* Make-lang.in (GFORTRAN_TARGET_INSTALL_NAME): Define.
[official-gcc.git] / gcc / tree-vrp.c
blob7642ced28631ffe031d985921ee70d95ab891480
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
44 /* Loop structure of the program. Used to analyze scalar evolutions
45 inside adjust_range_with_scev. */
46 static struct loops *cfg_loops;
48 /* Local functions. */
49 static int compare_values (tree val1, tree val2);
51 /* Location information for ASSERT_EXPRs. Each instance of this
52 structure describes an ASSERT_EXPR for an SSA name. Since a single
53 SSA name may have more than one assertion associated with it, these
54 locations are kept in a linked list attached to the corresponding
55 SSA name. */
56 struct assert_locus_d
58 /* Basic block where the assertion would be inserted. */
59 basic_block bb;
61 /* Some assertions need to be inserted on an edge (e.g., assertions
62 generated by COND_EXPRs). In those cases, BB will be NULL. */
63 edge e;
65 /* Pointer to the statement that generated this assertion. */
66 block_stmt_iterator si;
68 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
69 enum tree_code comp_code;
71 /* Value being compared against. */
72 tree val;
74 /* Next node in the linked list. */
75 struct assert_locus_d *next;
78 typedef struct assert_locus_d *assert_locus_t;
80 /* If bit I is present, it means that SSA name N_i has a list of
81 assertions that should be inserted in the IL. */
82 static bitmap need_assert_for;
84 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
85 holds a list of ASSERT_LOCUS_T nodes that describe where
86 ASSERT_EXPRs for SSA name N_I should be inserted. */
87 static assert_locus_t *asserts_for;
89 /* Set of blocks visited in find_assert_locations. Used to avoid
90 visiting the same block more than once. */
91 static sbitmap blocks_visited;
93 /* Value range array. After propagation, VR_VALUE[I] holds the range
94 of values that SSA name N_I may take. */
95 static value_range_t **vr_value;
98 /* Return true if ARG is marked with the nonnull attribute in the
99 current function signature. */
101 static bool
102 nonnull_arg_p (tree arg)
104 tree t, attrs, fntype;
105 unsigned HOST_WIDE_INT arg_num;
107 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
109 fntype = TREE_TYPE (current_function_decl);
110 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
112 /* If "nonnull" wasn't specified, we know nothing about the argument. */
113 if (attrs == NULL_TREE)
114 return false;
116 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
117 if (TREE_VALUE (attrs) == NULL_TREE)
118 return true;
120 /* Get the position number for ARG in the function signature. */
121 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
123 t = TREE_CHAIN (t), arg_num++)
125 if (t == arg)
126 break;
129 gcc_assert (t == arg);
131 /* Now see if ARG_NUM is mentioned in the nonnull list. */
132 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
134 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
135 return true;
138 return false;
142 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
144 static void
145 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
146 tree max, bitmap equiv)
148 #if defined ENABLE_CHECKING
149 /* Check the validity of the range. */
150 if (t == VR_RANGE || t == VR_ANTI_RANGE)
152 int cmp;
154 gcc_assert (min && max);
156 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
157 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
158 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
160 cmp = compare_values (min, max);
161 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
164 if (t == VR_UNDEFINED || t == VR_VARYING)
165 gcc_assert (min == NULL_TREE && max == NULL_TREE);
167 if (t == VR_UNDEFINED || t == VR_VARYING)
168 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
169 #endif
171 vr->type = t;
172 vr->min = min;
173 vr->max = max;
175 /* Since updating the equivalence set involves deep copying the
176 bitmaps, only do it if absolutely necessary. */
177 if (vr->equiv == NULL)
178 vr->equiv = BITMAP_ALLOC (NULL);
180 if (equiv != vr->equiv)
182 if (equiv && !bitmap_empty_p (equiv))
183 bitmap_copy (vr->equiv, equiv);
184 else
185 bitmap_clear (vr->equiv);
190 /* Copy value range FROM into value range TO. */
192 static inline void
193 copy_value_range (value_range_t *to, value_range_t *from)
195 set_value_range (to, from->type, from->min, from->max, from->equiv);
199 /* Set value range VR to a non-NULL range of type TYPE. */
201 static inline void
202 set_value_range_to_nonnull (value_range_t *vr, tree type)
204 tree zero = build_int_cst (type, 0);
205 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
209 /* Set value range VR to a NULL range of type TYPE. */
211 static inline void
212 set_value_range_to_null (value_range_t *vr, tree type)
214 tree zero = build_int_cst (type, 0);
215 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
219 /* Set value range VR to VR_VARYING. */
221 static inline void
222 set_value_range_to_varying (value_range_t *vr)
224 vr->type = VR_VARYING;
225 vr->min = vr->max = NULL_TREE;
226 if (vr->equiv)
227 bitmap_clear (vr->equiv);
231 /* Set value range VR to VR_UNDEFINED. */
233 static inline void
234 set_value_range_to_undefined (value_range_t *vr)
236 vr->type = VR_UNDEFINED;
237 vr->min = vr->max = NULL_TREE;
238 if (vr->equiv)
239 bitmap_clear (vr->equiv);
243 /* Return value range information for VAR. Create an empty range
244 if none existed. */
246 static value_range_t *
247 get_value_range (tree var)
249 value_range_t *vr;
250 tree sym;
251 unsigned ver = SSA_NAME_VERSION (var);
253 vr = vr_value[ver];
254 if (vr)
255 return vr;
257 /* Create a default value range. */
258 vr_value[ver] = vr = xmalloc (sizeof (*vr));
259 memset (vr, 0, sizeof (*vr));
261 /* Allocate an equivalence set. */
262 vr->equiv = BITMAP_ALLOC (NULL);
264 /* If VAR is a default definition, the variable can take any value
265 in VAR's type. */
266 sym = SSA_NAME_VAR (var);
267 if (var == default_def (sym))
269 /* Try to use the "nonnull" attribute to create ~[0, 0]
270 anti-ranges for pointers. Note that this is only valid with
271 default definitions of PARM_DECLs. */
272 if (TREE_CODE (sym) == PARM_DECL
273 && POINTER_TYPE_P (TREE_TYPE (sym))
274 && nonnull_arg_p (sym))
275 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
276 else
277 set_value_range_to_varying (vr);
280 return vr;
284 /* Update the value range and equivalence set for variable VAR to
285 NEW_VR. Return true if NEW_VR is different from VAR's previous
286 value.
288 NOTE: This function assumes that NEW_VR is a temporary value range
289 object created for the sole purpose of updating VAR's range. The
290 storage used by the equivalence set from NEW_VR will be freed by
291 this function. Do not call update_value_range when NEW_VR
292 is the range object associated with another SSA name. */
294 static inline bool
295 update_value_range (tree var, value_range_t *new_vr)
297 value_range_t *old_vr;
298 bool is_new;
300 /* Update the value range, if necessary. */
301 old_vr = get_value_range (var);
302 is_new = old_vr->type != new_vr->type
303 || old_vr->min != new_vr->min
304 || old_vr->max != new_vr->max
305 || (old_vr->equiv == NULL && new_vr->equiv)
306 || (old_vr->equiv && new_vr->equiv == NULL)
307 || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
309 if (is_new)
310 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
311 new_vr->equiv);
313 BITMAP_FREE (new_vr->equiv);
314 new_vr->equiv = NULL;
316 return is_new;
320 /* Add VAR and VAR's equivalence set to EQUIV. */
322 static void
323 add_equivalence (bitmap equiv, tree var)
325 unsigned ver = SSA_NAME_VERSION (var);
326 value_range_t *vr = vr_value[ver];
328 bitmap_set_bit (equiv, ver);
329 if (vr && vr->equiv)
330 bitmap_ior_into (equiv, vr->equiv);
334 /* Return true if VR is ~[0, 0]. */
336 static inline bool
337 range_is_nonnull (value_range_t *vr)
339 return vr->type == VR_ANTI_RANGE
340 && integer_zerop (vr->min)
341 && integer_zerop (vr->max);
345 /* Return true if VR is [0, 0]. */
347 static inline bool
348 range_is_null (value_range_t *vr)
350 return vr->type == VR_RANGE
351 && integer_zerop (vr->min)
352 && integer_zerop (vr->max);
356 /* Return true if value range VR involves at least one symbol. */
358 static inline bool
359 symbolic_range_p (value_range_t *vr)
361 return (!is_gimple_min_invariant (vr->min)
362 || !is_gimple_min_invariant (vr->max));
366 /* Like tree_expr_nonzero_p, but this function uses value ranges
367 obtained so far. */
369 static bool
370 vrp_expr_computes_nonzero (tree expr)
372 if (tree_expr_nonzero_p (expr))
373 return true;
375 /* If we have an expression of the form &X->a, then the expression
376 is nonnull if X is nonnull. */
377 if (TREE_CODE (expr) == ADDR_EXPR)
379 tree base = get_base_address (TREE_OPERAND (expr, 0));
381 if (base != NULL_TREE
382 && TREE_CODE (base) == INDIRECT_REF
383 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
385 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
386 if (range_is_nonnull (vr))
387 return true;
391 return false;
395 /* Compare two values VAL1 and VAL2. Return
397 -2 if VAL1 and VAL2 cannot be compared at compile-time,
398 -1 if VAL1 < VAL2,
399 0 if VAL1 == VAL2,
400 +1 if VAL1 > VAL2, and
401 +2 if VAL1 != VAL2
403 This is similar to tree_int_cst_compare but supports pointer values
404 and values that cannot be compared at compile time. */
406 static int
407 compare_values (tree val1, tree val2)
409 if (val1 == val2)
410 return 0;
412 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
413 both integers. */
414 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
415 == POINTER_TYPE_P (TREE_TYPE (val2)));
417 /* Do some limited symbolic comparisons. */
418 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
420 /* We can determine some comparisons against +INF and -INF even
421 if the other value is an expression. */
422 if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
423 && TREE_CODE (val2) == MINUS_EXPR)
425 /* +INF > NAME - CST. */
426 return 1;
428 else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
429 && TREE_CODE (val2) == PLUS_EXPR)
431 /* -INF < NAME + CST. */
432 return -1;
434 else if (TREE_CODE (val1) == MINUS_EXPR
435 && val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
437 /* NAME - CST < +INF. */
438 return -1;
440 else if (TREE_CODE (val1) == PLUS_EXPR
441 && val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
443 /* NAME + CST > -INF. */
444 return 1;
448 if ((TREE_CODE (val1) == SSA_NAME
449 || TREE_CODE (val1) == PLUS_EXPR
450 || TREE_CODE (val1) == MINUS_EXPR)
451 && (TREE_CODE (val2) == SSA_NAME
452 || TREE_CODE (val2) == PLUS_EXPR
453 || TREE_CODE (val2) == MINUS_EXPR))
455 tree n1, c1, n2, c2;
457 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
458 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
459 same name, return -2. */
460 if (TREE_CODE (val1) == SSA_NAME)
462 n1 = val1;
463 c1 = NULL_TREE;
465 else
467 n1 = TREE_OPERAND (val1, 0);
468 c1 = TREE_OPERAND (val1, 1);
471 if (TREE_CODE (val2) == SSA_NAME)
473 n2 = val2;
474 c2 = NULL_TREE;
476 else
478 n2 = TREE_OPERAND (val2, 0);
479 c2 = TREE_OPERAND (val2, 1);
482 /* Both values must use the same name. */
483 if (n1 != n2)
484 return -2;
486 if (TREE_CODE (val1) == SSA_NAME)
488 if (TREE_CODE (val2) == SSA_NAME)
489 /* NAME == NAME */
490 return 0;
491 else if (TREE_CODE (val2) == PLUS_EXPR)
492 /* NAME < NAME + CST */
493 return -1;
494 else if (TREE_CODE (val2) == MINUS_EXPR)
495 /* NAME > NAME - CST */
496 return 1;
498 else if (TREE_CODE (val1) == PLUS_EXPR)
500 if (TREE_CODE (val2) == SSA_NAME)
501 /* NAME + CST > NAME */
502 return 1;
503 else if (TREE_CODE (val2) == PLUS_EXPR)
504 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
505 return compare_values (c1, c2);
506 else if (TREE_CODE (val2) == MINUS_EXPR)
507 /* NAME + CST1 > NAME - CST2 */
508 return 1;
510 else if (TREE_CODE (val1) == MINUS_EXPR)
512 if (TREE_CODE (val2) == SSA_NAME)
513 /* NAME - CST < NAME */
514 return -1;
515 else if (TREE_CODE (val2) == PLUS_EXPR)
516 /* NAME - CST1 < NAME + CST2 */
517 return -1;
518 else if (TREE_CODE (val2) == MINUS_EXPR)
519 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
520 C1 and C2 are swapped in the call to compare_values. */
521 return compare_values (c2, c1);
524 gcc_unreachable ();
527 /* We cannot compare non-constants. */
528 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
529 return -2;
531 /* We cannot compare overflowed values. */
532 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
533 return -2;
535 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
536 return tree_int_cst_compare (val1, val2);
537 else
539 tree t;
541 /* First see if VAL1 and VAL2 are not the same. */
542 if (val1 == val2 || operand_equal_p (val1, val2, 0))
543 return 0;
545 /* If VAL1 is a lower address than VAL2, return -1. */
546 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
547 if (t == boolean_true_node)
548 return -1;
550 /* If VAL1 is a higher address than VAL2, return +1. */
551 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
552 if (t == boolean_true_node)
553 return 1;
555 /* If VAL1 is different than VAL2, return +2. */
556 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
557 if (t == boolean_true_node)
558 return 2;
560 return -2;
565 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
566 0 if VAL is not inside VR,
567 -2 if we cannot tell either way.
569 FIXME, the current semantics of this functions are a bit quirky
570 when taken in the context of VRP. In here we do not care
571 about VR's type. If VR is the anti-range ~[3, 5] the call
572 value_inside_range (4, VR) will return 1.
574 This is counter-intuitive in a strict sense, but the callers
575 currently expect this. They are calling the function
576 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
577 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
578 themselves.
580 This also applies to value_ranges_intersect_p and
581 range_includes_zero_p. The semantics of VR_RANGE and
582 VR_ANTI_RANGE should be encoded here, but that also means
583 adapting the users of these functions to the new semantics. */
585 static inline int
586 value_inside_range (tree val, value_range_t *vr)
588 int cmp1, cmp2;
590 cmp1 = compare_values (val, vr->min);
591 if (cmp1 == -2 || cmp1 == 2)
592 return -2;
594 cmp2 = compare_values (val, vr->max);
595 if (cmp2 == -2 || cmp2 == 2)
596 return -2;
598 return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
602 /* Return true if value ranges VR0 and VR1 have a non-empty
603 intersection. */
605 static inline bool
606 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
608 return (value_inside_range (vr1->min, vr0) == 1
609 || value_inside_range (vr1->max, vr0) == 1
610 || value_inside_range (vr0->min, vr1) == 1
611 || value_inside_range (vr0->max, vr1) == 1);
615 /* Return true if VR includes the value zero, false otherwise. FIXME,
616 currently this will return false for an anti-range like ~[-4, 3].
617 This will be wrong when the semantics of value_inside_range are
618 modified (currently the users of this function expect these
619 semantics). */
621 static inline bool
622 range_includes_zero_p (value_range_t *vr)
624 tree zero;
626 gcc_assert (vr->type != VR_UNDEFINED
627 && vr->type != VR_VARYING
628 && !symbolic_range_p (vr));
630 zero = build_int_cst (TREE_TYPE (vr->min), 0);
631 return (value_inside_range (zero, vr) == 1);
635 /* Extract value range information from an ASSERT_EXPR EXPR and store
636 it in *VR_P. */
638 static void
639 extract_range_from_assert (value_range_t *vr_p, tree expr)
641 tree var, cond, limit, min, max, type;
642 value_range_t *var_vr, *limit_vr;
643 enum tree_code cond_code;
645 var = ASSERT_EXPR_VAR (expr);
646 cond = ASSERT_EXPR_COND (expr);
648 gcc_assert (COMPARISON_CLASS_P (cond));
650 /* Find VAR in the ASSERT_EXPR conditional. */
651 if (var == TREE_OPERAND (cond, 0))
653 /* If the predicate is of the form VAR COMP LIMIT, then we just
654 take LIMIT from the RHS and use the same comparison code. */
655 limit = TREE_OPERAND (cond, 1);
656 cond_code = TREE_CODE (cond);
658 else
660 /* If the predicate is of the form LIMIT COMP VAR, then we need
661 to flip around the comparison code to create the proper range
662 for VAR. */
663 limit = TREE_OPERAND (cond, 0);
664 cond_code = swap_tree_comparison (TREE_CODE (cond));
667 type = TREE_TYPE (limit);
668 gcc_assert (limit != var);
670 /* For pointer arithmetic, we only keep track of pointer equality
671 and inequality. */
672 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
674 set_value_range_to_varying (vr_p);
675 return;
678 /* If LIMIT is another SSA name and LIMIT has a range of its own,
679 try to use LIMIT's range to avoid creating symbolic ranges
680 unnecessarily. */
681 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
683 /* LIMIT's range is only interesting if it has any useful information. */
684 if (limit_vr
685 && (limit_vr->type == VR_UNDEFINED
686 || limit_vr->type == VR_VARYING
687 || symbolic_range_p (limit_vr)))
688 limit_vr = NULL;
690 /* Special handling for integral types with super-types. Some FEs
691 construct integral types derived from other types and restrict
692 the range of values these new types may take.
694 It may happen that LIMIT is actually smaller than TYPE's minimum
695 value. For instance, the Ada FE is generating code like this
696 during bootstrap:
698 D.1480_32 = nam_30 - 300000361;
699 if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
700 <L112>:;
701 D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
703 All the names are of type types__name_id___XDLU_300000000__399999999
704 which has min == 300000000 and max == 399999999. This means that
705 the ASSERT_EXPR would try to create the range [3000000, 1] which
706 is invalid.
708 The fact that the type specifies MIN and MAX values does not
709 automatically mean that every variable of that type will always
710 be within that range, so the predicate may well be true at run
711 time. If we had symbolic -INF and +INF values, we could
712 represent this range, but we currently represent -INF and +INF
713 using the type's min and max values.
715 So, the only sensible thing we can do for now is set the
716 resulting range to VR_VARYING. TODO, would having symbolic -INF
717 and +INF values be worth the trouble? */
718 if (TREE_CODE (limit) != SSA_NAME
719 && INTEGRAL_TYPE_P (type)
720 && TREE_TYPE (type))
722 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
724 tree type_min = TYPE_MIN_VALUE (type);
725 int cmp = compare_values (limit, type_min);
727 /* For < or <= comparisons, if LIMIT is smaller than
728 TYPE_MIN, set the range to VR_VARYING. */
729 if (cmp == -1 || cmp == 0)
731 set_value_range_to_varying (vr_p);
732 return;
735 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
737 tree type_max = TYPE_MIN_VALUE (type);
738 int cmp = compare_values (limit, type_max);
740 /* For > or >= comparisons, if LIMIT is bigger than
741 TYPE_MAX, set the range to VR_VARYING. */
742 if (cmp == 1 || cmp == 0)
744 set_value_range_to_varying (vr_p);
745 return;
750 /* The new range has the same set of equivalences of VAR's range. */
751 gcc_assert (vr_p->equiv == NULL);
752 vr_p->equiv = BITMAP_ALLOC (NULL);
753 add_equivalence (vr_p->equiv, var);
755 /* Extract a new range based on the asserted comparison for VAR and
756 LIMIT's value range. Notice that if LIMIT has an anti-range, we
757 will only use it for equality comparisons (EQ_EXPR). For any
758 other kind of assertion, we cannot derive a range from LIMIT's
759 anti-range that can be used to describe the new range. For
760 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
761 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
762 no single range for x_2 that could describe LE_EXPR, so we might
763 as well build the range [b_4, +INF] for it. */
764 if (cond_code == EQ_EXPR)
766 enum value_range_type range_type;
768 if (limit_vr)
770 range_type = limit_vr->type;
771 min = limit_vr->min;
772 max = limit_vr->max;
774 else
776 range_type = VR_RANGE;
777 min = limit;
778 max = limit;
781 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
783 /* When asserting the equality VAR == LIMIT and LIMIT is another
784 SSA name, the new range will also inherit the equivalence set
785 from LIMIT. */
786 if (TREE_CODE (limit) == SSA_NAME)
787 add_equivalence (vr_p->equiv, limit);
789 else if (cond_code == NE_EXPR)
791 /* As described above, when LIMIT's range is an anti-range and
792 this assertion is an inequality (NE_EXPR), then we cannot
793 derive anything from the anti-range. For instance, if
794 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
795 not imply that VAR's range is [0, 0]. So, in the case of
796 anti-ranges, we just assert the inequality using LIMIT and
797 not its anti-range.
799 If LIMIT_VR is a range, we can only use it to build a new
800 anti-range if LIMIT_VR is a single-valued range. For
801 instance, if LIMIT_VR is [0, 1], the predicate
802 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
803 Rather, it means that for value 0 VAR should be ~[0, 0]
804 and for value 1, VAR should be ~[1, 1]. We cannot
805 represent these ranges.
807 The only situation in which we can build a valid
808 anti-range is when LIMIT_VR is a single-valued range
809 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
810 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
811 if (limit_vr
812 && limit_vr->type == VR_RANGE
813 && compare_values (limit_vr->min, limit_vr->max) == 0)
815 min = limit_vr->min;
816 max = limit_vr->max;
818 else
820 /* In any other case, we cannot use LIMIT's range to build a
821 valid anti-range. */
822 min = max = limit;
825 /* If MIN and MAX cover the whole range for their type, then
826 just use the original LIMIT. */
827 if (INTEGRAL_TYPE_P (type)
828 && min == TYPE_MIN_VALUE (type)
829 && max == TYPE_MAX_VALUE (type))
830 min = max = limit;
832 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
834 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
836 min = TYPE_MIN_VALUE (type);
838 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
839 max = limit;
840 else
842 /* If LIMIT_VR is of the form [N1, N2], we need to build the
843 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
844 LT_EXPR. */
845 max = limit_vr->max;
848 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
849 if (cond_code == LT_EXPR)
851 tree one = build_int_cst (type, 1);
852 max = fold_build2 (MINUS_EXPR, type, max, one);
855 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
857 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
859 max = TYPE_MAX_VALUE (type);
861 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
862 min = limit;
863 else
865 /* If LIMIT_VR is of the form [N1, N2], we need to build the
866 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
867 GT_EXPR. */
868 min = limit_vr->min;
871 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
872 if (cond_code == GT_EXPR)
874 tree one = build_int_cst (type, 1);
875 min = fold_build2 (PLUS_EXPR, type, min, one);
878 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
880 else
881 gcc_unreachable ();
883 /* If VAR already had a known range, it may happen that the new
884 range we have computed and VAR's range are not compatible. For
885 instance,
887 if (p_5 == NULL)
888 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
889 x_7 = p_6->fld;
890 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
892 While the above comes from a faulty program, it will cause an ICE
893 later because p_8 and p_6 will have incompatible ranges and at
894 the same time will be considered equivalent. A similar situation
895 would arise from
897 if (i_5 > 10)
898 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
899 if (i_5 < 5)
900 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
902 Again i_6 and i_7 will have incompatible ranges. It would be
903 pointless to try and do anything with i_7's range because
904 anything dominated by 'if (i_5 < 5)' will be optimized away.
905 Note, due to the wa in which simulation proceeds, the statement
906 i_7 = ASSERT_EXPR <...> we would never be visited because the
907 conditiona 'if (i_5 < 5)' always evaluates to false. However,
908 this extra check does not hurt and may protect against future
909 changes to VRP that may get into a situation similar to the
910 NULL pointer dereference example.
912 Note that these compatibility tests are only needed when dealing
913 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
914 are both anti-ranges, they will always be compatible, because two
915 anti-ranges will always have a non-empty intersection. */
917 var_vr = get_value_range (var);
919 /* We may need to make adjustments when VR_P and VAR_VR are numeric
920 ranges or anti-ranges. */
921 if (vr_p->type == VR_VARYING
922 || vr_p->type == VR_UNDEFINED
923 || var_vr->type == VR_VARYING
924 || var_vr->type == VR_UNDEFINED
925 || symbolic_range_p (vr_p)
926 || symbolic_range_p (var_vr))
927 return;
929 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
931 /* If the two ranges have a non-empty intersection, we can
932 refine the resulting range. Since the assert expression
933 creates an equivalency and at the same time it asserts a
934 predicate, we can take the intersection of the two ranges to
935 get better precision. */
936 if (value_ranges_intersect_p (var_vr, vr_p))
938 /* Use the larger of the two minimums. */
939 if (compare_values (vr_p->min, var_vr->min) == -1)
940 min = var_vr->min;
941 else
942 min = vr_p->min;
944 /* Use the smaller of the two maximums. */
945 if (compare_values (vr_p->max, var_vr->max) == 1)
946 max = var_vr->max;
947 else
948 max = vr_p->max;
950 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
952 else
954 /* The two ranges do not intersect, set the new range to
955 VARYING, because we will not be able to do anything
956 meaningful with it. */
957 set_value_range_to_varying (vr_p);
960 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
961 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
963 /* A range and an anti-range will cancel each other only if
964 their ends are the same. For instance, in the example above,
965 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
966 so VR_P should be set to VR_VARYING. */
967 if (compare_values (var_vr->min, vr_p->min) == 0
968 && compare_values (var_vr->max, vr_p->max) == 0)
969 set_value_range_to_varying (vr_p);
974 /* Extract range information from SSA name VAR and store it in VR. If
975 VAR has an interesting range, use it. Otherwise, create the
976 range [VAR, VAR] and return it. This is useful in situations where
977 we may have conditionals testing values of VARYING names. For
978 instance,
980 x_3 = y_5;
981 if (x_3 > y_5)
984 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
985 always false. */
987 static void
988 extract_range_from_ssa_name (value_range_t *vr, tree var)
990 value_range_t *var_vr = get_value_range (var);
992 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
993 copy_value_range (vr, var_vr);
994 else
995 set_value_range (vr, VR_RANGE, var, var, NULL);
997 add_equivalence (vr->equiv, var);
1001 /* Wrapper around int_const_binop. If the operation overflows and we
1002 are not using wrapping arithmetic, then adjust the result to be
1003 -INF or +INF depending on CODE, VAL1 and VAL2. */
1005 static inline tree
1006 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1008 tree res;
1010 if (flag_wrapv)
1011 return int_const_binop (code, val1, val2, 0);
1013 /* If we are not using wrapping arithmetic, operate symbolically
1014 on -INF and +INF. */
1015 res = int_const_binop (code, val1, val2, 0);
1017 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1019 int checkz = compare_values (res, val1);
1021 /* Ensure that res = val1 + val2 >= val1
1022 or that res = val1 - val2 <= val1. */
1023 if ((code == PLUS_EXPR && !(checkz == 1 || checkz == 0))
1024 || (code == MINUS_EXPR && !(checkz == 0 || checkz == -1)))
1026 res = copy_node (res);
1027 TREE_OVERFLOW (res) = 1;
1030 /* If the operation overflowed but neither VAL1 nor VAL2 are
1031 overflown, return -INF or +INF depending on the operation
1032 and the combination of signs of the operands. */
1033 else if (TREE_OVERFLOW (res)
1034 && !TREE_OVERFLOW (val1)
1035 && !TREE_OVERFLOW (val2))
1037 int sgn1 = tree_int_cst_sgn (val1);
1038 int sgn2 = tree_int_cst_sgn (val2);
1040 /* Notice that we only need to handle the restricted set of
1041 operations handled by extract_range_from_binary_expr.
1042 Among them, only multiplication, addition and subtraction
1043 can yield overflow without overflown operands because we
1044 are working with integral types only... except in the
1045 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1046 for division too. */
1048 /* For multiplication, the sign of the overflow is given
1049 by the comparison of the signs of the operands. */
1050 if ((code == MULT_EXPR && sgn1 == sgn2)
1051 /* For addition, the operands must be of the same sign
1052 to yield an overflow. Its sign is therefore that
1053 of one of the operands, for example the first. */
1054 || (code == PLUS_EXPR && sgn1 > 0)
1055 /* For subtraction, the operands must be of different
1056 signs to yield an overflow. Its sign is therefore
1057 that of the first operand or the opposite of that
1058 of the second operand. A first operand of 0 counts
1059 as positive here, for the corner case 0 - (-INF),
1060 which overflows, but must yield +INF. */
1061 || (code == MINUS_EXPR && sgn1 >= 0)
1062 /* For division, the only case is -INF / -1 = +INF. */
1063 || code == TRUNC_DIV_EXPR
1064 || code == FLOOR_DIV_EXPR
1065 || code == CEIL_DIV_EXPR
1066 || code == EXACT_DIV_EXPR
1067 || code == ROUND_DIV_EXPR)
1068 return TYPE_MAX_VALUE (TREE_TYPE (res));
1069 else
1070 return TYPE_MIN_VALUE (TREE_TYPE (res));
1073 return res;
1077 /* Extract range information from a binary expression EXPR based on
1078 the ranges of each of its operands and the expression code. */
1080 static void
1081 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1083 enum tree_code code = TREE_CODE (expr);
1084 tree op0, op1, min, max;
1085 int cmp;
1086 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1087 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1089 /* Not all binary expressions can be applied to ranges in a
1090 meaningful way. Handle only arithmetic operations. */
1091 if (code != PLUS_EXPR
1092 && code != MINUS_EXPR
1093 && code != MULT_EXPR
1094 && code != TRUNC_DIV_EXPR
1095 && code != FLOOR_DIV_EXPR
1096 && code != CEIL_DIV_EXPR
1097 && code != EXACT_DIV_EXPR
1098 && code != ROUND_DIV_EXPR
1099 && code != MIN_EXPR
1100 && code != MAX_EXPR
1101 && code != TRUTH_ANDIF_EXPR
1102 && code != TRUTH_ORIF_EXPR
1103 && code != TRUTH_AND_EXPR
1104 && code != TRUTH_OR_EXPR
1105 && code != TRUTH_XOR_EXPR)
1107 set_value_range_to_varying (vr);
1108 return;
1111 /* Get value ranges for each operand. For constant operands, create
1112 a new value range with the operand to simplify processing. */
1113 op0 = TREE_OPERAND (expr, 0);
1114 if (TREE_CODE (op0) == SSA_NAME)
1115 vr0 = *(get_value_range (op0));
1116 else if (is_gimple_min_invariant (op0))
1117 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1118 else
1119 set_value_range_to_varying (&vr0);
1121 op1 = TREE_OPERAND (expr, 1);
1122 if (TREE_CODE (op1) == SSA_NAME)
1123 vr1 = *(get_value_range (op1));
1124 else if (is_gimple_min_invariant (op1))
1125 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1126 else
1127 set_value_range_to_varying (&vr1);
1129 /* If either range is UNDEFINED, so is the result. */
1130 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1132 set_value_range_to_undefined (vr);
1133 return;
1136 /* Refuse to operate on VARYING ranges, ranges of different kinds
1137 and symbolic ranges. TODO, we may be able to derive anti-ranges
1138 in some cases. */
1139 if (vr0.type == VR_VARYING
1140 || vr1.type == VR_VARYING
1141 || vr0.type != vr1.type
1142 || symbolic_range_p (&vr0)
1143 || symbolic_range_p (&vr1))
1145 set_value_range_to_varying (vr);
1146 return;
1149 /* Now evaluate the expression to determine the new range. */
1150 if (POINTER_TYPE_P (TREE_TYPE (expr))
1151 || POINTER_TYPE_P (TREE_TYPE (op0))
1152 || POINTER_TYPE_P (TREE_TYPE (op1)))
1154 /* For pointer types, we are really only interested in asserting
1155 whether the expression evaluates to non-NULL. FIXME, we used
1156 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1157 ivopts is generating expressions with pointer multiplication
1158 in them. */
1159 if (code == PLUS_EXPR)
1161 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1162 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1163 else if (range_is_null (&vr0) && range_is_null (&vr1))
1164 set_value_range_to_null (vr, TREE_TYPE (expr));
1165 else
1166 set_value_range_to_varying (vr);
1168 else
1170 /* Subtracting from a pointer, may yield 0, so just drop the
1171 resulting range to varying. */
1172 set_value_range_to_varying (vr);
1175 return;
1178 /* For integer ranges, apply the operation to each end of the
1179 range and see what we end up with. */
1180 if (code == TRUTH_ANDIF_EXPR
1181 || code == TRUTH_ORIF_EXPR
1182 || code == TRUTH_AND_EXPR
1183 || code == TRUTH_OR_EXPR
1184 || code == TRUTH_XOR_EXPR)
1186 /* Boolean expressions cannot be folded with int_const_binop. */
1187 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1188 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1190 else if (code == PLUS_EXPR
1191 || code == MIN_EXPR
1192 || code == MAX_EXPR)
1194 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1195 VR_VARYING. It would take more effort to compute a precise
1196 range for such a case. For example, if we have op0 == 1 and
1197 op1 == -1 with their ranges both being ~[0,0], we would have
1198 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1199 Note that we are guaranteed to have vr0.type == vr1.type at
1200 this point. */
1201 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1203 set_value_range_to_varying (vr);
1204 return;
1207 /* For operations that make the resulting range directly
1208 proportional to the original ranges, apply the operation to
1209 the same end of each range. */
1210 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1211 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1213 else if (code == MULT_EXPR
1214 || code == TRUNC_DIV_EXPR
1215 || code == FLOOR_DIV_EXPR
1216 || code == CEIL_DIV_EXPR
1217 || code == EXACT_DIV_EXPR
1218 || code == ROUND_DIV_EXPR)
1220 tree val[4];
1221 size_t i;
1223 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1224 drop to VR_VARYING. It would take more effort to compute a
1225 precise range for such a case. For example, if we have
1226 op0 == 65536 and op1 == 65536 with their ranges both being
1227 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1228 we cannot claim that the product is in ~[0,0]. Note that we
1229 are guaranteed to have vr0.type == vr1.type at this
1230 point. */
1231 if (code == MULT_EXPR
1232 && vr0.type == VR_ANTI_RANGE
1233 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1235 set_value_range_to_varying (vr);
1236 return;
1239 /* Multiplications and divisions are a bit tricky to handle,
1240 depending on the mix of signs we have in the two ranges, we
1241 need to operate on different values to get the minimum and
1242 maximum values for the new range. One approach is to figure
1243 out all the variations of range combinations and do the
1244 operations.
1246 However, this involves several calls to compare_values and it
1247 is pretty convoluted. It's simpler to do the 4 operations
1248 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1249 MAX1) and then figure the smallest and largest values to form
1250 the new range. */
1252 /* Divisions by zero result in a VARYING value. */
1253 if (code != MULT_EXPR
1254 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1256 set_value_range_to_varying (vr);
1257 return;
1260 /* Compute the 4 cross operations. */
1261 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1263 val[1] = (vr1.max != vr1.min)
1264 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1265 : NULL_TREE;
1267 val[2] = (vr0.max != vr0.min)
1268 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1269 : NULL_TREE;
1271 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1272 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1273 : NULL_TREE;
1275 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1276 of VAL[i]. */
1277 min = val[0];
1278 max = val[0];
1279 for (i = 1; i < 4; i++)
1281 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
1282 break;
1284 if (val[i])
1286 if (TREE_OVERFLOW (val[i]))
1288 /* If we found an overflowed value, set MIN and MAX
1289 to it so that we set the resulting range to
1290 VARYING. */
1291 min = max = val[i];
1292 break;
1295 if (compare_values (val[i], min) == -1)
1296 min = val[i];
1298 if (compare_values (val[i], max) == 1)
1299 max = val[i];
1303 else if (code == MINUS_EXPR)
1305 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1306 VR_VARYING. It would take more effort to compute a precise
1307 range for such a case. For example, if we have op0 == 1 and
1308 op1 == 1 with their ranges both being ~[0,0], we would have
1309 op0 - op1 == 0, so we cannot claim that the difference is in
1310 ~[0,0]. Note that we are guaranteed to have
1311 vr0.type == vr1.type at this point. */
1312 if (vr0.type == VR_ANTI_RANGE)
1314 set_value_range_to_varying (vr);
1315 return;
1318 /* For MINUS_EXPR, apply the operation to the opposite ends of
1319 each range. */
1320 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1321 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1323 else
1324 gcc_unreachable ();
1326 /* If either MIN or MAX overflowed, then set the resulting range to
1327 VARYING. */
1328 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
1330 set_value_range_to_varying (vr);
1331 return;
1334 cmp = compare_values (min, max);
1335 if (cmp == -2 || cmp == 1)
1337 /* If the new range has its limits swapped around (MIN > MAX),
1338 then the operation caused one of them to wrap around, mark
1339 the new range VARYING. */
1340 set_value_range_to_varying (vr);
1342 else
1343 set_value_range (vr, vr0.type, min, max, NULL);
1347 /* Extract range information from a unary expression EXPR based on
1348 the range of its operand and the expression code. */
1350 static void
1351 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1353 enum tree_code code = TREE_CODE (expr);
1354 tree min, max, op0;
1355 int cmp;
1356 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1358 /* Refuse to operate on certain unary expressions for which we
1359 cannot easily determine a resulting range. */
1360 if (code == FIX_TRUNC_EXPR
1361 || code == FIX_CEIL_EXPR
1362 || code == FIX_FLOOR_EXPR
1363 || code == FIX_ROUND_EXPR
1364 || code == FLOAT_EXPR
1365 || code == BIT_NOT_EXPR
1366 || code == NON_LVALUE_EXPR
1367 || code == CONJ_EXPR)
1369 set_value_range_to_varying (vr);
1370 return;
1373 /* Get value ranges for the operand. For constant operands, create
1374 a new value range with the operand to simplify processing. */
1375 op0 = TREE_OPERAND (expr, 0);
1376 if (TREE_CODE (op0) == SSA_NAME)
1377 vr0 = *(get_value_range (op0));
1378 else if (is_gimple_min_invariant (op0))
1379 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1380 else
1381 set_value_range_to_varying (&vr0);
1383 /* If VR0 is UNDEFINED, so is the result. */
1384 if (vr0.type == VR_UNDEFINED)
1386 set_value_range_to_undefined (vr);
1387 return;
1390 /* Refuse to operate on varying and symbolic ranges. Also, if the
1391 operand is neither a pointer nor an integral type, set the
1392 resulting range to VARYING. TODO, in some cases we may be able
1393 to derive anti-ranges (like nonzero values). */
1394 if (vr0.type == VR_VARYING
1395 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1396 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1397 || symbolic_range_p (&vr0))
1399 set_value_range_to_varying (vr);
1400 return;
1403 /* If the expression involves pointers, we are only interested in
1404 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1405 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1407 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1408 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1409 else if (range_is_null (&vr0))
1410 set_value_range_to_null (vr, TREE_TYPE (expr));
1411 else
1412 set_value_range_to_varying (vr);
1414 return;
1417 /* Handle unary expressions on integer ranges. */
1418 if (code == NOP_EXPR || code == CONVERT_EXPR)
1420 tree inner_type = TREE_TYPE (op0);
1421 tree outer_type = TREE_TYPE (expr);
1423 /* If VR0 represents a simple range, then try to convert
1424 the min and max values for the range to the same type
1425 as OUTER_TYPE. If the results compare equal to VR0's
1426 min and max values and the new min is still less than
1427 or equal to the new max, then we can safely use the newly
1428 computed range for EXPR. This allows us to compute
1429 accurate ranges through many casts. */
1430 if (vr0.type == VR_RANGE)
1432 tree new_min, new_max;
1434 /* Convert VR0's min/max to OUTER_TYPE. */
1435 new_min = fold_convert (outer_type, vr0.min);
1436 new_max = fold_convert (outer_type, vr0.max);
1438 /* Verify the new min/max values are gimple values and
1439 that they compare equal to VR0's min/max values. */
1440 if (is_gimple_val (new_min)
1441 && is_gimple_val (new_max)
1442 && tree_int_cst_equal (new_min, vr0.min)
1443 && tree_int_cst_equal (new_max, vr0.max)
1444 && compare_values (new_min, new_max) <= 0
1445 && compare_values (new_min, new_max) >= -1)
1447 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1448 return;
1452 /* When converting types of different sizes, set the result to
1453 VARYING. Things like sign extensions and precision loss may
1454 change the range. For instance, if x_3 is of type 'long long
1455 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1456 is impossible to know at compile time whether y_5 will be
1457 ~[0, 0]. */
1458 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1459 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1461 set_value_range_to_varying (vr);
1462 return;
1466 /* Apply the operation to each end of the range and see what we end
1467 up with. */
1468 if (code == NEGATE_EXPR
1469 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1471 /* NEGATE_EXPR flips the range around. */
1472 min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1473 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1474 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1476 max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1477 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1478 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1480 else if (code == ABS_EXPR
1481 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1483 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1484 useful range. */
1485 if (flag_wrapv
1486 && ((vr0.type == VR_RANGE
1487 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1488 || (vr0.type == VR_ANTI_RANGE
1489 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1490 && !range_includes_zero_p (&vr0))))
1492 set_value_range_to_varying (vr);
1493 return;
1496 /* ABS_EXPR may flip the range around, if the original range
1497 included negative values. */
1498 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1499 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1500 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1502 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1504 cmp = compare_values (min, max);
1506 /* If a VR_ANTI_RANGEs contains zero, then we have
1507 ~[-INF, min(MIN, MAX)]. */
1508 if (vr0.type == VR_ANTI_RANGE)
1510 if (range_includes_zero_p (&vr0))
1512 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1514 /* Take the lower of the two values. */
1515 if (cmp != 1)
1516 max = min;
1518 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1519 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1520 flag_wrapv is set and the original anti-range doesn't include
1521 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1522 min = (flag_wrapv && vr0.min != type_min_value
1523 ? int_const_binop (PLUS_EXPR,
1524 type_min_value,
1525 integer_one_node, 0)
1526 : type_min_value);
1528 else
1530 /* All else has failed, so create the range [0, INF], even for
1531 flag_wrapv since TYPE_MIN_VALUE is in the original
1532 anti-range. */
1533 vr0.type = VR_RANGE;
1534 min = build_int_cst (TREE_TYPE (expr), 0);
1535 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1539 /* If the range contains zero then we know that the minimum value in the
1540 range will be zero. */
1541 else if (range_includes_zero_p (&vr0))
1543 if (cmp == 1)
1544 max = min;
1545 min = build_int_cst (TREE_TYPE (expr), 0);
1547 else
1549 /* If the range was reversed, swap MIN and MAX. */
1550 if (cmp == 1)
1552 tree t = min;
1553 min = max;
1554 max = t;
1558 else
1560 /* Otherwise, operate on each end of the range. */
1561 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1562 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1565 cmp = compare_values (min, max);
1566 if (cmp == -2 || cmp == 1)
1568 /* If the new range has its limits swapped around (MIN > MAX),
1569 then the operation caused one of them to wrap around, mark
1570 the new range VARYING. */
1571 set_value_range_to_varying (vr);
1573 else
1574 set_value_range (vr, vr0.type, min, max, NULL);
1578 /* Extract range information from a comparison expression EXPR based
1579 on the range of its operand and the expression code. */
1581 static void
1582 extract_range_from_comparison (value_range_t *vr, tree expr)
1584 tree val = vrp_evaluate_conditional (expr, false);
1585 if (val)
1587 /* Since this expression was found on the RHS of an assignment,
1588 its type may be different from _Bool. Convert VAL to EXPR's
1589 type. */
1590 val = fold_convert (TREE_TYPE (expr), val);
1591 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1593 else
1594 set_value_range_to_varying (vr);
1598 /* Try to compute a useful range out of expression EXPR and store it
1599 in *VR. */
1601 static void
1602 extract_range_from_expr (value_range_t *vr, tree expr)
1604 enum tree_code code = TREE_CODE (expr);
1606 if (code == ASSERT_EXPR)
1607 extract_range_from_assert (vr, expr);
1608 else if (code == SSA_NAME)
1609 extract_range_from_ssa_name (vr, expr);
1610 else if (TREE_CODE_CLASS (code) == tcc_binary
1611 || code == TRUTH_ANDIF_EXPR
1612 || code == TRUTH_ORIF_EXPR
1613 || code == TRUTH_AND_EXPR
1614 || code == TRUTH_OR_EXPR
1615 || code == TRUTH_XOR_EXPR)
1616 extract_range_from_binary_expr (vr, expr);
1617 else if (TREE_CODE_CLASS (code) == tcc_unary)
1618 extract_range_from_unary_expr (vr, expr);
1619 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1620 extract_range_from_comparison (vr, expr);
1621 else if (is_gimple_min_invariant (expr))
1622 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1623 else if (vrp_expr_computes_nonzero (expr))
1624 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1625 else
1626 set_value_range_to_varying (vr);
1629 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1630 would be profitable to adjust VR using scalar evolution information
1631 for VAR. If so, update VR with the new limits. */
1633 static void
1634 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1635 tree var)
1637 tree init, step, chrec;
1638 bool init_is_max, unknown_max;
1640 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1641 better opportunities than a regular range, but I'm not sure. */
1642 if (vr->type == VR_ANTI_RANGE)
1643 return;
1645 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1646 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1647 return;
1649 init = initial_condition_in_loop_num (chrec, loop->num);
1650 step = evolution_part_in_loop_num (chrec, loop->num);
1652 /* If STEP is symbolic, we can't know whether INIT will be the
1653 minimum or maximum value in the range. */
1654 if (step == NULL_TREE
1655 || !is_gimple_min_invariant (step))
1656 return;
1658 /* Do not adjust ranges when chrec may wrap. */
1659 if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
1660 cfg_loops->parray[CHREC_VARIABLE (chrec)],
1661 &init_is_max, &unknown_max)
1662 || unknown_max)
1663 return;
1665 if (!POINTER_TYPE_P (TREE_TYPE (init))
1666 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
1668 /* For VARYING or UNDEFINED ranges, just about anything we get
1669 from scalar evolutions should be better. */
1670 if (init_is_max)
1671 set_value_range (vr, VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (init)),
1672 init, vr->equiv);
1673 else
1674 set_value_range (vr, VR_RANGE, init, TYPE_MAX_VALUE (TREE_TYPE (init)),
1675 vr->equiv);
1677 else if (vr->type == VR_RANGE)
1679 tree min = vr->min;
1680 tree max = vr->max;
1682 if (init_is_max)
1684 /* INIT is the maximum value. If INIT is lower than VR->MAX
1685 but no smaller than VR->MIN, set VR->MAX to INIT. */
1686 if (compare_values (init, max) == -1)
1688 max = init;
1690 /* If we just created an invalid range with the minimum
1691 greater than the maximum, take the minimum all the
1692 way to -INF. */
1693 if (compare_values (min, max) == 1)
1694 min = TYPE_MIN_VALUE (TREE_TYPE (min));
1697 else
1699 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
1700 if (compare_values (init, min) == 1)
1702 min = init;
1704 /* If we just created an invalid range with the minimum
1705 greater than the maximum, take the maximum all the
1706 way to +INF. */
1707 if (compare_values (min, max) == 1)
1708 max = TYPE_MAX_VALUE (TREE_TYPE (max));
1712 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
1717 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
1719 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
1720 all the values in the ranges.
1722 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
1724 - Return NULL_TREE if it is not always possible to determine the
1725 value of the comparison. */
1728 static tree
1729 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
1731 /* VARYING or UNDEFINED ranges cannot be compared. */
1732 if (vr0->type == VR_VARYING
1733 || vr0->type == VR_UNDEFINED
1734 || vr1->type == VR_VARYING
1735 || vr1->type == VR_UNDEFINED)
1736 return NULL_TREE;
1738 /* Anti-ranges need to be handled separately. */
1739 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
1741 /* If both are anti-ranges, then we cannot compute any
1742 comparison. */
1743 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
1744 return NULL_TREE;
1746 /* These comparisons are never statically computable. */
1747 if (comp == GT_EXPR
1748 || comp == GE_EXPR
1749 || comp == LT_EXPR
1750 || comp == LE_EXPR)
1751 return NULL_TREE;
1753 /* Equality can be computed only between a range and an
1754 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
1755 if (vr0->type == VR_RANGE)
1757 /* To simplify processing, make VR0 the anti-range. */
1758 value_range_t *tmp = vr0;
1759 vr0 = vr1;
1760 vr1 = tmp;
1763 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
1765 if (compare_values (vr0->min, vr1->min) == 0
1766 && compare_values (vr0->max, vr1->max) == 0)
1767 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1769 return NULL_TREE;
1772 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
1773 operands around and change the comparison code. */
1774 if (comp == GT_EXPR || comp == GE_EXPR)
1776 value_range_t *tmp;
1777 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
1778 tmp = vr0;
1779 vr0 = vr1;
1780 vr1 = tmp;
1783 if (comp == EQ_EXPR)
1785 /* Equality may only be computed if both ranges represent
1786 exactly one value. */
1787 if (compare_values (vr0->min, vr0->max) == 0
1788 && compare_values (vr1->min, vr1->max) == 0)
1790 int cmp_min = compare_values (vr0->min, vr1->min);
1791 int cmp_max = compare_values (vr0->max, vr1->max);
1792 if (cmp_min == 0 && cmp_max == 0)
1793 return boolean_true_node;
1794 else if (cmp_min != -2 && cmp_max != -2)
1795 return boolean_false_node;
1798 return NULL_TREE;
1800 else if (comp == NE_EXPR)
1802 int cmp1, cmp2;
1804 /* If VR0 is completely to the left or completely to the right
1805 of VR1, they are always different. Notice that we need to
1806 make sure that both comparisons yield similar results to
1807 avoid comparing values that cannot be compared at
1808 compile-time. */
1809 cmp1 = compare_values (vr0->max, vr1->min);
1810 cmp2 = compare_values (vr0->min, vr1->max);
1811 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
1812 return boolean_true_node;
1814 /* If VR0 and VR1 represent a single value and are identical,
1815 return false. */
1816 else if (compare_values (vr0->min, vr0->max) == 0
1817 && compare_values (vr1->min, vr1->max) == 0
1818 && compare_values (vr0->min, vr1->min) == 0
1819 && compare_values (vr0->max, vr1->max) == 0)
1820 return boolean_false_node;
1822 /* Otherwise, they may or may not be different. */
1823 else
1824 return NULL_TREE;
1826 else if (comp == LT_EXPR || comp == LE_EXPR)
1828 int tst;
1830 /* If VR0 is to the left of VR1, return true. */
1831 tst = compare_values (vr0->max, vr1->min);
1832 if ((comp == LT_EXPR && tst == -1)
1833 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
1834 return boolean_true_node;
1836 /* If VR0 is to the right of VR1, return false. */
1837 tst = compare_values (vr0->min, vr1->max);
1838 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
1839 || (comp == LE_EXPR && tst == 1))
1840 return boolean_false_node;
1842 /* Otherwise, we don't know. */
1843 return NULL_TREE;
1846 gcc_unreachable ();
1850 /* Given a value range VR, a value VAL and a comparison code COMP, return
1851 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
1852 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
1853 always returns false. Return NULL_TREE if it is not always
1854 possible to determine the value of the comparison. */
1856 static tree
1857 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
1859 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
1860 return NULL_TREE;
1862 /* Anti-ranges need to be handled separately. */
1863 if (vr->type == VR_ANTI_RANGE)
1865 /* For anti-ranges, the only predicates that we can compute at
1866 compile time are equality and inequality. */
1867 if (comp == GT_EXPR
1868 || comp == GE_EXPR
1869 || comp == LT_EXPR
1870 || comp == LE_EXPR)
1871 return NULL_TREE;
1873 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
1874 if (value_inside_range (val, vr) == 1)
1875 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1877 return NULL_TREE;
1880 if (comp == EQ_EXPR)
1882 /* EQ_EXPR may only be computed if VR represents exactly
1883 one value. */
1884 if (compare_values (vr->min, vr->max) == 0)
1886 int cmp = compare_values (vr->min, val);
1887 if (cmp == 0)
1888 return boolean_true_node;
1889 else if (cmp == -1 || cmp == 1 || cmp == 2)
1890 return boolean_false_node;
1892 else if (compare_values (val, vr->min) == -1
1893 || compare_values (vr->max, val) == -1)
1894 return boolean_false_node;
1896 return NULL_TREE;
1898 else if (comp == NE_EXPR)
1900 /* If VAL is not inside VR, then they are always different. */
1901 if (compare_values (vr->max, val) == -1
1902 || compare_values (vr->min, val) == 1)
1903 return boolean_true_node;
1905 /* If VR represents exactly one value equal to VAL, then return
1906 false. */
1907 if (compare_values (vr->min, vr->max) == 0
1908 && compare_values (vr->min, val) == 0)
1909 return boolean_false_node;
1911 /* Otherwise, they may or may not be different. */
1912 return NULL_TREE;
1914 else if (comp == LT_EXPR || comp == LE_EXPR)
1916 int tst;
1918 /* If VR is to the left of VAL, return true. */
1919 tst = compare_values (vr->max, val);
1920 if ((comp == LT_EXPR && tst == -1)
1921 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
1922 return boolean_true_node;
1924 /* If VR is to the right of VAL, return false. */
1925 tst = compare_values (vr->min, val);
1926 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
1927 || (comp == LE_EXPR && tst == 1))
1928 return boolean_false_node;
1930 /* Otherwise, we don't know. */
1931 return NULL_TREE;
1933 else if (comp == GT_EXPR || comp == GE_EXPR)
1935 int tst;
1937 /* If VR is to the right of VAL, return true. */
1938 tst = compare_values (vr->min, val);
1939 if ((comp == GT_EXPR && tst == 1)
1940 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
1941 return boolean_true_node;
1943 /* If VR is to the left of VAL, return false. */
1944 tst = compare_values (vr->max, val);
1945 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
1946 || (comp == GE_EXPR && tst == -1))
1947 return boolean_false_node;
1949 /* Otherwise, we don't know. */
1950 return NULL_TREE;
1953 gcc_unreachable ();
1957 /* Debugging dumps. */
1959 void dump_value_range (FILE *, value_range_t *);
1960 void debug_value_range (value_range_t *);
1961 void dump_all_value_ranges (FILE *);
1962 void debug_all_value_ranges (void);
1963 void dump_vr_equiv (FILE *, bitmap);
1964 void debug_vr_equiv (bitmap);
1967 /* Dump value range VR to FILE. */
1969 void
1970 dump_value_range (FILE *file, value_range_t *vr)
1972 if (vr == NULL)
1973 fprintf (file, "[]");
1974 else if (vr->type == VR_UNDEFINED)
1975 fprintf (file, "UNDEFINED");
1976 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
1978 tree type = TREE_TYPE (vr->min);
1980 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
1982 if (INTEGRAL_TYPE_P (type)
1983 && !TYPE_UNSIGNED (type)
1984 && vr->min == TYPE_MIN_VALUE (type))
1985 fprintf (file, "-INF");
1986 else
1987 print_generic_expr (file, vr->min, 0);
1989 fprintf (file, ", ");
1991 if (INTEGRAL_TYPE_P (type)
1992 && vr->max == TYPE_MAX_VALUE (type))
1993 fprintf (file, "+INF");
1994 else
1995 print_generic_expr (file, vr->max, 0);
1997 fprintf (file, "]");
1999 if (vr->equiv)
2001 bitmap_iterator bi;
2002 unsigned i, c = 0;
2004 fprintf (file, " EQUIVALENCES: { ");
2006 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2008 print_generic_expr (file, ssa_name (i), 0);
2009 fprintf (file, " ");
2010 c++;
2013 fprintf (file, "} (%u elements)", c);
2016 else if (vr->type == VR_VARYING)
2017 fprintf (file, "VARYING");
2018 else
2019 fprintf (file, "INVALID RANGE");
2023 /* Dump value range VR to stderr. */
2025 void
2026 debug_value_range (value_range_t *vr)
2028 dump_value_range (stderr, vr);
2032 /* Dump value ranges of all SSA_NAMEs to FILE. */
2034 void
2035 dump_all_value_ranges (FILE *file)
2037 size_t i;
2039 for (i = 0; i < num_ssa_names; i++)
2041 if (vr_value[i])
2043 print_generic_expr (file, ssa_name (i), 0);
2044 fprintf (file, ": ");
2045 dump_value_range (file, vr_value[i]);
2046 fprintf (file, "\n");
2050 fprintf (file, "\n");
2054 /* Dump all value ranges to stderr. */
2056 void
2057 debug_all_value_ranges (void)
2059 dump_all_value_ranges (stderr);
2063 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2064 create a new SSA name N and return the assertion assignment
2065 'V = ASSERT_EXPR <V, V OP W>'. */
2067 static tree
2068 build_assert_expr_for (tree cond, tree v)
2070 tree n, assertion;
2072 gcc_assert (TREE_CODE (v) == SSA_NAME);
2073 n = duplicate_ssa_name (v, NULL_TREE);
2075 if (COMPARISON_CLASS_P (cond))
2077 tree a = build (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2078 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, a);
2080 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2082 /* Given !V, build the assignment N = false. */
2083 tree op0 = TREE_OPERAND (cond, 0);
2084 gcc_assert (op0 == v);
2085 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2087 else if (TREE_CODE (cond) == SSA_NAME)
2089 /* Given V, build the assignment N = true. */
2090 gcc_assert (v == cond);
2091 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2093 else
2094 gcc_unreachable ();
2096 SSA_NAME_DEF_STMT (n) = assertion;
2098 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2099 operand of the ASSERT_EXPR. Register the new name and the old one
2100 in the replacement table so that we can fix the SSA web after
2101 adding all the ASSERT_EXPRs. */
2102 register_new_name_mapping (n, v);
2104 return assertion;
2108 /* Return false if EXPR is a predicate expression involving floating
2109 point values. */
2111 static inline bool
2112 fp_predicate (tree expr)
2114 return (COMPARISON_CLASS_P (expr)
2115 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2119 /* If the range of values taken by OP can be inferred after STMT executes,
2120 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2121 describes the inferred range. Return true if a range could be
2122 inferred. */
2124 static bool
2125 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2127 *val_p = NULL_TREE;
2128 *comp_code_p = ERROR_MARK;
2130 /* Do not attempt to infer anything in names that flow through
2131 abnormal edges. */
2132 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2133 return false;
2135 /* Similarly, don't infer anything from statements that may throw
2136 exceptions. */
2137 if (tree_could_throw_p (stmt))
2138 return false;
2140 if (POINTER_TYPE_P (TREE_TYPE (op)))
2142 bool is_store;
2143 unsigned num_uses, num_derefs;
2145 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2146 if (num_derefs > 0 && flag_delete_null_pointer_checks)
2148 /* We can only assume that a pointer dereference will yield
2149 non-NULL if -fdelete-null-pointer-checks is enabled. */
2150 *val_p = build_int_cst (TREE_TYPE (op), 0);
2151 *comp_code_p = NE_EXPR;
2152 return true;
2156 return false;
2160 void dump_asserts_for (FILE *, tree);
2161 void debug_asserts_for (tree);
2162 void dump_all_asserts (FILE *);
2163 void debug_all_asserts (void);
2165 /* Dump all the registered assertions for NAME to FILE. */
2167 void
2168 dump_asserts_for (FILE *file, tree name)
2170 assert_locus_t loc;
2172 fprintf (file, "Assertions to be inserted for ");
2173 print_generic_expr (file, name, 0);
2174 fprintf (file, "\n");
2176 loc = asserts_for[SSA_NAME_VERSION (name)];
2177 while (loc)
2179 fprintf (file, "\t");
2180 print_generic_expr (file, bsi_stmt (loc->si), 0);
2181 fprintf (file, "\n\tBB #%d", loc->bb->index);
2182 if (loc->e)
2184 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2185 loc->e->dest->index);
2186 dump_edge_info (file, loc->e, 0);
2188 fprintf (file, "\n\tPREDICATE: ");
2189 print_generic_expr (file, name, 0);
2190 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2191 print_generic_expr (file, loc->val, 0);
2192 fprintf (file, "\n\n");
2193 loc = loc->next;
2196 fprintf (file, "\n");
2200 /* Dump all the registered assertions for NAME to stderr. */
2202 void
2203 debug_asserts_for (tree name)
2205 dump_asserts_for (stderr, name);
2209 /* Dump all the registered assertions for all the names to FILE. */
2211 void
2212 dump_all_asserts (FILE *file)
2214 unsigned i;
2215 bitmap_iterator bi;
2217 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2218 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2219 dump_asserts_for (file, ssa_name (i));
2220 fprintf (file, "\n");
2224 /* Dump all the registered assertions for all the names to stderr. */
2226 void
2227 debug_all_asserts (void)
2229 dump_all_asserts (stderr);
2233 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2234 'NAME COMP_CODE VAL' at a location that dominates block BB or
2235 E->DEST, then register this location as a possible insertion point
2236 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2238 BB, E and SI provide the exact insertion point for the new
2239 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2240 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2241 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2242 must not be NULL. */
2244 static void
2245 register_new_assert_for (tree name,
2246 enum tree_code comp_code,
2247 tree val,
2248 basic_block bb,
2249 edge e,
2250 block_stmt_iterator si)
2252 assert_locus_t n, loc, last_loc;
2253 bool found;
2254 basic_block dest_bb;
2256 #if defined ENABLE_CHECKING
2257 gcc_assert (bb == NULL || e == NULL);
2259 if (e == NULL)
2260 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2261 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2262 #endif
2264 /* The new assertion A will be inserted at BB or E. We need to
2265 determine if the new location is dominated by a previously
2266 registered location for A. If we are doing an edge insertion,
2267 assume that A will be inserted at E->DEST. Note that this is not
2268 necessarily true.
2270 If E is a critical edge, it will be split. But even if E is
2271 split, the new block will dominate the same set of blocks that
2272 E->DEST dominates.
2274 The reverse, however, is not true, blocks dominated by E->DEST
2275 will not be dominated by the new block created to split E. So,
2276 if the insertion location is on a critical edge, we will not use
2277 the new location to move another assertion previously registered
2278 at a block dominated by E->DEST. */
2279 dest_bb = (bb) ? bb : e->dest;
2281 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2282 VAL at a block dominating DEST_BB, then we don't need to insert a new
2283 one. Similarly, if the same assertion already exists at a block
2284 dominated by DEST_BB and the new location is not on a critical
2285 edge, then update the existing location for the assertion (i.e.,
2286 move the assertion up in the dominance tree).
2288 Note, this is implemented as a simple linked list because there
2289 should not be more than a handful of assertions registered per
2290 name. If this becomes a performance problem, a table hashed by
2291 COMP_CODE and VAL could be implemented. */
2292 loc = asserts_for[SSA_NAME_VERSION (name)];
2293 last_loc = loc;
2294 found = false;
2295 while (loc)
2297 if (loc->comp_code == comp_code
2298 && (loc->val == val
2299 || operand_equal_p (loc->val, val, 0)))
2301 /* If the assertion NAME COMP_CODE VAL has already been
2302 registered at a basic block that dominates DEST_BB, then
2303 we don't need to insert the same assertion again. Note
2304 that we don't check strict dominance here to avoid
2305 replicating the same assertion inside the same basic
2306 block more than once (e.g., when a pointer is
2307 dereferenced several times inside a block).
2309 An exception to this rule are edge insertions. If the
2310 new assertion is to be inserted on edge E, then it will
2311 dominate all the other insertions that we may want to
2312 insert in DEST_BB. So, if we are doing an edge
2313 insertion, don't do this dominance check. */
2314 if (e == NULL
2315 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2316 return;
2318 /* Otherwise, if E is not a critical edge and DEST_BB
2319 dominates the existing location for the assertion, move
2320 the assertion up in the dominance tree by updating its
2321 location information. */
2322 if ((e == NULL || !EDGE_CRITICAL_P (e))
2323 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2325 loc->bb = dest_bb;
2326 loc->e = e;
2327 loc->si = si;
2328 return;
2332 /* Update the last node of the list and move to the next one. */
2333 last_loc = loc;
2334 loc = loc->next;
2337 /* If we didn't find an assertion already registered for
2338 NAME COMP_CODE VAL, add a new one at the end of the list of
2339 assertions associated with NAME. */
2340 n = xmalloc (sizeof (*n));
2341 n->bb = dest_bb;
2342 n->e = e;
2343 n->si = si;
2344 n->comp_code = comp_code;
2345 n->val = val;
2346 n->next = NULL;
2348 if (last_loc)
2349 last_loc->next = n;
2350 else
2351 asserts_for[SSA_NAME_VERSION (name)] = n;
2353 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2357 /* Try to register an edge assertion for SSA name NAME on edge E for
2358 the conditional jump pointed to by SI. Return true if an assertion
2359 for NAME could be registered. */
2361 static bool
2362 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2364 tree val, stmt;
2365 enum tree_code comp_code;
2367 stmt = bsi_stmt (si);
2369 /* Do not attempt to infer anything in names that flow through
2370 abnormal edges. */
2371 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2372 return false;
2374 /* If NAME was not found in the sub-graph reachable from E, then
2375 there's nothing to do. */
2376 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2377 return false;
2379 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2380 Register an assertion for NAME according to the value that NAME
2381 takes on edge E. */
2382 if (TREE_CODE (stmt) == COND_EXPR)
2384 /* If BB ends in a COND_EXPR then NAME then we should insert
2385 the original predicate on EDGE_TRUE_VALUE and the
2386 opposite predicate on EDGE_FALSE_VALUE. */
2387 tree cond = COND_EXPR_COND (stmt);
2388 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2390 /* Predicates may be a single SSA name or NAME OP VAL. */
2391 if (cond == name)
2393 /* If the predicate is a name, it must be NAME, in which
2394 case we create the predicate NAME == true or
2395 NAME == false accordingly. */
2396 comp_code = EQ_EXPR;
2397 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2399 else
2401 /* Otherwise, we have a comparison of the form NAME COMP VAL
2402 or VAL COMP NAME. */
2403 if (name == TREE_OPERAND (cond, 1))
2405 /* If the predicate is of the form VAL COMP NAME, flip
2406 COMP around because we need to register NAME as the
2407 first operand in the predicate. */
2408 comp_code = swap_tree_comparison (TREE_CODE (cond));
2409 val = TREE_OPERAND (cond, 0);
2411 else
2413 /* The comparison is of the form NAME COMP VAL, so the
2414 comparison code remains unchanged. */
2415 comp_code = TREE_CODE (cond);
2416 val = TREE_OPERAND (cond, 1);
2419 /* If we are inserting the assertion on the ELSE edge, we
2420 need to invert the sign comparison. */
2421 if (is_else_edge)
2422 comp_code = invert_tree_comparison (comp_code, 0);
2425 else
2427 /* FIXME. Handle SWITCH_EXPR. */
2428 gcc_unreachable ();
2431 register_new_assert_for (name, comp_code, val, NULL, e, si);
2432 return true;
2436 static bool find_assert_locations (basic_block bb);
2438 /* Determine whether the outgoing edges of BB should receive an
2439 ASSERT_EXPR for each of the operands of BB's last statement. The
2440 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2442 If any of the sub-graphs rooted at BB have an interesting use of
2443 the predicate operands, an assert location node is added to the
2444 list of assertions for the corresponding operands. */
2446 static bool
2447 find_conditional_asserts (basic_block bb)
2449 bool need_assert;
2450 block_stmt_iterator last_si;
2451 tree op, last;
2452 edge_iterator ei;
2453 edge e;
2454 ssa_op_iter iter;
2456 need_assert = false;
2457 last_si = bsi_last (bb);
2458 last = bsi_stmt (last_si);
2460 /* Look for uses of the operands in each of the sub-graphs
2461 rooted at BB. We need to check each of the outgoing edges
2462 separately, so that we know what kind of ASSERT_EXPR to
2463 insert. */
2464 FOR_EACH_EDGE (e, ei, bb->succs)
2466 if (e->dest == bb)
2467 continue;
2469 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2470 Otherwise, when we finish traversing each of the sub-graphs, we
2471 won't know whether the variables were found in the sub-graphs or
2472 if they had been found in a block upstream from BB. */
2473 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2474 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2476 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2477 to determine if any of the operands in the conditional
2478 predicate are used. */
2479 if (e->dest != bb)
2480 need_assert |= find_assert_locations (e->dest);
2482 /* Register the necessary assertions for each operand in the
2483 conditional predicate. */
2484 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2485 need_assert |= register_edge_assert_for (op, e, last_si);
2488 /* Finally, indicate that we have found the operands in the
2489 conditional. */
2490 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2491 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2493 return need_assert;
2497 /* Traverse all the statements in block BB looking for statements that
2498 may generate useful assertions for the SSA names in their operand.
2499 If a statement produces a useful assertion A for name N_i, then the
2500 list of assertions already generated for N_i is scanned to
2501 determine if A is actually needed.
2503 If N_i already had the assertion A at a location dominating the
2504 current location, then nothing needs to be done. Otherwise, the
2505 new location for A is recorded instead.
2507 1- For every statement S in BB, all the variables used by S are
2508 added to bitmap FOUND_IN_SUBGRAPH.
2510 2- If statement S uses an operand N in a way that exposes a known
2511 value range for N, then if N was not already generated by an
2512 ASSERT_EXPR, create a new assert location for N. For instance,
2513 if N is a pointer and the statement dereferences it, we can
2514 assume that N is not NULL.
2516 3- COND_EXPRs are a special case of #2. We can derive range
2517 information from the predicate but need to insert different
2518 ASSERT_EXPRs for each of the sub-graphs rooted at the
2519 conditional block. If the last statement of BB is a conditional
2520 expression of the form 'X op Y', then
2522 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2524 b) If the conditional is the only entry point to the sub-graph
2525 corresponding to the THEN_CLAUSE, recurse into it. On
2526 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2527 an ASSERT_EXPR is added for the corresponding variable.
2529 c) Repeat step (b) on the ELSE_CLAUSE.
2531 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2533 For instance,
2535 if (a == 9)
2536 b = a;
2537 else
2538 b = c + 1;
2540 In this case, an assertion on the THEN clause is useful to
2541 determine that 'a' is always 9 on that edge. However, an assertion
2542 on the ELSE clause would be unnecessary.
2544 4- If BB does not end in a conditional expression, then we recurse
2545 into BB's dominator children.
2547 At the end of the recursive traversal, every SSA name will have a
2548 list of locations where ASSERT_EXPRs should be added. When a new
2549 location for name N is found, it is registered by calling
2550 register_new_assert_for. That function keeps track of all the
2551 registered assertions to prevent adding unnecessary assertions.
2552 For instance, if a pointer P_4 is dereferenced more than once in a
2553 dominator tree, only the location dominating all the dereference of
2554 P_4 will receive an ASSERT_EXPR.
2556 If this function returns true, then it means that there are names
2557 for which we need to generate ASSERT_EXPRs. Those assertions are
2558 inserted by process_assert_insertions.
2560 TODO. Handle SWITCH_EXPR. */
2562 static bool
2563 find_assert_locations (basic_block bb)
2565 block_stmt_iterator si;
2566 tree last, phi;
2567 bool need_assert;
2568 basic_block son;
2570 if (TEST_BIT (blocks_visited, bb->index))
2571 return false;
2573 SET_BIT (blocks_visited, bb->index);
2575 need_assert = false;
2577 /* Traverse all PHI nodes in BB marking used operands. */
2578 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2580 use_operand_p arg_p;
2581 ssa_op_iter i;
2583 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
2585 tree arg = USE_FROM_PTR (arg_p);
2586 if (TREE_CODE (arg) == SSA_NAME)
2588 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
2589 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
2594 /* Traverse all the statements in BB marking used names and looking
2595 for statements that may infer assertions for their used operands. */
2596 last = NULL_TREE;
2597 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2599 tree stmt, op;
2600 ssa_op_iter i;
2602 stmt = bsi_stmt (si);
2604 /* See if we can derive an assertion for any of STMT's operands. */
2605 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
2607 tree value;
2608 enum tree_code comp_code;
2610 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2611 the sub-graph of a conditional block, when we return from
2612 this recursive walk, our parent will use the
2613 FOUND_IN_SUBGRAPH bitset to determine if one of the
2614 operands it was looking for was present in the sub-graph. */
2615 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2617 /* If OP is used only once, namely in this STMT, don't
2618 bother creating an ASSERT_EXPR for it. Such an
2619 ASSERT_EXPR would do nothing but increase compile time.
2620 Experiments show that with this simple check, we can save
2621 more than 20% of ASSERT_EXPRs. */
2622 if (has_single_use (op))
2623 continue;
2625 /* If OP is used in such a way that we can infer a value
2626 range for it, and we don't find a previous assertion for
2627 it, create a new assertion location node for OP. */
2628 if (infer_value_range (stmt, op, &comp_code, &value))
2630 register_new_assert_for (op, comp_code, value, bb, NULL, si);
2631 need_assert = true;
2635 /* Remember the last statement of the block. */
2636 last = stmt;
2639 /* If BB's last statement is a conditional expression
2640 involving integer operands, recurse into each of the sub-graphs
2641 rooted at BB to determine if we need to add ASSERT_EXPRs. */
2642 if (last
2643 && TREE_CODE (last) == COND_EXPR
2644 && !fp_predicate (COND_EXPR_COND (last))
2645 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
2646 need_assert |= find_conditional_asserts (bb);
2648 /* Recurse into the dominator children of BB. */
2649 for (son = first_dom_son (CDI_DOMINATORS, bb);
2650 son;
2651 son = next_dom_son (CDI_DOMINATORS, son))
2652 need_assert |= find_assert_locations (son);
2654 return need_assert;
2658 /* Create an ASSERT_EXPR for NAME and insert it in the location
2659 indicated by LOC. Return true if we made any edge insertions. */
2661 static bool
2662 process_assert_insertions_for (tree name, assert_locus_t loc)
2664 /* Build the comparison expression NAME_i COMP_CODE VAL. */
2665 tree stmt, cond, assert_expr;
2666 edge_iterator ei;
2667 edge e;
2669 cond = build (loc->comp_code, boolean_type_node, name, loc->val);
2670 assert_expr = build_assert_expr_for (cond, name);
2672 if (loc->e)
2674 /* We have been asked to insert the assertion on an edge. This
2675 is used only by COND_EXPR and SWITCH_EXPR assertions. */
2676 #if defined ENABLE_CHECKING
2677 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
2678 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
2679 #endif
2681 bsi_insert_on_edge (loc->e, assert_expr);
2682 return true;
2685 /* Otherwise, we can insert right after LOC->SI iff the
2686 statement must not be the last statement in the block. */
2687 stmt = bsi_stmt (loc->si);
2688 if (!stmt_ends_bb_p (stmt))
2690 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
2691 return false;
2694 /* If STMT must be the last statement in BB, we can only insert new
2695 assertions on the non-abnormal edge out of BB. Note that since
2696 STMT is not control flow, there may only be one non-abnormal edge
2697 out of BB. */
2698 FOR_EACH_EDGE (e, ei, loc->bb->succs)
2699 if (!(e->flags & EDGE_ABNORMAL))
2701 bsi_insert_on_edge (e, assert_expr);
2702 return true;
2705 gcc_unreachable ();
2709 /* Process all the insertions registered for every name N_i registered
2710 in NEED_ASSERT_FOR. The list of assertions to be inserted are
2711 found in ASSERTS_FOR[i]. */
2713 static void
2714 process_assert_insertions (void)
2716 unsigned i;
2717 bitmap_iterator bi;
2718 bool update_edges_p = false;
2719 int num_asserts = 0;
2721 if (dump_file && (dump_flags & TDF_DETAILS))
2722 dump_all_asserts (dump_file);
2724 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2726 assert_locus_t loc = asserts_for[i];
2727 gcc_assert (loc);
2729 while (loc)
2731 assert_locus_t next = loc->next;
2732 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
2733 free (loc);
2734 loc = next;
2735 num_asserts++;
2739 if (update_edges_p)
2740 bsi_commit_edge_inserts ();
2742 if (dump_file && (dump_flags & TDF_STATS))
2743 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
2744 num_asserts);
2748 /* Traverse the flowgraph looking for conditional jumps to insert range
2749 expressions. These range expressions are meant to provide information
2750 to optimizations that need to reason in terms of value ranges. They
2751 will not be expanded into RTL. For instance, given:
2753 x = ...
2754 y = ...
2755 if (x < y)
2756 y = x - 2;
2757 else
2758 x = y + 3;
2760 this pass will transform the code into:
2762 x = ...
2763 y = ...
2764 if (x < y)
2766 x = ASSERT_EXPR <x, x < y>
2767 y = x - 2
2769 else
2771 y = ASSERT_EXPR <y, x <= y>
2772 x = y + 3
2775 The idea is that once copy and constant propagation have run, other
2776 optimizations will be able to determine what ranges of values can 'x'
2777 take in different paths of the code, simply by checking the reaching
2778 definition of 'x'. */
2780 static void
2781 insert_range_assertions (void)
2783 edge e;
2784 edge_iterator ei;
2785 bool update_ssa_p;
2787 found_in_subgraph = sbitmap_alloc (num_ssa_names);
2788 sbitmap_zero (found_in_subgraph);
2790 blocks_visited = sbitmap_alloc (last_basic_block);
2791 sbitmap_zero (blocks_visited);
2793 need_assert_for = BITMAP_ALLOC (NULL);
2794 asserts_for = xmalloc (num_ssa_names * sizeof (assert_locus_t));
2795 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
2797 calculate_dominance_info (CDI_DOMINATORS);
2799 update_ssa_p = false;
2800 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2801 if (find_assert_locations (e->dest))
2802 update_ssa_p = true;
2804 if (update_ssa_p)
2806 process_assert_insertions ();
2807 update_ssa (TODO_update_ssa_no_phi);
2810 if (dump_file && (dump_flags & TDF_DETAILS))
2812 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
2813 dump_function_to_file (current_function_decl, dump_file, dump_flags);
2816 sbitmap_free (found_in_subgraph);
2817 free (asserts_for);
2818 BITMAP_FREE (need_assert_for);
2822 /* Convert range assertion expressions into the implied copies and
2823 copy propagate away the copies. Doing the trivial copy propagation
2824 here avoids the need to run the full copy propagation pass after
2825 VRP.
2827 FIXME, this will eventually lead to copy propagation removing the
2828 names that had useful range information attached to them. For
2829 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
2830 then N_i will have the range [3, +INF].
2832 However, by converting the assertion into the implied copy
2833 operation N_i = N_j, we will then copy-propagate N_j into the uses
2834 of N_i and lose the range information. We may want to hold on to
2835 ASSERT_EXPRs a little while longer as the ranges could be used in
2836 things like jump threading.
2838 The problem with keeping ASSERT_EXPRs around is that passes after
2839 VRP need to handle them appropriately.
2841 Another approach would be to make the range information a first
2842 class property of the SSA_NAME so that it can be queried from
2843 any pass. This is made somewhat more complex by the need for
2844 multiple ranges to be associated with one SSA_NAME. */
2846 static void
2847 remove_range_assertions (void)
2849 basic_block bb;
2850 block_stmt_iterator si;
2852 /* Note that the BSI iterator bump happens at the bottom of the
2853 loop and no bump is necessary if we're removing the statement
2854 referenced by the current BSI. */
2855 FOR_EACH_BB (bb)
2856 for (si = bsi_start (bb); !bsi_end_p (si);)
2858 tree stmt = bsi_stmt (si);
2860 if (TREE_CODE (stmt) == MODIFY_EXPR
2861 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
2863 tree rhs = TREE_OPERAND (stmt, 1);
2864 tree cond = fold (ASSERT_EXPR_COND (rhs));
2865 use_operand_p use_p;
2866 imm_use_iterator iter;
2868 gcc_assert (cond != boolean_false_node);
2869 TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
2870 update_stmt (stmt);
2872 /* The statement is now a copy. Propagate the RHS into
2873 every use of the LHS. */
2874 FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
2876 SET_USE (use_p, ASSERT_EXPR_VAR (rhs));
2877 update_stmt (USE_STMT (use_p));
2880 /* And finally, remove the copy, it is not needed. */
2881 bsi_remove (&si);
2883 else
2884 bsi_next (&si);
2887 sbitmap_free (blocks_visited);
2891 /* Return true if STMT is interesting for VRP. */
2893 static bool
2894 stmt_interesting_for_vrp (tree stmt)
2896 if (TREE_CODE (stmt) == PHI_NODE
2897 && is_gimple_reg (PHI_RESULT (stmt))
2898 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
2899 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
2900 return true;
2901 else if (TREE_CODE (stmt) == MODIFY_EXPR)
2903 tree lhs = TREE_OPERAND (stmt, 0);
2905 if (TREE_CODE (lhs) == SSA_NAME
2906 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2907 || POINTER_TYPE_P (TREE_TYPE (lhs)))
2908 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
2909 return true;
2911 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
2912 return true;
2914 return false;
2918 /* Initialize local data structures for VRP. */
2920 static void
2921 vrp_initialize (void)
2923 basic_block bb;
2925 vr_value = xmalloc (num_ssa_names * sizeof (value_range_t *));
2926 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
2928 FOR_EACH_BB (bb)
2930 block_stmt_iterator si;
2931 tree phi;
2933 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2935 if (!stmt_interesting_for_vrp (phi))
2937 tree lhs = PHI_RESULT (phi);
2938 set_value_range_to_varying (get_value_range (lhs));
2939 DONT_SIMULATE_AGAIN (phi) = true;
2941 else
2942 DONT_SIMULATE_AGAIN (phi) = false;
2945 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2947 tree stmt = bsi_stmt (si);
2949 if (!stmt_interesting_for_vrp (stmt))
2951 ssa_op_iter i;
2952 tree def;
2953 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
2954 set_value_range_to_varying (get_value_range (def));
2955 DONT_SIMULATE_AGAIN (stmt) = true;
2957 else
2959 DONT_SIMULATE_AGAIN (stmt) = false;
2966 /* Visit assignment STMT. If it produces an interesting range, record
2967 the SSA name in *OUTPUT_P. */
2969 static enum ssa_prop_result
2970 vrp_visit_assignment (tree stmt, tree *output_p)
2972 tree lhs, rhs, def;
2973 ssa_op_iter iter;
2975 lhs = TREE_OPERAND (stmt, 0);
2976 rhs = TREE_OPERAND (stmt, 1);
2978 /* We only keep track of ranges in integral and pointer types. */
2979 if (TREE_CODE (lhs) == SSA_NAME
2980 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2981 || POINTER_TYPE_P (TREE_TYPE (lhs))))
2983 struct loop *l;
2984 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2986 extract_range_from_expr (&new_vr, rhs);
2988 /* If STMT is inside a loop, we may be able to know something
2989 else about the range of LHS by examining scalar evolution
2990 information. */
2991 if (cfg_loops && (l = loop_containing_stmt (stmt)))
2992 adjust_range_with_scev (&new_vr, l, stmt, lhs);
2994 if (update_value_range (lhs, &new_vr))
2996 *output_p = lhs;
2998 if (dump_file && (dump_flags & TDF_DETAILS))
3000 fprintf (dump_file, "Found new range for ");
3001 print_generic_expr (dump_file, lhs, 0);
3002 fprintf (dump_file, ": ");
3003 dump_value_range (dump_file, &new_vr);
3004 fprintf (dump_file, "\n\n");
3007 if (new_vr.type == VR_VARYING)
3008 return SSA_PROP_VARYING;
3010 return SSA_PROP_INTERESTING;
3013 return SSA_PROP_NOT_INTERESTING;
3016 /* Every other statement produces no useful ranges. */
3017 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3018 set_value_range_to_varying (get_value_range (def));
3020 return SSA_PROP_VARYING;
3024 /* Compare all the value ranges for names equivalent to VAR with VAL
3025 using comparison code COMP. Return the same value returned by
3026 compare_range_with_value. */
3028 static tree
3029 compare_name_with_value (enum tree_code comp, tree var, tree val)
3031 bitmap_iterator bi;
3032 unsigned i;
3033 bitmap e;
3034 tree retval, t;
3036 t = retval = NULL_TREE;
3038 /* Get the set of equivalences for VAR. */
3039 e = get_value_range (var)->equiv;
3041 /* Add VAR to its own set of equivalences so that VAR's value range
3042 is processed by this loop (otherwise, we would have to replicate
3043 the body of the loop just to check VAR's value range). */
3044 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3046 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3048 value_range_t equiv_vr = *(vr_value[i]);
3050 /* If name N_i does not have a valid range, use N_i as its own
3051 range. This allows us to compare against names that may
3052 have N_i in their ranges. */
3053 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3055 equiv_vr.type = VR_RANGE;
3056 equiv_vr.min = ssa_name (i);
3057 equiv_vr.max = ssa_name (i);
3060 t = compare_range_with_value (comp, &equiv_vr, val);
3061 if (t)
3063 /* All the ranges should compare the same against VAL. */
3064 gcc_assert (retval == NULL || t == retval);
3065 retval = t;
3069 /* Remove VAR from its own equivalence set. */
3070 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3072 if (retval)
3073 return retval;
3075 /* We couldn't find a non-NULL value for the predicate. */
3076 return NULL_TREE;
3080 /* Given a comparison code COMP and names N1 and N2, compare all the
3081 ranges equivalent to N1 against all the ranges equivalent to N2
3082 to determine the value of N1 COMP N2. Return the same value
3083 returned by compare_ranges. */
3085 static tree
3086 compare_names (enum tree_code comp, tree n1, tree n2)
3088 tree t, retval;
3089 bitmap e1, e2;
3090 bitmap_iterator bi1, bi2;
3091 unsigned i1, i2;
3093 /* Compare the ranges of every name equivalent to N1 against the
3094 ranges of every name equivalent to N2. */
3095 e1 = get_value_range (n1)->equiv;
3096 e2 = get_value_range (n2)->equiv;
3098 /* Add N1 and N2 to their own set of equivalences to avoid
3099 duplicating the body of the loop just to check N1 and N2
3100 ranges. */
3101 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3102 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3104 /* If the equivalence sets have a common intersection, then the two
3105 names can be compared without checking their ranges. */
3106 if (bitmap_intersect_p (e1, e2))
3108 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3109 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3111 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3112 ? boolean_true_node
3113 : boolean_false_node;
3116 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3117 N2 to their own set of equivalences to avoid duplicating the body
3118 of the loop just to check N1 and N2 ranges. */
3119 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3121 value_range_t vr1 = *(vr_value[i1]);
3123 /* If the range is VARYING or UNDEFINED, use the name itself. */
3124 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3126 vr1.type = VR_RANGE;
3127 vr1.min = ssa_name (i1);
3128 vr1.max = ssa_name (i1);
3131 t = retval = NULL_TREE;
3132 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3134 value_range_t vr2 = *(vr_value[i2]);
3136 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3138 vr2.type = VR_RANGE;
3139 vr2.min = ssa_name (i2);
3140 vr2.max = ssa_name (i2);
3143 t = compare_ranges (comp, &vr1, &vr2);
3144 if (t)
3146 /* All the ranges in the equivalent sets should compare
3147 the same. */
3148 gcc_assert (retval == NULL || t == retval);
3149 retval = t;
3153 if (retval)
3155 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3156 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3157 return retval;
3161 /* None of the equivalent ranges are useful in computing this
3162 comparison. */
3163 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3164 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3165 return NULL_TREE;
3169 /* Given a conditional predicate COND, try to determine if COND yields
3170 true or false based on the value ranges of its operands. Return
3171 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3172 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3173 NULL if the conditional cannot be evaluated at compile time.
3175 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3176 the operands in COND are used when trying to compute its value.
3177 This is only used during final substitution. During propagation,
3178 we only check the range of each variable and not its equivalents. */
3180 tree
3181 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3183 gcc_assert (TREE_CODE (cond) == SSA_NAME
3184 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3186 if (TREE_CODE (cond) == SSA_NAME)
3188 value_range_t *vr;
3189 tree retval;
3191 if (use_equiv_p)
3192 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3193 else
3195 value_range_t *vr = get_value_range (cond);
3196 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3199 /* If COND has a known boolean range, return it. */
3200 if (retval)
3201 return retval;
3203 /* Otherwise, if COND has a symbolic range of exactly one value,
3204 return it. */
3205 vr = get_value_range (cond);
3206 if (vr->type == VR_RANGE && vr->min == vr->max)
3207 return vr->min;
3209 else
3211 tree op0 = TREE_OPERAND (cond, 0);
3212 tree op1 = TREE_OPERAND (cond, 1);
3214 /* We only deal with integral and pointer types. */
3215 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3216 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3217 return NULL_TREE;
3219 if (use_equiv_p)
3221 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3222 return compare_names (TREE_CODE (cond), op0, op1);
3223 else if (TREE_CODE (op0) == SSA_NAME)
3224 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3225 else if (TREE_CODE (op1) == SSA_NAME)
3226 return compare_name_with_value (
3227 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3229 else
3231 value_range_t *vr0, *vr1;
3233 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3234 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3236 if (vr0 && vr1)
3237 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3238 else if (vr0 && vr1 == NULL)
3239 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3240 else if (vr0 == NULL && vr1)
3241 return compare_range_with_value (
3242 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3246 /* Anything else cannot be computed statically. */
3247 return NULL_TREE;
3251 /* Visit conditional statement STMT. If we can determine which edge
3252 will be taken out of STMT's basic block, record it in
3253 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3254 SSA_PROP_VARYING. */
3256 static enum ssa_prop_result
3257 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3259 tree cond, val;
3261 *taken_edge_p = NULL;
3263 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3264 add ASSERT_EXPRs for them. */
3265 if (TREE_CODE (stmt) == SWITCH_EXPR)
3266 return SSA_PROP_VARYING;
3268 cond = COND_EXPR_COND (stmt);
3270 if (dump_file && (dump_flags & TDF_DETAILS))
3272 tree use;
3273 ssa_op_iter i;
3275 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3276 print_generic_expr (dump_file, cond, 0);
3277 fprintf (dump_file, "\nWith known ranges\n");
3279 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3281 fprintf (dump_file, "\t");
3282 print_generic_expr (dump_file, use, 0);
3283 fprintf (dump_file, ": ");
3284 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3287 fprintf (dump_file, "\n");
3290 /* Compute the value of the predicate COND by checking the known
3291 ranges of each of its operands.
3293 Note that we cannot evaluate all the equivalent ranges here
3294 because those ranges may not yet be final and with the current
3295 propagation strategy, we cannot determine when the value ranges
3296 of the names in the equivalence set have changed.
3298 For instance, given the following code fragment
3300 i_5 = PHI <8, i_13>
3302 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3303 if (i_14 == 1)
3306 Assume that on the first visit to i_14, i_5 has the temporary
3307 range [8, 8] because the second argument to the PHI function is
3308 not yet executable. We derive the range ~[0, 0] for i_14 and the
3309 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3310 the first time, since i_14 is equivalent to the range [8, 8], we
3311 determine that the predicate is always false.
3313 On the next round of propagation, i_13 is determined to be
3314 VARYING, which causes i_5 to drop down to VARYING. So, another
3315 visit to i_14 is scheduled. In this second visit, we compute the
3316 exact same range and equivalence set for i_14, namely ~[0, 0] and
3317 { i_5 }. But we did not have the previous range for i_5
3318 registered, so vrp_visit_assignment thinks that the range for
3319 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3320 is not visited again, which stops propagation from visiting
3321 statements in the THEN clause of that if().
3323 To properly fix this we would need to keep the previous range
3324 value for the names in the equivalence set. This way we would've
3325 discovered that from one visit to the other i_5 changed from
3326 range [8, 8] to VR_VARYING.
3328 However, fixing this apparent limitation may not be worth the
3329 additional checking. Testing on several code bases (GCC, DLV,
3330 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3331 4 more predicates folded in SPEC. */
3332 val = vrp_evaluate_conditional (cond, false);
3333 if (val)
3334 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3336 if (dump_file && (dump_flags & TDF_DETAILS))
3338 fprintf (dump_file, "\nPredicate evaluates to: ");
3339 if (val == NULL_TREE)
3340 fprintf (dump_file, "DON'T KNOW\n");
3341 else
3342 print_generic_stmt (dump_file, val, 0);
3345 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3349 /* Evaluate statement STMT. If the statement produces a useful range,
3350 return SSA_PROP_INTERESTING and record the SSA name with the
3351 interesting range into *OUTPUT_P.
3353 If STMT is a conditional branch and we can determine its truth
3354 value, the taken edge is recorded in *TAKEN_EDGE_P.
3356 If STMT produces a varying value, return SSA_PROP_VARYING. */
3358 static enum ssa_prop_result
3359 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3361 tree def;
3362 ssa_op_iter iter;
3363 stmt_ann_t ann;
3365 if (dump_file && (dump_flags & TDF_DETAILS))
3367 fprintf (dump_file, "\nVisiting statement:\n");
3368 print_generic_stmt (dump_file, stmt, dump_flags);
3369 fprintf (dump_file, "\n");
3372 ann = stmt_ann (stmt);
3373 if (TREE_CODE (stmt) == MODIFY_EXPR
3374 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3375 return vrp_visit_assignment (stmt, output_p);
3376 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3377 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3379 /* All other statements produce nothing of interest for VRP, so mark
3380 their outputs varying and prevent further simulation. */
3381 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3382 set_value_range_to_varying (get_value_range (def));
3384 return SSA_PROP_VARYING;
3388 /* Meet operation for value ranges. Given two value ranges VR0 and
3389 VR1, store in VR0 the result of meeting VR0 and VR1.
3391 The meeting rules are as follows:
3393 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3395 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3396 union of VR0 and VR1. */
3398 static void
3399 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3401 if (vr0->type == VR_UNDEFINED)
3403 copy_value_range (vr0, vr1);
3404 return;
3407 if (vr1->type == VR_UNDEFINED)
3409 /* Nothing to do. VR0 already has the resulting range. */
3410 return;
3413 if (vr0->type == VR_VARYING)
3415 /* Nothing to do. VR0 already has the resulting range. */
3416 return;
3419 if (vr1->type == VR_VARYING)
3421 set_value_range_to_varying (vr0);
3422 return;
3425 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3427 /* If VR0 and VR1 have a non-empty intersection, compute the
3428 union of both ranges. */
3429 if (value_ranges_intersect_p (vr0, vr1))
3431 int cmp;
3432 tree min, max;
3434 /* The lower limit of the new range is the minimum of the
3435 two ranges. If they cannot be compared, the result is
3436 VARYING. */
3437 cmp = compare_values (vr0->min, vr1->min);
3438 if (cmp == 0 || cmp == 1)
3439 min = vr1->min;
3440 else if (cmp == -1)
3441 min = vr0->min;
3442 else
3444 set_value_range_to_varying (vr0);
3445 return;
3448 /* Similarly, the upper limit of the new range is the
3449 maximum of the two ranges. If they cannot be compared,
3450 the result is VARYING. */
3451 cmp = compare_values (vr0->max, vr1->max);
3452 if (cmp == 0 || cmp == -1)
3453 max = vr1->max;
3454 else if (cmp == 1)
3455 max = vr0->max;
3456 else
3458 set_value_range_to_varying (vr0);
3459 return;
3462 /* The resulting set of equivalences is the intersection of
3463 the two sets. */
3464 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3465 bitmap_and_into (vr0->equiv, vr1->equiv);
3466 else if (vr0->equiv && !vr1->equiv)
3467 bitmap_clear (vr0->equiv);
3469 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3471 else
3472 goto no_meet;
3474 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3476 /* Two anti-ranges meet only if they are both identical. */
3477 if (compare_values (vr0->min, vr1->min) == 0
3478 && compare_values (vr0->max, vr1->max) == 0
3479 && compare_values (vr0->min, vr0->max) == 0)
3481 /* The resulting set of equivalences is the intersection of
3482 the two sets. */
3483 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3484 bitmap_and_into (vr0->equiv, vr1->equiv);
3485 else if (vr0->equiv && !vr1->equiv)
3486 bitmap_clear (vr0->equiv);
3488 else
3489 goto no_meet;
3491 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3493 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3494 meet only if the ranges have an empty intersection. The
3495 result of the meet operation is the anti-range. */
3496 if (!symbolic_range_p (vr0)
3497 && !symbolic_range_p (vr1)
3498 && !value_ranges_intersect_p (vr0, vr1))
3500 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3501 set. We need to compute the intersection of the two
3502 equivalence sets. */
3503 if (vr1->type == VR_ANTI_RANGE)
3504 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
3506 /* The resulting set of equivalences is the intersection of
3507 the two sets. */
3508 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3509 bitmap_and_into (vr0->equiv, vr1->equiv);
3510 else if (vr0->equiv && !vr1->equiv)
3511 bitmap_clear (vr0->equiv);
3513 else
3514 goto no_meet;
3516 else
3517 gcc_unreachable ();
3519 return;
3521 no_meet:
3522 /* The two range VR0 and VR1 do not meet. Before giving up and
3523 setting the result to VARYING, see if we can at least derive a
3524 useful anti-range. FIXME, all this nonsense about distinguishing
3525 anti-ranges from ranges is necessary because of the odd
3526 semantics of range_includes_zero_p and friends. */
3527 if (!symbolic_range_p (vr0)
3528 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
3529 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
3530 && !symbolic_range_p (vr1)
3531 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
3532 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
3534 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
3536 /* Since this meet operation did not result from the meeting of
3537 two equivalent names, VR0 cannot have any equivalences. */
3538 if (vr0->equiv)
3539 bitmap_clear (vr0->equiv);
3541 else
3542 set_value_range_to_varying (vr0);
3546 /* Visit all arguments for PHI node PHI that flow through executable
3547 edges. If a valid value range can be derived from all the incoming
3548 value ranges, set a new range for the LHS of PHI. */
3550 static enum ssa_prop_result
3551 vrp_visit_phi_node (tree phi)
3553 int i;
3554 tree lhs = PHI_RESULT (phi);
3555 value_range_t *lhs_vr = get_value_range (lhs);
3556 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3558 copy_value_range (&vr_result, lhs_vr);
3560 if (dump_file && (dump_flags & TDF_DETAILS))
3562 fprintf (dump_file, "\nVisiting PHI node: ");
3563 print_generic_expr (dump_file, phi, dump_flags);
3566 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
3568 edge e = PHI_ARG_EDGE (phi, i);
3570 if (dump_file && (dump_flags & TDF_DETAILS))
3572 fprintf (dump_file,
3573 "\n Argument #%d (%d -> %d %sexecutable)\n",
3574 i, e->src->index, e->dest->index,
3575 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
3578 if (e->flags & EDGE_EXECUTABLE)
3580 tree arg = PHI_ARG_DEF (phi, i);
3581 value_range_t vr_arg;
3583 if (TREE_CODE (arg) == SSA_NAME)
3584 vr_arg = *(get_value_range (arg));
3585 else
3587 vr_arg.type = VR_RANGE;
3588 vr_arg.min = arg;
3589 vr_arg.max = arg;
3590 vr_arg.equiv = NULL;
3593 if (dump_file && (dump_flags & TDF_DETAILS))
3595 fprintf (dump_file, "\t");
3596 print_generic_expr (dump_file, arg, dump_flags);
3597 fprintf (dump_file, "\n\tValue: ");
3598 dump_value_range (dump_file, &vr_arg);
3599 fprintf (dump_file, "\n");
3602 vrp_meet (&vr_result, &vr_arg);
3604 if (vr_result.type == VR_VARYING)
3605 break;
3609 if (vr_result.type == VR_VARYING)
3610 goto varying;
3612 /* To prevent infinite iterations in the algorithm, derive ranges
3613 when the new value is slightly bigger or smaller than the
3614 previous one. */
3615 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
3617 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
3619 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
3620 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
3622 /* If the new minimum is smaller or larger than the previous
3623 one, go all the way to -INF. In the first case, to avoid
3624 iterating millions of times to reach -INF, and in the
3625 other case to avoid infinite bouncing between different
3626 minimums. */
3627 if (cmp_min > 0 || cmp_min < 0)
3628 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
3630 /* Similarly, if the new maximum is smaller or larger than
3631 the previous one, go all the way to +INF. */
3632 if (cmp_max < 0 || cmp_max > 0)
3633 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
3635 /* If we ended up with a (-INF, +INF) range, set it to
3636 VARYING. */
3637 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
3638 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
3639 goto varying;
3643 /* If the new range is different than the previous value, keep
3644 iterating. */
3645 if (update_value_range (lhs, &vr_result))
3646 return SSA_PROP_INTERESTING;
3648 /* Nothing changed, don't add outgoing edges. */
3649 return SSA_PROP_NOT_INTERESTING;
3651 /* No match found. Set the LHS to VARYING. */
3652 varying:
3653 set_value_range_to_varying (lhs_vr);
3654 return SSA_PROP_VARYING;
3657 /* Simplify a division or modulo operator to a right shift or
3658 bitwise and if the first operand is unsigned or is greater
3659 than zero and the second operand is an exact power of two. */
3661 static void
3662 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
3664 tree val = NULL;
3665 tree op = TREE_OPERAND (rhs, 0);
3666 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3668 if (TYPE_UNSIGNED (TREE_TYPE (op)))
3670 val = integer_one_node;
3672 else
3674 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
3677 if (val && integer_onep (val))
3679 tree t;
3680 tree op0 = TREE_OPERAND (rhs, 0);
3681 tree op1 = TREE_OPERAND (rhs, 1);
3683 if (rhs_code == TRUNC_DIV_EXPR)
3685 t = build_int_cst (NULL_TREE, tree_log2 (op1));
3686 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
3688 else
3690 t = build_int_cst (TREE_TYPE (op1), 1);
3691 t = int_const_binop (MINUS_EXPR, op1, t, 0);
3692 t = fold_convert (TREE_TYPE (op0), t);
3693 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
3696 TREE_OPERAND (stmt, 1) = t;
3697 update_stmt (stmt);
3701 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
3702 ABS_EXPR. If the operand is <= 0, then simplify the
3703 ABS_EXPR into a NEGATE_EXPR. */
3705 static void
3706 simplify_abs_using_ranges (tree stmt, tree rhs)
3708 tree val = NULL;
3709 tree op = TREE_OPERAND (rhs, 0);
3710 tree type = TREE_TYPE (op);
3711 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3713 if (TYPE_UNSIGNED (type))
3715 val = integer_zero_node;
3717 else if (vr)
3719 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
3720 if (!val)
3722 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
3724 if (val)
3726 if (integer_zerop (val))
3727 val = integer_one_node;
3728 else if (integer_onep (val))
3729 val = integer_zero_node;
3733 if (val
3734 && (integer_onep (val) || integer_zerop (val)))
3736 tree t;
3738 if (integer_onep (val))
3739 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
3740 else
3741 t = op;
3743 TREE_OPERAND (stmt, 1) = t;
3744 update_stmt (stmt);
3749 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
3750 a known value range VR.
3752 If there is one and only one value which will satisfy the
3753 conditional, then return that value. Else return NULL. */
3755 static tree
3756 test_for_singularity (enum tree_code cond_code, tree op0,
3757 tree op1, value_range_t *vr)
3759 tree min = NULL;
3760 tree max = NULL;
3762 /* Extract minimum/maximum values which satisfy the
3763 the conditional as it was written. */
3764 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
3766 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
3768 max = op1;
3769 if (cond_code == LT_EXPR)
3771 tree one = build_int_cst (TREE_TYPE (op0), 1);
3772 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
3775 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
3777 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
3779 min = op1;
3780 if (cond_code == GT_EXPR)
3782 tree one = build_int_cst (TREE_TYPE (op0), 1);
3783 max = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), max, one);
3787 /* Now refine the minimum and maximum values using any
3788 value range information we have for op0. */
3789 if (min && max)
3791 if (compare_values (vr->min, min) == -1)
3792 min = min;
3793 else
3794 min = vr->min;
3795 if (compare_values (vr->max, max) == 1)
3796 max = max;
3797 else
3798 max = vr->max;
3800 /* If the new min/max values have converged to a
3801 single value, then there is only one value which
3802 can satisfy the condition, return that value. */
3803 if (min == max && is_gimple_min_invariant (min))
3804 return min;
3806 return NULL;
3809 /* Simplify a conditional using a relational operator to an equality
3810 test if the range information indicates only one value can satisfy
3811 the original conditional. */
3813 static void
3814 simplify_cond_using_ranges (tree stmt)
3816 tree cond = COND_EXPR_COND (stmt);
3817 tree op0 = TREE_OPERAND (cond, 0);
3818 tree op1 = TREE_OPERAND (cond, 1);
3819 enum tree_code cond_code = TREE_CODE (cond);
3821 if (cond_code != NE_EXPR
3822 && cond_code != EQ_EXPR
3823 && TREE_CODE (op0) == SSA_NAME
3824 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
3825 && is_gimple_min_invariant (op1))
3827 value_range_t *vr = get_value_range (op0);
3829 /* If we have range information for OP0, then we might be
3830 able to simplify this conditional. */
3831 if (vr->type == VR_RANGE)
3833 tree new = test_for_singularity (cond_code, op0, op1, vr);
3835 if (new)
3837 if (dump_file)
3839 fprintf (dump_file, "Simplified relational ");
3840 print_generic_expr (dump_file, cond, 0);
3841 fprintf (dump_file, " into ");
3844 COND_EXPR_COND (stmt)
3845 = build (EQ_EXPR, boolean_type_node, op0, new);
3846 update_stmt (stmt);
3848 if (dump_file)
3850 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
3851 fprintf (dump_file, "\n");
3853 return;
3857 /* Try again after inverting the condition. We only deal
3858 with integral types here, so no need to worry about
3859 issues with inverting FP comparisons. */
3860 cond_code = invert_tree_comparison (cond_code, false);
3861 new = test_for_singularity (cond_code, op0, op1, vr);
3863 if (new)
3865 if (dump_file)
3867 fprintf (dump_file, "Simplified relational ");
3868 print_generic_expr (dump_file, cond, 0);
3869 fprintf (dump_file, " into ");
3872 COND_EXPR_COND (stmt)
3873 = build (NE_EXPR, boolean_type_node, op0, new);
3874 update_stmt (stmt);
3876 if (dump_file)
3878 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
3879 fprintf (dump_file, "\n");
3881 return;
3888 /* Simplify STMT using ranges if possible. */
3890 void
3891 simplify_stmt_using_ranges (tree stmt)
3893 if (TREE_CODE (stmt) == MODIFY_EXPR)
3895 tree rhs = TREE_OPERAND (stmt, 1);
3896 enum tree_code rhs_code = TREE_CODE (rhs);
3898 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
3899 and BIT_AND_EXPR respectively if the first operand is greater
3900 than zero and the second operand is an exact power of two. */
3901 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
3902 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
3903 && integer_pow2p (TREE_OPERAND (rhs, 1)))
3904 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
3906 /* Transform ABS (X) into X or -X as appropriate. */
3907 if (rhs_code == ABS_EXPR
3908 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
3909 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
3910 simplify_abs_using_ranges (stmt, rhs);
3912 else if (TREE_CODE (stmt) == COND_EXPR
3913 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
3915 simplify_cond_using_ranges (stmt);
3921 /* Traverse all the blocks folding conditionals with known ranges. */
3923 static void
3924 vrp_finalize (void)
3926 size_t i;
3927 prop_value_t *single_val_range;
3928 bool do_value_subst_p;
3930 if (dump_file)
3932 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
3933 dump_all_value_ranges (dump_file);
3934 fprintf (dump_file, "\n");
3937 /* We may have ended with ranges that have exactly one value. Those
3938 values can be substituted as any other copy/const propagated
3939 value using substitute_and_fold. */
3940 single_val_range = xmalloc (num_ssa_names * sizeof (*single_val_range));
3941 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
3943 do_value_subst_p = false;
3944 for (i = 0; i < num_ssa_names; i++)
3945 if (vr_value[i]
3946 && vr_value[i]->type == VR_RANGE
3947 && vr_value[i]->min == vr_value[i]->max)
3949 single_val_range[i].value = vr_value[i]->min;
3950 do_value_subst_p = true;
3953 if (!do_value_subst_p)
3955 /* We found no single-valued ranges, don't waste time trying to
3956 do single value substitution in substitute_and_fold. */
3957 free (single_val_range);
3958 single_val_range = NULL;
3961 substitute_and_fold (single_val_range, true);
3963 /* Free allocated memory. */
3964 for (i = 0; i < num_ssa_names; i++)
3965 if (vr_value[i])
3967 BITMAP_FREE (vr_value[i]->equiv);
3968 free (vr_value[i]);
3971 free (single_val_range);
3972 free (vr_value);
3976 /* Main entry point to VRP (Value Range Propagation). This pass is
3977 loosely based on J. R. C. Patterson, ``Accurate Static Branch
3978 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
3979 Programming Language Design and Implementation, pp. 67-78, 1995.
3980 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
3982 This is essentially an SSA-CCP pass modified to deal with ranges
3983 instead of constants.
3985 While propagating ranges, we may find that two or more SSA name
3986 have equivalent, though distinct ranges. For instance,
3988 1 x_9 = p_3->a;
3989 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
3990 3 if (p_4 == q_2)
3991 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
3992 5 endif
3993 6 if (q_2)
3995 In the code above, pointer p_5 has range [q_2, q_2], but from the
3996 code we can also determine that p_5 cannot be NULL and, if q_2 had
3997 a non-varying range, p_5's range should also be compatible with it.
3999 These equivalences are created by two expressions: ASSERT_EXPR and
4000 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4001 result of another assertion, then we can use the fact that p_5 and
4002 p_4 are equivalent when evaluating p_5's range.
4004 Together with value ranges, we also propagate these equivalences
4005 between names so that we can take advantage of information from
4006 multiple ranges when doing final replacement. Note that this
4007 equivalency relation is transitive but not symmetric.
4009 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4010 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4011 in contexts where that assertion does not hold (e.g., in line 6).
4013 TODO, the main difference between this pass and Patterson's is that
4014 we do not propagate edge probabilities. We only compute whether
4015 edges can be taken or not. That is, instead of having a spectrum
4016 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4017 DON'T KNOW. In the future, it may be worthwhile to propagate
4018 probabilities to aid branch prediction. */
4020 static void
4021 execute_vrp (void)
4023 insert_range_assertions ();
4025 cfg_loops = loop_optimizer_init (NULL);
4026 if (cfg_loops)
4027 scev_initialize (cfg_loops);
4029 vrp_initialize ();
4030 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4031 vrp_finalize ();
4033 if (cfg_loops)
4035 scev_finalize ();
4036 loop_optimizer_finalize (cfg_loops, NULL);
4037 current_loops = NULL;
4040 remove_range_assertions ();
4043 static bool
4044 gate_vrp (void)
4046 return flag_tree_vrp != 0;
4049 struct tree_opt_pass pass_vrp =
4051 "vrp", /* name */
4052 gate_vrp, /* gate */
4053 execute_vrp, /* execute */
4054 NULL, /* sub */
4055 NULL, /* next */
4056 0, /* static_pass_number */
4057 TV_TREE_VRP, /* tv_id */
4058 PROP_ssa | PROP_alias, /* properties_required */
4059 0, /* properties_provided */
4060 0, /* properties_destroyed */
4061 0, /* todo_flags_start */
4062 TODO_cleanup_cfg
4063 | TODO_ggc_collect
4064 | TODO_verify_ssa
4065 | TODO_dump_func
4066 | TODO_update_ssa, /* todo_flags_finish */
4067 0 /* letter */