2013-05-30 Ed Smith-Rowland <3dw4rd@verizon.net>
[official-gcc.git] / gcc / jump.c
blob4fb1e6e6befebaae8f17ddf7a177dcf63069d557
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987-2013 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the pathetic reminder of old fame of the jump-optimization pass
21 of the compiler. Now it contains basically a set of utility functions to
22 operate with jumps.
24 Each CODE_LABEL has a count of the times it is used
25 stored in the LABEL_NUSES internal field, and each JUMP_INSN
26 has one label that it refers to stored in the
27 JUMP_LABEL internal field. With this we can detect labels that
28 become unused because of the deletion of all the jumps that
29 formerly used them. The JUMP_LABEL info is sometimes looked
30 at by later passes. For return insns, it contains either a
31 RETURN or a SIMPLE_RETURN rtx.
33 The subroutines redirect_jump and invert_jump are used
34 from other passes as well. */
36 #include "config.h"
37 #include "system.h"
38 #include "coretypes.h"
39 #include "tm.h"
40 #include "rtl.h"
41 #include "tm_p.h"
42 #include "flags.h"
43 #include "hard-reg-set.h"
44 #include "regs.h"
45 #include "insn-config.h"
46 #include "insn-attr.h"
47 #include "recog.h"
48 #include "function.h"
49 #include "basic-block.h"
50 #include "expr.h"
51 #include "except.h"
52 #include "diagnostic-core.h"
53 #include "reload.h"
54 #include "predict.h"
55 #include "tree-pass.h"
56 #include "target.h"
58 /* Optimize jump y; x: ... y: jumpif... x?
59 Don't know if it is worth bothering with. */
60 /* Optimize two cases of conditional jump to conditional jump?
61 This can never delete any instruction or make anything dead,
62 or even change what is live at any point.
63 So perhaps let combiner do it. */
65 static void init_label_info (rtx);
66 static void mark_all_labels (rtx);
67 static void mark_jump_label_1 (rtx, rtx, bool, bool);
68 static void mark_jump_label_asm (rtx, rtx);
69 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
70 static int invert_exp_1 (rtx, rtx);
71 static int returnjump_p_1 (rtx *, void *);
73 /* Worker for rebuild_jump_labels and rebuild_jump_labels_chain. */
74 static void
75 rebuild_jump_labels_1 (rtx f, bool count_forced)
77 rtx insn;
79 timevar_push (TV_REBUILD_JUMP);
80 init_label_info (f);
81 mark_all_labels (f);
83 /* Keep track of labels used from static data; we don't track them
84 closely enough to delete them here, so make sure their reference
85 count doesn't drop to zero. */
87 if (count_forced)
88 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
89 if (LABEL_P (XEXP (insn, 0)))
90 LABEL_NUSES (XEXP (insn, 0))++;
91 timevar_pop (TV_REBUILD_JUMP);
94 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
95 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
96 instructions and jumping insns that have labels as operands
97 (e.g. cbranchsi4). */
98 void
99 rebuild_jump_labels (rtx f)
101 rebuild_jump_labels_1 (f, true);
104 /* This function is like rebuild_jump_labels, but doesn't run over
105 forced_labels. It can be used on insn chains that aren't the
106 main function chain. */
107 void
108 rebuild_jump_labels_chain (rtx chain)
110 rebuild_jump_labels_1 (chain, false);
113 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
114 non-fallthru insn. This is not generally true, as multiple barriers
115 may have crept in, or the BARRIER may be separated from the last
116 real insn by one or more NOTEs.
118 This simple pass moves barriers and removes duplicates so that the
119 old code is happy.
121 static unsigned int
122 cleanup_barriers (void)
124 rtx insn, next, prev;
125 for (insn = get_insns (); insn; insn = next)
127 next = NEXT_INSN (insn);
128 if (BARRIER_P (insn))
130 prev = prev_nonnote_insn (insn);
131 if (!prev)
132 continue;
133 if (BARRIER_P (prev))
134 delete_insn (insn);
135 else if (prev != PREV_INSN (insn))
136 reorder_insns_nobb (insn, insn, prev);
139 return 0;
142 struct rtl_opt_pass pass_cleanup_barriers =
145 RTL_PASS,
146 "barriers", /* name */
147 OPTGROUP_NONE, /* optinfo_flags */
148 NULL, /* gate */
149 cleanup_barriers, /* execute */
150 NULL, /* sub */
151 NULL, /* next */
152 0, /* static_pass_number */
153 TV_NONE, /* tv_id */
154 0, /* properties_required */
155 0, /* properties_provided */
156 0, /* properties_destroyed */
157 0, /* todo_flags_start */
158 0 /* todo_flags_finish */
163 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
164 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
165 notes whose labels don't occur in the insn any more. */
167 static void
168 init_label_info (rtx f)
170 rtx insn;
172 for (insn = f; insn; insn = NEXT_INSN (insn))
174 if (LABEL_P (insn))
175 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
177 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
178 sticky and not reset here; that way we won't lose association
179 with a label when e.g. the source for a target register
180 disappears out of reach for targets that may use jump-target
181 registers. Jump transformations are supposed to transform
182 any REG_LABEL_TARGET notes. The target label reference in a
183 branch may disappear from the branch (and from the
184 instruction before it) for other reasons, like register
185 allocation. */
187 if (INSN_P (insn))
189 rtx note, next;
191 for (note = REG_NOTES (insn); note; note = next)
193 next = XEXP (note, 1);
194 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
195 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
196 remove_note (insn, note);
202 /* A subroutine of mark_all_labels. Trivially propagate a simple label
203 load into a jump_insn that uses it. */
205 static void
206 maybe_propagate_label_ref (rtx jump_insn, rtx prev_nonjump_insn)
208 rtx label_note, pc, pc_src;
210 pc = pc_set (jump_insn);
211 pc_src = pc != NULL ? SET_SRC (pc) : NULL;
212 label_note = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
214 /* If the previous non-jump insn sets something to a label,
215 something that this jump insn uses, make that label the primary
216 target of this insn if we don't yet have any. That previous
217 insn must be a single_set and not refer to more than one label.
218 The jump insn must not refer to other labels as jump targets
219 and must be a plain (set (pc) ...), maybe in a parallel, and
220 may refer to the item being set only directly or as one of the
221 arms in an IF_THEN_ELSE. */
223 if (label_note != NULL && pc_src != NULL)
225 rtx label_set = single_set (prev_nonjump_insn);
226 rtx label_dest = label_set != NULL ? SET_DEST (label_set) : NULL;
228 if (label_set != NULL
229 /* The source must be the direct LABEL_REF, not a
230 PLUS, UNSPEC, IF_THEN_ELSE etc. */
231 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
232 && (rtx_equal_p (label_dest, pc_src)
233 || (GET_CODE (pc_src) == IF_THEN_ELSE
234 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
235 || rtx_equal_p (label_dest, XEXP (pc_src, 2))))))
237 /* The CODE_LABEL referred to in the note must be the
238 CODE_LABEL in the LABEL_REF of the "set". We can
239 conveniently use it for the marker function, which
240 requires a LABEL_REF wrapping. */
241 gcc_assert (XEXP (label_note, 0) == XEXP (SET_SRC (label_set), 0));
243 mark_jump_label_1 (label_set, jump_insn, false, true);
245 gcc_assert (JUMP_LABEL (jump_insn) == XEXP (label_note, 0));
250 /* Mark the label each jump jumps to.
251 Combine consecutive labels, and count uses of labels. */
253 static void
254 mark_all_labels (rtx f)
256 rtx insn;
258 if (current_ir_type () == IR_RTL_CFGLAYOUT)
260 basic_block bb;
261 FOR_EACH_BB (bb)
263 /* In cfglayout mode, we don't bother with trivial next-insn
264 propagation of LABEL_REFs into JUMP_LABEL. This will be
265 handled by other optimizers using better algorithms. */
266 FOR_BB_INSNS (bb, insn)
268 gcc_assert (! INSN_DELETED_P (insn));
269 if (NONDEBUG_INSN_P (insn))
270 mark_jump_label (PATTERN (insn), insn, 0);
273 /* In cfglayout mode, there may be non-insns between the
274 basic blocks. If those non-insns represent tablejump data,
275 they contain label references that we must record. */
276 for (insn = BB_HEADER (bb); insn; insn = NEXT_INSN (insn))
277 if (JUMP_TABLE_DATA_P (insn))
278 mark_jump_label (PATTERN (insn), insn, 0);
279 for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
280 if (JUMP_TABLE_DATA_P (insn))
281 mark_jump_label (PATTERN (insn), insn, 0);
284 else
286 rtx prev_nonjump_insn = NULL;
287 for (insn = f; insn; insn = NEXT_INSN (insn))
289 if (INSN_DELETED_P (insn))
291 else if (LABEL_P (insn))
292 prev_nonjump_insn = NULL;
293 else if (JUMP_TABLE_DATA_P (insn))
294 mark_jump_label (PATTERN (insn), insn, 0);
295 else if (NONDEBUG_INSN_P (insn))
297 mark_jump_label (PATTERN (insn), insn, 0);
298 if (JUMP_P (insn))
300 if (JUMP_LABEL (insn) == NULL && prev_nonjump_insn != NULL)
301 maybe_propagate_label_ref (insn, prev_nonjump_insn);
303 else
304 prev_nonjump_insn = insn;
310 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
311 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
312 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
313 know whether it's source is floating point or integer comparison. Machine
314 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
315 to help this function avoid overhead in these cases. */
316 enum rtx_code
317 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
318 const_rtx arg1, const_rtx insn)
320 enum machine_mode mode;
322 /* If this is not actually a comparison, we can't reverse it. */
323 if (GET_RTX_CLASS (code) != RTX_COMPARE
324 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
325 return UNKNOWN;
327 mode = GET_MODE (arg0);
328 if (mode == VOIDmode)
329 mode = GET_MODE (arg1);
331 /* First see if machine description supplies us way to reverse the
332 comparison. Give it priority over everything else to allow
333 machine description to do tricks. */
334 if (GET_MODE_CLASS (mode) == MODE_CC
335 && REVERSIBLE_CC_MODE (mode))
337 #ifdef REVERSE_CONDITION
338 return REVERSE_CONDITION (code, mode);
339 #else
340 return reverse_condition (code);
341 #endif
344 /* Try a few special cases based on the comparison code. */
345 switch (code)
347 case GEU:
348 case GTU:
349 case LEU:
350 case LTU:
351 case NE:
352 case EQ:
353 /* It is always safe to reverse EQ and NE, even for the floating
354 point. Similarly the unsigned comparisons are never used for
355 floating point so we can reverse them in the default way. */
356 return reverse_condition (code);
357 case ORDERED:
358 case UNORDERED:
359 case LTGT:
360 case UNEQ:
361 /* In case we already see unordered comparison, we can be sure to
362 be dealing with floating point so we don't need any more tests. */
363 return reverse_condition_maybe_unordered (code);
364 case UNLT:
365 case UNLE:
366 case UNGT:
367 case UNGE:
368 /* We don't have safe way to reverse these yet. */
369 return UNKNOWN;
370 default:
371 break;
374 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
376 const_rtx prev;
377 /* Try to search for the comparison to determine the real mode.
378 This code is expensive, but with sane machine description it
379 will be never used, since REVERSIBLE_CC_MODE will return true
380 in all cases. */
381 if (! insn)
382 return UNKNOWN;
384 /* These CONST_CAST's are okay because prev_nonnote_insn just
385 returns its argument and we assign it to a const_rtx
386 variable. */
387 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
388 prev != 0 && !LABEL_P (prev);
389 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
391 const_rtx set = set_of (arg0, prev);
392 if (set && GET_CODE (set) == SET
393 && rtx_equal_p (SET_DEST (set), arg0))
395 rtx src = SET_SRC (set);
397 if (GET_CODE (src) == COMPARE)
399 rtx comparison = src;
400 arg0 = XEXP (src, 0);
401 mode = GET_MODE (arg0);
402 if (mode == VOIDmode)
403 mode = GET_MODE (XEXP (comparison, 1));
404 break;
406 /* We can get past reg-reg moves. This may be useful for model
407 of i387 comparisons that first move flag registers around. */
408 if (REG_P (src))
410 arg0 = src;
411 continue;
414 /* If register is clobbered in some ununderstandable way,
415 give up. */
416 if (set)
417 return UNKNOWN;
421 /* Test for an integer condition, or a floating-point comparison
422 in which NaNs can be ignored. */
423 if (CONST_INT_P (arg0)
424 || (GET_MODE (arg0) != VOIDmode
425 && GET_MODE_CLASS (mode) != MODE_CC
426 && !HONOR_NANS (mode)))
427 return reverse_condition (code);
429 return UNKNOWN;
432 /* A wrapper around the previous function to take COMPARISON as rtx
433 expression. This simplifies many callers. */
434 enum rtx_code
435 reversed_comparison_code (const_rtx comparison, const_rtx insn)
437 if (!COMPARISON_P (comparison))
438 return UNKNOWN;
439 return reversed_comparison_code_parts (GET_CODE (comparison),
440 XEXP (comparison, 0),
441 XEXP (comparison, 1), insn);
444 /* Return comparison with reversed code of EXP.
445 Return NULL_RTX in case we fail to do the reversal. */
447 reversed_comparison (const_rtx exp, enum machine_mode mode)
449 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
450 if (reversed_code == UNKNOWN)
451 return NULL_RTX;
452 else
453 return simplify_gen_relational (reversed_code, mode, VOIDmode,
454 XEXP (exp, 0), XEXP (exp, 1));
458 /* Given an rtx-code for a comparison, return the code for the negated
459 comparison. If no such code exists, return UNKNOWN.
461 WATCH OUT! reverse_condition is not safe to use on a jump that might
462 be acting on the results of an IEEE floating point comparison, because
463 of the special treatment of non-signaling nans in comparisons.
464 Use reversed_comparison_code instead. */
466 enum rtx_code
467 reverse_condition (enum rtx_code code)
469 switch (code)
471 case EQ:
472 return NE;
473 case NE:
474 return EQ;
475 case GT:
476 return LE;
477 case GE:
478 return LT;
479 case LT:
480 return GE;
481 case LE:
482 return GT;
483 case GTU:
484 return LEU;
485 case GEU:
486 return LTU;
487 case LTU:
488 return GEU;
489 case LEU:
490 return GTU;
491 case UNORDERED:
492 return ORDERED;
493 case ORDERED:
494 return UNORDERED;
496 case UNLT:
497 case UNLE:
498 case UNGT:
499 case UNGE:
500 case UNEQ:
501 case LTGT:
502 return UNKNOWN;
504 default:
505 gcc_unreachable ();
509 /* Similar, but we're allowed to generate unordered comparisons, which
510 makes it safe for IEEE floating-point. Of course, we have to recognize
511 that the target will support them too... */
513 enum rtx_code
514 reverse_condition_maybe_unordered (enum rtx_code code)
516 switch (code)
518 case EQ:
519 return NE;
520 case NE:
521 return EQ;
522 case GT:
523 return UNLE;
524 case GE:
525 return UNLT;
526 case LT:
527 return UNGE;
528 case LE:
529 return UNGT;
530 case LTGT:
531 return UNEQ;
532 case UNORDERED:
533 return ORDERED;
534 case ORDERED:
535 return UNORDERED;
536 case UNLT:
537 return GE;
538 case UNLE:
539 return GT;
540 case UNGT:
541 return LE;
542 case UNGE:
543 return LT;
544 case UNEQ:
545 return LTGT;
547 default:
548 gcc_unreachable ();
552 /* Similar, but return the code when two operands of a comparison are swapped.
553 This IS safe for IEEE floating-point. */
555 enum rtx_code
556 swap_condition (enum rtx_code code)
558 switch (code)
560 case EQ:
561 case NE:
562 case UNORDERED:
563 case ORDERED:
564 case UNEQ:
565 case LTGT:
566 return code;
568 case GT:
569 return LT;
570 case GE:
571 return LE;
572 case LT:
573 return GT;
574 case LE:
575 return GE;
576 case GTU:
577 return LTU;
578 case GEU:
579 return LEU;
580 case LTU:
581 return GTU;
582 case LEU:
583 return GEU;
584 case UNLT:
585 return UNGT;
586 case UNLE:
587 return UNGE;
588 case UNGT:
589 return UNLT;
590 case UNGE:
591 return UNLE;
593 default:
594 gcc_unreachable ();
598 /* Given a comparison CODE, return the corresponding unsigned comparison.
599 If CODE is an equality comparison or already an unsigned comparison,
600 CODE is returned. */
602 enum rtx_code
603 unsigned_condition (enum rtx_code code)
605 switch (code)
607 case EQ:
608 case NE:
609 case GTU:
610 case GEU:
611 case LTU:
612 case LEU:
613 return code;
615 case GT:
616 return GTU;
617 case GE:
618 return GEU;
619 case LT:
620 return LTU;
621 case LE:
622 return LEU;
624 default:
625 gcc_unreachable ();
629 /* Similarly, return the signed version of a comparison. */
631 enum rtx_code
632 signed_condition (enum rtx_code code)
634 switch (code)
636 case EQ:
637 case NE:
638 case GT:
639 case GE:
640 case LT:
641 case LE:
642 return code;
644 case GTU:
645 return GT;
646 case GEU:
647 return GE;
648 case LTU:
649 return LT;
650 case LEU:
651 return LE;
653 default:
654 gcc_unreachable ();
658 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
659 truth of CODE1 implies the truth of CODE2. */
662 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
664 /* UNKNOWN comparison codes can happen as a result of trying to revert
665 comparison codes.
666 They can't match anything, so we have to reject them here. */
667 if (code1 == UNKNOWN || code2 == UNKNOWN)
668 return 0;
670 if (code1 == code2)
671 return 1;
673 switch (code1)
675 case UNEQ:
676 if (code2 == UNLE || code2 == UNGE)
677 return 1;
678 break;
680 case EQ:
681 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
682 || code2 == ORDERED)
683 return 1;
684 break;
686 case UNLT:
687 if (code2 == UNLE || code2 == NE)
688 return 1;
689 break;
691 case LT:
692 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
693 return 1;
694 break;
696 case UNGT:
697 if (code2 == UNGE || code2 == NE)
698 return 1;
699 break;
701 case GT:
702 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
703 return 1;
704 break;
706 case GE:
707 case LE:
708 if (code2 == ORDERED)
709 return 1;
710 break;
712 case LTGT:
713 if (code2 == NE || code2 == ORDERED)
714 return 1;
715 break;
717 case LTU:
718 if (code2 == LEU || code2 == NE)
719 return 1;
720 break;
722 case GTU:
723 if (code2 == GEU || code2 == NE)
724 return 1;
725 break;
727 case UNORDERED:
728 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
729 || code2 == UNGE || code2 == UNGT)
730 return 1;
731 break;
733 default:
734 break;
737 return 0;
740 /* Return 1 if INSN is an unconditional jump and nothing else. */
743 simplejump_p (const_rtx insn)
745 return (JUMP_P (insn)
746 && GET_CODE (PATTERN (insn)) == SET
747 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
748 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
751 /* Return nonzero if INSN is a (possibly) conditional jump
752 and nothing more.
754 Use of this function is deprecated, since we need to support combined
755 branch and compare insns. Use any_condjump_p instead whenever possible. */
758 condjump_p (const_rtx insn)
760 const_rtx x = PATTERN (insn);
762 if (GET_CODE (x) != SET
763 || GET_CODE (SET_DEST (x)) != PC)
764 return 0;
766 x = SET_SRC (x);
767 if (GET_CODE (x) == LABEL_REF)
768 return 1;
769 else
770 return (GET_CODE (x) == IF_THEN_ELSE
771 && ((GET_CODE (XEXP (x, 2)) == PC
772 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
773 || ANY_RETURN_P (XEXP (x, 1))))
774 || (GET_CODE (XEXP (x, 1)) == PC
775 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
776 || ANY_RETURN_P (XEXP (x, 2))))));
779 /* Return nonzero if INSN is a (possibly) conditional jump inside a
780 PARALLEL.
782 Use this function is deprecated, since we need to support combined
783 branch and compare insns. Use any_condjump_p instead whenever possible. */
786 condjump_in_parallel_p (const_rtx insn)
788 const_rtx x = PATTERN (insn);
790 if (GET_CODE (x) != PARALLEL)
791 return 0;
792 else
793 x = XVECEXP (x, 0, 0);
795 if (GET_CODE (x) != SET)
796 return 0;
797 if (GET_CODE (SET_DEST (x)) != PC)
798 return 0;
799 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
800 return 1;
801 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
802 return 0;
803 if (XEXP (SET_SRC (x), 2) == pc_rtx
804 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
805 || ANY_RETURN_P (XEXP (SET_SRC (x), 1))))
806 return 1;
807 if (XEXP (SET_SRC (x), 1) == pc_rtx
808 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
809 || ANY_RETURN_P (XEXP (SET_SRC (x), 2))))
810 return 1;
811 return 0;
814 /* Return set of PC, otherwise NULL. */
817 pc_set (const_rtx insn)
819 rtx pat;
820 if (!JUMP_P (insn))
821 return NULL_RTX;
822 pat = PATTERN (insn);
824 /* The set is allowed to appear either as the insn pattern or
825 the first set in a PARALLEL. */
826 if (GET_CODE (pat) == PARALLEL)
827 pat = XVECEXP (pat, 0, 0);
828 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
829 return pat;
831 return NULL_RTX;
834 /* Return true when insn is an unconditional direct jump,
835 possibly bundled inside a PARALLEL. */
838 any_uncondjump_p (const_rtx insn)
840 const_rtx x = pc_set (insn);
841 if (!x)
842 return 0;
843 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
844 return 0;
845 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
846 return 0;
847 return 1;
850 /* Return true when insn is a conditional jump. This function works for
851 instructions containing PC sets in PARALLELs. The instruction may have
852 various other effects so before removing the jump you must verify
853 onlyjump_p.
855 Note that unlike condjump_p it returns false for unconditional jumps. */
858 any_condjump_p (const_rtx insn)
860 const_rtx x = pc_set (insn);
861 enum rtx_code a, b;
863 if (!x)
864 return 0;
865 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
866 return 0;
868 a = GET_CODE (XEXP (SET_SRC (x), 1));
869 b = GET_CODE (XEXP (SET_SRC (x), 2));
871 return ((b == PC && (a == LABEL_REF || a == RETURN || a == SIMPLE_RETURN))
872 || (a == PC
873 && (b == LABEL_REF || b == RETURN || b == SIMPLE_RETURN)));
876 /* Return the label of a conditional jump. */
879 condjump_label (const_rtx insn)
881 rtx x = pc_set (insn);
883 if (!x)
884 return NULL_RTX;
885 x = SET_SRC (x);
886 if (GET_CODE (x) == LABEL_REF)
887 return x;
888 if (GET_CODE (x) != IF_THEN_ELSE)
889 return NULL_RTX;
890 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
891 return XEXP (x, 1);
892 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
893 return XEXP (x, 2);
894 return NULL_RTX;
897 /* Return true if INSN is a (possibly conditional) return insn. */
899 static int
900 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
902 rtx x = *loc;
904 if (x == NULL)
905 return false;
907 switch (GET_CODE (x))
909 case RETURN:
910 case SIMPLE_RETURN:
911 case EH_RETURN:
912 return true;
914 case SET:
915 return SET_IS_RETURN_P (x);
917 default:
918 return false;
922 /* Return TRUE if INSN is a return jump. */
925 returnjump_p (rtx insn)
927 if (!JUMP_P (insn))
928 return 0;
929 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
932 /* Return true if INSN is a (possibly conditional) return insn. */
934 static int
935 eh_returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
937 return *loc && GET_CODE (*loc) == EH_RETURN;
941 eh_returnjump_p (rtx insn)
943 if (!JUMP_P (insn))
944 return 0;
945 return for_each_rtx (&PATTERN (insn), eh_returnjump_p_1, NULL);
948 /* Return true if INSN is a jump that only transfers control and
949 nothing more. */
952 onlyjump_p (const_rtx insn)
954 rtx set;
956 if (!JUMP_P (insn))
957 return 0;
959 set = single_set (insn);
960 if (set == NULL)
961 return 0;
962 if (GET_CODE (SET_DEST (set)) != PC)
963 return 0;
964 if (side_effects_p (SET_SRC (set)))
965 return 0;
967 return 1;
970 /* Return true iff INSN is a jump and its JUMP_LABEL is a label, not
971 NULL or a return. */
972 bool
973 jump_to_label_p (rtx insn)
975 return (JUMP_P (insn)
976 && JUMP_LABEL (insn) != NULL && !ANY_RETURN_P (JUMP_LABEL (insn)));
979 #ifdef HAVE_cc0
981 /* Return nonzero if X is an RTX that only sets the condition codes
982 and has no side effects. */
985 only_sets_cc0_p (const_rtx x)
987 if (! x)
988 return 0;
990 if (INSN_P (x))
991 x = PATTERN (x);
993 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
996 /* Return 1 if X is an RTX that does nothing but set the condition codes
997 and CLOBBER or USE registers.
998 Return -1 if X does explicitly set the condition codes,
999 but also does other things. */
1002 sets_cc0_p (const_rtx x)
1004 if (! x)
1005 return 0;
1007 if (INSN_P (x))
1008 x = PATTERN (x);
1010 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
1011 return 1;
1012 if (GET_CODE (x) == PARALLEL)
1014 int i;
1015 int sets_cc0 = 0;
1016 int other_things = 0;
1017 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1019 if (GET_CODE (XVECEXP (x, 0, i)) == SET
1020 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
1021 sets_cc0 = 1;
1022 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
1023 other_things = 1;
1025 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
1027 return 0;
1029 #endif
1031 /* Find all CODE_LABELs referred to in X, and increment their use
1032 counts. If INSN is a JUMP_INSN and there is at least one
1033 CODE_LABEL referenced in INSN as a jump target, then store the last
1034 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
1035 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
1036 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
1037 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
1038 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
1039 For returnjumps, the JUMP_LABEL will also be set as appropriate.
1041 Note that two labels separated by a loop-beginning note
1042 must be kept distinct if we have not yet done loop-optimization,
1043 because the gap between them is where loop-optimize
1044 will want to move invariant code to. CROSS_JUMP tells us
1045 that loop-optimization is done with. */
1047 void
1048 mark_jump_label (rtx x, rtx insn, int in_mem)
1050 rtx asmop = extract_asm_operands (x);
1051 if (asmop)
1052 mark_jump_label_asm (asmop, insn);
1053 else
1054 mark_jump_label_1 (x, insn, in_mem != 0,
1055 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
1058 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
1059 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
1060 jump-target; when the JUMP_LABEL field of INSN should be set or a
1061 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
1062 note. */
1064 static void
1065 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
1067 RTX_CODE code = GET_CODE (x);
1068 int i;
1069 const char *fmt;
1071 switch (code)
1073 case PC:
1074 case CC0:
1075 case REG:
1076 case CLOBBER:
1077 case CALL:
1078 return;
1080 case RETURN:
1081 case SIMPLE_RETURN:
1082 if (is_target)
1084 gcc_assert (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == x);
1085 JUMP_LABEL (insn) = x;
1087 return;
1089 case MEM:
1090 in_mem = true;
1091 break;
1093 case SEQUENCE:
1094 for (i = 0; i < XVECLEN (x, 0); i++)
1095 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1096 XVECEXP (x, 0, i), 0);
1097 return;
1099 case SYMBOL_REF:
1100 if (!in_mem)
1101 return;
1103 /* If this is a constant-pool reference, see if it is a label. */
1104 if (CONSTANT_POOL_ADDRESS_P (x))
1105 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1106 break;
1108 /* Handle operands in the condition of an if-then-else as for a
1109 non-jump insn. */
1110 case IF_THEN_ELSE:
1111 if (!is_target)
1112 break;
1113 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1114 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1115 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1116 return;
1118 case LABEL_REF:
1120 rtx label = XEXP (x, 0);
1122 /* Ignore remaining references to unreachable labels that
1123 have been deleted. */
1124 if (NOTE_P (label)
1125 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1126 break;
1128 gcc_assert (LABEL_P (label));
1130 /* Ignore references to labels of containing functions. */
1131 if (LABEL_REF_NONLOCAL_P (x))
1132 break;
1134 XEXP (x, 0) = label;
1135 if (! insn || ! INSN_DELETED_P (insn))
1136 ++LABEL_NUSES (label);
1138 if (insn)
1140 if (is_target
1141 /* Do not change a previous setting of JUMP_LABEL. If the
1142 JUMP_LABEL slot is occupied by a different label,
1143 create a note for this label. */
1144 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1145 JUMP_LABEL (insn) = label;
1146 else
1148 enum reg_note kind
1149 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1151 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1152 for LABEL unless there already is one. All uses of
1153 a label, except for the primary target of a jump,
1154 must have such a note. */
1155 if (! find_reg_note (insn, kind, label))
1156 add_reg_note (insn, kind, label);
1159 return;
1162 /* Do walk the labels in a vector, but not the first operand of an
1163 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1164 case ADDR_VEC:
1165 case ADDR_DIFF_VEC:
1166 if (! INSN_DELETED_P (insn))
1168 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1170 for (i = 0; i < XVECLEN (x, eltnum); i++)
1171 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1172 is_target);
1174 return;
1176 default:
1177 break;
1180 fmt = GET_RTX_FORMAT (code);
1182 /* The primary target of a tablejump is the label of the ADDR_VEC,
1183 which is canonically mentioned *last* in the insn. To get it
1184 marked as JUMP_LABEL, we iterate over items in reverse order. */
1185 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1187 if (fmt[i] == 'e')
1188 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1189 else if (fmt[i] == 'E')
1191 int j;
1193 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1194 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1195 is_target);
1200 /* Worker function for mark_jump_label. Handle asm insns specially.
1201 In particular, output operands need not be considered so we can
1202 avoid re-scanning the replicated asm_operand. Also, the asm_labels
1203 need to be considered targets. */
1205 static void
1206 mark_jump_label_asm (rtx asmop, rtx insn)
1208 int i;
1210 for (i = ASM_OPERANDS_INPUT_LENGTH (asmop) - 1; i >= 0; --i)
1211 mark_jump_label_1 (ASM_OPERANDS_INPUT (asmop, i), insn, false, false);
1213 for (i = ASM_OPERANDS_LABEL_LENGTH (asmop) - 1; i >= 0; --i)
1214 mark_jump_label_1 (ASM_OPERANDS_LABEL (asmop, i), insn, false, true);
1217 /* Delete insn INSN from the chain of insns and update label ref counts
1218 and delete insns now unreachable.
1220 Returns the first insn after INSN that was not deleted.
1222 Usage of this instruction is deprecated. Use delete_insn instead and
1223 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1226 delete_related_insns (rtx insn)
1228 int was_code_label = (LABEL_P (insn));
1229 rtx note;
1230 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1232 while (next && INSN_DELETED_P (next))
1233 next = NEXT_INSN (next);
1235 /* This insn is already deleted => return first following nondeleted. */
1236 if (INSN_DELETED_P (insn))
1237 return next;
1239 delete_insn (insn);
1241 /* If instruction is followed by a barrier,
1242 delete the barrier too. */
1244 if (next != 0 && BARRIER_P (next))
1245 delete_insn (next);
1247 /* If this is a call, then we have to remove the var tracking note
1248 for the call arguments. */
1250 if (CALL_P (insn)
1251 || (NONJUMP_INSN_P (insn)
1252 && GET_CODE (PATTERN (insn)) == SEQUENCE
1253 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))))
1255 rtx p;
1257 for (p = next && INSN_DELETED_P (next) ? NEXT_INSN (next) : next;
1258 p && NOTE_P (p);
1259 p = NEXT_INSN (p))
1260 if (NOTE_KIND (p) == NOTE_INSN_CALL_ARG_LOCATION)
1262 remove_insn (p);
1263 break;
1267 /* If deleting a jump, decrement the count of the label,
1268 and delete the label if it is now unused. */
1270 if (jump_to_label_p (insn))
1272 rtx lab = JUMP_LABEL (insn), lab_next;
1274 if (LABEL_NUSES (lab) == 0)
1275 /* This can delete NEXT or PREV,
1276 either directly if NEXT is JUMP_LABEL (INSN),
1277 or indirectly through more levels of jumps. */
1278 delete_related_insns (lab);
1279 else if (tablejump_p (insn, NULL, &lab_next))
1281 /* If we're deleting the tablejump, delete the dispatch table.
1282 We may not be able to kill the label immediately preceding
1283 just yet, as it might be referenced in code leading up to
1284 the tablejump. */
1285 delete_related_insns (lab_next);
1289 /* Likewise if we're deleting a dispatch table. */
1291 if (JUMP_TABLE_DATA_P (insn))
1293 rtx pat = PATTERN (insn);
1294 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1295 int len = XVECLEN (pat, diff_vec_p);
1297 for (i = 0; i < len; i++)
1298 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1299 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1300 while (next && INSN_DELETED_P (next))
1301 next = NEXT_INSN (next);
1302 return next;
1305 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1306 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1307 if (INSN_P (insn))
1308 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1309 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1310 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1311 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1312 && LABEL_P (XEXP (note, 0)))
1313 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1314 delete_related_insns (XEXP (note, 0));
1316 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1317 prev = PREV_INSN (prev);
1319 /* If INSN was a label and a dispatch table follows it,
1320 delete the dispatch table. The tablejump must have gone already.
1321 It isn't useful to fall through into a table. */
1323 if (was_code_label
1324 && NEXT_INSN (insn) != 0
1325 && JUMP_TABLE_DATA_P (NEXT_INSN (insn)))
1326 next = delete_related_insns (NEXT_INSN (insn));
1328 /* If INSN was a label, delete insns following it if now unreachable. */
1330 if (was_code_label && prev && BARRIER_P (prev))
1332 enum rtx_code code;
1333 while (next)
1335 code = GET_CODE (next);
1336 if (code == NOTE)
1337 next = NEXT_INSN (next);
1338 /* Keep going past other deleted labels to delete what follows. */
1339 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1340 next = NEXT_INSN (next);
1341 else if (code == BARRIER || INSN_P (next))
1342 /* Note: if this deletes a jump, it can cause more
1343 deletion of unreachable code, after a different label.
1344 As long as the value from this recursive call is correct,
1345 this invocation functions correctly. */
1346 next = delete_related_insns (next);
1347 else
1348 break;
1352 /* I feel a little doubtful about this loop,
1353 but I see no clean and sure alternative way
1354 to find the first insn after INSN that is not now deleted.
1355 I hope this works. */
1356 while (next && INSN_DELETED_P (next))
1357 next = NEXT_INSN (next);
1358 return next;
1361 /* Delete a range of insns from FROM to TO, inclusive.
1362 This is for the sake of peephole optimization, so assume
1363 that whatever these insns do will still be done by a new
1364 peephole insn that will replace them. */
1366 void
1367 delete_for_peephole (rtx from, rtx to)
1369 rtx insn = from;
1371 while (1)
1373 rtx next = NEXT_INSN (insn);
1374 rtx prev = PREV_INSN (insn);
1376 if (!NOTE_P (insn))
1378 INSN_DELETED_P (insn) = 1;
1380 /* Patch this insn out of the chain. */
1381 /* We don't do this all at once, because we
1382 must preserve all NOTEs. */
1383 if (prev)
1384 NEXT_INSN (prev) = next;
1386 if (next)
1387 PREV_INSN (next) = prev;
1390 if (insn == to)
1391 break;
1392 insn = next;
1395 /* Note that if TO is an unconditional jump
1396 we *do not* delete the BARRIER that follows,
1397 since the peephole that replaces this sequence
1398 is also an unconditional jump in that case. */
1401 /* A helper function for redirect_exp_1; examines its input X and returns
1402 either a LABEL_REF around a label, or a RETURN if X was NULL. */
1403 static rtx
1404 redirect_target (rtx x)
1406 if (x == NULL_RTX)
1407 return ret_rtx;
1408 if (!ANY_RETURN_P (x))
1409 return gen_rtx_LABEL_REF (Pmode, x);
1410 return x;
1413 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1414 NLABEL as a return. Accrue modifications into the change group. */
1416 static void
1417 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1419 rtx x = *loc;
1420 RTX_CODE code = GET_CODE (x);
1421 int i;
1422 const char *fmt;
1424 if ((code == LABEL_REF && XEXP (x, 0) == olabel)
1425 || x == olabel)
1427 x = redirect_target (nlabel);
1428 if (GET_CODE (x) == LABEL_REF && loc == &PATTERN (insn))
1429 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1430 validate_change (insn, loc, x, 1);
1431 return;
1434 if (code == SET && SET_DEST (x) == pc_rtx
1435 && ANY_RETURN_P (nlabel)
1436 && GET_CODE (SET_SRC (x)) == LABEL_REF
1437 && XEXP (SET_SRC (x), 0) == olabel)
1439 validate_change (insn, loc, nlabel, 1);
1440 return;
1443 if (code == IF_THEN_ELSE)
1445 /* Skip the condition of an IF_THEN_ELSE. We only want to
1446 change jump destinations, not eventual label comparisons. */
1447 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1448 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1449 return;
1452 fmt = GET_RTX_FORMAT (code);
1453 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1455 if (fmt[i] == 'e')
1456 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1457 else if (fmt[i] == 'E')
1459 int j;
1460 for (j = 0; j < XVECLEN (x, i); j++)
1461 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1466 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1467 the modifications into the change group. Return false if we did
1468 not see how to do that. */
1471 redirect_jump_1 (rtx jump, rtx nlabel)
1473 int ochanges = num_validated_changes ();
1474 rtx *loc, asmop;
1476 gcc_assert (nlabel != NULL_RTX);
1477 asmop = extract_asm_operands (PATTERN (jump));
1478 if (asmop)
1480 if (nlabel == NULL)
1481 return 0;
1482 gcc_assert (ASM_OPERANDS_LABEL_LENGTH (asmop) == 1);
1483 loc = &ASM_OPERANDS_LABEL (asmop, 0);
1485 else if (GET_CODE (PATTERN (jump)) == PARALLEL)
1486 loc = &XVECEXP (PATTERN (jump), 0, 0);
1487 else
1488 loc = &PATTERN (jump);
1490 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1491 return num_validated_changes () > ochanges;
1494 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1495 jump target label is unused as a result, it and the code following
1496 it may be deleted.
1498 Normally, NLABEL will be a label, but it may also be a RETURN rtx;
1499 in that case we are to turn the jump into a (possibly conditional)
1500 return insn.
1502 The return value will be 1 if the change was made, 0 if it wasn't
1503 (this can only occur when trying to produce return insns). */
1506 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1508 rtx olabel = JUMP_LABEL (jump);
1510 if (!nlabel)
1512 /* If there is no label, we are asked to redirect to the EXIT block.
1513 When before the epilogue is emitted, return/simple_return cannot be
1514 created so we return 0 immediately. After the epilogue is emitted,
1515 we always expect a label, either a non-null label, or a
1516 return/simple_return RTX. */
1518 if (!epilogue_completed)
1519 return 0;
1520 gcc_unreachable ();
1523 if (nlabel == olabel)
1524 return 1;
1526 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1527 return 0;
1529 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1530 return 1;
1533 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1534 NLABEL in JUMP.
1535 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1536 count has dropped to zero. */
1537 void
1538 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1539 int invert)
1541 rtx note;
1543 gcc_assert (JUMP_LABEL (jump) == olabel);
1545 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1546 moving FUNCTION_END note. Just sanity check that no user still worry
1547 about this. */
1548 gcc_assert (delete_unused >= 0);
1549 JUMP_LABEL (jump) = nlabel;
1550 if (!ANY_RETURN_P (nlabel))
1551 ++LABEL_NUSES (nlabel);
1553 /* Update labels in any REG_EQUAL note. */
1554 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1556 if (ANY_RETURN_P (nlabel)
1557 || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1558 remove_note (jump, note);
1559 else
1561 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1562 confirm_change_group ();
1566 if (!ANY_RETURN_P (olabel)
1567 && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1568 /* Undefined labels will remain outside the insn stream. */
1569 && INSN_UID (olabel))
1570 delete_related_insns (olabel);
1571 if (invert)
1572 invert_br_probabilities (jump);
1575 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1576 modifications into the change group. Return nonzero for success. */
1577 static int
1578 invert_exp_1 (rtx x, rtx insn)
1580 RTX_CODE code = GET_CODE (x);
1582 if (code == IF_THEN_ELSE)
1584 rtx comp = XEXP (x, 0);
1585 rtx tem;
1586 enum rtx_code reversed_code;
1588 /* We can do this in two ways: The preferable way, which can only
1589 be done if this is not an integer comparison, is to reverse
1590 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1591 of the IF_THEN_ELSE. If we can't do either, fail. */
1593 reversed_code = reversed_comparison_code (comp, insn);
1595 if (reversed_code != UNKNOWN)
1597 validate_change (insn, &XEXP (x, 0),
1598 gen_rtx_fmt_ee (reversed_code,
1599 GET_MODE (comp), XEXP (comp, 0),
1600 XEXP (comp, 1)),
1602 return 1;
1605 tem = XEXP (x, 1);
1606 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1607 validate_change (insn, &XEXP (x, 2), tem, 1);
1608 return 1;
1610 else
1611 return 0;
1614 /* Invert the condition of the jump JUMP, and make it jump to label
1615 NLABEL instead of where it jumps now. Accrue changes into the
1616 change group. Return false if we didn't see how to perform the
1617 inversion and redirection. */
1620 invert_jump_1 (rtx jump, rtx nlabel)
1622 rtx x = pc_set (jump);
1623 int ochanges;
1624 int ok;
1626 ochanges = num_validated_changes ();
1627 if (x == NULL)
1628 return 0;
1629 ok = invert_exp_1 (SET_SRC (x), jump);
1630 gcc_assert (ok);
1632 if (num_validated_changes () == ochanges)
1633 return 0;
1635 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1636 in Pmode, so checking this is not merely an optimization. */
1637 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1640 /* Invert the condition of the jump JUMP, and make it jump to label
1641 NLABEL instead of where it jumps now. Return true if successful. */
1644 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1646 rtx olabel = JUMP_LABEL (jump);
1648 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1650 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1651 return 1;
1653 cancel_changes (0);
1654 return 0;
1658 /* Like rtx_equal_p except that it considers two REGs as equal
1659 if they renumber to the same value and considers two commutative
1660 operations to be the same if the order of the operands has been
1661 reversed. */
1664 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1666 int i;
1667 const enum rtx_code code = GET_CODE (x);
1668 const char *fmt;
1670 if (x == y)
1671 return 1;
1673 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1674 && (REG_P (y) || (GET_CODE (y) == SUBREG
1675 && REG_P (SUBREG_REG (y)))))
1677 int reg_x = -1, reg_y = -1;
1678 int byte_x = 0, byte_y = 0;
1679 struct subreg_info info;
1681 if (GET_MODE (x) != GET_MODE (y))
1682 return 0;
1684 /* If we haven't done any renumbering, don't
1685 make any assumptions. */
1686 if (reg_renumber == 0)
1687 return rtx_equal_p (x, y);
1689 if (code == SUBREG)
1691 reg_x = REGNO (SUBREG_REG (x));
1692 byte_x = SUBREG_BYTE (x);
1694 if (reg_renumber[reg_x] >= 0)
1696 subreg_get_info (reg_renumber[reg_x],
1697 GET_MODE (SUBREG_REG (x)), byte_x,
1698 GET_MODE (x), &info);
1699 if (!info.representable_p)
1700 return 0;
1701 reg_x = info.offset;
1702 byte_x = 0;
1705 else
1707 reg_x = REGNO (x);
1708 if (reg_renumber[reg_x] >= 0)
1709 reg_x = reg_renumber[reg_x];
1712 if (GET_CODE (y) == SUBREG)
1714 reg_y = REGNO (SUBREG_REG (y));
1715 byte_y = SUBREG_BYTE (y);
1717 if (reg_renumber[reg_y] >= 0)
1719 subreg_get_info (reg_renumber[reg_y],
1720 GET_MODE (SUBREG_REG (y)), byte_y,
1721 GET_MODE (y), &info);
1722 if (!info.representable_p)
1723 return 0;
1724 reg_y = info.offset;
1725 byte_y = 0;
1728 else
1730 reg_y = REGNO (y);
1731 if (reg_renumber[reg_y] >= 0)
1732 reg_y = reg_renumber[reg_y];
1735 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1738 /* Now we have disposed of all the cases
1739 in which different rtx codes can match. */
1740 if (code != GET_CODE (y))
1741 return 0;
1743 switch (code)
1745 case PC:
1746 case CC0:
1747 case ADDR_VEC:
1748 case ADDR_DIFF_VEC:
1749 CASE_CONST_UNIQUE:
1750 return 0;
1752 case LABEL_REF:
1753 /* We can't assume nonlocal labels have their following insns yet. */
1754 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1755 return XEXP (x, 0) == XEXP (y, 0);
1757 /* Two label-refs are equivalent if they point at labels
1758 in the same position in the instruction stream. */
1759 return (next_real_insn (XEXP (x, 0))
1760 == next_real_insn (XEXP (y, 0)));
1762 case SYMBOL_REF:
1763 return XSTR (x, 0) == XSTR (y, 0);
1765 case CODE_LABEL:
1766 /* If we didn't match EQ equality above, they aren't the same. */
1767 return 0;
1769 default:
1770 break;
1773 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1775 if (GET_MODE (x) != GET_MODE (y))
1776 return 0;
1778 /* MEMs referring to different address space are not equivalent. */
1779 if (code == MEM && MEM_ADDR_SPACE (x) != MEM_ADDR_SPACE (y))
1780 return 0;
1782 /* For commutative operations, the RTX match if the operand match in any
1783 order. Also handle the simple binary and unary cases without a loop. */
1784 if (targetm.commutative_p (x, UNKNOWN))
1785 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1786 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1787 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1788 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1789 else if (NON_COMMUTATIVE_P (x))
1790 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1791 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1792 else if (UNARY_P (x))
1793 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1795 /* Compare the elements. If any pair of corresponding elements
1796 fail to match, return 0 for the whole things. */
1798 fmt = GET_RTX_FORMAT (code);
1799 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1801 int j;
1802 switch (fmt[i])
1804 case 'w':
1805 if (XWINT (x, i) != XWINT (y, i))
1806 return 0;
1807 break;
1809 case 'i':
1810 if (XINT (x, i) != XINT (y, i))
1812 if (((code == ASM_OPERANDS && i == 6)
1813 || (code == ASM_INPUT && i == 1)))
1814 break;
1815 return 0;
1817 break;
1819 case 't':
1820 if (XTREE (x, i) != XTREE (y, i))
1821 return 0;
1822 break;
1824 case 's':
1825 if (strcmp (XSTR (x, i), XSTR (y, i)))
1826 return 0;
1827 break;
1829 case 'e':
1830 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1831 return 0;
1832 break;
1834 case 'u':
1835 if (XEXP (x, i) != XEXP (y, i))
1836 return 0;
1837 /* Fall through. */
1838 case '0':
1839 break;
1841 case 'E':
1842 if (XVECLEN (x, i) != XVECLEN (y, i))
1843 return 0;
1844 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1845 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1846 return 0;
1847 break;
1849 default:
1850 gcc_unreachable ();
1853 return 1;
1856 /* If X is a hard register or equivalent to one or a subregister of one,
1857 return the hard register number. If X is a pseudo register that was not
1858 assigned a hard register, return the pseudo register number. Otherwise,
1859 return -1. Any rtx is valid for X. */
1862 true_regnum (const_rtx x)
1864 if (REG_P (x))
1866 if (REGNO (x) >= FIRST_PSEUDO_REGISTER
1867 && (lra_in_progress || reg_renumber[REGNO (x)] >= 0))
1868 return reg_renumber[REGNO (x)];
1869 return REGNO (x);
1871 if (GET_CODE (x) == SUBREG)
1873 int base = true_regnum (SUBREG_REG (x));
1874 if (base >= 0
1875 && base < FIRST_PSEUDO_REGISTER)
1877 struct subreg_info info;
1879 subreg_get_info (lra_in_progress
1880 ? (unsigned) base : REGNO (SUBREG_REG (x)),
1881 GET_MODE (SUBREG_REG (x)),
1882 SUBREG_BYTE (x), GET_MODE (x), &info);
1884 if (info.representable_p)
1885 return base + info.offset;
1888 return -1;
1891 /* Return regno of the register REG and handle subregs too. */
1892 unsigned int
1893 reg_or_subregno (const_rtx reg)
1895 if (GET_CODE (reg) == SUBREG)
1896 reg = SUBREG_REG (reg);
1897 gcc_assert (REG_P (reg));
1898 return REGNO (reg);