSA_NAME_IS_DEFAULT_DEF (name)
7552 && prop_simulate_again_p (SSA_NAME_DEF_STMT (name)))
7553 continue;
7555 equiv_vr = get_vr_for_comparison (i);
7556 sop = false;
7557 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7558 if (t)
7560 /* If we get different answers from different members
7561 of the equivalence set this check must be in a dead
7562 code region. Folding it to a trap representation
7563 would be correct here. For now just return don't-know. */
7564 if (retval != NULL
7565 && t != retval)
7567 retval = NULL_TREE;
7568 break;
7570 retval = t;
7572 if (!sop)
7573 used_strict_overflow = 0;
7574 else if (used_strict_overflow < 0)
7575 used_strict_overflow = 1;
7579 if (retval
7580 && used_strict_overflow > 0)
7581 *strict_overflow_p = true;
7583 return retval;
7587 /* Given a comparison code COMP and names N1 and N2, compare all the
7588 ranges equivalent to N1 against all the ranges equivalent to N2
7589 to determine the value of N1 COMP N2. Return the same value
7590 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7591 whether we relied on an overflow infinity in the comparison. */
7594 static tree
7595 compare_names (enum tree_code comp, tree n1, tree n2,
7596 bool *strict_overflow_p)
7598 tree t, retval;
7599 bitmap e1, e2;
7600 bitmap_iterator bi1, bi2;
7601 unsigned i1, i2;
7602 int used_strict_overflow;
7603 static bitmap_obstack *s_obstack = NULL;
7604 static bitmap s_e1 = NULL, s_e2 = NULL;
7606 /* Compare the ranges of every name equivalent to N1 against the
7607 ranges of every name equivalent to N2. */
7608 e1 = get_value_range (n1)->equiv;
7609 e2 = get_value_range (n2)->equiv;
7611 /* Use the fake bitmaps if e1 or e2 are not available. */
7612 if (s_obstack == NULL)
7614 s_obstack = XNEW (bitmap_obstack);
7615 bitmap_obstack_initialize (s_obstack);
7616 s_e1 = BITMAP_ALLOC (s_obstack);
7617 s_e2 = BITMAP_ALLOC (s_obstack);
7619 if (e1 == NULL)
7620 e1 = s_e1;
7621 if (e2 == NULL)
7622 e2 = s_e2;
7624 /* Add N1 and N2 to their own set of equivalences to avoid
7625 duplicating the body of the loop just to check N1 and N2
7626 ranges. */
7627 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7628 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7630 /* If the equivalence sets have a common intersection, then the two
7631 names can be compared without checking their ranges. */
7632 if (bitmap_intersect_p (e1, e2))
7634 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7635 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7637 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7638 ? boolean_true_node
7639 : boolean_false_node;
7642 /* Start at -1. Set it to 0 if we do a comparison without relying
7643 on overflow, or 1 if all comparisons rely on overflow. */
7644 used_strict_overflow = -1;
7646 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7647 N2 to their own set of equivalences to avoid duplicating the body
7648 of the loop just to check N1 and N2 ranges. */
7649 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7651 if (! ssa_name (i1))
7652 continue;
7654 value_range vr1 = get_vr_for_comparison (i1);
7656 t = retval = NULL_TREE;
7657 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7659 if (! ssa_name (i2))
7660 continue;
7662 bool sop = false;
7664 value_range vr2 = get_vr_for_comparison (i2);
7666 t = compare_ranges (comp, &vr1, &vr2, &sop);
7667 if (t)
7669 /* If we get different answers from different members
7670 of the equivalence set this check must be in a dead
7671 code region. Folding it to a trap representation
7672 would be correct here. For now just return don't-know. */
7673 if (retval != NULL
7674 && t != retval)
7676 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7677 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7678 return NULL_TREE;
7680 retval = t;
7682 if (!sop)
7683 used_strict_overflow = 0;
7684 else if (used_strict_overflow < 0)
7685 used_strict_overflow = 1;
7689 if (retval)
7691 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7692 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7693 if (used_strict_overflow > 0)
7694 *strict_overflow_p = true;
7695 return retval;
7699 /* None of the equivalent ranges are useful in computing this
7700 comparison. */
7701 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7702 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7703 return NULL_TREE;
7706 /* Helper function for vrp_evaluate_conditional_warnv & other
7707 optimizers. */
7709 static tree
7710 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7711 tree op0, tree op1,
7712 bool * strict_overflow_p)
7714 value_range *vr0, *vr1;
7716 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7717 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7719 tree res = NULL_TREE;
7720 if (vr0 && vr1)
7721 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7722 if (!res && vr0)
7723 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7724 if (!res && vr1)
7725 res = (compare_range_with_value
7726 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7727 return res;
7730 /* Helper function for vrp_evaluate_conditional_warnv. */
7732 static tree
7733 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7734 tree op1, bool use_equiv_p,
7735 bool *strict_overflow_p, bool *only_ranges)
7737 tree ret;
7738 if (only_ranges)
7739 *only_ranges = true;
7741 /* We only deal with integral and pointer types. */
7742 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7743 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7744 return NULL_TREE;
7746 /* If OP0 CODE OP1 is an overflow comparison, if it can be expressed
7747 as a simple equality test, then prefer that over its current form
7748 for evaluation.
7750 An overflow test which collapses to an equality test can always be
7751 expressed as a comparison of one argument against zero. Overflow
7752 occurs when the chosen argument is zero and does not occur if the
7753 chosen argument is not zero. */
7754 tree x;
7755 if (overflow_comparison_p (code, op0, op1, use_equiv_p, &x))
7757 wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED);
7758 /* B = A - 1; if (A < B) -> B = A - 1; if (A == 0)
7759 B = A - 1; if (A > B) -> B = A - 1; if (A != 0)
7760 B = A + 1; if (B < A) -> B = A + 1; if (B == 0)
7761 B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */
7762 if (integer_zerop (x))
7764 op1 = x;
7765 code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR;
7767 /* B = A + 1; if (A > B) -> B = A + 1; if (B == 0)
7768 B = A + 1; if (A < B) -> B = A + 1; if (B != 0)
7769 B = A - 1; if (B > A) -> B = A - 1; if (A == 0)
7770 B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */
7771 else if (wi::eq_p (x, max - 1))
7773 op0 = op1;
7774 op1 = wide_int_to_tree (TREE_TYPE (op0), 0);
7775 code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR;
7779 if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7780 (code, op0, op1, strict_overflow_p)))
7781 return ret;
7782 if (only_ranges)
7783 *only_ranges = false;
7784 /* Do not use compare_names during propagation, it's quadratic. */
7785 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME
7786 && use_equiv_p)
7787 return compare_names (code, op0, op1, strict_overflow_p);
7788 else if (TREE_CODE (op0) == SSA_NAME)
7789 return compare_name_with_value (code, op0, op1,
7790 strict_overflow_p, use_equiv_p);
7791 else if (TREE_CODE (op1) == SSA_NAME)
7792 return compare_name_with_value (swap_tree_comparison (code), op1, op0,
7793 strict_overflow_p, use_equiv_p);
7794 return NULL_TREE;
7797 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7798 information. Return NULL if the conditional can not be evaluated.
7799 The ranges of all the names equivalent with the operands in COND
7800 will be used when trying to compute the value. If the result is
7801 based on undefined signed overflow, issue a warning if
7802 appropriate. */
7804 static tree
7805 vrp_evaluate_conditional (tree_code code, tree op0, tree op1, gimple *stmt)
7807 bool sop;
7808 tree ret;
7809 bool only_ranges;
7811 /* Some passes and foldings leak constants with overflow flag set
7812 into the IL. Avoid doing wrong things with these and bail out. */
7813 if ((TREE_CODE (op0) == INTEGER_CST
7814 && TREE_OVERFLOW (op0))
7815 || (TREE_CODE (op1) == INTEGER_CST
7816 && TREE_OVERFLOW (op1)))
7817 return NULL_TREE;
7819 sop = false;
7820 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7821 &only_ranges);
7823 if (ret && sop)
7825 enum warn_strict_overflow_code wc;
7826 const char* warnmsg;
7828 if (is_gimple_min_invariant (ret))
7830 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7831 warnmsg = G_("assuming signed overflow does not occur when "
7832 "simplifying conditional to constant");
7834 else
7836 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7837 warnmsg = G_("assuming signed overflow does not occur when "
7838 "simplifying conditional");
7841 if (issue_strict_overflow_warning (wc))
7843 location_t location;
7845 if (!gimple_has_location (stmt))
7846 location = input_location;
7847 else
7848 location = gimple_location (stmt);
7849 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7853 if (warn_type_limits
7854 && ret && only_ranges
7855 && TREE_CODE_CLASS (code) == tcc_comparison
7856 && TREE_CODE (op0) == SSA_NAME)
7858 /* If the comparison is being folded and the operand on the LHS
7859 is being compared against a constant value that is outside of
7860 the natural range of OP0's type, then the predicate will
7861 always fold regardless of the value of OP0. If -Wtype-limits
7862 was specified, emit a warning. */
7863 tree type = TREE_TYPE (op0);
7864 value_range *vr0 = get_value_range (op0);
7866 if (vr0->type == VR_RANGE
7867 && INTEGRAL_TYPE_P (type)
7868 && vrp_val_is_min (vr0->min)
7869 && vrp_val_is_max (vr0->max)
7870 && is_gimple_min_invariant (op1))
7872 location_t location;
7874 if (!gimple_has_location (stmt))
7875 location = input_location;
7876 else
7877 location = gimple_location (stmt);
7879 warning_at (location, OPT_Wtype_limits,
7880 integer_zerop (ret)
7881 ? G_("comparison always false "
7882 "due to limited range of data type")
7883 : G_("comparison always true "
7884 "due to limited range of data type"));
7888 return ret;
7892 /* Visit conditional statement STMT. If we can determine which edge
7893 will be taken out of STMT's basic block, record it in
7894 *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */
7896 static void
7897 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7899 tree val;
7900 bool sop;
7902 *taken_edge_p = NULL;
7904 if (dump_file && (dump_flags & TDF_DETAILS))
7906 tree use;
7907 ssa_op_iter i;
7909 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7910 print_gimple_stmt (dump_file, stmt, 0, 0);
7911 fprintf (dump_file, "\nWith known ranges\n");
7913 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7915 fprintf (dump_file, "\t");
7916 print_generic_expr (dump_file, use, 0);
7917 fprintf (dump_file, ": ");
7918 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7921 fprintf (dump_file, "\n");
7924 /* Compute the value of the predicate COND by checking the known
7925 ranges of each of its operands.
7927 Note that we cannot evaluate all the equivalent ranges here
7928 because those ranges may not yet be final and with the current
7929 propagation strategy, we cannot determine when the value ranges
7930 of the names in the equivalence set have changed.
7932 For instance, given the following code fragment
7934 i_5 = PHI <8, i_13>
7936 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7937 if (i_14 == 1)
7940 Assume that on the first visit to i_14, i_5 has the temporary
7941 range [8, 8] because the second argument to the PHI function is
7942 not yet executable. We derive the range ~[0, 0] for i_14 and the
7943 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7944 the first time, since i_14 is equivalent to the range [8, 8], we
7945 determine that the predicate is always false.
7947 On the next round of propagation, i_13 is determined to be
7948 VARYING, which causes i_5 to drop down to VARYING. So, another
7949 visit to i_14 is scheduled. In this second visit, we compute the
7950 exact same range and equivalence set for i_14, namely ~[0, 0] and
7951 { i_5 }. But we did not have the previous range for i_5
7952 registered, so vrp_visit_assignment thinks that the range for
7953 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7954 is not visited again, which stops propagation from visiting
7955 statements in the THEN clause of that if().
7957 To properly fix this we would need to keep the previous range
7958 value for the names in the equivalence set. This way we would've
7959 discovered that from one visit to the other i_5 changed from
7960 range [8, 8] to VR_VARYING.
7962 However, fixing this apparent limitation may not be worth the
7963 additional checking. Testing on several code bases (GCC, DLV,
7964 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7965 4 more predicates folded in SPEC. */
7966 sop = false;
7968 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7969 gimple_cond_lhs (stmt),
7970 gimple_cond_rhs (stmt),
7971 false, &sop, NULL);
7972 if (val)
7974 if (!sop)
7975 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7976 else
7978 if (dump_file && (dump_flags & TDF_DETAILS))
7979 fprintf (dump_file,
7980 "\nIgnoring predicate evaluation because "
7981 "it assumes that signed overflow is undefined");
7982 val = NULL_TREE;
7986 if (dump_file && (dump_flags & TDF_DETAILS))
7988 fprintf (dump_file, "\nPredicate evaluates to: ");
7989 if (val == NULL_TREE)
7990 fprintf (dump_file, "DON'T KNOW\n");
7991 else
7992 print_generic_stmt (dump_file, val, 0);
7996 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7997 that includes the value VAL. The search is restricted to the range
7998 [START_IDX, n - 1] where n is the size of VEC.
8000 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
8001 returned.
8003 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
8004 it is placed in IDX and false is returned.
8006 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
8007 returned. */
8009 static bool
8010 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
8012 size_t n = gimple_switch_num_labels (stmt);
8013 size_t low, high;
8015 /* Find case label for minimum of the value range or the next one.
8016 At each iteration we are searching in [low, high - 1]. */
8018 for (low = start_idx, high = n; high != low; )
8020 tree t;
8021 int cmp;
8022 /* Note that i != high, so we never ask for n. */
8023 size_t i = (high + low) / 2;
8024 t = gimple_switch_label (stmt, i);
8026 /* Cache the result of comparing CASE_LOW and val. */
8027 cmp = tree_int_cst_compare (CASE_LOW (t), val);
8029 if (cmp == 0)
8031 /* Ranges cannot be empty. */
8032 *idx = i;
8033 return true;
8035 else if (cmp > 0)
8036 high = i;
8037 else
8039 low = i + 1;
8040 if (CASE_HIGH (t) != NULL
8041 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
8043 *idx = i;
8044 return true;
8049 *idx = high;
8050 return false;
8053 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
8054 for values between MIN and MAX. The first index is placed in MIN_IDX. The
8055 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
8056 then MAX_IDX < MIN_IDX.
8057 Returns true if the default label is not needed. */
8059 static bool
8060 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
8061 size_t *max_idx)
8063 size_t i, j;
8064 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
8065 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
8067 if (i == j
8068 && min_take_default
8069 && max_take_default)
8071 /* Only the default case label reached.
8072 Return an empty range. */
8073 *min_idx = 1;
8074 *max_idx = 0;
8075 return false;
8077 else
8079 bool take_default = min_take_default || max_take_default;
8080 tree low, high;
8081 size_t k;
8083 if (max_take_default)
8084 j--;
8086 /* If the case label range is continuous, we do not need
8087 the default case label. Verify that. */
8088 high = CASE_LOW (gimple_switch_label (stmt, i));
8089 if (CASE_HIGH (gimple_switch_label (stmt, i)))
8090 high = CASE_HIGH (gimple_switch_label (stmt, i));
8091 for (k = i + 1; k <= j; ++k)
8093 low = CASE_LOW (gimple_switch_label (stmt, k));
8094 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
8096 take_default = true;
8097 break;
8099 high = low;
8100 if (CASE_HIGH (gimple_switch_label (stmt, k)))
8101 high = CASE_HIGH (gimple_switch_label (stmt, k));
8104 *min_idx = i;
8105 *max_idx = j;
8106 return !take_default;
8110 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
8111 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
8112 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
8113 Returns true if the default label is not needed. */
8115 static bool
8116 find_case_label_ranges (gswitch *stmt, value_range *vr, size_t *min_idx1,
8117 size_t *max_idx1, size_t *min_idx2,
8118 size_t *max_idx2)
8120 size_t i, j, k, l;
8121 unsigned int n = gimple_switch_num_labels (stmt);
8122 bool take_default;
8123 tree case_low, case_high;
8124 tree min = vr->min, max = vr->max;
8126 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
8128 take_default = !find_case_label_range (stmt, min, max, &i, &j);
8130 /* Set second range to emtpy. */
8131 *min_idx2 = 1;
8132 *max_idx2 = 0;
8134 if (vr->type == VR_RANGE)
8136 *min_idx1 = i;
8137 *max_idx1 = j;
8138 return !take_default;
8141 /* Set first range to all case labels. */
8142 *min_idx1 = 1;
8143 *max_idx1 = n - 1;
8145 if (i > j)
8146 return false;
8148 /* Make sure all the values of case labels [i , j] are contained in
8149 range [MIN, MAX]. */
8150 case_low = CASE_LOW (gimple_switch_label (stmt, i));
8151 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
8152 if (tree_int_cst_compare (case_low, min) < 0)
8153 i += 1;
8154 if (case_high != NULL_TREE
8155 && tree_int_cst_compare (max, case_high) < 0)
8156 j -= 1;
8158 if (i > j)
8159 return false;
8161 /* If the range spans case labels [i, j], the corresponding anti-range spans
8162 the labels [1, i - 1] and [j + 1, n - 1]. */
8163 k = j + 1;
8164 l = n - 1;
8165 if (k > l)
8167 k = 1;
8168 l = 0;
8171 j = i - 1;
8172 i = 1;
8173 if (i > j)
8175 i = k;
8176 j = l;
8177 k = 1;
8178 l = 0;
8181 *min_idx1 = i;
8182 *max_idx1 = j;
8183 *min_idx2 = k;
8184 *max_idx2 = l;
8185 return false;
8188 /* Visit switch statement STMT. If we can determine which edge
8189 will be taken out of STMT's basic block, record it in
8190 *TAKEN_EDGE_P. Otherwise, *TAKEN_EDGE_P set to NULL. */
8192 static void
8193 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
8195 tree op, val;
8196 value_range *vr;
8197 size_t i = 0, j = 0, k, l;
8198 bool take_default;
8200 *taken_edge_p = NULL;
8201 op = gimple_switch_index (stmt);
8202 if (TREE_CODE (op) != SSA_NAME)
8203 return;
8205 vr = get_value_range (op);
8206 if (dump_file && (dump_flags & TDF_DETAILS))
8208 fprintf (dump_file, "\nVisiting switch expression with operand ");
8209 print_generic_expr (dump_file, op, 0);
8210 fprintf (dump_file, " with known range ");
8211 dump_value_range (dump_file, vr);
8212 fprintf (dump_file, "\n");
8215 if ((vr->type != VR_RANGE
8216 && vr->type != VR_ANTI_RANGE)
8217 || symbolic_range_p (vr))
8218 return;
8220 /* Find the single edge that is taken from the switch expression. */
8221 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
8223 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
8224 label */
8225 if (j < i)
8227 gcc_assert (take_default);
8228 val = gimple_switch_default_label (stmt);
8230 else
8232 /* Check if labels with index i to j and maybe the default label
8233 are all reaching the same label. */
8235 val = gimple_switch_label (stmt, i);
8236 if (take_default
8237 && CASE_LABEL (gimple_switch_default_label (stmt))
8238 != CASE_LABEL (val))
8240 if (dump_file && (dump_flags & TDF_DETAILS))
8241 fprintf (dump_file, " not a single destination for this "
8242 "range\n");
8243 return;
8245 for (++i; i <= j; ++i)
8247 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
8249 if (dump_file && (dump_flags & TDF_DETAILS))
8250 fprintf (dump_file, " not a single destination for this "
8251 "range\n");
8252 return;
8255 for (; k <= l; ++k)
8257 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
8259 if (dump_file && (dump_flags & TDF_DETAILS))
8260 fprintf (dump_file, " not a single destination for this "
8261 "range\n");
8262 return;
8267 *taken_edge_p = find_edge (gimple_bb (stmt),
8268 label_to_block (CASE_LABEL (val)));
8270 if (dump_file && (dump_flags & TDF_DETAILS))
8272 fprintf (dump_file, " will take edge to ");
8273 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
8278 /* Evaluate statement STMT. If the statement produces a useful range,
8279 set VR and corepsponding OUTPUT_P.
8281 If STMT is a conditional branch and we can determine its truth
8282 value, the taken edge is recorded in *TAKEN_EDGE_P. */
8284 static void
8285 extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
8286 tree *output_p, value_range *vr)
8289 if (dump_file && (dump_flags & TDF_DETAILS))
8291 fprintf (dump_file, "\nVisiting statement:\n");
8292 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
8295 if (!stmt_interesting_for_vrp (stmt))
8296 gcc_assert (stmt_ends_bb_p (stmt));
8297 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
8298 vrp_visit_assignment_or_call (stmt, output_p, vr);
8299 else if (gimple_code (stmt) == GIMPLE_COND)
8300 vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
8301 else if (gimple_code (stmt) == GIMPLE_SWITCH)
8302 vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
8305 /* Evaluate statement STMT. If the statement produces a useful range,
8306 return SSA_PROP_INTERESTING and record the SSA name with the
8307 interesting range into *OUTPUT_P.
8309 If STMT is a conditional branch and we can determine its truth
8310 value, the taken edge is recorded in *TAKEN_EDGE_P.
8312 If STMT produces a varying value, return SSA_PROP_VARYING. */
8314 static enum ssa_prop_result
8315 vrp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
8317 value_range vr = VR_INITIALIZER;
8318 tree lhs = gimple_get_lhs (stmt);
8319 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
8321 if (*output_p)
8323 if (update_value_range (*output_p, &vr))
8325 if (dump_file && (dump_flags & TDF_DETAILS))
8327 fprintf (dump_file, "Found new range for ");
8328 print_generic_expr (dump_file, *output_p, 0);
8329 fprintf (dump_file, ": ");
8330 dump_value_range (dump_file, &vr);
8331 fprintf (dump_file, "\n");
8334 if (vr.type == VR_VARYING)
8335 return SSA_PROP_VARYING;
8337 return SSA_PROP_INTERESTING;
8339 return SSA_PROP_NOT_INTERESTING;
8342 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
8343 switch (gimple_call_internal_fn (stmt))
8345 case IFN_ADD_OVERFLOW:
8346 case IFN_SUB_OVERFLOW:
8347 case IFN_MUL_OVERFLOW:
8348 case IFN_ATOMIC_COMPARE_EXCHANGE:
8349 /* These internal calls return _Complex integer type,
8350 which VRP does not track, but the immediate uses
8351 thereof might be interesting. */
8352 if (lhs && TREE_CODE (lhs) == SSA_NAME)
8354 imm_use_iterator iter;
8355 use_operand_p use_p;
8356 enum ssa_prop_result res = SSA_PROP_VARYING;
8358 set_value_range_to_varying (get_value_range (lhs));
8360 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
8362 gimple *use_stmt = USE_STMT (use_p);
8363 if (!is_gimple_assign (use_stmt))
8364 continue;
8365 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
8366 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
8367 continue;
8368 tree rhs1 = gimple_assign_rhs1 (use_stmt);
8369 tree use_lhs = gimple_assign_lhs (use_stmt);
8370 if (TREE_CODE (rhs1) != rhs_code
8371 || TREE_OPERAND (rhs1, 0) != lhs
8372 || TREE_CODE (use_lhs) != SSA_NAME
8373 || !stmt_interesting_for_vrp (use_stmt)
8374 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
8375 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
8376 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
8377 continue;
8379 /* If there is a change in the value range for any of the
8380 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
8381 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
8382 or IMAGPART_EXPR immediate uses, but none of them have
8383 a change in their value ranges, return
8384 SSA_PROP_NOT_INTERESTING. If there are no
8385 {REAL,IMAG}PART_EXPR uses at all,
8386 return SSA_PROP_VARYING. */
8387 value_range new_vr = VR_INITIALIZER;
8388 extract_range_basic (&new_vr, use_stmt);
8389 value_range *old_vr = get_value_range (use_lhs);
8390 if (old_vr->type != new_vr.type
8391 || !vrp_operand_equal_p (old_vr->min, new_vr.min)
8392 || !vrp_operand_equal_p (old_vr->max, new_vr.max)
8393 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
8394 res = SSA_PROP_INTERESTING;
8395 else
8396 res = SSA_PROP_NOT_INTERESTING;
8397 BITMAP_FREE (new_vr.equiv);
8398 if (res == SSA_PROP_INTERESTING)
8400 *output_p = lhs;
8401 return res;
8405 return res;
8407 break;
8408 default:
8409 break;
8412 /* All other statements produce nothing of interest for VRP, so mark
8413 their outputs varying and prevent further simulation. */
8414 set_defs_to_varying (stmt);
8416 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
8419 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8420 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8421 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8422 possible such range. The resulting range is not canonicalized. */
8424 static void
8425 union_ranges (enum value_range_type *vr0type,
8426 tree *vr0min, tree *vr0max,
8427 enum value_range_type vr1type,
8428 tree vr1min, tree vr1max)
8430 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8431 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8433 /* [] is vr0, () is vr1 in the following classification comments. */
8434 if (mineq && maxeq)
8436 /* [( )] */
8437 if (*vr0type == vr1type)
8438 /* Nothing to do for equal ranges. */
8440 else if ((*vr0type == VR_RANGE
8441 && vr1type == VR_ANTI_RANGE)
8442 || (*vr0type == VR_ANTI_RANGE
8443 && vr1type == VR_RANGE))
8445 /* For anti-range with range union the result is varying. */
8446 goto give_up;
8448 else
8449 gcc_unreachable ();
8451 else if (operand_less_p (*vr0max, vr1min) == 1
8452 || operand_less_p (vr1max, *vr0min) == 1)
8454 /* [ ] ( ) or ( ) [ ]
8455 If the ranges have an empty intersection, result of the union
8456 operation is the anti-range or if both are anti-ranges
8457 it covers all. */
8458 if (*vr0type == VR_ANTI_RANGE
8459 && vr1type == VR_ANTI_RANGE)
8460 goto give_up;
8461 else if (*vr0type == VR_ANTI_RANGE
8462 && vr1type == VR_RANGE)
8464 else if (*vr0type == VR_RANGE
8465 && vr1type == VR_ANTI_RANGE)
8467 *vr0type = vr1type;
8468 *vr0min = vr1min;
8469 *vr0max = vr1max;
8471 else if (*vr0type == VR_RANGE
8472 && vr1type == VR_RANGE)
8474 /* The result is the convex hull of both ranges. */
8475 if (operand_less_p (*vr0max, vr1min) == 1)
8477 /* If the result can be an anti-range, create one. */
8478 if (TREE_CODE (*vr0max) == INTEGER_CST
8479 && TREE_CODE (vr1min) == INTEGER_CST
8480 && vrp_val_is_min (*vr0min)
8481 && vrp_val_is_max (vr1max))
8483 tree min = int_const_binop (PLUS_EXPR,
8484 *vr0max,
8485 build_int_cst (TREE_TYPE (*vr0max), 1));
8486 tree max = int_const_binop (MINUS_EXPR,
8487 vr1min,
8488 build_int_cst (TREE_TYPE (vr1min), 1));
8489 if (!operand_less_p (max, min))
8491 *vr0type = VR_ANTI_RANGE;
8492 *vr0min = min;
8493 *vr0max = max;
8495 else
8496 *vr0max = vr1max;
8498 else
8499 *vr0max = vr1max;
8501 else
8503 /* If the result can be an anti-range, create one. */
8504 if (TREE_CODE (vr1max) == INTEGER_CST
8505 && TREE_CODE (*vr0min) == INTEGER_CST
8506 && vrp_val_is_min (vr1min)
8507 && vrp_val_is_max (*vr0max))
8509 tree min = int_const_binop (PLUS_EXPR,
8510 vr1max,
8511 build_int_cst (TREE_TYPE (vr1max), 1));
8512 tree max = int_const_binop (MINUS_EXPR,
8513 *vr0min,
8514 build_int_cst (TREE_TYPE (*vr0min), 1));
8515 if (!operand_less_p (max, min))
8517 *vr0type = VR_ANTI_RANGE;
8518 *vr0min = min;
8519 *vr0max = max;
8521 else
8522 *vr0min = vr1min;
8524 else
8525 *vr0min = vr1min;
8528 else
8529 gcc_unreachable ();
8531 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8532 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8534 /* [ ( ) ] or [( ) ] or [ ( )] */
8535 if (*vr0type == VR_RANGE
8536 && vr1type == VR_RANGE)
8538 else if (*vr0type == VR_ANTI_RANGE
8539 && vr1type == VR_ANTI_RANGE)
8541 *vr0type = vr1type;
8542 *vr0min = vr1min;
8543 *vr0max = vr1max;
8545 else if (*vr0type == VR_ANTI_RANGE
8546 && vr1type == VR_RANGE)
8548 /* Arbitrarily choose the right or left gap. */
8549 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8550 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8551 build_int_cst (TREE_TYPE (vr1min), 1));
8552 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8553 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8554 build_int_cst (TREE_TYPE (vr1max), 1));
8555 else
8556 goto give_up;
8558 else if (*vr0type == VR_RANGE
8559 && vr1type == VR_ANTI_RANGE)
8560 /* The result covers everything. */
8561 goto give_up;
8562 else
8563 gcc_unreachable ();
8565 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8566 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8568 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8569 if (*vr0type == VR_RANGE
8570 && vr1type == VR_RANGE)
8572 *vr0type = vr1type;
8573 *vr0min = vr1min;
8574 *vr0max = vr1max;
8576 else if (*vr0type == VR_ANTI_RANGE
8577 && vr1type == VR_ANTI_RANGE)
8579 else if (*vr0type == VR_RANGE
8580 && vr1type == VR_ANTI_RANGE)
8582 *vr0type = VR_ANTI_RANGE;
8583 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8585 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8586 build_int_cst (TREE_TYPE (*vr0min), 1));
8587 *vr0min = vr1min;
8589 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8591 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8592 build_int_cst (TREE_TYPE (*vr0max), 1));
8593 *vr0max = vr1max;
8595 else
8596 goto give_up;
8598 else if (*vr0type == VR_ANTI_RANGE
8599 && vr1type == VR_RANGE)
8600 /* The result covers everything. */
8601 goto give_up;
8602 else
8603 gcc_unreachable ();
8605 else if ((operand_less_p (vr1min, *vr0max) == 1
8606 || operand_equal_p (vr1min, *vr0max, 0))
8607 && operand_less_p (*vr0min, vr1min) == 1
8608 && operand_less_p (*vr0max, vr1max) == 1)
8610 /* [ ( ] ) or [ ]( ) */
8611 if (*vr0type == VR_RANGE
8612 && vr1type == VR_RANGE)
8613 *vr0max = vr1max;
8614 else if (*vr0type == VR_ANTI_RANGE
8615 && vr1type == VR_ANTI_RANGE)
8616 *vr0min = vr1min;
8617 else if (*vr0type == VR_ANTI_RANGE
8618 && vr1type == VR_RANGE)
8620 if (TREE_CODE (vr1min) == INTEGER_CST)
8621 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8622 build_int_cst (TREE_TYPE (vr1min), 1));
8623 else
8624 goto give_up;
8626 else if (*vr0type == VR_RANGE
8627 && vr1type == VR_ANTI_RANGE)
8629 if (TREE_CODE (*vr0max) == INTEGER_CST)
8631 *vr0type = vr1type;
8632 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8633 build_int_cst (TREE_TYPE (*vr0max), 1));
8634 *vr0max = vr1max;
8636 else
8637 goto give_up;
8639 else
8640 gcc_unreachable ();
8642 else if ((operand_less_p (*vr0min, vr1max) == 1
8643 || operand_equal_p (*vr0min, vr1max, 0))
8644 && operand_less_p (vr1min, *vr0min) == 1
8645 && operand_less_p (vr1max, *vr0max) == 1)
8647 /* ( [ ) ] or ( )[ ] */
8648 if (*vr0type == VR_RANGE
8649 && vr1type == VR_RANGE)
8650 *vr0min = vr1min;
8651 else if (*vr0type == VR_ANTI_RANGE
8652 && vr1type == VR_ANTI_RANGE)
8653 *vr0max = vr1max;
8654 else if (*vr0type == VR_ANTI_RANGE
8655 && vr1type == VR_RANGE)
8657 if (TREE_CODE (vr1max) == INTEGER_CST)
8658 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8659 build_int_cst (TREE_TYPE (vr1max), 1));
8660 else
8661 goto give_up;
8663 else if (*vr0type == VR_RANGE
8664 && vr1type == VR_ANTI_RANGE)
8666 if (TREE_CODE (*vr0min) == INTEGER_CST)
8668 *vr0type = vr1type;
8669 *vr0min = vr1min;
8670 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8671 build_int_cst (TREE_TYPE (*vr0min), 1));
8673 else
8674 goto give_up;
8676 else
8677 gcc_unreachable ();
8679 else
8680 goto give_up;
8682 return;
8684 give_up:
8685 *vr0type = VR_VARYING;
8686 *vr0min = NULL_TREE;
8687 *vr0max = NULL_TREE;
8690 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8691 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8692 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8693 possible such range. The resulting range is not canonicalized. */
8695 static void
8696 intersect_ranges (enum value_range_type *vr0type,
8697 tree *vr0min, tree *vr0max,
8698 enum value_range_type vr1type,
8699 tree vr1min, tree vr1max)
8701 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8702 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8704 /* [] is vr0, () is vr1 in the following classification comments. */
8705 if (mineq && maxeq)
8707 /* [( )] */
8708 if (*vr0type == vr1type)
8709 /* Nothing to do for equal ranges. */
8711 else if ((*vr0type == VR_RANGE
8712 && vr1type == VR_ANTI_RANGE)
8713 || (*vr0type == VR_ANTI_RANGE
8714 && vr1type == VR_RANGE))
8716 /* For anti-range with range intersection the result is empty. */
8717 *vr0type = VR_UNDEFINED;
8718 *vr0min = NULL_TREE;
8719 *vr0max = NULL_TREE;
8721 else
8722 gcc_unreachable ();
8724 else if (operand_less_p (*vr0max, vr1min) == 1
8725 || operand_less_p (vr1max, *vr0min) == 1)
8727 /* [ ] ( ) or ( ) [ ]
8728 If the ranges have an empty intersection, the result of the
8729 intersect operation is the range for intersecting an
8730 anti-range with a range or empty when intersecting two ranges. */
8731 if (*vr0type == VR_RANGE
8732 && vr1type == VR_ANTI_RANGE)
8734 else if (*vr0type == VR_ANTI_RANGE
8735 && vr1type == VR_RANGE)
8737 *vr0type = vr1type;
8738 *vr0min = vr1min;
8739 *vr0max = vr1max;
8741 else if (*vr0type == VR_RANGE
8742 && vr1type == VR_RANGE)
8744 *vr0type = VR_UNDEFINED;
8745 *vr0min = NULL_TREE;
8746 *vr0max = NULL_TREE;
8748 else if (*vr0type == VR_ANTI_RANGE
8749 && vr1type == VR_ANTI_RANGE)
8751 /* If the anti-ranges are adjacent to each other merge them. */
8752 if (TREE_CODE (*vr0max) == INTEGER_CST
8753 && TREE_CODE (vr1min) == INTEGER_CST
8754 && operand_less_p (*vr0max, vr1min) == 1
8755 && integer_onep (int_const_binop (MINUS_EXPR,
8756 vr1min, *vr0max)))
8757 *vr0max = vr1max;
8758 else if (TREE_CODE (vr1max) == INTEGER_CST
8759 && TREE_CODE (*vr0min) == INTEGER_CST
8760 && operand_less_p (vr1max, *vr0min) == 1
8761 && integer_onep (int_const_binop (MINUS_EXPR,
8762 *vr0min, vr1max)))
8763 *vr0min = vr1min;
8764 /* Else arbitrarily take VR0. */
8767 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8768 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8770 /* [ ( ) ] or [( ) ] or [ ( )] */
8771 if (*vr0type == VR_RANGE
8772 && vr1type == VR_RANGE)
8774 /* If both are ranges the result is the inner one. */
8775 *vr0type = vr1type;
8776 *vr0min = vr1min;
8777 *vr0max = vr1max;
8779 else if (*vr0type == VR_RANGE
8780 && vr1type == VR_ANTI_RANGE)
8782 /* Choose the right gap if the left one is empty. */
8783 if (mineq)
8785 if (TREE_CODE (vr1max) != INTEGER_CST)
8786 *vr0min = vr1max;
8787 else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
8788 && !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
8789 *vr0min
8790 = int_const_binop (MINUS_EXPR, vr1max,
8791 build_int_cst (TREE_TYPE (vr1max), -1));
8792 else
8793 *vr0min
8794 = int_const_binop (PLUS_EXPR, vr1max,
8795 build_int_cst (TREE_TYPE (vr1max), 1));
8797 /* Choose the left gap if the right one is empty. */
8798 else if (maxeq)
8800 if (TREE_CODE (vr1min) != INTEGER_CST)
8801 *vr0max = vr1min;
8802 else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
8803 && !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
8804 *vr0max
8805 = int_const_binop (PLUS_EXPR, vr1min,
8806 build_int_cst (TREE_TYPE (vr1min), -1));
8807 else
8808 *vr0max
8809 = int_const_binop (MINUS_EXPR, vr1min,
8810 build_int_cst (TREE_TYPE (vr1min), 1));
8812 /* Choose the anti-range if the range is effectively varying. */
8813 else if (vrp_val_is_min (*vr0min)
8814 && vrp_val_is_max (*vr0max))
8816 *vr0type = vr1type;
8817 *vr0min = vr1min;
8818 *vr0max = vr1max;
8820 /* Else choose the range. */
8822 else if (*vr0type == VR_ANTI_RANGE
8823 && vr1type == VR_ANTI_RANGE)
8824 /* If both are anti-ranges the result is the outer one. */
8826 else if (*vr0type == VR_ANTI_RANGE
8827 && vr1type == VR_RANGE)
8829 /* The intersection is empty. */
8830 *vr0type = VR_UNDEFINED;
8831 *vr0min = NULL_TREE;
8832 *vr0max = NULL_TREE;
8834 else
8835 gcc_unreachable ();
8837 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8838 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8840 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8841 if (*vr0type == VR_RANGE
8842 && vr1type == VR_RANGE)
8843 /* Choose the inner range. */
8845 else if (*vr0type == VR_ANTI_RANGE
8846 && vr1type == VR_RANGE)
8848 /* Choose the right gap if the left is empty. */
8849 if (mineq)
8851 *vr0type = VR_RANGE;
8852 if (TREE_CODE (*vr0max) != INTEGER_CST)
8853 *vr0min = *vr0max;
8854 else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
8855 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
8856 *vr0min
8857 = int_const_binop (MINUS_EXPR, *vr0max,
8858 build_int_cst (TREE_TYPE (*vr0max), -1));
8859 else
8860 *vr0min
8861 = int_const_binop (PLUS_EXPR, *vr0max,
8862 build_int_cst (TREE_TYPE (*vr0max), 1));
8863 *vr0max = vr1max;
8865 /* Choose the left gap if the right is empty. */
8866 else if (maxeq)
8868 *vr0type = VR_RANGE;
8869 if (TREE_CODE (*vr0min) != INTEGER_CST)
8870 *vr0max = *vr0min;
8871 else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
8872 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
8873 *vr0max
8874 = int_const_binop (PLUS_EXPR, *vr0min,
8875 build_int_cst (TREE_TYPE (*vr0min), -1));
8876 else
8877 *vr0max
8878 = int_const_binop (MINUS_EXPR, *vr0min,
8879 build_int_cst (TREE_TYPE (*vr0min), 1));
8880 *vr0min = vr1min;
8882 /* Choose the anti-range if the range is effectively varying. */
8883 else if (vrp_val_is_min (vr1min)
8884 && vrp_val_is_max (vr1max))
8886 /* Choose the anti-range if it is ~[0,0], that range is special
8887 enough to special case when vr1's range is relatively wide. */
8888 else if (*vr0min == *vr0max
8889 && integer_zerop (*vr0min)
8890 && (TYPE_PRECISION (TREE_TYPE (*vr0min))
8891 == TYPE_PRECISION (ptr_type_node))
8892 && TREE_CODE (vr1max) == INTEGER_CST
8893 && TREE_CODE (vr1min) == INTEGER_CST
8894 && (wi::clz (wi::sub (vr1max, vr1min))
8895 < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
8897 /* Else choose the range. */
8898 else
8900 *vr0type = vr1type;
8901 *vr0min = vr1min;
8902 *vr0max = vr1max;
8905 else if (*vr0type == VR_ANTI_RANGE
8906 && vr1type == VR_ANTI_RANGE)
8908 /* If both are anti-ranges the result is the outer one. */
8909 *vr0type = vr1type;
8910 *vr0min = vr1min;
8911 *vr0max = vr1max;
8913 else if (vr1type == VR_ANTI_RANGE
8914 && *vr0type == VR_RANGE)
8916 /* The intersection is empty. */
8917 *vr0type = VR_UNDEFINED;
8918 *vr0min = NULL_TREE;
8919 *vr0max = NULL_TREE;
8921 else
8922 gcc_unreachable ();
8924 else if ((operand_less_p (vr1min, *vr0max) == 1
8925 || operand_equal_p (vr1min, *vr0max, 0))
8926 && operand_less_p (*vr0min, vr1min) == 1)
8928 /* [ ( ] ) or [ ]( ) */
8929 if (*vr0type == VR_ANTI_RANGE
8930 && vr1type == VR_ANTI_RANGE)
8931 *vr0max = vr1max;
8932 else if (*vr0type == VR_RANGE
8933 && vr1type == VR_RANGE)
8934 *vr0min = vr1min;
8935 else if (*vr0type == VR_RANGE
8936 && vr1type == VR_ANTI_RANGE)
8938 if (TREE_CODE (vr1min) == INTEGER_CST)
8939 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8940 build_int_cst (TREE_TYPE (vr1min), 1));
8941 else
8942 *vr0max = vr1min;
8944 else if (*vr0type == VR_ANTI_RANGE
8945 && vr1type == VR_RANGE)
8947 *vr0type = VR_RANGE;
8948 if (TREE_CODE (*vr0max) == INTEGER_CST)
8949 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8950 build_int_cst (TREE_TYPE (*vr0max), 1));
8951 else
8952 *vr0min = *vr0max;
8953 *vr0max = vr1max;
8955 else
8956 gcc_unreachable ();
8958 else if ((operand_less_p (*vr0min, vr1max) == 1
8959 || operand_equal_p (*vr0min, vr1max, 0))
8960 && operand_less_p (vr1min, *vr0min) == 1)
8962 /* ( [ ) ] or ( )[ ] */
8963 if (*vr0type == VR_ANTI_RANGE
8964 && vr1type == VR_ANTI_RANGE)
8965 *vr0min = vr1min;
8966 else if (*vr0type == VR_RANGE
8967 && vr1type == VR_RANGE)
8968 *vr0max = vr1max;
8969 else if (*vr0type == VR_RANGE
8970 && vr1type == VR_ANTI_RANGE)
8972 if (TREE_CODE (vr1max) == INTEGER_CST)
8973 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8974 build_int_cst (TREE_TYPE (vr1max), 1));
8975 else
8976 *vr0min = vr1max;
8978 else if (*vr0type == VR_ANTI_RANGE
8979 && vr1type == VR_RANGE)
8981 *vr0type = VR_RANGE;
8982 if (TREE_CODE (*vr0min) == INTEGER_CST)
8983 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8984 build_int_cst (TREE_TYPE (*vr0min), 1));
8985 else
8986 *vr0max = *vr0min;
8987 *vr0min = vr1min;
8989 else
8990 gcc_unreachable ();
8993 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8994 result for the intersection. That's always a conservative
8995 correct estimate unless VR1 is a constant singleton range
8996 in which case we choose that. */
8997 if (vr1type == VR_RANGE
8998 && is_gimple_min_invariant (vr1min)
8999 && vrp_operand_equal_p (vr1min, vr1max))
9001 *vr0type = vr1type;
9002 *vr0min = vr1min;
9003 *vr0max = vr1max;
9006 return;
9010 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
9011 in *VR0. This may not be the smallest possible such range. */
9013 static void
9014 vrp_intersect_ranges_1 (value_range *vr0, value_range *vr1)
9016 value_range saved;
9018 /* If either range is VR_VARYING the other one wins. */
9019 if (vr1->type == VR_VARYING)
9020 return;
9021 if (vr0->type == VR_VARYING)
9023 copy_value_range (vr0, vr1);
9024 return;
9027 /* When either range is VR_UNDEFINED the resulting range is
9028 VR_UNDEFINED, too. */
9029 if (vr0->type == VR_UNDEFINED)
9030 return;
9031 if (vr1->type == VR_UNDEFINED)
9033 set_value_range_to_undefined (vr0);
9034 return;
9037 /* Save the original vr0 so we can return it as conservative intersection
9038 result when our worker turns things to varying. */
9039 saved = *vr0;
9040 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
9041 vr1->type, vr1->min, vr1->max);
9042 /* Make sure to canonicalize the result though as the inversion of a
9043 VR_RANGE can still be a VR_RANGE. */
9044 set_and_canonicalize_value_range (vr0, vr0->type,
9045 vr0->min, vr0->max, vr0->equiv);
9046 /* If that failed, use the saved original VR0. */
9047 if (vr0->type == VR_VARYING)
9049 *vr0 = saved;
9050 return;
9052 /* If the result is VR_UNDEFINED there is no need to mess with
9053 the equivalencies. */
9054 if (vr0->type == VR_UNDEFINED)
9055 return;
9057 /* The resulting set of equivalences for range intersection is the union of
9058 the two sets. */
9059 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
9060 bitmap_ior_into (vr0->equiv, vr1->equiv);
9061 else if (vr1->equiv && !vr0->equiv)
9063 vr0->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
9064 bitmap_copy (vr0->equiv, vr1->equiv);
9068 void
9069 vrp_intersect_ranges (value_range *vr0, value_range *vr1)
9071 if (dump_file && (dump_flags & TDF_DETAILS))
9073 fprintf (dump_file, "Intersecting\n ");
9074 dump_value_range (dump_file, vr0);
9075 fprintf (dump_file, "\nand\n ");
9076 dump_value_range (dump_file, vr1);
9077 fprintf (dump_file, "\n");
9079 vrp_intersect_ranges_1 (vr0, vr1);
9080 if (dump_file && (dump_flags & TDF_DETAILS))
9082 fprintf (dump_file, "to\n ");
9083 dump_value_range (dump_file, vr0);
9084 fprintf (dump_file, "\n");
9088 /* Meet operation for value ranges. Given two value ranges VR0 and
9089 VR1, store in VR0 a range that contains both VR0 and VR1. This
9090 may not be the smallest possible such range. */
9092 static void
9093 vrp_meet_1 (value_range *vr0, const value_range *vr1)
9095 value_range saved;
9097 if (vr0->type == VR_UNDEFINED)
9099 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
9100 return;
9103 if (vr1->type == VR_UNDEFINED)
9105 /* VR0 already has the resulting range. */
9106 return;
9109 if (vr0->type == VR_VARYING)
9111 /* Nothing to do. VR0 already has the resulting range. */
9112 return;
9115 if (vr1->type == VR_VARYING)
9117 set_value_range_to_varying (vr0);
9118 return;
9121 saved = *vr0;
9122 union_ranges (&vr0->type, &vr0->min, &vr0->max,
9123 vr1->type, vr1->min, vr1->max);
9124 if (vr0->type == VR_VARYING)
9126 /* Failed to find an efficient meet. Before giving up and setting
9127 the result to VARYING, see if we can at least derive a useful
9128 anti-range. FIXME, all this nonsense about distinguishing
9129 anti-ranges from ranges is necessary because of the odd
9130 semantics of range_includes_zero_p and friends. */
9131 if (((saved.type == VR_RANGE
9132 && range_includes_zero_p (saved.min, saved.max) == 0)
9133 || (saved.type == VR_ANTI_RANGE
9134 && range_includes_zero_p (saved.min, saved.max) == 1))
9135 && ((vr1->type == VR_RANGE
9136 && range_includes_zero_p (vr1->min, vr1->max) == 0)
9137 || (vr1->type == VR_ANTI_RANGE
9138 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
9140 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
9142 /* Since this meet operation did not result from the meeting of
9143 two equivalent names, VR0 cannot have any equivalences. */
9144 if (vr0->equiv)
9145 bitmap_clear (vr0->equiv);
9146 return;
9149 set_value_range_to_varying (vr0);
9150 return;
9152 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
9153 vr0->equiv);
9154 if (vr0->type == VR_VARYING)
9155 return;
9157 /* The resulting set of equivalences is always the intersection of
9158 the two sets. */
9159 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
9160 bitmap_and_into (vr0->equiv, vr1->equiv);
9161 else if (vr0->equiv && !vr1->equiv)
9162 bitmap_clear (vr0->equiv);
9165 void
9166 vrp_meet (value_range *vr0, const value_range *vr1)
9168 if (dump_file && (dump_flags & TDF_DETAILS))
9170 fprintf (dump_file, "Meeting\n ");
9171 dump_value_range (dump_file, vr0);
9172 fprintf (dump_file, "\nand\n ");
9173 dump_value_range (dump_file, vr1);
9174 fprintf (dump_file, "\n");
9176 vrp_meet_1 (vr0, vr1);
9177 if (dump_file && (dump_flags & TDF_DETAILS))
9179 fprintf (dump_file, "to\n ");
9180 dump_value_range (dump_file, vr0);
9181 fprintf (dump_file, "\n");
9186 /* Visit all arguments for PHI node PHI that flow through executable
9187 edges. If a valid value range can be derived from all the incoming
9188 value ranges, set a new range in VR_RESULT. */
9190 static void
9191 extract_range_from_phi_node (gphi *phi, value_range *vr_result)
9193 size_t i;
9194 tree lhs = PHI_RESULT (phi);
9195 value_range *lhs_vr = get_value_range (lhs);
9196 bool first = true;
9197 int edges, old_edges;
9198 struct loop *l;
9200 if (dump_file && (dump_flags & TDF_DETAILS))
9202 fprintf (dump_file, "\nVisiting PHI node: ");
9203 print_gimple_stmt (dump_file, phi, 0, dump_flags);
9206 bool may_simulate_backedge_again = false;
9207 edges = 0;
9208 for (i = 0; i < gimple_phi_num_args (phi); i++)
9210 edge e = gimple_phi_arg_edge (phi, i);
9212 if (dump_file && (dump_flags & TDF_DETAILS))
9214 fprintf (dump_file,
9215 " Argument #%d (%d -> %d %sexecutable)\n",
9216 (int) i, e->src->index, e->dest->index,
9217 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
9220 if (e->flags & EDGE_EXECUTABLE)
9222 tree arg = PHI_ARG_DEF (phi, i);
9223 value_range vr_arg;
9225 ++edges;
9227 if (TREE_CODE (arg) == SSA_NAME)
9229 /* See if we are eventually going to change one of the args. */
9230 gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
9231 if (! gimple_nop_p (def_stmt)
9232 && prop_simulate_again_p (def_stmt)
9233 && e->flags & EDGE_DFS_BACK)
9234 may_simulate_backedge_again = true;
9236 vr_arg = *(get_value_range (arg));
9237 /* Do not allow equivalences or symbolic ranges to leak in from
9238 backedges. That creates invalid equivalencies.
9239 See PR53465 and PR54767. */
9240 if (e->flags & EDGE_DFS_BACK)
9242 if (vr_arg.type == VR_RANGE
9243 || vr_arg.type == VR_ANTI_RANGE)
9245 vr_arg.equiv = NULL;
9246 if (symbolic_range_p (&vr_arg))
9248 vr_arg.type = VR_VARYING;
9249 vr_arg.min = NULL_TREE;
9250 vr_arg.max = NULL_TREE;
9254 else
9256 /* If the non-backedge arguments range is VR_VARYING then
9257 we can still try recording a simple equivalence. */
9258 if (vr_arg.type == VR_VARYING)
9260 vr_arg.type = VR_RANGE;
9261 vr_arg.min = arg;
9262 vr_arg.max = arg;
9263 vr_arg.equiv = NULL;
9267 else
9269 if (TREE_OVERFLOW_P (arg))
9270 arg = drop_tree_overflow (arg);
9272 vr_arg.type = VR_RANGE;
9273 vr_arg.min = arg;
9274 vr_arg.max = arg;
9275 vr_arg.equiv = NULL;
9278 if (dump_file && (dump_flags & TDF_DETAILS))
9280 fprintf (dump_file, "\t");
9281 print_generic_expr (dump_file, arg, dump_flags);
9282 fprintf (dump_file, ": ");
9283 dump_value_range (dump_file, &vr_arg);
9284 fprintf (dump_file, "\n");
9287 if (first)
9288 copy_value_range (vr_result, &vr_arg);
9289 else
9290 vrp_meet (vr_result, &vr_arg);
9291 first = false;
9293 if (vr_result->type == VR_VARYING)
9294 break;
9298 if (vr_result->type == VR_VARYING)
9299 goto varying;
9300 else if (vr_result->type == VR_UNDEFINED)
9301 goto update_range;
9303 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
9304 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
9306 /* To prevent infinite iterations in the algorithm, derive ranges
9307 when the new value is slightly bigger or smaller than the
9308 previous one. We don't do this if we have seen a new executable
9309 edge; this helps us avoid an overflow infinity for conditionals
9310 which are not in a loop. If the old value-range was VR_UNDEFINED
9311 use the updated range and iterate one more time. If we will not
9312 simulate this PHI again via the backedge allow us to iterate. */
9313 if (edges > 0
9314 && gimple_phi_num_args (phi) > 1
9315 && edges == old_edges
9316 && lhs_vr->type != VR_UNDEFINED
9317 && may_simulate_backedge_again)
9319 /* Compare old and new ranges, fall back to varying if the
9320 values are not comparable. */
9321 int cmp_min = compare_values (lhs_vr->min, vr_result->min);
9322 if (cmp_min == -2)
9323 goto varying;
9324 int cmp_max = compare_values (lhs_vr->max, vr_result->max);
9325 if (cmp_max == -2)
9326 goto varying;
9328 /* For non VR_RANGE or for pointers fall back to varying if
9329 the range changed. */
9330 if ((lhs_vr->type != VR_RANGE || vr_result->type != VR_RANGE
9331 || POINTER_TYPE_P (TREE_TYPE (lhs)))
9332 && (cmp_min != 0 || cmp_max != 0))
9333 goto varying;
9335 /* If the new minimum is larger than the previous one
9336 retain the old value. If the new minimum value is smaller
9337 than the previous one and not -INF go all the way to -INF + 1.
9338 In the first case, to avoid infinite bouncing between different
9339 minimums, and in the other case to avoid iterating millions of
9340 times to reach -INF. Going to -INF + 1 also lets the following
9341 iteration compute whether there will be any overflow, at the
9342 expense of one additional iteration. */
9343 if (cmp_min < 0)
9344 vr_result->min = lhs_vr->min;
9345 else if (cmp_min > 0
9346 && !vrp_val_is_min (vr_result->min))
9347 vr_result->min
9348 = int_const_binop (PLUS_EXPR,
9349 vrp_val_min (TREE_TYPE (vr_result->min)),
9350 build_int_cst (TREE_TYPE (vr_result->min), 1));
9352 /* Similarly for the maximum value. */
9353 if (cmp_max > 0)
9354 vr_result->max = lhs_vr->max;
9355 else if (cmp_max < 0
9356 && !vrp_val_is_max (vr_result->max))
9357 vr_result->max
9358 = int_const_binop (MINUS_EXPR,
9359 vrp_val_max (TREE_TYPE (vr_result->min)),
9360 build_int_cst (TREE_TYPE (vr_result->min), 1));
9362 /* If we dropped either bound to +-INF then if this is a loop
9363 PHI node SCEV may known more about its value-range. */
9364 if (cmp_min > 0 || cmp_min < 0
9365 || cmp_max < 0 || cmp_max > 0)
9366 goto scev_check;
9368 goto infinite_check;
9371 goto update_range;
9373 varying:
9374 set_value_range_to_varying (vr_result);
9376 scev_check:
9377 /* If this is a loop PHI node SCEV may known more about its value-range.
9378 scev_check can be reached from two paths, one is a fall through from above
9379 "varying" label, the other is direct goto from code block which tries to
9380 avoid infinite simulation. */
9381 if ((l = loop_containing_stmt (phi))
9382 && l->header == gimple_bb (phi))
9383 adjust_range_with_scev (vr_result, l, phi, lhs);
9385 infinite_check:
9386 /* If we will end up with a (-INF, +INF) range, set it to
9387 VARYING. Same if the previous max value was invalid for
9388 the type and we end up with vr_result.min > vr_result.max. */
9389 if ((vr_result->type == VR_RANGE || vr_result->type == VR_ANTI_RANGE)
9390 && !((vrp_val_is_max (vr_result->max) && vrp_val_is_min (vr_result->min))
9391 || compare_values (vr_result->min, vr_result->max) > 0))
9393 else
9394 set_value_range_to_varying (vr_result);
9396 /* If the new range is different than the previous value, keep
9397 iterating. */
9398 update_range:
9399 return;
9402 /* Visit all arguments for PHI node PHI that flow through executable
9403 edges. If a valid value range can be derived from all the incoming
9404 value ranges, set a new range for the LHS of PHI. */
9406 static enum ssa_prop_result
9407 vrp_visit_phi_node (gphi *phi)
9409 tree lhs = PHI_RESULT (phi);
9410 value_range vr_result = VR_INITIALIZER;
9411 extract_range_from_phi_node (phi, &vr_result);
9412 if (update_value_range (lhs, &vr_result))
9414 if (dump_file && (dump_flags & TDF_DETAILS))
9416 fprintf (dump_file, "Found new range for ");
9417 print_generic_expr (dump_file, lhs, 0);
9418 fprintf (dump_file, ": ");
9419 dump_value_range (dump_file, &vr_result);
9420 fprintf (dump_file, "\n");
9423 if (vr_result.type == VR_VARYING)
9424 return SSA_PROP_VARYING;
9426 return SSA_PROP_INTERESTING;
9429 /* Nothing changed, don't add outgoing edges. */
9430 return SSA_PROP_NOT_INTERESTING;
9433 /* Simplify boolean operations if the source is known
9434 to be already a boolean. */
9435 static bool
9436 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9438 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9439 tree lhs, op0, op1;
9440 bool need_conversion;
9442 /* We handle only !=/== case here. */
9443 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
9445 op0 = gimple_assign_rhs1 (stmt);
9446 if (!op_with_boolean_value_range_p (op0))
9447 return false;
9449 op1 = gimple_assign_rhs2 (stmt);
9450 if (!op_with_boolean_value_range_p (op1))
9451 return false;
9453 /* Reduce number of cases to handle to NE_EXPR. As there is no
9454 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
9455 if (rhs_code == EQ_EXPR)
9457 if (TREE_CODE (op1) == INTEGER_CST)
9458 op1 = int_const_binop (BIT_XOR_EXPR, op1,
9459 build_int_cst (TREE_TYPE (op1), 1));
9460 else
9461 return false;
9464 lhs = gimple_assign_lhs (stmt);
9465 need_conversion
9466 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
9468 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
9469 if (need_conversion
9470 && !TYPE_UNSIGNED (TREE_TYPE (op0))
9471 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
9472 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
9473 return false;
9475 /* For A != 0 we can substitute A itself. */
9476 if (integer_zerop (op1))
9477 gimple_assign_set_rhs_with_ops (gsi,
9478 need_conversion
9479 ? NOP_EXPR : TREE_CODE (op0), op0);
9480 /* For A != B we substitute A ^ B. Either with conversion. */
9481 else if (need_conversion)
9483 tree tem = make_ssa_name (TREE_TYPE (op0));
9484 gassign *newop
9485 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
9486 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
9487 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
9488 && TYPE_PRECISION (TREE_TYPE (tem)) > 1)
9489 set_range_info (tem, VR_RANGE,
9490 wi::zero (TYPE_PRECISION (TREE_TYPE (tem))),
9491 wi::one (TYPE_PRECISION (TREE_TYPE (tem))));
9492 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
9494 /* Or without. */
9495 else
9496 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
9497 update_stmt (gsi_stmt (*gsi));
9498 fold_stmt (gsi, follow_single_use_edges);
9500 return true;
9503 /* Simplify a division or modulo operator to a right shift or bitwise and
9504 if the first operand is unsigned or is greater than zero and the second
9505 operand is an exact power of two. For TRUNC_MOD_EXPR op0 % op1 with
9506 constant op1 (op1min = op1) or with op1 in [op1min, op1max] range,
9507 optimize it into just op0 if op0's range is known to be a subset of
9508 [-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned
9509 modulo. */
9511 static bool
9512 simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9514 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9515 tree val = NULL;
9516 tree op0 = gimple_assign_rhs1 (stmt);
9517 tree op1 = gimple_assign_rhs2 (stmt);
9518 tree op0min = NULL_TREE, op0max = NULL_TREE;
9519 tree op1min = op1;
9520 value_range *vr = NULL;
9522 if (TREE_CODE (op0) == INTEGER_CST)
9524 op0min = op0;
9525 op0max = op0;
9527 else
9529 vr = get_value_range (op0);
9530 if (range_int_cst_p (vr))
9532 op0min = vr->min;
9533 op0max = vr->max;
9537 if (rhs_code == TRUNC_MOD_EXPR
9538 && TREE_CODE (op1) == SSA_NAME)
9540 value_range *vr1 = get_value_range (op1);
9541 if (range_int_cst_p (vr1))
9542 op1min = vr1->min;
9544 if (rhs_code == TRUNC_MOD_EXPR
9545 && TREE_CODE (op1min) == INTEGER_CST
9546 && tree_int_cst_sgn (op1min) == 1
9547 && op0max
9548 && tree_int_cst_lt (op0max, op1min))
9550 if (TYPE_UNSIGNED (TREE_TYPE (op0))
9551 || tree_int_cst_sgn (op0min) >= 0
9552 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min),
9553 op0min))
9555 /* If op0 already has the range op0 % op1 has,
9556 then TRUNC_MOD_EXPR won't change anything. */
9557 gimple_assign_set_rhs_from_tree (gsi, op0);
9558 return true;
9562 if (TREE_CODE (op0) != SSA_NAME)
9563 return false;
9565 if (!integer_pow2p (op1))
9567 /* X % -Y can be only optimized into X % Y either if
9568 X is not INT_MIN, or Y is not -1. Fold it now, as after
9569 remove_range_assertions the range info might be not available
9570 anymore. */
9571 if (rhs_code == TRUNC_MOD_EXPR
9572 && fold_stmt (gsi, follow_single_use_edges))
9573 return true;
9574 return false;
9577 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
9578 val = integer_one_node;
9579 else
9581 bool sop = false;
9583 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
9585 if (val
9586 && sop
9587 && integer_onep (val)
9588 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9590 location_t location;
9592 if (!gimple_has_location (stmt))
9593 location = input_location;
9594 else
9595 location = gimple_location (stmt);
9596 warning_at (location, OPT_Wstrict_overflow,
9597 "assuming signed overflow does not occur when "
9598 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9602 if (val && integer_onep (val))
9604 tree t;
9606 if (rhs_code == TRUNC_DIV_EXPR)
9608 t = build_int_cst (integer_type_node, tree_log2 (op1));
9609 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9610 gimple_assign_set_rhs1 (stmt, op0);
9611 gimple_assign_set_rhs2 (stmt, t);
9613 else
9615 t = build_int_cst (TREE_TYPE (op1), 1);
9616 t = int_const_binop (MINUS_EXPR, op1, t);
9617 t = fold_convert (TREE_TYPE (op0), t);
9619 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9620 gimple_assign_set_rhs1 (stmt, op0);
9621 gimple_assign_set_rhs2 (stmt, t);
9624 update_stmt (stmt);
9625 fold_stmt (gsi, follow_single_use_edges);
9626 return true;
9629 return false;
9632 /* Simplify a min or max if the ranges of the two operands are
9633 disjoint. Return true if we do simplify. */
9635 static bool
9636 simplify_min_or_max_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9638 tree op0 = gimple_assign_rhs1 (stmt);
9639 tree op1 = gimple_assign_rhs2 (stmt);
9640 bool sop = false;
9641 tree val;
9643 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9644 (LE_EXPR, op0, op1, &sop));
9645 if (!val)
9647 sop = false;
9648 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9649 (LT_EXPR, op0, op1, &sop));
9652 if (val)
9654 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9656 location_t location;
9658 if (!gimple_has_location (stmt))
9659 location = input_location;
9660 else
9661 location = gimple_location (stmt);
9662 warning_at (location, OPT_Wstrict_overflow,
9663 "assuming signed overflow does not occur when "
9664 "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
9667 /* VAL == TRUE -> OP0 < or <= op1
9668 VAL == FALSE -> OP0 > or >= op1. */
9669 tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
9670 == integer_zerop (val)) ? op0 : op1;
9671 gimple_assign_set_rhs_from_tree (gsi, res);
9672 return true;
9675 return false;
9678 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9679 ABS_EXPR. If the operand is <= 0, then simplify the
9680 ABS_EXPR into a NEGATE_EXPR. */
9682 static bool
9683 simplify_abs_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9685 tree op = gimple_assign_rhs1 (stmt);
9686 value_range *vr = get_value_range (op);
9688 if (vr)
9690 tree val = NULL;
9691 bool sop = false;
9693 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9694 if (!val)
9696 /* The range is neither <= 0 nor > 0. Now see if it is
9697 either < 0 or >= 0. */
9698 sop = false;
9699 val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
9700 &sop);
9703 if (val)
9705 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9707 location_t location;
9709 if (!gimple_has_location (stmt))
9710 location = input_location;
9711 else
9712 location = gimple_location (stmt);
9713 warning_at (location, OPT_Wstrict_overflow,
9714 "assuming signed overflow does not occur when "
9715 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9718 gimple_assign_set_rhs1 (stmt, op);
9719 if (integer_zerop (val))
9720 gimple_assign_set_rhs_code (stmt, SSA_NAME);
9721 else
9722 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9723 update_stmt (stmt);
9724 fold_stmt (gsi, follow_single_use_edges);
9725 return true;
9729 return false;
9732 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9733 If all the bits that are being cleared by & are already
9734 known to be zero from VR, or all the bits that are being
9735 set by | are already known to be one from VR, the bit
9736 operation is redundant. */
9738 static bool
9739 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9741 tree op0 = gimple_assign_rhs1 (stmt);
9742 tree op1 = gimple_assign_rhs2 (stmt);
9743 tree op = NULL_TREE;
9744 value_range vr0 = VR_INITIALIZER;
9745 value_range vr1 = VR_INITIALIZER;
9746 wide_int may_be_nonzero0, may_be_nonzero1;
9747 wide_int must_be_nonzero0, must_be_nonzero1;
9748 wide_int mask;
9750 if (TREE_CODE (op0) == SSA_NAME)
9751 vr0 = *(get_value_range (op0));
9752 else if (is_gimple_min_invariant (op0))
9753 set_value_range_to_value (&vr0, op0, NULL);
9754 else
9755 return false;
9757 if (TREE_CODE (op1) == SSA_NAME)
9758 vr1 = *(get_value_range (op1));
9759 else if (is_gimple_min_invariant (op1))
9760 set_value_range_to_value (&vr1, op1, NULL);
9761 else
9762 return false;
9764 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9765 &must_be_nonzero0))
9766 return false;
9767 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9768 &must_be_nonzero1))
9769 return false;
9771 switch (gimple_assign_rhs_code (stmt))
9773 case BIT_AND_EXPR:
9774 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9775 if (mask == 0)
9777 op = op0;
9778 break;
9780 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9781 if (mask == 0)
9783 op = op1;
9784 break;
9786 break;
9787 case BIT_IOR_EXPR:
9788 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9789 if (mask == 0)
9791 op = op1;
9792 break;
9794 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9795 if (mask == 0)
9797 op = op0;
9798 break;
9800 break;
9801 default:
9802 gcc_unreachable ();
9805 if (op == NULL_TREE)
9806 return false;
9808 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9809 update_stmt (gsi_stmt (*gsi));
9810 return true;
9813 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9814 a known value range VR.
9816 If there is one and only one value which will satisfy the
9817 conditional, then return that value. Else return NULL.
9819 If signed overflow must be undefined for the value to satisfy
9820 the conditional, then set *STRICT_OVERFLOW_P to true. */
9822 static tree
9823 test_for_singularity (enum tree_code cond_code, tree op0,
9824 tree op1, value_range *vr,
9825 bool *strict_overflow_p)
9827 tree min = NULL;
9828 tree max = NULL;
9830 /* Extract minimum/maximum values which satisfy the conditional as it was
9831 written. */
9832 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9834 /* This should not be negative infinity; there is no overflow
9835 here. */
9836 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9838 max = op1;
9839 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
9841 tree one = build_int_cst (TREE_TYPE (op0), 1);
9842 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9843 if (EXPR_P (max))
9844 TREE_NO_WARNING (max) = 1;
9847 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9849 /* This should not be positive infinity; there is no overflow
9850 here. */
9851 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9853 min = op1;
9854 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
9856 tree one = build_int_cst (TREE_TYPE (op0), 1);
9857 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9858 if (EXPR_P (min))
9859 TREE_NO_WARNING (min) = 1;
9863 /* Now refine the minimum and maximum values using any
9864 value range information we have for op0. */
9865 if (min && max)
9867 if (compare_values (vr->min, min) == 1)
9868 min = vr->min;
9869 if (compare_values (vr->max, max) == -1)
9870 max = vr->max;
9872 /* If the new min/max values have converged to a single value,
9873 then there is only one value which can satisfy the condition,
9874 return that value. */
9875 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9877 if ((cond_code == LE_EXPR || cond_code == LT_EXPR)
9878 && is_overflow_infinity (vr->max))
9879 *strict_overflow_p = true;
9880 if ((cond_code == GE_EXPR || cond_code == GT_EXPR)
9881 && is_overflow_infinity (vr->min))
9882 *strict_overflow_p = true;
9884 return min;
9887 return NULL;
9890 /* Return whether the value range *VR fits in an integer type specified
9891 by PRECISION and UNSIGNED_P. */
9893 static bool
9894 range_fits_type_p (value_range *vr, unsigned dest_precision, signop dest_sgn)
9896 tree src_type;
9897 unsigned src_precision;
9898 widest_int tem;
9899 signop src_sgn;
9901 /* We can only handle integral and pointer types. */
9902 src_type = TREE_TYPE (vr->min);
9903 if (!INTEGRAL_TYPE_P (src_type)
9904 && !POINTER_TYPE_P (src_type))
9905 return false;
9907 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9908 and so is an identity transform. */
9909 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9910 src_sgn = TYPE_SIGN (src_type);
9911 if ((src_precision < dest_precision
9912 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9913 || (src_precision == dest_precision && src_sgn == dest_sgn))
9914 return true;
9916 /* Now we can only handle ranges with constant bounds. */
9917 if (vr->type != VR_RANGE
9918 || TREE_CODE (vr->min) != INTEGER_CST
9919 || TREE_CODE (vr->max) != INTEGER_CST)
9920 return false;
9922 /* For sign changes, the MSB of the wide_int has to be clear.
9923 An unsigned value with its MSB set cannot be represented by
9924 a signed wide_int, while a negative value cannot be represented
9925 by an unsigned wide_int. */
9926 if (src_sgn != dest_sgn
9927 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9928 return false;
9930 /* Then we can perform the conversion on both ends and compare
9931 the result for equality. */
9932 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9933 if (tem != wi::to_widest (vr->min))
9934 return false;
9935 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9936 if (tem != wi::to_widest (vr->max))
9937 return false;
9939 return true;
9942 /* Simplify a conditional using a relational operator to an equality
9943 test if the range information indicates only one value can satisfy
9944 the original conditional. */
9946 static bool
9947 simplify_cond_using_ranges (gcond *stmt)
9949 tree op0 = gimple_cond_lhs (stmt);
9950 tree op1 = gimple_cond_rhs (stmt);
9951 enum tree_code cond_code = gimple_cond_code (stmt);
9953 if (cond_code != NE_EXPR
9954 && cond_code != EQ_EXPR
9955 && TREE_CODE (op0) == SSA_NAME
9956 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9957 && is_gimple_min_invariant (op1))
9959 value_range *vr = get_value_range (op0);
9961 /* If we have range information for OP0, then we might be
9962 able to simplify this conditional. */
9963 if (vr->type == VR_RANGE)
9965 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
9966 bool sop = false;
9967 tree new_tree = test_for_singularity (cond_code, op0, op1, vr, &sop);
9969 if (new_tree
9970 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9972 if (dump_file)
9974 fprintf (dump_file, "Simplified relational ");
9975 print_gimple_stmt (dump_file, stmt, 0, 0);
9976 fprintf (dump_file, " into ");
9979 gimple_cond_set_code (stmt, EQ_EXPR);
9980 gimple_cond_set_lhs (stmt, op0);
9981 gimple_cond_set_rhs (stmt, new_tree);
9983 update_stmt (stmt);
9985 if (dump_file)
9987 print_gimple_stmt (dump_file, stmt, 0, 0);
9988 fprintf (dump_file, "\n");
9991 if (sop && issue_strict_overflow_warning (wc))
9993 location_t location = input_location;
9994 if (gimple_has_location (stmt))
9995 location = gimple_location (stmt);
9997 warning_at (location, OPT_Wstrict_overflow,
9998 "assuming signed overflow does not occur when "
9999 "simplifying conditional");
10002 return true;
10005 /* Try again after inverting the condition. We only deal
10006 with integral types here, so no need to worry about
10007 issues with inverting FP comparisons. */
10008 sop = false;
10009 new_tree = test_for_singularity
10010 (invert_tree_comparison (cond_code, false),
10011 op0, op1, vr, &sop);
10013 if (new_tree
10014 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
10016 if (dump_file)
10018 fprintf (dump_file, "Simplified relational ");
10019 print_gimple_stmt (dump_file, stmt, 0, 0);
10020 fprintf (dump_file, " into ");
10023 gimple_cond_set_code (stmt, NE_EXPR);
10024 gimple_cond_set_lhs (stmt, op0);
10025 gimple_cond_set_rhs (stmt, new_tree);
10027 update_stmt (stmt);
10029 if (dump_file)
10031 print_gimple_stmt (dump_file, stmt, 0, 0);
10032 fprintf (dump_file, "\n");
10035 if (sop && issue_strict_overflow_warning (wc))
10037 location_t location = input_location;
10038 if (gimple_has_location (stmt))
10039 location = gimple_location (stmt);
10041 warning_at (location, OPT_Wstrict_overflow,
10042 "assuming signed overflow does not occur when "
10043 "simplifying conditional");
10046 return true;
10051 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
10052 see if OP0 was set by a type conversion where the source of
10053 the conversion is another SSA_NAME with a range that fits
10054 into the range of OP0's type.
10056 If so, the conversion is redundant as the earlier SSA_NAME can be
10057 used for the comparison directly if we just massage the constant in the
10058 comparison. */
10059 if (TREE_CODE (op0) == SSA_NAME
10060 && TREE_CODE (op1) == INTEGER_CST)
10062 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
10063 tree innerop;
10065 if (!is_gimple_assign (def_stmt)
10066 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
10067 return false;
10069 innerop = gimple_assign_rhs1 (def_stmt);
10071 if (TREE_CODE (innerop) == SSA_NAME
10072 && !POINTER_TYPE_P (TREE_TYPE (innerop))
10073 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)
10074 && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
10076 value_range *vr = get_value_range (innerop);
10078 if (range_int_cst_p (vr)
10079 && range_fits_type_p (vr,
10080 TYPE_PRECISION (TREE_TYPE (op0)),
10081 TYPE_SIGN (TREE_TYPE (op0)))
10082 && int_fits_type_p (op1, TREE_TYPE (innerop))
10083 /* The range must not have overflowed, or if it did overflow
10084 we must not be wrapping/trapping overflow and optimizing
10085 with strict overflow semantics. */
10086 && ((!is_negative_overflow_infinity (vr->min)
10087 && !is_positive_overflow_infinity (vr->max))
10088 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
10090 /* If the range overflowed and the user has asked for warnings
10091 when strict overflow semantics were used to optimize code,
10092 issue an appropriate warning. */
10093 if (cond_code != EQ_EXPR && cond_code != NE_EXPR
10094 && (is_negative_overflow_infinity (vr->min)
10095 || is_positive_overflow_infinity (vr->max))
10096 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
10098 location_t location;
10100 if (!gimple_has_location (stmt))
10101 location = input_location;
10102 else
10103 location = gimple_location (stmt);
10104 warning_at (location, OPT_Wstrict_overflow,
10105 "assuming signed overflow does not occur when "
10106 "simplifying conditional");
10109 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
10110 gimple_cond_set_lhs (stmt, innerop);
10111 gimple_cond_set_rhs (stmt, newconst);
10112 return true;
10117 return false;
10120 /* Simplify a switch statement using the value range of the switch
10121 argument. */
10123 static bool
10124 simplify_switch_using_ranges (gswitch *stmt)
10126 tree op = gimple_switch_index (stmt);
10127 value_range *vr = NULL;
10128 bool take_default;
10129 edge e;
10130 edge_iterator ei;
10131 size_t i = 0, j = 0, n, n2;
10132 tree vec2;
10133 switch_update su;
10134 size_t k = 1, l = 0;
10136 if (TREE_CODE (op) == SSA_NAME)
10138 vr = get_value_range (op);
10140 /* We can only handle integer ranges. */
10141 if ((vr->type != VR_RANGE
10142 && vr->type != VR_ANTI_RANGE)
10143 || symbolic_range_p (vr))
10144 return false;
10146 /* Find case label for min/max of the value range. */
10147 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
10149 else if (TREE_CODE (op) == INTEGER_CST)
10151 take_default = !find_case_label_index (stmt, 1, op, &i);
10152 if (take_default)
10154 i = 1;
10155 j = 0;
10157 else
10159 j = i;
10162 else
10163 return false;
10165 n = gimple_switch_num_labels (stmt);
10167 /* We can truncate the case label ranges that partially overlap with OP's
10168 value range. */
10169 size_t min_idx = 1, max_idx = 0;
10170 if (vr != NULL)
10171 find_case_label_range (stmt, vr->min, vr->max, &min_idx, &max_idx);
10172 if (min_idx <= max_idx)
10174 tree min_label = gimple_switch_label (stmt, min_idx);
10175 tree max_label = gimple_switch_label (stmt, max_idx);
10177 /* Avoid changing the type of the case labels when truncating. */
10178 tree case_label_type = TREE_TYPE (CASE_LOW (min_label));
10179 tree vr_min = fold_convert (case_label_type, vr->min);
10180 tree vr_max = fold_convert (case_label_type, vr->max);
10182 if (vr->type == VR_RANGE)
10184 /* If OP's value range is [2,8] and the low label range is
10185 0 ... 3, truncate the label's range to 2 .. 3. */
10186 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
10187 && CASE_HIGH (min_label) != NULL_TREE
10188 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
10189 CASE_LOW (min_label) = vr_min;
10191 /* If OP's value range is [2,8] and the high label range is
10192 7 ... 10, truncate the label's range to 7 .. 8. */
10193 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
10194 && CASE_HIGH (max_label) != NULL_TREE
10195 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
10196 CASE_HIGH (max_label) = vr_max;
10198 else if (vr->type == VR_ANTI_RANGE)
10200 tree one_cst = build_one_cst (case_label_type);
10202 if (min_label == max_label)
10204 /* If OP's value range is ~[7,8] and the label's range is
10205 7 ... 10, truncate the label's range to 9 ... 10. */
10206 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0
10207 && CASE_HIGH (min_label) != NULL_TREE
10208 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0)
10209 CASE_LOW (min_label)
10210 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
10212 /* If OP's value range is ~[7,8] and the label's range is
10213 5 ... 8, truncate the label's range to 5 ... 6. */
10214 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
10215 && CASE_HIGH (min_label) != NULL_TREE
10216 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0)
10217 CASE_HIGH (min_label)
10218 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
10220 else
10222 /* If OP's value range is ~[2,8] and the low label range is
10223 0 ... 3, truncate the label's range to 0 ... 1. */
10224 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
10225 && CASE_HIGH (min_label) != NULL_TREE
10226 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
10227 CASE_HIGH (min_label)
10228 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
10230 /* If OP's value range is ~[2,8] and the high label range is
10231 7 ... 10, truncate the label's range to 9 ... 10. */
10232 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
10233 && CASE_HIGH (max_label) != NULL_TREE
10234 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
10235 CASE_LOW (max_label)
10236 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
10240 /* Canonicalize singleton case ranges. */
10241 if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label)))
10242 CASE_HIGH (min_label) = NULL_TREE;
10243 if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label)))
10244 CASE_HIGH (max_label) = NULL_TREE;
10247 /* We can also eliminate case labels that lie completely outside OP's value
10248 range. */
10250 /* Bail out if this is just all edges taken. */
10251 if (i == 1
10252 && j == n - 1
10253 && take_default)
10254 return false;
10256 /* Build a new vector of taken case labels. */
10257 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
10258 n2 = 0;
10260 /* Add the default edge, if necessary. */
10261 if (take_default)
10262 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
10264 for (; i <= j; ++i, ++n2)
10265 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
10267 for (; k <= l; ++k, ++n2)
10268 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
10270 /* Mark needed edges. */
10271 for (i = 0; i < n2; ++i)
10273 e = find_edge (gimple_bb (stmt),
10274 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
10275 e->aux = (void *)-1;
10278 /* Queue not needed edges for later removal. */
10279 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
10281 if (e->aux == (void *)-1)
10283 e->aux = NULL;
10284 continue;
10287 if (dump_file && (dump_flags & TDF_DETAILS))
10289 fprintf (dump_file, "removing unreachable case label\n");
10291 to_remove_edges.safe_push (e);
10292 e->flags &= ~EDGE_EXECUTABLE;
10295 /* And queue an update for the stmt. */
10296 su.stmt = stmt;
10297 su.vec = vec2;
10298 to_update_switch_stmts.safe_push (su);
10299 return false;
10302 /* Simplify an integral conversion from an SSA name in STMT. */
10304 static bool
10305 simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10307 tree innerop, middleop, finaltype;
10308 gimple *def_stmt;
10309 signop inner_sgn, middle_sgn, final_sgn;
10310 unsigned inner_prec, middle_prec, final_prec;
10311 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
10313 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
10314 if (!INTEGRAL_TYPE_P (finaltype))
10315 return false;
10316 middleop = gimple_assign_rhs1 (stmt);
10317 def_stmt = SSA_NAME_DEF_STMT (middleop);
10318 if (!is_gimple_assign (def_stmt)
10319 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
10320 return false;
10321 innerop = gimple_assign_rhs1 (def_stmt);
10322 if (TREE_CODE (innerop) != SSA_NAME
10323 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
10324 return false;
10326 /* Get the value-range of the inner operand. Use get_range_info in
10327 case innerop was created during substitute-and-fold. */
10328 wide_int imin, imax;
10329 if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop))
10330 || get_range_info (innerop, &imin, &imax) != VR_RANGE)
10331 return false;
10332 innermin = widest_int::from (imin, TYPE_SIGN (TREE_TYPE (innerop)));
10333 innermax = widest_int::from (imax, TYPE_SIGN (TREE_TYPE (innerop)));
10335 /* Simulate the conversion chain to check if the result is equal if
10336 the middle conversion is removed. */
10337 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
10338 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
10339 final_prec = TYPE_PRECISION (finaltype);
10341 /* If the first conversion is not injective, the second must not
10342 be widening. */
10343 if (wi::gtu_p (innermax - innermin,
10344 wi::mask <widest_int> (middle_prec, false))
10345 && middle_prec < final_prec)
10346 return false;
10347 /* We also want a medium value so that we can track the effect that
10348 narrowing conversions with sign change have. */
10349 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
10350 if (inner_sgn == UNSIGNED)
10351 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
10352 else
10353 innermed = 0;
10354 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
10355 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
10356 innermed = innermin;
10358 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
10359 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
10360 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
10361 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
10363 /* Require that the final conversion applied to both the original
10364 and the intermediate range produces the same result. */
10365 final_sgn = TYPE_SIGN (finaltype);
10366 if (wi::ext (middlemin, final_prec, final_sgn)
10367 != wi::ext (innermin, final_prec, final_sgn)
10368 || wi::ext (middlemed, final_prec, final_sgn)
10369 != wi::ext (innermed, final_prec, final_sgn)
10370 || wi::ext (middlemax, final_prec, final_sgn)
10371 != wi::ext (innermax, final_prec, final_sgn))
10372 return false;
10374 gimple_assign_set_rhs1 (stmt, innerop);
10375 fold_stmt (gsi, follow_single_use_edges);
10376 return true;
10379 /* Simplify a conversion from integral SSA name to float in STMT. */
10381 static bool
10382 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi,
10383 gimple *stmt)
10385 tree rhs1 = gimple_assign_rhs1 (stmt);
10386 value_range *vr = get_value_range (rhs1);
10387 machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
10388 machine_mode mode;
10389 tree tem;
10390 gassign *conv;
10392 /* We can only handle constant ranges. */
10393 if (vr->type != VR_RANGE
10394 || TREE_CODE (vr->min) != INTEGER_CST
10395 || TREE_CODE (vr->max) != INTEGER_CST)
10396 return false;
10398 /* First check if we can use a signed type in place of an unsigned. */
10399 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
10400 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
10401 != CODE_FOR_nothing)
10402 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
10403 mode = TYPE_MODE (TREE_TYPE (rhs1));
10404 /* If we can do the conversion in the current input mode do nothing. */
10405 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
10406 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
10407 return false;
10408 /* Otherwise search for a mode we can use, starting from the narrowest
10409 integer mode available. */
10410 else
10412 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
10415 /* If we cannot do a signed conversion to float from mode
10416 or if the value-range does not fit in the signed type
10417 try with a wider mode. */
10418 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
10419 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
10420 break;
10422 mode = GET_MODE_WIDER_MODE (mode);
10423 /* But do not widen the input. Instead leave that to the
10424 optabs expansion code. */
10425 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
10426 return false;
10428 while (mode != VOIDmode);
10429 if (mode == VOIDmode)
10430 return false;
10433 /* It works, insert a truncation or sign-change before the
10434 float conversion. */
10435 tem = make_ssa_name (build_nonstandard_integer_type
10436 (GET_MODE_PRECISION (mode), 0));
10437 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
10438 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
10439 gimple_assign_set_rhs1 (stmt, tem);
10440 fold_stmt (gsi, follow_single_use_edges);
10442 return true;
10445 /* Simplify an internal fn call using ranges if possible. */
10447 static bool
10448 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10450 enum tree_code subcode;
10451 bool is_ubsan = false;
10452 bool ovf = false;
10453 switch (gimple_call_internal_fn (stmt))
10455 case IFN_UBSAN_CHECK_ADD:
10456 subcode = PLUS_EXPR;
10457 is_ubsan = true;
10458 break;
10459 case IFN_UBSAN_CHECK_SUB:
10460 subcode = MINUS_EXPR;
10461 is_ubsan = true;
10462 break;
10463 case IFN_UBSAN_CHECK_MUL:
10464 subcode = MULT_EXPR;
10465 is_ubsan = true;
10466 break;
10467 case IFN_ADD_OVERFLOW:
10468 subcode = PLUS_EXPR;
10469 break;
10470 case IFN_SUB_OVERFLOW:
10471 subcode = MINUS_EXPR;
10472 break;
10473 case IFN_MUL_OVERFLOW:
10474 subcode = MULT_EXPR;
10475 break;
10476 default:
10477 return false;
10480 tree op0 = gimple_call_arg (stmt, 0);
10481 tree op1 = gimple_call_arg (stmt, 1);
10482 tree type;
10483 if (is_ubsan)
10485 type = TREE_TYPE (op0);
10486 if (VECTOR_TYPE_P (type))
10487 return false;
10489 else if (gimple_call_lhs (stmt) == NULL_TREE)
10490 return false;
10491 else
10492 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
10493 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
10494 || (is_ubsan && ovf))
10495 return false;
10497 gimple *g;
10498 location_t loc = gimple_location (stmt);
10499 if (is_ubsan)
10500 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
10501 else
10503 int prec = TYPE_PRECISION (type);
10504 tree utype = type;
10505 if (ovf
10506 || !useless_type_conversion_p (type, TREE_TYPE (op0))
10507 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
10508 utype = build_nonstandard_integer_type (prec, 1);
10509 if (TREE_CODE (op0) == INTEGER_CST)
10510 op0 = fold_convert (utype, op0);
10511 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
10513 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
10514 gimple_set_location (g, loc);
10515 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10516 op0 = gimple_assign_lhs (g);
10518 if (TREE_CODE (op1) == INTEGER_CST)
10519 op1 = fold_convert (utype, op1);
10520 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
10522 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
10523 gimple_set_location (g, loc);
10524 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10525 op1 = gimple_assign_lhs (g);
10527 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
10528 gimple_set_location (g, loc);
10529 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10530 if (utype != type)
10532 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
10533 gimple_assign_lhs (g));
10534 gimple_set_location (g, loc);
10535 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10537 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
10538 gimple_assign_lhs (g),
10539 build_int_cst (type, ovf));
10541 gimple_set_location (g, loc);
10542 gsi_replace (gsi, g, false);
10543 return true;
10546 /* Return true if VAR is a two-valued variable. Set a and b with the
10547 two-values when it is true. Return false otherwise. */
10549 static bool
10550 two_valued_val_range_p (tree var, tree *a, tree *b)
10552 value_range *vr = get_value_range (var);
10553 if ((vr->type != VR_RANGE
10554 && vr->type != VR_ANTI_RANGE)
10555 || TREE_CODE (vr->min) != INTEGER_CST
10556 || TREE_CODE (vr->max) != INTEGER_CST)
10557 return false;
10559 if (vr->type == VR_RANGE
10560 && wi::sub (vr->max, vr->min) == 1)
10562 *a = vr->min;
10563 *b = vr->max;
10564 return true;
10567 /* ~[TYPE_MIN + 1, TYPE_MAX - 1] */
10568 if (vr->type == VR_ANTI_RANGE
10569 && wi::sub (vr->min, vrp_val_min (TREE_TYPE (var))) == 1
10570 && wi::sub (vrp_val_max (TREE_TYPE (var)), vr->max) == 1)
10572 *a = vrp_val_min (TREE_TYPE (var));
10573 *b = vrp_val_max (TREE_TYPE (var));
10574 return true;
10577 return false;
10580 /* Simplify STMT using ranges if possible. */
10582 static bool
10583 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
10585 gimple *stmt = gsi_stmt (*gsi);
10586 if (is_gimple_assign (stmt))
10588 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
10589 tree rhs1 = gimple_assign_rhs1 (stmt);
10590 tree rhs2 = gimple_assign_rhs2 (stmt);
10591 tree lhs = gimple_assign_lhs (stmt);
10592 tree val1 = NULL_TREE, val2 = NULL_TREE;
10593 use_operand_p use_p;
10594 gimple *use_stmt;
10596 /* Convert:
10597 LHS = CST BINOP VAR
10598 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10600 LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
10602 Also handles:
10603 LHS = VAR BINOP CST
10604 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10606 LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
10608 if (TREE_CODE_CLASS (rhs_code) == tcc_binary
10609 && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10610 && ((TREE_CODE (rhs1) == INTEGER_CST
10611 && TREE_CODE (rhs2) == SSA_NAME)
10612 || (TREE_CODE (rhs2) == INTEGER_CST
10613 && TREE_CODE (rhs1) == SSA_NAME))
10614 && single_imm_use (lhs, &use_p, &use_stmt)
10615 && gimple_code (use_stmt) == GIMPLE_COND)
10618 tree new_rhs1 = NULL_TREE;
10619 tree new_rhs2 = NULL_TREE;
10620 tree cmp_var = NULL_TREE;
10622 if (TREE_CODE (rhs2) == SSA_NAME
10623 && two_valued_val_range_p (rhs2, &val1, &val2))
10625 /* Optimize RHS1 OP [VAL1, VAL2]. */
10626 new_rhs1 = int_const_binop (rhs_code, rhs1, val1);
10627 new_rhs2 = int_const_binop (rhs_code, rhs1, val2);
10628 cmp_var = rhs2;
10630 else if (TREE_CODE (rhs1) == SSA_NAME
10631 && two_valued_val_range_p (rhs1, &val1, &val2))
10633 /* Optimize [VAL1, VAL2] OP RHS2. */
10634 new_rhs1 = int_const_binop (rhs_code, val1, rhs2);
10635 new_rhs2 = int_const_binop (rhs_code, val2, rhs2);
10636 cmp_var = rhs1;
10639 /* If we could not find two-vals or the optimzation is invalid as
10640 in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */
10641 if (new_rhs1 && new_rhs2)
10643 tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1);
10644 gimple_assign_set_rhs_with_ops (gsi,
10645 COND_EXPR, cond,
10646 new_rhs1,
10647 new_rhs2);
10648 update_stmt (gsi_stmt (*gsi));
10649 fold_stmt (gsi, follow_single_use_edges);
10650 return true;
10654 switch (rhs_code)
10656 case EQ_EXPR:
10657 case NE_EXPR:
10658 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
10659 if the RHS is zero or one, and the LHS are known to be boolean
10660 values. */
10661 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10662 return simplify_truth_ops_using_ranges (gsi, stmt);
10663 break;
10665 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
10666 and BIT_AND_EXPR respectively if the first operand is greater
10667 than zero and the second operand is an exact power of two.
10668 Also optimize TRUNC_MOD_EXPR away if the second operand is
10669 constant and the first operand already has the right value
10670 range. */
10671 case TRUNC_DIV_EXPR:
10672 case TRUNC_MOD_EXPR:
10673 if ((TREE_CODE (rhs1) == SSA_NAME
10674 || TREE_CODE (rhs1) == INTEGER_CST)
10675 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10676 return simplify_div_or_mod_using_ranges (gsi, stmt);
10677 break;
10679 /* Transform ABS (X) into X or -X as appropriate. */
10680 case ABS_EXPR:
10681 if (TREE_CODE (rhs1) == SSA_NAME
10682 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10683 return simplify_abs_using_ranges (gsi, stmt);
10684 break;
10686 case BIT_AND_EXPR:
10687 case BIT_IOR_EXPR:
10688 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
10689 if all the bits being cleared are already cleared or
10690 all the bits being set are already set. */
10691 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10692 return simplify_bit_ops_using_ranges (gsi, stmt);
10693 break;
10695 CASE_CONVERT:
10696 if (TREE_CODE (rhs1) == SSA_NAME
10697 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10698 return simplify_conversion_using_ranges (gsi, stmt);
10699 break;
10701 case FLOAT_EXPR:
10702 if (TREE_CODE (rhs1) == SSA_NAME
10703 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10704 return simplify_float_conversion_using_ranges (gsi, stmt);
10705 break;
10707 case MIN_EXPR:
10708 case MAX_EXPR:
10709 return simplify_min_or_max_using_ranges (gsi, stmt);
10711 default:
10712 break;
10715 else if (gimple_code (stmt) == GIMPLE_COND)
10716 return simplify_cond_using_ranges (as_a <gcond *> (stmt));
10717 else if (gimple_code (stmt) == GIMPLE_SWITCH)
10718 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
10719 else if (is_gimple_call (stmt)
10720 && gimple_call_internal_p (stmt))
10721 return simplify_internal_call_using_ranges (gsi, stmt);
10723 return false;
10726 /* If the statement pointed by SI has a predicate whose value can be
10727 computed using the value range information computed by VRP, compute
10728 its value and return true. Otherwise, return false. */
10730 static bool
10731 fold_predicate_in (gimple_stmt_iterator *si)
10733 bool assignment_p = false;
10734 tree val;
10735 gimple *stmt = gsi_stmt (*si);
10737 if (is_gimple_assign (stmt)
10738 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
10740 assignment_p = true;
10741 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
10742 gimple_assign_rhs1 (stmt),
10743 gimple_assign_rhs2 (stmt),
10744 stmt);
10746 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10747 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10748 gimple_cond_lhs (cond_stmt),
10749 gimple_cond_rhs (cond_stmt),
10750 stmt);
10751 else
10752 return false;
10754 if (val)
10756 if (assignment_p)
10757 val = fold_convert (gimple_expr_type (stmt), val);
10759 if (dump_file)
10761 fprintf (dump_file, "Folding predicate ");
10762 print_gimple_expr (dump_file, stmt, 0, 0);
10763 fprintf (dump_file, " to ");
10764 print_generic_expr (dump_file, val, 0);
10765 fprintf (dump_file, "\n");
10768 if (is_gimple_assign (stmt))
10769 gimple_assign_set_rhs_from_tree (si, val);
10770 else
10772 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
10773 gcond *cond_stmt = as_a <gcond *> (stmt);
10774 if (integer_zerop (val))
10775 gimple_cond_make_false (cond_stmt);
10776 else if (integer_onep (val))
10777 gimple_cond_make_true (cond_stmt);
10778 else
10779 gcc_unreachable ();
10782 return true;
10785 return false;
10788 /* Callback for substitute_and_fold folding the stmt at *SI. */
10790 static bool
10791 vrp_fold_stmt (gimple_stmt_iterator *si)
10793 if (fold_predicate_in (si))
10794 return true;
10796 return simplify_stmt_using_ranges (si);
10799 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
10800 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
10801 BB. If no such ASSERT_EXPR is found, return OP. */
10803 static tree
10804 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
10806 imm_use_iterator imm_iter;
10807 gimple *use_stmt;
10808 use_operand_p use_p;
10810 if (TREE_CODE (op) == SSA_NAME)
10812 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
10814 use_stmt = USE_STMT (use_p);
10815 if (use_stmt != stmt
10816 && gimple_assign_single_p (use_stmt)
10817 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
10818 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
10819 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
10820 return gimple_assign_lhs (use_stmt);
10823 return op;
10826 /* A trivial wrapper so that we can present the generic jump threading
10827 code with a simple API for simplifying statements. STMT is the
10828 statement we want to simplify, WITHIN_STMT provides the location
10829 for any overflow warnings. */
10831 static tree
10832 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
10833 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED,
10834 basic_block bb)
10836 /* First see if the conditional is in the hash table. */
10837 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
10838 if (cached_lhs && is_gimple_min_invariant (cached_lhs))
10839 return cached_lhs;
10841 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10843 tree op0 = gimple_cond_lhs (cond_stmt);
10844 op0 = lhs_of_dominating_assert (op0, bb, stmt);
10846 tree op1 = gimple_cond_rhs (cond_stmt);
10847 op1 = lhs_of_dominating_assert (op1, bb, stmt);
10849 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10850 op0, op1, within_stmt);
10853 /* We simplify a switch statement by trying to determine which case label
10854 will be taken. If we are successful then we return the corresponding
10855 CASE_LABEL_EXPR. */
10856 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
10858 tree op = gimple_switch_index (switch_stmt);
10859 if (TREE_CODE (op) != SSA_NAME)
10860 return NULL_TREE;
10862 op = lhs_of_dominating_assert (op, bb, stmt);
10864 value_range *vr = get_value_range (op);
10865 if ((vr->type != VR_RANGE && vr->type != VR_ANTI_RANGE)
10866 || symbolic_range_p (vr))
10867 return NULL_TREE;
10869 if (vr->type == VR_RANGE)
10871 size_t i, j;
10872 /* Get the range of labels that contain a part of the operand's
10873 value range. */
10874 find_case_label_range (switch_stmt, vr->min, vr->max, &i, &j);
10876 /* Is there only one such label? */
10877 if (i == j)
10879 tree label = gimple_switch_label (switch_stmt, i);
10881 /* The i'th label will be taken only if the value range of the
10882 operand is entirely within the bounds of this label. */
10883 if (CASE_HIGH (label) != NULL_TREE
10884 ? (tree_int_cst_compare (CASE_LOW (label), vr->min) <= 0
10885 && tree_int_cst_compare (CASE_HIGH (label), vr->max) >= 0)
10886 : (tree_int_cst_equal (CASE_LOW (label), vr->min)
10887 && tree_int_cst_equal (vr->min, vr->max)))
10888 return label;
10891 /* If there are no such labels then the default label will be
10892 taken. */
10893 if (i > j)
10894 return gimple_switch_label (switch_stmt, 0);
10897 if (vr->type == VR_ANTI_RANGE)
10899 unsigned n = gimple_switch_num_labels (switch_stmt);
10900 tree min_label = gimple_switch_label (switch_stmt, 1);
10901 tree max_label = gimple_switch_label (switch_stmt, n - 1);
10903 /* The default label will be taken only if the anti-range of the
10904 operand is entirely outside the bounds of all the (non-default)
10905 case labels. */
10906 if (tree_int_cst_compare (vr->min, CASE_LOW (min_label)) <= 0
10907 && (CASE_HIGH (max_label) != NULL_TREE
10908 ? tree_int_cst_compare (vr->max, CASE_HIGH (max_label)) >= 0
10909 : tree_int_cst_compare (vr->max, CASE_LOW (max_label)) >= 0))
10910 return gimple_switch_label (switch_stmt, 0);
10913 return NULL_TREE;
10916 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10918 value_range new_vr = VR_INITIALIZER;
10919 tree lhs = gimple_assign_lhs (assign_stmt);
10921 if (TREE_CODE (lhs) == SSA_NAME
10922 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10923 || POINTER_TYPE_P (TREE_TYPE (lhs))))
10925 extract_range_from_assignment (&new_vr, assign_stmt);
10926 if (range_int_cst_singleton_p (&new_vr))
10927 return new_vr.min;
10931 return NULL_TREE;
10934 class vrp_dom_walker : public dom_walker
10936 public:
10937 vrp_dom_walker (cdi_direction direction,
10938 class const_and_copies *const_and_copies,
10939 class avail_exprs_stack *avail_exprs_stack)
10940 : dom_walker (direction, true),
10941 m_const_and_copies (const_and_copies),
10942 m_avail_exprs_stack (avail_exprs_stack),
10943 m_dummy_cond (NULL) {}
10945 virtual edge before_dom_children (basic_block);
10946 virtual void after_dom_children (basic_block);
10948 private:
10949 class const_and_copies *m_const_and_copies;
10950 class avail_exprs_stack *m_avail_exprs_stack;
10952 gcond *m_dummy_cond;
10955 /* Called before processing dominator children of BB. We want to look
10956 at ASSERT_EXPRs and record information from them in the appropriate
10957 tables.
10959 We could look at other statements here. It's not seen as likely
10960 to significantly increase the jump threads we discover. */
10962 edge
10963 vrp_dom_walker::before_dom_children (basic_block bb)
10965 gimple_stmt_iterator gsi;
10967 for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
10969 gimple *stmt = gsi_stmt (gsi);
10970 if (gimple_assign_single_p (stmt)
10971 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
10973 tree rhs1 = gimple_assign_rhs1 (stmt);
10974 tree cond = TREE_OPERAND (rhs1, 1);
10975 tree inverted = invert_truthvalue (cond);
10976 vec<cond_equivalence> p;
10977 p.create (3);
10978 record_conditions (&p, cond, inverted);
10979 for (unsigned int i = 0; i < p.length (); i++)
10980 m_avail_exprs_stack->record_cond (&p[i]);
10982 tree lhs = gimple_assign_lhs (stmt);
10983 m_const_and_copies->record_const_or_copy (lhs,
10984 TREE_OPERAND (rhs1, 0));
10985 p.release ();
10986 continue;
10988 break;
10990 return NULL;
10993 /* Called after processing dominator children of BB. This is where we
10994 actually call into the threader. */
10995 void
10996 vrp_dom_walker::after_dom_children (basic_block bb)
10998 if (!m_dummy_cond)
10999 m_dummy_cond = gimple_build_cond (NE_EXPR,
11000 integer_zero_node, integer_zero_node,
11001 NULL, NULL);
11003 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
11004 m_avail_exprs_stack,
11005 simplify_stmt_for_jump_threading);
11007 m_avail_exprs_stack->pop_to_marker ();
11008 m_const_and_copies->pop_to_marker ();
11011 /* Blocks which have more than one predecessor and more than
11012 one successor present jump threading opportunities, i.e.,
11013 when the block is reached from a specific predecessor, we
11014 may be able to determine which of the outgoing edges will
11015 be traversed. When this optimization applies, we are able
11016 to avoid conditionals at runtime and we may expose secondary
11017 optimization opportunities.
11019 This routine is effectively a driver for the generic jump
11020 threading code. It basically just presents the generic code
11021 with edges that may be suitable for jump threading.
11023 Unlike DOM, we do not iterate VRP if jump threading was successful.
11024 While iterating may expose new opportunities for VRP, it is expected
11025 those opportunities would be very limited and the compile time cost
11026 to expose those opportunities would be significant.
11028 As jump threading opportunities are discovered, they are registered
11029 for later realization. */
11031 static void
11032 identify_jump_threads (void)
11034 int i;
11035 edge e;
11037 /* Ugh. When substituting values earlier in this pass we can
11038 wipe the dominance information. So rebuild the dominator
11039 information as we need it within the jump threading code. */
11040 calculate_dominance_info (CDI_DOMINATORS);
11042 /* We do not allow VRP information to be used for jump threading
11043 across a back edge in the CFG. Otherwise it becomes too
11044 difficult to avoid eliminating loop exit tests. Of course
11045 EDGE_DFS_BACK is not accurate at this time so we have to
11046 recompute it. */
11047 mark_dfs_back_edges ();
11049 /* Do not thread across edges we are about to remove. Just marking
11050 them as EDGE_IGNORE will do. */
11051 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
11052 e->flags |= EDGE_IGNORE;
11054 /* Allocate our unwinder stack to unwind any temporary equivalences
11055 that might be recorded. */
11056 const_and_copies *equiv_stack = new const_and_copies ();
11058 hash_table<expr_elt_hasher> *avail_exprs
11059 = new hash_table<expr_elt_hasher> (1024);
11060 avail_exprs_stack *avail_exprs_stack
11061 = new class avail_exprs_stack (avail_exprs);
11063 vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack);
11064 walker.walk (cfun->cfg->x_entry_block_ptr);
11066 /* Clear EDGE_IGNORE. */
11067 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
11068 e->flags &= ~EDGE_IGNORE;
11070 /* We do not actually update the CFG or SSA graphs at this point as
11071 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
11072 handle ASSERT_EXPRs gracefully. */
11073 delete equiv_stack;
11074 delete avail_exprs;
11075 delete avail_exprs_stack;
11078 /* Free VRP lattice. */
11080 static void
11081 vrp_free_lattice ()
11083 /* Free allocated memory. */
11084 free (vr_value);
11085 free (vr_phi_edge_counts);
11086 bitmap_obstack_release (&vrp_equiv_obstack);
11087 vrp_value_range_pool.release ();
11089 /* So that we can distinguish between VRP data being available
11090 and not available. */
11091 vr_value = NULL;
11092 vr_phi_edge_counts = NULL;
11095 /* Traverse all the blocks folding conditionals with known ranges. */
11097 static void
11098 vrp_finalize (bool warn_array_bounds_p)
11100 size_t i;
11102 values_propagated = true;
11104 if (dump_file)
11106 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
11107 dump_all_value_ranges (dump_file);
11108 fprintf (dump_file, "\n");
11111 /* Set value range to non pointer SSA_NAMEs. */
11112 for (i = 0; i < num_vr_values; i++)
11113 if (vr_value[i])
11115 tree name = ssa_name (i);
11117 if (!name
11118 || (vr_value[i]->type == VR_VARYING)
11119 || (vr_value[i]->type == VR_UNDEFINED)
11120 || (TREE_CODE (vr_value[i]->min) != INTEGER_CST)
11121 || (TREE_CODE (vr_value[i]->max) != INTEGER_CST))
11122 continue;
11124 if (POINTER_TYPE_P (TREE_TYPE (name))
11125 && ((vr_value[i]->type == VR_RANGE
11126 && range_includes_zero_p (vr_value[i]->min,
11127 vr_value[i]->max) == 0)
11128 || (vr_value[i]->type == VR_ANTI_RANGE
11129 && range_includes_zero_p (vr_value[i]->min,
11130 vr_value[i]->max) == 1)))
11131 set_ptr_nonnull (name);
11132 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
11133 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
11134 vr_value[i]->max);
11137 substitute_and_fold (op_with_constant_singleton_value_range, vrp_fold_stmt);
11139 if (warn_array_bounds && warn_array_bounds_p)
11140 check_all_array_refs ();
11143 /* evrp_dom_walker visits the basic blocks in the dominance order and set
11144 the Value Ranges (VR) for SSA_NAMEs in the scope. Use this VR to
11145 discover more VRs. */
11147 class evrp_dom_walker : public dom_walker
11149 public:
11150 evrp_dom_walker ()
11151 : dom_walker (CDI_DOMINATORS), stack (10)
11153 need_eh_cleanup = BITMAP_ALLOC (NULL);
11155 ~evrp_dom_walker ()
11157 BITMAP_FREE (need_eh_cleanup);
11159 virtual edge before_dom_children (basic_block);
11160 virtual void after_dom_children (basic_block);
11161 void push_value_range (tree var, value_range *vr);
11162 value_range *pop_value_range (tree var);
11163 value_range *try_find_new_range (tree op, tree_code code, tree limit);
11165 /* Cond_stack holds the old VR. */
11166 auto_vec<std::pair <tree, value_range*> > stack;
11167 bitmap need_eh_cleanup;
11168 auto_vec<gimple *> stmts_to_fixup;
11169 auto_vec<gimple *> stmts_to_remove;
11172 /* Find new range for OP such that (OP CODE LIMIT) is true. */
11174 value_range *
11175 evrp_dom_walker::try_find_new_range (tree op, tree_code code, tree limit)
11177 value_range vr = VR_INITIALIZER;
11178 value_range *old_vr = get_value_range (op);
11180 /* Discover VR when condition is true. */
11181 extract_range_for_var_from_comparison_expr (op, code, op,
11182 limit, &vr);
11183 if (old_vr->type == VR_RANGE || old_vr->type == VR_ANTI_RANGE)
11184 vrp_intersect_ranges (&vr, old_vr);
11185 /* If we found any usable VR, set the VR to ssa_name and create a
11186 PUSH old value in the stack with the old VR. */
11187 if (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE)
11189 if (old_vr->type == vr.type
11190 && vrp_operand_equal_p (old_vr->min, vr.min)
11191 && vrp_operand_equal_p (old_vr->max, vr.max))
11192 return NULL;
11193 value_range *new_vr = vrp_value_range_pool.allocate ();
11194 *new_vr = vr;
11195 return new_vr;
11197 return NULL;
11200 /* See if there is any new scope is entered with new VR and set that VR to
11201 ssa_name before visiting the statements in the scope. */
11203 edge
11204 evrp_dom_walker::before_dom_children (basic_block bb)
11206 tree op0 = NULL_TREE;
11207 edge_iterator ei;
11208 edge e;
11210 if (dump_file && (dump_flags & TDF_DETAILS))
11211 fprintf (dump_file, "Visiting BB%d\n", bb->index);
11213 stack.safe_push (std::make_pair (NULL_TREE, (value_range *)NULL));
11215 edge pred_e = NULL;
11216 FOR_EACH_EDGE (e, ei, bb->preds)
11218 /* Ignore simple backedges from this to allow recording conditions
11219 in loop headers. */
11220 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
11221 continue;
11222 if (! pred_e)
11223 pred_e = e;
11224 else
11226 pred_e = NULL;
11227 break;
11230 if (pred_e)
11232 gimple *stmt = last_stmt (pred_e->src);
11233 if (stmt
11234 && gimple_code (stmt) == GIMPLE_COND
11235 && (op0 = gimple_cond_lhs (stmt))
11236 && TREE_CODE (op0) == SSA_NAME
11237 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))
11238 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))))
11240 if (dump_file && (dump_flags & TDF_DETAILS))
11242 fprintf (dump_file, "Visiting controlling predicate ");
11243 print_gimple_stmt (dump_file, stmt, 0, 0);
11245 /* Entering a new scope. Try to see if we can find a VR
11246 here. */
11247 tree op1 = gimple_cond_rhs (stmt);
11248 tree_code code = gimple_cond_code (stmt);
11250 if (TREE_OVERFLOW_P (op1))
11251 op1 = drop_tree_overflow (op1);
11253 /* If condition is false, invert the cond. */
11254 if (pred_e->flags & EDGE_FALSE_VALUE)
11255 code = invert_tree_comparison (gimple_cond_code (stmt),
11256 HONOR_NANS (op0));
11257 /* Add VR when (OP0 CODE OP1) condition is true. */
11258 value_range *op0_range = try_find_new_range (op0, code, op1);
11260 /* Register ranges for y in x < y where
11261 y might have ranges that are useful. */
11262 tree limit;
11263 tree_code new_code;
11264 if (TREE_CODE (op1) == SSA_NAME
11265 && extract_code_and_val_from_cond_with_ops (op1, code,
11266 op0, op1,
11267 false,
11268 &new_code, &limit))
11270 /* Add VR when (OP1 NEW_CODE LIMIT) condition is true. */
11271 value_range *op1_range = try_find_new_range (op1, new_code, limit);
11272 if (op1_range)
11273 push_value_range (op1, op1_range);
11276 if (op0_range)
11277 push_value_range (op0, op0_range);
11281 /* Visit PHI stmts and discover any new VRs possible. */
11282 bool has_unvisited_preds = false;
11283 FOR_EACH_EDGE (e, ei, bb->preds)
11284 if (e->flags & EDGE_EXECUTABLE
11285 && !(e->src->flags & BB_VISITED))
11287 has_unvisited_preds = true;
11288 break;
11291 for (gphi_iterator gpi = gsi_start_phis (bb);
11292 !gsi_end_p (gpi); gsi_next (&gpi))
11294 gphi *phi = gpi.phi ();
11295 tree lhs = PHI_RESULT (phi);
11296 if (virtual_operand_p (lhs))
11297 continue;
11298 value_range vr_result = VR_INITIALIZER;
11299 bool interesting = stmt_interesting_for_vrp (phi);
11300 if (interesting && dump_file && (dump_flags & TDF_DETAILS))
11302 fprintf (dump_file, "Visiting PHI node ");
11303 print_gimple_stmt (dump_file, phi, 0, 0);
11305 if (!has_unvisited_preds
11306 && interesting)
11307 extract_range_from_phi_node (phi, &vr_result);
11308 else
11310 set_value_range_to_varying (&vr_result);
11311 /* When we have an unvisited executable predecessor we can't
11312 use PHI arg ranges which may be still UNDEFINED but have
11313 to use VARYING for them. But we can still resort to
11314 SCEV for loop header PHIs. */
11315 struct loop *l;
11316 if (interesting
11317 && (l = loop_containing_stmt (phi))
11318 && l->header == gimple_bb (phi))
11319 adjust_range_with_scev (&vr_result, l, phi, lhs);
11321 update_value_range (lhs, &vr_result);
11323 /* Mark PHIs whose lhs we fully propagate for removal. */
11324 tree val = op_with_constant_singleton_value_range (lhs);
11325 if (val && may_propagate_copy (lhs, val))
11327 stmts_to_remove.safe_push (phi);
11328 continue;
11331 /* Set the SSA with the value range. */
11332 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
11334 if ((vr_result.type == VR_RANGE
11335 || vr_result.type == VR_ANTI_RANGE)
11336 && (TREE_CODE (vr_result.min) == INTEGER_CST)
11337 && (TREE_CODE (vr_result.max) == INTEGER_CST))
11338 set_range_info (lhs,
11339 vr_result.type, vr_result.min, vr_result.max);
11341 else if (POINTER_TYPE_P (TREE_TYPE (lhs))
11342 && ((vr_result.type == VR_RANGE
11343 && range_includes_zero_p (vr_result.min,
11344 vr_result.max) == 0)
11345 || (vr_result.type == VR_ANTI_RANGE
11346 && range_includes_zero_p (vr_result.min,
11347 vr_result.max) == 1)))
11348 set_ptr_nonnull (lhs);
11351 edge taken_edge = NULL;
11353 /* Visit all other stmts and discover any new VRs possible. */
11354 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
11355 !gsi_end_p (gsi); gsi_next (&gsi))
11357 gimple *stmt = gsi_stmt (gsi);
11358 tree output = NULL_TREE;
11359 gimple *old_stmt = stmt;
11360 bool was_noreturn = (is_gimple_call (stmt)
11361 && gimple_call_noreturn_p (stmt));
11363 if (dump_file && (dump_flags & TDF_DETAILS))
11365 fprintf (dump_file, "Visiting stmt ");
11366 print_gimple_stmt (dump_file, stmt, 0, 0);
11369 if (gcond *cond = dyn_cast <gcond *> (stmt))
11371 vrp_visit_cond_stmt (cond, &taken_edge);
11372 if (taken_edge)
11374 if (taken_edge->flags & EDGE_TRUE_VALUE)
11375 gimple_cond_make_true (cond);
11376 else if (taken_edge->flags & EDGE_FALSE_VALUE)
11377 gimple_cond_make_false (cond);
11378 else
11379 gcc_unreachable ();
11380 update_stmt (stmt);
11383 else if (stmt_interesting_for_vrp (stmt))
11385 edge taken_edge;
11386 value_range vr = VR_INITIALIZER;
11387 extract_range_from_stmt (stmt, &taken_edge, &output, &vr);
11388 if (output
11389 && (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE))
11391 update_value_range (output, &vr);
11392 vr = *get_value_range (output);
11394 /* Mark stmts whose output we fully propagate for removal. */
11395 tree val;
11396 if ((val = op_with_constant_singleton_value_range (output))
11397 && may_propagate_copy (output, val)
11398 && !stmt_could_throw_p (stmt)
11399 && !gimple_has_side_effects (stmt))
11401 stmts_to_remove.safe_push (stmt);
11402 continue;
11405 /* Set the SSA with the value range. */
11406 if (INTEGRAL_TYPE_P (TREE_TYPE (output)))
11408 if ((vr.type == VR_RANGE
11409 || vr.type == VR_ANTI_RANGE)
11410 && (TREE_CODE (vr.min) == INTEGER_CST)
11411 && (TREE_CODE (vr.max) == INTEGER_CST))
11412 set_range_info (output, vr.type, vr.min, vr.max);
11414 else if (POINTER_TYPE_P (TREE_TYPE (output))
11415 && ((vr.type == VR_RANGE
11416 && range_includes_zero_p (vr.min,
11417 vr.max) == 0)
11418 || (vr.type == VR_ANTI_RANGE
11419 && range_includes_zero_p (vr.min,
11420 vr.max) == 1)))
11421 set_ptr_nonnull (output);
11423 else
11424 set_defs_to_varying (stmt);
11426 else
11427 set_defs_to_varying (stmt);
11429 /* See if we can derive a range for any of STMT's operands. */
11430 tree op;
11431 ssa_op_iter i;
11432 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
11434 tree value;
11435 enum tree_code comp_code;
11437 /* If OP is used in such a way that we can infer a value
11438 range for it, and we don't find a previous assertion for
11439 it, create a new assertion location node for OP. */
11440 if (infer_value_range (stmt, op, &comp_code, &value))
11442 /* If we are able to infer a nonzero value range for OP,
11443 then walk backwards through the use-def chain to see if OP
11444 was set via a typecast.
11445 If so, then we can also infer a nonzero value range
11446 for the operand of the NOP_EXPR. */
11447 if (comp_code == NE_EXPR && integer_zerop (value))
11449 tree t = op;
11450 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
11451 while (is_gimple_assign (def_stmt)
11452 && CONVERT_EXPR_CODE_P
11453 (gimple_assign_rhs_code (def_stmt))
11454 && TREE_CODE
11455 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
11456 && POINTER_TYPE_P
11457 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
11459 t = gimple_assign_rhs1 (def_stmt);
11460 def_stmt = SSA_NAME_DEF_STMT (t);
11462 /* Add VR when (T COMP_CODE value) condition is
11463 true. */
11464 value_range *op_range
11465 = try_find_new_range (t, comp_code, value);
11466 if (op_range)
11467 push_value_range (t, op_range);
11470 /* Add VR when (OP COMP_CODE value) condition is true. */
11471 value_range *op_range = try_find_new_range (op,
11472 comp_code, value);
11473 if (op_range)
11474 push_value_range (op, op_range);
11478 /* Try folding stmts with the VR discovered. */
11479 bool did_replace
11480 = replace_uses_in (stmt, op_with_constant_singleton_value_range);
11481 if (fold_stmt (&gsi, follow_single_use_edges)
11482 || did_replace)
11484 stmt = gsi_stmt (gsi);
11485 update_stmt (stmt);
11486 did_replace = true;
11489 if (did_replace)
11491 /* If we cleaned up EH information from the statement,
11492 remove EH edges. */
11493 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
11494 bitmap_set_bit (need_eh_cleanup, bb->index);
11496 /* If we turned a not noreturn call into a noreturn one
11497 schedule it for fixup. */
11498 if (!was_noreturn
11499 && is_gimple_call (stmt)
11500 && gimple_call_noreturn_p (stmt))
11501 stmts_to_fixup.safe_push (stmt);
11503 if (gimple_assign_single_p (stmt))
11505 tree rhs = gimple_assign_rhs1 (stmt);
11506 if (TREE_CODE (rhs) == ADDR_EXPR)
11507 recompute_tree_invariant_for_addr_expr (rhs);
11512 /* Visit BB successor PHI nodes and replace PHI args. */
11513 FOR_EACH_EDGE (e, ei, bb->succs)
11515 for (gphi_iterator gpi = gsi_start_phis (e->dest);
11516 !gsi_end_p (gpi); gsi_next (&gpi))
11518 gphi *phi = gpi.phi ();
11519 use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
11520 tree arg = USE_FROM_PTR (use_p);
11521 if (TREE_CODE (arg) != SSA_NAME
11522 || virtual_operand_p (arg))
11523 continue;
11524 tree val = op_with_constant_singleton_value_range (arg);
11525 if (val && may_propagate_copy (arg, val))
11526 propagate_value (use_p, val);
11530 bb->flags |= BB_VISITED;
11532 return taken_edge;
11535 /* Restore/pop VRs valid only for BB when we leave BB. */
11537 void
11538 evrp_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
11540 gcc_checking_assert (!stack.is_empty ());
11541 while (stack.last ().first != NULL_TREE)
11542 pop_value_range (stack.last ().first);
11543 stack.pop ();
11546 /* Push the Value Range of VAR to the stack and update it with new VR. */
11548 void
11549 evrp_dom_walker::push_value_range (tree var, value_range *vr)
11551 if (SSA_NAME_VERSION (var) >= num_vr_values)
11552 return;
11553 if (dump_file && (dump_flags & TDF_DETAILS))
11555 fprintf (dump_file, "pushing new range for ");
11556 print_generic_expr (dump_file, var, 0);
11557 fprintf (dump_file, ": ");
11558 dump_value_range (dump_file, vr);
11559 fprintf (dump_file, "\n");
11561 stack.safe_push (std::make_pair (var, get_value_range (var)));
11562 vr_value[SSA_NAME_VERSION (var)] = vr;
11565 /* Pop the Value Range from the vrp_stack and update VAR with it. */
11567 value_range *
11568 evrp_dom_walker::pop_value_range (tree var)
11570 value_range *vr = stack.last ().second;
11571 gcc_checking_assert (var == stack.last ().first);
11572 if (dump_file && (dump_flags & TDF_DETAILS))
11574 fprintf (dump_file, "popping range for ");
11575 print_generic_expr (dump_file, var, 0);
11576 fprintf (dump_file, ", restoring ");
11577 dump_value_range (dump_file, vr);
11578 fprintf (dump_file, "\n");
11580 vr_value[SSA_NAME_VERSION (var)] = vr;
11581 stack.pop ();
11582 return vr;
11586 /* Main entry point for the early vrp pass which is a simplified non-iterative
11587 version of vrp where basic blocks are visited in dominance order. Value
11588 ranges discovered in early vrp will also be used by ipa-vrp. */
11590 static unsigned int
11591 execute_early_vrp ()
11593 edge e;
11594 edge_iterator ei;
11595 basic_block bb;
11597 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11598 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11599 scev_initialize ();
11600 calculate_dominance_info (CDI_DOMINATORS);
11601 FOR_EACH_BB_FN (bb, cfun)
11603 bb->flags &= ~BB_VISITED;
11604 FOR_EACH_EDGE (e, ei, bb->preds)
11605 e->flags |= EDGE_EXECUTABLE;
11607 vrp_initialize_lattice ();
11609 /* Walk stmts in dominance order and propagate VRP. */
11610 evrp_dom_walker walker;
11611 walker.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
11613 if (dump_file)
11615 fprintf (dump_file, "\nValue ranges after Early VRP:\n\n");
11616 dump_all_value_ranges (dump_file);
11617 fprintf (dump_file, "\n");
11620 /* Remove stmts in reverse order to make debug stmt creation possible. */
11621 while (! walker.stmts_to_remove.is_empty ())
11623 gimple *stmt = walker.stmts_to_remove.pop ();
11624 if (dump_file && dump_flags & TDF_DETAILS)
11626 fprintf (dump_file, "Removing dead stmt ");
11627 print_gimple_stmt (dump_file, stmt, 0, 0);
11628 fprintf (dump_file, "\n");
11630 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
11631 if (gimple_code (stmt) == GIMPLE_PHI)
11632 remove_phi_node (&gsi, true);
11633 else
11635 unlink_stmt_vdef (stmt);
11636 gsi_remove (&gsi, true);
11637 release_defs (stmt);
11641 if (!bitmap_empty_p (walker.need_eh_cleanup))
11642 gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
11644 /* Fixup stmts that became noreturn calls. This may require splitting
11645 blocks and thus isn't possible during the dominator walk. Do this
11646 in reverse order so we don't inadvertedly remove a stmt we want to
11647 fixup by visiting a dominating now noreturn call first. */
11648 while (!walker.stmts_to_fixup.is_empty ())
11650 gimple *stmt = walker.stmts_to_fixup.pop ();
11651 fixup_noreturn_call (stmt);
11654 vrp_free_lattice ();
11655 scev_finalize ();
11656 loop_optimizer_finalize ();
11657 return 0;
11661 /* Main entry point to VRP (Value Range Propagation). This pass is
11662 loosely based on J. R. C. Patterson, ``Accurate Static Branch
11663 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
11664 Programming Language Design and Implementation, pp. 67-78, 1995.
11665 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
11667 This is essentially an SSA-CCP pass modified to deal with ranges
11668 instead of constants.
11670 While propagating ranges, we may find that two or more SSA name
11671 have equivalent, though distinct ranges. For instance,
11673 1 x_9 = p_3->a;
11674 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
11675 3 if (p_4 == q_2)
11676 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
11677 5 endif
11678 6 if (q_2)
11680 In the code above, pointer p_5 has range [q_2, q_2], but from the
11681 code we can also determine that p_5 cannot be NULL and, if q_2 had
11682 a non-varying range, p_5's range should also be compatible with it.
11684 These equivalences are created by two expressions: ASSERT_EXPR and
11685 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
11686 result of another assertion, then we can use the fact that p_5 and
11687 p_4 are equivalent when evaluating p_5's range.
11689 Together with value ranges, we also propagate these equivalences
11690 between names so that we can take advantage of information from
11691 multiple ranges when doing final replacement. Note that this
11692 equivalency relation is transitive but not symmetric.
11694 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
11695 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
11696 in contexts where that assertion does not hold (e.g., in line 6).
11698 TODO, the main difference between this pass and Patterson's is that
11699 we do not propagate edge probabilities. We only compute whether
11700 edges can be taken or not. That is, instead of having a spectrum
11701 of jump probabilities between 0 and 1, we only deal with 0, 1 and
11702 DON'T KNOW. In the future, it may be worthwhile to propagate
11703 probabilities to aid branch prediction. */
11705 static unsigned int
11706 execute_vrp (bool warn_array_bounds_p)
11708 int i;
11709 edge e;
11710 switch_update *su;
11712 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11713 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11714 scev_initialize ();
11716 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
11717 Inserting assertions may split edges which will invalidate
11718 EDGE_DFS_BACK. */
11719 insert_range_assertions ();
11721 to_remove_edges.create (10);
11722 to_update_switch_stmts.create (5);
11723 threadedge_initialize_values ();
11725 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
11726 mark_dfs_back_edges ();
11728 vrp_initialize_lattice ();
11729 vrp_initialize ();
11730 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
11731 vrp_finalize (warn_array_bounds_p);
11733 /* We must identify jump threading opportunities before we release
11734 the datastructures built by VRP. */
11735 identify_jump_threads ();
11737 vrp_free_lattice ();
11739 free_numbers_of_iterations_estimates (cfun);
11741 /* ASSERT_EXPRs must be removed before finalizing jump threads
11742 as finalizing jump threads calls the CFG cleanup code which
11743 does not properly handle ASSERT_EXPRs. */
11744 remove_range_assertions ();
11746 /* If we exposed any new variables, go ahead and put them into
11747 SSA form now, before we handle jump threading. This simplifies
11748 interactions between rewriting of _DECL nodes into SSA form
11749 and rewriting SSA_NAME nodes into SSA form after block
11750 duplication and CFG manipulation. */
11751 update_ssa (TODO_update_ssa);
11753 /* We identified all the jump threading opportunities earlier, but could
11754 not transform the CFG at that time. This routine transforms the
11755 CFG and arranges for the dominator tree to be rebuilt if necessary.
11757 Note the SSA graph update will occur during the normal TODO
11758 processing by the pass manager. */
11759 thread_through_all_blocks (false);
11761 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
11762 CFG in a broken state and requires a cfg_cleanup run. */
11763 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
11764 remove_edge (e);
11765 /* Update SWITCH_EXPR case label vector. */
11766 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
11768 size_t j;
11769 size_t n = TREE_VEC_LENGTH (su->vec);
11770 tree label;
11771 gimple_switch_set_num_labels (su->stmt, n);
11772 for (j = 0; j < n; j++)
11773 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
11774 /* As we may have replaced the default label with a regular one
11775 make sure to make it a real default label again. This ensures
11776 optimal expansion. */
11777 label = gimple_switch_label (su->stmt, 0);
11778 CASE_LOW (label) = NULL_TREE;
11779 CASE_HIGH (label) = NULL_TREE;
11782 if (to_remove_edges.length () > 0)
11784 free_dominance_info (CDI_DOMINATORS);
11785 loops_state_set (LOOPS_NEED_FIXUP);
11788 to_remove_edges.release ();
11789 to_update_switch_stmts.release ();
11790 threadedge_finalize_values ();
11792 scev_finalize ();
11793 loop_optimizer_finalize ();
11794 return 0;
11797 namespace {
11799 const pass_data pass_data_vrp =
11801 GIMPLE_PASS, /* type */
11802 "vrp", /* name */
11803 OPTGROUP_NONE, /* optinfo_flags */
11804 TV_TREE_VRP, /* tv_id */
11805 PROP_ssa, /* properties_required */
11806 0, /* properties_provided */
11807 0, /* properties_destroyed */
11808 0, /* todo_flags_start */
11809 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
11812 class pass_vrp : public gimple_opt_pass
11814 public:
11815 pass_vrp (gcc::context *ctxt)
11816 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
11819 /* opt_pass methods: */
11820 opt_pass * clone () { return new pass_vrp (m_ctxt); }
11821 void set_pass_param (unsigned int n, bool param)
11823 gcc_assert (n == 0);
11824 warn_array_bounds_p = param;
11826 virtual bool gate (function *) { return flag_tree_vrp != 0; }
11827 virtual unsigned int execute (function *)
11828 { return execute_vrp (warn_array_bounds_p); }
11830 private:
11831 bool warn_array_bounds_p;
11832 }; // class pass_vrp
11834 } // anon namespace
11836 gimple_opt_pass *
11837 make_pass_vrp (gcc::context *ctxt)
11839 return new pass_vrp (ctxt);
11842 namespace {
11844 const pass_data pass_data_early_vrp =
11846 GIMPLE_PASS, /* type */
11847 "evrp", /* name */
11848 OPTGROUP_NONE, /* optinfo_flags */
11849 TV_TREE_EARLY_VRP, /* tv_id */
11850 PROP_ssa, /* properties_required */
11851 0, /* properties_provided */
11852 0, /* properties_destroyed */
11853 0, /* todo_flags_start */
11854 ( TODO_cleanup_cfg | TODO_update_ssa | TODO_verify_all ),
11857 class pass_early_vrp : public gimple_opt_pass
11859 public:
11860 pass_early_vrp (gcc::context *ctxt)
11861 : gimple_opt_pass (pass_data_early_vrp, ctxt)
11864 /* opt_pass methods: */
11865 opt_pass * clone () { return new pass_early_vrp (m_ctxt); }
11866 virtual bool gate (function *)
11868 return flag_tree_vrp != 0;
11870 virtual unsigned int execute (function *)
11871 { return execute_early_vrp (); }
11873 }; // class pass_vrp
11874 } // anon namespace
11876 gimple_opt_pass *
11877 make_pass_early_vrp (gcc::context *ctxt)
11879 return new pass_early_vrp (ctxt);