Delete duplicate .align output.
[official-gcc.git] / gcc / config / pa / pa.c
blob711234e597a5a4064ac03d70f0aa77c995ecce29
1 /* Subroutines for insn-output.c for HPPA.
2 Copyright (C) 1992-2020 Free Software Foundation, Inc.
3 Contributed by Tim Moore (moore@cs.utah.edu), based on sparc.c
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #define IN_TARGET_CODE 1
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "memmodel.h"
27 #include "backend.h"
28 #include "target.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "df.h"
32 #include "tm_p.h"
33 #include "stringpool.h"
34 #include "attribs.h"
35 #include "optabs.h"
36 #include "regs.h"
37 #include "emit-rtl.h"
38 #include "recog.h"
39 #include "diagnostic-core.h"
40 #include "insn-attr.h"
41 #include "alias.h"
42 #include "fold-const.h"
43 #include "stor-layout.h"
44 #include "varasm.h"
45 #include "calls.h"
46 #include "output.h"
47 #include "except.h"
48 #include "explow.h"
49 #include "expr.h"
50 #include "reload.h"
51 #include "common/common-target.h"
52 #include "langhooks.h"
53 #include "cfgrtl.h"
54 #include "opts.h"
55 #include "builtins.h"
57 /* This file should be included last. */
58 #include "target-def.h"
60 /* Return nonzero if there is a bypass for the output of
61 OUT_INSN and the fp store IN_INSN. */
62 int
63 pa_fpstore_bypass_p (rtx_insn *out_insn, rtx_insn *in_insn)
65 machine_mode store_mode;
66 machine_mode other_mode;
67 rtx set;
69 if (recog_memoized (in_insn) < 0
70 || (get_attr_type (in_insn) != TYPE_FPSTORE
71 && get_attr_type (in_insn) != TYPE_FPSTORE_LOAD)
72 || recog_memoized (out_insn) < 0)
73 return 0;
75 store_mode = GET_MODE (SET_SRC (PATTERN (in_insn)));
77 set = single_set (out_insn);
78 if (!set)
79 return 0;
81 other_mode = GET_MODE (SET_SRC (set));
83 return (GET_MODE_SIZE (store_mode) == GET_MODE_SIZE (other_mode));
87 #ifndef DO_FRAME_NOTES
88 #ifdef INCOMING_RETURN_ADDR_RTX
89 #define DO_FRAME_NOTES 1
90 #else
91 #define DO_FRAME_NOTES 0
92 #endif
93 #endif
95 static void pa_option_override (void);
96 static void copy_reg_pointer (rtx, rtx);
97 static void fix_range (const char *);
98 static int hppa_register_move_cost (machine_mode mode, reg_class_t,
99 reg_class_t);
100 static int hppa_address_cost (rtx, machine_mode mode, addr_space_t, bool);
101 static bool hppa_rtx_costs (rtx, machine_mode, int, int, int *, bool);
102 static inline rtx force_mode (machine_mode, rtx);
103 static void pa_reorg (void);
104 static void pa_combine_instructions (void);
105 static int pa_can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, int, rtx,
106 rtx, rtx);
107 static bool forward_branch_p (rtx_insn *);
108 static void compute_zdepwi_operands (unsigned HOST_WIDE_INT, unsigned *);
109 static void compute_zdepdi_operands (unsigned HOST_WIDE_INT, unsigned *);
110 static int compute_cpymem_length (rtx_insn *);
111 static int compute_clrmem_length (rtx_insn *);
112 static bool pa_assemble_integer (rtx, unsigned int, int);
113 static void remove_useless_addtr_insns (int);
114 static void store_reg (int, HOST_WIDE_INT, int);
115 static void store_reg_modify (int, int, HOST_WIDE_INT);
116 static void load_reg (int, HOST_WIDE_INT, int);
117 static void set_reg_plus_d (int, int, HOST_WIDE_INT, int);
118 static rtx pa_function_value (const_tree, const_tree, bool);
119 static rtx pa_libcall_value (machine_mode, const_rtx);
120 static bool pa_function_value_regno_p (const unsigned int);
121 static void pa_output_function_prologue (FILE *) ATTRIBUTE_UNUSED;
122 static void pa_linux_output_function_prologue (FILE *) ATTRIBUTE_UNUSED;
123 static void update_total_code_bytes (unsigned int);
124 static void pa_output_function_epilogue (FILE *);
125 static int pa_adjust_cost (rtx_insn *, int, rtx_insn *, int, unsigned int);
126 static int pa_issue_rate (void);
127 static int pa_reloc_rw_mask (void);
128 static void pa_som_asm_init_sections (void) ATTRIBUTE_UNUSED;
129 static section *pa_som_tm_clone_table_section (void) ATTRIBUTE_UNUSED;
130 static section *pa_select_section (tree, int, unsigned HOST_WIDE_INT)
131 ATTRIBUTE_UNUSED;
132 static void pa_encode_section_info (tree, rtx, int);
133 static const char *pa_strip_name_encoding (const char *);
134 static bool pa_function_ok_for_sibcall (tree, tree);
135 static void pa_globalize_label (FILE *, const char *)
136 ATTRIBUTE_UNUSED;
137 static void pa_asm_output_mi_thunk (FILE *, tree, HOST_WIDE_INT,
138 HOST_WIDE_INT, tree);
139 #if !defined(USE_COLLECT2)
140 static void pa_asm_out_constructor (rtx, int);
141 static void pa_asm_out_destructor (rtx, int);
142 #endif
143 static void pa_init_builtins (void);
144 static rtx pa_expand_builtin (tree, rtx, rtx, machine_mode mode, int);
145 static rtx hppa_builtin_saveregs (void);
146 static void hppa_va_start (tree, rtx);
147 static tree hppa_gimplify_va_arg_expr (tree, tree, gimple_seq *, gimple_seq *);
148 static bool pa_scalar_mode_supported_p (scalar_mode);
149 static bool pa_commutative_p (const_rtx x, int outer_code);
150 static void copy_fp_args (rtx_insn *) ATTRIBUTE_UNUSED;
151 static int length_fp_args (rtx_insn *) ATTRIBUTE_UNUSED;
152 static rtx hppa_legitimize_address (rtx, rtx, machine_mode);
153 static inline void pa_file_start_level (void) ATTRIBUTE_UNUSED;
154 static inline void pa_file_start_space (int) ATTRIBUTE_UNUSED;
155 static inline void pa_file_start_file (int) ATTRIBUTE_UNUSED;
156 static inline void pa_file_start_mcount (const char*) ATTRIBUTE_UNUSED;
157 static void pa_elf_file_start (void) ATTRIBUTE_UNUSED;
158 static void pa_som_file_start (void) ATTRIBUTE_UNUSED;
159 static void pa_linux_file_start (void) ATTRIBUTE_UNUSED;
160 static void pa_hpux64_gas_file_start (void) ATTRIBUTE_UNUSED;
161 static void pa_hpux64_hpas_file_start (void) ATTRIBUTE_UNUSED;
162 static void output_deferred_plabels (void);
163 static void output_deferred_profile_counters (void) ATTRIBUTE_UNUSED;
164 static void pa_file_end (void);
165 static void pa_init_libfuncs (void);
166 static rtx pa_struct_value_rtx (tree, int);
167 static bool pa_pass_by_reference (cumulative_args_t,
168 const function_arg_info &);
169 static int pa_arg_partial_bytes (cumulative_args_t, const function_arg_info &);
170 static void pa_function_arg_advance (cumulative_args_t,
171 const function_arg_info &);
172 static rtx pa_function_arg (cumulative_args_t, const function_arg_info &);
173 static pad_direction pa_function_arg_padding (machine_mode, const_tree);
174 static unsigned int pa_function_arg_boundary (machine_mode, const_tree);
175 static struct machine_function * pa_init_machine_status (void);
176 static reg_class_t pa_secondary_reload (bool, rtx, reg_class_t,
177 machine_mode,
178 secondary_reload_info *);
179 static bool pa_secondary_memory_needed (machine_mode,
180 reg_class_t, reg_class_t);
181 static void pa_extra_live_on_entry (bitmap);
182 static machine_mode pa_promote_function_mode (const_tree,
183 machine_mode, int *,
184 const_tree, int);
186 static void pa_asm_trampoline_template (FILE *);
187 static void pa_trampoline_init (rtx, tree, rtx);
188 static rtx pa_trampoline_adjust_address (rtx);
189 static rtx pa_delegitimize_address (rtx);
190 static bool pa_print_operand_punct_valid_p (unsigned char);
191 static rtx pa_internal_arg_pointer (void);
192 static bool pa_can_eliminate (const int, const int);
193 static void pa_conditional_register_usage (void);
194 static machine_mode pa_c_mode_for_suffix (char);
195 static section *pa_function_section (tree, enum node_frequency, bool, bool);
196 static bool pa_cannot_force_const_mem (machine_mode, rtx);
197 static bool pa_legitimate_constant_p (machine_mode, rtx);
198 static unsigned int pa_section_type_flags (tree, const char *, int);
199 static bool pa_legitimate_address_p (machine_mode, rtx, bool);
200 static bool pa_callee_copies (cumulative_args_t, const function_arg_info &);
201 static unsigned int pa_hard_regno_nregs (unsigned int, machine_mode);
202 static bool pa_hard_regno_mode_ok (unsigned int, machine_mode);
203 static bool pa_modes_tieable_p (machine_mode, machine_mode);
204 static bool pa_can_change_mode_class (machine_mode, machine_mode, reg_class_t);
205 static HOST_WIDE_INT pa_starting_frame_offset (void);
206 static section* pa_elf_select_rtx_section(machine_mode, rtx, unsigned HOST_WIDE_INT) ATTRIBUTE_UNUSED;
208 /* The following extra sections are only used for SOM. */
209 static GTY(()) section *som_readonly_data_section;
210 static GTY(()) section *som_one_only_readonly_data_section;
211 static GTY(()) section *som_one_only_data_section;
212 static GTY(()) section *som_tm_clone_table_section;
214 /* Counts for the number of callee-saved general and floating point
215 registers which were saved by the current function's prologue. */
216 static int gr_saved, fr_saved;
218 /* Boolean indicating whether the return pointer was saved by the
219 current function's prologue. */
220 static bool rp_saved;
222 static rtx find_addr_reg (rtx);
224 /* Keep track of the number of bytes we have output in the CODE subspace
225 during this compilation so we'll know when to emit inline long-calls. */
226 unsigned long total_code_bytes;
228 /* The last address of the previous function plus the number of bytes in
229 associated thunks that have been output. This is used to determine if
230 a thunk can use an IA-relative branch to reach its target function. */
231 static unsigned int last_address;
233 /* Variables to handle plabels that we discover are necessary at assembly
234 output time. They are output after the current function. */
235 struct GTY(()) deferred_plabel
237 rtx internal_label;
238 rtx symbol;
240 static GTY((length ("n_deferred_plabels"))) struct deferred_plabel *
241 deferred_plabels;
242 static size_t n_deferred_plabels = 0;
244 /* Initialize the GCC target structure. */
246 #undef TARGET_OPTION_OVERRIDE
247 #define TARGET_OPTION_OVERRIDE pa_option_override
249 #undef TARGET_ASM_ALIGNED_HI_OP
250 #define TARGET_ASM_ALIGNED_HI_OP "\t.half\t"
251 #undef TARGET_ASM_ALIGNED_SI_OP
252 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
253 #undef TARGET_ASM_ALIGNED_DI_OP
254 #define TARGET_ASM_ALIGNED_DI_OP "\t.dword\t"
255 #undef TARGET_ASM_UNALIGNED_HI_OP
256 #define TARGET_ASM_UNALIGNED_HI_OP TARGET_ASM_ALIGNED_HI_OP
257 #undef TARGET_ASM_UNALIGNED_SI_OP
258 #define TARGET_ASM_UNALIGNED_SI_OP TARGET_ASM_ALIGNED_SI_OP
259 #undef TARGET_ASM_UNALIGNED_DI_OP
260 #define TARGET_ASM_UNALIGNED_DI_OP TARGET_ASM_ALIGNED_DI_OP
261 #undef TARGET_ASM_INTEGER
262 #define TARGET_ASM_INTEGER pa_assemble_integer
264 #undef TARGET_ASM_FUNCTION_EPILOGUE
265 #define TARGET_ASM_FUNCTION_EPILOGUE pa_output_function_epilogue
267 #undef TARGET_FUNCTION_VALUE
268 #define TARGET_FUNCTION_VALUE pa_function_value
269 #undef TARGET_LIBCALL_VALUE
270 #define TARGET_LIBCALL_VALUE pa_libcall_value
271 #undef TARGET_FUNCTION_VALUE_REGNO_P
272 #define TARGET_FUNCTION_VALUE_REGNO_P pa_function_value_regno_p
274 #undef TARGET_LEGITIMIZE_ADDRESS
275 #define TARGET_LEGITIMIZE_ADDRESS hppa_legitimize_address
277 #undef TARGET_SCHED_ADJUST_COST
278 #define TARGET_SCHED_ADJUST_COST pa_adjust_cost
279 #undef TARGET_SCHED_ISSUE_RATE
280 #define TARGET_SCHED_ISSUE_RATE pa_issue_rate
282 #undef TARGET_ENCODE_SECTION_INFO
283 #define TARGET_ENCODE_SECTION_INFO pa_encode_section_info
284 #undef TARGET_STRIP_NAME_ENCODING
285 #define TARGET_STRIP_NAME_ENCODING pa_strip_name_encoding
287 #undef TARGET_FUNCTION_OK_FOR_SIBCALL
288 #define TARGET_FUNCTION_OK_FOR_SIBCALL pa_function_ok_for_sibcall
290 #undef TARGET_COMMUTATIVE_P
291 #define TARGET_COMMUTATIVE_P pa_commutative_p
293 #undef TARGET_ASM_OUTPUT_MI_THUNK
294 #define TARGET_ASM_OUTPUT_MI_THUNK pa_asm_output_mi_thunk
295 #undef TARGET_ASM_CAN_OUTPUT_MI_THUNK
296 #define TARGET_ASM_CAN_OUTPUT_MI_THUNK default_can_output_mi_thunk_no_vcall
298 #undef TARGET_ASM_FILE_END
299 #define TARGET_ASM_FILE_END pa_file_end
301 #undef TARGET_ASM_RELOC_RW_MASK
302 #define TARGET_ASM_RELOC_RW_MASK pa_reloc_rw_mask
304 #undef TARGET_PRINT_OPERAND_PUNCT_VALID_P
305 #define TARGET_PRINT_OPERAND_PUNCT_VALID_P pa_print_operand_punct_valid_p
307 #if !defined(USE_COLLECT2)
308 #undef TARGET_ASM_CONSTRUCTOR
309 #define TARGET_ASM_CONSTRUCTOR pa_asm_out_constructor
310 #undef TARGET_ASM_DESTRUCTOR
311 #define TARGET_ASM_DESTRUCTOR pa_asm_out_destructor
312 #endif
314 #undef TARGET_INIT_BUILTINS
315 #define TARGET_INIT_BUILTINS pa_init_builtins
317 #undef TARGET_EXPAND_BUILTIN
318 #define TARGET_EXPAND_BUILTIN pa_expand_builtin
320 #undef TARGET_REGISTER_MOVE_COST
321 #define TARGET_REGISTER_MOVE_COST hppa_register_move_cost
322 #undef TARGET_RTX_COSTS
323 #define TARGET_RTX_COSTS hppa_rtx_costs
324 #undef TARGET_ADDRESS_COST
325 #define TARGET_ADDRESS_COST hppa_address_cost
327 #undef TARGET_MACHINE_DEPENDENT_REORG
328 #define TARGET_MACHINE_DEPENDENT_REORG pa_reorg
330 #undef TARGET_INIT_LIBFUNCS
331 #define TARGET_INIT_LIBFUNCS pa_init_libfuncs
333 #undef TARGET_PROMOTE_FUNCTION_MODE
334 #define TARGET_PROMOTE_FUNCTION_MODE pa_promote_function_mode
335 #undef TARGET_PROMOTE_PROTOTYPES
336 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
338 #undef TARGET_STRUCT_VALUE_RTX
339 #define TARGET_STRUCT_VALUE_RTX pa_struct_value_rtx
340 #undef TARGET_RETURN_IN_MEMORY
341 #define TARGET_RETURN_IN_MEMORY pa_return_in_memory
342 #undef TARGET_MUST_PASS_IN_STACK
343 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
344 #undef TARGET_PASS_BY_REFERENCE
345 #define TARGET_PASS_BY_REFERENCE pa_pass_by_reference
346 #undef TARGET_CALLEE_COPIES
347 #define TARGET_CALLEE_COPIES pa_callee_copies
348 #undef TARGET_ARG_PARTIAL_BYTES
349 #define TARGET_ARG_PARTIAL_BYTES pa_arg_partial_bytes
350 #undef TARGET_FUNCTION_ARG
351 #define TARGET_FUNCTION_ARG pa_function_arg
352 #undef TARGET_FUNCTION_ARG_ADVANCE
353 #define TARGET_FUNCTION_ARG_ADVANCE pa_function_arg_advance
354 #undef TARGET_FUNCTION_ARG_PADDING
355 #define TARGET_FUNCTION_ARG_PADDING pa_function_arg_padding
356 #undef TARGET_FUNCTION_ARG_BOUNDARY
357 #define TARGET_FUNCTION_ARG_BOUNDARY pa_function_arg_boundary
359 #undef TARGET_EXPAND_BUILTIN_SAVEREGS
360 #define TARGET_EXPAND_BUILTIN_SAVEREGS hppa_builtin_saveregs
361 #undef TARGET_EXPAND_BUILTIN_VA_START
362 #define TARGET_EXPAND_BUILTIN_VA_START hppa_va_start
363 #undef TARGET_GIMPLIFY_VA_ARG_EXPR
364 #define TARGET_GIMPLIFY_VA_ARG_EXPR hppa_gimplify_va_arg_expr
366 #undef TARGET_SCALAR_MODE_SUPPORTED_P
367 #define TARGET_SCALAR_MODE_SUPPORTED_P pa_scalar_mode_supported_p
369 #undef TARGET_CANNOT_FORCE_CONST_MEM
370 #define TARGET_CANNOT_FORCE_CONST_MEM pa_cannot_force_const_mem
372 #undef TARGET_SECONDARY_RELOAD
373 #define TARGET_SECONDARY_RELOAD pa_secondary_reload
374 #undef TARGET_SECONDARY_MEMORY_NEEDED
375 #define TARGET_SECONDARY_MEMORY_NEEDED pa_secondary_memory_needed
377 #undef TARGET_EXTRA_LIVE_ON_ENTRY
378 #define TARGET_EXTRA_LIVE_ON_ENTRY pa_extra_live_on_entry
380 #undef TARGET_ASM_TRAMPOLINE_TEMPLATE
381 #define TARGET_ASM_TRAMPOLINE_TEMPLATE pa_asm_trampoline_template
382 #undef TARGET_TRAMPOLINE_INIT
383 #define TARGET_TRAMPOLINE_INIT pa_trampoline_init
384 #undef TARGET_TRAMPOLINE_ADJUST_ADDRESS
385 #define TARGET_TRAMPOLINE_ADJUST_ADDRESS pa_trampoline_adjust_address
386 #undef TARGET_DELEGITIMIZE_ADDRESS
387 #define TARGET_DELEGITIMIZE_ADDRESS pa_delegitimize_address
388 #undef TARGET_INTERNAL_ARG_POINTER
389 #define TARGET_INTERNAL_ARG_POINTER pa_internal_arg_pointer
390 #undef TARGET_CAN_ELIMINATE
391 #define TARGET_CAN_ELIMINATE pa_can_eliminate
392 #undef TARGET_CONDITIONAL_REGISTER_USAGE
393 #define TARGET_CONDITIONAL_REGISTER_USAGE pa_conditional_register_usage
394 #undef TARGET_C_MODE_FOR_SUFFIX
395 #define TARGET_C_MODE_FOR_SUFFIX pa_c_mode_for_suffix
396 #undef TARGET_ASM_FUNCTION_SECTION
397 #define TARGET_ASM_FUNCTION_SECTION pa_function_section
399 #undef TARGET_LEGITIMATE_CONSTANT_P
400 #define TARGET_LEGITIMATE_CONSTANT_P pa_legitimate_constant_p
401 #undef TARGET_SECTION_TYPE_FLAGS
402 #define TARGET_SECTION_TYPE_FLAGS pa_section_type_flags
403 #undef TARGET_LEGITIMATE_ADDRESS_P
404 #define TARGET_LEGITIMATE_ADDRESS_P pa_legitimate_address_p
406 #undef TARGET_LRA_P
407 #define TARGET_LRA_P hook_bool_void_false
409 #undef TARGET_HARD_REGNO_NREGS
410 #define TARGET_HARD_REGNO_NREGS pa_hard_regno_nregs
411 #undef TARGET_HARD_REGNO_MODE_OK
412 #define TARGET_HARD_REGNO_MODE_OK pa_hard_regno_mode_ok
413 #undef TARGET_MODES_TIEABLE_P
414 #define TARGET_MODES_TIEABLE_P pa_modes_tieable_p
416 #undef TARGET_CAN_CHANGE_MODE_CLASS
417 #define TARGET_CAN_CHANGE_MODE_CLASS pa_can_change_mode_class
419 #undef TARGET_CONSTANT_ALIGNMENT
420 #define TARGET_CONSTANT_ALIGNMENT constant_alignment_word_strings
422 #undef TARGET_STARTING_FRAME_OFFSET
423 #define TARGET_STARTING_FRAME_OFFSET pa_starting_frame_offset
425 #undef TARGET_HAVE_SPECULATION_SAFE_VALUE
426 #define TARGET_HAVE_SPECULATION_SAFE_VALUE speculation_safe_value_not_needed
428 struct gcc_target targetm = TARGET_INITIALIZER;
430 /* Parse the -mfixed-range= option string. */
432 static void
433 fix_range (const char *const_str)
435 int i, first, last;
436 char *str, *dash, *comma;
438 /* str must be of the form REG1'-'REG2{,REG1'-'REG} where REG1 and
439 REG2 are either register names or register numbers. The effect
440 of this option is to mark the registers in the range from REG1 to
441 REG2 as ``fixed'' so they won't be used by the compiler. This is
442 used, e.g., to ensure that kernel mode code doesn't use fr4-fr31. */
444 i = strlen (const_str);
445 str = (char *) alloca (i + 1);
446 memcpy (str, const_str, i + 1);
448 while (1)
450 dash = strchr (str, '-');
451 if (!dash)
453 warning (0, "value of %<-mfixed-range%> must have form REG1-REG2");
454 return;
456 *dash = '\0';
458 comma = strchr (dash + 1, ',');
459 if (comma)
460 *comma = '\0';
462 first = decode_reg_name (str);
463 if (first < 0)
465 warning (0, "unknown register name: %s", str);
466 return;
469 last = decode_reg_name (dash + 1);
470 if (last < 0)
472 warning (0, "unknown register name: %s", dash + 1);
473 return;
476 *dash = '-';
478 if (first > last)
480 warning (0, "%s-%s is an empty range", str, dash + 1);
481 return;
484 for (i = first; i <= last; ++i)
485 fixed_regs[i] = call_used_regs[i] = 1;
487 if (!comma)
488 break;
490 *comma = ',';
491 str = comma + 1;
494 /* Check if all floating point registers have been fixed. */
495 for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
496 if (!fixed_regs[i])
497 break;
499 if (i > FP_REG_LAST)
500 target_flags |= MASK_DISABLE_FPREGS;
503 /* Implement the TARGET_OPTION_OVERRIDE hook. */
505 static void
506 pa_option_override (void)
508 unsigned int i;
509 cl_deferred_option *opt;
510 vec<cl_deferred_option> *v
511 = (vec<cl_deferred_option> *) pa_deferred_options;
513 if (v)
514 FOR_EACH_VEC_ELT (*v, i, opt)
516 switch (opt->opt_index)
518 case OPT_mfixed_range_:
519 fix_range (opt->arg);
520 break;
522 default:
523 gcc_unreachable ();
527 if (flag_pic && TARGET_PORTABLE_RUNTIME)
529 warning (0, "PIC code generation is not supported in the portable runtime model");
532 if (flag_pic && TARGET_FAST_INDIRECT_CALLS)
534 warning (0, "PIC code generation is not compatible with fast indirect calls");
537 if (! TARGET_GAS && write_symbols != NO_DEBUG)
539 warning (0, "%<-g%> is only supported when using GAS on this processor");
540 warning (0, "%<-g%> option disabled");
541 write_symbols = NO_DEBUG;
544 /* We only support the "big PIC" model now. And we always generate PIC
545 code when in 64bit mode. */
546 if (flag_pic == 1 || TARGET_64BIT)
547 flag_pic = 2;
549 /* Disable -freorder-blocks-and-partition as we don't support hot and
550 cold partitioning. */
551 if (flag_reorder_blocks_and_partition)
553 inform (input_location,
554 "%<-freorder-blocks-and-partition%> does not work "
555 "on this architecture");
556 flag_reorder_blocks_and_partition = 0;
557 flag_reorder_blocks = 1;
560 /* We can't guarantee that .dword is available for 32-bit targets. */
561 if (UNITS_PER_WORD == 4)
562 targetm.asm_out.aligned_op.di = NULL;
564 /* The unaligned ops are only available when using GAS. */
565 if (!TARGET_GAS)
567 targetm.asm_out.unaligned_op.hi = NULL;
568 targetm.asm_out.unaligned_op.si = NULL;
569 targetm.asm_out.unaligned_op.di = NULL;
572 init_machine_status = pa_init_machine_status;
575 enum pa_builtins
577 PA_BUILTIN_COPYSIGNQ,
578 PA_BUILTIN_FABSQ,
579 PA_BUILTIN_INFQ,
580 PA_BUILTIN_HUGE_VALQ,
581 PA_BUILTIN_max
584 static GTY(()) tree pa_builtins[(int) PA_BUILTIN_max];
586 static void
587 pa_init_builtins (void)
589 #ifdef DONT_HAVE_FPUTC_UNLOCKED
591 tree decl = builtin_decl_explicit (BUILT_IN_PUTC_UNLOCKED);
592 set_builtin_decl (BUILT_IN_FPUTC_UNLOCKED, decl,
593 builtin_decl_implicit_p (BUILT_IN_PUTC_UNLOCKED));
595 #endif
596 #if TARGET_HPUX_11
598 tree decl;
600 if ((decl = builtin_decl_explicit (BUILT_IN_FINITE)) != NULL_TREE)
601 set_user_assembler_name (decl, "_Isfinite");
602 if ((decl = builtin_decl_explicit (BUILT_IN_FINITEF)) != NULL_TREE)
603 set_user_assembler_name (decl, "_Isfinitef");
605 #endif
607 if (HPUX_LONG_DOUBLE_LIBRARY)
609 tree decl, ftype;
611 /* Under HPUX, the __float128 type is a synonym for "long double". */
612 (*lang_hooks.types.register_builtin_type) (long_double_type_node,
613 "__float128");
615 /* TFmode support builtins. */
616 ftype = build_function_type_list (long_double_type_node,
617 long_double_type_node,
618 NULL_TREE);
619 decl = add_builtin_function ("__builtin_fabsq", ftype,
620 PA_BUILTIN_FABSQ, BUILT_IN_MD,
621 "_U_Qfabs", NULL_TREE);
622 TREE_READONLY (decl) = 1;
623 pa_builtins[PA_BUILTIN_FABSQ] = decl;
625 ftype = build_function_type_list (long_double_type_node,
626 long_double_type_node,
627 long_double_type_node,
628 NULL_TREE);
629 decl = add_builtin_function ("__builtin_copysignq", ftype,
630 PA_BUILTIN_COPYSIGNQ, BUILT_IN_MD,
631 "_U_Qfcopysign", NULL_TREE);
632 TREE_READONLY (decl) = 1;
633 pa_builtins[PA_BUILTIN_COPYSIGNQ] = decl;
635 ftype = build_function_type_list (long_double_type_node, NULL_TREE);
636 decl = add_builtin_function ("__builtin_infq", ftype,
637 PA_BUILTIN_INFQ, BUILT_IN_MD,
638 NULL, NULL_TREE);
639 pa_builtins[PA_BUILTIN_INFQ] = decl;
641 decl = add_builtin_function ("__builtin_huge_valq", ftype,
642 PA_BUILTIN_HUGE_VALQ, BUILT_IN_MD,
643 NULL, NULL_TREE);
644 pa_builtins[PA_BUILTIN_HUGE_VALQ] = decl;
648 static rtx
649 pa_expand_builtin (tree exp, rtx target, rtx subtarget ATTRIBUTE_UNUSED,
650 machine_mode mode ATTRIBUTE_UNUSED,
651 int ignore ATTRIBUTE_UNUSED)
653 tree fndecl = TREE_OPERAND (CALL_EXPR_FN (exp), 0);
654 unsigned int fcode = DECL_MD_FUNCTION_CODE (fndecl);
656 switch (fcode)
658 case PA_BUILTIN_FABSQ:
659 case PA_BUILTIN_COPYSIGNQ:
660 return expand_call (exp, target, ignore);
662 case PA_BUILTIN_INFQ:
663 case PA_BUILTIN_HUGE_VALQ:
665 machine_mode target_mode = TYPE_MODE (TREE_TYPE (exp));
666 REAL_VALUE_TYPE inf;
667 rtx tmp;
669 real_inf (&inf);
670 tmp = const_double_from_real_value (inf, target_mode);
672 tmp = validize_mem (force_const_mem (target_mode, tmp));
674 if (target == 0)
675 target = gen_reg_rtx (target_mode);
677 emit_move_insn (target, tmp);
678 return target;
681 default:
682 gcc_unreachable ();
685 return NULL_RTX;
688 /* Function to init struct machine_function.
689 This will be called, via a pointer variable,
690 from push_function_context. */
692 static struct machine_function *
693 pa_init_machine_status (void)
695 return ggc_cleared_alloc<machine_function> ();
698 /* If FROM is a probable pointer register, mark TO as a probable
699 pointer register with the same pointer alignment as FROM. */
701 static void
702 copy_reg_pointer (rtx to, rtx from)
704 if (REG_POINTER (from))
705 mark_reg_pointer (to, REGNO_POINTER_ALIGN (REGNO (from)));
708 /* Return 1 if X contains a symbolic expression. We know these
709 expressions will have one of a few well defined forms, so
710 we need only check those forms. */
712 pa_symbolic_expression_p (rtx x)
715 /* Strip off any HIGH. */
716 if (GET_CODE (x) == HIGH)
717 x = XEXP (x, 0);
719 return symbolic_operand (x, VOIDmode);
722 /* Accept any constant that can be moved in one instruction into a
723 general register. */
725 pa_cint_ok_for_move (unsigned HOST_WIDE_INT ival)
727 /* OK if ldo, ldil, or zdepi, can be used. */
728 return (VAL_14_BITS_P (ival)
729 || pa_ldil_cint_p (ival)
730 || pa_zdepi_cint_p (ival));
733 /* True iff ldil can be used to load this CONST_INT. The least
734 significant 11 bits of the value must be zero and the value must
735 not change sign when extended from 32 to 64 bits. */
737 pa_ldil_cint_p (unsigned HOST_WIDE_INT ival)
739 unsigned HOST_WIDE_INT x;
741 x = ival & (((unsigned HOST_WIDE_INT) -1 << 31) | 0x7ff);
742 return x == 0 || x == ((unsigned HOST_WIDE_INT) -1 << 31);
745 /* True iff zdepi can be used to generate this CONST_INT.
746 zdepi first sign extends a 5-bit signed number to a given field
747 length, then places this field anywhere in a zero. */
749 pa_zdepi_cint_p (unsigned HOST_WIDE_INT x)
751 unsigned HOST_WIDE_INT lsb_mask, t;
753 /* This might not be obvious, but it's at least fast.
754 This function is critical; we don't have the time loops would take. */
755 lsb_mask = x & -x;
756 t = ((x >> 4) + lsb_mask) & ~(lsb_mask - 1);
757 /* Return true iff t is a power of two. */
758 return ((t & (t - 1)) == 0);
761 /* True iff depi or extru can be used to compute (reg & mask).
762 Accept bit pattern like these:
763 0....01....1
764 1....10....0
765 1..10..01..1 */
767 pa_and_mask_p (unsigned HOST_WIDE_INT mask)
769 mask = ~mask;
770 mask += mask & -mask;
771 return (mask & (mask - 1)) == 0;
774 /* True iff depi can be used to compute (reg | MASK). */
776 pa_ior_mask_p (unsigned HOST_WIDE_INT mask)
778 mask += mask & -mask;
779 return (mask & (mask - 1)) == 0;
782 /* Legitimize PIC addresses. If the address is already
783 position-independent, we return ORIG. Newly generated
784 position-independent addresses go to REG. If we need more
785 than one register, we lose. */
787 static rtx
788 legitimize_pic_address (rtx orig, machine_mode mode, rtx reg)
790 rtx pic_ref = orig;
792 gcc_assert (!PA_SYMBOL_REF_TLS_P (orig));
794 /* Labels need special handling. */
795 if (pic_label_operand (orig, mode))
797 rtx_insn *insn;
799 /* We do not want to go through the movXX expanders here since that
800 would create recursion.
802 Nor do we really want to call a generator for a named pattern
803 since that requires multiple patterns if we want to support
804 multiple word sizes.
806 So instead we just emit the raw set, which avoids the movXX
807 expanders completely. */
808 mark_reg_pointer (reg, BITS_PER_UNIT);
809 insn = emit_insn (gen_rtx_SET (reg, orig));
811 /* Put a REG_EQUAL note on this insn, so that it can be optimized. */
812 add_reg_note (insn, REG_EQUAL, orig);
814 /* During and after reload, we need to generate a REG_LABEL_OPERAND note
815 and update LABEL_NUSES because this is not done automatically. */
816 if (reload_in_progress || reload_completed)
818 /* Extract LABEL_REF. */
819 if (GET_CODE (orig) == CONST)
820 orig = XEXP (XEXP (orig, 0), 0);
821 /* Extract CODE_LABEL. */
822 orig = XEXP (orig, 0);
823 add_reg_note (insn, REG_LABEL_OPERAND, orig);
824 /* Make sure we have label and not a note. */
825 if (LABEL_P (orig))
826 LABEL_NUSES (orig)++;
828 crtl->uses_pic_offset_table = 1;
829 return reg;
831 if (GET_CODE (orig) == SYMBOL_REF)
833 rtx_insn *insn;
834 rtx tmp_reg;
836 gcc_assert (reg);
838 /* Before reload, allocate a temporary register for the intermediate
839 result. This allows the sequence to be deleted when the final
840 result is unused and the insns are trivially dead. */
841 tmp_reg = ((reload_in_progress || reload_completed)
842 ? reg : gen_reg_rtx (Pmode));
844 if (function_label_operand (orig, VOIDmode))
846 /* Force function label into memory in word mode. */
847 orig = XEXP (force_const_mem (word_mode, orig), 0);
848 /* Load plabel address from DLT. */
849 emit_move_insn (tmp_reg,
850 gen_rtx_PLUS (word_mode, pic_offset_table_rtx,
851 gen_rtx_HIGH (word_mode, orig)));
852 pic_ref
853 = gen_const_mem (Pmode,
854 gen_rtx_LO_SUM (Pmode, tmp_reg,
855 gen_rtx_UNSPEC (Pmode,
856 gen_rtvec (1, orig),
857 UNSPEC_DLTIND14R)));
858 emit_move_insn (reg, pic_ref);
859 /* Now load address of function descriptor. */
860 pic_ref = gen_rtx_MEM (Pmode, reg);
862 else
864 /* Load symbol reference from DLT. */
865 emit_move_insn (tmp_reg,
866 gen_rtx_PLUS (word_mode, pic_offset_table_rtx,
867 gen_rtx_HIGH (word_mode, orig)));
868 pic_ref
869 = gen_const_mem (Pmode,
870 gen_rtx_LO_SUM (Pmode, tmp_reg,
871 gen_rtx_UNSPEC (Pmode,
872 gen_rtvec (1, orig),
873 UNSPEC_DLTIND14R)));
876 crtl->uses_pic_offset_table = 1;
877 mark_reg_pointer (reg, BITS_PER_UNIT);
878 insn = emit_move_insn (reg, pic_ref);
880 /* Put a REG_EQUAL note on this insn, so that it can be optimized. */
881 set_unique_reg_note (insn, REG_EQUAL, orig);
883 return reg;
885 else if (GET_CODE (orig) == CONST)
887 rtx base;
889 if (GET_CODE (XEXP (orig, 0)) == PLUS
890 && XEXP (XEXP (orig, 0), 0) == pic_offset_table_rtx)
891 return orig;
893 gcc_assert (reg);
894 gcc_assert (GET_CODE (XEXP (orig, 0)) == PLUS);
896 base = legitimize_pic_address (XEXP (XEXP (orig, 0), 0), Pmode, reg);
897 orig = legitimize_pic_address (XEXP (XEXP (orig, 0), 1), Pmode,
898 base == reg ? 0 : reg);
900 if (GET_CODE (orig) == CONST_INT)
902 if (INT_14_BITS (orig))
903 return plus_constant (Pmode, base, INTVAL (orig));
904 orig = force_reg (Pmode, orig);
906 pic_ref = gen_rtx_PLUS (Pmode, base, orig);
907 /* Likewise, should we set special REG_NOTEs here? */
910 return pic_ref;
913 static GTY(()) rtx gen_tls_tga;
915 static rtx
916 gen_tls_get_addr (void)
918 if (!gen_tls_tga)
919 gen_tls_tga = init_one_libfunc ("__tls_get_addr");
920 return gen_tls_tga;
923 static rtx
924 hppa_tls_call (rtx arg)
926 rtx ret;
928 ret = gen_reg_rtx (Pmode);
929 emit_library_call_value (gen_tls_get_addr (), ret,
930 LCT_CONST, Pmode, arg, Pmode);
932 return ret;
935 static rtx
936 legitimize_tls_address (rtx addr)
938 rtx ret, tmp, t1, t2, tp;
939 rtx_insn *insn;
941 /* Currently, we can't handle anything but a SYMBOL_REF. */
942 if (GET_CODE (addr) != SYMBOL_REF)
943 return addr;
945 switch (SYMBOL_REF_TLS_MODEL (addr))
947 case TLS_MODEL_GLOBAL_DYNAMIC:
948 tmp = gen_reg_rtx (Pmode);
949 if (flag_pic)
950 emit_insn (gen_tgd_load_pic (tmp, addr));
951 else
952 emit_insn (gen_tgd_load (tmp, addr));
953 ret = hppa_tls_call (tmp);
954 break;
956 case TLS_MODEL_LOCAL_DYNAMIC:
957 ret = gen_reg_rtx (Pmode);
958 tmp = gen_reg_rtx (Pmode);
959 start_sequence ();
960 if (flag_pic)
961 emit_insn (gen_tld_load_pic (tmp, addr));
962 else
963 emit_insn (gen_tld_load (tmp, addr));
964 t1 = hppa_tls_call (tmp);
965 insn = get_insns ();
966 end_sequence ();
967 t2 = gen_reg_rtx (Pmode);
968 emit_libcall_block (insn, t2, t1,
969 gen_rtx_UNSPEC (Pmode, gen_rtvec (1, const0_rtx),
970 UNSPEC_TLSLDBASE));
971 emit_insn (gen_tld_offset_load (ret, addr, t2));
972 break;
974 case TLS_MODEL_INITIAL_EXEC:
975 tp = gen_reg_rtx (Pmode);
976 tmp = gen_reg_rtx (Pmode);
977 ret = gen_reg_rtx (Pmode);
978 emit_insn (gen_tp_load (tp));
979 if (flag_pic)
980 emit_insn (gen_tie_load_pic (tmp, addr));
981 else
982 emit_insn (gen_tie_load (tmp, addr));
983 emit_move_insn (ret, gen_rtx_PLUS (Pmode, tp, tmp));
984 break;
986 case TLS_MODEL_LOCAL_EXEC:
987 tp = gen_reg_rtx (Pmode);
988 ret = gen_reg_rtx (Pmode);
989 emit_insn (gen_tp_load (tp));
990 emit_insn (gen_tle_load (ret, addr, tp));
991 break;
993 default:
994 gcc_unreachable ();
997 return ret;
1000 /* Helper for hppa_legitimize_address. Given X, return true if it
1001 is a left shift by 1, 2 or 3 positions or a multiply by 2, 4 or 8.
1003 This respectively represent canonical shift-add rtxs or scaled
1004 memory addresses. */
1005 static bool
1006 mem_shadd_or_shadd_rtx_p (rtx x)
1008 return ((GET_CODE (x) == ASHIFT
1009 || GET_CODE (x) == MULT)
1010 && GET_CODE (XEXP (x, 1)) == CONST_INT
1011 && ((GET_CODE (x) == ASHIFT
1012 && pa_shadd_constant_p (INTVAL (XEXP (x, 1))))
1013 || (GET_CODE (x) == MULT
1014 && pa_mem_shadd_constant_p (INTVAL (XEXP (x, 1))))));
1017 /* Try machine-dependent ways of modifying an illegitimate address
1018 to be legitimate. If we find one, return the new, valid address.
1019 This macro is used in only one place: `memory_address' in explow.c.
1021 OLDX is the address as it was before break_out_memory_refs was called.
1022 In some cases it is useful to look at this to decide what needs to be done.
1024 It is always safe for this macro to do nothing. It exists to recognize
1025 opportunities to optimize the output.
1027 For the PA, transform:
1029 memory(X + <large int>)
1031 into:
1033 if (<large int> & mask) >= 16
1034 Y = (<large int> & ~mask) + mask + 1 Round up.
1035 else
1036 Y = (<large int> & ~mask) Round down.
1037 Z = X + Y
1038 memory (Z + (<large int> - Y));
1040 This is for CSE to find several similar references, and only use one Z.
1042 X can either be a SYMBOL_REF or REG, but because combine cannot
1043 perform a 4->2 combination we do nothing for SYMBOL_REF + D where
1044 D will not fit in 14 bits.
1046 MODE_FLOAT references allow displacements which fit in 5 bits, so use
1047 0x1f as the mask.
1049 MODE_INT references allow displacements which fit in 14 bits, so use
1050 0x3fff as the mask.
1052 This relies on the fact that most mode MODE_FLOAT references will use FP
1053 registers and most mode MODE_INT references will use integer registers.
1054 (In the rare case of an FP register used in an integer MODE, we depend
1055 on secondary reloads to clean things up.)
1058 It is also beneficial to handle (plus (mult (X) (Y)) (Z)) in a special
1059 manner if Y is 2, 4, or 8. (allows more shadd insns and shifted indexed
1060 addressing modes to be used).
1062 Note that the addresses passed into hppa_legitimize_address always
1063 come from a MEM, so we only have to match the MULT form on incoming
1064 addresses. But to be future proof we also match the ASHIFT form.
1066 However, this routine always places those shift-add sequences into
1067 registers, so we have to generate the ASHIFT form as our output.
1069 Put X and Z into registers. Then put the entire expression into
1070 a register. */
1073 hppa_legitimize_address (rtx x, rtx oldx ATTRIBUTE_UNUSED,
1074 machine_mode mode)
1076 rtx orig = x;
1078 /* We need to canonicalize the order of operands in unscaled indexed
1079 addresses since the code that checks if an address is valid doesn't
1080 always try both orders. */
1081 if (!TARGET_NO_SPACE_REGS
1082 && GET_CODE (x) == PLUS
1083 && GET_MODE (x) == Pmode
1084 && REG_P (XEXP (x, 0))
1085 && REG_P (XEXP (x, 1))
1086 && REG_POINTER (XEXP (x, 0))
1087 && !REG_POINTER (XEXP (x, 1)))
1088 return gen_rtx_PLUS (Pmode, XEXP (x, 1), XEXP (x, 0));
1090 if (tls_referenced_p (x))
1091 return legitimize_tls_address (x);
1092 else if (flag_pic)
1093 return legitimize_pic_address (x, mode, gen_reg_rtx (Pmode));
1095 /* Strip off CONST. */
1096 if (GET_CODE (x) == CONST)
1097 x = XEXP (x, 0);
1099 /* Special case. Get the SYMBOL_REF into a register and use indexing.
1100 That should always be safe. */
1101 if (GET_CODE (x) == PLUS
1102 && GET_CODE (XEXP (x, 0)) == REG
1103 && GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
1105 rtx reg = force_reg (Pmode, XEXP (x, 1));
1106 return force_reg (Pmode, gen_rtx_PLUS (Pmode, reg, XEXP (x, 0)));
1109 /* Note we must reject symbols which represent function addresses
1110 since the assembler/linker can't handle arithmetic on plabels. */
1111 if (GET_CODE (x) == PLUS
1112 && GET_CODE (XEXP (x, 1)) == CONST_INT
1113 && ((GET_CODE (XEXP (x, 0)) == SYMBOL_REF
1114 && !FUNCTION_NAME_P (XSTR (XEXP (x, 0), 0)))
1115 || GET_CODE (XEXP (x, 0)) == REG))
1117 rtx int_part, ptr_reg;
1118 int newoffset;
1119 int offset = INTVAL (XEXP (x, 1));
1120 int mask;
1122 mask = (GET_MODE_CLASS (mode) == MODE_FLOAT
1123 && !INT14_OK_STRICT ? 0x1f : 0x3fff);
1125 /* Choose which way to round the offset. Round up if we
1126 are >= halfway to the next boundary. */
1127 if ((offset & mask) >= ((mask + 1) / 2))
1128 newoffset = (offset & ~ mask) + mask + 1;
1129 else
1130 newoffset = (offset & ~ mask);
1132 /* If the newoffset will not fit in 14 bits (ldo), then
1133 handling this would take 4 or 5 instructions (2 to load
1134 the SYMBOL_REF + 1 or 2 to load the newoffset + 1 to
1135 add the new offset and the SYMBOL_REF.) Combine cannot
1136 handle 4->2 or 5->2 combinations, so do not create
1137 them. */
1138 if (! VAL_14_BITS_P (newoffset)
1139 && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
1141 rtx const_part = plus_constant (Pmode, XEXP (x, 0), newoffset);
1142 rtx tmp_reg
1143 = force_reg (Pmode,
1144 gen_rtx_HIGH (Pmode, const_part));
1145 ptr_reg
1146 = force_reg (Pmode,
1147 gen_rtx_LO_SUM (Pmode,
1148 tmp_reg, const_part));
1150 else
1152 if (! VAL_14_BITS_P (newoffset))
1153 int_part = force_reg (Pmode, GEN_INT (newoffset));
1154 else
1155 int_part = GEN_INT (newoffset);
1157 ptr_reg = force_reg (Pmode,
1158 gen_rtx_PLUS (Pmode,
1159 force_reg (Pmode, XEXP (x, 0)),
1160 int_part));
1162 return plus_constant (Pmode, ptr_reg, offset - newoffset);
1165 /* Handle (plus (mult (a) (mem_shadd_constant)) (b)). */
1167 if (GET_CODE (x) == PLUS
1168 && mem_shadd_or_shadd_rtx_p (XEXP (x, 0))
1169 && (OBJECT_P (XEXP (x, 1))
1170 || GET_CODE (XEXP (x, 1)) == SUBREG)
1171 && GET_CODE (XEXP (x, 1)) != CONST)
1173 /* If we were given a MULT, we must fix the constant
1174 as we're going to create the ASHIFT form. */
1175 int shift_val = INTVAL (XEXP (XEXP (x, 0), 1));
1176 if (GET_CODE (XEXP (x, 0)) == MULT)
1177 shift_val = exact_log2 (shift_val);
1179 rtx reg1, reg2;
1180 reg1 = XEXP (x, 1);
1181 if (GET_CODE (reg1) != REG)
1182 reg1 = force_reg (Pmode, force_operand (reg1, 0));
1184 reg2 = XEXP (XEXP (x, 0), 0);
1185 if (GET_CODE (reg2) != REG)
1186 reg2 = force_reg (Pmode, force_operand (reg2, 0));
1188 return force_reg (Pmode,
1189 gen_rtx_PLUS (Pmode,
1190 gen_rtx_ASHIFT (Pmode, reg2,
1191 GEN_INT (shift_val)),
1192 reg1));
1195 /* Similarly for (plus (plus (mult (a) (mem_shadd_constant)) (b)) (c)).
1197 Only do so for floating point modes since this is more speculative
1198 and we lose if it's an integer store. */
1199 if (GET_CODE (x) == PLUS
1200 && GET_CODE (XEXP (x, 0)) == PLUS
1201 && mem_shadd_or_shadd_rtx_p (XEXP (XEXP (x, 0), 0))
1202 && (mode == SFmode || mode == DFmode))
1204 int shift_val = INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1));
1206 /* If we were given a MULT, we must fix the constant
1207 as we're going to create the ASHIFT form. */
1208 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT)
1209 shift_val = exact_log2 (shift_val);
1211 /* Try and figure out what to use as a base register. */
1212 rtx reg1, reg2, base, idx;
1214 reg1 = XEXP (XEXP (x, 0), 1);
1215 reg2 = XEXP (x, 1);
1216 base = NULL_RTX;
1217 idx = NULL_RTX;
1219 /* Make sure they're both regs. If one was a SYMBOL_REF [+ const],
1220 then pa_emit_move_sequence will turn on REG_POINTER so we'll know
1221 it's a base register below. */
1222 if (GET_CODE (reg1) != REG)
1223 reg1 = force_reg (Pmode, force_operand (reg1, 0));
1225 if (GET_CODE (reg2) != REG)
1226 reg2 = force_reg (Pmode, force_operand (reg2, 0));
1228 /* Figure out what the base and index are. */
1230 if (GET_CODE (reg1) == REG
1231 && REG_POINTER (reg1))
1233 base = reg1;
1234 idx = gen_rtx_PLUS (Pmode,
1235 gen_rtx_ASHIFT (Pmode,
1236 XEXP (XEXP (XEXP (x, 0), 0), 0),
1237 GEN_INT (shift_val)),
1238 XEXP (x, 1));
1240 else if (GET_CODE (reg2) == REG
1241 && REG_POINTER (reg2))
1243 base = reg2;
1244 idx = XEXP (x, 0);
1247 if (base == 0)
1248 return orig;
1250 /* If the index adds a large constant, try to scale the
1251 constant so that it can be loaded with only one insn. */
1252 if (GET_CODE (XEXP (idx, 1)) == CONST_INT
1253 && VAL_14_BITS_P (INTVAL (XEXP (idx, 1))
1254 / INTVAL (XEXP (XEXP (idx, 0), 1)))
1255 && INTVAL (XEXP (idx, 1)) % INTVAL (XEXP (XEXP (idx, 0), 1)) == 0)
1257 /* Divide the CONST_INT by the scale factor, then add it to A. */
1258 int val = INTVAL (XEXP (idx, 1));
1259 val /= (1 << shift_val);
1261 reg1 = XEXP (XEXP (idx, 0), 0);
1262 if (GET_CODE (reg1) != REG)
1263 reg1 = force_reg (Pmode, force_operand (reg1, 0));
1265 reg1 = force_reg (Pmode, gen_rtx_PLUS (Pmode, reg1, GEN_INT (val)));
1267 /* We can now generate a simple scaled indexed address. */
1268 return
1269 force_reg
1270 (Pmode, gen_rtx_PLUS (Pmode,
1271 gen_rtx_ASHIFT (Pmode, reg1,
1272 GEN_INT (shift_val)),
1273 base));
1276 /* If B + C is still a valid base register, then add them. */
1277 if (GET_CODE (XEXP (idx, 1)) == CONST_INT
1278 && INTVAL (XEXP (idx, 1)) <= 4096
1279 && INTVAL (XEXP (idx, 1)) >= -4096)
1281 rtx reg1, reg2;
1283 reg1 = force_reg (Pmode, gen_rtx_PLUS (Pmode, base, XEXP (idx, 1)));
1285 reg2 = XEXP (XEXP (idx, 0), 0);
1286 if (GET_CODE (reg2) != CONST_INT)
1287 reg2 = force_reg (Pmode, force_operand (reg2, 0));
1289 return force_reg (Pmode,
1290 gen_rtx_PLUS (Pmode,
1291 gen_rtx_ASHIFT (Pmode, reg2,
1292 GEN_INT (shift_val)),
1293 reg1));
1296 /* Get the index into a register, then add the base + index and
1297 return a register holding the result. */
1299 /* First get A into a register. */
1300 reg1 = XEXP (XEXP (idx, 0), 0);
1301 if (GET_CODE (reg1) != REG)
1302 reg1 = force_reg (Pmode, force_operand (reg1, 0));
1304 /* And get B into a register. */
1305 reg2 = XEXP (idx, 1);
1306 if (GET_CODE (reg2) != REG)
1307 reg2 = force_reg (Pmode, force_operand (reg2, 0));
1309 reg1 = force_reg (Pmode,
1310 gen_rtx_PLUS (Pmode,
1311 gen_rtx_ASHIFT (Pmode, reg1,
1312 GEN_INT (shift_val)),
1313 reg2));
1315 /* Add the result to our base register and return. */
1316 return force_reg (Pmode, gen_rtx_PLUS (Pmode, base, reg1));
1320 /* Uh-oh. We might have an address for x[n-100000]. This needs
1321 special handling to avoid creating an indexed memory address
1322 with x-100000 as the base.
1324 If the constant part is small enough, then it's still safe because
1325 there is a guard page at the beginning and end of the data segment.
1327 Scaled references are common enough that we want to try and rearrange the
1328 terms so that we can use indexing for these addresses too. Only
1329 do the optimization for floatint point modes. */
1331 if (GET_CODE (x) == PLUS
1332 && pa_symbolic_expression_p (XEXP (x, 1)))
1334 /* Ugly. We modify things here so that the address offset specified
1335 by the index expression is computed first, then added to x to form
1336 the entire address. */
1338 rtx regx1, regx2, regy1, regy2, y;
1340 /* Strip off any CONST. */
1341 y = XEXP (x, 1);
1342 if (GET_CODE (y) == CONST)
1343 y = XEXP (y, 0);
1345 if (GET_CODE (y) == PLUS || GET_CODE (y) == MINUS)
1347 /* See if this looks like
1348 (plus (mult (reg) (mem_shadd_const))
1349 (const (plus (symbol_ref) (const_int))))
1351 Where const_int is small. In that case the const
1352 expression is a valid pointer for indexing.
1354 If const_int is big, but can be divided evenly by shadd_const
1355 and added to (reg). This allows more scaled indexed addresses. */
1356 if (GET_CODE (XEXP (y, 0)) == SYMBOL_REF
1357 && mem_shadd_or_shadd_rtx_p (XEXP (x, 0))
1358 && GET_CODE (XEXP (y, 1)) == CONST_INT
1359 && INTVAL (XEXP (y, 1)) >= -4096
1360 && INTVAL (XEXP (y, 1)) <= 4095)
1362 int shift_val = INTVAL (XEXP (XEXP (x, 0), 1));
1364 /* If we were given a MULT, we must fix the constant
1365 as we're going to create the ASHIFT form. */
1366 if (GET_CODE (XEXP (x, 0)) == MULT)
1367 shift_val = exact_log2 (shift_val);
1369 rtx reg1, reg2;
1371 reg1 = XEXP (x, 1);
1372 if (GET_CODE (reg1) != REG)
1373 reg1 = force_reg (Pmode, force_operand (reg1, 0));
1375 reg2 = XEXP (XEXP (x, 0), 0);
1376 if (GET_CODE (reg2) != REG)
1377 reg2 = force_reg (Pmode, force_operand (reg2, 0));
1379 return
1380 force_reg (Pmode,
1381 gen_rtx_PLUS (Pmode,
1382 gen_rtx_ASHIFT (Pmode,
1383 reg2,
1384 GEN_INT (shift_val)),
1385 reg1));
1387 else if ((mode == DFmode || mode == SFmode)
1388 && GET_CODE (XEXP (y, 0)) == SYMBOL_REF
1389 && mem_shadd_or_shadd_rtx_p (XEXP (x, 0))
1390 && GET_CODE (XEXP (y, 1)) == CONST_INT
1391 && INTVAL (XEXP (y, 1)) % (1 << INTVAL (XEXP (XEXP (x, 0), 1))) == 0)
1393 int shift_val = INTVAL (XEXP (XEXP (x, 0), 1));
1395 /* If we were given a MULT, we must fix the constant
1396 as we're going to create the ASHIFT form. */
1397 if (GET_CODE (XEXP (x, 0)) == MULT)
1398 shift_val = exact_log2 (shift_val);
1400 regx1
1401 = force_reg (Pmode, GEN_INT (INTVAL (XEXP (y, 1))
1402 / INTVAL (XEXP (XEXP (x, 0), 1))));
1403 regx2 = XEXP (XEXP (x, 0), 0);
1404 if (GET_CODE (regx2) != REG)
1405 regx2 = force_reg (Pmode, force_operand (regx2, 0));
1406 regx2 = force_reg (Pmode, gen_rtx_fmt_ee (GET_CODE (y), Pmode,
1407 regx2, regx1));
1408 return
1409 force_reg (Pmode,
1410 gen_rtx_PLUS (Pmode,
1411 gen_rtx_ASHIFT (Pmode, regx2,
1412 GEN_INT (shift_val)),
1413 force_reg (Pmode, XEXP (y, 0))));
1415 else if (GET_CODE (XEXP (y, 1)) == CONST_INT
1416 && INTVAL (XEXP (y, 1)) >= -4096
1417 && INTVAL (XEXP (y, 1)) <= 4095)
1419 /* This is safe because of the guard page at the
1420 beginning and end of the data space. Just
1421 return the original address. */
1422 return orig;
1424 else
1426 /* Doesn't look like one we can optimize. */
1427 regx1 = force_reg (Pmode, force_operand (XEXP (x, 0), 0));
1428 regy1 = force_reg (Pmode, force_operand (XEXP (y, 0), 0));
1429 regy2 = force_reg (Pmode, force_operand (XEXP (y, 1), 0));
1430 regx1 = force_reg (Pmode,
1431 gen_rtx_fmt_ee (GET_CODE (y), Pmode,
1432 regx1, regy2));
1433 return force_reg (Pmode, gen_rtx_PLUS (Pmode, regx1, regy1));
1438 return orig;
1441 /* Implement the TARGET_REGISTER_MOVE_COST hook.
1443 Compute extra cost of moving data between one register class
1444 and another.
1446 Make moves from SAR so expensive they should never happen. We used to
1447 have 0xffff here, but that generates overflow in rare cases.
1449 Copies involving a FP register and a non-FP register are relatively
1450 expensive because they must go through memory.
1452 Other copies are reasonably cheap. */
1454 static int
1455 hppa_register_move_cost (machine_mode mode ATTRIBUTE_UNUSED,
1456 reg_class_t from, reg_class_t to)
1458 if (from == SHIFT_REGS)
1459 return 0x100;
1460 else if (to == SHIFT_REGS && FP_REG_CLASS_P (from))
1461 return 18;
1462 else if ((FP_REG_CLASS_P (from) && ! FP_REG_CLASS_P (to))
1463 || (FP_REG_CLASS_P (to) && ! FP_REG_CLASS_P (from)))
1464 return 16;
1465 else
1466 return 2;
1469 /* For the HPPA, REG and REG+CONST is cost 0
1470 and addresses involving symbolic constants are cost 2.
1472 PIC addresses are very expensive.
1474 It is no coincidence that this has the same structure
1475 as pa_legitimate_address_p. */
1477 static int
1478 hppa_address_cost (rtx X, machine_mode mode ATTRIBUTE_UNUSED,
1479 addr_space_t as ATTRIBUTE_UNUSED,
1480 bool speed ATTRIBUTE_UNUSED)
1482 switch (GET_CODE (X))
1484 case REG:
1485 case PLUS:
1486 case LO_SUM:
1487 return 1;
1488 case HIGH:
1489 return 2;
1490 default:
1491 return 4;
1495 /* Compute a (partial) cost for rtx X. Return true if the complete
1496 cost has been computed, and false if subexpressions should be
1497 scanned. In either case, *TOTAL contains the cost result. */
1499 static bool
1500 hppa_rtx_costs (rtx x, machine_mode mode, int outer_code,
1501 int opno ATTRIBUTE_UNUSED,
1502 int *total, bool speed ATTRIBUTE_UNUSED)
1504 int factor;
1505 int code = GET_CODE (x);
1507 switch (code)
1509 case CONST_INT:
1510 if (INTVAL (x) == 0)
1511 *total = 0;
1512 else if (INT_14_BITS (x))
1513 *total = 1;
1514 else
1515 *total = 2;
1516 return true;
1518 case HIGH:
1519 *total = 2;
1520 return true;
1522 case CONST:
1523 case LABEL_REF:
1524 case SYMBOL_REF:
1525 *total = 4;
1526 return true;
1528 case CONST_DOUBLE:
1529 if ((x == CONST0_RTX (DFmode) || x == CONST0_RTX (SFmode))
1530 && outer_code != SET)
1531 *total = 0;
1532 else
1533 *total = 8;
1534 return true;
1536 case MULT:
1537 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
1539 *total = COSTS_N_INSNS (3);
1540 return true;
1543 /* A mode size N times larger than SImode needs O(N*N) more insns. */
1544 factor = GET_MODE_SIZE (mode) / 4;
1545 if (factor == 0)
1546 factor = 1;
1548 if (TARGET_PA_11 && !TARGET_DISABLE_FPREGS && !TARGET_SOFT_FLOAT)
1549 *total = factor * factor * COSTS_N_INSNS (8);
1550 else
1551 *total = factor * factor * COSTS_N_INSNS (20);
1552 return true;
1554 case DIV:
1555 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
1557 *total = COSTS_N_INSNS (14);
1558 return true;
1560 /* FALLTHRU */
1562 case UDIV:
1563 case MOD:
1564 case UMOD:
1565 /* A mode size N times larger than SImode needs O(N*N) more insns. */
1566 factor = GET_MODE_SIZE (mode) / 4;
1567 if (factor == 0)
1568 factor = 1;
1570 *total = factor * factor * COSTS_N_INSNS (60);
1571 return true;
1573 case PLUS: /* this includes shNadd insns */
1574 case MINUS:
1575 if (GET_MODE_CLASS (mode) == MODE_FLOAT)
1577 *total = COSTS_N_INSNS (3);
1578 return true;
1581 /* A size N times larger than UNITS_PER_WORD needs N times as
1582 many insns, taking N times as long. */
1583 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
1584 if (factor == 0)
1585 factor = 1;
1586 *total = factor * COSTS_N_INSNS (1);
1587 return true;
1589 case ASHIFT:
1590 case ASHIFTRT:
1591 case LSHIFTRT:
1592 *total = COSTS_N_INSNS (1);
1593 return true;
1595 default:
1596 return false;
1600 /* Ensure mode of ORIG, a REG rtx, is MODE. Returns either ORIG or a
1601 new rtx with the correct mode. */
1602 static inline rtx
1603 force_mode (machine_mode mode, rtx orig)
1605 if (mode == GET_MODE (orig))
1606 return orig;
1608 gcc_assert (REGNO (orig) < FIRST_PSEUDO_REGISTER);
1610 return gen_rtx_REG (mode, REGNO (orig));
1613 /* Implement TARGET_CANNOT_FORCE_CONST_MEM. */
1615 static bool
1616 pa_cannot_force_const_mem (machine_mode mode ATTRIBUTE_UNUSED, rtx x)
1618 return tls_referenced_p (x);
1621 /* Emit insns to move operands[1] into operands[0].
1623 Return 1 if we have written out everything that needs to be done to
1624 do the move. Otherwise, return 0 and the caller will emit the move
1625 normally.
1627 Note SCRATCH_REG may not be in the proper mode depending on how it
1628 will be used. This routine is responsible for creating a new copy
1629 of SCRATCH_REG in the proper mode. */
1632 pa_emit_move_sequence (rtx *operands, machine_mode mode, rtx scratch_reg)
1634 register rtx operand0 = operands[0];
1635 register rtx operand1 = operands[1];
1636 register rtx tem;
1638 /* We can only handle indexed addresses in the destination operand
1639 of floating point stores. Thus, we need to break out indexed
1640 addresses from the destination operand. */
1641 if (GET_CODE (operand0) == MEM && IS_INDEX_ADDR_P (XEXP (operand0, 0)))
1643 gcc_assert (can_create_pseudo_p ());
1645 tem = copy_to_mode_reg (Pmode, XEXP (operand0, 0));
1646 operand0 = replace_equiv_address (operand0, tem);
1649 /* On targets with non-equivalent space registers, break out unscaled
1650 indexed addresses from the source operand before the final CSE.
1651 We have to do this because the REG_POINTER flag is not correctly
1652 carried through various optimization passes and CSE may substitute
1653 a pseudo without the pointer set for one with the pointer set. As
1654 a result, we loose various opportunities to create insns with
1655 unscaled indexed addresses. */
1656 if (!TARGET_NO_SPACE_REGS
1657 && !cse_not_expected
1658 && GET_CODE (operand1) == MEM
1659 && GET_CODE (XEXP (operand1, 0)) == PLUS
1660 && REG_P (XEXP (XEXP (operand1, 0), 0))
1661 && REG_P (XEXP (XEXP (operand1, 0), 1)))
1662 operand1
1663 = replace_equiv_address (operand1,
1664 copy_to_mode_reg (Pmode, XEXP (operand1, 0)));
1666 if (scratch_reg
1667 && reload_in_progress && GET_CODE (operand0) == REG
1668 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
1669 operand0 = reg_equiv_mem (REGNO (operand0));
1670 else if (scratch_reg
1671 && reload_in_progress && GET_CODE (operand0) == SUBREG
1672 && GET_CODE (SUBREG_REG (operand0)) == REG
1673 && REGNO (SUBREG_REG (operand0)) >= FIRST_PSEUDO_REGISTER)
1675 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
1676 the code which tracks sets/uses for delete_output_reload. */
1677 rtx temp = gen_rtx_SUBREG (GET_MODE (operand0),
1678 reg_equiv_mem (REGNO (SUBREG_REG (operand0))),
1679 SUBREG_BYTE (operand0));
1680 operand0 = alter_subreg (&temp, true);
1683 if (scratch_reg
1684 && reload_in_progress && GET_CODE (operand1) == REG
1685 && REGNO (operand1) >= FIRST_PSEUDO_REGISTER)
1686 operand1 = reg_equiv_mem (REGNO (operand1));
1687 else if (scratch_reg
1688 && reload_in_progress && GET_CODE (operand1) == SUBREG
1689 && GET_CODE (SUBREG_REG (operand1)) == REG
1690 && REGNO (SUBREG_REG (operand1)) >= FIRST_PSEUDO_REGISTER)
1692 /* We must not alter SUBREG_BYTE (operand0) since that would confuse
1693 the code which tracks sets/uses for delete_output_reload. */
1694 rtx temp = gen_rtx_SUBREG (GET_MODE (operand1),
1695 reg_equiv_mem (REGNO (SUBREG_REG (operand1))),
1696 SUBREG_BYTE (operand1));
1697 operand1 = alter_subreg (&temp, true);
1700 if (scratch_reg && reload_in_progress && GET_CODE (operand0) == MEM
1701 && ((tem = find_replacement (&XEXP (operand0, 0)))
1702 != XEXP (operand0, 0)))
1703 operand0 = replace_equiv_address (operand0, tem);
1705 if (scratch_reg && reload_in_progress && GET_CODE (operand1) == MEM
1706 && ((tem = find_replacement (&XEXP (operand1, 0)))
1707 != XEXP (operand1, 0)))
1708 operand1 = replace_equiv_address (operand1, tem);
1710 /* Handle secondary reloads for loads/stores of FP registers from
1711 REG+D addresses where D does not fit in 5 or 14 bits, including
1712 (subreg (mem (addr))) cases, and reloads for other unsupported
1713 memory operands. */
1714 if (scratch_reg
1715 && FP_REG_P (operand0)
1716 && (MEM_P (operand1)
1717 || (GET_CODE (operand1) == SUBREG
1718 && MEM_P (XEXP (operand1, 0)))))
1720 rtx op1 = operand1;
1722 if (GET_CODE (op1) == SUBREG)
1723 op1 = XEXP (op1, 0);
1725 if (reg_plus_base_memory_operand (op1, GET_MODE (op1)))
1727 if (!(TARGET_PA_20
1728 && !TARGET_ELF32
1729 && INT_14_BITS (XEXP (XEXP (op1, 0), 1)))
1730 && !INT_5_BITS (XEXP (XEXP (op1, 0), 1)))
1732 /* SCRATCH_REG will hold an address and maybe the actual data.
1733 We want it in WORD_MODE regardless of what mode it was
1734 originally given to us. */
1735 scratch_reg = force_mode (word_mode, scratch_reg);
1737 /* D might not fit in 14 bits either; for such cases load D
1738 into scratch reg. */
1739 if (!INT_14_BITS (XEXP (XEXP (op1, 0), 1)))
1741 emit_move_insn (scratch_reg, XEXP (XEXP (op1, 0), 1));
1742 emit_move_insn (scratch_reg,
1743 gen_rtx_fmt_ee (GET_CODE (XEXP (op1, 0)),
1744 Pmode,
1745 XEXP (XEXP (op1, 0), 0),
1746 scratch_reg));
1748 else
1749 emit_move_insn (scratch_reg, XEXP (op1, 0));
1750 op1 = replace_equiv_address (op1, scratch_reg);
1753 else if ((!INT14_OK_STRICT && symbolic_memory_operand (op1, VOIDmode))
1754 || IS_LO_SUM_DLT_ADDR_P (XEXP (op1, 0))
1755 || IS_INDEX_ADDR_P (XEXP (op1, 0)))
1757 /* Load memory address into SCRATCH_REG. */
1758 scratch_reg = force_mode (word_mode, scratch_reg);
1759 emit_move_insn (scratch_reg, XEXP (op1, 0));
1760 op1 = replace_equiv_address (op1, scratch_reg);
1762 emit_insn (gen_rtx_SET (operand0, op1));
1763 return 1;
1765 else if (scratch_reg
1766 && FP_REG_P (operand1)
1767 && (MEM_P (operand0)
1768 || (GET_CODE (operand0) == SUBREG
1769 && MEM_P (XEXP (operand0, 0)))))
1771 rtx op0 = operand0;
1773 if (GET_CODE (op0) == SUBREG)
1774 op0 = XEXP (op0, 0);
1776 if (reg_plus_base_memory_operand (op0, GET_MODE (op0)))
1778 if (!(TARGET_PA_20
1779 && !TARGET_ELF32
1780 && INT_14_BITS (XEXP (XEXP (op0, 0), 1)))
1781 && !INT_5_BITS (XEXP (XEXP (op0, 0), 1)))
1783 /* SCRATCH_REG will hold an address and maybe the actual data.
1784 We want it in WORD_MODE regardless of what mode it was
1785 originally given to us. */
1786 scratch_reg = force_mode (word_mode, scratch_reg);
1788 /* D might not fit in 14 bits either; for such cases load D
1789 into scratch reg. */
1790 if (!INT_14_BITS (XEXP (XEXP (op0, 0), 1)))
1792 emit_move_insn (scratch_reg, XEXP (XEXP (op0, 0), 1));
1793 emit_move_insn (scratch_reg,
1794 gen_rtx_fmt_ee (GET_CODE (XEXP (op0, 0)),
1795 Pmode,
1796 XEXP (XEXP (op0, 0), 0),
1797 scratch_reg));
1799 else
1800 emit_move_insn (scratch_reg, XEXP (op0, 0));
1801 op0 = replace_equiv_address (op0, scratch_reg);
1804 else if ((!INT14_OK_STRICT && symbolic_memory_operand (op0, VOIDmode))
1805 || IS_LO_SUM_DLT_ADDR_P (XEXP (op0, 0))
1806 || IS_INDEX_ADDR_P (XEXP (op0, 0)))
1808 /* Load memory address into SCRATCH_REG. */
1809 scratch_reg = force_mode (word_mode, scratch_reg);
1810 emit_move_insn (scratch_reg, XEXP (op0, 0));
1811 op0 = replace_equiv_address (op0, scratch_reg);
1813 emit_insn (gen_rtx_SET (op0, operand1));
1814 return 1;
1816 /* Handle secondary reloads for loads of FP registers from constant
1817 expressions by forcing the constant into memory. For the most part,
1818 this is only necessary for SImode and DImode.
1820 Use scratch_reg to hold the address of the memory location. */
1821 else if (scratch_reg
1822 && CONSTANT_P (operand1)
1823 && FP_REG_P (operand0))
1825 rtx const_mem, xoperands[2];
1827 if (operand1 == CONST0_RTX (mode))
1829 emit_insn (gen_rtx_SET (operand0, operand1));
1830 return 1;
1833 /* SCRATCH_REG will hold an address and maybe the actual data. We want
1834 it in WORD_MODE regardless of what mode it was originally given
1835 to us. */
1836 scratch_reg = force_mode (word_mode, scratch_reg);
1838 /* Force the constant into memory and put the address of the
1839 memory location into scratch_reg. */
1840 const_mem = force_const_mem (mode, operand1);
1841 xoperands[0] = scratch_reg;
1842 xoperands[1] = XEXP (const_mem, 0);
1843 pa_emit_move_sequence (xoperands, Pmode, 0);
1845 /* Now load the destination register. */
1846 emit_insn (gen_rtx_SET (operand0,
1847 replace_equiv_address (const_mem, scratch_reg)));
1848 return 1;
1850 /* Handle secondary reloads for SAR. These occur when trying to load
1851 the SAR from memory or a constant. */
1852 else if (scratch_reg
1853 && GET_CODE (operand0) == REG
1854 && REGNO (operand0) < FIRST_PSEUDO_REGISTER
1855 && REGNO_REG_CLASS (REGNO (operand0)) == SHIFT_REGS
1856 && (GET_CODE (operand1) == MEM || GET_CODE (operand1) == CONST_INT))
1858 /* D might not fit in 14 bits either; for such cases load D into
1859 scratch reg. */
1860 if (GET_CODE (operand1) == MEM
1861 && !memory_address_p (GET_MODE (operand0), XEXP (operand1, 0)))
1863 /* We are reloading the address into the scratch register, so we
1864 want to make sure the scratch register is a full register. */
1865 scratch_reg = force_mode (word_mode, scratch_reg);
1867 emit_move_insn (scratch_reg, XEXP (XEXP (operand1, 0), 1));
1868 emit_move_insn (scratch_reg, gen_rtx_fmt_ee (GET_CODE (XEXP (operand1,
1869 0)),
1870 Pmode,
1871 XEXP (XEXP (operand1, 0),
1873 scratch_reg));
1875 /* Now we are going to load the scratch register from memory,
1876 we want to load it in the same width as the original MEM,
1877 which must be the same as the width of the ultimate destination,
1878 OPERAND0. */
1879 scratch_reg = force_mode (GET_MODE (operand0), scratch_reg);
1881 emit_move_insn (scratch_reg,
1882 replace_equiv_address (operand1, scratch_reg));
1884 else
1886 /* We want to load the scratch register using the same mode as
1887 the ultimate destination. */
1888 scratch_reg = force_mode (GET_MODE (operand0), scratch_reg);
1890 emit_move_insn (scratch_reg, operand1);
1893 /* And emit the insn to set the ultimate destination. We know that
1894 the scratch register has the same mode as the destination at this
1895 point. */
1896 emit_move_insn (operand0, scratch_reg);
1897 return 1;
1900 /* Handle the most common case: storing into a register. */
1901 if (register_operand (operand0, mode))
1903 /* Legitimize TLS symbol references. This happens for references
1904 that aren't a legitimate constant. */
1905 if (PA_SYMBOL_REF_TLS_P (operand1))
1906 operand1 = legitimize_tls_address (operand1);
1908 if (register_operand (operand1, mode)
1909 || (GET_CODE (operand1) == CONST_INT
1910 && pa_cint_ok_for_move (UINTVAL (operand1)))
1911 || (operand1 == CONST0_RTX (mode))
1912 || (GET_CODE (operand1) == HIGH
1913 && !symbolic_operand (XEXP (operand1, 0), VOIDmode))
1914 /* Only `general_operands' can come here, so MEM is ok. */
1915 || GET_CODE (operand1) == MEM)
1917 /* Various sets are created during RTL generation which don't
1918 have the REG_POINTER flag correctly set. After the CSE pass,
1919 instruction recognition can fail if we don't consistently
1920 set this flag when performing register copies. This should
1921 also improve the opportunities for creating insns that use
1922 unscaled indexing. */
1923 if (REG_P (operand0) && REG_P (operand1))
1925 if (REG_POINTER (operand1)
1926 && !REG_POINTER (operand0)
1927 && !HARD_REGISTER_P (operand0))
1928 copy_reg_pointer (operand0, operand1);
1931 /* When MEMs are broken out, the REG_POINTER flag doesn't
1932 get set. In some cases, we can set the REG_POINTER flag
1933 from the declaration for the MEM. */
1934 if (REG_P (operand0)
1935 && GET_CODE (operand1) == MEM
1936 && !REG_POINTER (operand0))
1938 tree decl = MEM_EXPR (operand1);
1940 /* Set the register pointer flag and register alignment
1941 if the declaration for this memory reference is a
1942 pointer type. */
1943 if (decl)
1945 tree type;
1947 /* If this is a COMPONENT_REF, use the FIELD_DECL from
1948 tree operand 1. */
1949 if (TREE_CODE (decl) == COMPONENT_REF)
1950 decl = TREE_OPERAND (decl, 1);
1952 type = TREE_TYPE (decl);
1953 type = strip_array_types (type);
1955 if (POINTER_TYPE_P (type))
1956 mark_reg_pointer (operand0, BITS_PER_UNIT);
1960 emit_insn (gen_rtx_SET (operand0, operand1));
1961 return 1;
1964 else if (GET_CODE (operand0) == MEM)
1966 if (mode == DFmode && operand1 == CONST0_RTX (mode)
1967 && !(reload_in_progress || reload_completed))
1969 rtx temp = gen_reg_rtx (DFmode);
1971 emit_insn (gen_rtx_SET (temp, operand1));
1972 emit_insn (gen_rtx_SET (operand0, temp));
1973 return 1;
1975 if (register_operand (operand1, mode) || operand1 == CONST0_RTX (mode))
1977 /* Run this case quickly. */
1978 emit_insn (gen_rtx_SET (operand0, operand1));
1979 return 1;
1981 if (! (reload_in_progress || reload_completed))
1983 operands[0] = validize_mem (operand0);
1984 operands[1] = operand1 = force_reg (mode, operand1);
1988 /* Simplify the source if we need to.
1989 Note we do have to handle function labels here, even though we do
1990 not consider them legitimate constants. Loop optimizations can
1991 call the emit_move_xxx with one as a source. */
1992 if ((GET_CODE (operand1) != HIGH && immediate_operand (operand1, mode))
1993 || (GET_CODE (operand1) == HIGH
1994 && symbolic_operand (XEXP (operand1, 0), mode))
1995 || function_label_operand (operand1, VOIDmode)
1996 || tls_referenced_p (operand1))
1998 int ishighonly = 0;
2000 if (GET_CODE (operand1) == HIGH)
2002 ishighonly = 1;
2003 operand1 = XEXP (operand1, 0);
2005 if (symbolic_operand (operand1, mode))
2007 /* Argh. The assembler and linker can't handle arithmetic
2008 involving plabels.
2010 So we force the plabel into memory, load operand0 from
2011 the memory location, then add in the constant part. */
2012 if ((GET_CODE (operand1) == CONST
2013 && GET_CODE (XEXP (operand1, 0)) == PLUS
2014 && function_label_operand (XEXP (XEXP (operand1, 0), 0),
2015 VOIDmode))
2016 || function_label_operand (operand1, VOIDmode))
2018 rtx temp, const_part;
2020 /* Figure out what (if any) scratch register to use. */
2021 if (reload_in_progress || reload_completed)
2023 scratch_reg = scratch_reg ? scratch_reg : operand0;
2024 /* SCRATCH_REG will hold an address and maybe the actual
2025 data. We want it in WORD_MODE regardless of what mode it
2026 was originally given to us. */
2027 scratch_reg = force_mode (word_mode, scratch_reg);
2029 else if (flag_pic)
2030 scratch_reg = gen_reg_rtx (Pmode);
2032 if (GET_CODE (operand1) == CONST)
2034 /* Save away the constant part of the expression. */
2035 const_part = XEXP (XEXP (operand1, 0), 1);
2036 gcc_assert (GET_CODE (const_part) == CONST_INT);
2038 /* Force the function label into memory. */
2039 temp = force_const_mem (mode, XEXP (XEXP (operand1, 0), 0));
2041 else
2043 /* No constant part. */
2044 const_part = NULL_RTX;
2046 /* Force the function label into memory. */
2047 temp = force_const_mem (mode, operand1);
2051 /* Get the address of the memory location. PIC-ify it if
2052 necessary. */
2053 temp = XEXP (temp, 0);
2054 if (flag_pic)
2055 temp = legitimize_pic_address (temp, mode, scratch_reg);
2057 /* Put the address of the memory location into our destination
2058 register. */
2059 operands[1] = temp;
2060 pa_emit_move_sequence (operands, mode, scratch_reg);
2062 /* Now load from the memory location into our destination
2063 register. */
2064 operands[1] = gen_rtx_MEM (Pmode, operands[0]);
2065 pa_emit_move_sequence (operands, mode, scratch_reg);
2067 /* And add back in the constant part. */
2068 if (const_part != NULL_RTX)
2069 expand_inc (operand0, const_part);
2071 return 1;
2074 if (flag_pic)
2076 rtx_insn *insn;
2077 rtx temp;
2079 if (reload_in_progress || reload_completed)
2081 temp = scratch_reg ? scratch_reg : operand0;
2082 /* TEMP will hold an address and maybe the actual
2083 data. We want it in WORD_MODE regardless of what mode it
2084 was originally given to us. */
2085 temp = force_mode (word_mode, temp);
2087 else
2088 temp = gen_reg_rtx (Pmode);
2090 /* Force (const (plus (symbol) (const_int))) to memory
2091 if the const_int will not fit in 14 bits. Although
2092 this requires a relocation, the instruction sequence
2093 needed to load the value is shorter. */
2094 if (GET_CODE (operand1) == CONST
2095 && GET_CODE (XEXP (operand1, 0)) == PLUS
2096 && GET_CODE (XEXP (XEXP (operand1, 0), 1)) == CONST_INT
2097 && !INT_14_BITS (XEXP (XEXP (operand1, 0), 1)))
2099 rtx x, m = force_const_mem (mode, operand1);
2101 x = legitimize_pic_address (XEXP (m, 0), mode, temp);
2102 x = replace_equiv_address (m, x);
2103 insn = emit_move_insn (operand0, x);
2105 else
2107 operands[1] = legitimize_pic_address (operand1, mode, temp);
2108 if (REG_P (operand0) && REG_P (operands[1]))
2109 copy_reg_pointer (operand0, operands[1]);
2110 insn = emit_move_insn (operand0, operands[1]);
2113 /* Put a REG_EQUAL note on this insn. */
2114 set_unique_reg_note (insn, REG_EQUAL, operand1);
2116 /* On the HPPA, references to data space are supposed to use dp,
2117 register 27, but showing it in the RTL inhibits various cse
2118 and loop optimizations. */
2119 else
2121 rtx temp, set;
2123 if (reload_in_progress || reload_completed)
2125 temp = scratch_reg ? scratch_reg : operand0;
2126 /* TEMP will hold an address and maybe the actual
2127 data. We want it in WORD_MODE regardless of what mode it
2128 was originally given to us. */
2129 temp = force_mode (word_mode, temp);
2131 else
2132 temp = gen_reg_rtx (mode);
2134 /* Loading a SYMBOL_REF into a register makes that register
2135 safe to be used as the base in an indexed address.
2137 Don't mark hard registers though. That loses. */
2138 if (GET_CODE (operand0) == REG
2139 && REGNO (operand0) >= FIRST_PSEUDO_REGISTER)
2140 mark_reg_pointer (operand0, BITS_PER_UNIT);
2141 if (REGNO (temp) >= FIRST_PSEUDO_REGISTER)
2142 mark_reg_pointer (temp, BITS_PER_UNIT);
2144 if (ishighonly)
2145 set = gen_rtx_SET (operand0, temp);
2146 else
2147 set = gen_rtx_SET (operand0,
2148 gen_rtx_LO_SUM (mode, temp, operand1));
2150 emit_insn (gen_rtx_SET (temp, gen_rtx_HIGH (mode, operand1)));
2151 emit_insn (set);
2154 return 1;
2156 else if (tls_referenced_p (operand1))
2158 rtx tmp = operand1;
2159 rtx addend = NULL;
2161 if (GET_CODE (tmp) == CONST && GET_CODE (XEXP (tmp, 0)) == PLUS)
2163 addend = XEXP (XEXP (tmp, 0), 1);
2164 tmp = XEXP (XEXP (tmp, 0), 0);
2167 gcc_assert (GET_CODE (tmp) == SYMBOL_REF);
2168 tmp = legitimize_tls_address (tmp);
2169 if (addend)
2171 tmp = gen_rtx_PLUS (mode, tmp, addend);
2172 tmp = force_operand (tmp, operands[0]);
2174 operands[1] = tmp;
2176 else if (GET_CODE (operand1) != CONST_INT
2177 || !pa_cint_ok_for_move (UINTVAL (operand1)))
2179 rtx temp;
2180 rtx_insn *insn;
2181 rtx op1 = operand1;
2182 HOST_WIDE_INT value = 0;
2183 HOST_WIDE_INT insv = 0;
2184 int insert = 0;
2186 if (GET_CODE (operand1) == CONST_INT)
2187 value = INTVAL (operand1);
2189 if (TARGET_64BIT
2190 && GET_CODE (operand1) == CONST_INT
2191 && HOST_BITS_PER_WIDE_INT > 32
2192 && GET_MODE_BITSIZE (GET_MODE (operand0)) > 32)
2194 HOST_WIDE_INT nval;
2196 /* Extract the low order 32 bits of the value and sign extend.
2197 If the new value is the same as the original value, we can
2198 can use the original value as-is. If the new value is
2199 different, we use it and insert the most-significant 32-bits
2200 of the original value into the final result. */
2201 nval = ((value & (((HOST_WIDE_INT) 2 << 31) - 1))
2202 ^ ((HOST_WIDE_INT) 1 << 31)) - ((HOST_WIDE_INT) 1 << 31);
2203 if (value != nval)
2205 #if HOST_BITS_PER_WIDE_INT > 32
2206 insv = value >= 0 ? value >> 32 : ~(~value >> 32);
2207 #endif
2208 insert = 1;
2209 value = nval;
2210 operand1 = GEN_INT (nval);
2214 if (reload_in_progress || reload_completed)
2215 temp = scratch_reg ? scratch_reg : operand0;
2216 else
2217 temp = gen_reg_rtx (mode);
2219 /* We don't directly split DImode constants on 32-bit targets
2220 because PLUS uses an 11-bit immediate and the insn sequence
2221 generated is not as efficient as the one using HIGH/LO_SUM. */
2222 if (GET_CODE (operand1) == CONST_INT
2223 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD
2224 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
2225 && !insert)
2227 /* Directly break constant into high and low parts. This
2228 provides better optimization opportunities because various
2229 passes recognize constants split with PLUS but not LO_SUM.
2230 We use a 14-bit signed low part except when the addition
2231 of 0x4000 to the high part might change the sign of the
2232 high part. */
2233 HOST_WIDE_INT low = value & 0x3fff;
2234 HOST_WIDE_INT high = value & ~ 0x3fff;
2236 if (low >= 0x2000)
2238 if (high == 0x7fffc000 || (mode == HImode && high == 0x4000))
2239 high += 0x2000;
2240 else
2241 high += 0x4000;
2244 low = value - high;
2246 emit_insn (gen_rtx_SET (temp, GEN_INT (high)));
2247 operands[1] = gen_rtx_PLUS (mode, temp, GEN_INT (low));
2249 else
2251 emit_insn (gen_rtx_SET (temp, gen_rtx_HIGH (mode, operand1)));
2252 operands[1] = gen_rtx_LO_SUM (mode, temp, operand1);
2255 insn = emit_move_insn (operands[0], operands[1]);
2257 /* Now insert the most significant 32 bits of the value
2258 into the register. When we don't have a second register
2259 available, it could take up to nine instructions to load
2260 a 64-bit integer constant. Prior to reload, we force
2261 constants that would take more than three instructions
2262 to load to the constant pool. During and after reload,
2263 we have to handle all possible values. */
2264 if (insert)
2266 /* Use a HIGH/LO_SUM/INSV sequence if we have a second
2267 register and the value to be inserted is outside the
2268 range that can be loaded with three depdi instructions. */
2269 if (temp != operand0 && (insv >= 16384 || insv < -16384))
2271 operand1 = GEN_INT (insv);
2273 emit_insn (gen_rtx_SET (temp,
2274 gen_rtx_HIGH (mode, operand1)));
2275 emit_move_insn (temp, gen_rtx_LO_SUM (mode, temp, operand1));
2276 if (mode == DImode)
2277 insn = emit_insn (gen_insvdi (operand0, GEN_INT (32),
2278 const0_rtx, temp));
2279 else
2280 insn = emit_insn (gen_insvsi (operand0, GEN_INT (32),
2281 const0_rtx, temp));
2283 else
2285 int len = 5, pos = 27;
2287 /* Insert the bits using the depdi instruction. */
2288 while (pos >= 0)
2290 HOST_WIDE_INT v5 = ((insv & 31) ^ 16) - 16;
2291 HOST_WIDE_INT sign = v5 < 0;
2293 /* Left extend the insertion. */
2294 insv = (insv >= 0 ? insv >> len : ~(~insv >> len));
2295 while (pos > 0 && (insv & 1) == sign)
2297 insv = (insv >= 0 ? insv >> 1 : ~(~insv >> 1));
2298 len += 1;
2299 pos -= 1;
2302 if (mode == DImode)
2303 insn = emit_insn (gen_insvdi (operand0,
2304 GEN_INT (len),
2305 GEN_INT (pos),
2306 GEN_INT (v5)));
2307 else
2308 insn = emit_insn (gen_insvsi (operand0,
2309 GEN_INT (len),
2310 GEN_INT (pos),
2311 GEN_INT (v5)));
2313 len = pos > 0 && pos < 5 ? pos : 5;
2314 pos -= len;
2319 set_unique_reg_note (insn, REG_EQUAL, op1);
2321 return 1;
2324 /* Now have insn-emit do whatever it normally does. */
2325 return 0;
2328 /* Examine EXP and return nonzero if it contains an ADDR_EXPR (meaning
2329 it will need a link/runtime reloc). */
2332 pa_reloc_needed (tree exp)
2334 int reloc = 0;
2336 switch (TREE_CODE (exp))
2338 case ADDR_EXPR:
2339 return 1;
2341 case POINTER_PLUS_EXPR:
2342 case PLUS_EXPR:
2343 case MINUS_EXPR:
2344 reloc = pa_reloc_needed (TREE_OPERAND (exp, 0));
2345 reloc |= pa_reloc_needed (TREE_OPERAND (exp, 1));
2346 break;
2348 CASE_CONVERT:
2349 case NON_LVALUE_EXPR:
2350 reloc = pa_reloc_needed (TREE_OPERAND (exp, 0));
2351 break;
2353 case CONSTRUCTOR:
2355 tree value;
2356 unsigned HOST_WIDE_INT ix;
2358 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), ix, value)
2359 if (value)
2360 reloc |= pa_reloc_needed (value);
2362 break;
2364 case ERROR_MARK:
2365 break;
2367 default:
2368 break;
2370 return reloc;
2374 /* Return the best assembler insn template
2375 for moving operands[1] into operands[0] as a fullword. */
2376 const char *
2377 pa_singlemove_string (rtx *operands)
2379 HOST_WIDE_INT intval;
2381 if (GET_CODE (operands[0]) == MEM)
2382 return "stw %r1,%0";
2383 if (GET_CODE (operands[1]) == MEM)
2384 return "ldw %1,%0";
2385 if (GET_CODE (operands[1]) == CONST_DOUBLE)
2387 long i;
2389 gcc_assert (GET_MODE (operands[1]) == SFmode);
2391 /* Translate the CONST_DOUBLE to a CONST_INT with the same target
2392 bit pattern. */
2393 REAL_VALUE_TO_TARGET_SINGLE (*CONST_DOUBLE_REAL_VALUE (operands[1]), i);
2395 operands[1] = GEN_INT (i);
2396 /* Fall through to CONST_INT case. */
2398 if (GET_CODE (operands[1]) == CONST_INT)
2400 intval = INTVAL (operands[1]);
2402 if (VAL_14_BITS_P (intval))
2403 return "ldi %1,%0";
2404 else if ((intval & 0x7ff) == 0)
2405 return "ldil L'%1,%0";
2406 else if (pa_zdepi_cint_p (intval))
2407 return "{zdepi %Z1,%0|depwi,z %Z1,%0}";
2408 else
2409 return "ldil L'%1,%0\n\tldo R'%1(%0),%0";
2411 return "copy %1,%0";
2415 /* Compute position (in OP[1]) and width (in OP[2])
2416 useful for copying IMM to a register using the zdepi
2417 instructions. Store the immediate value to insert in OP[0]. */
2418 static void
2419 compute_zdepwi_operands (unsigned HOST_WIDE_INT imm, unsigned *op)
2421 int lsb, len;
2423 /* Find the least significant set bit in IMM. */
2424 for (lsb = 0; lsb < 32; lsb++)
2426 if ((imm & 1) != 0)
2427 break;
2428 imm >>= 1;
2431 /* Choose variants based on *sign* of the 5-bit field. */
2432 if ((imm & 0x10) == 0)
2433 len = (lsb <= 28) ? 4 : 32 - lsb;
2434 else
2436 /* Find the width of the bitstring in IMM. */
2437 for (len = 5; len < 32 - lsb; len++)
2439 if ((imm & ((unsigned HOST_WIDE_INT) 1 << len)) == 0)
2440 break;
2443 /* Sign extend IMM as a 5-bit value. */
2444 imm = (imm & 0xf) - 0x10;
2447 op[0] = imm;
2448 op[1] = 31 - lsb;
2449 op[2] = len;
2452 /* Compute position (in OP[1]) and width (in OP[2])
2453 useful for copying IMM to a register using the depdi,z
2454 instructions. Store the immediate value to insert in OP[0]. */
2456 static void
2457 compute_zdepdi_operands (unsigned HOST_WIDE_INT imm, unsigned *op)
2459 int lsb, len, maxlen;
2461 maxlen = MIN (HOST_BITS_PER_WIDE_INT, 64);
2463 /* Find the least significant set bit in IMM. */
2464 for (lsb = 0; lsb < maxlen; lsb++)
2466 if ((imm & 1) != 0)
2467 break;
2468 imm >>= 1;
2471 /* Choose variants based on *sign* of the 5-bit field. */
2472 if ((imm & 0x10) == 0)
2473 len = (lsb <= maxlen - 4) ? 4 : maxlen - lsb;
2474 else
2476 /* Find the width of the bitstring in IMM. */
2477 for (len = 5; len < maxlen - lsb; len++)
2479 if ((imm & ((unsigned HOST_WIDE_INT) 1 << len)) == 0)
2480 break;
2483 /* Extend length if host is narrow and IMM is negative. */
2484 if (HOST_BITS_PER_WIDE_INT == 32 && len == maxlen - lsb)
2485 len += 32;
2487 /* Sign extend IMM as a 5-bit value. */
2488 imm = (imm & 0xf) - 0x10;
2491 op[0] = imm;
2492 op[1] = 63 - lsb;
2493 op[2] = len;
2496 /* Output assembler code to perform a doubleword move insn
2497 with operands OPERANDS. */
2499 const char *
2500 pa_output_move_double (rtx *operands)
2502 enum { REGOP, OFFSOP, MEMOP, CNSTOP, RNDOP } optype0, optype1;
2503 rtx latehalf[2];
2504 rtx addreg0 = 0, addreg1 = 0;
2505 int highonly = 0;
2507 /* First classify both operands. */
2509 if (REG_P (operands[0]))
2510 optype0 = REGOP;
2511 else if (offsettable_memref_p (operands[0]))
2512 optype0 = OFFSOP;
2513 else if (GET_CODE (operands[0]) == MEM)
2514 optype0 = MEMOP;
2515 else
2516 optype0 = RNDOP;
2518 if (REG_P (operands[1]))
2519 optype1 = REGOP;
2520 else if (CONSTANT_P (operands[1]))
2521 optype1 = CNSTOP;
2522 else if (offsettable_memref_p (operands[1]))
2523 optype1 = OFFSOP;
2524 else if (GET_CODE (operands[1]) == MEM)
2525 optype1 = MEMOP;
2526 else
2527 optype1 = RNDOP;
2529 /* Check for the cases that the operand constraints are not
2530 supposed to allow to happen. */
2531 gcc_assert (optype0 == REGOP || optype1 == REGOP);
2533 /* Handle copies between general and floating registers. */
2535 if (optype0 == REGOP && optype1 == REGOP
2536 && FP_REG_P (operands[0]) ^ FP_REG_P (operands[1]))
2538 if (FP_REG_P (operands[0]))
2540 output_asm_insn ("{stws|stw} %1,-16(%%sp)", operands);
2541 output_asm_insn ("{stws|stw} %R1,-12(%%sp)", operands);
2542 return "{fldds|fldd} -16(%%sp),%0";
2544 else
2546 output_asm_insn ("{fstds|fstd} %1,-16(%%sp)", operands);
2547 output_asm_insn ("{ldws|ldw} -16(%%sp),%0", operands);
2548 return "{ldws|ldw} -12(%%sp),%R0";
2552 /* Handle auto decrementing and incrementing loads and stores
2553 specifically, since the structure of the function doesn't work
2554 for them without major modification. Do it better when we learn
2555 this port about the general inc/dec addressing of PA.
2556 (This was written by tege. Chide him if it doesn't work.) */
2558 if (optype0 == MEMOP)
2560 /* We have to output the address syntax ourselves, since print_operand
2561 doesn't deal with the addresses we want to use. Fix this later. */
2563 rtx addr = XEXP (operands[0], 0);
2564 if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC)
2566 rtx high_reg = gen_rtx_SUBREG (SImode, operands[1], 0);
2568 operands[0] = XEXP (addr, 0);
2569 gcc_assert (GET_CODE (operands[1]) == REG
2570 && GET_CODE (operands[0]) == REG);
2572 gcc_assert (!reg_overlap_mentioned_p (high_reg, addr));
2574 /* No overlap between high target register and address
2575 register. (We do this in a non-obvious way to
2576 save a register file writeback) */
2577 if (GET_CODE (addr) == POST_INC)
2578 return "{stws|stw},ma %1,8(%0)\n\tstw %R1,-4(%0)";
2579 return "{stws|stw},ma %1,-8(%0)\n\tstw %R1,12(%0)";
2581 else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
2583 rtx high_reg = gen_rtx_SUBREG (SImode, operands[1], 0);
2585 operands[0] = XEXP (addr, 0);
2586 gcc_assert (GET_CODE (operands[1]) == REG
2587 && GET_CODE (operands[0]) == REG);
2589 gcc_assert (!reg_overlap_mentioned_p (high_reg, addr));
2590 /* No overlap between high target register and address
2591 register. (We do this in a non-obvious way to save a
2592 register file writeback) */
2593 if (GET_CODE (addr) == PRE_INC)
2594 return "{stws|stw},mb %1,8(%0)\n\tstw %R1,4(%0)";
2595 return "{stws|stw},mb %1,-8(%0)\n\tstw %R1,4(%0)";
2598 if (optype1 == MEMOP)
2600 /* We have to output the address syntax ourselves, since print_operand
2601 doesn't deal with the addresses we want to use. Fix this later. */
2603 rtx addr = XEXP (operands[1], 0);
2604 if (GET_CODE (addr) == POST_INC || GET_CODE (addr) == POST_DEC)
2606 rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0);
2608 operands[1] = XEXP (addr, 0);
2609 gcc_assert (GET_CODE (operands[0]) == REG
2610 && GET_CODE (operands[1]) == REG);
2612 if (!reg_overlap_mentioned_p (high_reg, addr))
2614 /* No overlap between high target register and address
2615 register. (We do this in a non-obvious way to
2616 save a register file writeback) */
2617 if (GET_CODE (addr) == POST_INC)
2618 return "{ldws|ldw},ma 8(%1),%0\n\tldw -4(%1),%R0";
2619 return "{ldws|ldw},ma -8(%1),%0\n\tldw 12(%1),%R0";
2621 else
2623 /* This is an undefined situation. We should load into the
2624 address register *and* update that register. Probably
2625 we don't need to handle this at all. */
2626 if (GET_CODE (addr) == POST_INC)
2627 return "ldw 4(%1),%R0\n\t{ldws|ldw},ma 8(%1),%0";
2628 return "ldw 4(%1),%R0\n\t{ldws|ldw},ma -8(%1),%0";
2631 else if (GET_CODE (addr) == PRE_INC || GET_CODE (addr) == PRE_DEC)
2633 rtx high_reg = gen_rtx_SUBREG (SImode, operands[0], 0);
2635 operands[1] = XEXP (addr, 0);
2636 gcc_assert (GET_CODE (operands[0]) == REG
2637 && GET_CODE (operands[1]) == REG);
2639 if (!reg_overlap_mentioned_p (high_reg, addr))
2641 /* No overlap between high target register and address
2642 register. (We do this in a non-obvious way to
2643 save a register file writeback) */
2644 if (GET_CODE (addr) == PRE_INC)
2645 return "{ldws|ldw},mb 8(%1),%0\n\tldw 4(%1),%R0";
2646 return "{ldws|ldw},mb -8(%1),%0\n\tldw 4(%1),%R0";
2648 else
2650 /* This is an undefined situation. We should load into the
2651 address register *and* update that register. Probably
2652 we don't need to handle this at all. */
2653 if (GET_CODE (addr) == PRE_INC)
2654 return "ldw 12(%1),%R0\n\t{ldws|ldw},mb 8(%1),%0";
2655 return "ldw -4(%1),%R0\n\t{ldws|ldw},mb -8(%1),%0";
2658 else if (GET_CODE (addr) == PLUS
2659 && GET_CODE (XEXP (addr, 0)) == MULT)
2661 rtx xoperands[4];
2663 /* Load address into left half of destination register. */
2664 xoperands[0] = gen_rtx_SUBREG (SImode, operands[0], 0);
2665 xoperands[1] = XEXP (addr, 1);
2666 xoperands[2] = XEXP (XEXP (addr, 0), 0);
2667 xoperands[3] = XEXP (XEXP (addr, 0), 1);
2668 output_asm_insn ("{sh%O3addl %2,%1,%0|shladd,l %2,%O3,%1,%0}",
2669 xoperands);
2670 return "ldw 4(%0),%R0\n\tldw 0(%0),%0";
2672 else if (GET_CODE (addr) == PLUS
2673 && REG_P (XEXP (addr, 0))
2674 && REG_P (XEXP (addr, 1)))
2676 rtx xoperands[3];
2678 /* Load address into left half of destination register. */
2679 xoperands[0] = gen_rtx_SUBREG (SImode, operands[0], 0);
2680 xoperands[1] = XEXP (addr, 0);
2681 xoperands[2] = XEXP (addr, 1);
2682 output_asm_insn ("{addl|add,l} %1,%2,%0",
2683 xoperands);
2684 return "ldw 4(%0),%R0\n\tldw 0(%0),%0";
2688 /* If an operand is an unoffsettable memory ref, find a register
2689 we can increment temporarily to make it refer to the second word. */
2691 if (optype0 == MEMOP)
2692 addreg0 = find_addr_reg (XEXP (operands[0], 0));
2694 if (optype1 == MEMOP)
2695 addreg1 = find_addr_reg (XEXP (operands[1], 0));
2697 /* Ok, we can do one word at a time.
2698 Normally we do the low-numbered word first.
2700 In either case, set up in LATEHALF the operands to use
2701 for the high-numbered word and in some cases alter the
2702 operands in OPERANDS to be suitable for the low-numbered word. */
2704 if (optype0 == REGOP)
2705 latehalf[0] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2706 else if (optype0 == OFFSOP)
2707 latehalf[0] = adjust_address_nv (operands[0], SImode, 4);
2708 else
2709 latehalf[0] = operands[0];
2711 if (optype1 == REGOP)
2712 latehalf[1] = gen_rtx_REG (SImode, REGNO (operands[1]) + 1);
2713 else if (optype1 == OFFSOP)
2714 latehalf[1] = adjust_address_nv (operands[1], SImode, 4);
2715 else if (optype1 == CNSTOP)
2717 if (GET_CODE (operands[1]) == HIGH)
2719 operands[1] = XEXP (operands[1], 0);
2720 highonly = 1;
2722 split_double (operands[1], &operands[1], &latehalf[1]);
2724 else
2725 latehalf[1] = operands[1];
2727 /* If the first move would clobber the source of the second one,
2728 do them in the other order.
2730 This can happen in two cases:
2732 mem -> register where the first half of the destination register
2733 is the same register used in the memory's address. Reload
2734 can create such insns.
2736 mem in this case will be either register indirect or register
2737 indirect plus a valid offset.
2739 register -> register move where REGNO(dst) == REGNO(src + 1)
2740 someone (Tim/Tege?) claimed this can happen for parameter loads.
2742 Handle mem -> register case first. */
2743 if (optype0 == REGOP
2744 && (optype1 == MEMOP || optype1 == OFFSOP)
2745 && refers_to_regno_p (REGNO (operands[0]), operands[1]))
2747 /* Do the late half first. */
2748 if (addreg1)
2749 output_asm_insn ("ldo 4(%0),%0", &addreg1);
2750 output_asm_insn (pa_singlemove_string (latehalf), latehalf);
2752 /* Then clobber. */
2753 if (addreg1)
2754 output_asm_insn ("ldo -4(%0),%0", &addreg1);
2755 return pa_singlemove_string (operands);
2758 /* Now handle register -> register case. */
2759 if (optype0 == REGOP && optype1 == REGOP
2760 && REGNO (operands[0]) == REGNO (operands[1]) + 1)
2762 output_asm_insn (pa_singlemove_string (latehalf), latehalf);
2763 return pa_singlemove_string (operands);
2766 /* Normal case: do the two words, low-numbered first. */
2768 output_asm_insn (pa_singlemove_string (operands), operands);
2770 /* Make any unoffsettable addresses point at high-numbered word. */
2771 if (addreg0)
2772 output_asm_insn ("ldo 4(%0),%0", &addreg0);
2773 if (addreg1)
2774 output_asm_insn ("ldo 4(%0),%0", &addreg1);
2776 /* Do high-numbered word. */
2777 if (highonly)
2778 output_asm_insn ("ldil L'%1,%0", latehalf);
2779 else
2780 output_asm_insn (pa_singlemove_string (latehalf), latehalf);
2782 /* Undo the adds we just did. */
2783 if (addreg0)
2784 output_asm_insn ("ldo -4(%0),%0", &addreg0);
2785 if (addreg1)
2786 output_asm_insn ("ldo -4(%0),%0", &addreg1);
2788 return "";
2791 const char *
2792 pa_output_fp_move_double (rtx *operands)
2794 if (FP_REG_P (operands[0]))
2796 if (FP_REG_P (operands[1])
2797 || operands[1] == CONST0_RTX (GET_MODE (operands[0])))
2798 output_asm_insn ("fcpy,dbl %f1,%0", operands);
2799 else
2800 output_asm_insn ("fldd%F1 %1,%0", operands);
2802 else if (FP_REG_P (operands[1]))
2804 output_asm_insn ("fstd%F0 %1,%0", operands);
2806 else
2808 rtx xoperands[2];
2810 gcc_assert (operands[1] == CONST0_RTX (GET_MODE (operands[0])));
2812 /* This is a pain. You have to be prepared to deal with an
2813 arbitrary address here including pre/post increment/decrement.
2815 so avoid this in the MD. */
2816 gcc_assert (GET_CODE (operands[0]) == REG);
2818 xoperands[1] = gen_rtx_REG (SImode, REGNO (operands[0]) + 1);
2819 xoperands[0] = operands[0];
2820 output_asm_insn ("copy %%r0,%0\n\tcopy %%r0,%1", xoperands);
2822 return "";
2825 /* Return a REG that occurs in ADDR with coefficient 1.
2826 ADDR can be effectively incremented by incrementing REG. */
2828 static rtx
2829 find_addr_reg (rtx addr)
2831 while (GET_CODE (addr) == PLUS)
2833 if (GET_CODE (XEXP (addr, 0)) == REG)
2834 addr = XEXP (addr, 0);
2835 else if (GET_CODE (XEXP (addr, 1)) == REG)
2836 addr = XEXP (addr, 1);
2837 else if (CONSTANT_P (XEXP (addr, 0)))
2838 addr = XEXP (addr, 1);
2839 else if (CONSTANT_P (XEXP (addr, 1)))
2840 addr = XEXP (addr, 0);
2841 else
2842 gcc_unreachable ();
2844 gcc_assert (GET_CODE (addr) == REG);
2845 return addr;
2848 /* Emit code to perform a block move.
2850 OPERANDS[0] is the destination pointer as a REG, clobbered.
2851 OPERANDS[1] is the source pointer as a REG, clobbered.
2852 OPERANDS[2] is a register for temporary storage.
2853 OPERANDS[3] is a register for temporary storage.
2854 OPERANDS[4] is the size as a CONST_INT
2855 OPERANDS[5] is the alignment safe to use, as a CONST_INT.
2856 OPERANDS[6] is another temporary register. */
2858 const char *
2859 pa_output_block_move (rtx *operands, int size_is_constant ATTRIBUTE_UNUSED)
2861 int align = INTVAL (operands[5]);
2862 unsigned long n_bytes = INTVAL (operands[4]);
2864 /* We can't move more than a word at a time because the PA
2865 has no longer integer move insns. (Could use fp mem ops?) */
2866 if (align > (TARGET_64BIT ? 8 : 4))
2867 align = (TARGET_64BIT ? 8 : 4);
2869 /* Note that we know each loop below will execute at least twice
2870 (else we would have open-coded the copy). */
2871 switch (align)
2873 case 8:
2874 /* Pre-adjust the loop counter. */
2875 operands[4] = GEN_INT (n_bytes - 16);
2876 output_asm_insn ("ldi %4,%2", operands);
2878 /* Copying loop. */
2879 output_asm_insn ("ldd,ma 8(%1),%3", operands);
2880 output_asm_insn ("ldd,ma 8(%1),%6", operands);
2881 output_asm_insn ("std,ma %3,8(%0)", operands);
2882 output_asm_insn ("addib,>= -16,%2,.-12", operands);
2883 output_asm_insn ("std,ma %6,8(%0)", operands);
2885 /* Handle the residual. There could be up to 7 bytes of
2886 residual to copy! */
2887 if (n_bytes % 16 != 0)
2889 operands[4] = GEN_INT (n_bytes % 8);
2890 if (n_bytes % 16 >= 8)
2891 output_asm_insn ("ldd,ma 8(%1),%3", operands);
2892 if (n_bytes % 8 != 0)
2893 output_asm_insn ("ldd 0(%1),%6", operands);
2894 if (n_bytes % 16 >= 8)
2895 output_asm_insn ("std,ma %3,8(%0)", operands);
2896 if (n_bytes % 8 != 0)
2897 output_asm_insn ("stdby,e %6,%4(%0)", operands);
2899 return "";
2901 case 4:
2902 /* Pre-adjust the loop counter. */
2903 operands[4] = GEN_INT (n_bytes - 8);
2904 output_asm_insn ("ldi %4,%2", operands);
2906 /* Copying loop. */
2907 output_asm_insn ("{ldws|ldw},ma 4(%1),%3", operands);
2908 output_asm_insn ("{ldws|ldw},ma 4(%1),%6", operands);
2909 output_asm_insn ("{stws|stw},ma %3,4(%0)", operands);
2910 output_asm_insn ("addib,>= -8,%2,.-12", operands);
2911 output_asm_insn ("{stws|stw},ma %6,4(%0)", operands);
2913 /* Handle the residual. There could be up to 7 bytes of
2914 residual to copy! */
2915 if (n_bytes % 8 != 0)
2917 operands[4] = GEN_INT (n_bytes % 4);
2918 if (n_bytes % 8 >= 4)
2919 output_asm_insn ("{ldws|ldw},ma 4(%1),%3", operands);
2920 if (n_bytes % 4 != 0)
2921 output_asm_insn ("ldw 0(%1),%6", operands);
2922 if (n_bytes % 8 >= 4)
2923 output_asm_insn ("{stws|stw},ma %3,4(%0)", operands);
2924 if (n_bytes % 4 != 0)
2925 output_asm_insn ("{stbys|stby},e %6,%4(%0)", operands);
2927 return "";
2929 case 2:
2930 /* Pre-adjust the loop counter. */
2931 operands[4] = GEN_INT (n_bytes - 4);
2932 output_asm_insn ("ldi %4,%2", operands);
2934 /* Copying loop. */
2935 output_asm_insn ("{ldhs|ldh},ma 2(%1),%3", operands);
2936 output_asm_insn ("{ldhs|ldh},ma 2(%1),%6", operands);
2937 output_asm_insn ("{sths|sth},ma %3,2(%0)", operands);
2938 output_asm_insn ("addib,>= -4,%2,.-12", operands);
2939 output_asm_insn ("{sths|sth},ma %6,2(%0)", operands);
2941 /* Handle the residual. */
2942 if (n_bytes % 4 != 0)
2944 if (n_bytes % 4 >= 2)
2945 output_asm_insn ("{ldhs|ldh},ma 2(%1),%3", operands);
2946 if (n_bytes % 2 != 0)
2947 output_asm_insn ("ldb 0(%1),%6", operands);
2948 if (n_bytes % 4 >= 2)
2949 output_asm_insn ("{sths|sth},ma %3,2(%0)", operands);
2950 if (n_bytes % 2 != 0)
2951 output_asm_insn ("stb %6,0(%0)", operands);
2953 return "";
2955 case 1:
2956 /* Pre-adjust the loop counter. */
2957 operands[4] = GEN_INT (n_bytes - 2);
2958 output_asm_insn ("ldi %4,%2", operands);
2960 /* Copying loop. */
2961 output_asm_insn ("{ldbs|ldb},ma 1(%1),%3", operands);
2962 output_asm_insn ("{ldbs|ldb},ma 1(%1),%6", operands);
2963 output_asm_insn ("{stbs|stb},ma %3,1(%0)", operands);
2964 output_asm_insn ("addib,>= -2,%2,.-12", operands);
2965 output_asm_insn ("{stbs|stb},ma %6,1(%0)", operands);
2967 /* Handle the residual. */
2968 if (n_bytes % 2 != 0)
2970 output_asm_insn ("ldb 0(%1),%3", operands);
2971 output_asm_insn ("stb %3,0(%0)", operands);
2973 return "";
2975 default:
2976 gcc_unreachable ();
2980 /* Count the number of insns necessary to handle this block move.
2982 Basic structure is the same as emit_block_move, except that we
2983 count insns rather than emit them. */
2985 static int
2986 compute_cpymem_length (rtx_insn *insn)
2988 rtx pat = PATTERN (insn);
2989 unsigned int align = INTVAL (XEXP (XVECEXP (pat, 0, 7), 0));
2990 unsigned long n_bytes = INTVAL (XEXP (XVECEXP (pat, 0, 6), 0));
2991 unsigned int n_insns = 0;
2993 /* We can't move more than four bytes at a time because the PA
2994 has no longer integer move insns. (Could use fp mem ops?) */
2995 if (align > (TARGET_64BIT ? 8 : 4))
2996 align = (TARGET_64BIT ? 8 : 4);
2998 /* The basic copying loop. */
2999 n_insns = 6;
3001 /* Residuals. */
3002 if (n_bytes % (2 * align) != 0)
3004 if ((n_bytes % (2 * align)) >= align)
3005 n_insns += 2;
3007 if ((n_bytes % align) != 0)
3008 n_insns += 2;
3011 /* Lengths are expressed in bytes now; each insn is 4 bytes. */
3012 return n_insns * 4;
3015 /* Emit code to perform a block clear.
3017 OPERANDS[0] is the destination pointer as a REG, clobbered.
3018 OPERANDS[1] is a register for temporary storage.
3019 OPERANDS[2] is the size as a CONST_INT
3020 OPERANDS[3] is the alignment safe to use, as a CONST_INT. */
3022 const char *
3023 pa_output_block_clear (rtx *operands, int size_is_constant ATTRIBUTE_UNUSED)
3025 int align = INTVAL (operands[3]);
3026 unsigned long n_bytes = INTVAL (operands[2]);
3028 /* We can't clear more than a word at a time because the PA
3029 has no longer integer move insns. */
3030 if (align > (TARGET_64BIT ? 8 : 4))
3031 align = (TARGET_64BIT ? 8 : 4);
3033 /* Note that we know each loop below will execute at least twice
3034 (else we would have open-coded the copy). */
3035 switch (align)
3037 case 8:
3038 /* Pre-adjust the loop counter. */
3039 operands[2] = GEN_INT (n_bytes - 16);
3040 output_asm_insn ("ldi %2,%1", operands);
3042 /* Loop. */
3043 output_asm_insn ("std,ma %%r0,8(%0)", operands);
3044 output_asm_insn ("addib,>= -16,%1,.-4", operands);
3045 output_asm_insn ("std,ma %%r0,8(%0)", operands);
3047 /* Handle the residual. There could be up to 7 bytes of
3048 residual to copy! */
3049 if (n_bytes % 16 != 0)
3051 operands[2] = GEN_INT (n_bytes % 8);
3052 if (n_bytes % 16 >= 8)
3053 output_asm_insn ("std,ma %%r0,8(%0)", operands);
3054 if (n_bytes % 8 != 0)
3055 output_asm_insn ("stdby,e %%r0,%2(%0)", operands);
3057 return "";
3059 case 4:
3060 /* Pre-adjust the loop counter. */
3061 operands[2] = GEN_INT (n_bytes - 8);
3062 output_asm_insn ("ldi %2,%1", operands);
3064 /* Loop. */
3065 output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
3066 output_asm_insn ("addib,>= -8,%1,.-4", operands);
3067 output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
3069 /* Handle the residual. There could be up to 7 bytes of
3070 residual to copy! */
3071 if (n_bytes % 8 != 0)
3073 operands[2] = GEN_INT (n_bytes % 4);
3074 if (n_bytes % 8 >= 4)
3075 output_asm_insn ("{stws|stw},ma %%r0,4(%0)", operands);
3076 if (n_bytes % 4 != 0)
3077 output_asm_insn ("{stbys|stby},e %%r0,%2(%0)", operands);
3079 return "";
3081 case 2:
3082 /* Pre-adjust the loop counter. */
3083 operands[2] = GEN_INT (n_bytes - 4);
3084 output_asm_insn ("ldi %2,%1", operands);
3086 /* Loop. */
3087 output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
3088 output_asm_insn ("addib,>= -4,%1,.-4", operands);
3089 output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
3091 /* Handle the residual. */
3092 if (n_bytes % 4 != 0)
3094 if (n_bytes % 4 >= 2)
3095 output_asm_insn ("{sths|sth},ma %%r0,2(%0)", operands);
3096 if (n_bytes % 2 != 0)
3097 output_asm_insn ("stb %%r0,0(%0)", operands);
3099 return "";
3101 case 1:
3102 /* Pre-adjust the loop counter. */
3103 operands[2] = GEN_INT (n_bytes - 2);
3104 output_asm_insn ("ldi %2,%1", operands);
3106 /* Loop. */
3107 output_asm_insn ("{stbs|stb},ma %%r0,1(%0)", operands);
3108 output_asm_insn ("addib,>= -2,%1,.-4", operands);
3109 output_asm_insn ("{stbs|stb},ma %%r0,1(%0)", operands);
3111 /* Handle the residual. */
3112 if (n_bytes % 2 != 0)
3113 output_asm_insn ("stb %%r0,0(%0)", operands);
3115 return "";
3117 default:
3118 gcc_unreachable ();
3122 /* Count the number of insns necessary to handle this block move.
3124 Basic structure is the same as emit_block_move, except that we
3125 count insns rather than emit them. */
3127 static int
3128 compute_clrmem_length (rtx_insn *insn)
3130 rtx pat = PATTERN (insn);
3131 unsigned int align = INTVAL (XEXP (XVECEXP (pat, 0, 4), 0));
3132 unsigned long n_bytes = INTVAL (XEXP (XVECEXP (pat, 0, 3), 0));
3133 unsigned int n_insns = 0;
3135 /* We can't clear more than a word at a time because the PA
3136 has no longer integer move insns. */
3137 if (align > (TARGET_64BIT ? 8 : 4))
3138 align = (TARGET_64BIT ? 8 : 4);
3140 /* The basic loop. */
3141 n_insns = 4;
3143 /* Residuals. */
3144 if (n_bytes % (2 * align) != 0)
3146 if ((n_bytes % (2 * align)) >= align)
3147 n_insns++;
3149 if ((n_bytes % align) != 0)
3150 n_insns++;
3153 /* Lengths are expressed in bytes now; each insn is 4 bytes. */
3154 return n_insns * 4;
3158 const char *
3159 pa_output_and (rtx *operands)
3161 if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0)
3163 unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
3164 int ls0, ls1, ms0, p, len;
3166 for (ls0 = 0; ls0 < 32; ls0++)
3167 if ((mask & (1 << ls0)) == 0)
3168 break;
3170 for (ls1 = ls0; ls1 < 32; ls1++)
3171 if ((mask & (1 << ls1)) != 0)
3172 break;
3174 for (ms0 = ls1; ms0 < 32; ms0++)
3175 if ((mask & (1 << ms0)) == 0)
3176 break;
3178 gcc_assert (ms0 == 32);
3180 if (ls1 == 32)
3182 len = ls0;
3184 gcc_assert (len);
3186 operands[2] = GEN_INT (len);
3187 return "{extru|extrw,u} %1,31,%2,%0";
3189 else
3191 /* We could use this `depi' for the case above as well, but `depi'
3192 requires one more register file access than an `extru'. */
3194 p = 31 - ls0;
3195 len = ls1 - ls0;
3197 operands[2] = GEN_INT (p);
3198 operands[3] = GEN_INT (len);
3199 return "{depi|depwi} 0,%2,%3,%0";
3202 else
3203 return "and %1,%2,%0";
3206 /* Return a string to perform a bitwise-and of operands[1] with operands[2]
3207 storing the result in operands[0]. */
3208 const char *
3209 pa_output_64bit_and (rtx *operands)
3211 if (GET_CODE (operands[2]) == CONST_INT && INTVAL (operands[2]) != 0)
3213 unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
3214 int ls0, ls1, ms0, p, len;
3216 for (ls0 = 0; ls0 < HOST_BITS_PER_WIDE_INT; ls0++)
3217 if ((mask & ((unsigned HOST_WIDE_INT) 1 << ls0)) == 0)
3218 break;
3220 for (ls1 = ls0; ls1 < HOST_BITS_PER_WIDE_INT; ls1++)
3221 if ((mask & ((unsigned HOST_WIDE_INT) 1 << ls1)) != 0)
3222 break;
3224 for (ms0 = ls1; ms0 < HOST_BITS_PER_WIDE_INT; ms0++)
3225 if ((mask & ((unsigned HOST_WIDE_INT) 1 << ms0)) == 0)
3226 break;
3228 gcc_assert (ms0 == HOST_BITS_PER_WIDE_INT);
3230 if (ls1 == HOST_BITS_PER_WIDE_INT)
3232 len = ls0;
3234 gcc_assert (len);
3236 operands[2] = GEN_INT (len);
3237 return "extrd,u %1,63,%2,%0";
3239 else
3241 /* We could use this `depi' for the case above as well, but `depi'
3242 requires one more register file access than an `extru'. */
3244 p = 63 - ls0;
3245 len = ls1 - ls0;
3247 operands[2] = GEN_INT (p);
3248 operands[3] = GEN_INT (len);
3249 return "depdi 0,%2,%3,%0";
3252 else
3253 return "and %1,%2,%0";
3256 const char *
3257 pa_output_ior (rtx *operands)
3259 unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
3260 int bs0, bs1, p, len;
3262 if (INTVAL (operands[2]) == 0)
3263 return "copy %1,%0";
3265 for (bs0 = 0; bs0 < 32; bs0++)
3266 if ((mask & (1 << bs0)) != 0)
3267 break;
3269 for (bs1 = bs0; bs1 < 32; bs1++)
3270 if ((mask & (1 << bs1)) == 0)
3271 break;
3273 gcc_assert (bs1 == 32 || ((unsigned HOST_WIDE_INT) 1 << bs1) > mask);
3275 p = 31 - bs0;
3276 len = bs1 - bs0;
3278 operands[2] = GEN_INT (p);
3279 operands[3] = GEN_INT (len);
3280 return "{depi|depwi} -1,%2,%3,%0";
3283 /* Return a string to perform a bitwise-and of operands[1] with operands[2]
3284 storing the result in operands[0]. */
3285 const char *
3286 pa_output_64bit_ior (rtx *operands)
3288 unsigned HOST_WIDE_INT mask = INTVAL (operands[2]);
3289 int bs0, bs1, p, len;
3291 if (INTVAL (operands[2]) == 0)
3292 return "copy %1,%0";
3294 for (bs0 = 0; bs0 < HOST_BITS_PER_WIDE_INT; bs0++)
3295 if ((mask & ((unsigned HOST_WIDE_INT) 1 << bs0)) != 0)
3296 break;
3298 for (bs1 = bs0; bs1 < HOST_BITS_PER_WIDE_INT; bs1++)
3299 if ((mask & ((unsigned HOST_WIDE_INT) 1 << bs1)) == 0)
3300 break;
3302 gcc_assert (bs1 == HOST_BITS_PER_WIDE_INT
3303 || ((unsigned HOST_WIDE_INT) 1 << bs1) > mask);
3305 p = 63 - bs0;
3306 len = bs1 - bs0;
3308 operands[2] = GEN_INT (p);
3309 operands[3] = GEN_INT (len);
3310 return "depdi -1,%2,%3,%0";
3313 /* Target hook for assembling integer objects. This code handles
3314 aligned SI and DI integers specially since function references
3315 must be preceded by P%. */
3317 static bool
3318 pa_assemble_integer (rtx x, unsigned int size, int aligned_p)
3320 bool result;
3321 tree decl = NULL;
3323 /* When we have a SYMBOL_REF with a SYMBOL_REF_DECL, we need to call
3324 call assemble_external and set the SYMBOL_REF_DECL to NULL before
3325 calling output_addr_const. Otherwise, it may call assemble_external
3326 in the midst of outputing the assembler code for the SYMBOL_REF.
3327 We restore the SYMBOL_REF_DECL after the output is done. */
3328 if (GET_CODE (x) == SYMBOL_REF)
3330 decl = SYMBOL_REF_DECL (x);
3331 if (decl)
3333 assemble_external (decl);
3334 SET_SYMBOL_REF_DECL (x, NULL);
3338 if (size == UNITS_PER_WORD
3339 && aligned_p
3340 && function_label_operand (x, VOIDmode))
3342 fputs (size == 8? "\t.dword\t" : "\t.word\t", asm_out_file);
3344 /* We don't want an OPD when generating fast indirect calls. */
3345 if (!TARGET_FAST_INDIRECT_CALLS)
3346 fputs ("P%", asm_out_file);
3348 output_addr_const (asm_out_file, x);
3349 fputc ('\n', asm_out_file);
3350 result = true;
3352 else
3353 result = default_assemble_integer (x, size, aligned_p);
3355 if (decl)
3356 SET_SYMBOL_REF_DECL (x, decl);
3358 return result;
3361 /* Output an ascii string. */
3362 void
3363 pa_output_ascii (FILE *file, const char *p, int size)
3365 int i;
3366 int chars_output;
3367 unsigned char partial_output[16]; /* Max space 4 chars can occupy. */
3369 /* The HP assembler can only take strings of 256 characters at one
3370 time. This is a limitation on input line length, *not* the
3371 length of the string. Sigh. Even worse, it seems that the
3372 restriction is in number of input characters (see \xnn &
3373 \whatever). So we have to do this very carefully. */
3375 fputs ("\t.STRING \"", file);
3377 chars_output = 0;
3378 for (i = 0; i < size; i += 4)
3380 int co = 0;
3381 int io = 0;
3382 for (io = 0, co = 0; io < MIN (4, size - i); io++)
3384 register unsigned int c = (unsigned char) p[i + io];
3386 if (c == '\"' || c == '\\')
3387 partial_output[co++] = '\\';
3388 if (c >= ' ' && c < 0177)
3389 partial_output[co++] = c;
3390 else
3392 unsigned int hexd;
3393 partial_output[co++] = '\\';
3394 partial_output[co++] = 'x';
3395 hexd = c / 16 - 0 + '0';
3396 if (hexd > '9')
3397 hexd -= '9' - 'a' + 1;
3398 partial_output[co++] = hexd;
3399 hexd = c % 16 - 0 + '0';
3400 if (hexd > '9')
3401 hexd -= '9' - 'a' + 1;
3402 partial_output[co++] = hexd;
3405 if (chars_output + co > 243)
3407 fputs ("\"\n\t.STRING \"", file);
3408 chars_output = 0;
3410 fwrite (partial_output, 1, (size_t) co, file);
3411 chars_output += co;
3412 co = 0;
3414 fputs ("\"\n", file);
3417 /* Try to rewrite floating point comparisons & branches to avoid
3418 useless add,tr insns.
3420 CHECK_NOTES is nonzero if we should examine REG_DEAD notes
3421 to see if FPCC is dead. CHECK_NOTES is nonzero for the
3422 first attempt to remove useless add,tr insns. It is zero
3423 for the second pass as reorg sometimes leaves bogus REG_DEAD
3424 notes lying around.
3426 When CHECK_NOTES is zero we can only eliminate add,tr insns
3427 when there's a 1:1 correspondence between fcmp and ftest/fbranch
3428 instructions. */
3429 static void
3430 remove_useless_addtr_insns (int check_notes)
3432 rtx_insn *insn;
3433 static int pass = 0;
3435 /* This is fairly cheap, so always run it when optimizing. */
3436 if (optimize > 0)
3438 int fcmp_count = 0;
3439 int fbranch_count = 0;
3441 /* Walk all the insns in this function looking for fcmp & fbranch
3442 instructions. Keep track of how many of each we find. */
3443 for (insn = get_insns (); insn; insn = next_insn (insn))
3445 rtx tmp;
3447 /* Ignore anything that isn't an INSN or a JUMP_INSN. */
3448 if (! NONJUMP_INSN_P (insn) && ! JUMP_P (insn))
3449 continue;
3451 tmp = PATTERN (insn);
3453 /* It must be a set. */
3454 if (GET_CODE (tmp) != SET)
3455 continue;
3457 /* If the destination is CCFP, then we've found an fcmp insn. */
3458 tmp = SET_DEST (tmp);
3459 if (GET_CODE (tmp) == REG && REGNO (tmp) == 0)
3461 fcmp_count++;
3462 continue;
3465 tmp = PATTERN (insn);
3466 /* If this is an fbranch instruction, bump the fbranch counter. */
3467 if (GET_CODE (tmp) == SET
3468 && SET_DEST (tmp) == pc_rtx
3469 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
3470 && GET_CODE (XEXP (SET_SRC (tmp), 0)) == NE
3471 && GET_CODE (XEXP (XEXP (SET_SRC (tmp), 0), 0)) == REG
3472 && REGNO (XEXP (XEXP (SET_SRC (tmp), 0), 0)) == 0)
3474 fbranch_count++;
3475 continue;
3480 /* Find all floating point compare + branch insns. If possible,
3481 reverse the comparison & the branch to avoid add,tr insns. */
3482 for (insn = get_insns (); insn; insn = next_insn (insn))
3484 rtx tmp;
3485 rtx_insn *next;
3487 /* Ignore anything that isn't an INSN. */
3488 if (! NONJUMP_INSN_P (insn))
3489 continue;
3491 tmp = PATTERN (insn);
3493 /* It must be a set. */
3494 if (GET_CODE (tmp) != SET)
3495 continue;
3497 /* The destination must be CCFP, which is register zero. */
3498 tmp = SET_DEST (tmp);
3499 if (GET_CODE (tmp) != REG || REGNO (tmp) != 0)
3500 continue;
3502 /* INSN should be a set of CCFP.
3504 See if the result of this insn is used in a reversed FP
3505 conditional branch. If so, reverse our condition and
3506 the branch. Doing so avoids useless add,tr insns. */
3507 next = next_insn (insn);
3508 while (next)
3510 /* Jumps, calls and labels stop our search. */
3511 if (JUMP_P (next) || CALL_P (next) || LABEL_P (next))
3512 break;
3514 /* As does another fcmp insn. */
3515 if (NONJUMP_INSN_P (next)
3516 && GET_CODE (PATTERN (next)) == SET
3517 && GET_CODE (SET_DEST (PATTERN (next))) == REG
3518 && REGNO (SET_DEST (PATTERN (next))) == 0)
3519 break;
3521 next = next_insn (next);
3524 /* Is NEXT_INSN a branch? */
3525 if (next && JUMP_P (next))
3527 rtx pattern = PATTERN (next);
3529 /* If it a reversed fp conditional branch (e.g. uses add,tr)
3530 and CCFP dies, then reverse our conditional and the branch
3531 to avoid the add,tr. */
3532 if (GET_CODE (pattern) == SET
3533 && SET_DEST (pattern) == pc_rtx
3534 && GET_CODE (SET_SRC (pattern)) == IF_THEN_ELSE
3535 && GET_CODE (XEXP (SET_SRC (pattern), 0)) == NE
3536 && GET_CODE (XEXP (XEXP (SET_SRC (pattern), 0), 0)) == REG
3537 && REGNO (XEXP (XEXP (SET_SRC (pattern), 0), 0)) == 0
3538 && GET_CODE (XEXP (SET_SRC (pattern), 1)) == PC
3539 && (fcmp_count == fbranch_count
3540 || (check_notes
3541 && find_regno_note (next, REG_DEAD, 0))))
3543 /* Reverse the branch. */
3544 tmp = XEXP (SET_SRC (pattern), 1);
3545 XEXP (SET_SRC (pattern), 1) = XEXP (SET_SRC (pattern), 2);
3546 XEXP (SET_SRC (pattern), 2) = tmp;
3547 INSN_CODE (next) = -1;
3549 /* Reverse our condition. */
3550 tmp = PATTERN (insn);
3551 PUT_CODE (XEXP (tmp, 1),
3552 (reverse_condition_maybe_unordered
3553 (GET_CODE (XEXP (tmp, 1)))));
3559 pass = !pass;
3563 /* You may have trouble believing this, but this is the 32 bit HP-PA
3564 stack layout. Wow.
3566 Offset Contents
3568 Variable arguments (optional; any number may be allocated)
3570 SP-(4*(N+9)) arg word N
3572 SP-56 arg word 5
3573 SP-52 arg word 4
3575 Fixed arguments (must be allocated; may remain unused)
3577 SP-48 arg word 3
3578 SP-44 arg word 2
3579 SP-40 arg word 1
3580 SP-36 arg word 0
3582 Frame Marker
3584 SP-32 External Data Pointer (DP)
3585 SP-28 External sr4
3586 SP-24 External/stub RP (RP')
3587 SP-20 Current RP
3588 SP-16 Static Link
3589 SP-12 Clean up
3590 SP-8 Calling Stub RP (RP'')
3591 SP-4 Previous SP
3593 Top of Frame
3595 SP-0 Stack Pointer (points to next available address)
3599 /* This function saves registers as follows. Registers marked with ' are
3600 this function's registers (as opposed to the previous function's).
3601 If a frame_pointer isn't needed, r4 is saved as a general register;
3602 the space for the frame pointer is still allocated, though, to keep
3603 things simple.
3606 Top of Frame
3608 SP (FP') Previous FP
3609 SP + 4 Alignment filler (sigh)
3610 SP + 8 Space for locals reserved here.
3614 SP + n All call saved register used.
3618 SP + o All call saved fp registers used.
3622 SP + p (SP') points to next available address.
3626 /* Global variables set by output_function_prologue(). */
3627 /* Size of frame. Need to know this to emit return insns from
3628 leaf procedures. */
3629 static HOST_WIDE_INT actual_fsize, local_fsize;
3630 static int save_fregs;
3632 /* Emit RTL to store REG at the memory location specified by BASE+DISP.
3633 Handle case where DISP > 8k by using the add_high_const patterns.
3635 Note in DISP > 8k case, we will leave the high part of the address
3636 in %r1. There is code in expand_hppa_{prologue,epilogue} that knows this.*/
3638 static void
3639 store_reg (int reg, HOST_WIDE_INT disp, int base)
3641 rtx dest, src, basereg;
3642 rtx_insn *insn;
3644 src = gen_rtx_REG (word_mode, reg);
3645 basereg = gen_rtx_REG (Pmode, base);
3646 if (VAL_14_BITS_P (disp))
3648 dest = gen_rtx_MEM (word_mode, plus_constant (Pmode, basereg, disp));
3649 insn = emit_move_insn (dest, src);
3651 else if (TARGET_64BIT && !VAL_32_BITS_P (disp))
3653 rtx delta = GEN_INT (disp);
3654 rtx tmpreg = gen_rtx_REG (Pmode, 1);
3656 emit_move_insn (tmpreg, delta);
3657 insn = emit_move_insn (tmpreg, gen_rtx_PLUS (Pmode, tmpreg, basereg));
3658 if (DO_FRAME_NOTES)
3660 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
3661 gen_rtx_SET (tmpreg,
3662 gen_rtx_PLUS (Pmode, basereg, delta)));
3663 RTX_FRAME_RELATED_P (insn) = 1;
3665 dest = gen_rtx_MEM (word_mode, tmpreg);
3666 insn = emit_move_insn (dest, src);
3668 else
3670 rtx delta = GEN_INT (disp);
3671 rtx high = gen_rtx_PLUS (Pmode, basereg, gen_rtx_HIGH (Pmode, delta));
3672 rtx tmpreg = gen_rtx_REG (Pmode, 1);
3674 emit_move_insn (tmpreg, high);
3675 dest = gen_rtx_MEM (word_mode, gen_rtx_LO_SUM (Pmode, tmpreg, delta));
3676 insn = emit_move_insn (dest, src);
3677 if (DO_FRAME_NOTES)
3678 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
3679 gen_rtx_SET (gen_rtx_MEM (word_mode,
3680 gen_rtx_PLUS (word_mode,
3681 basereg,
3682 delta)),
3683 src));
3686 if (DO_FRAME_NOTES)
3687 RTX_FRAME_RELATED_P (insn) = 1;
3690 /* Emit RTL to store REG at the memory location specified by BASE and then
3691 add MOD to BASE. MOD must be <= 8k. */
3693 static void
3694 store_reg_modify (int base, int reg, HOST_WIDE_INT mod)
3696 rtx basereg, srcreg, delta;
3697 rtx_insn *insn;
3699 gcc_assert (VAL_14_BITS_P (mod));
3701 basereg = gen_rtx_REG (Pmode, base);
3702 srcreg = gen_rtx_REG (word_mode, reg);
3703 delta = GEN_INT (mod);
3705 insn = emit_insn (gen_post_store (basereg, srcreg, delta));
3706 if (DO_FRAME_NOTES)
3708 RTX_FRAME_RELATED_P (insn) = 1;
3710 /* RTX_FRAME_RELATED_P must be set on each frame related set
3711 in a parallel with more than one element. */
3712 RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 0)) = 1;
3713 RTX_FRAME_RELATED_P (XVECEXP (PATTERN (insn), 0, 1)) = 1;
3717 /* Emit RTL to set REG to the value specified by BASE+DISP. Handle case
3718 where DISP > 8k by using the add_high_const patterns. NOTE indicates
3719 whether to add a frame note or not.
3721 In the DISP > 8k case, we leave the high part of the address in %r1.
3722 There is code in expand_hppa_{prologue,epilogue} that knows about this. */
3724 static void
3725 set_reg_plus_d (int reg, int base, HOST_WIDE_INT disp, int note)
3727 rtx_insn *insn;
3729 if (VAL_14_BITS_P (disp))
3731 insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
3732 plus_constant (Pmode,
3733 gen_rtx_REG (Pmode, base), disp));
3735 else if (TARGET_64BIT && !VAL_32_BITS_P (disp))
3737 rtx basereg = gen_rtx_REG (Pmode, base);
3738 rtx delta = GEN_INT (disp);
3739 rtx tmpreg = gen_rtx_REG (Pmode, 1);
3741 emit_move_insn (tmpreg, delta);
3742 insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
3743 gen_rtx_PLUS (Pmode, tmpreg, basereg));
3744 if (DO_FRAME_NOTES)
3745 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
3746 gen_rtx_SET (tmpreg,
3747 gen_rtx_PLUS (Pmode, basereg, delta)));
3749 else
3751 rtx basereg = gen_rtx_REG (Pmode, base);
3752 rtx delta = GEN_INT (disp);
3753 rtx tmpreg = gen_rtx_REG (Pmode, 1);
3755 emit_move_insn (tmpreg,
3756 gen_rtx_PLUS (Pmode, basereg,
3757 gen_rtx_HIGH (Pmode, delta)));
3758 insn = emit_move_insn (gen_rtx_REG (Pmode, reg),
3759 gen_rtx_LO_SUM (Pmode, tmpreg, delta));
3762 if (DO_FRAME_NOTES && note)
3763 RTX_FRAME_RELATED_P (insn) = 1;
3766 HOST_WIDE_INT
3767 pa_compute_frame_size (poly_int64 size, int *fregs_live)
3769 int freg_saved = 0;
3770 int i, j;
3772 /* The code in pa_expand_prologue and pa_expand_epilogue must
3773 be consistent with the rounding and size calculation done here.
3774 Change them at the same time. */
3776 /* We do our own stack alignment. First, round the size of the
3777 stack locals up to a word boundary. */
3778 size = (size + UNITS_PER_WORD - 1) & ~(UNITS_PER_WORD - 1);
3780 /* Space for previous frame pointer + filler. If any frame is
3781 allocated, we need to add in the TARGET_STARTING_FRAME_OFFSET. We
3782 waste some space here for the sake of HP compatibility. The
3783 first slot is only used when the frame pointer is needed. */
3784 if (size || frame_pointer_needed)
3785 size += pa_starting_frame_offset ();
3787 /* If the current function calls __builtin_eh_return, then we need
3788 to allocate stack space for registers that will hold data for
3789 the exception handler. */
3790 if (DO_FRAME_NOTES && crtl->calls_eh_return)
3792 unsigned int i;
3794 for (i = 0; EH_RETURN_DATA_REGNO (i) != INVALID_REGNUM; ++i)
3795 continue;
3796 size += i * UNITS_PER_WORD;
3799 /* Account for space used by the callee general register saves. */
3800 for (i = 18, j = frame_pointer_needed ? 4 : 3; i >= j; i--)
3801 if (df_regs_ever_live_p (i))
3802 size += UNITS_PER_WORD;
3804 /* Account for space used by the callee floating point register saves. */
3805 for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP)
3806 if (df_regs_ever_live_p (i)
3807 || (!TARGET_64BIT && df_regs_ever_live_p (i + 1)))
3809 freg_saved = 1;
3811 /* We always save both halves of the FP register, so always
3812 increment the frame size by 8 bytes. */
3813 size += 8;
3816 /* If any of the floating registers are saved, account for the
3817 alignment needed for the floating point register save block. */
3818 if (freg_saved)
3820 size = (size + 7) & ~7;
3821 if (fregs_live)
3822 *fregs_live = 1;
3825 /* The various ABIs include space for the outgoing parameters in the
3826 size of the current function's stack frame. We don't need to align
3827 for the outgoing arguments as their alignment is set by the final
3828 rounding for the frame as a whole. */
3829 size += crtl->outgoing_args_size;
3831 /* Allocate space for the fixed frame marker. This space must be
3832 allocated for any function that makes calls or allocates
3833 stack space. */
3834 if (!crtl->is_leaf || size)
3835 size += TARGET_64BIT ? 48 : 32;
3837 /* Finally, round to the preferred stack boundary. */
3838 return ((size + PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)
3839 & ~(PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1));
3842 /* Output function label, and associated .PROC and .CALLINFO statements. */
3844 void
3845 pa_output_function_label (FILE *file)
3847 /* The function's label and associated .PROC must never be
3848 separated and must be output *after* any profiling declarations
3849 to avoid changing spaces/subspaces within a procedure. */
3850 ASM_OUTPUT_LABEL (file, XSTR (XEXP (DECL_RTL (current_function_decl), 0), 0));
3851 fputs ("\t.PROC\n", file);
3853 /* pa_expand_prologue does the dirty work now. We just need
3854 to output the assembler directives which denote the start
3855 of a function. */
3856 fprintf (file, "\t.CALLINFO FRAME=" HOST_WIDE_INT_PRINT_DEC, actual_fsize);
3857 if (crtl->is_leaf)
3858 fputs (",NO_CALLS", file);
3859 else
3860 fputs (",CALLS", file);
3861 if (rp_saved)
3862 fputs (",SAVE_RP", file);
3864 /* The SAVE_SP flag is used to indicate that register %r3 is stored
3865 at the beginning of the frame and that it is used as the frame
3866 pointer for the frame. We do this because our current frame
3867 layout doesn't conform to that specified in the HP runtime
3868 documentation and we need a way to indicate to programs such as
3869 GDB where %r3 is saved. The SAVE_SP flag was chosen because it
3870 isn't used by HP compilers but is supported by the assembler.
3871 However, SAVE_SP is supposed to indicate that the previous stack
3872 pointer has been saved in the frame marker. */
3873 if (frame_pointer_needed)
3874 fputs (",SAVE_SP", file);
3876 /* Pass on information about the number of callee register saves
3877 performed in the prologue.
3879 The compiler is supposed to pass the highest register number
3880 saved, the assembler then has to adjust that number before
3881 entering it into the unwind descriptor (to account for any
3882 caller saved registers with lower register numbers than the
3883 first callee saved register). */
3884 if (gr_saved)
3885 fprintf (file, ",ENTRY_GR=%d", gr_saved + 2);
3887 if (fr_saved)
3888 fprintf (file, ",ENTRY_FR=%d", fr_saved + 11);
3890 fputs ("\n\t.ENTRY\n", file);
3893 /* Output function prologue. */
3895 static void
3896 pa_output_function_prologue (FILE *file)
3898 pa_output_function_label (file);
3899 remove_useless_addtr_insns (0);
3902 /* The label is output by ASM_DECLARE_FUNCTION_NAME on linux. */
3904 static void
3905 pa_linux_output_function_prologue (FILE *file ATTRIBUTE_UNUSED)
3907 remove_useless_addtr_insns (0);
3910 void
3911 pa_expand_prologue (void)
3913 int merge_sp_adjust_with_store = 0;
3914 HOST_WIDE_INT size = get_frame_size ();
3915 HOST_WIDE_INT offset;
3916 int i;
3917 rtx tmpreg;
3918 rtx_insn *insn;
3920 gr_saved = 0;
3921 fr_saved = 0;
3922 save_fregs = 0;
3924 /* Compute total size for frame pointer, filler, locals and rounding to
3925 the next word boundary. Similar code appears in pa_compute_frame_size
3926 and must be changed in tandem with this code. */
3927 local_fsize = (size + UNITS_PER_WORD - 1) & ~(UNITS_PER_WORD - 1);
3928 if (local_fsize || frame_pointer_needed)
3929 local_fsize += pa_starting_frame_offset ();
3931 actual_fsize = pa_compute_frame_size (size, &save_fregs);
3932 if (flag_stack_usage_info)
3933 current_function_static_stack_size = actual_fsize;
3935 /* Compute a few things we will use often. */
3936 tmpreg = gen_rtx_REG (word_mode, 1);
3938 /* Save RP first. The calling conventions manual states RP will
3939 always be stored into the caller's frame at sp - 20 or sp - 16
3940 depending on which ABI is in use. */
3941 if (df_regs_ever_live_p (2) || crtl->calls_eh_return)
3943 store_reg (2, TARGET_64BIT ? -16 : -20, STACK_POINTER_REGNUM);
3944 rp_saved = true;
3946 else
3947 rp_saved = false;
3949 /* Allocate the local frame and set up the frame pointer if needed. */
3950 if (actual_fsize != 0)
3952 if (frame_pointer_needed)
3954 /* Copy the old frame pointer temporarily into %r1. Set up the
3955 new stack pointer, then store away the saved old frame pointer
3956 into the stack at sp and at the same time update the stack
3957 pointer by actual_fsize bytes. Two versions, first
3958 handles small (<8k) frames. The second handles large (>=8k)
3959 frames. */
3960 insn = emit_move_insn (tmpreg, hard_frame_pointer_rtx);
3961 if (DO_FRAME_NOTES)
3962 RTX_FRAME_RELATED_P (insn) = 1;
3964 insn = emit_move_insn (hard_frame_pointer_rtx, stack_pointer_rtx);
3965 if (DO_FRAME_NOTES)
3966 RTX_FRAME_RELATED_P (insn) = 1;
3968 if (VAL_14_BITS_P (actual_fsize))
3969 store_reg_modify (STACK_POINTER_REGNUM, 1, actual_fsize);
3970 else
3972 /* It is incorrect to store the saved frame pointer at *sp,
3973 then increment sp (writes beyond the current stack boundary).
3975 So instead use stwm to store at *sp and post-increment the
3976 stack pointer as an atomic operation. Then increment sp to
3977 finish allocating the new frame. */
3978 HOST_WIDE_INT adjust1 = 8192 - 64;
3979 HOST_WIDE_INT adjust2 = actual_fsize - adjust1;
3981 store_reg_modify (STACK_POINTER_REGNUM, 1, adjust1);
3982 set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
3983 adjust2, 1);
3986 /* We set SAVE_SP in frames that need a frame pointer. Thus,
3987 we need to store the previous stack pointer (frame pointer)
3988 into the frame marker on targets that use the HP unwind
3989 library. This allows the HP unwind library to be used to
3990 unwind GCC frames. However, we are not fully compatible
3991 with the HP library because our frame layout differs from
3992 that specified in the HP runtime specification.
3994 We don't want a frame note on this instruction as the frame
3995 marker moves during dynamic stack allocation.
3997 This instruction also serves as a blockage to prevent
3998 register spills from being scheduled before the stack
3999 pointer is raised. This is necessary as we store
4000 registers using the frame pointer as a base register,
4001 and the frame pointer is set before sp is raised. */
4002 if (TARGET_HPUX_UNWIND_LIBRARY)
4004 rtx addr = gen_rtx_PLUS (word_mode, stack_pointer_rtx,
4005 GEN_INT (TARGET_64BIT ? -8 : -4));
4007 emit_move_insn (gen_rtx_MEM (word_mode, addr),
4008 hard_frame_pointer_rtx);
4010 else
4011 emit_insn (gen_blockage ());
4013 /* no frame pointer needed. */
4014 else
4016 /* In some cases we can perform the first callee register save
4017 and allocating the stack frame at the same time. If so, just
4018 make a note of it and defer allocating the frame until saving
4019 the callee registers. */
4020 if (VAL_14_BITS_P (actual_fsize) && local_fsize == 0)
4021 merge_sp_adjust_with_store = 1;
4022 /* Cannot optimize. Adjust the stack frame by actual_fsize
4023 bytes. */
4024 else
4025 set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
4026 actual_fsize, 1);
4030 /* Normal register save.
4032 Do not save the frame pointer in the frame_pointer_needed case. It
4033 was done earlier. */
4034 if (frame_pointer_needed)
4036 offset = local_fsize;
4038 /* Saving the EH return data registers in the frame is the simplest
4039 way to get the frame unwind information emitted. We put them
4040 just before the general registers. */
4041 if (DO_FRAME_NOTES && crtl->calls_eh_return)
4043 unsigned int i, regno;
4045 for (i = 0; ; ++i)
4047 regno = EH_RETURN_DATA_REGNO (i);
4048 if (regno == INVALID_REGNUM)
4049 break;
4051 store_reg (regno, offset, HARD_FRAME_POINTER_REGNUM);
4052 offset += UNITS_PER_WORD;
4056 for (i = 18; i >= 4; i--)
4057 if (df_regs_ever_live_p (i) && !call_used_or_fixed_reg_p (i))
4059 store_reg (i, offset, HARD_FRAME_POINTER_REGNUM);
4060 offset += UNITS_PER_WORD;
4061 gr_saved++;
4063 /* Account for %r3 which is saved in a special place. */
4064 gr_saved++;
4066 /* No frame pointer needed. */
4067 else
4069 offset = local_fsize - actual_fsize;
4071 /* Saving the EH return data registers in the frame is the simplest
4072 way to get the frame unwind information emitted. */
4073 if (DO_FRAME_NOTES && crtl->calls_eh_return)
4075 unsigned int i, regno;
4077 for (i = 0; ; ++i)
4079 regno = EH_RETURN_DATA_REGNO (i);
4080 if (regno == INVALID_REGNUM)
4081 break;
4083 /* If merge_sp_adjust_with_store is nonzero, then we can
4084 optimize the first save. */
4085 if (merge_sp_adjust_with_store)
4087 store_reg_modify (STACK_POINTER_REGNUM, regno, -offset);
4088 merge_sp_adjust_with_store = 0;
4090 else
4091 store_reg (regno, offset, STACK_POINTER_REGNUM);
4092 offset += UNITS_PER_WORD;
4096 for (i = 18; i >= 3; i--)
4097 if (df_regs_ever_live_p (i) && !call_used_or_fixed_reg_p (i))
4099 /* If merge_sp_adjust_with_store is nonzero, then we can
4100 optimize the first GR save. */
4101 if (merge_sp_adjust_with_store)
4103 store_reg_modify (STACK_POINTER_REGNUM, i, -offset);
4104 merge_sp_adjust_with_store = 0;
4106 else
4107 store_reg (i, offset, STACK_POINTER_REGNUM);
4108 offset += UNITS_PER_WORD;
4109 gr_saved++;
4112 /* If we wanted to merge the SP adjustment with a GR save, but we never
4113 did any GR saves, then just emit the adjustment here. */
4114 if (merge_sp_adjust_with_store)
4115 set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
4116 actual_fsize, 1);
4119 /* The hppa calling conventions say that %r19, the pic offset
4120 register, is saved at sp - 32 (in this function's frame)
4121 when generating PIC code. FIXME: What is the correct thing
4122 to do for functions which make no calls and allocate no
4123 frame? Do we need to allocate a frame, or can we just omit
4124 the save? For now we'll just omit the save.
4126 We don't want a note on this insn as the frame marker can
4127 move if there is a dynamic stack allocation. */
4128 if (flag_pic && actual_fsize != 0 && !TARGET_64BIT)
4130 rtx addr = gen_rtx_PLUS (word_mode, stack_pointer_rtx, GEN_INT (-32));
4132 emit_move_insn (gen_rtx_MEM (word_mode, addr), pic_offset_table_rtx);
4136 /* Align pointer properly (doubleword boundary). */
4137 offset = (offset + 7) & ~7;
4139 /* Floating point register store. */
4140 if (save_fregs)
4142 rtx base;
4144 /* First get the frame or stack pointer to the start of the FP register
4145 save area. */
4146 if (frame_pointer_needed)
4148 set_reg_plus_d (1, HARD_FRAME_POINTER_REGNUM, offset, 0);
4149 base = hard_frame_pointer_rtx;
4151 else
4153 set_reg_plus_d (1, STACK_POINTER_REGNUM, offset, 0);
4154 base = stack_pointer_rtx;
4157 /* Now actually save the FP registers. */
4158 for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP)
4160 if (df_regs_ever_live_p (i)
4161 || (! TARGET_64BIT && df_regs_ever_live_p (i + 1)))
4163 rtx addr, reg;
4164 rtx_insn *insn;
4165 addr = gen_rtx_MEM (DFmode,
4166 gen_rtx_POST_INC (word_mode, tmpreg));
4167 reg = gen_rtx_REG (DFmode, i);
4168 insn = emit_move_insn (addr, reg);
4169 if (DO_FRAME_NOTES)
4171 RTX_FRAME_RELATED_P (insn) = 1;
4172 if (TARGET_64BIT)
4174 rtx mem = gen_rtx_MEM (DFmode,
4175 plus_constant (Pmode, base,
4176 offset));
4177 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
4178 gen_rtx_SET (mem, reg));
4180 else
4182 rtx meml = gen_rtx_MEM (SFmode,
4183 plus_constant (Pmode, base,
4184 offset));
4185 rtx memr = gen_rtx_MEM (SFmode,
4186 plus_constant (Pmode, base,
4187 offset + 4));
4188 rtx regl = gen_rtx_REG (SFmode, i);
4189 rtx regr = gen_rtx_REG (SFmode, i + 1);
4190 rtx setl = gen_rtx_SET (meml, regl);
4191 rtx setr = gen_rtx_SET (memr, regr);
4192 rtvec vec;
4194 RTX_FRAME_RELATED_P (setl) = 1;
4195 RTX_FRAME_RELATED_P (setr) = 1;
4196 vec = gen_rtvec (2, setl, setr);
4197 add_reg_note (insn, REG_FRAME_RELATED_EXPR,
4198 gen_rtx_SEQUENCE (VOIDmode, vec));
4201 offset += GET_MODE_SIZE (DFmode);
4202 fr_saved++;
4208 /* Emit RTL to load REG from the memory location specified by BASE+DISP.
4209 Handle case where DISP > 8k by using the add_high_const patterns. */
4211 static void
4212 load_reg (int reg, HOST_WIDE_INT disp, int base)
4214 rtx dest = gen_rtx_REG (word_mode, reg);
4215 rtx basereg = gen_rtx_REG (Pmode, base);
4216 rtx src;
4218 if (VAL_14_BITS_P (disp))
4219 src = gen_rtx_MEM (word_mode, plus_constant (Pmode, basereg, disp));
4220 else if (TARGET_64BIT && !VAL_32_BITS_P (disp))
4222 rtx delta = GEN_INT (disp);
4223 rtx tmpreg = gen_rtx_REG (Pmode, 1);
4225 emit_move_insn (tmpreg, delta);
4226 if (TARGET_DISABLE_INDEXING)
4228 emit_move_insn (tmpreg, gen_rtx_PLUS (Pmode, tmpreg, basereg));
4229 src = gen_rtx_MEM (word_mode, tmpreg);
4231 else
4232 src = gen_rtx_MEM (word_mode, gen_rtx_PLUS (Pmode, tmpreg, basereg));
4234 else
4236 rtx delta = GEN_INT (disp);
4237 rtx high = gen_rtx_PLUS (Pmode, basereg, gen_rtx_HIGH (Pmode, delta));
4238 rtx tmpreg = gen_rtx_REG (Pmode, 1);
4240 emit_move_insn (tmpreg, high);
4241 src = gen_rtx_MEM (word_mode, gen_rtx_LO_SUM (Pmode, tmpreg, delta));
4244 emit_move_insn (dest, src);
4247 /* Update the total code bytes output to the text section. */
4249 static void
4250 update_total_code_bytes (unsigned int nbytes)
4252 if ((TARGET_PORTABLE_RUNTIME || !TARGET_GAS || !TARGET_SOM)
4253 && !IN_NAMED_SECTION_P (cfun->decl))
4255 unsigned int old_total = total_code_bytes;
4257 total_code_bytes += nbytes;
4259 /* Be prepared to handle overflows. */
4260 if (old_total > total_code_bytes)
4261 total_code_bytes = UINT_MAX;
4265 /* This function generates the assembly code for function exit.
4266 Args are as for output_function_prologue ().
4268 The function epilogue should not depend on the current stack
4269 pointer! It should use the frame pointer only. This is mandatory
4270 because of alloca; we also take advantage of it to omit stack
4271 adjustments before returning. */
4273 static void
4274 pa_output_function_epilogue (FILE *file)
4276 rtx_insn *insn = get_last_insn ();
4277 bool extra_nop;
4279 /* pa_expand_epilogue does the dirty work now. We just need
4280 to output the assembler directives which denote the end
4281 of a function.
4283 To make debuggers happy, emit a nop if the epilogue was completely
4284 eliminated due to a volatile call as the last insn in the
4285 current function. That way the return address (in %r2) will
4286 always point to a valid instruction in the current function. */
4288 /* Get the last real insn. */
4289 if (NOTE_P (insn))
4290 insn = prev_real_insn (insn);
4292 /* If it is a sequence, then look inside. */
4293 if (insn && NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
4294 insn = as_a <rtx_sequence *> (PATTERN (insn))-> insn (0);
4296 /* If insn is a CALL_INSN, then it must be a call to a volatile
4297 function (otherwise there would be epilogue insns). */
4298 if (insn && CALL_P (insn))
4300 fputs ("\tnop\n", file);
4301 extra_nop = true;
4303 else
4304 extra_nop = false;
4306 fputs ("\t.EXIT\n\t.PROCEND\n", file);
4308 if (TARGET_SOM && TARGET_GAS)
4310 /* We are done with this subspace except possibly for some additional
4311 debug information. Forget that we are in this subspace to ensure
4312 that the next function is output in its own subspace. */
4313 in_section = NULL;
4314 cfun->machine->in_nsubspa = 2;
4317 /* Thunks do their own insn accounting. */
4318 if (cfun->is_thunk)
4319 return;
4321 if (INSN_ADDRESSES_SET_P ())
4323 last_address = extra_nop ? 4 : 0;
4324 insn = get_last_nonnote_insn ();
4325 if (insn)
4327 last_address += INSN_ADDRESSES (INSN_UID (insn));
4328 if (INSN_P (insn))
4329 last_address += insn_default_length (insn);
4331 last_address = ((last_address + FUNCTION_BOUNDARY / BITS_PER_UNIT - 1)
4332 & ~(FUNCTION_BOUNDARY / BITS_PER_UNIT - 1));
4334 else
4335 last_address = UINT_MAX;
4337 /* Finally, update the total number of code bytes output so far. */
4338 update_total_code_bytes (last_address);
4341 void
4342 pa_expand_epilogue (void)
4344 rtx tmpreg;
4345 HOST_WIDE_INT offset;
4346 HOST_WIDE_INT ret_off = 0;
4347 int i;
4348 int merge_sp_adjust_with_load = 0;
4350 /* We will use this often. */
4351 tmpreg = gen_rtx_REG (word_mode, 1);
4353 /* Try to restore RP early to avoid load/use interlocks when
4354 RP gets used in the return (bv) instruction. This appears to still
4355 be necessary even when we schedule the prologue and epilogue. */
4356 if (rp_saved)
4358 ret_off = TARGET_64BIT ? -16 : -20;
4359 if (frame_pointer_needed)
4361 load_reg (2, ret_off, HARD_FRAME_POINTER_REGNUM);
4362 ret_off = 0;
4364 else
4366 /* No frame pointer, and stack is smaller than 8k. */
4367 if (VAL_14_BITS_P (ret_off - actual_fsize))
4369 load_reg (2, ret_off - actual_fsize, STACK_POINTER_REGNUM);
4370 ret_off = 0;
4375 /* General register restores. */
4376 if (frame_pointer_needed)
4378 offset = local_fsize;
4380 /* If the current function calls __builtin_eh_return, then we need
4381 to restore the saved EH data registers. */
4382 if (DO_FRAME_NOTES && crtl->calls_eh_return)
4384 unsigned int i, regno;
4386 for (i = 0; ; ++i)
4388 regno = EH_RETURN_DATA_REGNO (i);
4389 if (regno == INVALID_REGNUM)
4390 break;
4392 load_reg (regno, offset, HARD_FRAME_POINTER_REGNUM);
4393 offset += UNITS_PER_WORD;
4397 for (i = 18; i >= 4; i--)
4398 if (df_regs_ever_live_p (i) && !call_used_or_fixed_reg_p (i))
4400 load_reg (i, offset, HARD_FRAME_POINTER_REGNUM);
4401 offset += UNITS_PER_WORD;
4404 else
4406 offset = local_fsize - actual_fsize;
4408 /* If the current function calls __builtin_eh_return, then we need
4409 to restore the saved EH data registers. */
4410 if (DO_FRAME_NOTES && crtl->calls_eh_return)
4412 unsigned int i, regno;
4414 for (i = 0; ; ++i)
4416 regno = EH_RETURN_DATA_REGNO (i);
4417 if (regno == INVALID_REGNUM)
4418 break;
4420 /* Only for the first load.
4421 merge_sp_adjust_with_load holds the register load
4422 with which we will merge the sp adjustment. */
4423 if (merge_sp_adjust_with_load == 0
4424 && local_fsize == 0
4425 && VAL_14_BITS_P (-actual_fsize))
4426 merge_sp_adjust_with_load = regno;
4427 else
4428 load_reg (regno, offset, STACK_POINTER_REGNUM);
4429 offset += UNITS_PER_WORD;
4433 for (i = 18; i >= 3; i--)
4435 if (df_regs_ever_live_p (i) && !call_used_or_fixed_reg_p (i))
4437 /* Only for the first load.
4438 merge_sp_adjust_with_load holds the register load
4439 with which we will merge the sp adjustment. */
4440 if (merge_sp_adjust_with_load == 0
4441 && local_fsize == 0
4442 && VAL_14_BITS_P (-actual_fsize))
4443 merge_sp_adjust_with_load = i;
4444 else
4445 load_reg (i, offset, STACK_POINTER_REGNUM);
4446 offset += UNITS_PER_WORD;
4451 /* Align pointer properly (doubleword boundary). */
4452 offset = (offset + 7) & ~7;
4454 /* FP register restores. */
4455 if (save_fregs)
4457 /* Adjust the register to index off of. */
4458 if (frame_pointer_needed)
4459 set_reg_plus_d (1, HARD_FRAME_POINTER_REGNUM, offset, 0);
4460 else
4461 set_reg_plus_d (1, STACK_POINTER_REGNUM, offset, 0);
4463 /* Actually do the restores now. */
4464 for (i = FP_SAVED_REG_LAST; i >= FP_SAVED_REG_FIRST; i -= FP_REG_STEP)
4465 if (df_regs_ever_live_p (i)
4466 || (! TARGET_64BIT && df_regs_ever_live_p (i + 1)))
4468 rtx src = gen_rtx_MEM (DFmode,
4469 gen_rtx_POST_INC (word_mode, tmpreg));
4470 rtx dest = gen_rtx_REG (DFmode, i);
4471 emit_move_insn (dest, src);
4475 /* Emit a blockage insn here to keep these insns from being moved to
4476 an earlier spot in the epilogue, or into the main instruction stream.
4478 This is necessary as we must not cut the stack back before all the
4479 restores are finished. */
4480 emit_insn (gen_blockage ());
4482 /* Reset stack pointer (and possibly frame pointer). The stack
4483 pointer is initially set to fp + 64 to avoid a race condition. */
4484 if (frame_pointer_needed)
4486 rtx delta = GEN_INT (-64);
4488 set_reg_plus_d (STACK_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM, 64, 0);
4489 emit_insn (gen_pre_load (hard_frame_pointer_rtx,
4490 stack_pointer_rtx, delta));
4492 /* If we were deferring a callee register restore, do it now. */
4493 else if (merge_sp_adjust_with_load)
4495 rtx delta = GEN_INT (-actual_fsize);
4496 rtx dest = gen_rtx_REG (word_mode, merge_sp_adjust_with_load);
4498 emit_insn (gen_pre_load (dest, stack_pointer_rtx, delta));
4500 else if (actual_fsize != 0)
4501 set_reg_plus_d (STACK_POINTER_REGNUM, STACK_POINTER_REGNUM,
4502 - actual_fsize, 0);
4504 /* If we haven't restored %r2 yet (no frame pointer, and a stack
4505 frame greater than 8k), do so now. */
4506 if (ret_off != 0)
4507 load_reg (2, ret_off, STACK_POINTER_REGNUM);
4509 if (DO_FRAME_NOTES && crtl->calls_eh_return)
4511 rtx sa = EH_RETURN_STACKADJ_RTX;
4513 emit_insn (gen_blockage ());
4514 emit_insn (TARGET_64BIT
4515 ? gen_subdi3 (stack_pointer_rtx, stack_pointer_rtx, sa)
4516 : gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, sa));
4520 bool
4521 pa_can_use_return_insn (void)
4523 if (!reload_completed)
4524 return false;
4526 if (frame_pointer_needed)
4527 return false;
4529 if (df_regs_ever_live_p (2))
4530 return false;
4532 if (crtl->profile)
4533 return false;
4535 return pa_compute_frame_size (get_frame_size (), 0) == 0;
4539 hppa_pic_save_rtx (void)
4541 return get_hard_reg_initial_val (word_mode, PIC_OFFSET_TABLE_REGNUM);
4544 #ifndef NO_DEFERRED_PROFILE_COUNTERS
4545 #define NO_DEFERRED_PROFILE_COUNTERS 0
4546 #endif
4549 /* Vector of funcdef numbers. */
4550 static vec<int> funcdef_nos;
4552 /* Output deferred profile counters. */
4553 static void
4554 output_deferred_profile_counters (void)
4556 unsigned int i;
4557 int align, n;
4559 if (funcdef_nos.is_empty ())
4560 return;
4562 switch_to_section (data_section);
4563 align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
4564 ASM_OUTPUT_ALIGN (asm_out_file, floor_log2 (align / BITS_PER_UNIT));
4566 for (i = 0; funcdef_nos.iterate (i, &n); i++)
4568 targetm.asm_out.internal_label (asm_out_file, "LP", n);
4569 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
4572 funcdef_nos.release ();
4575 void
4576 hppa_profile_hook (int label_no)
4578 rtx_code_label *label_rtx = gen_label_rtx ();
4579 int reg_parm_stack_space = REG_PARM_STACK_SPACE (NULL_TREE);
4580 rtx arg_bytes, begin_label_rtx, mcount, sym;
4581 rtx_insn *call_insn;
4582 char begin_label_name[16];
4583 bool use_mcount_pcrel_call;
4585 /* Set up call destination. */
4586 sym = gen_rtx_SYMBOL_REF (Pmode, "_mcount");
4587 pa_encode_label (sym);
4588 mcount = gen_rtx_MEM (Pmode, sym);
4590 /* If we can reach _mcount with a pc-relative call, we can optimize
4591 loading the address of the current function. This requires linker
4592 long branch stub support. */
4593 if (!TARGET_PORTABLE_RUNTIME
4594 && !TARGET_LONG_CALLS
4595 && (TARGET_SOM || flag_function_sections))
4596 use_mcount_pcrel_call = TRUE;
4597 else
4598 use_mcount_pcrel_call = FALSE;
4600 ASM_GENERATE_INTERNAL_LABEL (begin_label_name, FUNC_BEGIN_PROLOG_LABEL,
4601 label_no);
4602 begin_label_rtx = gen_rtx_SYMBOL_REF (SImode, ggc_strdup (begin_label_name));
4604 emit_move_insn (gen_rtx_REG (word_mode, 26), gen_rtx_REG (word_mode, 2));
4606 if (!use_mcount_pcrel_call)
4608 /* The address of the function is loaded into %r25 with an instruction-
4609 relative sequence that avoids the use of relocations. We use SImode
4610 for the address of the function in both 32 and 64-bit code to avoid
4611 having to provide DImode versions of the lcla2 pattern. */
4612 if (TARGET_PA_20)
4613 emit_insn (gen_lcla2 (gen_rtx_REG (SImode, 25), label_rtx));
4614 else
4615 emit_insn (gen_lcla1 (gen_rtx_REG (SImode, 25), label_rtx));
4618 if (!NO_DEFERRED_PROFILE_COUNTERS)
4620 rtx count_label_rtx, addr, r24;
4621 char count_label_name[16];
4623 funcdef_nos.safe_push (label_no);
4624 ASM_GENERATE_INTERNAL_LABEL (count_label_name, "LP", label_no);
4625 count_label_rtx = gen_rtx_SYMBOL_REF (Pmode,
4626 ggc_strdup (count_label_name));
4628 addr = force_reg (Pmode, count_label_rtx);
4629 r24 = gen_rtx_REG (Pmode, 24);
4630 emit_move_insn (r24, addr);
4632 arg_bytes = GEN_INT (TARGET_64BIT ? 24 : 12);
4633 if (use_mcount_pcrel_call)
4634 call_insn = emit_call_insn (gen_call_mcount (mcount, arg_bytes,
4635 begin_label_rtx));
4636 else
4637 call_insn = emit_call_insn (gen_call (mcount, arg_bytes));
4639 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), r24);
4641 else
4643 arg_bytes = GEN_INT (TARGET_64BIT ? 16 : 8);
4644 if (use_mcount_pcrel_call)
4645 call_insn = emit_call_insn (gen_call_mcount (mcount, arg_bytes,
4646 begin_label_rtx));
4647 else
4648 call_insn = emit_call_insn (gen_call (mcount, arg_bytes));
4651 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), gen_rtx_REG (SImode, 25));
4652 use_reg (&CALL_INSN_FUNCTION_USAGE (call_insn), gen_rtx_REG (SImode, 26));
4654 /* Indicate the _mcount call cannot throw, nor will it execute a
4655 non-local goto. */
4656 make_reg_eh_region_note_nothrow_nononlocal (call_insn);
4658 /* Allocate space for fixed arguments. */
4659 if (reg_parm_stack_space > crtl->outgoing_args_size)
4660 crtl->outgoing_args_size = reg_parm_stack_space;
4663 /* Fetch the return address for the frame COUNT steps up from
4664 the current frame, after the prologue. FRAMEADDR is the
4665 frame pointer of the COUNT frame.
4667 We want to ignore any export stub remnants here. To handle this,
4668 we examine the code at the return address, and if it is an export
4669 stub, we return a memory rtx for the stub return address stored
4670 at frame-24.
4672 The value returned is used in two different ways:
4674 1. To find a function's caller.
4676 2. To change the return address for a function.
4678 This function handles most instances of case 1; however, it will
4679 fail if there are two levels of stubs to execute on the return
4680 path. The only way I believe that can happen is if the return value
4681 needs a parameter relocation, which never happens for C code.
4683 This function handles most instances of case 2; however, it will
4684 fail if we did not originally have stub code on the return path
4685 but will need stub code on the new return path. This can happen if
4686 the caller & callee are both in the main program, but the new
4687 return location is in a shared library. */
4690 pa_return_addr_rtx (int count, rtx frameaddr)
4692 rtx label;
4693 rtx rp;
4694 rtx saved_rp;
4695 rtx ins;
4697 /* The instruction stream at the return address of a PA1.X export stub is:
4699 0x4bc23fd1 | stub+8: ldw -18(sr0,sp),rp
4700 0x004010a1 | stub+12: ldsid (sr0,rp),r1
4701 0x00011820 | stub+16: mtsp r1,sr0
4702 0xe0400002 | stub+20: be,n 0(sr0,rp)
4704 0xe0400002 must be specified as -532676606 so that it won't be
4705 rejected as an invalid immediate operand on 64-bit hosts.
4707 The instruction stream at the return address of a PA2.0 export stub is:
4709 0x4bc23fd1 | stub+8: ldw -18(sr0,sp),rp
4710 0xe840d002 | stub+12: bve,n (rp)
4713 HOST_WIDE_INT insns[4];
4714 int i, len;
4716 if (count != 0)
4717 return NULL_RTX;
4719 rp = get_hard_reg_initial_val (Pmode, 2);
4721 if (TARGET_64BIT || TARGET_NO_SPACE_REGS)
4722 return rp;
4724 /* If there is no export stub then just use the value saved from
4725 the return pointer register. */
4727 saved_rp = gen_reg_rtx (Pmode);
4728 emit_move_insn (saved_rp, rp);
4730 /* Get pointer to the instruction stream. We have to mask out the
4731 privilege level from the two low order bits of the return address
4732 pointer here so that ins will point to the start of the first
4733 instruction that would have been executed if we returned. */
4734 ins = copy_to_reg (gen_rtx_AND (Pmode, rp, MASK_RETURN_ADDR));
4735 label = gen_label_rtx ();
4737 if (TARGET_PA_20)
4739 insns[0] = 0x4bc23fd1;
4740 insns[1] = -398405630;
4741 len = 2;
4743 else
4745 insns[0] = 0x4bc23fd1;
4746 insns[1] = 0x004010a1;
4747 insns[2] = 0x00011820;
4748 insns[3] = -532676606;
4749 len = 4;
4752 /* Check the instruction stream at the normal return address for the
4753 export stub. If it is an export stub, than our return address is
4754 really in -24[frameaddr]. */
4756 for (i = 0; i < len; i++)
4758 rtx op0 = gen_rtx_MEM (SImode, plus_constant (Pmode, ins, i * 4));
4759 rtx op1 = GEN_INT (insns[i]);
4760 emit_cmp_and_jump_insns (op0, op1, NE, NULL, SImode, 0, label);
4763 /* Here we know that our return address points to an export
4764 stub. We don't want to return the address of the export stub,
4765 but rather the return address of the export stub. That return
4766 address is stored at -24[frameaddr]. */
4768 emit_move_insn (saved_rp,
4769 gen_rtx_MEM (Pmode,
4770 memory_address (Pmode,
4771 plus_constant (Pmode, frameaddr,
4772 -24))));
4774 emit_label (label);
4776 return saved_rp;
4779 void
4780 pa_emit_bcond_fp (rtx operands[])
4782 enum rtx_code code = GET_CODE (operands[0]);
4783 rtx operand0 = operands[1];
4784 rtx operand1 = operands[2];
4785 rtx label = operands[3];
4787 emit_insn (gen_rtx_SET (gen_rtx_REG (CCFPmode, 0),
4788 gen_rtx_fmt_ee (code, CCFPmode, operand0, operand1)));
4790 emit_jump_insn (gen_rtx_SET (pc_rtx,
4791 gen_rtx_IF_THEN_ELSE (VOIDmode,
4792 gen_rtx_fmt_ee (NE,
4793 VOIDmode,
4794 gen_rtx_REG (CCFPmode, 0),
4795 const0_rtx),
4796 gen_rtx_LABEL_REF (VOIDmode, label),
4797 pc_rtx)));
4801 /* Adjust the cost of a scheduling dependency. Return the new cost of
4802 a dependency LINK or INSN on DEP_INSN. COST is the current cost. */
4804 static int
4805 pa_adjust_cost (rtx_insn *insn, int dep_type, rtx_insn *dep_insn, int cost,
4806 unsigned int)
4808 enum attr_type attr_type;
4810 /* Don't adjust costs for a pa8000 chip, also do not adjust any
4811 true dependencies as they are described with bypasses now. */
4812 if (pa_cpu >= PROCESSOR_8000 || dep_type == 0)
4813 return cost;
4815 if (! recog_memoized (insn))
4816 return 0;
4818 attr_type = get_attr_type (insn);
4820 switch (dep_type)
4822 case REG_DEP_ANTI:
4823 /* Anti dependency; DEP_INSN reads a register that INSN writes some
4824 cycles later. */
4826 if (attr_type == TYPE_FPLOAD)
4828 rtx pat = PATTERN (insn);
4829 rtx dep_pat = PATTERN (dep_insn);
4830 if (GET_CODE (pat) == PARALLEL)
4832 /* This happens for the fldXs,mb patterns. */
4833 pat = XVECEXP (pat, 0, 0);
4835 if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
4836 /* If this happens, we have to extend this to schedule
4837 optimally. Return 0 for now. */
4838 return 0;
4840 if (reg_mentioned_p (SET_DEST (pat), SET_SRC (dep_pat)))
4842 if (! recog_memoized (dep_insn))
4843 return 0;
4844 switch (get_attr_type (dep_insn))
4846 case TYPE_FPALU:
4847 case TYPE_FPMULSGL:
4848 case TYPE_FPMULDBL:
4849 case TYPE_FPDIVSGL:
4850 case TYPE_FPDIVDBL:
4851 case TYPE_FPSQRTSGL:
4852 case TYPE_FPSQRTDBL:
4853 /* A fpload can't be issued until one cycle before a
4854 preceding arithmetic operation has finished if
4855 the target of the fpload is any of the sources
4856 (or destination) of the arithmetic operation. */
4857 return insn_default_latency (dep_insn) - 1;
4859 default:
4860 return 0;
4864 else if (attr_type == TYPE_FPALU)
4866 rtx pat = PATTERN (insn);
4867 rtx dep_pat = PATTERN (dep_insn);
4868 if (GET_CODE (pat) == PARALLEL)
4870 /* This happens for the fldXs,mb patterns. */
4871 pat = XVECEXP (pat, 0, 0);
4873 if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
4874 /* If this happens, we have to extend this to schedule
4875 optimally. Return 0 for now. */
4876 return 0;
4878 if (reg_mentioned_p (SET_DEST (pat), SET_SRC (dep_pat)))
4880 if (! recog_memoized (dep_insn))
4881 return 0;
4882 switch (get_attr_type (dep_insn))
4884 case TYPE_FPDIVSGL:
4885 case TYPE_FPDIVDBL:
4886 case TYPE_FPSQRTSGL:
4887 case TYPE_FPSQRTDBL:
4888 /* An ALU flop can't be issued until two cycles before a
4889 preceding divide or sqrt operation has finished if
4890 the target of the ALU flop is any of the sources
4891 (or destination) of the divide or sqrt operation. */
4892 return insn_default_latency (dep_insn) - 2;
4894 default:
4895 return 0;
4900 /* For other anti dependencies, the cost is 0. */
4901 return 0;
4903 case REG_DEP_OUTPUT:
4904 /* Output dependency; DEP_INSN writes a register that INSN writes some
4905 cycles later. */
4906 if (attr_type == TYPE_FPLOAD)
4908 rtx pat = PATTERN (insn);
4909 rtx dep_pat = PATTERN (dep_insn);
4910 if (GET_CODE (pat) == PARALLEL)
4912 /* This happens for the fldXs,mb patterns. */
4913 pat = XVECEXP (pat, 0, 0);
4915 if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
4916 /* If this happens, we have to extend this to schedule
4917 optimally. Return 0 for now. */
4918 return 0;
4920 if (reg_mentioned_p (SET_DEST (pat), SET_DEST (dep_pat)))
4922 if (! recog_memoized (dep_insn))
4923 return 0;
4924 switch (get_attr_type (dep_insn))
4926 case TYPE_FPALU:
4927 case TYPE_FPMULSGL:
4928 case TYPE_FPMULDBL:
4929 case TYPE_FPDIVSGL:
4930 case TYPE_FPDIVDBL:
4931 case TYPE_FPSQRTSGL:
4932 case TYPE_FPSQRTDBL:
4933 /* A fpload can't be issued until one cycle before a
4934 preceding arithmetic operation has finished if
4935 the target of the fpload is the destination of the
4936 arithmetic operation.
4938 Exception: For PA7100LC, PA7200 and PA7300, the cost
4939 is 3 cycles, unless they bundle together. We also
4940 pay the penalty if the second insn is a fpload. */
4941 return insn_default_latency (dep_insn) - 1;
4943 default:
4944 return 0;
4948 else if (attr_type == TYPE_FPALU)
4950 rtx pat = PATTERN (insn);
4951 rtx dep_pat = PATTERN (dep_insn);
4952 if (GET_CODE (pat) == PARALLEL)
4954 /* This happens for the fldXs,mb patterns. */
4955 pat = XVECEXP (pat, 0, 0);
4957 if (GET_CODE (pat) != SET || GET_CODE (dep_pat) != SET)
4958 /* If this happens, we have to extend this to schedule
4959 optimally. Return 0 for now. */
4960 return 0;
4962 if (reg_mentioned_p (SET_DEST (pat), SET_DEST (dep_pat)))
4964 if (! recog_memoized (dep_insn))
4965 return 0;
4966 switch (get_attr_type (dep_insn))
4968 case TYPE_FPDIVSGL:
4969 case TYPE_FPDIVDBL:
4970 case TYPE_FPSQRTSGL:
4971 case TYPE_FPSQRTDBL:
4972 /* An ALU flop can't be issued until two cycles before a
4973 preceding divide or sqrt operation has finished if
4974 the target of the ALU flop is also the target of
4975 the divide or sqrt operation. */
4976 return insn_default_latency (dep_insn) - 2;
4978 default:
4979 return 0;
4984 /* For other output dependencies, the cost is 0. */
4985 return 0;
4987 default:
4988 gcc_unreachable ();
4992 /* The 700 can only issue a single insn at a time.
4993 The 7XXX processors can issue two insns at a time.
4994 The 8000 can issue 4 insns at a time. */
4995 static int
4996 pa_issue_rate (void)
4998 switch (pa_cpu)
5000 case PROCESSOR_700: return 1;
5001 case PROCESSOR_7100: return 2;
5002 case PROCESSOR_7100LC: return 2;
5003 case PROCESSOR_7200: return 2;
5004 case PROCESSOR_7300: return 2;
5005 case PROCESSOR_8000: return 4;
5007 default:
5008 gcc_unreachable ();
5014 /* Return any length plus adjustment needed by INSN which already has
5015 its length computed as LENGTH. Return LENGTH if no adjustment is
5016 necessary.
5018 Also compute the length of an inline block move here as it is too
5019 complicated to express as a length attribute in pa.md. */
5021 pa_adjust_insn_length (rtx_insn *insn, int length)
5023 rtx pat = PATTERN (insn);
5025 /* If length is negative or undefined, provide initial length. */
5026 if ((unsigned int) length >= INT_MAX)
5028 if (GET_CODE (pat) == SEQUENCE)
5029 insn = as_a <rtx_insn *> (XVECEXP (pat, 0, 0));
5031 switch (get_attr_type (insn))
5033 case TYPE_MILLI:
5034 length = pa_attr_length_millicode_call (insn);
5035 break;
5036 case TYPE_CALL:
5037 length = pa_attr_length_call (insn, 0);
5038 break;
5039 case TYPE_SIBCALL:
5040 length = pa_attr_length_call (insn, 1);
5041 break;
5042 case TYPE_DYNCALL:
5043 length = pa_attr_length_indirect_call (insn);
5044 break;
5045 case TYPE_SH_FUNC_ADRS:
5046 length = pa_attr_length_millicode_call (insn) + 20;
5047 break;
5048 default:
5049 gcc_unreachable ();
5053 /* Block move pattern. */
5054 if (NONJUMP_INSN_P (insn)
5055 && GET_CODE (pat) == PARALLEL
5056 && GET_CODE (XVECEXP (pat, 0, 0)) == SET
5057 && GET_CODE (XEXP (XVECEXP (pat, 0, 0), 0)) == MEM
5058 && GET_CODE (XEXP (XVECEXP (pat, 0, 0), 1)) == MEM
5059 && GET_MODE (XEXP (XVECEXP (pat, 0, 0), 0)) == BLKmode
5060 && GET_MODE (XEXP (XVECEXP (pat, 0, 0), 1)) == BLKmode)
5061 length += compute_cpymem_length (insn) - 4;
5062 /* Block clear pattern. */
5063 else if (NONJUMP_INSN_P (insn)
5064 && GET_CODE (pat) == PARALLEL
5065 && GET_CODE (XVECEXP (pat, 0, 0)) == SET
5066 && GET_CODE (XEXP (XVECEXP (pat, 0, 0), 0)) == MEM
5067 && XEXP (XVECEXP (pat, 0, 0), 1) == const0_rtx
5068 && GET_MODE (XEXP (XVECEXP (pat, 0, 0), 0)) == BLKmode)
5069 length += compute_clrmem_length (insn) - 4;
5070 /* Conditional branch with an unfilled delay slot. */
5071 else if (JUMP_P (insn) && ! simplejump_p (insn))
5073 /* Adjust a short backwards conditional with an unfilled delay slot. */
5074 if (GET_CODE (pat) == SET
5075 && length == 4
5076 && JUMP_LABEL (insn) != NULL_RTX
5077 && ! forward_branch_p (insn))
5078 length += 4;
5079 else if (GET_CODE (pat) == PARALLEL
5080 && get_attr_type (insn) == TYPE_PARALLEL_BRANCH
5081 && length == 4)
5082 length += 4;
5083 /* Adjust dbra insn with short backwards conditional branch with
5084 unfilled delay slot -- only for case where counter is in a
5085 general register register. */
5086 else if (GET_CODE (pat) == PARALLEL
5087 && GET_CODE (XVECEXP (pat, 0, 1)) == SET
5088 && GET_CODE (XEXP (XVECEXP (pat, 0, 1), 0)) == REG
5089 && ! FP_REG_P (XEXP (XVECEXP (pat, 0, 1), 0))
5090 && length == 4
5091 && ! forward_branch_p (insn))
5092 length += 4;
5094 return length;
5097 /* Implement the TARGET_PRINT_OPERAND_PUNCT_VALID_P hook. */
5099 static bool
5100 pa_print_operand_punct_valid_p (unsigned char code)
5102 if (code == '@'
5103 || code == '#'
5104 || code == '*'
5105 || code == '^')
5106 return true;
5108 return false;
5111 /* Print operand X (an rtx) in assembler syntax to file FILE.
5112 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
5113 For `%' followed by punctuation, CODE is the punctuation and X is null. */
5115 void
5116 pa_print_operand (FILE *file, rtx x, int code)
5118 switch (code)
5120 case '#':
5121 /* Output a 'nop' if there's nothing for the delay slot. */
5122 if (dbr_sequence_length () == 0)
5123 fputs ("\n\tnop", file);
5124 return;
5125 case '*':
5126 /* Output a nullification completer if there's nothing for the */
5127 /* delay slot or nullification is requested. */
5128 if (dbr_sequence_length () == 0 ||
5129 (final_sequence &&
5130 INSN_ANNULLED_BRANCH_P (XVECEXP (final_sequence, 0, 0))))
5131 fputs (",n", file);
5132 return;
5133 case 'R':
5134 /* Print out the second register name of a register pair.
5135 I.e., R (6) => 7. */
5136 fputs (reg_names[REGNO (x) + 1], file);
5137 return;
5138 case 'r':
5139 /* A register or zero. */
5140 if (x == const0_rtx
5141 || (x == CONST0_RTX (DFmode))
5142 || (x == CONST0_RTX (SFmode)))
5144 fputs ("%r0", file);
5145 return;
5147 else
5148 break;
5149 case 'f':
5150 /* A register or zero (floating point). */
5151 if (x == const0_rtx
5152 || (x == CONST0_RTX (DFmode))
5153 || (x == CONST0_RTX (SFmode)))
5155 fputs ("%fr0", file);
5156 return;
5158 else
5159 break;
5160 case 'A':
5162 rtx xoperands[2];
5164 xoperands[0] = XEXP (XEXP (x, 0), 0);
5165 xoperands[1] = XVECEXP (XEXP (XEXP (x, 0), 1), 0, 0);
5166 pa_output_global_address (file, xoperands[1], 0);
5167 fprintf (file, "(%s)", reg_names [REGNO (xoperands[0])]);
5168 return;
5171 case 'C': /* Plain (C)ondition */
5172 case 'X':
5173 switch (GET_CODE (x))
5175 case EQ:
5176 fputs ("=", file); break;
5177 case NE:
5178 fputs ("<>", file); break;
5179 case GT:
5180 fputs (">", file); break;
5181 case GE:
5182 fputs (">=", file); break;
5183 case GEU:
5184 fputs (">>=", file); break;
5185 case GTU:
5186 fputs (">>", file); break;
5187 case LT:
5188 fputs ("<", file); break;
5189 case LE:
5190 fputs ("<=", file); break;
5191 case LEU:
5192 fputs ("<<=", file); break;
5193 case LTU:
5194 fputs ("<<", file); break;
5195 default:
5196 gcc_unreachable ();
5198 return;
5199 case 'N': /* Condition, (N)egated */
5200 switch (GET_CODE (x))
5202 case EQ:
5203 fputs ("<>", file); break;
5204 case NE:
5205 fputs ("=", file); break;
5206 case GT:
5207 fputs ("<=", file); break;
5208 case GE:
5209 fputs ("<", file); break;
5210 case GEU:
5211 fputs ("<<", file); break;
5212 case GTU:
5213 fputs ("<<=", file); break;
5214 case LT:
5215 fputs (">=", file); break;
5216 case LE:
5217 fputs (">", file); break;
5218 case LEU:
5219 fputs (">>", file); break;
5220 case LTU:
5221 fputs (">>=", file); break;
5222 default:
5223 gcc_unreachable ();
5225 return;
5226 /* For floating point comparisons. Note that the output
5227 predicates are the complement of the desired mode. The
5228 conditions for GT, GE, LT, LE and LTGT cause an invalid
5229 operation exception if the result is unordered and this
5230 exception is enabled in the floating-point status register. */
5231 case 'Y':
5232 switch (GET_CODE (x))
5234 case EQ:
5235 fputs ("!=", file); break;
5236 case NE:
5237 fputs ("=", file); break;
5238 case GT:
5239 fputs ("!>", file); break;
5240 case GE:
5241 fputs ("!>=", file); break;
5242 case LT:
5243 fputs ("!<", file); break;
5244 case LE:
5245 fputs ("!<=", file); break;
5246 case LTGT:
5247 fputs ("!<>", file); break;
5248 case UNLE:
5249 fputs ("!?<=", file); break;
5250 case UNLT:
5251 fputs ("!?<", file); break;
5252 case UNGE:
5253 fputs ("!?>=", file); break;
5254 case UNGT:
5255 fputs ("!?>", file); break;
5256 case UNEQ:
5257 fputs ("!?=", file); break;
5258 case UNORDERED:
5259 fputs ("!?", file); break;
5260 case ORDERED:
5261 fputs ("?", file); break;
5262 default:
5263 gcc_unreachable ();
5265 return;
5266 case 'S': /* Condition, operands are (S)wapped. */
5267 switch (GET_CODE (x))
5269 case EQ:
5270 fputs ("=", file); break;
5271 case NE:
5272 fputs ("<>", file); break;
5273 case GT:
5274 fputs ("<", file); break;
5275 case GE:
5276 fputs ("<=", file); break;
5277 case GEU:
5278 fputs ("<<=", file); break;
5279 case GTU:
5280 fputs ("<<", file); break;
5281 case LT:
5282 fputs (">", file); break;
5283 case LE:
5284 fputs (">=", file); break;
5285 case LEU:
5286 fputs (">>=", file); break;
5287 case LTU:
5288 fputs (">>", file); break;
5289 default:
5290 gcc_unreachable ();
5292 return;
5293 case 'B': /* Condition, (B)oth swapped and negate. */
5294 switch (GET_CODE (x))
5296 case EQ:
5297 fputs ("<>", file); break;
5298 case NE:
5299 fputs ("=", file); break;
5300 case GT:
5301 fputs (">=", file); break;
5302 case GE:
5303 fputs (">", file); break;
5304 case GEU:
5305 fputs (">>", file); break;
5306 case GTU:
5307 fputs (">>=", file); break;
5308 case LT:
5309 fputs ("<=", file); break;
5310 case LE:
5311 fputs ("<", file); break;
5312 case LEU:
5313 fputs ("<<", file); break;
5314 case LTU:
5315 fputs ("<<=", file); break;
5316 default:
5317 gcc_unreachable ();
5319 return;
5320 case 'k':
5321 gcc_assert (GET_CODE (x) == CONST_INT);
5322 fprintf (file, HOST_WIDE_INT_PRINT_DEC, ~INTVAL (x));
5323 return;
5324 case 'Q':
5325 gcc_assert (GET_CODE (x) == CONST_INT);
5326 fprintf (file, HOST_WIDE_INT_PRINT_DEC, 64 - (INTVAL (x) & 63));
5327 return;
5328 case 'L':
5329 gcc_assert (GET_CODE (x) == CONST_INT);
5330 fprintf (file, HOST_WIDE_INT_PRINT_DEC, 32 - (INTVAL (x) & 31));
5331 return;
5332 case 'o':
5333 gcc_assert (GET_CODE (x) == CONST_INT
5334 && (INTVAL (x) == 1 || INTVAL (x) == 2 || INTVAL (x) == 3));
5335 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
5336 return;
5337 case 'O':
5338 gcc_assert (GET_CODE (x) == CONST_INT && exact_log2 (INTVAL (x)) >= 0);
5339 fprintf (file, "%d", exact_log2 (INTVAL (x)));
5340 return;
5341 case 'p':
5342 gcc_assert (GET_CODE (x) == CONST_INT);
5343 fprintf (file, HOST_WIDE_INT_PRINT_DEC, 63 - (INTVAL (x) & 63));
5344 return;
5345 case 'P':
5346 gcc_assert (GET_CODE (x) == CONST_INT);
5347 fprintf (file, HOST_WIDE_INT_PRINT_DEC, 31 - (INTVAL (x) & 31));
5348 return;
5349 case 'I':
5350 if (GET_CODE (x) == CONST_INT)
5351 fputs ("i", file);
5352 return;
5353 case 'M':
5354 case 'F':
5355 switch (GET_CODE (XEXP (x, 0)))
5357 case PRE_DEC:
5358 case PRE_INC:
5359 if (ASSEMBLER_DIALECT == 0)
5360 fputs ("s,mb", file);
5361 else
5362 fputs (",mb", file);
5363 break;
5364 case POST_DEC:
5365 case POST_INC:
5366 if (ASSEMBLER_DIALECT == 0)
5367 fputs ("s,ma", file);
5368 else
5369 fputs (",ma", file);
5370 break;
5371 case PLUS:
5372 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
5373 && GET_CODE (XEXP (XEXP (x, 0), 1)) == REG)
5375 if (ASSEMBLER_DIALECT == 0)
5376 fputs ("x", file);
5378 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT
5379 || GET_CODE (XEXP (XEXP (x, 0), 1)) == MULT)
5381 if (ASSEMBLER_DIALECT == 0)
5382 fputs ("x,s", file);
5383 else
5384 fputs (",s", file);
5386 else if (code == 'F' && ASSEMBLER_DIALECT == 0)
5387 fputs ("s", file);
5388 break;
5389 default:
5390 if (code == 'F' && ASSEMBLER_DIALECT == 0)
5391 fputs ("s", file);
5392 break;
5394 return;
5395 case 'G':
5396 pa_output_global_address (file, x, 0);
5397 return;
5398 case 'H':
5399 pa_output_global_address (file, x, 1);
5400 return;
5401 case 0: /* Don't do anything special */
5402 break;
5403 case 'Z':
5405 unsigned op[3];
5406 compute_zdepwi_operands (INTVAL (x), op);
5407 fprintf (file, "%d,%d,%d", op[0], op[1], op[2]);
5408 return;
5410 case 'z':
5412 unsigned op[3];
5413 compute_zdepdi_operands (INTVAL (x), op);
5414 fprintf (file, "%d,%d,%d", op[0], op[1], op[2]);
5415 return;
5417 case 'c':
5418 /* We can get here from a .vtable_inherit due to our
5419 CONSTANT_ADDRESS_P rejecting perfectly good constant
5420 addresses. */
5421 break;
5422 default:
5423 gcc_unreachable ();
5425 if (GET_CODE (x) == REG)
5427 fputs (reg_names [REGNO (x)], file);
5428 if (TARGET_64BIT && FP_REG_P (x) && GET_MODE_SIZE (GET_MODE (x)) <= 4)
5430 fputs ("R", file);
5431 return;
5433 if (FP_REG_P (x)
5434 && GET_MODE_SIZE (GET_MODE (x)) <= 4
5435 && (REGNO (x) & 1) == 0)
5436 fputs ("L", file);
5438 else if (GET_CODE (x) == MEM)
5440 int size = GET_MODE_SIZE (GET_MODE (x));
5441 rtx base = NULL_RTX;
5442 switch (GET_CODE (XEXP (x, 0)))
5444 case PRE_DEC:
5445 case POST_DEC:
5446 base = XEXP (XEXP (x, 0), 0);
5447 fprintf (file, "-%d(%s)", size, reg_names [REGNO (base)]);
5448 break;
5449 case PRE_INC:
5450 case POST_INC:
5451 base = XEXP (XEXP (x, 0), 0);
5452 fprintf (file, "%d(%s)", size, reg_names [REGNO (base)]);
5453 break;
5454 case PLUS:
5455 if (GET_CODE (XEXP (XEXP (x, 0), 0)) == MULT)
5456 fprintf (file, "%s(%s)",
5457 reg_names [REGNO (XEXP (XEXP (XEXP (x, 0), 0), 0))],
5458 reg_names [REGNO (XEXP (XEXP (x, 0), 1))]);
5459 else if (GET_CODE (XEXP (XEXP (x, 0), 1)) == MULT)
5460 fprintf (file, "%s(%s)",
5461 reg_names [REGNO (XEXP (XEXP (XEXP (x, 0), 1), 0))],
5462 reg_names [REGNO (XEXP (XEXP (x, 0), 0))]);
5463 else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == REG
5464 && GET_CODE (XEXP (XEXP (x, 0), 1)) == REG)
5466 /* Because the REG_POINTER flag can get lost during reload,
5467 pa_legitimate_address_p canonicalizes the order of the
5468 index and base registers in the combined move patterns. */
5469 rtx base = XEXP (XEXP (x, 0), 1);
5470 rtx index = XEXP (XEXP (x, 0), 0);
5472 fprintf (file, "%s(%s)",
5473 reg_names [REGNO (index)], reg_names [REGNO (base)]);
5475 else
5476 output_address (GET_MODE (x), XEXP (x, 0));
5477 break;
5478 default:
5479 output_address (GET_MODE (x), XEXP (x, 0));
5480 break;
5483 else
5484 output_addr_const (file, x);
5487 /* output a SYMBOL_REF or a CONST expression involving a SYMBOL_REF. */
5489 void
5490 pa_output_global_address (FILE *file, rtx x, int round_constant)
5493 /* Imagine (high (const (plus ...))). */
5494 if (GET_CODE (x) == HIGH)
5495 x = XEXP (x, 0);
5497 if (GET_CODE (x) == SYMBOL_REF && read_only_operand (x, VOIDmode))
5498 output_addr_const (file, x);
5499 else if (GET_CODE (x) == SYMBOL_REF && !flag_pic)
5501 output_addr_const (file, x);
5502 fputs ("-$global$", file);
5504 else if (GET_CODE (x) == CONST)
5506 const char *sep = "";
5507 int offset = 0; /* assembler wants -$global$ at end */
5508 rtx base = NULL_RTX;
5510 switch (GET_CODE (XEXP (XEXP (x, 0), 0)))
5512 case LABEL_REF:
5513 case SYMBOL_REF:
5514 base = XEXP (XEXP (x, 0), 0);
5515 output_addr_const (file, base);
5516 break;
5517 case CONST_INT:
5518 offset = INTVAL (XEXP (XEXP (x, 0), 0));
5519 break;
5520 default:
5521 gcc_unreachable ();
5524 switch (GET_CODE (XEXP (XEXP (x, 0), 1)))
5526 case LABEL_REF:
5527 case SYMBOL_REF:
5528 base = XEXP (XEXP (x, 0), 1);
5529 output_addr_const (file, base);
5530 break;
5531 case CONST_INT:
5532 offset = INTVAL (XEXP (XEXP (x, 0), 1));
5533 break;
5534 default:
5535 gcc_unreachable ();
5538 /* How bogus. The compiler is apparently responsible for
5539 rounding the constant if it uses an LR field selector.
5541 The linker and/or assembler seem a better place since
5542 they have to do this kind of thing already.
5544 If we fail to do this, HP's optimizing linker may eliminate
5545 an addil, but not update the ldw/stw/ldo instruction that
5546 uses the result of the addil. */
5547 if (round_constant)
5548 offset = ((offset + 0x1000) & ~0x1fff);
5550 switch (GET_CODE (XEXP (x, 0)))
5552 case PLUS:
5553 if (offset < 0)
5555 offset = -offset;
5556 sep = "-";
5558 else
5559 sep = "+";
5560 break;
5562 case MINUS:
5563 gcc_assert (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF);
5564 sep = "-";
5565 break;
5567 default:
5568 gcc_unreachable ();
5571 if (!read_only_operand (base, VOIDmode) && !flag_pic)
5572 fputs ("-$global$", file);
5573 if (offset)
5574 fprintf (file, "%s%d", sep, offset);
5576 else
5577 output_addr_const (file, x);
5580 /* Output boilerplate text to appear at the beginning of the file.
5581 There are several possible versions. */
5582 #define aputs(x) fputs(x, asm_out_file)
5583 static inline void
5584 pa_file_start_level (void)
5586 if (TARGET_64BIT)
5587 aputs ("\t.LEVEL 2.0w\n");
5588 else if (TARGET_PA_20)
5589 aputs ("\t.LEVEL 2.0\n");
5590 else if (TARGET_PA_11)
5591 aputs ("\t.LEVEL 1.1\n");
5592 else
5593 aputs ("\t.LEVEL 1.0\n");
5596 static inline void
5597 pa_file_start_space (int sortspace)
5599 aputs ("\t.SPACE $PRIVATE$");
5600 if (sortspace)
5601 aputs (",SORT=16");
5602 aputs ("\n\t.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=31");
5603 if (flag_tm)
5604 aputs ("\n\t.SUBSPA $TM_CLONE_TABLE$,QUAD=1,ALIGN=8,ACCESS=31");
5605 aputs ("\n\t.SUBSPA $BSS$,QUAD=1,ALIGN=8,ACCESS=31,ZERO,SORT=82"
5606 "\n\t.SPACE $TEXT$");
5607 if (sortspace)
5608 aputs (",SORT=8");
5609 aputs ("\n\t.SUBSPA $LIT$,QUAD=0,ALIGN=8,ACCESS=44"
5610 "\n\t.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44,CODE_ONLY\n");
5613 static inline void
5614 pa_file_start_file (int want_version)
5616 if (write_symbols != NO_DEBUG)
5618 output_file_directive (asm_out_file, main_input_filename);
5619 if (want_version)
5620 aputs ("\t.version\t\"01.01\"\n");
5624 static inline void
5625 pa_file_start_mcount (const char *aswhat)
5627 if (profile_flag)
5628 fprintf (asm_out_file, "\t.IMPORT _mcount,%s\n", aswhat);
5631 static void
5632 pa_elf_file_start (void)
5634 pa_file_start_level ();
5635 pa_file_start_mcount ("ENTRY");
5636 pa_file_start_file (0);
5639 static void
5640 pa_som_file_start (void)
5642 pa_file_start_level ();
5643 pa_file_start_space (0);
5644 aputs ("\t.IMPORT $global$,DATA\n"
5645 "\t.IMPORT $$dyncall,MILLICODE\n");
5646 pa_file_start_mcount ("CODE");
5647 pa_file_start_file (0);
5650 static void
5651 pa_linux_file_start (void)
5653 pa_file_start_file (1);
5654 pa_file_start_level ();
5655 pa_file_start_mcount ("CODE");
5658 static void
5659 pa_hpux64_gas_file_start (void)
5661 pa_file_start_level ();
5662 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
5663 if (profile_flag)
5664 ASM_OUTPUT_TYPE_DIRECTIVE (asm_out_file, "_mcount", "function");
5665 #endif
5666 pa_file_start_file (1);
5669 static void
5670 pa_hpux64_hpas_file_start (void)
5672 pa_file_start_level ();
5673 pa_file_start_space (1);
5674 pa_file_start_mcount ("CODE");
5675 pa_file_start_file (0);
5677 #undef aputs
5679 /* Search the deferred plabel list for SYMBOL and return its internal
5680 label. If an entry for SYMBOL is not found, a new entry is created. */
5683 pa_get_deferred_plabel (rtx symbol)
5685 const char *fname = XSTR (symbol, 0);
5686 size_t i;
5688 /* See if we have already put this function on the list of deferred
5689 plabels. This list is generally small, so a liner search is not
5690 too ugly. If it proves too slow replace it with something faster. */
5691 for (i = 0; i < n_deferred_plabels; i++)
5692 if (strcmp (fname, XSTR (deferred_plabels[i].symbol, 0)) == 0)
5693 break;
5695 /* If the deferred plabel list is empty, or this entry was not found
5696 on the list, create a new entry on the list. */
5697 if (deferred_plabels == NULL || i == n_deferred_plabels)
5699 tree id;
5701 if (deferred_plabels == 0)
5702 deferred_plabels = ggc_alloc<deferred_plabel> ();
5703 else
5704 deferred_plabels = GGC_RESIZEVEC (struct deferred_plabel,
5705 deferred_plabels,
5706 n_deferred_plabels + 1);
5708 i = n_deferred_plabels++;
5709 deferred_plabels[i].internal_label = gen_label_rtx ();
5710 deferred_plabels[i].symbol = symbol;
5712 /* Gross. We have just implicitly taken the address of this
5713 function. Mark it in the same manner as assemble_name. */
5714 id = maybe_get_identifier (targetm.strip_name_encoding (fname));
5715 if (id)
5716 mark_referenced (id);
5719 return deferred_plabels[i].internal_label;
5722 static void
5723 output_deferred_plabels (void)
5725 size_t i;
5727 /* If we have some deferred plabels, then we need to switch into the
5728 data or readonly data section, and align it to a 4 byte boundary
5729 before outputting the deferred plabels. */
5730 if (n_deferred_plabels)
5732 switch_to_section (flag_pic ? data_section : readonly_data_section);
5733 ASM_OUTPUT_ALIGN (asm_out_file, TARGET_64BIT ? 3 : 2);
5736 /* Now output the deferred plabels. */
5737 for (i = 0; i < n_deferred_plabels; i++)
5739 targetm.asm_out.internal_label (asm_out_file, "L",
5740 CODE_LABEL_NUMBER (deferred_plabels[i].internal_label));
5741 assemble_integer (deferred_plabels[i].symbol,
5742 TARGET_64BIT ? 8 : 4, TARGET_64BIT ? 64 : 32, 1);
5746 /* Initialize optabs to point to emulation routines. */
5748 static void
5749 pa_init_libfuncs (void)
5751 if (HPUX_LONG_DOUBLE_LIBRARY)
5753 set_optab_libfunc (add_optab, TFmode, "_U_Qfadd");
5754 set_optab_libfunc (sub_optab, TFmode, "_U_Qfsub");
5755 set_optab_libfunc (smul_optab, TFmode, "_U_Qfmpy");
5756 set_optab_libfunc (sdiv_optab, TFmode, "_U_Qfdiv");
5757 set_optab_libfunc (smin_optab, TFmode, "_U_Qmin");
5758 set_optab_libfunc (smax_optab, TFmode, "_U_Qfmax");
5759 set_optab_libfunc (sqrt_optab, TFmode, "_U_Qfsqrt");
5760 set_optab_libfunc (abs_optab, TFmode, "_U_Qfabs");
5761 set_optab_libfunc (neg_optab, TFmode, "_U_Qfneg");
5763 set_optab_libfunc (eq_optab, TFmode, "_U_Qfeq");
5764 set_optab_libfunc (ne_optab, TFmode, "_U_Qfne");
5765 set_optab_libfunc (gt_optab, TFmode, "_U_Qfgt");
5766 set_optab_libfunc (ge_optab, TFmode, "_U_Qfge");
5767 set_optab_libfunc (lt_optab, TFmode, "_U_Qflt");
5768 set_optab_libfunc (le_optab, TFmode, "_U_Qfle");
5769 set_optab_libfunc (unord_optab, TFmode, "_U_Qfunord");
5771 set_conv_libfunc (sext_optab, TFmode, SFmode, "_U_Qfcnvff_sgl_to_quad");
5772 set_conv_libfunc (sext_optab, TFmode, DFmode, "_U_Qfcnvff_dbl_to_quad");
5773 set_conv_libfunc (trunc_optab, SFmode, TFmode, "_U_Qfcnvff_quad_to_sgl");
5774 set_conv_libfunc (trunc_optab, DFmode, TFmode, "_U_Qfcnvff_quad_to_dbl");
5776 set_conv_libfunc (sfix_optab, SImode, TFmode,
5777 TARGET_64BIT ? "__U_Qfcnvfxt_quad_to_sgl"
5778 : "_U_Qfcnvfxt_quad_to_sgl");
5779 set_conv_libfunc (sfix_optab, DImode, TFmode,
5780 "_U_Qfcnvfxt_quad_to_dbl");
5781 set_conv_libfunc (ufix_optab, SImode, TFmode,
5782 "_U_Qfcnvfxt_quad_to_usgl");
5783 set_conv_libfunc (ufix_optab, DImode, TFmode,
5784 "_U_Qfcnvfxt_quad_to_udbl");
5786 set_conv_libfunc (sfloat_optab, TFmode, SImode,
5787 "_U_Qfcnvxf_sgl_to_quad");
5788 set_conv_libfunc (sfloat_optab, TFmode, DImode,
5789 "_U_Qfcnvxf_dbl_to_quad");
5790 set_conv_libfunc (ufloat_optab, TFmode, SImode,
5791 "_U_Qfcnvxf_usgl_to_quad");
5792 set_conv_libfunc (ufloat_optab, TFmode, DImode,
5793 "_U_Qfcnvxf_udbl_to_quad");
5796 if (TARGET_SYNC_LIBCALL)
5797 init_sync_libfuncs (8);
5800 /* HP's millicode routines mean something special to the assembler.
5801 Keep track of which ones we have used. */
5803 enum millicodes { remI, remU, divI, divU, mulI, end1000 };
5804 static void import_milli (enum millicodes);
5805 static char imported[(int) end1000];
5806 static const char * const milli_names[] = {"remI", "remU", "divI", "divU", "mulI"};
5807 static const char import_string[] = ".IMPORT $$....,MILLICODE";
5808 #define MILLI_START 10
5810 static void
5811 import_milli (enum millicodes code)
5813 char str[sizeof (import_string)];
5815 if (!imported[(int) code])
5817 imported[(int) code] = 1;
5818 strcpy (str, import_string);
5819 strncpy (str + MILLI_START, milli_names[(int) code], 4);
5820 output_asm_insn (str, 0);
5824 /* The register constraints have put the operands and return value in
5825 the proper registers. */
5827 const char *
5828 pa_output_mul_insn (int unsignedp ATTRIBUTE_UNUSED, rtx_insn *insn)
5830 import_milli (mulI);
5831 return pa_output_millicode_call (insn, gen_rtx_SYMBOL_REF (Pmode, "$$mulI"));
5834 /* Emit the rtl for doing a division by a constant. */
5836 /* Do magic division millicodes exist for this value? */
5837 const int pa_magic_milli[]= {0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1};
5839 /* We'll use an array to keep track of the magic millicodes and
5840 whether or not we've used them already. [n][0] is signed, [n][1] is
5841 unsigned. */
5843 static int div_milli[16][2];
5846 pa_emit_hpdiv_const (rtx *operands, int unsignedp)
5848 if (GET_CODE (operands[2]) == CONST_INT
5849 && INTVAL (operands[2]) > 0
5850 && INTVAL (operands[2]) < 16
5851 && pa_magic_milli[INTVAL (operands[2])])
5853 rtx ret = gen_rtx_REG (SImode, TARGET_64BIT ? 2 : 31);
5855 emit_move_insn (gen_rtx_REG (SImode, 26), operands[1]);
5856 emit
5857 (gen_rtx_PARALLEL
5858 (VOIDmode,
5859 gen_rtvec (6, gen_rtx_SET (gen_rtx_REG (SImode, 29),
5860 gen_rtx_fmt_ee (unsignedp ? UDIV : DIV,
5861 SImode,
5862 gen_rtx_REG (SImode, 26),
5863 operands[2])),
5864 gen_rtx_CLOBBER (VOIDmode, operands[4]),
5865 gen_rtx_CLOBBER (VOIDmode, operands[3]),
5866 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 26)),
5867 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (SImode, 25)),
5868 gen_rtx_CLOBBER (VOIDmode, ret))));
5869 emit_move_insn (operands[0], gen_rtx_REG (SImode, 29));
5870 return 1;
5872 return 0;
5875 const char *
5876 pa_output_div_insn (rtx *operands, int unsignedp, rtx_insn *insn)
5878 int divisor;
5880 /* If the divisor is a constant, try to use one of the special
5881 opcodes .*/
5882 if (GET_CODE (operands[0]) == CONST_INT)
5884 static char buf[100];
5885 divisor = INTVAL (operands[0]);
5886 if (!div_milli[divisor][unsignedp])
5888 div_milli[divisor][unsignedp] = 1;
5889 if (unsignedp)
5890 output_asm_insn (".IMPORT $$divU_%0,MILLICODE", operands);
5891 else
5892 output_asm_insn (".IMPORT $$divI_%0,MILLICODE", operands);
5894 if (unsignedp)
5896 sprintf (buf, "$$divU_" HOST_WIDE_INT_PRINT_DEC,
5897 INTVAL (operands[0]));
5898 return pa_output_millicode_call (insn,
5899 gen_rtx_SYMBOL_REF (SImode, buf));
5901 else
5903 sprintf (buf, "$$divI_" HOST_WIDE_INT_PRINT_DEC,
5904 INTVAL (operands[0]));
5905 return pa_output_millicode_call (insn,
5906 gen_rtx_SYMBOL_REF (SImode, buf));
5909 /* Divisor isn't a special constant. */
5910 else
5912 if (unsignedp)
5914 import_milli (divU);
5915 return pa_output_millicode_call (insn,
5916 gen_rtx_SYMBOL_REF (SImode, "$$divU"));
5918 else
5920 import_milli (divI);
5921 return pa_output_millicode_call (insn,
5922 gen_rtx_SYMBOL_REF (SImode, "$$divI"));
5927 /* Output a $$rem millicode to do mod. */
5929 const char *
5930 pa_output_mod_insn (int unsignedp, rtx_insn *insn)
5932 if (unsignedp)
5934 import_milli (remU);
5935 return pa_output_millicode_call (insn,
5936 gen_rtx_SYMBOL_REF (SImode, "$$remU"));
5938 else
5940 import_milli (remI);
5941 return pa_output_millicode_call (insn,
5942 gen_rtx_SYMBOL_REF (SImode, "$$remI"));
5946 void
5947 pa_output_arg_descriptor (rtx_insn *call_insn)
5949 const char *arg_regs[4];
5950 machine_mode arg_mode;
5951 rtx link;
5952 int i, output_flag = 0;
5953 int regno;
5955 /* We neither need nor want argument location descriptors for the
5956 64bit runtime environment or the ELF32 environment. */
5957 if (TARGET_64BIT || TARGET_ELF32)
5958 return;
5960 for (i = 0; i < 4; i++)
5961 arg_regs[i] = 0;
5963 /* Specify explicitly that no argument relocations should take place
5964 if using the portable runtime calling conventions. */
5965 if (TARGET_PORTABLE_RUNTIME)
5967 fputs ("\t.CALL ARGW0=NO,ARGW1=NO,ARGW2=NO,ARGW3=NO,RETVAL=NO\n",
5968 asm_out_file);
5969 return;
5972 gcc_assert (CALL_P (call_insn));
5973 for (link = CALL_INSN_FUNCTION_USAGE (call_insn);
5974 link; link = XEXP (link, 1))
5976 rtx use = XEXP (link, 0);
5978 if (! (GET_CODE (use) == USE
5979 && GET_CODE (XEXP (use, 0)) == REG
5980 && FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0)))))
5981 continue;
5983 arg_mode = GET_MODE (XEXP (use, 0));
5984 regno = REGNO (XEXP (use, 0));
5985 if (regno >= 23 && regno <= 26)
5987 arg_regs[26 - regno] = "GR";
5988 if (arg_mode == DImode)
5989 arg_regs[25 - regno] = "GR";
5991 else if (regno >= 32 && regno <= 39)
5993 if (arg_mode == SFmode)
5994 arg_regs[(regno - 32) / 2] = "FR";
5995 else
5997 #ifndef HP_FP_ARG_DESCRIPTOR_REVERSED
5998 arg_regs[(regno - 34) / 2] = "FR";
5999 arg_regs[(regno - 34) / 2 + 1] = "FU";
6000 #else
6001 arg_regs[(regno - 34) / 2] = "FU";
6002 arg_regs[(regno - 34) / 2 + 1] = "FR";
6003 #endif
6007 fputs ("\t.CALL ", asm_out_file);
6008 for (i = 0; i < 4; i++)
6010 if (arg_regs[i])
6012 if (output_flag++)
6013 fputc (',', asm_out_file);
6014 fprintf (asm_out_file, "ARGW%d=%s", i, arg_regs[i]);
6017 fputc ('\n', asm_out_file);
6020 /* Inform reload about cases where moving X with a mode MODE to or from
6021 a register in RCLASS requires an extra scratch or immediate register.
6022 Return the class needed for the immediate register. */
6024 static reg_class_t
6025 pa_secondary_reload (bool in_p, rtx x, reg_class_t rclass_i,
6026 machine_mode mode, secondary_reload_info *sri)
6028 int regno;
6029 enum reg_class rclass = (enum reg_class) rclass_i;
6031 /* Handle the easy stuff first. */
6032 if (rclass == R1_REGS)
6033 return NO_REGS;
6035 if (REG_P (x))
6037 regno = REGNO (x);
6038 if (rclass == BASE_REG_CLASS && regno < FIRST_PSEUDO_REGISTER)
6039 return NO_REGS;
6041 else
6042 regno = -1;
6044 /* If we have something like (mem (mem (...)), we can safely assume the
6045 inner MEM will end up in a general register after reloading, so there's
6046 no need for a secondary reload. */
6047 if (GET_CODE (x) == MEM && GET_CODE (XEXP (x, 0)) == MEM)
6048 return NO_REGS;
6050 /* Trying to load a constant into a FP register during PIC code
6051 generation requires %r1 as a scratch register. For float modes,
6052 the only legitimate constant is CONST0_RTX. However, there are
6053 a few patterns that accept constant double operands. */
6054 if (flag_pic
6055 && FP_REG_CLASS_P (rclass)
6056 && (GET_CODE (x) == CONST_INT || GET_CODE (x) == CONST_DOUBLE))
6058 switch (mode)
6060 case E_SImode:
6061 sri->icode = CODE_FOR_reload_insi_r1;
6062 break;
6064 case E_DImode:
6065 sri->icode = CODE_FOR_reload_indi_r1;
6066 break;
6068 case E_SFmode:
6069 sri->icode = CODE_FOR_reload_insf_r1;
6070 break;
6072 case E_DFmode:
6073 sri->icode = CODE_FOR_reload_indf_r1;
6074 break;
6076 default:
6077 gcc_unreachable ();
6079 return NO_REGS;
6082 /* Secondary reloads of symbolic expressions require %r1 as a scratch
6083 register when we're generating PIC code or when the operand isn't
6084 readonly. */
6085 if (pa_symbolic_expression_p (x))
6087 if (GET_CODE (x) == HIGH)
6088 x = XEXP (x, 0);
6090 if (flag_pic || !read_only_operand (x, VOIDmode))
6092 switch (mode)
6094 case E_SImode:
6095 sri->icode = CODE_FOR_reload_insi_r1;
6096 break;
6098 case E_DImode:
6099 sri->icode = CODE_FOR_reload_indi_r1;
6100 break;
6102 default:
6103 gcc_unreachable ();
6105 return NO_REGS;
6109 /* Profiling showed the PA port spends about 1.3% of its compilation
6110 time in true_regnum from calls inside pa_secondary_reload_class. */
6111 if (regno >= FIRST_PSEUDO_REGISTER || GET_CODE (x) == SUBREG)
6112 regno = true_regnum (x);
6114 /* Handle reloads for floating point loads and stores. */
6115 if ((regno >= FIRST_PSEUDO_REGISTER || regno == -1)
6116 && FP_REG_CLASS_P (rclass))
6118 if (MEM_P (x))
6120 x = XEXP (x, 0);
6122 /* We don't need a secondary reload for indexed memory addresses.
6124 When INT14_OK_STRICT is true, it might appear that we could
6125 directly allow register indirect memory addresses. However,
6126 this doesn't work because we don't support SUBREGs in
6127 floating-point register copies and reload doesn't tell us
6128 when it's going to use a SUBREG. */
6129 if (IS_INDEX_ADDR_P (x))
6130 return NO_REGS;
6133 /* Request a secondary reload with a general scratch register
6134 for everything else. ??? Could symbolic operands be handled
6135 directly when generating non-pic PA 2.0 code? */
6136 sri->icode = (in_p
6137 ? direct_optab_handler (reload_in_optab, mode)
6138 : direct_optab_handler (reload_out_optab, mode));
6139 return NO_REGS;
6142 /* A SAR<->FP register copy requires an intermediate general register
6143 and secondary memory. We need a secondary reload with a general
6144 scratch register for spills. */
6145 if (rclass == SHIFT_REGS)
6147 /* Handle spill. */
6148 if (regno >= FIRST_PSEUDO_REGISTER || regno < 0)
6150 sri->icode = (in_p
6151 ? direct_optab_handler (reload_in_optab, mode)
6152 : direct_optab_handler (reload_out_optab, mode));
6153 return NO_REGS;
6156 /* Handle FP copy. */
6157 if (FP_REG_CLASS_P (REGNO_REG_CLASS (regno)))
6158 return GENERAL_REGS;
6161 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER
6162 && REGNO_REG_CLASS (regno) == SHIFT_REGS
6163 && FP_REG_CLASS_P (rclass))
6164 return GENERAL_REGS;
6166 return NO_REGS;
6169 /* Implement TARGET_SECONDARY_MEMORY_NEEDED. */
6171 static bool
6172 pa_secondary_memory_needed (machine_mode mode ATTRIBUTE_UNUSED,
6173 reg_class_t class1 ATTRIBUTE_UNUSED,
6174 reg_class_t class2 ATTRIBUTE_UNUSED)
6176 #ifdef PA_SECONDARY_MEMORY_NEEDED
6177 return PA_SECONDARY_MEMORY_NEEDED (mode, class1, class2);
6178 #else
6179 return false;
6180 #endif
6183 /* Implement TARGET_EXTRA_LIVE_ON_ENTRY. The argument pointer
6184 is only marked as live on entry by df-scan when it is a fixed
6185 register. It isn't a fixed register in the 64-bit runtime,
6186 so we need to mark it here. */
6188 static void
6189 pa_extra_live_on_entry (bitmap regs)
6191 if (TARGET_64BIT)
6192 bitmap_set_bit (regs, ARG_POINTER_REGNUM);
6195 /* Implement EH_RETURN_HANDLER_RTX. The MEM needs to be volatile
6196 to prevent it from being deleted. */
6199 pa_eh_return_handler_rtx (void)
6201 rtx tmp;
6203 tmp = gen_rtx_PLUS (word_mode, hard_frame_pointer_rtx,
6204 TARGET_64BIT ? GEN_INT (-16) : GEN_INT (-20));
6205 tmp = gen_rtx_MEM (word_mode, tmp);
6206 tmp->volatil = 1;
6207 return tmp;
6210 /* In the 32-bit runtime, arguments larger than eight bytes are passed
6211 by invisible reference. As a GCC extension, we also pass anything
6212 with a zero or variable size by reference.
6214 The 64-bit runtime does not describe passing any types by invisible
6215 reference. The internals of GCC can't currently handle passing
6216 empty structures, and zero or variable length arrays when they are
6217 not passed entirely on the stack or by reference. Thus, as a GCC
6218 extension, we pass these types by reference. The HP compiler doesn't
6219 support these types, so hopefully there shouldn't be any compatibility
6220 issues. This may have to be revisited when HP releases a C99 compiler
6221 or updates the ABI. */
6223 static bool
6224 pa_pass_by_reference (cumulative_args_t, const function_arg_info &arg)
6226 HOST_WIDE_INT size = arg.type_size_in_bytes ();
6227 if (TARGET_64BIT)
6228 return size <= 0;
6229 else
6230 return size <= 0 || size > 8;
6233 /* Implement TARGET_FUNCTION_ARG_PADDING. */
6235 static pad_direction
6236 pa_function_arg_padding (machine_mode mode, const_tree type)
6238 if (mode == BLKmode
6239 || (TARGET_64BIT
6240 && type
6241 && (AGGREGATE_TYPE_P (type)
6242 || TREE_CODE (type) == COMPLEX_TYPE
6243 || TREE_CODE (type) == VECTOR_TYPE)))
6245 /* Return PAD_NONE if justification is not required. */
6246 if (type
6247 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
6248 && (int_size_in_bytes (type) * BITS_PER_UNIT) % PARM_BOUNDARY == 0)
6249 return PAD_NONE;
6251 /* The directions set here are ignored when a BLKmode argument larger
6252 than a word is placed in a register. Different code is used for
6253 the stack and registers. This makes it difficult to have a
6254 consistent data representation for both the stack and registers.
6255 For both runtimes, the justification and padding for arguments on
6256 the stack and in registers should be identical. */
6257 if (TARGET_64BIT)
6258 /* The 64-bit runtime specifies left justification for aggregates. */
6259 return PAD_UPWARD;
6260 else
6261 /* The 32-bit runtime architecture specifies right justification.
6262 When the argument is passed on the stack, the argument is padded
6263 with garbage on the left. The HP compiler pads with zeros. */
6264 return PAD_DOWNWARD;
6267 if (GET_MODE_BITSIZE (mode) < PARM_BOUNDARY)
6268 return PAD_DOWNWARD;
6269 else
6270 return PAD_NONE;
6274 /* Do what is necessary for `va_start'. We look at the current function
6275 to determine if stdargs or varargs is used and fill in an initial
6276 va_list. A pointer to this constructor is returned. */
6278 static rtx
6279 hppa_builtin_saveregs (void)
6281 rtx offset, dest;
6282 tree fntype = TREE_TYPE (current_function_decl);
6283 int argadj = ((!stdarg_p (fntype))
6284 ? UNITS_PER_WORD : 0);
6286 if (argadj)
6287 offset = plus_constant (Pmode, crtl->args.arg_offset_rtx, argadj);
6288 else
6289 offset = crtl->args.arg_offset_rtx;
6291 if (TARGET_64BIT)
6293 int i, off;
6295 /* Adjust for varargs/stdarg differences. */
6296 if (argadj)
6297 offset = plus_constant (Pmode, crtl->args.arg_offset_rtx, -argadj);
6298 else
6299 offset = crtl->args.arg_offset_rtx;
6301 /* We need to save %r26 .. %r19 inclusive starting at offset -64
6302 from the incoming arg pointer and growing to larger addresses. */
6303 for (i = 26, off = -64; i >= 19; i--, off += 8)
6304 emit_move_insn (gen_rtx_MEM (word_mode,
6305 plus_constant (Pmode,
6306 arg_pointer_rtx, off)),
6307 gen_rtx_REG (word_mode, i));
6309 /* The incoming args pointer points just beyond the flushback area;
6310 normally this is not a serious concern. However, when we are doing
6311 varargs/stdargs we want to make the arg pointer point to the start
6312 of the incoming argument area. */
6313 emit_move_insn (virtual_incoming_args_rtx,
6314 plus_constant (Pmode, arg_pointer_rtx, -64));
6316 /* Now return a pointer to the first anonymous argument. */
6317 return copy_to_reg (expand_binop (Pmode, add_optab,
6318 virtual_incoming_args_rtx,
6319 offset, 0, 0, OPTAB_LIB_WIDEN));
6322 /* Store general registers on the stack. */
6323 dest = gen_rtx_MEM (BLKmode,
6324 plus_constant (Pmode, crtl->args.internal_arg_pointer,
6325 -16));
6326 set_mem_alias_set (dest, get_varargs_alias_set ());
6327 set_mem_align (dest, BITS_PER_WORD);
6328 move_block_from_reg (23, dest, 4);
6330 /* move_block_from_reg will emit code to store the argument registers
6331 individually as scalar stores.
6333 However, other insns may later load from the same addresses for
6334 a structure load (passing a struct to a varargs routine).
6336 The alias code assumes that such aliasing can never happen, so we
6337 have to keep memory referencing insns from moving up beyond the
6338 last argument register store. So we emit a blockage insn here. */
6339 emit_insn (gen_blockage ());
6341 return copy_to_reg (expand_binop (Pmode, add_optab,
6342 crtl->args.internal_arg_pointer,
6343 offset, 0, 0, OPTAB_LIB_WIDEN));
6346 static void
6347 hppa_va_start (tree valist, rtx nextarg)
6349 nextarg = expand_builtin_saveregs ();
6350 std_expand_builtin_va_start (valist, nextarg);
6353 static tree
6354 hppa_gimplify_va_arg_expr (tree valist, tree type, gimple_seq *pre_p,
6355 gimple_seq *post_p)
6357 if (TARGET_64BIT)
6359 /* Args grow upward. We can use the generic routines. */
6360 return std_gimplify_va_arg_expr (valist, type, pre_p, post_p);
6362 else /* !TARGET_64BIT */
6364 tree ptr = build_pointer_type (type);
6365 tree valist_type;
6366 tree t, u;
6367 unsigned int size, ofs;
6368 bool indirect;
6370 indirect = pass_va_arg_by_reference (type);
6371 if (indirect)
6373 type = ptr;
6374 ptr = build_pointer_type (type);
6376 size = int_size_in_bytes (type);
6377 valist_type = TREE_TYPE (valist);
6379 /* Args grow down. Not handled by generic routines. */
6381 u = fold_convert (sizetype, size_in_bytes (type));
6382 u = fold_build1 (NEGATE_EXPR, sizetype, u);
6383 t = fold_build_pointer_plus (valist, u);
6385 /* Align to 4 or 8 byte boundary depending on argument size. */
6387 u = build_int_cst (TREE_TYPE (t), (HOST_WIDE_INT)(size > 4 ? -8 : -4));
6388 t = build2 (BIT_AND_EXPR, TREE_TYPE (t), t, u);
6389 t = fold_convert (valist_type, t);
6391 t = build2 (MODIFY_EXPR, valist_type, valist, t);
6393 ofs = (8 - size) % 4;
6394 if (ofs != 0)
6395 t = fold_build_pointer_plus_hwi (t, ofs);
6397 t = fold_convert (ptr, t);
6398 t = build_va_arg_indirect_ref (t);
6400 if (indirect)
6401 t = build_va_arg_indirect_ref (t);
6403 return t;
6407 /* True if MODE is valid for the target. By "valid", we mean able to
6408 be manipulated in non-trivial ways. In particular, this means all
6409 the arithmetic is supported.
6411 Currently, TImode is not valid as the HP 64-bit runtime documentation
6412 doesn't document the alignment and calling conventions for this type.
6413 Thus, we return false when PRECISION is 2 * BITS_PER_WORD and
6414 2 * BITS_PER_WORD isn't equal LONG_LONG_TYPE_SIZE. */
6416 static bool
6417 pa_scalar_mode_supported_p (scalar_mode mode)
6419 int precision = GET_MODE_PRECISION (mode);
6421 switch (GET_MODE_CLASS (mode))
6423 case MODE_PARTIAL_INT:
6424 case MODE_INT:
6425 if (precision == CHAR_TYPE_SIZE)
6426 return true;
6427 if (precision == SHORT_TYPE_SIZE)
6428 return true;
6429 if (precision == INT_TYPE_SIZE)
6430 return true;
6431 if (precision == LONG_TYPE_SIZE)
6432 return true;
6433 if (precision == LONG_LONG_TYPE_SIZE)
6434 return true;
6435 return false;
6437 case MODE_FLOAT:
6438 if (precision == FLOAT_TYPE_SIZE)
6439 return true;
6440 if (precision == DOUBLE_TYPE_SIZE)
6441 return true;
6442 if (precision == LONG_DOUBLE_TYPE_SIZE)
6443 return true;
6444 return false;
6446 case MODE_DECIMAL_FLOAT:
6447 return false;
6449 default:
6450 gcc_unreachable ();
6454 /* Return TRUE if INSN, a jump insn, has an unfilled delay slot and
6455 it branches into the delay slot. Otherwise, return FALSE. */
6457 static bool
6458 branch_to_delay_slot_p (rtx_insn *insn)
6460 rtx_insn *jump_insn;
6462 if (dbr_sequence_length ())
6463 return FALSE;
6465 jump_insn = next_active_insn (JUMP_LABEL_AS_INSN (insn));
6466 while (insn)
6468 insn = next_active_insn (insn);
6469 if (jump_insn == insn)
6470 return TRUE;
6472 /* We can't rely on the length of asms. So, we return FALSE when
6473 the branch is followed by an asm. */
6474 if (!insn
6475 || GET_CODE (PATTERN (insn)) == ASM_INPUT
6476 || asm_noperands (PATTERN (insn)) >= 0
6477 || get_attr_length (insn) > 0)
6478 break;
6481 return FALSE;
6484 /* Return TRUE if INSN, a forward jump insn, needs a nop in its delay slot.
6486 This occurs when INSN has an unfilled delay slot and is followed
6487 by an asm. Disaster can occur if the asm is empty and the jump
6488 branches into the delay slot. So, we add a nop in the delay slot
6489 when this occurs. */
6491 static bool
6492 branch_needs_nop_p (rtx_insn *insn)
6494 rtx_insn *jump_insn;
6496 if (dbr_sequence_length ())
6497 return FALSE;
6499 jump_insn = next_active_insn (JUMP_LABEL_AS_INSN (insn));
6500 while (insn)
6502 insn = next_active_insn (insn);
6503 if (!insn || jump_insn == insn)
6504 return TRUE;
6506 if (!(GET_CODE (PATTERN (insn)) == ASM_INPUT
6507 || asm_noperands (PATTERN (insn)) >= 0)
6508 && get_attr_length (insn) > 0)
6509 break;
6512 return FALSE;
6515 /* Return TRUE if INSN, a forward jump insn, can use nullification
6516 to skip the following instruction. This avoids an extra cycle due
6517 to a mis-predicted branch when we fall through. */
6519 static bool
6520 use_skip_p (rtx_insn *insn)
6522 rtx_insn *jump_insn = next_active_insn (JUMP_LABEL_AS_INSN (insn));
6524 while (insn)
6526 insn = next_active_insn (insn);
6528 /* We can't rely on the length of asms, so we can't skip asms. */
6529 if (!insn
6530 || GET_CODE (PATTERN (insn)) == ASM_INPUT
6531 || asm_noperands (PATTERN (insn)) >= 0)
6532 break;
6533 if (get_attr_length (insn) == 4
6534 && jump_insn == next_active_insn (insn))
6535 return TRUE;
6536 if (get_attr_length (insn) > 0)
6537 break;
6540 return FALSE;
6543 /* This routine handles all the normal conditional branch sequences we
6544 might need to generate. It handles compare immediate vs compare
6545 register, nullification of delay slots, varying length branches,
6546 negated branches, and all combinations of the above. It returns the
6547 output appropriate to emit the branch corresponding to all given
6548 parameters. */
6550 const char *
6551 pa_output_cbranch (rtx *operands, int negated, rtx_insn *insn)
6553 static char buf[100];
6554 bool useskip;
6555 int nullify = INSN_ANNULLED_BRANCH_P (insn);
6556 int length = get_attr_length (insn);
6557 int xdelay;
6559 /* A conditional branch to the following instruction (e.g. the delay slot)
6560 is asking for a disaster. This can happen when not optimizing and
6561 when jump optimization fails.
6563 While it is usually safe to emit nothing, this can fail if the
6564 preceding instruction is a nullified branch with an empty delay
6565 slot and the same branch target as this branch. We could check
6566 for this but jump optimization should eliminate nop jumps. It
6567 is always safe to emit a nop. */
6568 if (branch_to_delay_slot_p (insn))
6569 return "nop";
6571 /* The doubleword form of the cmpib instruction doesn't have the LEU
6572 and GTU conditions while the cmpb instruction does. Since we accept
6573 zero for cmpb, we must ensure that we use cmpb for the comparison. */
6574 if (GET_MODE (operands[1]) == DImode && operands[2] == const0_rtx)
6575 operands[2] = gen_rtx_REG (DImode, 0);
6576 if (GET_MODE (operands[2]) == DImode && operands[1] == const0_rtx)
6577 operands[1] = gen_rtx_REG (DImode, 0);
6579 /* If this is a long branch with its delay slot unfilled, set `nullify'
6580 as it can nullify the delay slot and save a nop. */
6581 if (length == 8 && dbr_sequence_length () == 0)
6582 nullify = 1;
6584 /* If this is a short forward conditional branch which did not get
6585 its delay slot filled, the delay slot can still be nullified. */
6586 if (! nullify && length == 4 && dbr_sequence_length () == 0)
6587 nullify = forward_branch_p (insn);
6589 /* A forward branch over a single nullified insn can be done with a
6590 comclr instruction. This avoids a single cycle penalty due to
6591 mis-predicted branch if we fall through (branch not taken). */
6592 useskip = (length == 4 && nullify) ? use_skip_p (insn) : FALSE;
6594 switch (length)
6596 /* All short conditional branches except backwards with an unfilled
6597 delay slot. */
6598 case 4:
6599 if (useskip)
6600 strcpy (buf, "{com%I2clr,|cmp%I2clr,}");
6601 else
6602 strcpy (buf, "{com%I2b,|cmp%I2b,}");
6603 if (GET_MODE (operands[1]) == DImode)
6604 strcat (buf, "*");
6605 if (negated)
6606 strcat (buf, "%B3");
6607 else
6608 strcat (buf, "%S3");
6609 if (useskip)
6610 strcat (buf, " %2,%r1,%%r0");
6611 else if (nullify)
6613 if (branch_needs_nop_p (insn))
6614 strcat (buf, ",n %2,%r1,%0%#");
6615 else
6616 strcat (buf, ",n %2,%r1,%0");
6618 else
6619 strcat (buf, " %2,%r1,%0");
6620 break;
6622 /* All long conditionals. Note a short backward branch with an
6623 unfilled delay slot is treated just like a long backward branch
6624 with an unfilled delay slot. */
6625 case 8:
6626 /* Handle weird backwards branch with a filled delay slot
6627 which is nullified. */
6628 if (dbr_sequence_length () != 0
6629 && ! forward_branch_p (insn)
6630 && nullify)
6632 strcpy (buf, "{com%I2b,|cmp%I2b,}");
6633 if (GET_MODE (operands[1]) == DImode)
6634 strcat (buf, "*");
6635 if (negated)
6636 strcat (buf, "%S3");
6637 else
6638 strcat (buf, "%B3");
6639 strcat (buf, ",n %2,%r1,.+12\n\tb %0");
6641 /* Handle short backwards branch with an unfilled delay slot.
6642 Using a comb;nop rather than comiclr;bl saves 1 cycle for both
6643 taken and untaken branches. */
6644 else if (dbr_sequence_length () == 0
6645 && ! forward_branch_p (insn)
6646 && INSN_ADDRESSES_SET_P ()
6647 && VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
6648 - INSN_ADDRESSES (INSN_UID (insn)) - 8))
6650 strcpy (buf, "{com%I2b,|cmp%I2b,}");
6651 if (GET_MODE (operands[1]) == DImode)
6652 strcat (buf, "*");
6653 if (negated)
6654 strcat (buf, "%B3 %2,%r1,%0%#");
6655 else
6656 strcat (buf, "%S3 %2,%r1,%0%#");
6658 else
6660 strcpy (buf, "{com%I2clr,|cmp%I2clr,}");
6661 if (GET_MODE (operands[1]) == DImode)
6662 strcat (buf, "*");
6663 if (negated)
6664 strcat (buf, "%S3");
6665 else
6666 strcat (buf, "%B3");
6667 if (nullify)
6668 strcat (buf, " %2,%r1,%%r0\n\tb,n %0");
6669 else
6670 strcat (buf, " %2,%r1,%%r0\n\tb %0");
6672 break;
6674 default:
6675 /* The reversed conditional branch must branch over one additional
6676 instruction if the delay slot is filled and needs to be extracted
6677 by pa_output_lbranch. If the delay slot is empty or this is a
6678 nullified forward branch, the instruction after the reversed
6679 condition branch must be nullified. */
6680 if (dbr_sequence_length () == 0
6681 || (nullify && forward_branch_p (insn)))
6683 nullify = 1;
6684 xdelay = 0;
6685 operands[4] = GEN_INT (length);
6687 else
6689 xdelay = 1;
6690 operands[4] = GEN_INT (length + 4);
6693 /* Create a reversed conditional branch which branches around
6694 the following insns. */
6695 if (GET_MODE (operands[1]) != DImode)
6697 if (nullify)
6699 if (negated)
6700 strcpy (buf,
6701 "{com%I2b,%S3,n %2,%r1,.+%4|cmp%I2b,%S3,n %2,%r1,.+%4}");
6702 else
6703 strcpy (buf,
6704 "{com%I2b,%B3,n %2,%r1,.+%4|cmp%I2b,%B3,n %2,%r1,.+%4}");
6706 else
6708 if (negated)
6709 strcpy (buf,
6710 "{com%I2b,%S3 %2,%r1,.+%4|cmp%I2b,%S3 %2,%r1,.+%4}");
6711 else
6712 strcpy (buf,
6713 "{com%I2b,%B3 %2,%r1,.+%4|cmp%I2b,%B3 %2,%r1,.+%4}");
6716 else
6718 if (nullify)
6720 if (negated)
6721 strcpy (buf,
6722 "{com%I2b,*%S3,n %2,%r1,.+%4|cmp%I2b,*%S3,n %2,%r1,.+%4}");
6723 else
6724 strcpy (buf,
6725 "{com%I2b,*%B3,n %2,%r1,.+%4|cmp%I2b,*%B3,n %2,%r1,.+%4}");
6727 else
6729 if (negated)
6730 strcpy (buf,
6731 "{com%I2b,*%S3 %2,%r1,.+%4|cmp%I2b,*%S3 %2,%r1,.+%4}");
6732 else
6733 strcpy (buf,
6734 "{com%I2b,*%B3 %2,%r1,.+%4|cmp%I2b,*%B3 %2,%r1,.+%4}");
6738 output_asm_insn (buf, operands);
6739 return pa_output_lbranch (operands[0], insn, xdelay);
6741 return buf;
6744 /* Output a PIC pc-relative instruction sequence to load the address of
6745 OPERANDS[0] to register OPERANDS[2]. OPERANDS[0] is a symbol ref
6746 or a code label. OPERANDS[1] specifies the register to use to load
6747 the program counter. OPERANDS[3] may be used for label generation
6748 The sequence is always three instructions in length. The program
6749 counter recorded for PA 1.X is eight bytes more than that for PA 2.0.
6750 Register %r1 is clobbered. */
6752 static void
6753 pa_output_pic_pcrel_sequence (rtx *operands)
6755 gcc_assert (SYMBOL_REF_P (operands[0]) || LABEL_P (operands[0]));
6756 if (TARGET_PA_20)
6758 /* We can use mfia to determine the current program counter. */
6759 if (TARGET_SOM || !TARGET_GAS)
6761 operands[3] = gen_label_rtx ();
6762 targetm.asm_out.internal_label (asm_out_file, "L",
6763 CODE_LABEL_NUMBER (operands[3]));
6764 output_asm_insn ("mfia %1", operands);
6765 output_asm_insn ("addil L'%0-%l3,%1", operands);
6766 output_asm_insn ("ldo R'%0-%l3(%%r1),%2", operands);
6768 else
6770 output_asm_insn ("mfia %1", operands);
6771 output_asm_insn ("addil L'%0-$PIC_pcrel$0+12,%1", operands);
6772 output_asm_insn ("ldo R'%0-$PIC_pcrel$0+16(%%r1),%2", operands);
6775 else
6777 /* We need to use a branch to determine the current program counter. */
6778 output_asm_insn ("{bl|b,l} .+8,%1", operands);
6779 if (TARGET_SOM || !TARGET_GAS)
6781 operands[3] = gen_label_rtx ();
6782 output_asm_insn ("addil L'%0-%l3,%1", operands);
6783 targetm.asm_out.internal_label (asm_out_file, "L",
6784 CODE_LABEL_NUMBER (operands[3]));
6785 output_asm_insn ("ldo R'%0-%l3(%%r1),%2", operands);
6787 else
6789 output_asm_insn ("addil L'%0-$PIC_pcrel$0+4,%1", operands);
6790 output_asm_insn ("ldo R'%0-$PIC_pcrel$0+8(%%r1),%2", operands);
6795 /* This routine handles output of long unconditional branches that
6796 exceed the maximum range of a simple branch instruction. Since
6797 we don't have a register available for the branch, we save register
6798 %r1 in the frame marker, load the branch destination DEST into %r1,
6799 execute the branch, and restore %r1 in the delay slot of the branch.
6801 Since long branches may have an insn in the delay slot and the
6802 delay slot is used to restore %r1, we in general need to extract
6803 this insn and execute it before the branch. However, to facilitate
6804 use of this function by conditional branches, we also provide an
6805 option to not extract the delay insn so that it will be emitted
6806 after the long branch. So, if there is an insn in the delay slot,
6807 it is extracted if XDELAY is nonzero.
6809 The lengths of the various long-branch sequences are 20, 16 and 24
6810 bytes for the portable runtime, non-PIC and PIC cases, respectively. */
6812 const char *
6813 pa_output_lbranch (rtx dest, rtx_insn *insn, int xdelay)
6815 rtx xoperands[4];
6817 xoperands[0] = dest;
6819 /* First, free up the delay slot. */
6820 if (xdelay && dbr_sequence_length () != 0)
6822 /* We can't handle a jump in the delay slot. */
6823 gcc_assert (! JUMP_P (NEXT_INSN (insn)));
6825 final_scan_insn (NEXT_INSN (insn), asm_out_file,
6826 optimize, 0, NULL);
6828 /* Now delete the delay insn. */
6829 SET_INSN_DELETED (NEXT_INSN (insn));
6832 /* Output an insn to save %r1. The runtime documentation doesn't
6833 specify whether the "Clean Up" slot in the callers frame can
6834 be clobbered by the callee. It isn't copied by HP's builtin
6835 alloca, so this suggests that it can be clobbered if necessary.
6836 The "Static Link" location is copied by HP builtin alloca, so
6837 we avoid using it. Using the cleanup slot might be a problem
6838 if we have to interoperate with languages that pass cleanup
6839 information. However, it should be possible to handle these
6840 situations with GCC's asm feature.
6842 The "Current RP" slot is reserved for the called procedure, so
6843 we try to use it when we don't have a frame of our own. It's
6844 rather unlikely that we won't have a frame when we need to emit
6845 a very long branch.
6847 Really the way to go long term is a register scavenger; goto
6848 the target of the jump and find a register which we can use
6849 as a scratch to hold the value in %r1. Then, we wouldn't have
6850 to free up the delay slot or clobber a slot that may be needed
6851 for other purposes. */
6852 if (TARGET_64BIT)
6854 if (actual_fsize == 0 && !df_regs_ever_live_p (2))
6855 /* Use the return pointer slot in the frame marker. */
6856 output_asm_insn ("std %%r1,-16(%%r30)", xoperands);
6857 else
6858 /* Use the slot at -40 in the frame marker since HP builtin
6859 alloca doesn't copy it. */
6860 output_asm_insn ("std %%r1,-40(%%r30)", xoperands);
6862 else
6864 if (actual_fsize == 0 && !df_regs_ever_live_p (2))
6865 /* Use the return pointer slot in the frame marker. */
6866 output_asm_insn ("stw %%r1,-20(%%r30)", xoperands);
6867 else
6868 /* Use the "Clean Up" slot in the frame marker. In GCC,
6869 the only other use of this location is for copying a
6870 floating point double argument from a floating-point
6871 register to two general registers. The copy is done
6872 as an "atomic" operation when outputting a call, so it
6873 won't interfere with our using the location here. */
6874 output_asm_insn ("stw %%r1,-12(%%r30)", xoperands);
6877 if (TARGET_PORTABLE_RUNTIME)
6879 output_asm_insn ("ldil L'%0,%%r1", xoperands);
6880 output_asm_insn ("ldo R'%0(%%r1),%%r1", xoperands);
6881 output_asm_insn ("bv %%r0(%%r1)", xoperands);
6883 else if (flag_pic)
6885 xoperands[1] = gen_rtx_REG (Pmode, 1);
6886 xoperands[2] = xoperands[1];
6887 pa_output_pic_pcrel_sequence (xoperands);
6888 output_asm_insn ("bv %%r0(%%r1)", xoperands);
6890 else
6891 /* Now output a very long branch to the original target. */
6892 output_asm_insn ("ldil L'%l0,%%r1\n\tbe R'%l0(%%sr4,%%r1)", xoperands);
6894 /* Now restore the value of %r1 in the delay slot. */
6895 if (TARGET_64BIT)
6897 if (actual_fsize == 0 && !df_regs_ever_live_p (2))
6898 return "ldd -16(%%r30),%%r1";
6899 else
6900 return "ldd -40(%%r30),%%r1";
6902 else
6904 if (actual_fsize == 0 && !df_regs_ever_live_p (2))
6905 return "ldw -20(%%r30),%%r1";
6906 else
6907 return "ldw -12(%%r30),%%r1";
6911 /* This routine handles all the branch-on-bit conditional branch sequences we
6912 might need to generate. It handles nullification of delay slots,
6913 varying length branches, negated branches and all combinations of the
6914 above. it returns the appropriate output template to emit the branch. */
6916 const char *
6917 pa_output_bb (rtx *operands ATTRIBUTE_UNUSED, int negated, rtx_insn *insn, int which)
6919 static char buf[100];
6920 bool useskip;
6921 int nullify = INSN_ANNULLED_BRANCH_P (insn);
6922 int length = get_attr_length (insn);
6923 int xdelay;
6925 /* A conditional branch to the following instruction (e.g. the delay slot) is
6926 asking for a disaster. I do not think this can happen as this pattern
6927 is only used when optimizing; jump optimization should eliminate the
6928 jump. But be prepared just in case. */
6930 if (branch_to_delay_slot_p (insn))
6931 return "nop";
6933 /* If this is a long branch with its delay slot unfilled, set `nullify'
6934 as it can nullify the delay slot and save a nop. */
6935 if (length == 8 && dbr_sequence_length () == 0)
6936 nullify = 1;
6938 /* If this is a short forward conditional branch which did not get
6939 its delay slot filled, the delay slot can still be nullified. */
6940 if (! nullify && length == 4 && dbr_sequence_length () == 0)
6941 nullify = forward_branch_p (insn);
6943 /* A forward branch over a single nullified insn can be done with a
6944 extrs instruction. This avoids a single cycle penalty due to
6945 mis-predicted branch if we fall through (branch not taken). */
6946 useskip = (length == 4 && nullify) ? use_skip_p (insn) : FALSE;
6948 switch (length)
6951 /* All short conditional branches except backwards with an unfilled
6952 delay slot. */
6953 case 4:
6954 if (useskip)
6955 strcpy (buf, "{extrs,|extrw,s,}");
6956 else
6957 strcpy (buf, "bb,");
6958 if (useskip && GET_MODE (operands[0]) == DImode)
6959 strcpy (buf, "extrd,s,*");
6960 else if (GET_MODE (operands[0]) == DImode)
6961 strcpy (buf, "bb,*");
6962 if ((which == 0 && negated)
6963 || (which == 1 && ! negated))
6964 strcat (buf, ">=");
6965 else
6966 strcat (buf, "<");
6967 if (useskip)
6968 strcat (buf, " %0,%1,1,%%r0");
6969 else if (nullify && negated)
6971 if (branch_needs_nop_p (insn))
6972 strcat (buf, ",n %0,%1,%3%#");
6973 else
6974 strcat (buf, ",n %0,%1,%3");
6976 else if (nullify && ! negated)
6978 if (branch_needs_nop_p (insn))
6979 strcat (buf, ",n %0,%1,%2%#");
6980 else
6981 strcat (buf, ",n %0,%1,%2");
6983 else if (! nullify && negated)
6984 strcat (buf, " %0,%1,%3");
6985 else if (! nullify && ! negated)
6986 strcat (buf, " %0,%1,%2");
6987 break;
6989 /* All long conditionals. Note a short backward branch with an
6990 unfilled delay slot is treated just like a long backward branch
6991 with an unfilled delay slot. */
6992 case 8:
6993 /* Handle weird backwards branch with a filled delay slot
6994 which is nullified. */
6995 if (dbr_sequence_length () != 0
6996 && ! forward_branch_p (insn)
6997 && nullify)
6999 strcpy (buf, "bb,");
7000 if (GET_MODE (operands[0]) == DImode)
7001 strcat (buf, "*");
7002 if ((which == 0 && negated)
7003 || (which == 1 && ! negated))
7004 strcat (buf, "<");
7005 else
7006 strcat (buf, ">=");
7007 if (negated)
7008 strcat (buf, ",n %0,%1,.+12\n\tb %3");
7009 else
7010 strcat (buf, ",n %0,%1,.+12\n\tb %2");
7012 /* Handle short backwards branch with an unfilled delay slot.
7013 Using a bb;nop rather than extrs;bl saves 1 cycle for both
7014 taken and untaken branches. */
7015 else if (dbr_sequence_length () == 0
7016 && ! forward_branch_p (insn)
7017 && INSN_ADDRESSES_SET_P ()
7018 && VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
7019 - INSN_ADDRESSES (INSN_UID (insn)) - 8))
7021 strcpy (buf, "bb,");
7022 if (GET_MODE (operands[0]) == DImode)
7023 strcat (buf, "*");
7024 if ((which == 0 && negated)
7025 || (which == 1 && ! negated))
7026 strcat (buf, ">=");
7027 else
7028 strcat (buf, "<");
7029 if (negated)
7030 strcat (buf, " %0,%1,%3%#");
7031 else
7032 strcat (buf, " %0,%1,%2%#");
7034 else
7036 if (GET_MODE (operands[0]) == DImode)
7037 strcpy (buf, "extrd,s,*");
7038 else
7039 strcpy (buf, "{extrs,|extrw,s,}");
7040 if ((which == 0 && negated)
7041 || (which == 1 && ! negated))
7042 strcat (buf, "<");
7043 else
7044 strcat (buf, ">=");
7045 if (nullify && negated)
7046 strcat (buf, " %0,%1,1,%%r0\n\tb,n %3");
7047 else if (nullify && ! negated)
7048 strcat (buf, " %0,%1,1,%%r0\n\tb,n %2");
7049 else if (negated)
7050 strcat (buf, " %0,%1,1,%%r0\n\tb %3");
7051 else
7052 strcat (buf, " %0,%1,1,%%r0\n\tb %2");
7054 break;
7056 default:
7057 /* The reversed conditional branch must branch over one additional
7058 instruction if the delay slot is filled and needs to be extracted
7059 by pa_output_lbranch. If the delay slot is empty or this is a
7060 nullified forward branch, the instruction after the reversed
7061 condition branch must be nullified. */
7062 if (dbr_sequence_length () == 0
7063 || (nullify && forward_branch_p (insn)))
7065 nullify = 1;
7066 xdelay = 0;
7067 operands[4] = GEN_INT (length);
7069 else
7071 xdelay = 1;
7072 operands[4] = GEN_INT (length + 4);
7075 if (GET_MODE (operands[0]) == DImode)
7076 strcpy (buf, "bb,*");
7077 else
7078 strcpy (buf, "bb,");
7079 if ((which == 0 && negated)
7080 || (which == 1 && !negated))
7081 strcat (buf, "<");
7082 else
7083 strcat (buf, ">=");
7084 if (nullify)
7085 strcat (buf, ",n %0,%1,.+%4");
7086 else
7087 strcat (buf, " %0,%1,.+%4");
7088 output_asm_insn (buf, operands);
7089 return pa_output_lbranch (negated ? operands[3] : operands[2],
7090 insn, xdelay);
7092 return buf;
7095 /* This routine handles all the branch-on-variable-bit conditional branch
7096 sequences we might need to generate. It handles nullification of delay
7097 slots, varying length branches, negated branches and all combinations
7098 of the above. it returns the appropriate output template to emit the
7099 branch. */
7101 const char *
7102 pa_output_bvb (rtx *operands ATTRIBUTE_UNUSED, int negated, rtx_insn *insn,
7103 int which)
7105 static char buf[100];
7106 bool useskip;
7107 int nullify = INSN_ANNULLED_BRANCH_P (insn);
7108 int length = get_attr_length (insn);
7109 int xdelay;
7111 /* A conditional branch to the following instruction (e.g. the delay slot) is
7112 asking for a disaster. I do not think this can happen as this pattern
7113 is only used when optimizing; jump optimization should eliminate the
7114 jump. But be prepared just in case. */
7116 if (branch_to_delay_slot_p (insn))
7117 return "nop";
7119 /* If this is a long branch with its delay slot unfilled, set `nullify'
7120 as it can nullify the delay slot and save a nop. */
7121 if (length == 8 && dbr_sequence_length () == 0)
7122 nullify = 1;
7124 /* If this is a short forward conditional branch which did not get
7125 its delay slot filled, the delay slot can still be nullified. */
7126 if (! nullify && length == 4 && dbr_sequence_length () == 0)
7127 nullify = forward_branch_p (insn);
7129 /* A forward branch over a single nullified insn can be done with a
7130 extrs instruction. This avoids a single cycle penalty due to
7131 mis-predicted branch if we fall through (branch not taken). */
7132 useskip = (length == 4 && nullify) ? use_skip_p (insn) : FALSE;
7134 switch (length)
7137 /* All short conditional branches except backwards with an unfilled
7138 delay slot. */
7139 case 4:
7140 if (useskip)
7141 strcpy (buf, "{vextrs,|extrw,s,}");
7142 else
7143 strcpy (buf, "{bvb,|bb,}");
7144 if (useskip && GET_MODE (operands[0]) == DImode)
7145 strcpy (buf, "extrd,s,*");
7146 else if (GET_MODE (operands[0]) == DImode)
7147 strcpy (buf, "bb,*");
7148 if ((which == 0 && negated)
7149 || (which == 1 && ! negated))
7150 strcat (buf, ">=");
7151 else
7152 strcat (buf, "<");
7153 if (useskip)
7154 strcat (buf, "{ %0,1,%%r0| %0,%%sar,1,%%r0}");
7155 else if (nullify && negated)
7157 if (branch_needs_nop_p (insn))
7158 strcat (buf, "{,n %0,%3%#|,n %0,%%sar,%3%#}");
7159 else
7160 strcat (buf, "{,n %0,%3|,n %0,%%sar,%3}");
7162 else if (nullify && ! negated)
7164 if (branch_needs_nop_p (insn))
7165 strcat (buf, "{,n %0,%2%#|,n %0,%%sar,%2%#}");
7166 else
7167 strcat (buf, "{,n %0,%2|,n %0,%%sar,%2}");
7169 else if (! nullify && negated)
7170 strcat (buf, "{ %0,%3| %0,%%sar,%3}");
7171 else if (! nullify && ! negated)
7172 strcat (buf, "{ %0,%2| %0,%%sar,%2}");
7173 break;
7175 /* All long conditionals. Note a short backward branch with an
7176 unfilled delay slot is treated just like a long backward branch
7177 with an unfilled delay slot. */
7178 case 8:
7179 /* Handle weird backwards branch with a filled delay slot
7180 which is nullified. */
7181 if (dbr_sequence_length () != 0
7182 && ! forward_branch_p (insn)
7183 && nullify)
7185 strcpy (buf, "{bvb,|bb,}");
7186 if (GET_MODE (operands[0]) == DImode)
7187 strcat (buf, "*");
7188 if ((which == 0 && negated)
7189 || (which == 1 && ! negated))
7190 strcat (buf, "<");
7191 else
7192 strcat (buf, ">=");
7193 if (negated)
7194 strcat (buf, "{,n %0,.+12\n\tb %3|,n %0,%%sar,.+12\n\tb %3}");
7195 else
7196 strcat (buf, "{,n %0,.+12\n\tb %2|,n %0,%%sar,.+12\n\tb %2}");
7198 /* Handle short backwards branch with an unfilled delay slot.
7199 Using a bb;nop rather than extrs;bl saves 1 cycle for both
7200 taken and untaken branches. */
7201 else if (dbr_sequence_length () == 0
7202 && ! forward_branch_p (insn)
7203 && INSN_ADDRESSES_SET_P ()
7204 && VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
7205 - INSN_ADDRESSES (INSN_UID (insn)) - 8))
7207 strcpy (buf, "{bvb,|bb,}");
7208 if (GET_MODE (operands[0]) == DImode)
7209 strcat (buf, "*");
7210 if ((which == 0 && negated)
7211 || (which == 1 && ! negated))
7212 strcat (buf, ">=");
7213 else
7214 strcat (buf, "<");
7215 if (negated)
7216 strcat (buf, "{ %0,%3%#| %0,%%sar,%3%#}");
7217 else
7218 strcat (buf, "{ %0,%2%#| %0,%%sar,%2%#}");
7220 else
7222 strcpy (buf, "{vextrs,|extrw,s,}");
7223 if (GET_MODE (operands[0]) == DImode)
7224 strcpy (buf, "extrd,s,*");
7225 if ((which == 0 && negated)
7226 || (which == 1 && ! negated))
7227 strcat (buf, "<");
7228 else
7229 strcat (buf, ">=");
7230 if (nullify && negated)
7231 strcat (buf, "{ %0,1,%%r0\n\tb,n %3| %0,%%sar,1,%%r0\n\tb,n %3}");
7232 else if (nullify && ! negated)
7233 strcat (buf, "{ %0,1,%%r0\n\tb,n %2| %0,%%sar,1,%%r0\n\tb,n %2}");
7234 else if (negated)
7235 strcat (buf, "{ %0,1,%%r0\n\tb %3| %0,%%sar,1,%%r0\n\tb %3}");
7236 else
7237 strcat (buf, "{ %0,1,%%r0\n\tb %2| %0,%%sar,1,%%r0\n\tb %2}");
7239 break;
7241 default:
7242 /* The reversed conditional branch must branch over one additional
7243 instruction if the delay slot is filled and needs to be extracted
7244 by pa_output_lbranch. If the delay slot is empty or this is a
7245 nullified forward branch, the instruction after the reversed
7246 condition branch must be nullified. */
7247 if (dbr_sequence_length () == 0
7248 || (nullify && forward_branch_p (insn)))
7250 nullify = 1;
7251 xdelay = 0;
7252 operands[4] = GEN_INT (length);
7254 else
7256 xdelay = 1;
7257 operands[4] = GEN_INT (length + 4);
7260 if (GET_MODE (operands[0]) == DImode)
7261 strcpy (buf, "bb,*");
7262 else
7263 strcpy (buf, "{bvb,|bb,}");
7264 if ((which == 0 && negated)
7265 || (which == 1 && !negated))
7266 strcat (buf, "<");
7267 else
7268 strcat (buf, ">=");
7269 if (nullify)
7270 strcat (buf, ",n {%0,.+%4|%0,%%sar,.+%4}");
7271 else
7272 strcat (buf, " {%0,.+%4|%0,%%sar,.+%4}");
7273 output_asm_insn (buf, operands);
7274 return pa_output_lbranch (negated ? operands[3] : operands[2],
7275 insn, xdelay);
7277 return buf;
7280 /* Return the output template for emitting a dbra type insn.
7282 Note it may perform some output operations on its own before
7283 returning the final output string. */
7284 const char *
7285 pa_output_dbra (rtx *operands, rtx_insn *insn, int which_alternative)
7287 int length = get_attr_length (insn);
7289 /* A conditional branch to the following instruction (e.g. the delay slot) is
7290 asking for a disaster. Be prepared! */
7292 if (branch_to_delay_slot_p (insn))
7294 if (which_alternative == 0)
7295 return "ldo %1(%0),%0";
7296 else if (which_alternative == 1)
7298 output_asm_insn ("{fstws|fstw} %0,-16(%%r30)", operands);
7299 output_asm_insn ("ldw -16(%%r30),%4", operands);
7300 output_asm_insn ("ldo %1(%4),%4\n\tstw %4,-16(%%r30)", operands);
7301 return "{fldws|fldw} -16(%%r30),%0";
7303 else
7305 output_asm_insn ("ldw %0,%4", operands);
7306 return "ldo %1(%4),%4\n\tstw %4,%0";
7310 if (which_alternative == 0)
7312 int nullify = INSN_ANNULLED_BRANCH_P (insn);
7313 int xdelay;
7315 /* If this is a long branch with its delay slot unfilled, set `nullify'
7316 as it can nullify the delay slot and save a nop. */
7317 if (length == 8 && dbr_sequence_length () == 0)
7318 nullify = 1;
7320 /* If this is a short forward conditional branch which did not get
7321 its delay slot filled, the delay slot can still be nullified. */
7322 if (! nullify && length == 4 && dbr_sequence_length () == 0)
7323 nullify = forward_branch_p (insn);
7325 switch (length)
7327 case 4:
7328 if (nullify)
7330 if (branch_needs_nop_p (insn))
7331 return "addib,%C2,n %1,%0,%3%#";
7332 else
7333 return "addib,%C2,n %1,%0,%3";
7335 else
7336 return "addib,%C2 %1,%0,%3";
7338 case 8:
7339 /* Handle weird backwards branch with a fulled delay slot
7340 which is nullified. */
7341 if (dbr_sequence_length () != 0
7342 && ! forward_branch_p (insn)
7343 && nullify)
7344 return "addib,%N2,n %1,%0,.+12\n\tb %3";
7345 /* Handle short backwards branch with an unfilled delay slot.
7346 Using a addb;nop rather than addi;bl saves 1 cycle for both
7347 taken and untaken branches. */
7348 else if (dbr_sequence_length () == 0
7349 && ! forward_branch_p (insn)
7350 && INSN_ADDRESSES_SET_P ()
7351 && VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
7352 - INSN_ADDRESSES (INSN_UID (insn)) - 8))
7353 return "addib,%C2 %1,%0,%3%#";
7355 /* Handle normal cases. */
7356 if (nullify)
7357 return "addi,%N2 %1,%0,%0\n\tb,n %3";
7358 else
7359 return "addi,%N2 %1,%0,%0\n\tb %3";
7361 default:
7362 /* The reversed conditional branch must branch over one additional
7363 instruction if the delay slot is filled and needs to be extracted
7364 by pa_output_lbranch. If the delay slot is empty or this is a
7365 nullified forward branch, the instruction after the reversed
7366 condition branch must be nullified. */
7367 if (dbr_sequence_length () == 0
7368 || (nullify && forward_branch_p (insn)))
7370 nullify = 1;
7371 xdelay = 0;
7372 operands[4] = GEN_INT (length);
7374 else
7376 xdelay = 1;
7377 operands[4] = GEN_INT (length + 4);
7380 if (nullify)
7381 output_asm_insn ("addib,%N2,n %1,%0,.+%4", operands);
7382 else
7383 output_asm_insn ("addib,%N2 %1,%0,.+%4", operands);
7385 return pa_output_lbranch (operands[3], insn, xdelay);
7389 /* Deal with gross reload from FP register case. */
7390 else if (which_alternative == 1)
7392 /* Move loop counter from FP register to MEM then into a GR,
7393 increment the GR, store the GR into MEM, and finally reload
7394 the FP register from MEM from within the branch's delay slot. */
7395 output_asm_insn ("{fstws|fstw} %0,-16(%%r30)\n\tldw -16(%%r30),%4",
7396 operands);
7397 output_asm_insn ("ldo %1(%4),%4\n\tstw %4,-16(%%r30)", operands);
7398 if (length == 24)
7399 return "{comb|cmpb},%S2 %%r0,%4,%3\n\t{fldws|fldw} -16(%%r30),%0";
7400 else if (length == 28)
7401 return "{comclr|cmpclr},%B2 %%r0,%4,%%r0\n\tb %3\n\t{fldws|fldw} -16(%%r30),%0";
7402 else
7404 operands[5] = GEN_INT (length - 16);
7405 output_asm_insn ("{comb|cmpb},%B2 %%r0,%4,.+%5", operands);
7406 output_asm_insn ("{fldws|fldw} -16(%%r30),%0", operands);
7407 return pa_output_lbranch (operands[3], insn, 0);
7410 /* Deal with gross reload from memory case. */
7411 else
7413 /* Reload loop counter from memory, the store back to memory
7414 happens in the branch's delay slot. */
7415 output_asm_insn ("ldw %0,%4", operands);
7416 if (length == 12)
7417 return "addib,%C2 %1,%4,%3\n\tstw %4,%0";
7418 else if (length == 16)
7419 return "addi,%N2 %1,%4,%4\n\tb %3\n\tstw %4,%0";
7420 else
7422 operands[5] = GEN_INT (length - 4);
7423 output_asm_insn ("addib,%N2 %1,%4,.+%5\n\tstw %4,%0", operands);
7424 return pa_output_lbranch (operands[3], insn, 0);
7429 /* Return the output template for emitting a movb type insn.
7431 Note it may perform some output operations on its own before
7432 returning the final output string. */
7433 const char *
7434 pa_output_movb (rtx *operands, rtx_insn *insn, int which_alternative,
7435 int reverse_comparison)
7437 int length = get_attr_length (insn);
7439 /* A conditional branch to the following instruction (e.g. the delay slot) is
7440 asking for a disaster. Be prepared! */
7442 if (branch_to_delay_slot_p (insn))
7444 if (which_alternative == 0)
7445 return "copy %1,%0";
7446 else if (which_alternative == 1)
7448 output_asm_insn ("stw %1,-16(%%r30)", operands);
7449 return "{fldws|fldw} -16(%%r30),%0";
7451 else if (which_alternative == 2)
7452 return "stw %1,%0";
7453 else
7454 return "mtsar %r1";
7457 /* Support the second variant. */
7458 if (reverse_comparison)
7459 PUT_CODE (operands[2], reverse_condition (GET_CODE (operands[2])));
7461 if (which_alternative == 0)
7463 int nullify = INSN_ANNULLED_BRANCH_P (insn);
7464 int xdelay;
7466 /* If this is a long branch with its delay slot unfilled, set `nullify'
7467 as it can nullify the delay slot and save a nop. */
7468 if (length == 8 && dbr_sequence_length () == 0)
7469 nullify = 1;
7471 /* If this is a short forward conditional branch which did not get
7472 its delay slot filled, the delay slot can still be nullified. */
7473 if (! nullify && length == 4 && dbr_sequence_length () == 0)
7474 nullify = forward_branch_p (insn);
7476 switch (length)
7478 case 4:
7479 if (nullify)
7481 if (branch_needs_nop_p (insn))
7482 return "movb,%C2,n %1,%0,%3%#";
7483 else
7484 return "movb,%C2,n %1,%0,%3";
7486 else
7487 return "movb,%C2 %1,%0,%3";
7489 case 8:
7490 /* Handle weird backwards branch with a filled delay slot
7491 which is nullified. */
7492 if (dbr_sequence_length () != 0
7493 && ! forward_branch_p (insn)
7494 && nullify)
7495 return "movb,%N2,n %1,%0,.+12\n\tb %3";
7497 /* Handle short backwards branch with an unfilled delay slot.
7498 Using a movb;nop rather than or;bl saves 1 cycle for both
7499 taken and untaken branches. */
7500 else if (dbr_sequence_length () == 0
7501 && ! forward_branch_p (insn)
7502 && INSN_ADDRESSES_SET_P ()
7503 && VAL_14_BITS_P (INSN_ADDRESSES (INSN_UID (JUMP_LABEL (insn)))
7504 - INSN_ADDRESSES (INSN_UID (insn)) - 8))
7505 return "movb,%C2 %1,%0,%3%#";
7506 /* Handle normal cases. */
7507 if (nullify)
7508 return "or,%N2 %1,%%r0,%0\n\tb,n %3";
7509 else
7510 return "or,%N2 %1,%%r0,%0\n\tb %3";
7512 default:
7513 /* The reversed conditional branch must branch over one additional
7514 instruction if the delay slot is filled and needs to be extracted
7515 by pa_output_lbranch. If the delay slot is empty or this is a
7516 nullified forward branch, the instruction after the reversed
7517 condition branch must be nullified. */
7518 if (dbr_sequence_length () == 0
7519 || (nullify && forward_branch_p (insn)))
7521 nullify = 1;
7522 xdelay = 0;
7523 operands[4] = GEN_INT (length);
7525 else
7527 xdelay = 1;
7528 operands[4] = GEN_INT (length + 4);
7531 if (nullify)
7532 output_asm_insn ("movb,%N2,n %1,%0,.+%4", operands);
7533 else
7534 output_asm_insn ("movb,%N2 %1,%0,.+%4", operands);
7536 return pa_output_lbranch (operands[3], insn, xdelay);
7539 /* Deal with gross reload for FP destination register case. */
7540 else if (which_alternative == 1)
7542 /* Move source register to MEM, perform the branch test, then
7543 finally load the FP register from MEM from within the branch's
7544 delay slot. */
7545 output_asm_insn ("stw %1,-16(%%r30)", operands);
7546 if (length == 12)
7547 return "{comb|cmpb},%S2 %%r0,%1,%3\n\t{fldws|fldw} -16(%%r30),%0";
7548 else if (length == 16)
7549 return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tb %3\n\t{fldws|fldw} -16(%%r30),%0";
7550 else
7552 operands[4] = GEN_INT (length - 4);
7553 output_asm_insn ("{comb|cmpb},%B2 %%r0,%1,.+%4", operands);
7554 output_asm_insn ("{fldws|fldw} -16(%%r30),%0", operands);
7555 return pa_output_lbranch (operands[3], insn, 0);
7558 /* Deal with gross reload from memory case. */
7559 else if (which_alternative == 2)
7561 /* Reload loop counter from memory, the store back to memory
7562 happens in the branch's delay slot. */
7563 if (length == 8)
7564 return "{comb|cmpb},%S2 %%r0,%1,%3\n\tstw %1,%0";
7565 else if (length == 12)
7566 return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tb %3\n\tstw %1,%0";
7567 else
7569 operands[4] = GEN_INT (length);
7570 output_asm_insn ("{comb|cmpb},%B2 %%r0,%1,.+%4\n\tstw %1,%0",
7571 operands);
7572 return pa_output_lbranch (operands[3], insn, 0);
7575 /* Handle SAR as a destination. */
7576 else
7578 if (length == 8)
7579 return "{comb|cmpb},%S2 %%r0,%1,%3\n\tmtsar %r1";
7580 else if (length == 12)
7581 return "{comclr|cmpclr},%B2 %%r0,%1,%%r0\n\tb %3\n\tmtsar %r1";
7582 else
7584 operands[4] = GEN_INT (length);
7585 output_asm_insn ("{comb|cmpb},%B2 %%r0,%1,.+%4\n\tmtsar %r1",
7586 operands);
7587 return pa_output_lbranch (operands[3], insn, 0);
7592 /* Copy any FP arguments in INSN into integer registers. */
7593 static void
7594 copy_fp_args (rtx_insn *insn)
7596 rtx link;
7597 rtx xoperands[2];
7599 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
7601 int arg_mode, regno;
7602 rtx use = XEXP (link, 0);
7604 if (! (GET_CODE (use) == USE
7605 && GET_CODE (XEXP (use, 0)) == REG
7606 && FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0)))))
7607 continue;
7609 arg_mode = GET_MODE (XEXP (use, 0));
7610 regno = REGNO (XEXP (use, 0));
7612 /* Is it a floating point register? */
7613 if (regno >= 32 && regno <= 39)
7615 /* Copy the FP register into an integer register via memory. */
7616 if (arg_mode == SFmode)
7618 xoperands[0] = XEXP (use, 0);
7619 xoperands[1] = gen_rtx_REG (SImode, 26 - (regno - 32) / 2);
7620 output_asm_insn ("{fstws|fstw} %0,-16(%%sr0,%%r30)", xoperands);
7621 output_asm_insn ("ldw -16(%%sr0,%%r30),%1", xoperands);
7623 else
7625 xoperands[0] = XEXP (use, 0);
7626 xoperands[1] = gen_rtx_REG (DImode, 25 - (regno - 34) / 2);
7627 output_asm_insn ("{fstds|fstd} %0,-16(%%sr0,%%r30)", xoperands);
7628 output_asm_insn ("ldw -12(%%sr0,%%r30),%R1", xoperands);
7629 output_asm_insn ("ldw -16(%%sr0,%%r30),%1", xoperands);
7635 /* Compute length of the FP argument copy sequence for INSN. */
7636 static int
7637 length_fp_args (rtx_insn *insn)
7639 int length = 0;
7640 rtx link;
7642 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
7644 int arg_mode, regno;
7645 rtx use = XEXP (link, 0);
7647 if (! (GET_CODE (use) == USE
7648 && GET_CODE (XEXP (use, 0)) == REG
7649 && FUNCTION_ARG_REGNO_P (REGNO (XEXP (use, 0)))))
7650 continue;
7652 arg_mode = GET_MODE (XEXP (use, 0));
7653 regno = REGNO (XEXP (use, 0));
7655 /* Is it a floating point register? */
7656 if (regno >= 32 && regno <= 39)
7658 if (arg_mode == SFmode)
7659 length += 8;
7660 else
7661 length += 12;
7665 return length;
7668 /* Return the attribute length for the millicode call instruction INSN.
7669 The length must match the code generated by pa_output_millicode_call.
7670 We include the delay slot in the returned length as it is better to
7671 over estimate the length than to under estimate it. */
7674 pa_attr_length_millicode_call (rtx_insn *insn)
7676 unsigned long distance = -1;
7677 unsigned long total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes;
7679 if (INSN_ADDRESSES_SET_P ())
7681 distance = (total + insn_current_reference_address (insn));
7682 if (distance < total)
7683 distance = -1;
7686 if (TARGET_64BIT)
7688 if (!TARGET_LONG_CALLS && distance < 7600000)
7689 return 8;
7691 return 20;
7693 else if (TARGET_PORTABLE_RUNTIME)
7694 return 24;
7695 else
7697 if (!TARGET_LONG_CALLS && distance < MAX_PCREL17F_OFFSET)
7698 return 8;
7700 if (!flag_pic)
7701 return 12;
7703 return 24;
7707 /* INSN is a function call.
7709 CALL_DEST is the routine we are calling. */
7711 const char *
7712 pa_output_millicode_call (rtx_insn *insn, rtx call_dest)
7714 int attr_length = get_attr_length (insn);
7715 int seq_length = dbr_sequence_length ();
7716 rtx xoperands[4];
7718 xoperands[0] = call_dest;
7720 /* Handle the common case where we are sure that the branch will
7721 reach the beginning of the $CODE$ subspace. The within reach
7722 form of the $$sh_func_adrs call has a length of 28. Because it
7723 has an attribute type of sh_func_adrs, it never has a nonzero
7724 sequence length (i.e., the delay slot is never filled). */
7725 if (!TARGET_LONG_CALLS
7726 && (attr_length == 8
7727 || (attr_length == 28
7728 && get_attr_type (insn) == TYPE_SH_FUNC_ADRS)))
7730 xoperands[1] = gen_rtx_REG (Pmode, TARGET_64BIT ? 2 : 31);
7731 output_asm_insn ("{bl|b,l} %0,%1", xoperands);
7733 else
7735 if (TARGET_64BIT)
7737 /* It might seem that one insn could be saved by accessing
7738 the millicode function using the linkage table. However,
7739 this doesn't work in shared libraries and other dynamically
7740 loaded objects. Using a pc-relative sequence also avoids
7741 problems related to the implicit use of the gp register. */
7742 xoperands[1] = gen_rtx_REG (Pmode, 1);
7743 xoperands[2] = xoperands[1];
7744 pa_output_pic_pcrel_sequence (xoperands);
7745 output_asm_insn ("bve,l (%%r1),%%r2", xoperands);
7747 else if (TARGET_PORTABLE_RUNTIME)
7749 /* Pure portable runtime doesn't allow be/ble; we also don't
7750 have PIC support in the assembler/linker, so this sequence
7751 is needed. */
7753 /* Get the address of our target into %r1. */
7754 output_asm_insn ("ldil L'%0,%%r1", xoperands);
7755 output_asm_insn ("ldo R'%0(%%r1),%%r1", xoperands);
7757 /* Get our return address into %r31. */
7758 output_asm_insn ("{bl|b,l} .+8,%%r31", xoperands);
7759 output_asm_insn ("addi 8,%%r31,%%r31", xoperands);
7761 /* Jump to our target address in %r1. */
7762 output_asm_insn ("bv %%r0(%%r1)", xoperands);
7764 else if (!flag_pic)
7766 output_asm_insn ("ldil L'%0,%%r1", xoperands);
7767 if (TARGET_PA_20)
7768 output_asm_insn ("be,l R'%0(%%sr4,%%r1),%%sr0,%%r31", xoperands);
7769 else
7770 output_asm_insn ("ble R'%0(%%sr4,%%r1)", xoperands);
7772 else
7774 xoperands[1] = gen_rtx_REG (Pmode, 31);
7775 xoperands[2] = gen_rtx_REG (Pmode, 1);
7776 pa_output_pic_pcrel_sequence (xoperands);
7778 /* Adjust return address. */
7779 output_asm_insn ("ldo {16|24}(%%r31),%%r31", xoperands);
7781 /* Jump to our target address in %r1. */
7782 output_asm_insn ("bv %%r0(%%r1)", xoperands);
7786 if (seq_length == 0)
7787 output_asm_insn ("nop", xoperands);
7789 return "";
7792 /* Return the attribute length of the call instruction INSN. The SIBCALL
7793 flag indicates whether INSN is a regular call or a sibling call. The
7794 length returned must be longer than the code actually generated by
7795 pa_output_call. Since branch shortening is done before delay branch
7796 sequencing, there is no way to determine whether or not the delay
7797 slot will be filled during branch shortening. Even when the delay
7798 slot is filled, we may have to add a nop if the delay slot contains
7799 a branch that can't reach its target. Thus, we always have to include
7800 the delay slot in the length estimate. This used to be done in
7801 pa_adjust_insn_length but we do it here now as some sequences always
7802 fill the delay slot and we can save four bytes in the estimate for
7803 these sequences. */
7806 pa_attr_length_call (rtx_insn *insn, int sibcall)
7808 int local_call;
7809 rtx call, call_dest;
7810 tree call_decl;
7811 int length = 0;
7812 rtx pat = PATTERN (insn);
7813 unsigned long distance = -1;
7815 gcc_assert (CALL_P (insn));
7817 if (INSN_ADDRESSES_SET_P ())
7819 unsigned long total;
7821 total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes;
7822 distance = (total + insn_current_reference_address (insn));
7823 if (distance < total)
7824 distance = -1;
7827 gcc_assert (GET_CODE (pat) == PARALLEL);
7829 /* Get the call rtx. */
7830 call = XVECEXP (pat, 0, 0);
7831 if (GET_CODE (call) == SET)
7832 call = SET_SRC (call);
7834 gcc_assert (GET_CODE (call) == CALL);
7836 /* Determine if this is a local call. */
7837 call_dest = XEXP (XEXP (call, 0), 0);
7838 call_decl = SYMBOL_REF_DECL (call_dest);
7839 local_call = call_decl && targetm.binds_local_p (call_decl);
7841 /* pc-relative branch. */
7842 if (!TARGET_LONG_CALLS
7843 && ((TARGET_PA_20 && !sibcall && distance < 7600000)
7844 || distance < MAX_PCREL17F_OFFSET))
7845 length += 8;
7847 /* 64-bit plabel sequence. */
7848 else if (TARGET_64BIT && !local_call)
7849 length += 24;
7851 /* non-pic long absolute branch sequence. */
7852 else if ((TARGET_LONG_ABS_CALL || local_call) && !flag_pic)
7853 length += 12;
7855 /* long pc-relative branch sequence. */
7856 else if (TARGET_LONG_PIC_SDIFF_CALL
7857 || (TARGET_GAS && !TARGET_SOM && local_call))
7859 length += 20;
7861 if (!TARGET_PA_20 && !TARGET_NO_SPACE_REGS && (!local_call || flag_pic))
7862 length += 8;
7865 /* 32-bit plabel sequence. */
7866 else
7868 length += 32;
7870 if (TARGET_SOM)
7871 length += length_fp_args (insn);
7873 if (flag_pic)
7874 length += 4;
7876 if (!TARGET_PA_20)
7878 if (!sibcall)
7879 length += 8;
7881 if (!TARGET_NO_SPACE_REGS && (!local_call || flag_pic))
7882 length += 8;
7886 return length;
7889 /* INSN is a function call.
7891 CALL_DEST is the routine we are calling. */
7893 const char *
7894 pa_output_call (rtx_insn *insn, rtx call_dest, int sibcall)
7896 int seq_length = dbr_sequence_length ();
7897 tree call_decl = SYMBOL_REF_DECL (call_dest);
7898 int local_call = call_decl && targetm.binds_local_p (call_decl);
7899 rtx xoperands[4];
7901 xoperands[0] = call_dest;
7903 /* Handle the common case where we're sure that the branch will reach
7904 the beginning of the "$CODE$" subspace. This is the beginning of
7905 the current function if we are in a named section. */
7906 if (!TARGET_LONG_CALLS && pa_attr_length_call (insn, sibcall) == 8)
7908 xoperands[1] = gen_rtx_REG (word_mode, sibcall ? 0 : 2);
7909 output_asm_insn ("{bl|b,l} %0,%1", xoperands);
7911 else
7913 if (TARGET_64BIT && !local_call)
7915 /* ??? As far as I can tell, the HP linker doesn't support the
7916 long pc-relative sequence described in the 64-bit runtime
7917 architecture. So, we use a slightly longer indirect call. */
7918 xoperands[0] = pa_get_deferred_plabel (call_dest);
7919 xoperands[1] = gen_label_rtx ();
7921 /* Put the load of %r27 into the delay slot. We don't need to
7922 do anything when generating fast indirect calls. */
7923 if (seq_length != 0)
7925 final_scan_insn (NEXT_INSN (insn), asm_out_file,
7926 optimize, 0, NULL);
7928 /* Now delete the delay insn. */
7929 SET_INSN_DELETED (NEXT_INSN (insn));
7932 output_asm_insn ("addil LT'%0,%%r27", xoperands);
7933 output_asm_insn ("ldd RT'%0(%%r1),%%r1", xoperands);
7934 output_asm_insn ("ldd 0(%%r1),%%r1", xoperands);
7935 output_asm_insn ("ldd 16(%%r1),%%r2", xoperands);
7936 output_asm_insn ("bve,l (%%r2),%%r2", xoperands);
7937 output_asm_insn ("ldd 24(%%r1),%%r27", xoperands);
7938 seq_length = 1;
7940 else
7942 int indirect_call = 0;
7944 /* Emit a long call. There are several different sequences
7945 of increasing length and complexity. In most cases,
7946 they don't allow an instruction in the delay slot. */
7947 if (!((TARGET_LONG_ABS_CALL || local_call) && !flag_pic)
7948 && !TARGET_LONG_PIC_SDIFF_CALL
7949 && !(TARGET_GAS && !TARGET_SOM && local_call)
7950 && !TARGET_64BIT)
7951 indirect_call = 1;
7953 if (seq_length != 0
7954 && !sibcall
7955 && (!TARGET_PA_20
7956 || indirect_call
7957 || ((TARGET_LONG_ABS_CALL || local_call) && !flag_pic)))
7959 /* A non-jump insn in the delay slot. By definition we can
7960 emit this insn before the call (and in fact before argument
7961 relocating. */
7962 final_scan_insn (NEXT_INSN (insn), asm_out_file, optimize, 0,
7963 NULL);
7965 /* Now delete the delay insn. */
7966 SET_INSN_DELETED (NEXT_INSN (insn));
7967 seq_length = 0;
7970 if ((TARGET_LONG_ABS_CALL || local_call) && !flag_pic)
7972 /* This is the best sequence for making long calls in
7973 non-pic code. Unfortunately, GNU ld doesn't provide
7974 the stub needed for external calls, and GAS's support
7975 for this with the SOM linker is buggy. It is safe
7976 to use this for local calls. */
7977 output_asm_insn ("ldil L'%0,%%r1", xoperands);
7978 if (sibcall)
7979 output_asm_insn ("be R'%0(%%sr4,%%r1)", xoperands);
7980 else
7982 if (TARGET_PA_20)
7983 output_asm_insn ("be,l R'%0(%%sr4,%%r1),%%sr0,%%r31",
7984 xoperands);
7985 else
7986 output_asm_insn ("ble R'%0(%%sr4,%%r1)", xoperands);
7988 output_asm_insn ("copy %%r31,%%r2", xoperands);
7989 seq_length = 1;
7992 else
7994 /* The HP assembler and linker can handle relocations for
7995 the difference of two symbols. The HP assembler
7996 recognizes the sequence as a pc-relative call and
7997 the linker provides stubs when needed. */
7999 /* GAS currently can't generate the relocations that
8000 are needed for the SOM linker under HP-UX using this
8001 sequence. The GNU linker doesn't generate the stubs
8002 that are needed for external calls on TARGET_ELF32
8003 with this sequence. For now, we have to use a longer
8004 plabel sequence when using GAS for non local calls. */
8005 if (TARGET_LONG_PIC_SDIFF_CALL
8006 || (TARGET_GAS && !TARGET_SOM && local_call))
8008 xoperands[1] = gen_rtx_REG (Pmode, 1);
8009 xoperands[2] = xoperands[1];
8010 pa_output_pic_pcrel_sequence (xoperands);
8012 else
8014 /* Emit a long plabel-based call sequence. This is
8015 essentially an inline implementation of $$dyncall.
8016 We don't actually try to call $$dyncall as this is
8017 as difficult as calling the function itself. */
8018 xoperands[0] = pa_get_deferred_plabel (call_dest);
8019 xoperands[1] = gen_label_rtx ();
8021 /* Since the call is indirect, FP arguments in registers
8022 need to be copied to the general registers. Then, the
8023 argument relocation stub will copy them back. */
8024 if (TARGET_SOM)
8025 copy_fp_args (insn);
8027 if (flag_pic)
8029 output_asm_insn ("addil LT'%0,%%r19", xoperands);
8030 output_asm_insn ("ldw RT'%0(%%r1),%%r1", xoperands);
8031 output_asm_insn ("ldw 0(%%r1),%%r22", xoperands);
8033 else
8035 output_asm_insn ("addil LR'%0-$global$,%%r27",
8036 xoperands);
8037 output_asm_insn ("ldw RR'%0-$global$(%%r1),%%r22",
8038 xoperands);
8041 output_asm_insn ("bb,>=,n %%r22,30,.+16", xoperands);
8042 output_asm_insn ("depi 0,31,2,%%r22", xoperands);
8043 /* Should this be an ordered load to ensure the target
8044 address is loaded before the global pointer? */
8045 output_asm_insn ("ldw 0(%%r22),%%r1", xoperands);
8046 output_asm_insn ("ldw 4(%%r22),%%r19", xoperands);
8048 if (!sibcall && !TARGET_PA_20)
8050 output_asm_insn ("{bl|b,l} .+8,%%r2", xoperands);
8051 if (TARGET_NO_SPACE_REGS || (local_call && !flag_pic))
8052 output_asm_insn ("addi 8,%%r2,%%r2", xoperands);
8053 else
8054 output_asm_insn ("addi 16,%%r2,%%r2", xoperands);
8058 if (TARGET_PA_20)
8060 if (sibcall)
8061 output_asm_insn ("bve (%%r1)", xoperands);
8062 else
8064 if (indirect_call)
8066 output_asm_insn ("bve,l (%%r1),%%r2", xoperands);
8067 output_asm_insn ("stw %%r2,-24(%%sp)", xoperands);
8068 seq_length = 1;
8070 else
8071 output_asm_insn ("bve,l (%%r1),%%r2", xoperands);
8074 else
8076 if (!TARGET_NO_SPACE_REGS && (!local_call || flag_pic))
8077 output_asm_insn ("ldsid (%%r1),%%r31\n\tmtsp %%r31,%%sr0",
8078 xoperands);
8080 if (sibcall)
8082 if (TARGET_NO_SPACE_REGS || (local_call && !flag_pic))
8083 output_asm_insn ("be 0(%%sr4,%%r1)", xoperands);
8084 else
8085 output_asm_insn ("be 0(%%sr0,%%r1)", xoperands);
8087 else
8089 if (TARGET_NO_SPACE_REGS || (local_call && !flag_pic))
8090 output_asm_insn ("ble 0(%%sr4,%%r1)", xoperands);
8091 else
8092 output_asm_insn ("ble 0(%%sr0,%%r1)", xoperands);
8094 if (indirect_call)
8095 output_asm_insn ("stw %%r31,-24(%%sp)", xoperands);
8096 else
8097 output_asm_insn ("copy %%r31,%%r2", xoperands);
8098 seq_length = 1;
8105 if (seq_length == 0)
8106 output_asm_insn ("nop", xoperands);
8108 return "";
8111 /* Return the attribute length of the indirect call instruction INSN.
8112 The length must match the code generated by output_indirect call.
8113 The returned length includes the delay slot. Currently, the delay
8114 slot of an indirect call sequence is not exposed and it is used by
8115 the sequence itself. */
8118 pa_attr_length_indirect_call (rtx_insn *insn)
8120 unsigned long distance = -1;
8121 unsigned long total = IN_NAMED_SECTION_P (cfun->decl) ? 0 : total_code_bytes;
8123 if (INSN_ADDRESSES_SET_P ())
8125 distance = (total + insn_current_reference_address (insn));
8126 if (distance < total)
8127 distance = -1;
8130 if (TARGET_64BIT)
8131 return 12;
8133 if (TARGET_FAST_INDIRECT_CALLS)
8134 return 8;
8136 if (TARGET_PORTABLE_RUNTIME)
8137 return 16;
8139 if (!TARGET_LONG_CALLS
8140 && ((TARGET_PA_20 && !TARGET_SOM && distance < 7600000)
8141 || distance < MAX_PCREL17F_OFFSET))
8142 return 8;
8144 /* Out of reach, can use ble. */
8145 if (!flag_pic)
8146 return 12;
8148 /* Inline versions of $$dyncall. */
8149 if (!optimize_size)
8151 if (TARGET_NO_SPACE_REGS)
8152 return 28;
8154 if (TARGET_PA_20)
8155 return 32;
8158 /* Long PIC pc-relative call. */
8159 return 20;
8162 const char *
8163 pa_output_indirect_call (rtx_insn *insn, rtx call_dest)
8165 rtx xoperands[4];
8166 int length;
8168 if (TARGET_64BIT)
8170 xoperands[0] = call_dest;
8171 output_asm_insn ("ldd 16(%0),%%r2\n\t"
8172 "bve,l (%%r2),%%r2\n\t"
8173 "ldd 24(%0),%%r27", xoperands);
8174 return "";
8177 /* First the special case for kernels, level 0 systems, etc. */
8178 if (TARGET_FAST_INDIRECT_CALLS)
8180 pa_output_arg_descriptor (insn);
8181 if (TARGET_PA_20)
8182 return "bve,l,n (%%r22),%%r2\n\tnop";
8183 return "ble 0(%%sr4,%%r22)\n\tcopy %%r31,%%r2";
8186 if (TARGET_PORTABLE_RUNTIME)
8188 output_asm_insn ("ldil L'$$dyncall,%%r31\n\t"
8189 "ldo R'$$dyncall(%%r31),%%r31", xoperands);
8190 pa_output_arg_descriptor (insn);
8191 return "blr %%r0,%%r2\n\tbv,n %%r0(%%r31)";
8194 /* Now the normal case -- we can reach $$dyncall directly or
8195 we're sure that we can get there via a long-branch stub.
8197 No need to check target flags as the length uniquely identifies
8198 the remaining cases. */
8199 length = pa_attr_length_indirect_call (insn);
8200 if (length == 8)
8202 pa_output_arg_descriptor (insn);
8204 /* The HP linker sometimes substitutes a BLE for BL/B,L calls to
8205 $$dyncall. Since BLE uses %r31 as the link register, the 22-bit
8206 variant of the B,L instruction can't be used on the SOM target. */
8207 if (TARGET_PA_20 && !TARGET_SOM)
8208 return "b,l,n $$dyncall,%%r2\n\tnop";
8209 else
8210 return "bl $$dyncall,%%r31\n\tcopy %%r31,%%r2";
8213 /* Long millicode call, but we are not generating PIC or portable runtime
8214 code. */
8215 if (length == 12)
8217 output_asm_insn ("ldil L'$$dyncall,%%r2", xoperands);
8218 pa_output_arg_descriptor (insn);
8219 return "ble R'$$dyncall(%%sr4,%%r2)\n\tcopy %%r31,%%r2";
8222 /* The long PIC pc-relative call sequence is five instructions. So,
8223 let's use an inline version of $$dyncall when the calling sequence
8224 has a roughly similar number of instructions and we are not optimizing
8225 for size. We need two instructions to load the return pointer plus
8226 the $$dyncall implementation. */
8227 if (!optimize_size)
8229 if (TARGET_NO_SPACE_REGS)
8231 pa_output_arg_descriptor (insn);
8232 output_asm_insn ("bl .+8,%%r2\n\t"
8233 "ldo 20(%%r2),%%r2\n\t"
8234 "extru,<> %%r22,30,1,%%r0\n\t"
8235 "bv,n %%r0(%%r22)\n\t"
8236 "ldw -2(%%r22),%%r21\n\t"
8237 "bv %%r0(%%r21)\n\t"
8238 "ldw 2(%%r22),%%r19", xoperands);
8239 return "";
8241 if (TARGET_PA_20)
8243 pa_output_arg_descriptor (insn);
8244 output_asm_insn ("bl .+8,%%r2\n\t"
8245 "ldo 24(%%r2),%%r2\n\t"
8246 "stw %%r2,-24(%%sp)\n\t"
8247 "extru,<> %r22,30,1,%%r0\n\t"
8248 "bve,n (%%r22)\n\t"
8249 "ldw -2(%%r22),%%r21\n\t"
8250 "bve (%%r21)\n\t"
8251 "ldw 2(%%r22),%%r19", xoperands);
8252 return "";
8256 /* We need a long PIC call to $$dyncall. */
8257 xoperands[0] = gen_rtx_SYMBOL_REF (Pmode, "$$dyncall");
8258 xoperands[1] = gen_rtx_REG (Pmode, 2);
8259 xoperands[2] = gen_rtx_REG (Pmode, 1);
8260 pa_output_pic_pcrel_sequence (xoperands);
8261 pa_output_arg_descriptor (insn);
8262 return "bv %%r0(%%r1)\n\tldo {12|20}(%%r2),%%r2";
8265 /* In HPUX 8.0's shared library scheme, special relocations are needed
8266 for function labels if they might be passed to a function
8267 in a shared library (because shared libraries don't live in code
8268 space), and special magic is needed to construct their address. */
8270 void
8271 pa_encode_label (rtx sym)
8273 const char *str = XSTR (sym, 0);
8274 int len = strlen (str) + 1;
8275 char *newstr, *p;
8277 p = newstr = XALLOCAVEC (char, len + 1);
8278 *p++ = '@';
8279 strcpy (p, str);
8281 XSTR (sym, 0) = ggc_alloc_string (newstr, len);
8284 static void
8285 pa_encode_section_info (tree decl, rtx rtl, int first)
8287 int old_referenced = 0;
8289 if (!first && MEM_P (rtl) && GET_CODE (XEXP (rtl, 0)) == SYMBOL_REF)
8290 old_referenced
8291 = SYMBOL_REF_FLAGS (XEXP (rtl, 0)) & SYMBOL_FLAG_REFERENCED;
8293 default_encode_section_info (decl, rtl, first);
8295 if (first && TEXT_SPACE_P (decl))
8297 SYMBOL_REF_FLAG (XEXP (rtl, 0)) = 1;
8298 if (TREE_CODE (decl) == FUNCTION_DECL)
8299 pa_encode_label (XEXP (rtl, 0));
8301 else if (old_referenced)
8302 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= old_referenced;
8305 /* This is sort of inverse to pa_encode_section_info. */
8307 static const char *
8308 pa_strip_name_encoding (const char *str)
8310 str += (*str == '@');
8311 str += (*str == '*');
8312 return str;
8315 /* Returns 1 if OP is a function label involved in a simple addition
8316 with a constant. Used to keep certain patterns from matching
8317 during instruction combination. */
8319 pa_is_function_label_plus_const (rtx op)
8321 /* Strip off any CONST. */
8322 if (GET_CODE (op) == CONST)
8323 op = XEXP (op, 0);
8325 return (GET_CODE (op) == PLUS
8326 && function_label_operand (XEXP (op, 0), VOIDmode)
8327 && GET_CODE (XEXP (op, 1)) == CONST_INT);
8330 /* Output assembly code for a thunk to FUNCTION. */
8332 static void
8333 pa_asm_output_mi_thunk (FILE *file, tree thunk_fndecl, HOST_WIDE_INT delta,
8334 HOST_WIDE_INT vcall_offset ATTRIBUTE_UNUSED,
8335 tree function)
8337 const char *fnname = IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (thunk_fndecl));
8338 static unsigned int current_thunk_number;
8339 int val_14 = VAL_14_BITS_P (delta);
8340 unsigned int old_last_address = last_address, nbytes = 0;
8341 char label[17];
8342 rtx xoperands[4];
8344 xoperands[0] = XEXP (DECL_RTL (function), 0);
8345 xoperands[1] = XEXP (DECL_RTL (thunk_fndecl), 0);
8346 xoperands[2] = GEN_INT (delta);
8348 assemble_start_function (thunk_fndecl, fnname);
8349 final_start_function (emit_barrier (), file, 1);
8351 /* Output the thunk. We know that the function is in the same
8352 translation unit (i.e., the same space) as the thunk, and that
8353 thunks are output after their method. Thus, we don't need an
8354 external branch to reach the function. With SOM and GAS,
8355 functions and thunks are effectively in different sections.
8356 Thus, we can always use a IA-relative branch and the linker
8357 will add a long branch stub if necessary.
8359 However, we have to be careful when generating PIC code on the
8360 SOM port to ensure that the sequence does not transfer to an
8361 import stub for the target function as this could clobber the
8362 return value saved at SP-24. This would also apply to the
8363 32-bit linux port if the multi-space model is implemented. */
8364 if ((!TARGET_LONG_CALLS && TARGET_SOM && !TARGET_PORTABLE_RUNTIME
8365 && !(flag_pic && TREE_PUBLIC (function))
8366 && (TARGET_GAS || last_address < 262132))
8367 || (!TARGET_LONG_CALLS && !TARGET_SOM && !TARGET_PORTABLE_RUNTIME
8368 && ((targetm_common.have_named_sections
8369 && DECL_SECTION_NAME (thunk_fndecl) != NULL
8370 /* The GNU 64-bit linker has rather poor stub management.
8371 So, we use a long branch from thunks that aren't in
8372 the same section as the target function. */
8373 && ((!TARGET_64BIT
8374 && (DECL_SECTION_NAME (thunk_fndecl)
8375 != DECL_SECTION_NAME (function)))
8376 || ((DECL_SECTION_NAME (thunk_fndecl)
8377 == DECL_SECTION_NAME (function))
8378 && last_address < 262132)))
8379 /* In this case, we need to be able to reach the start of
8380 the stub table even though the function is likely closer
8381 and can be jumped to directly. */
8382 || (targetm_common.have_named_sections
8383 && DECL_SECTION_NAME (thunk_fndecl) == NULL
8384 && DECL_SECTION_NAME (function) == NULL
8385 && total_code_bytes < MAX_PCREL17F_OFFSET)
8386 /* Likewise. */
8387 || (!targetm_common.have_named_sections
8388 && total_code_bytes < MAX_PCREL17F_OFFSET))))
8390 if (!val_14)
8391 output_asm_insn ("addil L'%2,%%r26", xoperands);
8393 output_asm_insn ("b %0", xoperands);
8395 if (val_14)
8397 output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
8398 nbytes += 8;
8400 else
8402 output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
8403 nbytes += 12;
8406 else if (TARGET_64BIT)
8408 rtx xop[4];
8410 /* We only have one call-clobbered scratch register, so we can't
8411 make use of the delay slot if delta doesn't fit in 14 bits. */
8412 if (!val_14)
8414 output_asm_insn ("addil L'%2,%%r26", xoperands);
8415 output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
8418 /* Load function address into %r1. */
8419 xop[0] = xoperands[0];
8420 xop[1] = gen_rtx_REG (Pmode, 1);
8421 xop[2] = xop[1];
8422 pa_output_pic_pcrel_sequence (xop);
8424 if (val_14)
8426 output_asm_insn ("bv %%r0(%%r1)", xoperands);
8427 output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
8428 nbytes += 20;
8430 else
8432 output_asm_insn ("bv,n %%r0(%%r1)", xoperands);
8433 nbytes += 24;
8436 else if (TARGET_PORTABLE_RUNTIME)
8438 output_asm_insn ("ldil L'%0,%%r1", xoperands);
8439 output_asm_insn ("ldo R'%0(%%r1),%%r22", xoperands);
8441 if (!val_14)
8442 output_asm_insn ("ldil L'%2,%%r26", xoperands);
8444 output_asm_insn ("bv %%r0(%%r22)", xoperands);
8446 if (val_14)
8448 output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
8449 nbytes += 16;
8451 else
8453 output_asm_insn ("ldo R'%2(%%r26),%%r26", xoperands);
8454 nbytes += 20;
8457 else if (TARGET_SOM && flag_pic && TREE_PUBLIC (function))
8459 /* The function is accessible from outside this module. The only
8460 way to avoid an import stub between the thunk and function is to
8461 call the function directly with an indirect sequence similar to
8462 that used by $$dyncall. This is possible because $$dyncall acts
8463 as the import stub in an indirect call. */
8464 ASM_GENERATE_INTERNAL_LABEL (label, "LTHN", current_thunk_number);
8465 xoperands[3] = gen_rtx_SYMBOL_REF (Pmode, label);
8466 output_asm_insn ("addil LT'%3,%%r19", xoperands);
8467 output_asm_insn ("ldw RT'%3(%%r1),%%r22", xoperands);
8468 output_asm_insn ("ldw 0(%%sr0,%%r22),%%r22", xoperands);
8469 output_asm_insn ("bb,>=,n %%r22,30,.+16", xoperands);
8470 output_asm_insn ("depi 0,31,2,%%r22", xoperands);
8471 output_asm_insn ("ldw 4(%%sr0,%%r22),%%r19", xoperands);
8472 output_asm_insn ("ldw 0(%%sr0,%%r22),%%r22", xoperands);
8474 if (!val_14)
8476 output_asm_insn ("addil L'%2,%%r26", xoperands);
8477 nbytes += 4;
8480 if (TARGET_PA_20)
8482 output_asm_insn ("bve (%%r22)", xoperands);
8483 nbytes += 36;
8485 else if (TARGET_NO_SPACE_REGS)
8487 output_asm_insn ("be 0(%%sr4,%%r22)", xoperands);
8488 nbytes += 36;
8490 else
8492 output_asm_insn ("ldsid (%%sr0,%%r22),%%r21", xoperands);
8493 output_asm_insn ("mtsp %%r21,%%sr0", xoperands);
8494 output_asm_insn ("be 0(%%sr0,%%r22)", xoperands);
8495 nbytes += 44;
8498 if (val_14)
8499 output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
8500 else
8501 output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
8503 else if (flag_pic)
8505 rtx xop[4];
8507 /* Load function address into %r22. */
8508 xop[0] = xoperands[0];
8509 xop[1] = gen_rtx_REG (Pmode, 1);
8510 xop[2] = gen_rtx_REG (Pmode, 22);
8511 pa_output_pic_pcrel_sequence (xop);
8513 if (!val_14)
8514 output_asm_insn ("addil L'%2,%%r26", xoperands);
8516 output_asm_insn ("bv %%r0(%%r22)", xoperands);
8518 if (val_14)
8520 output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
8521 nbytes += 20;
8523 else
8525 output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
8526 nbytes += 24;
8529 else
8531 if (!val_14)
8532 output_asm_insn ("addil L'%2,%%r26", xoperands);
8534 output_asm_insn ("ldil L'%0,%%r22", xoperands);
8535 output_asm_insn ("be R'%0(%%sr4,%%r22)", xoperands);
8537 if (val_14)
8539 output_asm_insn ("ldo %2(%%r26),%%r26", xoperands);
8540 nbytes += 12;
8542 else
8544 output_asm_insn ("ldo R'%2(%%r1),%%r26", xoperands);
8545 nbytes += 16;
8549 final_end_function ();
8551 if (TARGET_SOM && flag_pic && TREE_PUBLIC (function))
8553 switch_to_section (data_section);
8554 output_asm_insn (".align 4", xoperands);
8555 ASM_OUTPUT_LABEL (file, label);
8556 output_asm_insn (".word P'%0", xoperands);
8559 current_thunk_number++;
8560 nbytes = ((nbytes + FUNCTION_BOUNDARY / BITS_PER_UNIT - 1)
8561 & ~(FUNCTION_BOUNDARY / BITS_PER_UNIT - 1));
8562 last_address += nbytes;
8563 if (old_last_address > last_address)
8564 last_address = UINT_MAX;
8565 update_total_code_bytes (nbytes);
8566 assemble_end_function (thunk_fndecl, fnname);
8569 /* Only direct calls to static functions are allowed to be sibling (tail)
8570 call optimized.
8572 This restriction is necessary because some linker generated stubs will
8573 store return pointers into rp' in some cases which might clobber a
8574 live value already in rp'.
8576 In a sibcall the current function and the target function share stack
8577 space. Thus if the path to the current function and the path to the
8578 target function save a value in rp', they save the value into the
8579 same stack slot, which has undesirable consequences.
8581 Because of the deferred binding nature of shared libraries any function
8582 with external scope could be in a different load module and thus require
8583 rp' to be saved when calling that function. So sibcall optimizations
8584 can only be safe for static function.
8586 Note that GCC never needs return value relocations, so we don't have to
8587 worry about static calls with return value relocations (which require
8588 saving rp').
8590 It is safe to perform a sibcall optimization when the target function
8591 will never return. */
8592 static bool
8593 pa_function_ok_for_sibcall (tree decl, tree exp ATTRIBUTE_UNUSED)
8595 /* Sibcalls are not ok because the arg pointer register is not a fixed
8596 register. This prevents the sibcall optimization from occurring. In
8597 addition, there are problems with stub placement using GNU ld. This
8598 is because a normal sibcall branch uses a 17-bit relocation while
8599 a regular call branch uses a 22-bit relocation. As a result, more
8600 care needs to be taken in the placement of long-branch stubs. */
8601 if (TARGET_64BIT)
8602 return false;
8604 if (TARGET_PORTABLE_RUNTIME)
8605 return false;
8607 /* Sibcalls are only ok within a translation unit. */
8608 return decl && targetm.binds_local_p (decl);
8611 /* ??? Addition is not commutative on the PA due to the weird implicit
8612 space register selection rules for memory addresses. Therefore, we
8613 don't consider a + b == b + a, as this might be inside a MEM. */
8614 static bool
8615 pa_commutative_p (const_rtx x, int outer_code)
8617 return (COMMUTATIVE_P (x)
8618 && (TARGET_NO_SPACE_REGS
8619 || (outer_code != UNKNOWN && outer_code != MEM)
8620 || GET_CODE (x) != PLUS));
8623 /* Returns 1 if the 6 operands specified in OPERANDS are suitable for
8624 use in fmpyadd instructions. */
8626 pa_fmpyaddoperands (rtx *operands)
8628 machine_mode mode = GET_MODE (operands[0]);
8630 /* Must be a floating point mode. */
8631 if (mode != SFmode && mode != DFmode)
8632 return 0;
8634 /* All modes must be the same. */
8635 if (! (mode == GET_MODE (operands[1])
8636 && mode == GET_MODE (operands[2])
8637 && mode == GET_MODE (operands[3])
8638 && mode == GET_MODE (operands[4])
8639 && mode == GET_MODE (operands[5])))
8640 return 0;
8642 /* All operands must be registers. */
8643 if (! (GET_CODE (operands[1]) == REG
8644 && GET_CODE (operands[2]) == REG
8645 && GET_CODE (operands[3]) == REG
8646 && GET_CODE (operands[4]) == REG
8647 && GET_CODE (operands[5]) == REG))
8648 return 0;
8650 /* Only 2 real operands to the addition. One of the input operands must
8651 be the same as the output operand. */
8652 if (! rtx_equal_p (operands[3], operands[4])
8653 && ! rtx_equal_p (operands[3], operands[5]))
8654 return 0;
8656 /* Inout operand of add cannot conflict with any operands from multiply. */
8657 if (rtx_equal_p (operands[3], operands[0])
8658 || rtx_equal_p (operands[3], operands[1])
8659 || rtx_equal_p (operands[3], operands[2]))
8660 return 0;
8662 /* multiply cannot feed into addition operands. */
8663 if (rtx_equal_p (operands[4], operands[0])
8664 || rtx_equal_p (operands[5], operands[0]))
8665 return 0;
8667 /* SFmode limits the registers to the upper 32 of the 32bit FP regs. */
8668 if (mode == SFmode
8669 && (REGNO_REG_CLASS (REGNO (operands[0])) != FPUPPER_REGS
8670 || REGNO_REG_CLASS (REGNO (operands[1])) != FPUPPER_REGS
8671 || REGNO_REG_CLASS (REGNO (operands[2])) != FPUPPER_REGS
8672 || REGNO_REG_CLASS (REGNO (operands[3])) != FPUPPER_REGS
8673 || REGNO_REG_CLASS (REGNO (operands[4])) != FPUPPER_REGS
8674 || REGNO_REG_CLASS (REGNO (operands[5])) != FPUPPER_REGS))
8675 return 0;
8677 /* Passed. Operands are suitable for fmpyadd. */
8678 return 1;
8681 #if !defined(USE_COLLECT2)
8682 static void
8683 pa_asm_out_constructor (rtx symbol, int priority)
8685 if (!function_label_operand (symbol, VOIDmode))
8686 pa_encode_label (symbol);
8688 #ifdef CTORS_SECTION_ASM_OP
8689 default_ctor_section_asm_out_constructor (symbol, priority);
8690 #else
8691 # ifdef TARGET_ASM_NAMED_SECTION
8692 default_named_section_asm_out_constructor (symbol, priority);
8693 # else
8694 default_stabs_asm_out_constructor (symbol, priority);
8695 # endif
8696 #endif
8699 static void
8700 pa_asm_out_destructor (rtx symbol, int priority)
8702 if (!function_label_operand (symbol, VOIDmode))
8703 pa_encode_label (symbol);
8705 #ifdef DTORS_SECTION_ASM_OP
8706 default_dtor_section_asm_out_destructor (symbol, priority);
8707 #else
8708 # ifdef TARGET_ASM_NAMED_SECTION
8709 default_named_section_asm_out_destructor (symbol, priority);
8710 # else
8711 default_stabs_asm_out_destructor (symbol, priority);
8712 # endif
8713 #endif
8715 #endif
8717 /* This function places uninitialized global data in the bss section.
8718 The ASM_OUTPUT_ALIGNED_BSS macro needs to be defined to call this
8719 function on the SOM port to prevent uninitialized global data from
8720 being placed in the data section. */
8722 void
8723 pa_asm_output_aligned_bss (FILE *stream,
8724 const char *name,
8725 unsigned HOST_WIDE_INT size,
8726 unsigned int align)
8728 switch_to_section (bss_section);
8730 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
8731 ASM_OUTPUT_TYPE_DIRECTIVE (stream, name, "object");
8732 #endif
8734 #ifdef ASM_OUTPUT_SIZE_DIRECTIVE
8735 ASM_OUTPUT_SIZE_DIRECTIVE (stream, name, size);
8736 #endif
8738 fprintf (stream, "\t.align %u\n", align / BITS_PER_UNIT);
8739 ASM_OUTPUT_LABEL (stream, name);
8740 fprintf (stream, "\t.block " HOST_WIDE_INT_PRINT_UNSIGNED"\n", size);
8743 /* Both the HP and GNU assemblers under HP-UX provide a .comm directive
8744 that doesn't allow the alignment of global common storage to be directly
8745 specified. The SOM linker aligns common storage based on the rounded
8746 value of the NUM_BYTES parameter in the .comm directive. It's not
8747 possible to use the .align directive as it doesn't affect the alignment
8748 of the label associated with a .comm directive. */
8750 void
8751 pa_asm_output_aligned_common (FILE *stream,
8752 const char *name,
8753 unsigned HOST_WIDE_INT size,
8754 unsigned int align)
8756 unsigned int max_common_align;
8758 max_common_align = TARGET_64BIT ? 128 : (size >= 4096 ? 256 : 64);
8759 if (align > max_common_align)
8761 warning (0, "alignment (%u) for %s exceeds maximum alignment "
8762 "for global common data. Using %u",
8763 align / BITS_PER_UNIT, name, max_common_align / BITS_PER_UNIT);
8764 align = max_common_align;
8767 switch_to_section (bss_section);
8769 assemble_name (stream, name);
8770 fprintf (stream, "\t.comm " HOST_WIDE_INT_PRINT_UNSIGNED"\n",
8771 MAX (size, align / BITS_PER_UNIT));
8774 /* We can't use .comm for local common storage as the SOM linker effectively
8775 treats the symbol as universal and uses the same storage for local symbols
8776 with the same name in different object files. The .block directive
8777 reserves an uninitialized block of storage. However, it's not common
8778 storage. Fortunately, GCC never requests common storage with the same
8779 name in any given translation unit. */
8781 void
8782 pa_asm_output_aligned_local (FILE *stream,
8783 const char *name,
8784 unsigned HOST_WIDE_INT size,
8785 unsigned int align)
8787 switch_to_section (bss_section);
8788 fprintf (stream, "\t.align %u\n", align / BITS_PER_UNIT);
8790 #ifdef LOCAL_ASM_OP
8791 fprintf (stream, "%s", LOCAL_ASM_OP);
8792 assemble_name (stream, name);
8793 fprintf (stream, "\n");
8794 #endif
8796 ASM_OUTPUT_LABEL (stream, name);
8797 fprintf (stream, "\t.block " HOST_WIDE_INT_PRINT_UNSIGNED"\n", size);
8800 /* Returns 1 if the 6 operands specified in OPERANDS are suitable for
8801 use in fmpysub instructions. */
8803 pa_fmpysuboperands (rtx *operands)
8805 machine_mode mode = GET_MODE (operands[0]);
8807 /* Must be a floating point mode. */
8808 if (mode != SFmode && mode != DFmode)
8809 return 0;
8811 /* All modes must be the same. */
8812 if (! (mode == GET_MODE (operands[1])
8813 && mode == GET_MODE (operands[2])
8814 && mode == GET_MODE (operands[3])
8815 && mode == GET_MODE (operands[4])
8816 && mode == GET_MODE (operands[5])))
8817 return 0;
8819 /* All operands must be registers. */
8820 if (! (GET_CODE (operands[1]) == REG
8821 && GET_CODE (operands[2]) == REG
8822 && GET_CODE (operands[3]) == REG
8823 && GET_CODE (operands[4]) == REG
8824 && GET_CODE (operands[5]) == REG))
8825 return 0;
8827 /* Only 2 real operands to the subtraction. Subtraction is not a commutative
8828 operation, so operands[4] must be the same as operand[3]. */
8829 if (! rtx_equal_p (operands[3], operands[4]))
8830 return 0;
8832 /* multiply cannot feed into subtraction. */
8833 if (rtx_equal_p (operands[5], operands[0]))
8834 return 0;
8836 /* Inout operand of sub cannot conflict with any operands from multiply. */
8837 if (rtx_equal_p (operands[3], operands[0])
8838 || rtx_equal_p (operands[3], operands[1])
8839 || rtx_equal_p (operands[3], operands[2]))
8840 return 0;
8842 /* SFmode limits the registers to the upper 32 of the 32bit FP regs. */
8843 if (mode == SFmode
8844 && (REGNO_REG_CLASS (REGNO (operands[0])) != FPUPPER_REGS
8845 || REGNO_REG_CLASS (REGNO (operands[1])) != FPUPPER_REGS
8846 || REGNO_REG_CLASS (REGNO (operands[2])) != FPUPPER_REGS
8847 || REGNO_REG_CLASS (REGNO (operands[3])) != FPUPPER_REGS
8848 || REGNO_REG_CLASS (REGNO (operands[4])) != FPUPPER_REGS
8849 || REGNO_REG_CLASS (REGNO (operands[5])) != FPUPPER_REGS))
8850 return 0;
8852 /* Passed. Operands are suitable for fmpysub. */
8853 return 1;
8856 /* Return 1 if the given constant is 2, 4, or 8. These are the valid
8857 constants for a MULT embedded inside a memory address. */
8859 pa_mem_shadd_constant_p (int val)
8861 if (val == 2 || val == 4 || val == 8)
8862 return 1;
8863 else
8864 return 0;
8867 /* Return 1 if the given constant is 1, 2, or 3. These are the valid
8868 constants for shadd instructions. */
8870 pa_shadd_constant_p (int val)
8872 if (val == 1 || val == 2 || val == 3)
8873 return 1;
8874 else
8875 return 0;
8878 /* Return TRUE if INSN branches forward. */
8880 static bool
8881 forward_branch_p (rtx_insn *insn)
8883 rtx lab = JUMP_LABEL (insn);
8885 /* The INSN must have a jump label. */
8886 gcc_assert (lab != NULL_RTX);
8888 if (INSN_ADDRESSES_SET_P ())
8889 return INSN_ADDRESSES (INSN_UID (lab)) > INSN_ADDRESSES (INSN_UID (insn));
8891 while (insn)
8893 if (insn == lab)
8894 return true;
8895 else
8896 insn = NEXT_INSN (insn);
8899 return false;
8902 /* Output an unconditional move and branch insn. */
8904 const char *
8905 pa_output_parallel_movb (rtx *operands, rtx_insn *insn)
8907 int length = get_attr_length (insn);
8909 /* These are the cases in which we win. */
8910 if (length == 4)
8911 return "mov%I1b,tr %1,%0,%2";
8913 /* None of the following cases win, but they don't lose either. */
8914 if (length == 8)
8916 if (dbr_sequence_length () == 0)
8918 /* Nothing in the delay slot, fake it by putting the combined
8919 insn (the copy or add) in the delay slot of a bl. */
8920 if (GET_CODE (operands[1]) == CONST_INT)
8921 return "b %2\n\tldi %1,%0";
8922 else
8923 return "b %2\n\tcopy %1,%0";
8925 else
8927 /* Something in the delay slot, but we've got a long branch. */
8928 if (GET_CODE (operands[1]) == CONST_INT)
8929 return "ldi %1,%0\n\tb %2";
8930 else
8931 return "copy %1,%0\n\tb %2";
8935 if (GET_CODE (operands[1]) == CONST_INT)
8936 output_asm_insn ("ldi %1,%0", operands);
8937 else
8938 output_asm_insn ("copy %1,%0", operands);
8939 return pa_output_lbranch (operands[2], insn, 1);
8942 /* Output an unconditional add and branch insn. */
8944 const char *
8945 pa_output_parallel_addb (rtx *operands, rtx_insn *insn)
8947 int length = get_attr_length (insn);
8949 /* To make life easy we want operand0 to be the shared input/output
8950 operand and operand1 to be the readonly operand. */
8951 if (operands[0] == operands[1])
8952 operands[1] = operands[2];
8954 /* These are the cases in which we win. */
8955 if (length == 4)
8956 return "add%I1b,tr %1,%0,%3";
8958 /* None of the following cases win, but they don't lose either. */
8959 if (length == 8)
8961 if (dbr_sequence_length () == 0)
8962 /* Nothing in the delay slot, fake it by putting the combined
8963 insn (the copy or add) in the delay slot of a bl. */
8964 return "b %3\n\tadd%I1 %1,%0,%0";
8965 else
8966 /* Something in the delay slot, but we've got a long branch. */
8967 return "add%I1 %1,%0,%0\n\tb %3";
8970 output_asm_insn ("add%I1 %1,%0,%0", operands);
8971 return pa_output_lbranch (operands[3], insn, 1);
8974 /* We use this hook to perform a PA specific optimization which is difficult
8975 to do in earlier passes. */
8977 static void
8978 pa_reorg (void)
8980 remove_useless_addtr_insns (1);
8982 if (pa_cpu < PROCESSOR_8000)
8983 pa_combine_instructions ();
8986 /* The PA has a number of odd instructions which can perform multiple
8987 tasks at once. On first generation PA machines (PA1.0 and PA1.1)
8988 it may be profitable to combine two instructions into one instruction
8989 with two outputs. It's not profitable PA2.0 machines because the
8990 two outputs would take two slots in the reorder buffers.
8992 This routine finds instructions which can be combined and combines
8993 them. We only support some of the potential combinations, and we
8994 only try common ways to find suitable instructions.
8996 * addb can add two registers or a register and a small integer
8997 and jump to a nearby (+-8k) location. Normally the jump to the
8998 nearby location is conditional on the result of the add, but by
8999 using the "true" condition we can make the jump unconditional.
9000 Thus addb can perform two independent operations in one insn.
9002 * movb is similar to addb in that it can perform a reg->reg
9003 or small immediate->reg copy and jump to a nearby (+-8k location).
9005 * fmpyadd and fmpysub can perform a FP multiply and either an
9006 FP add or FP sub if the operands of the multiply and add/sub are
9007 independent (there are other minor restrictions). Note both
9008 the fmpy and fadd/fsub can in theory move to better spots according
9009 to data dependencies, but for now we require the fmpy stay at a
9010 fixed location.
9012 * Many of the memory operations can perform pre & post updates
9013 of index registers. GCC's pre/post increment/decrement addressing
9014 is far too simple to take advantage of all the possibilities. This
9015 pass may not be suitable since those insns may not be independent.
9017 * comclr can compare two ints or an int and a register, nullify
9018 the following instruction and zero some other register. This
9019 is more difficult to use as it's harder to find an insn which
9020 will generate a comclr than finding something like an unconditional
9021 branch. (conditional moves & long branches create comclr insns).
9023 * Most arithmetic operations can conditionally skip the next
9024 instruction. They can be viewed as "perform this operation
9025 and conditionally jump to this nearby location" (where nearby
9026 is an insns away). These are difficult to use due to the
9027 branch length restrictions. */
9029 static void
9030 pa_combine_instructions (void)
9032 rtx_insn *anchor;
9034 /* This can get expensive since the basic algorithm is on the
9035 order of O(n^2) (or worse). Only do it for -O2 or higher
9036 levels of optimization. */
9037 if (optimize < 2)
9038 return;
9040 /* Walk down the list of insns looking for "anchor" insns which
9041 may be combined with "floating" insns. As the name implies,
9042 "anchor" instructions don't move, while "floating" insns may
9043 move around. */
9044 rtx par = gen_rtx_PARALLEL (VOIDmode, gen_rtvec (2, NULL_RTX, NULL_RTX));
9045 rtx_insn *new_rtx = make_insn_raw (par);
9047 for (anchor = get_insns (); anchor; anchor = NEXT_INSN (anchor))
9049 enum attr_pa_combine_type anchor_attr;
9050 enum attr_pa_combine_type floater_attr;
9052 /* We only care about INSNs, JUMP_INSNs, and CALL_INSNs.
9053 Also ignore any special USE insns. */
9054 if ((! NONJUMP_INSN_P (anchor) && ! JUMP_P (anchor) && ! CALL_P (anchor))
9055 || GET_CODE (PATTERN (anchor)) == USE
9056 || GET_CODE (PATTERN (anchor)) == CLOBBER)
9057 continue;
9059 anchor_attr = get_attr_pa_combine_type (anchor);
9060 /* See if anchor is an insn suitable for combination. */
9061 if (anchor_attr == PA_COMBINE_TYPE_FMPY
9062 || anchor_attr == PA_COMBINE_TYPE_FADDSUB
9063 || (anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH
9064 && ! forward_branch_p (anchor)))
9066 rtx_insn *floater;
9068 for (floater = PREV_INSN (anchor);
9069 floater;
9070 floater = PREV_INSN (floater))
9072 if (NOTE_P (floater)
9073 || (NONJUMP_INSN_P (floater)
9074 && (GET_CODE (PATTERN (floater)) == USE
9075 || GET_CODE (PATTERN (floater)) == CLOBBER)))
9076 continue;
9078 /* Anything except a regular INSN will stop our search. */
9079 if (! NONJUMP_INSN_P (floater))
9081 floater = NULL;
9082 break;
9085 /* See if FLOATER is suitable for combination with the
9086 anchor. */
9087 floater_attr = get_attr_pa_combine_type (floater);
9088 if ((anchor_attr == PA_COMBINE_TYPE_FMPY
9089 && floater_attr == PA_COMBINE_TYPE_FADDSUB)
9090 || (anchor_attr == PA_COMBINE_TYPE_FADDSUB
9091 && floater_attr == PA_COMBINE_TYPE_FMPY))
9093 /* If ANCHOR and FLOATER can be combined, then we're
9094 done with this pass. */
9095 if (pa_can_combine_p (new_rtx, anchor, floater, 0,
9096 SET_DEST (PATTERN (floater)),
9097 XEXP (SET_SRC (PATTERN (floater)), 0),
9098 XEXP (SET_SRC (PATTERN (floater)), 1)))
9099 break;
9102 else if (anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH
9103 && floater_attr == PA_COMBINE_TYPE_ADDMOVE)
9105 if (GET_CODE (SET_SRC (PATTERN (floater))) == PLUS)
9107 if (pa_can_combine_p (new_rtx, anchor, floater, 0,
9108 SET_DEST (PATTERN (floater)),
9109 XEXP (SET_SRC (PATTERN (floater)), 0),
9110 XEXP (SET_SRC (PATTERN (floater)), 1)))
9111 break;
9113 else
9115 if (pa_can_combine_p (new_rtx, anchor, floater, 0,
9116 SET_DEST (PATTERN (floater)),
9117 SET_SRC (PATTERN (floater)),
9118 SET_SRC (PATTERN (floater))))
9119 break;
9124 /* If we didn't find anything on the backwards scan try forwards. */
9125 if (!floater
9126 && (anchor_attr == PA_COMBINE_TYPE_FMPY
9127 || anchor_attr == PA_COMBINE_TYPE_FADDSUB))
9129 for (floater = anchor; floater; floater = NEXT_INSN (floater))
9131 if (NOTE_P (floater)
9132 || (NONJUMP_INSN_P (floater)
9133 && (GET_CODE (PATTERN (floater)) == USE
9134 || GET_CODE (PATTERN (floater)) == CLOBBER)))
9136 continue;
9138 /* Anything except a regular INSN will stop our search. */
9139 if (! NONJUMP_INSN_P (floater))
9141 floater = NULL;
9142 break;
9145 /* See if FLOATER is suitable for combination with the
9146 anchor. */
9147 floater_attr = get_attr_pa_combine_type (floater);
9148 if ((anchor_attr == PA_COMBINE_TYPE_FMPY
9149 && floater_attr == PA_COMBINE_TYPE_FADDSUB)
9150 || (anchor_attr == PA_COMBINE_TYPE_FADDSUB
9151 && floater_attr == PA_COMBINE_TYPE_FMPY))
9153 /* If ANCHOR and FLOATER can be combined, then we're
9154 done with this pass. */
9155 if (pa_can_combine_p (new_rtx, anchor, floater, 1,
9156 SET_DEST (PATTERN (floater)),
9157 XEXP (SET_SRC (PATTERN (floater)),
9159 XEXP (SET_SRC (PATTERN (floater)),
9160 1)))
9161 break;
9166 /* FLOATER will be nonzero if we found a suitable floating
9167 insn for combination with ANCHOR. */
9168 if (floater
9169 && (anchor_attr == PA_COMBINE_TYPE_FADDSUB
9170 || anchor_attr == PA_COMBINE_TYPE_FMPY))
9172 /* Emit the new instruction and delete the old anchor. */
9173 rtvec vtemp = gen_rtvec (2, copy_rtx (PATTERN (anchor)),
9174 copy_rtx (PATTERN (floater)));
9175 rtx temp = gen_rtx_PARALLEL (VOIDmode, vtemp);
9176 emit_insn_before (temp, anchor);
9178 SET_INSN_DELETED (anchor);
9180 /* Emit a special USE insn for FLOATER, then delete
9181 the floating insn. */
9182 temp = copy_rtx (PATTERN (floater));
9183 emit_insn_before (gen_rtx_USE (VOIDmode, temp), floater);
9184 delete_insn (floater);
9186 continue;
9188 else if (floater
9189 && anchor_attr == PA_COMBINE_TYPE_UNCOND_BRANCH)
9191 /* Emit the new_jump instruction and delete the old anchor. */
9192 rtvec vtemp = gen_rtvec (2, copy_rtx (PATTERN (anchor)),
9193 copy_rtx (PATTERN (floater)));
9194 rtx temp = gen_rtx_PARALLEL (VOIDmode, vtemp);
9195 temp = emit_jump_insn_before (temp, anchor);
9197 JUMP_LABEL (temp) = JUMP_LABEL (anchor);
9198 SET_INSN_DELETED (anchor);
9200 /* Emit a special USE insn for FLOATER, then delete
9201 the floating insn. */
9202 temp = copy_rtx (PATTERN (floater));
9203 emit_insn_before (gen_rtx_USE (VOIDmode, temp), floater);
9204 delete_insn (floater);
9205 continue;
9211 static int
9212 pa_can_combine_p (rtx_insn *new_rtx, rtx_insn *anchor, rtx_insn *floater,
9213 int reversed, rtx dest,
9214 rtx src1, rtx src2)
9216 int insn_code_number;
9217 rtx_insn *start, *end;
9219 /* Create a PARALLEL with the patterns of ANCHOR and
9220 FLOATER, try to recognize it, then test constraints
9221 for the resulting pattern.
9223 If the pattern doesn't match or the constraints
9224 aren't met keep searching for a suitable floater
9225 insn. */
9226 XVECEXP (PATTERN (new_rtx), 0, 0) = PATTERN (anchor);
9227 XVECEXP (PATTERN (new_rtx), 0, 1) = PATTERN (floater);
9228 INSN_CODE (new_rtx) = -1;
9229 insn_code_number = recog_memoized (new_rtx);
9230 basic_block bb = BLOCK_FOR_INSN (anchor);
9231 if (insn_code_number < 0
9232 || (extract_insn (new_rtx),
9233 !constrain_operands (1, get_preferred_alternatives (new_rtx, bb))))
9234 return 0;
9236 if (reversed)
9238 start = anchor;
9239 end = floater;
9241 else
9243 start = floater;
9244 end = anchor;
9247 /* There's up to three operands to consider. One
9248 output and two inputs.
9250 The output must not be used between FLOATER & ANCHOR
9251 exclusive. The inputs must not be set between
9252 FLOATER and ANCHOR exclusive. */
9254 if (reg_used_between_p (dest, start, end))
9255 return 0;
9257 if (reg_set_between_p (src1, start, end))
9258 return 0;
9260 if (reg_set_between_p (src2, start, end))
9261 return 0;
9263 /* If we get here, then everything is good. */
9264 return 1;
9267 /* Return nonzero if references for INSN are delayed.
9269 Millicode insns are actually function calls with some special
9270 constraints on arguments and register usage.
9272 Millicode calls always expect their arguments in the integer argument
9273 registers, and always return their result in %r29 (ret1). They
9274 are expected to clobber their arguments, %r1, %r29, and the return
9275 pointer which is %r31 on 32-bit and %r2 on 64-bit, and nothing else.
9277 This function tells reorg that the references to arguments and
9278 millicode calls do not appear to happen until after the millicode call.
9279 This allows reorg to put insns which set the argument registers into the
9280 delay slot of the millicode call -- thus they act more like traditional
9281 CALL_INSNs.
9283 Note we cannot consider side effects of the insn to be delayed because
9284 the branch and link insn will clobber the return pointer. If we happened
9285 to use the return pointer in the delay slot of the call, then we lose.
9287 get_attr_type will try to recognize the given insn, so make sure to
9288 filter out things it will not accept -- SEQUENCE, USE and CLOBBER insns
9289 in particular. */
9291 pa_insn_refs_are_delayed (rtx_insn *insn)
9293 return ((NONJUMP_INSN_P (insn)
9294 && GET_CODE (PATTERN (insn)) != SEQUENCE
9295 && GET_CODE (PATTERN (insn)) != USE
9296 && GET_CODE (PATTERN (insn)) != CLOBBER
9297 && get_attr_type (insn) == TYPE_MILLI));
9300 /* Promote the return value, but not the arguments. */
9302 static machine_mode
9303 pa_promote_function_mode (const_tree type ATTRIBUTE_UNUSED,
9304 machine_mode mode,
9305 int *punsignedp ATTRIBUTE_UNUSED,
9306 const_tree fntype ATTRIBUTE_UNUSED,
9307 int for_return)
9309 if (for_return == 0)
9310 return mode;
9311 return promote_mode (type, mode, punsignedp);
9314 /* On the HP-PA the value is found in register(s) 28(-29), unless
9315 the mode is SF or DF. Then the value is returned in fr4 (32).
9317 This must perform the same promotions as PROMOTE_MODE, else promoting
9318 return values in TARGET_PROMOTE_FUNCTION_MODE will not work correctly.
9320 Small structures must be returned in a PARALLEL on PA64 in order
9321 to match the HP Compiler ABI. */
9323 static rtx
9324 pa_function_value (const_tree valtype,
9325 const_tree func ATTRIBUTE_UNUSED,
9326 bool outgoing ATTRIBUTE_UNUSED)
9328 machine_mode valmode;
9330 if (AGGREGATE_TYPE_P (valtype)
9331 || TREE_CODE (valtype) == COMPLEX_TYPE
9332 || TREE_CODE (valtype) == VECTOR_TYPE)
9334 HOST_WIDE_INT valsize = int_size_in_bytes (valtype);
9336 /* Handle aggregates that fit exactly in a word or double word. */
9337 if (valsize == UNITS_PER_WORD || valsize == 2 * UNITS_PER_WORD)
9338 return gen_rtx_REG (TYPE_MODE (valtype), 28);
9340 if (TARGET_64BIT)
9342 /* Aggregates with a size less than or equal to 128 bits are
9343 returned in GR 28(-29). They are left justified. The pad
9344 bits are undefined. Larger aggregates are returned in
9345 memory. */
9346 rtx loc[2];
9347 int i, offset = 0;
9348 int ub = valsize <= UNITS_PER_WORD ? 1 : 2;
9350 for (i = 0; i < ub; i++)
9352 loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
9353 gen_rtx_REG (DImode, 28 + i),
9354 GEN_INT (offset));
9355 offset += 8;
9358 return gen_rtx_PARALLEL (BLKmode, gen_rtvec_v (ub, loc));
9360 else if (valsize > UNITS_PER_WORD)
9362 /* Aggregates 5 to 8 bytes in size are returned in general
9363 registers r28-r29 in the same manner as other non
9364 floating-point objects. The data is right-justified and
9365 zero-extended to 64 bits. This is opposite to the normal
9366 justification used on big endian targets and requires
9367 special treatment. */
9368 rtx loc = gen_rtx_EXPR_LIST (VOIDmode,
9369 gen_rtx_REG (DImode, 28), const0_rtx);
9370 return gen_rtx_PARALLEL (BLKmode, gen_rtvec (1, loc));
9374 if ((INTEGRAL_TYPE_P (valtype)
9375 && GET_MODE_BITSIZE (TYPE_MODE (valtype)) < BITS_PER_WORD)
9376 || POINTER_TYPE_P (valtype))
9377 valmode = word_mode;
9378 else
9379 valmode = TYPE_MODE (valtype);
9381 if (TREE_CODE (valtype) == REAL_TYPE
9382 && !AGGREGATE_TYPE_P (valtype)
9383 && TYPE_MODE (valtype) != TFmode
9384 && !TARGET_SOFT_FLOAT)
9385 return gen_rtx_REG (valmode, 32);
9387 return gen_rtx_REG (valmode, 28);
9390 /* Implement the TARGET_LIBCALL_VALUE hook. */
9392 static rtx
9393 pa_libcall_value (machine_mode mode,
9394 const_rtx fun ATTRIBUTE_UNUSED)
9396 if (! TARGET_SOFT_FLOAT
9397 && (mode == SFmode || mode == DFmode))
9398 return gen_rtx_REG (mode, 32);
9399 else
9400 return gen_rtx_REG (mode, 28);
9403 /* Implement the TARGET_FUNCTION_VALUE_REGNO_P hook. */
9405 static bool
9406 pa_function_value_regno_p (const unsigned int regno)
9408 if (regno == 28
9409 || (! TARGET_SOFT_FLOAT && regno == 32))
9410 return true;
9412 return false;
9415 /* Update the data in CUM to advance over argument ARG. */
9417 static void
9418 pa_function_arg_advance (cumulative_args_t cum_v,
9419 const function_arg_info &arg)
9421 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
9422 int arg_size = pa_function_arg_size (arg.mode, arg.type);
9424 cum->nargs_prototype--;
9425 cum->words += (arg_size
9426 + ((cum->words & 01)
9427 && arg.type != NULL_TREE
9428 && arg_size > 1));
9431 /* Return the location of a parameter that is passed in a register or NULL
9432 if the parameter has any component that is passed in memory.
9434 This is new code and will be pushed to into the net sources after
9435 further testing.
9437 ??? We might want to restructure this so that it looks more like other
9438 ports. */
9439 static rtx
9440 pa_function_arg (cumulative_args_t cum_v, const function_arg_info &arg)
9442 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
9443 tree type = arg.type;
9444 machine_mode mode = arg.mode;
9445 int max_arg_words = (TARGET_64BIT ? 8 : 4);
9446 int alignment = 0;
9447 int arg_size;
9448 int fpr_reg_base;
9449 int gpr_reg_base;
9450 rtx retval;
9452 if (arg.end_marker_p ())
9453 return NULL_RTX;
9455 arg_size = pa_function_arg_size (mode, type);
9457 /* If this arg would be passed partially or totally on the stack, then
9458 this routine should return zero. pa_arg_partial_bytes will
9459 handle arguments which are split between regs and stack slots if
9460 the ABI mandates split arguments. */
9461 if (!TARGET_64BIT)
9463 /* The 32-bit ABI does not split arguments. */
9464 if (cum->words + arg_size > max_arg_words)
9465 return NULL_RTX;
9467 else
9469 if (arg_size > 1)
9470 alignment = cum->words & 1;
9471 if (cum->words + alignment >= max_arg_words)
9472 return NULL_RTX;
9475 /* The 32bit ABIs and the 64bit ABIs are rather different,
9476 particularly in their handling of FP registers. We might
9477 be able to cleverly share code between them, but I'm not
9478 going to bother in the hope that splitting them up results
9479 in code that is more easily understood. */
9481 if (TARGET_64BIT)
9483 /* Advance the base registers to their current locations.
9485 Remember, gprs grow towards smaller register numbers while
9486 fprs grow to higher register numbers. Also remember that
9487 although FP regs are 32-bit addressable, we pretend that
9488 the registers are 64-bits wide. */
9489 gpr_reg_base = 26 - cum->words;
9490 fpr_reg_base = 32 + cum->words;
9492 /* Arguments wider than one word and small aggregates need special
9493 treatment. */
9494 if (arg_size > 1
9495 || mode == BLKmode
9496 || (type && (AGGREGATE_TYPE_P (type)
9497 || TREE_CODE (type) == COMPLEX_TYPE
9498 || TREE_CODE (type) == VECTOR_TYPE)))
9500 /* Double-extended precision (80-bit), quad-precision (128-bit)
9501 and aggregates including complex numbers are aligned on
9502 128-bit boundaries. The first eight 64-bit argument slots
9503 are associated one-to-one, with general registers r26
9504 through r19, and also with floating-point registers fr4
9505 through fr11. Arguments larger than one word are always
9506 passed in general registers.
9508 Using a PARALLEL with a word mode register results in left
9509 justified data on a big-endian target. */
9511 rtx loc[8];
9512 int i, offset = 0, ub = arg_size;
9514 /* Align the base register. */
9515 gpr_reg_base -= alignment;
9517 ub = MIN (ub, max_arg_words - cum->words - alignment);
9518 for (i = 0; i < ub; i++)
9520 loc[i] = gen_rtx_EXPR_LIST (VOIDmode,
9521 gen_rtx_REG (DImode, gpr_reg_base),
9522 GEN_INT (offset));
9523 gpr_reg_base -= 1;
9524 offset += 8;
9527 return gen_rtx_PARALLEL (mode, gen_rtvec_v (ub, loc));
9530 else
9532 /* If the argument is larger than a word, then we know precisely
9533 which registers we must use. */
9534 if (arg_size > 1)
9536 if (cum->words)
9538 gpr_reg_base = 23;
9539 fpr_reg_base = 38;
9541 else
9543 gpr_reg_base = 25;
9544 fpr_reg_base = 34;
9547 /* Structures 5 to 8 bytes in size are passed in the general
9548 registers in the same manner as other non floating-point
9549 objects. The data is right-justified and zero-extended
9550 to 64 bits. This is opposite to the normal justification
9551 used on big endian targets and requires special treatment.
9552 We now define BLOCK_REG_PADDING to pad these objects.
9553 Aggregates, complex and vector types are passed in the same
9554 manner as structures. */
9555 if (mode == BLKmode
9556 || (type && (AGGREGATE_TYPE_P (type)
9557 || TREE_CODE (type) == COMPLEX_TYPE
9558 || TREE_CODE (type) == VECTOR_TYPE)))
9560 rtx loc = gen_rtx_EXPR_LIST (VOIDmode,
9561 gen_rtx_REG (DImode, gpr_reg_base),
9562 const0_rtx);
9563 return gen_rtx_PARALLEL (BLKmode, gen_rtvec (1, loc));
9566 else
9568 /* We have a single word (32 bits). A simple computation
9569 will get us the register #s we need. */
9570 gpr_reg_base = 26 - cum->words;
9571 fpr_reg_base = 32 + 2 * cum->words;
9575 /* Determine if the argument needs to be passed in both general and
9576 floating point registers. */
9577 if (((TARGET_PORTABLE_RUNTIME || TARGET_64BIT || TARGET_ELF32)
9578 /* If we are doing soft-float with portable runtime, then there
9579 is no need to worry about FP regs. */
9580 && !TARGET_SOFT_FLOAT
9581 /* The parameter must be some kind of scalar float, else we just
9582 pass it in integer registers. */
9583 && GET_MODE_CLASS (mode) == MODE_FLOAT
9584 /* The target function must not have a prototype. */
9585 && cum->nargs_prototype <= 0
9586 /* libcalls do not need to pass items in both FP and general
9587 registers. */
9588 && type != NULL_TREE
9589 /* All this hair applies to "outgoing" args only. This includes
9590 sibcall arguments setup with FUNCTION_INCOMING_ARG. */
9591 && !cum->incoming)
9592 /* Also pass outgoing floating arguments in both registers in indirect
9593 calls with the 32 bit ABI and the HP assembler since there is no
9594 way to the specify argument locations in static functions. */
9595 || (!TARGET_64BIT
9596 && !TARGET_GAS
9597 && !cum->incoming
9598 && cum->indirect
9599 && GET_MODE_CLASS (mode) == MODE_FLOAT))
9601 retval
9602 = gen_rtx_PARALLEL
9603 (mode,
9604 gen_rtvec (2,
9605 gen_rtx_EXPR_LIST (VOIDmode,
9606 gen_rtx_REG (mode, fpr_reg_base),
9607 const0_rtx),
9608 gen_rtx_EXPR_LIST (VOIDmode,
9609 gen_rtx_REG (mode, gpr_reg_base),
9610 const0_rtx)));
9612 else
9614 /* See if we should pass this parameter in a general register. */
9615 if (TARGET_SOFT_FLOAT
9616 /* Indirect calls in the normal 32bit ABI require all arguments
9617 to be passed in general registers. */
9618 || (!TARGET_PORTABLE_RUNTIME
9619 && !TARGET_64BIT
9620 && !TARGET_ELF32
9621 && cum->indirect)
9622 /* If the parameter is not a scalar floating-point parameter,
9623 then it belongs in GPRs. */
9624 || GET_MODE_CLASS (mode) != MODE_FLOAT
9625 /* Structure with single SFmode field belongs in GPR. */
9626 || (type && AGGREGATE_TYPE_P (type)))
9627 retval = gen_rtx_REG (mode, gpr_reg_base);
9628 else
9629 retval = gen_rtx_REG (mode, fpr_reg_base);
9631 return retval;
9634 /* Arguments larger than one word are double word aligned. */
9636 static unsigned int
9637 pa_function_arg_boundary (machine_mode mode, const_tree type)
9639 bool singleword = (type
9640 ? (integer_zerop (TYPE_SIZE (type))
9641 || !TREE_CONSTANT (TYPE_SIZE (type))
9642 || int_size_in_bytes (type) <= UNITS_PER_WORD)
9643 : GET_MODE_SIZE (mode) <= UNITS_PER_WORD);
9645 return singleword ? PARM_BOUNDARY : MAX_PARM_BOUNDARY;
9648 /* If this arg would be passed totally in registers or totally on the stack,
9649 then this routine should return zero. */
9651 static int
9652 pa_arg_partial_bytes (cumulative_args_t cum_v, const function_arg_info &arg)
9654 CUMULATIVE_ARGS *cum = get_cumulative_args (cum_v);
9655 unsigned int max_arg_words = 8;
9656 unsigned int offset = 0;
9658 if (!TARGET_64BIT)
9659 return 0;
9661 if (pa_function_arg_size (arg.mode, arg.type) > 1 && (cum->words & 1))
9662 offset = 1;
9664 if (cum->words + offset + pa_function_arg_size (arg.mode, arg.type)
9665 <= max_arg_words)
9666 /* Arg fits fully into registers. */
9667 return 0;
9668 else if (cum->words + offset >= max_arg_words)
9669 /* Arg fully on the stack. */
9670 return 0;
9671 else
9672 /* Arg is split. */
9673 return (max_arg_words - cum->words - offset) * UNITS_PER_WORD;
9677 /* A get_unnamed_section callback for switching to the text section.
9679 This function is only used with SOM. Because we don't support
9680 named subspaces, we can only create a new subspace or switch back
9681 to the default text subspace. */
9683 static void
9684 som_output_text_section_asm_op (const void *data ATTRIBUTE_UNUSED)
9686 gcc_assert (TARGET_SOM);
9687 if (TARGET_GAS)
9689 if (cfun && cfun->machine && !cfun->machine->in_nsubspa)
9691 /* We only want to emit a .nsubspa directive once at the
9692 start of the function. */
9693 cfun->machine->in_nsubspa = 1;
9695 /* Create a new subspace for the text. This provides
9696 better stub placement and one-only functions. */
9697 if (cfun->decl
9698 && DECL_ONE_ONLY (cfun->decl)
9699 && !DECL_WEAK (cfun->decl))
9701 output_section_asm_op ("\t.SPACE $TEXT$\n"
9702 "\t.NSUBSPA $CODE$,QUAD=0,ALIGN=8,"
9703 "ACCESS=44,SORT=24,COMDAT");
9704 return;
9707 else
9709 /* There isn't a current function or the body of the current
9710 function has been completed. So, we are changing to the
9711 text section to output debugging information. Thus, we
9712 need to forget that we are in the text section so that
9713 varasm.c will call us when text_section is selected again. */
9714 gcc_assert (!cfun || !cfun->machine
9715 || cfun->machine->in_nsubspa == 2);
9716 in_section = NULL;
9718 output_section_asm_op ("\t.SPACE $TEXT$\n\t.NSUBSPA $CODE$");
9719 return;
9721 output_section_asm_op ("\t.SPACE $TEXT$\n\t.SUBSPA $CODE$");
9724 /* A get_unnamed_section callback for switching to comdat data
9725 sections. This function is only used with SOM. */
9727 static void
9728 som_output_comdat_data_section_asm_op (const void *data)
9730 in_section = NULL;
9731 output_section_asm_op (data);
9734 /* Implement TARGET_ASM_INIT_SECTIONS. */
9736 static void
9737 pa_som_asm_init_sections (void)
9739 text_section
9740 = get_unnamed_section (0, som_output_text_section_asm_op, NULL);
9742 /* SOM puts readonly data in the default $LIT$ subspace when PIC code
9743 is not being generated. */
9744 som_readonly_data_section
9745 = get_unnamed_section (0, output_section_asm_op,
9746 "\t.SPACE $TEXT$\n\t.SUBSPA $LIT$");
9748 /* When secondary definitions are not supported, SOM makes readonly
9749 data one-only by creating a new $LIT$ subspace in $TEXT$ with
9750 the comdat flag. */
9751 som_one_only_readonly_data_section
9752 = get_unnamed_section (0, som_output_comdat_data_section_asm_op,
9753 "\t.SPACE $TEXT$\n"
9754 "\t.NSUBSPA $LIT$,QUAD=0,ALIGN=8,"
9755 "ACCESS=0x2c,SORT=16,COMDAT");
9758 /* When secondary definitions are not supported, SOM makes data one-only
9759 by creating a new $DATA$ subspace in $PRIVATE$ with the comdat flag. */
9760 som_one_only_data_section
9761 = get_unnamed_section (SECTION_WRITE,
9762 som_output_comdat_data_section_asm_op,
9763 "\t.SPACE $PRIVATE$\n"
9764 "\t.NSUBSPA $DATA$,QUAD=1,ALIGN=8,"
9765 "ACCESS=31,SORT=24,COMDAT");
9767 if (flag_tm)
9768 som_tm_clone_table_section
9769 = get_unnamed_section (0, output_section_asm_op,
9770 "\t.SPACE $PRIVATE$\n\t.SUBSPA $TM_CLONE_TABLE$");
9772 /* HPUX ld generates incorrect GOT entries for "T" fixups which
9773 reference data within the $TEXT$ space (for example constant
9774 strings in the $LIT$ subspace).
9776 The assemblers (GAS and HP as) both have problems with handling
9777 the difference of two symbols. This is the other correct way to
9778 reference constant data during PIC code generation.
9780 Thus, we can't put constant data needing relocation in the $TEXT$
9781 space during PIC generation.
9783 Previously, we placed all constant data into the $DATA$ subspace
9784 when generating PIC code. This reduces sharing, but it works
9785 correctly. Now we rely on pa_reloc_rw_mask() for section selection.
9786 This puts constant data not needing relocation into the $TEXT$ space. */
9787 readonly_data_section = som_readonly_data_section;
9789 /* We must not have a reference to an external symbol defined in a
9790 shared library in a readonly section, else the SOM linker will
9791 complain.
9793 So, we force exception information into the data section. */
9794 exception_section = data_section;
9797 /* Implement TARGET_ASM_TM_CLONE_TABLE_SECTION. */
9799 static section *
9800 pa_som_tm_clone_table_section (void)
9802 return som_tm_clone_table_section;
9805 /* On hpux10, the linker will give an error if we have a reference
9806 in the read-only data section to a symbol defined in a shared
9807 library. Therefore, expressions that might require a reloc
9808 cannot be placed in the read-only data section. */
9810 static section *
9811 pa_select_section (tree exp, int reloc,
9812 unsigned HOST_WIDE_INT align ATTRIBUTE_UNUSED)
9814 if (TREE_CODE (exp) == VAR_DECL
9815 && TREE_READONLY (exp)
9816 && !TREE_THIS_VOLATILE (exp)
9817 && DECL_INITIAL (exp)
9818 && (DECL_INITIAL (exp) == error_mark_node
9819 || TREE_CONSTANT (DECL_INITIAL (exp)))
9820 && !(reloc & pa_reloc_rw_mask ()))
9822 if (TARGET_SOM
9823 && DECL_ONE_ONLY (exp)
9824 && !DECL_WEAK (exp))
9825 return som_one_only_readonly_data_section;
9826 else
9827 return readonly_data_section;
9829 else if (CONSTANT_CLASS_P (exp)
9830 && !(reloc & pa_reloc_rw_mask ()))
9831 return readonly_data_section;
9832 else if (TARGET_SOM
9833 && TREE_CODE (exp) == VAR_DECL
9834 && DECL_ONE_ONLY (exp)
9835 && !DECL_WEAK (exp))
9836 return som_one_only_data_section;
9837 else
9838 return data_section;
9841 /* Implement pa_elf_select_rtx_section. If X is a function label operand
9842 and the function is in a COMDAT group, place the plabel reference in the
9843 .data.rel.ro.local section. The linker ignores references to symbols in
9844 discarded sections from this section. */
9846 static section *
9847 pa_elf_select_rtx_section (machine_mode mode, rtx x,
9848 unsigned HOST_WIDE_INT align)
9850 if (function_label_operand (x, VOIDmode))
9852 tree decl = SYMBOL_REF_DECL (x);
9854 if (!decl || (DECL_P (decl) && DECL_COMDAT_GROUP (decl)))
9855 return get_named_section (NULL, ".data.rel.ro.local", 1);
9858 return default_elf_select_rtx_section (mode, x, align);
9861 /* Implement pa_reloc_rw_mask. */
9863 static int
9864 pa_reloc_rw_mask (void)
9866 if (flag_pic || (TARGET_SOM && !TARGET_HPUX_11))
9867 return 3;
9869 /* HP linker does not support global relocs in readonly memory. */
9870 return TARGET_SOM ? 2 : 0;
9873 static void
9874 pa_globalize_label (FILE *stream, const char *name)
9876 /* We only handle DATA objects here, functions are globalized in
9877 ASM_DECLARE_FUNCTION_NAME. */
9878 if (! FUNCTION_NAME_P (name))
9880 fputs ("\t.EXPORT ", stream);
9881 assemble_name (stream, name);
9882 fputs (",DATA\n", stream);
9886 /* Worker function for TARGET_STRUCT_VALUE_RTX. */
9888 static rtx
9889 pa_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
9890 int incoming ATTRIBUTE_UNUSED)
9892 return gen_rtx_REG (Pmode, PA_STRUCT_VALUE_REGNUM);
9895 /* Worker function for TARGET_RETURN_IN_MEMORY. */
9897 bool
9898 pa_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
9900 /* SOM ABI says that objects larger than 64 bits are returned in memory.
9901 PA64 ABI says that objects larger than 128 bits are returned in memory.
9902 Note, int_size_in_bytes can return -1 if the size of the object is
9903 variable or larger than the maximum value that can be expressed as
9904 a HOST_WIDE_INT. It can also return zero for an empty type. The
9905 simplest way to handle variable and empty types is to pass them in
9906 memory. This avoids problems in defining the boundaries of argument
9907 slots, allocating registers, etc. */
9908 return (int_size_in_bytes (type) > (TARGET_64BIT ? 16 : 8)
9909 || int_size_in_bytes (type) <= 0);
9912 /* Structure to hold declaration and name of external symbols that are
9913 emitted by GCC. We generate a vector of these symbols and output them
9914 at the end of the file if and only if SYMBOL_REF_REFERENCED_P is true.
9915 This avoids putting out names that are never really used. */
9917 typedef struct GTY(()) extern_symbol
9919 tree decl;
9920 const char *name;
9921 } extern_symbol;
9923 /* Define gc'd vector type for extern_symbol. */
9925 /* Vector of extern_symbol pointers. */
9926 static GTY(()) vec<extern_symbol, va_gc> *extern_symbols;
9928 #ifdef ASM_OUTPUT_EXTERNAL_REAL
9929 /* Mark DECL (name NAME) as an external reference (assembler output
9930 file FILE). This saves the names to output at the end of the file
9931 if actually referenced. */
9933 void
9934 pa_hpux_asm_output_external (FILE *file, tree decl, const char *name)
9936 gcc_assert (file == asm_out_file);
9937 extern_symbol p = {decl, name};
9938 vec_safe_push (extern_symbols, p);
9940 #endif
9942 /* Output text required at the end of an assembler file.
9943 This includes deferred plabels and .import directives for
9944 all external symbols that were actually referenced. */
9946 static void
9947 pa_file_end (void)
9949 #ifdef ASM_OUTPUT_EXTERNAL_REAL
9950 unsigned int i;
9951 extern_symbol *p;
9953 if (!NO_DEFERRED_PROFILE_COUNTERS)
9954 output_deferred_profile_counters ();
9955 #endif
9957 output_deferred_plabels ();
9959 #ifdef ASM_OUTPUT_EXTERNAL_REAL
9960 for (i = 0; vec_safe_iterate (extern_symbols, i, &p); i++)
9962 tree decl = p->decl;
9964 if (!TREE_ASM_WRITTEN (decl)
9965 && SYMBOL_REF_REFERENCED_P (XEXP (DECL_RTL (decl), 0)))
9966 ASM_OUTPUT_EXTERNAL_REAL (asm_out_file, decl, p->name);
9969 vec_free (extern_symbols);
9970 #endif
9972 if (NEED_INDICATE_EXEC_STACK)
9973 file_end_indicate_exec_stack ();
9976 /* Implement TARGET_CAN_CHANGE_MODE_CLASS. */
9978 static bool
9979 pa_can_change_mode_class (machine_mode from, machine_mode to,
9980 reg_class_t rclass)
9982 if (from == to)
9983 return true;
9985 if (GET_MODE_SIZE (from) == GET_MODE_SIZE (to))
9986 return true;
9988 /* Reject changes to/from modes with zero size. */
9989 if (!GET_MODE_SIZE (from) || !GET_MODE_SIZE (to))
9990 return false;
9992 /* Reject changes to/from complex and vector modes. */
9993 if (COMPLEX_MODE_P (from) || VECTOR_MODE_P (from)
9994 || COMPLEX_MODE_P (to) || VECTOR_MODE_P (to))
9995 return false;
9997 /* There is no way to load QImode or HImode values directly from memory
9998 to a FP register. SImode loads to the FP registers are not zero
9999 extended. On the 64-bit target, this conflicts with the definition
10000 of LOAD_EXTEND_OP. Thus, we reject all mode changes in the FP registers
10001 except for DImode to SImode on the 64-bit target. It is handled by
10002 register renaming in pa_print_operand. */
10003 if (MAYBE_FP_REG_CLASS_P (rclass))
10004 return TARGET_64BIT && from == DImode && to == SImode;
10006 /* TARGET_HARD_REGNO_MODE_OK places modes with sizes larger than a word
10007 in specific sets of registers. Thus, we cannot allow changing
10008 to a larger mode when it's larger than a word. */
10009 if (GET_MODE_SIZE (to) > UNITS_PER_WORD
10010 && GET_MODE_SIZE (to) > GET_MODE_SIZE (from))
10011 return false;
10013 return true;
10016 /* Implement TARGET_MODES_TIEABLE_P.
10018 We should return FALSE for QImode and HImode because these modes
10019 are not ok in the floating-point registers. However, this prevents
10020 tieing these modes to SImode and DImode in the general registers.
10021 So, this isn't a good idea. We rely on TARGET_HARD_REGNO_MODE_OK and
10022 TARGET_CAN_CHANGE_MODE_CLASS to prevent these modes from being used
10023 in the floating-point registers. */
10025 static bool
10026 pa_modes_tieable_p (machine_mode mode1, machine_mode mode2)
10028 /* Don't tie modes in different classes. */
10029 if (GET_MODE_CLASS (mode1) != GET_MODE_CLASS (mode2))
10030 return false;
10032 return true;
10036 /* Length in units of the trampoline instruction code. */
10038 #define TRAMPOLINE_CODE_SIZE (TARGET_64BIT ? 24 : (TARGET_PA_20 ? 36 : 48))
10041 /* Output assembler code for a block containing the constant parts
10042 of a trampoline, leaving space for the variable parts.\
10044 The trampoline sets the static chain pointer to STATIC_CHAIN_REGNUM
10045 and then branches to the specified routine.
10047 This code template is copied from text segment to stack location
10048 and then patched with pa_trampoline_init to contain valid values,
10049 and then entered as a subroutine.
10051 It is best to keep this as small as possible to avoid having to
10052 flush multiple lines in the cache. */
10054 static void
10055 pa_asm_trampoline_template (FILE *f)
10057 if (!TARGET_64BIT)
10059 if (TARGET_PA_20)
10061 fputs ("\tmfia %r20\n", f);
10062 fputs ("\tldw 48(%r20),%r22\n", f);
10063 fputs ("\tcopy %r22,%r21\n", f);
10064 fputs ("\tbb,>=,n %r22,30,.+16\n", f);
10065 fputs ("\tdepwi 0,31,2,%r22\n", f);
10066 fputs ("\tldw 0(%r22),%r21\n", f);
10067 fputs ("\tldw 4(%r22),%r19\n", f);
10068 fputs ("\tbve (%r21)\n", f);
10069 fputs ("\tldw 52(%r1),%r29\n", f);
10070 fputs ("\t.word 0\n", f);
10071 fputs ("\t.word 0\n", f);
10072 fputs ("\t.word 0\n", f);
10074 else
10076 if (ASSEMBLER_DIALECT == 0)
10078 fputs ("\tbl .+8,%r20\n", f);
10079 fputs ("\tdepi 0,31,2,%r20\n", f);
10081 else
10083 fputs ("\tb,l .+8,%r20\n", f);
10084 fputs ("\tdepwi 0,31,2,%r20\n", f);
10086 fputs ("\tldw 40(%r20),%r22\n", f);
10087 fputs ("\tcopy %r22,%r21\n", f);
10088 fputs ("\tbb,>=,n %r22,30,.+16\n", f);
10089 if (ASSEMBLER_DIALECT == 0)
10090 fputs ("\tdepi 0,31,2,%r22\n", f);
10091 else
10092 fputs ("\tdepwi 0,31,2,%r22\n", f);
10093 fputs ("\tldw 0(%r22),%r21\n", f);
10094 fputs ("\tldw 4(%r22),%r19\n", f);
10095 fputs ("\tldsid (%r21),%r1\n", f);
10096 fputs ("\tmtsp %r1,%sr0\n", f);
10097 fputs ("\tbe 0(%sr0,%r21)\n", f);
10098 fputs ("\tldw 44(%r20),%r29\n", f);
10100 fputs ("\t.word 0\n", f);
10101 fputs ("\t.word 0\n", f);
10102 fputs ("\t.word 0\n", f);
10103 fputs ("\t.word 0\n", f);
10105 else
10107 fputs ("\t.dword 0\n", f);
10108 fputs ("\t.dword 0\n", f);
10109 fputs ("\t.dword 0\n", f);
10110 fputs ("\t.dword 0\n", f);
10111 fputs ("\tmfia %r31\n", f);
10112 fputs ("\tldd 24(%r31),%r27\n", f);
10113 fputs ("\tldd 32(%r31),%r31\n", f);
10114 fputs ("\tldd 16(%r27),%r1\n", f);
10115 fputs ("\tbve (%r1)\n", f);
10116 fputs ("\tldd 24(%r27),%r27\n", f);
10117 fputs ("\t.dword 0 ; fptr\n", f);
10118 fputs ("\t.dword 0 ; static link\n", f);
10122 /* Emit RTL insns to initialize the variable parts of a trampoline.
10123 FNADDR is an RTX for the address of the function's pure code.
10124 CXT is an RTX for the static chain value for the function.
10126 Move the function address to the trampoline template at offset 48.
10127 Move the static chain value to trampoline template at offset 52.
10128 Move the trampoline address to trampoline template at offset 56.
10129 Move r19 to trampoline template at offset 60. The latter two
10130 words create a plabel for the indirect call to the trampoline.
10132 A similar sequence is used for the 64-bit port but the plabel is
10133 at the beginning of the trampoline.
10135 Finally, the cache entries for the trampoline code are flushed.
10136 This is necessary to ensure that the trampoline instruction sequence
10137 is written to memory prior to any attempts at prefetching the code
10138 sequence. */
10140 static void
10141 pa_trampoline_init (rtx m_tramp, tree fndecl, rtx chain_value)
10143 rtx fnaddr = XEXP (DECL_RTL (fndecl), 0);
10144 rtx start_addr = gen_reg_rtx (Pmode);
10145 rtx end_addr = gen_reg_rtx (Pmode);
10146 rtx line_length = gen_reg_rtx (Pmode);
10147 rtx r_tramp, tmp;
10149 emit_block_move (m_tramp, assemble_trampoline_template (),
10150 GEN_INT (TRAMPOLINE_SIZE), BLOCK_OP_NORMAL);
10151 r_tramp = force_reg (Pmode, XEXP (m_tramp, 0));
10153 if (!TARGET_64BIT)
10155 tmp = adjust_address (m_tramp, Pmode, 48);
10156 emit_move_insn (tmp, fnaddr);
10157 tmp = adjust_address (m_tramp, Pmode, 52);
10158 emit_move_insn (tmp, chain_value);
10160 /* Create a fat pointer for the trampoline. */
10161 tmp = adjust_address (m_tramp, Pmode, 56);
10162 emit_move_insn (tmp, r_tramp);
10163 tmp = adjust_address (m_tramp, Pmode, 60);
10164 emit_move_insn (tmp, gen_rtx_REG (Pmode, 19));
10166 /* fdc and fic only use registers for the address to flush,
10167 they do not accept integer displacements. We align the
10168 start and end addresses to the beginning of their respective
10169 cache lines to minimize the number of lines flushed. */
10170 emit_insn (gen_andsi3 (start_addr, r_tramp,
10171 GEN_INT (-MIN_CACHELINE_SIZE)));
10172 tmp = force_reg (Pmode, plus_constant (Pmode, r_tramp,
10173 TRAMPOLINE_CODE_SIZE-1));
10174 emit_insn (gen_andsi3 (end_addr, tmp,
10175 GEN_INT (-MIN_CACHELINE_SIZE)));
10176 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));
10177 emit_insn (gen_dcacheflushsi (start_addr, end_addr, line_length));
10178 emit_insn (gen_icacheflushsi (start_addr, end_addr, line_length,
10179 gen_reg_rtx (Pmode),
10180 gen_reg_rtx (Pmode)));
10182 else
10184 tmp = adjust_address (m_tramp, Pmode, 56);
10185 emit_move_insn (tmp, fnaddr);
10186 tmp = adjust_address (m_tramp, Pmode, 64);
10187 emit_move_insn (tmp, chain_value);
10189 /* Create a fat pointer for the trampoline. */
10190 tmp = adjust_address (m_tramp, Pmode, 16);
10191 emit_move_insn (tmp, force_reg (Pmode, plus_constant (Pmode,
10192 r_tramp, 32)));
10193 tmp = adjust_address (m_tramp, Pmode, 24);
10194 emit_move_insn (tmp, gen_rtx_REG (Pmode, 27));
10196 /* fdc and fic only use registers for the address to flush,
10197 they do not accept integer displacements. We align the
10198 start and end addresses to the beginning of their respective
10199 cache lines to minimize the number of lines flushed. */
10200 tmp = force_reg (Pmode, plus_constant (Pmode, r_tramp, 32));
10201 emit_insn (gen_anddi3 (start_addr, tmp,
10202 GEN_INT (-MIN_CACHELINE_SIZE)));
10203 tmp = force_reg (Pmode, plus_constant (Pmode, tmp,
10204 TRAMPOLINE_CODE_SIZE - 1));
10205 emit_insn (gen_anddi3 (end_addr, tmp,
10206 GEN_INT (-MIN_CACHELINE_SIZE)));
10207 emit_move_insn (line_length, GEN_INT (MIN_CACHELINE_SIZE));
10208 emit_insn (gen_dcacheflushdi (start_addr, end_addr, line_length));
10209 emit_insn (gen_icacheflushdi (start_addr, end_addr, line_length,
10210 gen_reg_rtx (Pmode),
10211 gen_reg_rtx (Pmode)));
10214 #ifdef HAVE_ENABLE_EXECUTE_STACK
10215 emit_library_call (gen_rtx_SYMBOL_REF (Pmode, "__enable_execute_stack"),
10216 LCT_NORMAL, VOIDmode, XEXP (m_tramp, 0), Pmode);
10217 #endif
10220 /* Perform any machine-specific adjustment in the address of the trampoline.
10221 ADDR contains the address that was passed to pa_trampoline_init.
10222 Adjust the trampoline address to point to the plabel at offset 56. */
10224 static rtx
10225 pa_trampoline_adjust_address (rtx addr)
10227 if (!TARGET_64BIT)
10228 addr = memory_address (Pmode, plus_constant (Pmode, addr, 58));
10229 return addr;
10232 static rtx
10233 pa_delegitimize_address (rtx orig_x)
10235 rtx x = delegitimize_mem_from_attrs (orig_x);
10237 if (GET_CODE (x) == LO_SUM
10238 && GET_CODE (XEXP (x, 1)) == UNSPEC
10239 && XINT (XEXP (x, 1), 1) == UNSPEC_DLTIND14R)
10240 return gen_const_mem (Pmode, XVECEXP (XEXP (x, 1), 0, 0));
10241 return x;
10244 static rtx
10245 pa_internal_arg_pointer (void)
10247 /* The argument pointer and the hard frame pointer are the same in
10248 the 32-bit runtime, so we don't need a copy. */
10249 if (TARGET_64BIT)
10250 return copy_to_reg (virtual_incoming_args_rtx);
10251 else
10252 return virtual_incoming_args_rtx;
10255 /* Given FROM and TO register numbers, say whether this elimination is allowed.
10256 Frame pointer elimination is automatically handled. */
10258 static bool
10259 pa_can_eliminate (const int from, const int to)
10261 /* The argument cannot be eliminated in the 64-bit runtime. */
10262 if (TARGET_64BIT && from == ARG_POINTER_REGNUM)
10263 return false;
10265 return (from == HARD_FRAME_POINTER_REGNUM && to == STACK_POINTER_REGNUM
10266 ? ! frame_pointer_needed
10267 : true);
10270 /* Define the offset between two registers, FROM to be eliminated and its
10271 replacement TO, at the start of a routine. */
10272 HOST_WIDE_INT
10273 pa_initial_elimination_offset (int from, int to)
10275 HOST_WIDE_INT offset;
10277 if ((from == HARD_FRAME_POINTER_REGNUM || from == FRAME_POINTER_REGNUM)
10278 && to == STACK_POINTER_REGNUM)
10279 offset = -pa_compute_frame_size (get_frame_size (), 0);
10280 else if (from == FRAME_POINTER_REGNUM && to == HARD_FRAME_POINTER_REGNUM)
10281 offset = 0;
10282 else
10283 gcc_unreachable ();
10285 return offset;
10288 static void
10289 pa_conditional_register_usage (void)
10291 int i;
10293 if (!TARGET_64BIT && !TARGET_PA_11)
10295 for (i = 56; i <= FP_REG_LAST; i++)
10296 fixed_regs[i] = call_used_regs[i] = 1;
10297 for (i = 33; i < 56; i += 2)
10298 fixed_regs[i] = call_used_regs[i] = 1;
10300 if (TARGET_DISABLE_FPREGS || TARGET_SOFT_FLOAT)
10302 for (i = FP_REG_FIRST; i <= FP_REG_LAST; i++)
10303 fixed_regs[i] = call_used_regs[i] = 1;
10305 if (flag_pic)
10306 fixed_regs[PIC_OFFSET_TABLE_REGNUM] = 1;
10309 /* Target hook for c_mode_for_suffix. */
10311 static machine_mode
10312 pa_c_mode_for_suffix (char suffix)
10314 if (HPUX_LONG_DOUBLE_LIBRARY)
10316 if (suffix == 'q')
10317 return TFmode;
10320 return VOIDmode;
10323 /* Target hook for function_section. */
10325 static section *
10326 pa_function_section (tree decl, enum node_frequency freq,
10327 bool startup, bool exit)
10329 /* Put functions in text section if target doesn't have named sections. */
10330 if (!targetm_common.have_named_sections)
10331 return text_section;
10333 /* Force nested functions into the same section as the containing
10334 function. */
10335 if (decl
10336 && DECL_SECTION_NAME (decl) == NULL
10337 && DECL_CONTEXT (decl) != NULL_TREE
10338 && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL
10339 && DECL_SECTION_NAME (DECL_CONTEXT (decl)) == NULL)
10340 return function_section (DECL_CONTEXT (decl));
10342 /* Otherwise, use the default function section. */
10343 return default_function_section (decl, freq, startup, exit);
10346 /* Implement TARGET_LEGITIMATE_CONSTANT_P.
10348 In 64-bit mode, we reject CONST_DOUBLES. We also reject CONST_INTS
10349 that need more than three instructions to load prior to reload. This
10350 limit is somewhat arbitrary. It takes three instructions to load a
10351 CONST_INT from memory but two are memory accesses. It may be better
10352 to increase the allowed range for CONST_INTS. We may also be able
10353 to handle CONST_DOUBLES. */
10355 static bool
10356 pa_legitimate_constant_p (machine_mode mode, rtx x)
10358 if (GET_MODE_CLASS (mode) == MODE_FLOAT && x != CONST0_RTX (mode))
10359 return false;
10361 if (!NEW_HP_ASSEMBLER && !TARGET_GAS && GET_CODE (x) == LABEL_REF)
10362 return false;
10364 /* TLS_MODEL_GLOBAL_DYNAMIC and TLS_MODEL_LOCAL_DYNAMIC are not
10365 legitimate constants. The other variants can't be handled by
10366 the move patterns after reload starts. */
10367 if (tls_referenced_p (x))
10368 return false;
10370 if (TARGET_64BIT && GET_CODE (x) == CONST_DOUBLE)
10371 return false;
10373 if (TARGET_64BIT
10374 && HOST_BITS_PER_WIDE_INT > 32
10375 && GET_CODE (x) == CONST_INT
10376 && !reload_in_progress
10377 && !reload_completed
10378 && !LEGITIMATE_64BIT_CONST_INT_P (INTVAL (x))
10379 && !pa_cint_ok_for_move (UINTVAL (x)))
10380 return false;
10382 if (function_label_operand (x, mode))
10383 return false;
10385 return true;
10388 /* Implement TARGET_SECTION_TYPE_FLAGS. */
10390 static unsigned int
10391 pa_section_type_flags (tree decl, const char *name, int reloc)
10393 unsigned int flags;
10395 flags = default_section_type_flags (decl, name, reloc);
10397 /* Function labels are placed in the constant pool. This can
10398 cause a section conflict if decls are put in ".data.rel.ro"
10399 or ".data.rel.ro.local" using the __attribute__ construct. */
10400 if (strcmp (name, ".data.rel.ro") == 0
10401 || strcmp (name, ".data.rel.ro.local") == 0)
10402 flags |= SECTION_WRITE | SECTION_RELRO;
10404 return flags;
10407 /* pa_legitimate_address_p recognizes an RTL expression that is a
10408 valid memory address for an instruction. The MODE argument is the
10409 machine mode for the MEM expression that wants to use this address.
10411 On HP PA-RISC, the legitimate address forms are REG+SMALLINT,
10412 REG+REG, and REG+(REG*SCALE). The indexed address forms are only
10413 available with floating point loads and stores, and integer loads.
10414 We get better code by allowing indexed addresses in the initial
10415 RTL generation.
10417 The acceptance of indexed addresses as legitimate implies that we
10418 must provide patterns for doing indexed integer stores, or the move
10419 expanders must force the address of an indexed store to a register.
10420 We have adopted the latter approach.
10422 Another function of pa_legitimate_address_p is to ensure that
10423 the base register is a valid pointer for indexed instructions.
10424 On targets that have non-equivalent space registers, we have to
10425 know at the time of assembler output which register in a REG+REG
10426 pair is the base register. The REG_POINTER flag is sometimes lost
10427 in reload and the following passes, so it can't be relied on during
10428 code generation. Thus, we either have to canonicalize the order
10429 of the registers in REG+REG indexed addresses, or treat REG+REG
10430 addresses separately and provide patterns for both permutations.
10432 The latter approach requires several hundred additional lines of
10433 code in pa.md. The downside to canonicalizing is that a PLUS
10434 in the wrong order can't combine to form to make a scaled indexed
10435 memory operand. As we won't need to canonicalize the operands if
10436 the REG_POINTER lossage can be fixed, it seems better canonicalize.
10438 We initially break out scaled indexed addresses in canonical order
10439 in pa_emit_move_sequence. LEGITIMIZE_ADDRESS also canonicalizes
10440 scaled indexed addresses during RTL generation. However, fold_rtx
10441 has its own opinion on how the operands of a PLUS should be ordered.
10442 If one of the operands is equivalent to a constant, it will make
10443 that operand the second operand. As the base register is likely to
10444 be equivalent to a SYMBOL_REF, we have made it the second operand.
10446 pa_legitimate_address_p accepts REG+REG as legitimate when the
10447 operands are in the order INDEX+BASE on targets with non-equivalent
10448 space registers, and in any order on targets with equivalent space
10449 registers. It accepts both MULT+BASE and BASE+MULT for scaled indexing.
10451 We treat a SYMBOL_REF as legitimate if it is part of the current
10452 function's constant-pool, because such addresses can actually be
10453 output as REG+SMALLINT. */
10455 static bool
10456 pa_legitimate_address_p (machine_mode mode, rtx x, bool strict)
10458 if ((REG_P (x)
10459 && (strict ? STRICT_REG_OK_FOR_BASE_P (x)
10460 : REG_OK_FOR_BASE_P (x)))
10461 || ((GET_CODE (x) == PRE_DEC || GET_CODE (x) == POST_DEC
10462 || GET_CODE (x) == PRE_INC || GET_CODE (x) == POST_INC)
10463 && REG_P (XEXP (x, 0))
10464 && (strict ? STRICT_REG_OK_FOR_BASE_P (XEXP (x, 0))
10465 : REG_OK_FOR_BASE_P (XEXP (x, 0)))))
10466 return true;
10468 if (GET_CODE (x) == PLUS)
10470 rtx base, index;
10472 /* For REG+REG, the base register should be in XEXP (x, 1),
10473 so check it first. */
10474 if (REG_P (XEXP (x, 1))
10475 && (strict ? STRICT_REG_OK_FOR_BASE_P (XEXP (x, 1))
10476 : REG_OK_FOR_BASE_P (XEXP (x, 1))))
10477 base = XEXP (x, 1), index = XEXP (x, 0);
10478 else if (REG_P (XEXP (x, 0))
10479 && (strict ? STRICT_REG_OK_FOR_BASE_P (XEXP (x, 0))
10480 : REG_OK_FOR_BASE_P (XEXP (x, 0))))
10481 base = XEXP (x, 0), index = XEXP (x, 1);
10482 else
10483 return false;
10485 if (GET_CODE (index) == CONST_INT)
10487 if (INT_5_BITS (index))
10488 return true;
10490 /* When INT14_OK_STRICT is false, a secondary reload is needed
10491 to adjust the displacement of SImode and DImode floating point
10492 instructions but this may fail when the register also needs
10493 reloading. So, we return false when STRICT is true. We
10494 also reject long displacements for float mode addresses since
10495 the majority of accesses will use floating point instructions
10496 that don't support 14-bit offsets. */
10497 if (!INT14_OK_STRICT
10498 && (strict || !(reload_in_progress || reload_completed))
10499 && mode != QImode
10500 && mode != HImode)
10501 return false;
10503 return base14_operand (index, mode);
10506 if (!TARGET_DISABLE_INDEXING
10507 /* Only accept the "canonical" INDEX+BASE operand order
10508 on targets with non-equivalent space registers. */
10509 && (TARGET_NO_SPACE_REGS
10510 ? REG_P (index)
10511 : (base == XEXP (x, 1) && REG_P (index)
10512 && (reload_completed
10513 || (reload_in_progress && HARD_REGISTER_P (base))
10514 || REG_POINTER (base))
10515 && (reload_completed
10516 || (reload_in_progress && HARD_REGISTER_P (index))
10517 || !REG_POINTER (index))))
10518 && MODE_OK_FOR_UNSCALED_INDEXING_P (mode)
10519 && (strict ? STRICT_REG_OK_FOR_INDEX_P (index)
10520 : REG_OK_FOR_INDEX_P (index))
10521 && borx_reg_operand (base, Pmode)
10522 && borx_reg_operand (index, Pmode))
10523 return true;
10525 if (!TARGET_DISABLE_INDEXING
10526 && GET_CODE (index) == MULT
10527 /* Only accept base operands with the REG_POINTER flag prior to
10528 reload on targets with non-equivalent space registers. */
10529 && (TARGET_NO_SPACE_REGS
10530 || (base == XEXP (x, 1)
10531 && (reload_completed
10532 || (reload_in_progress && HARD_REGISTER_P (base))
10533 || REG_POINTER (base))))
10534 && REG_P (XEXP (index, 0))
10535 && GET_MODE (XEXP (index, 0)) == Pmode
10536 && MODE_OK_FOR_SCALED_INDEXING_P (mode)
10537 && (strict ? STRICT_REG_OK_FOR_INDEX_P (XEXP (index, 0))
10538 : REG_OK_FOR_INDEX_P (XEXP (index, 0)))
10539 && GET_CODE (XEXP (index, 1)) == CONST_INT
10540 && INTVAL (XEXP (index, 1))
10541 == (HOST_WIDE_INT) GET_MODE_SIZE (mode)
10542 && borx_reg_operand (base, Pmode))
10543 return true;
10545 return false;
10548 if (GET_CODE (x) == LO_SUM)
10550 rtx y = XEXP (x, 0);
10552 if (GET_CODE (y) == SUBREG)
10553 y = SUBREG_REG (y);
10555 if (REG_P (y)
10556 && (strict ? STRICT_REG_OK_FOR_BASE_P (y)
10557 : REG_OK_FOR_BASE_P (y)))
10559 /* Needed for -fPIC */
10560 if (mode == Pmode
10561 && GET_CODE (XEXP (x, 1)) == UNSPEC)
10562 return true;
10564 if (!INT14_OK_STRICT
10565 && (strict || !(reload_in_progress || reload_completed))
10566 && mode != QImode
10567 && mode != HImode)
10568 return false;
10570 if (CONSTANT_P (XEXP (x, 1)))
10571 return true;
10573 return false;
10576 if (GET_CODE (x) == CONST_INT && INT_5_BITS (x))
10577 return true;
10579 return false;
10582 /* Look for machine dependent ways to make the invalid address AD a
10583 valid address.
10585 For the PA, transform:
10587 memory(X + <large int>)
10589 into:
10591 if (<large int> & mask) >= 16
10592 Y = (<large int> & ~mask) + mask + 1 Round up.
10593 else
10594 Y = (<large int> & ~mask) Round down.
10595 Z = X + Y
10596 memory (Z + (<large int> - Y));
10598 This makes reload inheritance and reload_cse work better since Z
10599 can be reused.
10601 There may be more opportunities to improve code with this hook. */
10604 pa_legitimize_reload_address (rtx ad, machine_mode mode,
10605 int opnum, int type,
10606 int ind_levels ATTRIBUTE_UNUSED)
10608 long offset, newoffset, mask;
10609 rtx new_rtx, temp = NULL_RTX;
10611 mask = (GET_MODE_CLASS (mode) == MODE_FLOAT
10612 && !INT14_OK_STRICT ? 0x1f : 0x3fff);
10614 if (optimize && GET_CODE (ad) == PLUS)
10615 temp = simplify_binary_operation (PLUS, Pmode,
10616 XEXP (ad, 0), XEXP (ad, 1));
10618 new_rtx = temp ? temp : ad;
10620 if (optimize
10621 && GET_CODE (new_rtx) == PLUS
10622 && GET_CODE (XEXP (new_rtx, 0)) == REG
10623 && GET_CODE (XEXP (new_rtx, 1)) == CONST_INT)
10625 offset = INTVAL (XEXP ((new_rtx), 1));
10627 /* Choose rounding direction. Round up if we are >= halfway. */
10628 if ((offset & mask) >= ((mask + 1) / 2))
10629 newoffset = (offset & ~mask) + mask + 1;
10630 else
10631 newoffset = offset & ~mask;
10633 /* Ensure that long displacements are aligned. */
10634 if (mask == 0x3fff
10635 && (GET_MODE_CLASS (mode) == MODE_FLOAT
10636 || (TARGET_64BIT && (mode) == DImode)))
10637 newoffset &= ~(GET_MODE_SIZE (mode) - 1);
10639 if (newoffset != 0 && VAL_14_BITS_P (newoffset))
10641 temp = gen_rtx_PLUS (Pmode, XEXP (new_rtx, 0),
10642 GEN_INT (newoffset));
10643 ad = gen_rtx_PLUS (Pmode, temp, GEN_INT (offset - newoffset));
10644 push_reload (XEXP (ad, 0), 0, &XEXP (ad, 0), 0,
10645 BASE_REG_CLASS, Pmode, VOIDmode, 0, 0,
10646 opnum, (enum reload_type) type);
10647 return ad;
10651 return NULL_RTX;
10654 /* Output address vector. */
10656 void
10657 pa_output_addr_vec (rtx lab, rtx body)
10659 int idx, vlen = XVECLEN (body, 0);
10661 if (!TARGET_SOM)
10662 fputs ("\t.align 4\n", asm_out_file);
10663 targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (lab));
10664 if (TARGET_GAS)
10665 fputs ("\t.begin_brtab\n", asm_out_file);
10666 for (idx = 0; idx < vlen; idx++)
10668 ASM_OUTPUT_ADDR_VEC_ELT
10669 (asm_out_file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
10671 if (TARGET_GAS)
10672 fputs ("\t.end_brtab\n", asm_out_file);
10675 /* Output address difference vector. */
10677 void
10678 pa_output_addr_diff_vec (rtx lab, rtx body)
10680 rtx base = XEXP (XEXP (body, 0), 0);
10681 int idx, vlen = XVECLEN (body, 1);
10683 targetm.asm_out.internal_label (asm_out_file, "L", CODE_LABEL_NUMBER (lab));
10684 if (TARGET_GAS)
10685 fputs ("\t.begin_brtab\n", asm_out_file);
10686 for (idx = 0; idx < vlen; idx++)
10688 ASM_OUTPUT_ADDR_DIFF_ELT
10689 (asm_out_file,
10690 body,
10691 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
10692 CODE_LABEL_NUMBER (base));
10694 if (TARGET_GAS)
10695 fputs ("\t.end_brtab\n", asm_out_file);
10698 /* This is a helper function for the other atomic operations. This function
10699 emits a loop that contains SEQ that iterates until a compare-and-swap
10700 operation at the end succeeds. MEM is the memory to be modified. SEQ is
10701 a set of instructions that takes a value from OLD_REG as an input and
10702 produces a value in NEW_REG as an output. Before SEQ, OLD_REG will be
10703 set to the current contents of MEM. After SEQ, a compare-and-swap will
10704 attempt to update MEM with NEW_REG. The function returns true when the
10705 loop was generated successfully. */
10707 static bool
10708 pa_expand_compare_and_swap_loop (rtx mem, rtx old_reg, rtx new_reg, rtx seq)
10710 machine_mode mode = GET_MODE (mem);
10711 rtx_code_label *label;
10712 rtx cmp_reg, success, oldval;
10714 /* The loop we want to generate looks like
10716 cmp_reg = mem;
10717 label:
10718 old_reg = cmp_reg;
10719 seq;
10720 (success, cmp_reg) = compare-and-swap(mem, old_reg, new_reg)
10721 if (success)
10722 goto label;
10724 Note that we only do the plain load from memory once. Subsequent
10725 iterations use the value loaded by the compare-and-swap pattern. */
10727 label = gen_label_rtx ();
10728 cmp_reg = gen_reg_rtx (mode);
10730 emit_move_insn (cmp_reg, mem);
10731 emit_label (label);
10732 emit_move_insn (old_reg, cmp_reg);
10733 if (seq)
10734 emit_insn (seq);
10736 success = NULL_RTX;
10737 oldval = cmp_reg;
10738 if (!expand_atomic_compare_and_swap (&success, &oldval, mem, old_reg,
10739 new_reg, false, MEMMODEL_SYNC_SEQ_CST,
10740 MEMMODEL_RELAXED))
10741 return false;
10743 if (oldval != cmp_reg)
10744 emit_move_insn (cmp_reg, oldval);
10746 /* Mark this jump predicted not taken. */
10747 emit_cmp_and_jump_insns (success, const0_rtx, EQ, const0_rtx,
10748 GET_MODE (success), 1, label,
10749 profile_probability::guessed_never ());
10750 return true;
10753 /* This function tries to implement an atomic exchange operation using a
10754 compare_and_swap loop. VAL is written to *MEM. The previous contents of
10755 *MEM are returned, using TARGET if possible. No memory model is required
10756 since a compare_and_swap loop is seq-cst. */
10759 pa_maybe_emit_compare_and_swap_exchange_loop (rtx target, rtx mem, rtx val)
10761 machine_mode mode = GET_MODE (mem);
10763 if (can_compare_and_swap_p (mode, true))
10765 if (!target || !register_operand (target, mode))
10766 target = gen_reg_rtx (mode);
10767 if (pa_expand_compare_and_swap_loop (mem, target, val, NULL_RTX))
10768 return target;
10771 return NULL_RTX;
10774 /* Implement TARGET_CALLEE_COPIES. The callee is responsible for copying
10775 arguments passed by hidden reference in the 32-bit HP runtime. Users
10776 can override this behavior for better compatibility with openmp at the
10777 risk of library incompatibilities. Arguments are always passed by value
10778 in the 64-bit HP runtime. */
10780 static bool
10781 pa_callee_copies (cumulative_args_t, const function_arg_info &)
10783 return !TARGET_CALLER_COPIES;
10786 /* Implement TARGET_HARD_REGNO_NREGS. */
10788 static unsigned int
10789 pa_hard_regno_nregs (unsigned int regno ATTRIBUTE_UNUSED, machine_mode mode)
10791 return PA_HARD_REGNO_NREGS (regno, mode);
10794 /* Implement TARGET_HARD_REGNO_MODE_OK. */
10796 static bool
10797 pa_hard_regno_mode_ok (unsigned int regno, machine_mode mode)
10799 return PA_HARD_REGNO_MODE_OK (regno, mode);
10802 /* Implement TARGET_STARTING_FRAME_OFFSET.
10804 On the 32-bit ports, we reserve one slot for the previous frame
10805 pointer and one fill slot. The fill slot is for compatibility
10806 with HP compiled programs. On the 64-bit ports, we reserve one
10807 slot for the previous frame pointer. */
10809 static HOST_WIDE_INT
10810 pa_starting_frame_offset (void)
10812 return 8;
10815 /* Figure out the size in words of the function argument. The size
10816 returned by this function should always be greater than zero because
10817 we pass variable and zero sized objects by reference. */
10819 HOST_WIDE_INT
10820 pa_function_arg_size (machine_mode mode, const_tree type)
10822 HOST_WIDE_INT size;
10824 size = mode != BLKmode ? GET_MODE_SIZE (mode) : int_size_in_bytes (type);
10825 return CEIL (size, UNITS_PER_WORD);
10828 #include "gt-pa.h"