Transform switch_conversion into a class.
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blob3eab650c4e6e3c6de173f6081b5db04aa21478b2
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "gimple-fold.h"
45 #include "tree-ssa-loop-niter.h"
46 #include "internal-fn.h"
47 #include "stor-layout.h"
48 #include "optabs-query.h"
49 #include "vec-perm-indices.h"
51 /*************************************************************************
52 Simple Loop Peeling Utilities
54 Utilities to support loop peeling for vectorization purposes.
55 *************************************************************************/
58 /* Renames the use *OP_P. */
60 static void
61 rename_use_op (use_operand_p op_p)
63 tree new_name;
65 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
66 return;
68 new_name = get_current_def (USE_FROM_PTR (op_p));
70 /* Something defined outside of the loop. */
71 if (!new_name)
72 return;
74 /* An ordinary ssa name defined in the loop. */
76 SET_USE (op_p, new_name);
80 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
81 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
82 true. */
84 static void
85 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
87 gimple *stmt;
88 use_operand_p use_p;
89 ssa_op_iter iter;
90 edge e;
91 edge_iterator ei;
92 struct loop *loop = bb->loop_father;
93 struct loop *outer_loop = NULL;
95 if (rename_from_outer_loop)
97 gcc_assert (loop);
98 outer_loop = loop_outer (loop);
101 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
102 gsi_next (&gsi))
104 stmt = gsi_stmt (gsi);
105 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
106 rename_use_op (use_p);
109 FOR_EACH_EDGE (e, ei, bb->preds)
111 if (!flow_bb_inside_loop_p (loop, e->src))
113 if (!rename_from_outer_loop)
114 continue;
115 if (e->src != outer_loop->header)
117 if (outer_loop->inner->next)
119 /* If outer_loop has 2 inner loops, allow there to
120 be an extra basic block which decides which of the
121 two loops to use using LOOP_VECTORIZED. */
122 if (!single_pred_p (e->src)
123 || single_pred (e->src) != outer_loop->header)
124 continue;
128 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
129 gsi_next (&gsi))
130 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
135 struct adjust_info
137 tree from, to;
138 basic_block bb;
141 /* A stack of values to be adjusted in debug stmts. We have to
142 process them LIFO, so that the closest substitution applies. If we
143 processed them FIFO, without the stack, we might substitute uses
144 with a PHI DEF that would soon become non-dominant, and when we got
145 to the suitable one, it wouldn't have anything to substitute any
146 more. */
147 static vec<adjust_info, va_heap> adjust_vec;
149 /* Adjust any debug stmts that referenced AI->from values to use the
150 loop-closed AI->to, if the references are dominated by AI->bb and
151 not by the definition of AI->from. */
153 static void
154 adjust_debug_stmts_now (adjust_info *ai)
156 basic_block bbphi = ai->bb;
157 tree orig_def = ai->from;
158 tree new_def = ai->to;
159 imm_use_iterator imm_iter;
160 gimple *stmt;
161 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
163 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
165 /* Adjust any debug stmts that held onto non-loop-closed
166 references. */
167 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
169 use_operand_p use_p;
170 basic_block bbuse;
172 if (!is_gimple_debug (stmt))
173 continue;
175 gcc_assert (gimple_debug_bind_p (stmt));
177 bbuse = gimple_bb (stmt);
179 if ((bbuse == bbphi
180 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
181 && !(bbuse == bbdef
182 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
184 if (new_def)
185 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
186 SET_USE (use_p, new_def);
187 else
189 gimple_debug_bind_reset_value (stmt);
190 update_stmt (stmt);
196 /* Adjust debug stmts as scheduled before. */
198 static void
199 adjust_vec_debug_stmts (void)
201 if (!MAY_HAVE_DEBUG_BIND_STMTS)
202 return;
204 gcc_assert (adjust_vec.exists ());
206 while (!adjust_vec.is_empty ())
208 adjust_debug_stmts_now (&adjust_vec.last ());
209 adjust_vec.pop ();
213 /* Adjust any debug stmts that referenced FROM values to use the
214 loop-closed TO, if the references are dominated by BB and not by
215 the definition of FROM. If adjust_vec is non-NULL, adjustments
216 will be postponed until adjust_vec_debug_stmts is called. */
218 static void
219 adjust_debug_stmts (tree from, tree to, basic_block bb)
221 adjust_info ai;
223 if (MAY_HAVE_DEBUG_BIND_STMTS
224 && TREE_CODE (from) == SSA_NAME
225 && ! SSA_NAME_IS_DEFAULT_DEF (from)
226 && ! virtual_operand_p (from))
228 ai.from = from;
229 ai.to = to;
230 ai.bb = bb;
232 if (adjust_vec.exists ())
233 adjust_vec.safe_push (ai);
234 else
235 adjust_debug_stmts_now (&ai);
239 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
240 to adjust any debug stmts that referenced the old phi arg,
241 presumably non-loop-closed references left over from other
242 transformations. */
244 static void
245 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
247 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
249 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
251 if (MAY_HAVE_DEBUG_BIND_STMTS)
252 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
253 gimple_bb (update_phi));
256 /* Define one loop mask MASK from loop LOOP. INIT_MASK is the value that
257 the mask should have during the first iteration and NEXT_MASK is the
258 value that it should have on subsequent iterations. */
260 static void
261 vect_set_loop_mask (struct loop *loop, tree mask, tree init_mask,
262 tree next_mask)
264 gphi *phi = create_phi_node (mask, loop->header);
265 add_phi_arg (phi, init_mask, loop_preheader_edge (loop), UNKNOWN_LOCATION);
266 add_phi_arg (phi, next_mask, loop_latch_edge (loop), UNKNOWN_LOCATION);
269 /* Add SEQ to the end of LOOP's preheader block. */
271 static void
272 add_preheader_seq (struct loop *loop, gimple_seq seq)
274 if (seq)
276 edge pe = loop_preheader_edge (loop);
277 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
278 gcc_assert (!new_bb);
282 /* Add SEQ to the beginning of LOOP's header block. */
284 static void
285 add_header_seq (struct loop *loop, gimple_seq seq)
287 if (seq)
289 gimple_stmt_iterator gsi = gsi_after_labels (loop->header);
290 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
294 /* Return true if the target can interleave elements of two vectors.
295 OFFSET is 0 if the first half of the vectors should be interleaved
296 or 1 if the second half should. When returning true, store the
297 associated permutation in INDICES. */
299 static bool
300 interleave_supported_p (vec_perm_indices *indices, tree vectype,
301 unsigned int offset)
303 poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (vectype);
304 poly_uint64 base = exact_div (nelts, 2) * offset;
305 vec_perm_builder sel (nelts, 2, 3);
306 for (unsigned int i = 0; i < 3; ++i)
308 sel.quick_push (base + i);
309 sel.quick_push (base + i + nelts);
311 indices->new_vector (sel, 2, nelts);
312 return can_vec_perm_const_p (TYPE_MODE (vectype), *indices);
315 /* Try to use permutes to define the masks in DEST_RGM using the masks
316 in SRC_RGM, given that the former has twice as many masks as the
317 latter. Return true on success, adding any new statements to SEQ. */
319 static bool
320 vect_maybe_permute_loop_masks (gimple_seq *seq, rgroup_masks *dest_rgm,
321 rgroup_masks *src_rgm)
323 tree src_masktype = src_rgm->mask_type;
324 tree dest_masktype = dest_rgm->mask_type;
325 machine_mode src_mode = TYPE_MODE (src_masktype);
326 if (dest_rgm->max_nscalars_per_iter <= src_rgm->max_nscalars_per_iter
327 && optab_handler (vec_unpacku_hi_optab, src_mode) != CODE_FOR_nothing
328 && optab_handler (vec_unpacku_lo_optab, src_mode) != CODE_FOR_nothing)
330 /* Unpacking the source masks gives at least as many mask bits as
331 we need. We can then VIEW_CONVERT any excess bits away. */
332 tree unpack_masktype = vect_halve_mask_nunits (src_masktype);
333 for (unsigned int i = 0; i < dest_rgm->masks.length (); ++i)
335 tree src = src_rgm->masks[i / 2];
336 tree dest = dest_rgm->masks[i];
337 tree_code code = ((i & 1) == (BYTES_BIG_ENDIAN ? 0 : 1)
338 ? VEC_UNPACK_HI_EXPR
339 : VEC_UNPACK_LO_EXPR);
340 gassign *stmt;
341 if (dest_masktype == unpack_masktype)
342 stmt = gimple_build_assign (dest, code, src);
343 else
345 tree temp = make_ssa_name (unpack_masktype);
346 stmt = gimple_build_assign (temp, code, src);
347 gimple_seq_add_stmt (seq, stmt);
348 stmt = gimple_build_assign (dest, VIEW_CONVERT_EXPR,
349 build1 (VIEW_CONVERT_EXPR,
350 dest_masktype, temp));
352 gimple_seq_add_stmt (seq, stmt);
354 return true;
356 vec_perm_indices indices[2];
357 if (dest_masktype == src_masktype
358 && interleave_supported_p (&indices[0], src_masktype, 0)
359 && interleave_supported_p (&indices[1], src_masktype, 1))
361 /* The destination requires twice as many mask bits as the source, so
362 we can use interleaving permutes to double up the number of bits. */
363 tree masks[2];
364 for (unsigned int i = 0; i < 2; ++i)
365 masks[i] = vect_gen_perm_mask_checked (src_masktype, indices[i]);
366 for (unsigned int i = 0; i < dest_rgm->masks.length (); ++i)
368 tree src = src_rgm->masks[i / 2];
369 tree dest = dest_rgm->masks[i];
370 gimple *stmt = gimple_build_assign (dest, VEC_PERM_EXPR,
371 src, src, masks[i & 1]);
372 gimple_seq_add_stmt (seq, stmt);
374 return true;
376 return false;
379 /* Helper for vect_set_loop_condition_masked. Generate definitions for
380 all the masks in RGM and return a mask that is nonzero when the loop
381 needs to iterate. Add any new preheader statements to PREHEADER_SEQ.
382 Use LOOP_COND_GSI to insert code before the exit gcond.
384 RGM belongs to loop LOOP. The loop originally iterated NITERS
385 times and has been vectorized according to LOOP_VINFO. Each iteration
386 of the vectorized loop handles VF iterations of the scalar loop.
388 If NITERS_SKIP is nonnull, the first iteration of the vectorized loop
389 starts with NITERS_SKIP dummy iterations of the scalar loop before
390 the real work starts. The mask elements for these dummy iterations
391 must be 0, to ensure that the extra iterations do not have an effect.
393 It is known that:
395 NITERS * RGM->max_nscalars_per_iter
397 does not overflow. However, MIGHT_WRAP_P says whether an induction
398 variable that starts at 0 and has step:
400 VF * RGM->max_nscalars_per_iter
402 might overflow before hitting a value above:
404 (NITERS + NITERS_SKIP) * RGM->max_nscalars_per_iter
406 This means that we cannot guarantee that such an induction variable
407 would ever hit a value that produces a set of all-false masks for RGM. */
409 static tree
410 vect_set_loop_masks_directly (struct loop *loop, loop_vec_info loop_vinfo,
411 gimple_seq *preheader_seq,
412 gimple_stmt_iterator loop_cond_gsi,
413 rgroup_masks *rgm, tree vf,
414 tree niters, tree niters_skip,
415 bool might_wrap_p)
417 tree compare_type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
418 tree mask_type = rgm->mask_type;
419 unsigned int nscalars_per_iter = rgm->max_nscalars_per_iter;
420 poly_uint64 nscalars_per_mask = TYPE_VECTOR_SUBPARTS (mask_type);
422 /* Calculate the maximum number of scalar values that the rgroup
423 handles in total, the number that it handles for each iteration
424 of the vector loop, and the number that it should skip during the
425 first iteration of the vector loop. */
426 tree nscalars_total = niters;
427 tree nscalars_step = vf;
428 tree nscalars_skip = niters_skip;
429 if (nscalars_per_iter != 1)
431 /* We checked before choosing to use a fully-masked loop that these
432 multiplications don't overflow. */
433 tree factor = build_int_cst (compare_type, nscalars_per_iter);
434 nscalars_total = gimple_build (preheader_seq, MULT_EXPR, compare_type,
435 nscalars_total, factor);
436 nscalars_step = gimple_build (preheader_seq, MULT_EXPR, compare_type,
437 nscalars_step, factor);
438 if (nscalars_skip)
439 nscalars_skip = gimple_build (preheader_seq, MULT_EXPR, compare_type,
440 nscalars_skip, factor);
443 /* Create an induction variable that counts the number of scalars
444 processed. */
445 tree index_before_incr, index_after_incr;
446 gimple_stmt_iterator incr_gsi;
447 bool insert_after;
448 tree zero_index = build_int_cst (compare_type, 0);
449 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
450 create_iv (zero_index, nscalars_step, NULL_TREE, loop, &incr_gsi,
451 insert_after, &index_before_incr, &index_after_incr);
453 tree test_index, test_limit, first_limit;
454 gimple_stmt_iterator *test_gsi;
455 if (might_wrap_p)
457 /* In principle the loop should stop iterating once the incremented
458 IV reaches a value greater than or equal to:
460 NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP
462 However, there's no guarantee that this addition doesn't overflow
463 the comparison type, or that the IV hits a value above it before
464 wrapping around. We therefore adjust the limit down by one
465 IV step:
467 (NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP)
468 -[infinite-prec] NSCALARS_STEP
470 and compare the IV against this limit _before_ incrementing it.
471 Since the comparison type is unsigned, we actually want the
472 subtraction to saturate at zero:
474 (NSCALARS_TOTAL +[infinite-prec] NSCALARS_SKIP)
475 -[sat] NSCALARS_STEP
477 And since NSCALARS_SKIP < NSCALARS_STEP, we can reassociate this as:
479 NSCALARS_TOTAL -[sat] (NSCALARS_STEP - NSCALARS_SKIP)
481 where the rightmost subtraction can be done directly in
482 COMPARE_TYPE. */
483 test_index = index_before_incr;
484 tree adjust = nscalars_step;
485 if (nscalars_skip)
486 adjust = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
487 adjust, nscalars_skip);
488 test_limit = gimple_build (preheader_seq, MAX_EXPR, compare_type,
489 nscalars_total, adjust);
490 test_limit = gimple_build (preheader_seq, MINUS_EXPR, compare_type,
491 test_limit, adjust);
492 test_gsi = &incr_gsi;
494 /* Get a safe limit for the first iteration. */
495 if (nscalars_skip)
497 /* The first vector iteration can handle at most NSCALARS_STEP
498 scalars. NSCALARS_STEP <= CONST_LIMIT, and adding
499 NSCALARS_SKIP to that cannot overflow. */
500 tree const_limit = build_int_cst (compare_type,
501 LOOP_VINFO_VECT_FACTOR (loop_vinfo)
502 * nscalars_per_iter);
503 first_limit = gimple_build (preheader_seq, MIN_EXPR, compare_type,
504 nscalars_total, const_limit);
505 first_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
506 first_limit, nscalars_skip);
508 else
509 /* For the first iteration it doesn't matter whether the IV hits
510 a value above NSCALARS_TOTAL. That only matters for the latch
511 condition. */
512 first_limit = nscalars_total;
514 else
516 /* Test the incremented IV, which will always hit a value above
517 the bound before wrapping. */
518 test_index = index_after_incr;
519 test_limit = nscalars_total;
520 if (nscalars_skip)
521 test_limit = gimple_build (preheader_seq, PLUS_EXPR, compare_type,
522 test_limit, nscalars_skip);
523 test_gsi = &loop_cond_gsi;
525 first_limit = test_limit;
528 /* Provide a definition of each mask in the group. */
529 tree next_mask = NULL_TREE;
530 tree mask;
531 unsigned int i;
532 FOR_EACH_VEC_ELT_REVERSE (rgm->masks, i, mask)
534 /* Previous masks will cover BIAS scalars. This mask covers the
535 next batch. */
536 poly_uint64 bias = nscalars_per_mask * i;
537 tree bias_tree = build_int_cst (compare_type, bias);
538 gimple *tmp_stmt;
540 /* See whether the first iteration of the vector loop is known
541 to have a full mask. */
542 poly_uint64 const_limit;
543 bool first_iteration_full
544 = (poly_int_tree_p (first_limit, &const_limit)
545 && known_ge (const_limit, (i + 1) * nscalars_per_mask));
547 /* Rather than have a new IV that starts at BIAS and goes up to
548 TEST_LIMIT, prefer to use the same 0-based IV for each mask
549 and adjust the bound down by BIAS. */
550 tree this_test_limit = test_limit;
551 if (i != 0)
553 this_test_limit = gimple_build (preheader_seq, MAX_EXPR,
554 compare_type, this_test_limit,
555 bias_tree);
556 this_test_limit = gimple_build (preheader_seq, MINUS_EXPR,
557 compare_type, this_test_limit,
558 bias_tree);
561 /* Create the initial mask. First include all scalars that
562 are within the loop limit. */
563 tree init_mask = NULL_TREE;
564 if (!first_iteration_full)
566 tree start, end;
567 if (first_limit == test_limit)
569 /* Use a natural test between zero (the initial IV value)
570 and the loop limit. The "else" block would be valid too,
571 but this choice can avoid the need to load BIAS_TREE into
572 a register. */
573 start = zero_index;
574 end = this_test_limit;
576 else
578 /* FIRST_LIMIT is the maximum number of scalars handled by the
579 first iteration of the vector loop. Test the portion
580 associated with this mask. */
581 start = bias_tree;
582 end = first_limit;
585 init_mask = make_temp_ssa_name (mask_type, NULL, "max_mask");
586 tmp_stmt = vect_gen_while (init_mask, start, end);
587 gimple_seq_add_stmt (preheader_seq, tmp_stmt);
590 /* Now AND out the bits that are within the number of skipped
591 scalars. */
592 poly_uint64 const_skip;
593 if (nscalars_skip
594 && !(poly_int_tree_p (nscalars_skip, &const_skip)
595 && known_le (const_skip, bias)))
597 tree unskipped_mask = vect_gen_while_not (preheader_seq, mask_type,
598 bias_tree, nscalars_skip);
599 if (init_mask)
600 init_mask = gimple_build (preheader_seq, BIT_AND_EXPR, mask_type,
601 init_mask, unskipped_mask);
602 else
603 init_mask = unskipped_mask;
606 if (!init_mask)
607 /* First iteration is full. */
608 init_mask = build_minus_one_cst (mask_type);
610 /* Get the mask value for the next iteration of the loop. */
611 next_mask = make_temp_ssa_name (mask_type, NULL, "next_mask");
612 gcall *call = vect_gen_while (next_mask, test_index, this_test_limit);
613 gsi_insert_before (test_gsi, call, GSI_SAME_STMT);
615 vect_set_loop_mask (loop, mask, init_mask, next_mask);
617 return next_mask;
620 /* Make LOOP iterate NITERS times using masking and WHILE_ULT calls.
621 LOOP_VINFO describes the vectorization of LOOP. NITERS is the
622 number of iterations of the original scalar loop that should be
623 handled by the vector loop. NITERS_MAYBE_ZERO and FINAL_IV are
624 as for vect_set_loop_condition.
626 Insert the branch-back condition before LOOP_COND_GSI and return the
627 final gcond. */
629 static gcond *
630 vect_set_loop_condition_masked (struct loop *loop, loop_vec_info loop_vinfo,
631 tree niters, tree final_iv,
632 bool niters_maybe_zero,
633 gimple_stmt_iterator loop_cond_gsi)
635 gimple_seq preheader_seq = NULL;
636 gimple_seq header_seq = NULL;
638 tree compare_type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
639 unsigned int compare_precision = TYPE_PRECISION (compare_type);
640 unsigned HOST_WIDE_INT max_vf = vect_max_vf (loop_vinfo);
641 tree orig_niters = niters;
643 /* Type of the initial value of NITERS. */
644 tree ni_actual_type = TREE_TYPE (niters);
645 unsigned int ni_actual_precision = TYPE_PRECISION (ni_actual_type);
647 /* Convert NITERS to the same size as the compare. */
648 if (compare_precision > ni_actual_precision
649 && niters_maybe_zero)
651 /* We know that there is always at least one iteration, so if the
652 count is zero then it must have wrapped. Cope with this by
653 subtracting 1 before the conversion and adding 1 to the result. */
654 gcc_assert (TYPE_UNSIGNED (ni_actual_type));
655 niters = gimple_build (&preheader_seq, PLUS_EXPR, ni_actual_type,
656 niters, build_minus_one_cst (ni_actual_type));
657 niters = gimple_convert (&preheader_seq, compare_type, niters);
658 niters = gimple_build (&preheader_seq, PLUS_EXPR, compare_type,
659 niters, build_one_cst (compare_type));
661 else
662 niters = gimple_convert (&preheader_seq, compare_type, niters);
664 /* Convert skip_niters to the right type. */
665 tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
667 /* Now calculate the value that the induction variable must be able
668 to hit in order to ensure that we end the loop with an all-false mask.
669 This involves adding the maximum number of inactive trailing scalar
670 iterations. */
671 widest_int iv_limit;
672 bool known_max_iters = max_loop_iterations (loop, &iv_limit);
673 if (known_max_iters)
675 if (niters_skip)
677 /* Add the maximum number of skipped iterations to the
678 maximum iteration count. */
679 if (TREE_CODE (niters_skip) == INTEGER_CST)
680 iv_limit += wi::to_widest (niters_skip);
681 else
682 iv_limit += max_vf - 1;
684 /* IV_LIMIT is the maximum number of latch iterations, which is also
685 the maximum in-range IV value. Round this value down to the previous
686 vector alignment boundary and then add an extra full iteration. */
687 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
688 iv_limit = (iv_limit & -(int) known_alignment (vf)) + max_vf;
691 /* Get the vectorization factor in tree form. */
692 tree vf = build_int_cst (compare_type,
693 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
695 /* Iterate over all the rgroups and fill in their masks. We could use
696 the first mask from any rgroup for the loop condition; here we
697 arbitrarily pick the last. */
698 tree test_mask = NULL_TREE;
699 rgroup_masks *rgm;
700 unsigned int i;
701 vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
702 FOR_EACH_VEC_ELT (*masks, i, rgm)
703 if (!rgm->masks.is_empty ())
705 /* First try using permutes. This adds a single vector
706 instruction to the loop for each mask, but needs no extra
707 loop invariants or IVs. */
708 unsigned int nmasks = i + 1;
709 if ((nmasks & 1) == 0)
711 rgroup_masks *half_rgm = &(*masks)[nmasks / 2 - 1];
712 if (!half_rgm->masks.is_empty ()
713 && vect_maybe_permute_loop_masks (&header_seq, rgm, half_rgm))
714 continue;
717 /* See whether zero-based IV would ever generate all-false masks
718 before wrapping around. */
719 bool might_wrap_p
720 = (!known_max_iters
721 || (wi::min_precision (iv_limit * rgm->max_nscalars_per_iter,
722 UNSIGNED)
723 > compare_precision));
725 /* Set up all masks for this group. */
726 test_mask = vect_set_loop_masks_directly (loop, loop_vinfo,
727 &preheader_seq,
728 loop_cond_gsi, rgm, vf,
729 niters, niters_skip,
730 might_wrap_p);
733 /* Emit all accumulated statements. */
734 add_preheader_seq (loop, preheader_seq);
735 add_header_seq (loop, header_seq);
737 /* Get a boolean result that tells us whether to iterate. */
738 edge exit_edge = single_exit (loop);
739 tree_code code = (exit_edge->flags & EDGE_TRUE_VALUE) ? EQ_EXPR : NE_EXPR;
740 tree zero_mask = build_zero_cst (TREE_TYPE (test_mask));
741 gcond *cond_stmt = gimple_build_cond (code, test_mask, zero_mask,
742 NULL_TREE, NULL_TREE);
743 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
745 /* The loop iterates (NITERS - 1) / VF + 1 times.
746 Subtract one from this to get the latch count. */
747 tree step = build_int_cst (compare_type,
748 LOOP_VINFO_VECT_FACTOR (loop_vinfo));
749 tree niters_minus_one = fold_build2 (PLUS_EXPR, compare_type, niters,
750 build_minus_one_cst (compare_type));
751 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, compare_type,
752 niters_minus_one, step);
754 if (final_iv)
756 gassign *assign = gimple_build_assign (final_iv, orig_niters);
757 gsi_insert_on_edge_immediate (single_exit (loop), assign);
760 return cond_stmt;
763 /* Like vect_set_loop_condition, but handle the case in which there
764 are no loop masks. */
766 static gcond *
767 vect_set_loop_condition_unmasked (struct loop *loop, tree niters,
768 tree step, tree final_iv,
769 bool niters_maybe_zero,
770 gimple_stmt_iterator loop_cond_gsi)
772 tree indx_before_incr, indx_after_incr;
773 gcond *cond_stmt;
774 gcond *orig_cond;
775 edge pe = loop_preheader_edge (loop);
776 edge exit_edge = single_exit (loop);
777 gimple_stmt_iterator incr_gsi;
778 bool insert_after;
779 enum tree_code code;
780 tree niters_type = TREE_TYPE (niters);
782 orig_cond = get_loop_exit_condition (loop);
783 gcc_assert (orig_cond);
784 loop_cond_gsi = gsi_for_stmt (orig_cond);
786 tree init, limit;
787 if (!niters_maybe_zero && integer_onep (step))
789 /* In this case we can use a simple 0-based IV:
792 x = 0;
796 x += 1;
798 while (x < NITERS); */
799 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
800 init = build_zero_cst (niters_type);
801 limit = niters;
803 else
805 /* The following works for all values of NITERS except 0:
808 x = 0;
812 x += STEP;
814 while (x <= NITERS - STEP);
816 so that the loop continues to iterate if x + STEP - 1 < NITERS
817 but stops if x + STEP - 1 >= NITERS.
819 However, if NITERS is zero, x never hits a value above NITERS - STEP
820 before wrapping around. There are two obvious ways of dealing with
821 this:
823 - start at STEP - 1 and compare x before incrementing it
824 - start at -1 and compare x after incrementing it
826 The latter is simpler and is what we use. The loop in this case
827 looks like:
830 x = -1;
834 x += STEP;
836 while (x < NITERS - STEP);
838 In both cases the loop limit is NITERS - STEP. */
839 gimple_seq seq = NULL;
840 limit = force_gimple_operand (niters, &seq, true, NULL_TREE);
841 limit = gimple_build (&seq, MINUS_EXPR, TREE_TYPE (limit), limit, step);
842 if (seq)
844 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
845 gcc_assert (!new_bb);
847 if (niters_maybe_zero)
849 /* Case C. */
850 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
851 init = build_all_ones_cst (niters_type);
853 else
855 /* Case B. */
856 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GT_EXPR : LE_EXPR;
857 init = build_zero_cst (niters_type);
861 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
862 create_iv (init, step, NULL_TREE, loop,
863 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
864 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
865 true, NULL_TREE, true,
866 GSI_SAME_STMT);
867 limit = force_gimple_operand_gsi (&loop_cond_gsi, limit, true, NULL_TREE,
868 true, GSI_SAME_STMT);
870 cond_stmt = gimple_build_cond (code, indx_after_incr, limit, NULL_TREE,
871 NULL_TREE);
873 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
875 /* Record the number of latch iterations. */
876 if (limit == niters)
877 /* Case A: the loop iterates NITERS times. Subtract one to get the
878 latch count. */
879 loop->nb_iterations = fold_build2 (MINUS_EXPR, niters_type, niters,
880 build_int_cst (niters_type, 1));
881 else
882 /* Case B or C: the loop iterates (NITERS - STEP) / STEP + 1 times.
883 Subtract one from this to get the latch count. */
884 loop->nb_iterations = fold_build2 (TRUNC_DIV_EXPR, niters_type,
885 limit, step);
887 if (final_iv)
889 gassign *assign = gimple_build_assign (final_iv, MINUS_EXPR,
890 indx_after_incr, init);
891 gsi_insert_on_edge_immediate (single_exit (loop), assign);
894 return cond_stmt;
897 /* If we're using fully-masked loops, make LOOP iterate:
899 N == (NITERS - 1) / STEP + 1
901 times. When NITERS is zero, this is equivalent to making the loop
902 execute (1 << M) / STEP times, where M is the precision of NITERS.
903 NITERS_MAYBE_ZERO is true if this last case might occur.
905 If we're not using fully-masked loops, make LOOP iterate:
907 N == (NITERS - STEP) / STEP + 1
909 times, where NITERS is known to be outside the range [1, STEP - 1].
910 This is equivalent to making the loop execute NITERS / STEP times
911 when NITERS is nonzero and (1 << M) / STEP times otherwise.
912 NITERS_MAYBE_ZERO again indicates whether this last case might occur.
914 If FINAL_IV is nonnull, it is an SSA name that should be set to
915 N * STEP on exit from the loop.
917 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
919 void
920 vect_set_loop_condition (struct loop *loop, loop_vec_info loop_vinfo,
921 tree niters, tree step, tree final_iv,
922 bool niters_maybe_zero)
924 gcond *cond_stmt;
925 gcond *orig_cond = get_loop_exit_condition (loop);
926 gimple_stmt_iterator loop_cond_gsi = gsi_for_stmt (orig_cond);
928 if (loop_vinfo && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
929 cond_stmt = vect_set_loop_condition_masked (loop, loop_vinfo, niters,
930 final_iv, niters_maybe_zero,
931 loop_cond_gsi);
932 else
933 cond_stmt = vect_set_loop_condition_unmasked (loop, niters, step,
934 final_iv, niters_maybe_zero,
935 loop_cond_gsi);
937 /* Remove old loop exit test. */
938 gsi_remove (&loop_cond_gsi, true);
939 free_stmt_vec_info (orig_cond);
941 if (dump_enabled_p ())
943 dump_printf_loc (MSG_NOTE, vect_location, "New loop exit condition: ");
944 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
948 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
949 For all PHI arguments in FROM->dest and TO->dest from those
950 edges ensure that TO->dest PHI arguments have current_def
951 to that in from. */
953 static void
954 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
956 gimple_stmt_iterator gsi_from, gsi_to;
958 for (gsi_from = gsi_start_phis (from->dest),
959 gsi_to = gsi_start_phis (to->dest);
960 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
962 gimple *from_phi = gsi_stmt (gsi_from);
963 gimple *to_phi = gsi_stmt (gsi_to);
964 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
965 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
966 if (virtual_operand_p (from_arg))
968 gsi_next (&gsi_from);
969 continue;
971 if (virtual_operand_p (to_arg))
973 gsi_next (&gsi_to);
974 continue;
976 if (TREE_CODE (from_arg) != SSA_NAME)
977 gcc_assert (operand_equal_p (from_arg, to_arg, 0));
978 else
980 if (get_current_def (to_arg) == NULL_TREE)
981 set_current_def (to_arg, get_current_def (from_arg));
983 gsi_next (&gsi_from);
984 gsi_next (&gsi_to);
987 gphi *from_phi = get_virtual_phi (from->dest);
988 gphi *to_phi = get_virtual_phi (to->dest);
989 if (from_phi)
990 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
991 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
995 /* Given LOOP this function generates a new copy of it and puts it
996 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
997 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
998 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
999 entry or exit of LOOP. */
1001 struct loop *
1002 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
1003 struct loop *scalar_loop, edge e)
1005 struct loop *new_loop;
1006 basic_block *new_bbs, *bbs, *pbbs;
1007 bool at_exit;
1008 bool was_imm_dom;
1009 basic_block exit_dest;
1010 edge exit, new_exit;
1011 bool duplicate_outer_loop = false;
1013 exit = single_exit (loop);
1014 at_exit = (e == exit);
1015 if (!at_exit && e != loop_preheader_edge (loop))
1016 return NULL;
1018 if (scalar_loop == NULL)
1019 scalar_loop = loop;
1021 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1022 pbbs = bbs + 1;
1023 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
1024 /* Allow duplication of outer loops. */
1025 if (scalar_loop->inner)
1026 duplicate_outer_loop = true;
1027 /* Check whether duplication is possible. */
1028 if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
1030 free (bbs);
1031 return NULL;
1034 /* Generate new loop structure. */
1035 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
1036 duplicate_subloops (scalar_loop, new_loop);
1038 exit_dest = exit->dest;
1039 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
1040 exit_dest) == loop->header ?
1041 true : false);
1043 /* Also copy the pre-header, this avoids jumping through hoops to
1044 duplicate the loop entry PHI arguments. Create an empty
1045 pre-header unconditionally for this. */
1046 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
1047 edge entry_e = single_pred_edge (preheader);
1048 bbs[0] = preheader;
1049 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
1051 exit = single_exit (scalar_loop);
1052 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
1053 &exit, 1, &new_exit, NULL,
1054 at_exit ? loop->latch : e->src, true);
1055 exit = single_exit (loop);
1056 basic_block new_preheader = new_bbs[0];
1058 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
1060 if (scalar_loop != loop)
1062 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
1063 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
1064 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
1065 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
1066 header) to have current_def set, so copy them over. */
1067 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
1068 exit);
1069 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
1071 EDGE_SUCC (loop->latch, 0));
1074 if (at_exit) /* Add the loop copy at exit. */
1076 if (scalar_loop != loop)
1078 gphi_iterator gsi;
1079 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
1081 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
1082 gsi_next (&gsi))
1084 gphi *phi = gsi.phi ();
1085 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
1086 location_t orig_locus
1087 = gimple_phi_arg_location_from_edge (phi, e);
1089 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
1092 redirect_edge_and_branch_force (e, new_preheader);
1093 flush_pending_stmts (e);
1094 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
1095 if (was_imm_dom || duplicate_outer_loop)
1096 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
1098 /* And remove the non-necessary forwarder again. Keep the other
1099 one so we have a proper pre-header for the loop at the exit edge. */
1100 redirect_edge_pred (single_succ_edge (preheader),
1101 single_pred (preheader));
1102 delete_basic_block (preheader);
1103 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1104 loop_preheader_edge (scalar_loop)->src);
1106 else /* Add the copy at entry. */
1108 if (scalar_loop != loop)
1110 /* Remove the non-necessary forwarder of scalar_loop again. */
1111 redirect_edge_pred (single_succ_edge (preheader),
1112 single_pred (preheader));
1113 delete_basic_block (preheader);
1114 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
1115 loop_preheader_edge (scalar_loop)->src);
1116 preheader = split_edge (loop_preheader_edge (loop));
1117 entry_e = single_pred_edge (preheader);
1120 redirect_edge_and_branch_force (entry_e, new_preheader);
1121 flush_pending_stmts (entry_e);
1122 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
1124 redirect_edge_and_branch_force (new_exit, preheader);
1125 flush_pending_stmts (new_exit);
1126 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
1128 /* And remove the non-necessary forwarder again. Keep the other
1129 one so we have a proper pre-header for the loop at the exit edge. */
1130 redirect_edge_pred (single_succ_edge (new_preheader),
1131 single_pred (new_preheader));
1132 delete_basic_block (new_preheader);
1133 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
1134 loop_preheader_edge (new_loop)->src);
1137 /* Skip new preheader since it's deleted if copy loop is added at entry. */
1138 for (unsigned i = (at_exit ? 0 : 1); i < scalar_loop->num_nodes + 1; i++)
1139 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
1141 if (scalar_loop != loop)
1143 /* Update new_loop->header PHIs, so that on the preheader
1144 edge they are the ones from loop rather than scalar_loop. */
1145 gphi_iterator gsi_orig, gsi_new;
1146 edge orig_e = loop_preheader_edge (loop);
1147 edge new_e = loop_preheader_edge (new_loop);
1149 for (gsi_orig = gsi_start_phis (loop->header),
1150 gsi_new = gsi_start_phis (new_loop->header);
1151 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
1152 gsi_next (&gsi_orig), gsi_next (&gsi_new))
1154 gphi *orig_phi = gsi_orig.phi ();
1155 gphi *new_phi = gsi_new.phi ();
1156 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
1157 location_t orig_locus
1158 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
1160 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
1164 free (new_bbs);
1165 free (bbs);
1167 checking_verify_dominators (CDI_DOMINATORS);
1169 return new_loop;
1173 /* Given the condition expression COND, put it as the last statement of
1174 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
1175 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
1176 skip the loop. PROBABILITY is the skip edge's probability. Mark the
1177 new edge as irreducible if IRREDUCIBLE_P is true. */
1179 static edge
1180 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
1181 basic_block guard_to, basic_block dom_bb,
1182 profile_probability probability, bool irreducible_p)
1184 gimple_stmt_iterator gsi;
1185 edge new_e, enter_e;
1186 gcond *cond_stmt;
1187 gimple_seq gimplify_stmt_list = NULL;
1189 enter_e = EDGE_SUCC (guard_bb, 0);
1190 enter_e->flags &= ~EDGE_FALLTHRU;
1191 enter_e->flags |= EDGE_FALSE_VALUE;
1192 gsi = gsi_last_bb (guard_bb);
1194 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
1195 NULL_TREE);
1196 if (gimplify_stmt_list)
1197 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1199 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1200 gsi = gsi_last_bb (guard_bb);
1201 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1203 /* Add new edge to connect guard block to the merge/loop-exit block. */
1204 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
1206 new_e->probability = probability;
1207 if (irreducible_p)
1208 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
1210 enter_e->probability = probability.invert ();
1211 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
1213 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
1214 if (enter_e->dest->loop_father->header == enter_e->dest)
1215 split_edge (enter_e);
1217 return new_e;
1221 /* This function verifies that the following restrictions apply to LOOP:
1222 (1) it consists of exactly 2 basic blocks - header, and an empty latch
1223 for innermost loop and 5 basic blocks for outer-loop.
1224 (2) it is single entry, single exit
1225 (3) its exit condition is the last stmt in the header
1226 (4) E is the entry/exit edge of LOOP.
1229 bool
1230 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
1232 edge exit_e = single_exit (loop);
1233 edge entry_e = loop_preheader_edge (loop);
1234 gcond *orig_cond = get_loop_exit_condition (loop);
1235 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
1236 unsigned int num_bb = loop->inner? 5 : 2;
1238 /* All loops have an outer scope; the only case loop->outer is NULL is for
1239 the function itself. */
1240 if (!loop_outer (loop)
1241 || loop->num_nodes != num_bb
1242 || !empty_block_p (loop->latch)
1243 || !single_exit (loop)
1244 /* Verify that new loop exit condition can be trivially modified. */
1245 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
1246 || (e != exit_e && e != entry_e))
1247 return false;
1249 return true;
1252 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1253 in the exit bb and rename all the uses after the loop. This simplifies
1254 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1255 (but normally loop closed SSA form doesn't require virtual PHIs to be
1256 in the same form). Doing this early simplifies the checking what
1257 uses should be renamed. */
1259 static void
1260 create_lcssa_for_virtual_phi (struct loop *loop)
1262 gphi_iterator gsi;
1263 edge exit_e = single_exit (loop);
1265 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1266 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1268 gphi *phi = gsi.phi ();
1269 for (gsi = gsi_start_phis (exit_e->dest);
1270 !gsi_end_p (gsi); gsi_next (&gsi))
1271 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1272 break;
1273 if (gsi_end_p (gsi))
1275 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
1276 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
1277 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1278 imm_use_iterator imm_iter;
1279 gimple *stmt;
1280 use_operand_p use_p;
1282 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_vop)
1283 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (vop);
1284 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1285 gimple_phi_set_result (new_phi, new_vop);
1286 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1287 if (stmt != new_phi
1288 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1289 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1290 SET_USE (use_p, new_vop);
1292 break;
1297 /* Function vect_get_loop_location.
1299 Extract the location of the loop in the source code.
1300 If the loop is not well formed for vectorization, an estimated
1301 location is calculated.
1302 Return the loop location if succeed and NULL if not. */
1304 source_location
1305 find_loop_location (struct loop *loop)
1307 gimple *stmt = NULL;
1308 basic_block bb;
1309 gimple_stmt_iterator si;
1311 if (!loop)
1312 return UNKNOWN_LOCATION;
1314 stmt = get_loop_exit_condition (loop);
1316 if (stmt
1317 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1318 return gimple_location (stmt);
1320 /* If we got here the loop is probably not "well formed",
1321 try to estimate the loop location */
1323 if (!loop->header)
1324 return UNKNOWN_LOCATION;
1326 bb = loop->header;
1328 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1330 stmt = gsi_stmt (si);
1331 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1332 return gimple_location (stmt);
1335 return UNKNOWN_LOCATION;
1338 /* Return true if PHI defines an IV of the loop to be vectorized. */
1340 static bool
1341 iv_phi_p (gphi *phi)
1343 if (virtual_operand_p (PHI_RESULT (phi)))
1344 return false;
1346 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
1347 gcc_assert (stmt_info != NULL);
1348 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1349 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1350 return false;
1352 return true;
1355 /* Function vect_can_advance_ivs_p
1357 In case the number of iterations that LOOP iterates is unknown at compile
1358 time, an epilog loop will be generated, and the loop induction variables
1359 (IVs) will be "advanced" to the value they are supposed to take just before
1360 the epilog loop. Here we check that the access function of the loop IVs
1361 and the expression that represents the loop bound are simple enough.
1362 These restrictions will be relaxed in the future. */
1364 bool
1365 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1367 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1368 basic_block bb = loop->header;
1369 gphi_iterator gsi;
1371 /* Analyze phi functions of the loop header. */
1373 if (dump_enabled_p ())
1374 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1375 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1377 tree evolution_part;
1379 gphi *phi = gsi.phi ();
1380 if (dump_enabled_p ())
1382 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1383 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1386 /* Skip virtual phi's. The data dependences that are associated with
1387 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
1389 Skip reduction phis. */
1390 if (!iv_phi_p (phi))
1392 if (dump_enabled_p ())
1393 dump_printf_loc (MSG_NOTE, vect_location,
1394 "reduc or virtual phi. skip.\n");
1395 continue;
1398 /* Analyze the evolution function. */
1400 evolution_part
1401 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1402 if (evolution_part == NULL_TREE)
1404 if (dump_enabled_p ())
1405 dump_printf (MSG_MISSED_OPTIMIZATION,
1406 "No access function or evolution.\n");
1407 return false;
1410 /* FORNOW: We do not transform initial conditions of IVs
1411 which evolution functions are not invariants in the loop. */
1413 if (!expr_invariant_in_loop_p (loop, evolution_part))
1415 if (dump_enabled_p ())
1416 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1417 "evolution not invariant in loop.\n");
1418 return false;
1421 /* FORNOW: We do not transform initial conditions of IVs
1422 which evolution functions are a polynomial of degree >= 2. */
1424 if (tree_is_chrec (evolution_part))
1426 if (dump_enabled_p ())
1427 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1428 "evolution is chrec.\n");
1429 return false;
1433 return true;
1437 /* Function vect_update_ivs_after_vectorizer.
1439 "Advance" the induction variables of LOOP to the value they should take
1440 after the execution of LOOP. This is currently necessary because the
1441 vectorizer does not handle induction variables that are used after the
1442 loop. Such a situation occurs when the last iterations of LOOP are
1443 peeled, because:
1444 1. We introduced new uses after LOOP for IVs that were not originally used
1445 after LOOP: the IVs of LOOP are now used by an epilog loop.
1446 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1447 times, whereas the loop IVs should be bumped N times.
1449 Input:
1450 - LOOP - a loop that is going to be vectorized. The last few iterations
1451 of LOOP were peeled.
1452 - NITERS - the number of iterations that LOOP executes (before it is
1453 vectorized). i.e, the number of times the ivs should be bumped.
1454 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1455 coming out from LOOP on which there are uses of the LOOP ivs
1456 (this is the path from LOOP->exit to epilog_loop->preheader).
1458 The new definitions of the ivs are placed in LOOP->exit.
1459 The phi args associated with the edge UPDATE_E in the bb
1460 UPDATE_E->dest are updated accordingly.
1462 Assumption 1: Like the rest of the vectorizer, this function assumes
1463 a single loop exit that has a single predecessor.
1465 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1466 organized in the same order.
1468 Assumption 3: The access function of the ivs is simple enough (see
1469 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1471 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1472 coming out of LOOP on which the ivs of LOOP are used (this is the path
1473 that leads to the epilog loop; other paths skip the epilog loop). This
1474 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1475 needs to have its phis updated.
1478 static void
1479 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
1480 tree niters, edge update_e)
1482 gphi_iterator gsi, gsi1;
1483 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1484 basic_block update_bb = update_e->dest;
1485 basic_block exit_bb = single_exit (loop)->dest;
1487 /* Make sure there exists a single-predecessor exit bb: */
1488 gcc_assert (single_pred_p (exit_bb));
1489 gcc_assert (single_succ_edge (exit_bb) == update_e);
1491 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1492 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1493 gsi_next (&gsi), gsi_next (&gsi1))
1495 tree init_expr;
1496 tree step_expr, off;
1497 tree type;
1498 tree var, ni, ni_name;
1499 gimple_stmt_iterator last_gsi;
1501 gphi *phi = gsi.phi ();
1502 gphi *phi1 = gsi1.phi ();
1503 if (dump_enabled_p ())
1505 dump_printf_loc (MSG_NOTE, vect_location,
1506 "vect_update_ivs_after_vectorizer: phi: ");
1507 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1510 /* Skip reduction and virtual phis. */
1511 if (!iv_phi_p (phi))
1513 if (dump_enabled_p ())
1514 dump_printf_loc (MSG_NOTE, vect_location,
1515 "reduc or virtual phi. skip.\n");
1516 continue;
1519 type = TREE_TYPE (gimple_phi_result (phi));
1520 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1521 step_expr = unshare_expr (step_expr);
1523 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1524 of degree >= 2 or exponential. */
1525 gcc_assert (!tree_is_chrec (step_expr));
1527 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1529 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1530 fold_convert (TREE_TYPE (step_expr), niters),
1531 step_expr);
1532 if (POINTER_TYPE_P (type))
1533 ni = fold_build_pointer_plus (init_expr, off);
1534 else
1535 ni = fold_build2 (PLUS_EXPR, type,
1536 init_expr, fold_convert (type, off));
1538 var = create_tmp_var (type, "tmp");
1540 last_gsi = gsi_last_bb (exit_bb);
1541 gimple_seq new_stmts = NULL;
1542 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
1543 /* Exit_bb shouldn't be empty. */
1544 if (!gsi_end_p (last_gsi))
1545 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
1546 else
1547 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
1549 /* Fix phi expressions in the successor bb. */
1550 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1554 /* Return a gimple value containing the misalignment (measured in vector
1555 elements) for the loop described by LOOP_VINFO, i.e. how many elements
1556 it is away from a perfectly aligned address. Add any new statements
1557 to SEQ. */
1559 static tree
1560 get_misalign_in_elems (gimple **seq, loop_vec_info loop_vinfo)
1562 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1563 gimple *dr_stmt = vect_dr_stmt (dr);
1564 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1565 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1567 unsigned int target_align = DR_TARGET_ALIGNMENT (dr);
1568 gcc_assert (target_align != 0);
1570 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1571 tree offset = (negative
1572 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1)
1573 : size_zero_node);
1574 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt, seq,
1575 offset);
1576 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1577 tree target_align_minus_1 = build_int_cst (type, target_align - 1);
1578 HOST_WIDE_INT elem_size
1579 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1580 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1582 /* Create: misalign_in_bytes = addr & (target_align - 1). */
1583 tree int_start_addr = fold_convert (type, start_addr);
1584 tree misalign_in_bytes = fold_build2 (BIT_AND_EXPR, type, int_start_addr,
1585 target_align_minus_1);
1587 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
1588 tree misalign_in_elems = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes,
1589 elem_size_log);
1591 return misalign_in_elems;
1594 /* Function vect_gen_prolog_loop_niters
1596 Generate the number of iterations which should be peeled as prolog for the
1597 loop represented by LOOP_VINFO. It is calculated as the misalignment of
1598 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
1599 As a result, after the execution of this loop, the data reference DR will
1600 refer to an aligned location. The following computation is generated:
1602 If the misalignment of DR is known at compile time:
1603 addr_mis = int mis = DR_MISALIGNMENT (dr);
1604 Else, compute address misalignment in bytes:
1605 addr_mis = addr & (target_align - 1)
1607 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
1609 (elem_size = element type size; an element is the scalar element whose type
1610 is the inner type of the vectype)
1612 The computations will be emitted at the end of BB. We also compute and
1613 store upper bound (included) of the result in BOUND.
1615 When the step of the data-ref in the loop is not 1 (as in interleaved data
1616 and SLP), the number of iterations of the prolog must be divided by the step
1617 (which is equal to the size of interleaved group).
1619 The above formulas assume that VF == number of elements in the vector. This
1620 may not hold when there are multiple-types in the loop.
1621 In this case, for some data-references in the loop the VF does not represent
1622 the number of elements that fit in the vector. Therefore, instead of VF we
1623 use TYPE_VECTOR_SUBPARTS. */
1625 static tree
1626 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
1627 basic_block bb, int *bound)
1629 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1630 tree var;
1631 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
1632 gimple_seq stmts = NULL, new_stmts = NULL;
1633 tree iters, iters_name;
1634 gimple *dr_stmt = vect_dr_stmt (dr);
1635 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1636 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1637 unsigned int target_align = DR_TARGET_ALIGNMENT (dr);
1639 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1641 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1643 if (dump_enabled_p ())
1644 dump_printf_loc (MSG_NOTE, vect_location,
1645 "known peeling = %d.\n", npeel);
1647 iters = build_int_cst (niters_type, npeel);
1648 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1650 else
1652 tree misalign_in_elems = get_misalign_in_elems (&stmts, loop_vinfo);
1653 tree type = TREE_TYPE (misalign_in_elems);
1654 HOST_WIDE_INT elem_size
1655 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1656 HOST_WIDE_INT align_in_elems = target_align / elem_size;
1657 tree align_in_elems_minus_1 = build_int_cst (type, align_in_elems - 1);
1658 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
1660 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
1661 & (align_in_elems - 1)). */
1662 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1663 if (negative)
1664 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
1665 align_in_elems_tree);
1666 else
1667 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
1668 misalign_in_elems);
1669 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
1670 iters = fold_convert (niters_type, iters);
1671 *bound = align_in_elems - 1;
1674 if (dump_enabled_p ())
1676 dump_printf_loc (MSG_NOTE, vect_location,
1677 "niters for prolog loop: ");
1678 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1679 dump_printf (MSG_NOTE, "\n");
1682 var = create_tmp_var (niters_type, "prolog_loop_niters");
1683 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
1685 if (new_stmts)
1686 gimple_seq_add_seq (&stmts, new_stmts);
1687 if (stmts)
1689 gcc_assert (single_succ_p (bb));
1690 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1691 if (gsi_end_p (gsi))
1692 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1693 else
1694 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1696 return iters_name;
1700 /* Function vect_update_init_of_dr
1702 If CODE is PLUS, the vector loop starts NITERS iterations after the
1703 scalar one, otherwise CODE is MINUS and the vector loop starts NITERS
1704 iterations before the scalar one (using masking to skip inactive
1705 elements). This function updates the information recorded in DR to
1706 account for the difference. Specifically, it updates the OFFSET
1707 field of DR. */
1709 static void
1710 vect_update_init_of_dr (struct data_reference *dr, tree niters, tree_code code)
1712 tree offset = DR_OFFSET (dr);
1714 niters = fold_build2 (MULT_EXPR, sizetype,
1715 fold_convert (sizetype, niters),
1716 fold_convert (sizetype, DR_STEP (dr)));
1717 offset = fold_build2 (code, sizetype,
1718 fold_convert (sizetype, offset), niters);
1719 DR_OFFSET (dr) = offset;
1723 /* Function vect_update_inits_of_drs
1725 Apply vect_update_inits_of_dr to all accesses in LOOP_VINFO.
1726 CODE and NITERS are as for vect_update_inits_of_dr. */
1728 static void
1729 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters,
1730 tree_code code)
1732 unsigned int i;
1733 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1734 struct data_reference *dr;
1736 DUMP_VECT_SCOPE ("vect_update_inits_of_dr");
1738 /* Adjust niters to sizetype and insert stmts on loop preheader edge. */
1739 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
1741 gimple_seq seq;
1742 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1743 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
1745 niters = fold_convert (sizetype, niters);
1746 niters = force_gimple_operand (niters, &seq, false, var);
1747 if (seq)
1749 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1750 gcc_assert (!new_bb);
1754 FOR_EACH_VEC_ELT (datarefs, i, dr)
1755 vect_update_init_of_dr (dr, niters, code);
1758 /* For the information recorded in LOOP_VINFO prepare the loop for peeling
1759 by masking. This involves calculating the number of iterations to
1760 be peeled and then aligning all memory references appropriately. */
1762 void
1763 vect_prepare_for_masked_peels (loop_vec_info loop_vinfo)
1765 tree misalign_in_elems;
1766 tree type = LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo);
1768 gcc_assert (vect_use_loop_mask_for_alignment_p (loop_vinfo));
1770 /* From the information recorded in LOOP_VINFO get the number of iterations
1771 that need to be skipped via masking. */
1772 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1774 poly_int64 misalign = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
1775 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
1776 misalign_in_elems = build_int_cst (type, misalign);
1778 else
1780 gimple_seq seq1 = NULL, seq2 = NULL;
1781 misalign_in_elems = get_misalign_in_elems (&seq1, loop_vinfo);
1782 misalign_in_elems = fold_convert (type, misalign_in_elems);
1783 misalign_in_elems = force_gimple_operand (misalign_in_elems,
1784 &seq2, true, NULL_TREE);
1785 gimple_seq_add_seq (&seq1, seq2);
1786 if (seq1)
1788 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1789 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq1);
1790 gcc_assert (!new_bb);
1794 if (dump_enabled_p ())
1796 dump_printf_loc (MSG_NOTE, vect_location,
1797 "misalignment for fully-masked loop: ");
1798 dump_generic_expr (MSG_NOTE, TDF_SLIM, misalign_in_elems);
1799 dump_printf (MSG_NOTE, "\n");
1802 LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo) = misalign_in_elems;
1804 vect_update_inits_of_drs (loop_vinfo, misalign_in_elems, MINUS_EXPR);
1807 /* This function builds ni_name = number of iterations. Statements
1808 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
1809 it to TRUE if new ssa_var is generated. */
1811 tree
1812 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
1814 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1815 if (TREE_CODE (ni) == INTEGER_CST)
1816 return ni;
1817 else
1819 tree ni_name, var;
1820 gimple_seq stmts = NULL;
1821 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1823 var = create_tmp_var (TREE_TYPE (ni), "niters");
1824 ni_name = force_gimple_operand (ni, &stmts, false, var);
1825 if (stmts)
1827 gsi_insert_seq_on_edge_immediate (pe, stmts);
1828 if (new_var_p != NULL)
1829 *new_var_p = true;
1832 return ni_name;
1836 /* Calculate the number of iterations above which vectorized loop will be
1837 preferred than scalar loop. NITERS_PROLOG is the number of iterations
1838 of prolog loop. If it's integer const, the integer number is also passed
1839 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (inclusive) of the
1840 number of iterations of the prolog loop. BOUND_EPILOG is the corresponding
1841 value for the epilog loop. If CHECK_PROFITABILITY is true, TH is the
1842 threshold below which the scalar (rather than vectorized) loop will be
1843 executed. This function stores the upper bound (inclusive) of the result
1844 in BOUND_SCALAR. */
1846 static tree
1847 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
1848 int bound_prolog, poly_int64 bound_epilog, int th,
1849 poly_uint64 *bound_scalar,
1850 bool check_profitability)
1852 tree type = TREE_TYPE (niters_prolog);
1853 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
1854 build_int_cst (type, bound_epilog));
1856 *bound_scalar = bound_prolog + bound_epilog;
1857 if (check_profitability)
1859 /* TH indicates the minimum niters of vectorized loop, while we
1860 compute the maximum niters of scalar loop. */
1861 th--;
1862 /* Peeling for constant times. */
1863 if (int_niters_prolog >= 0)
1865 *bound_scalar = upper_bound (int_niters_prolog + bound_epilog, th);
1866 return build_int_cst (type, *bound_scalar);
1868 /* Peeling an unknown number of times. Note that both BOUND_PROLOG
1869 and BOUND_EPILOG are inclusive upper bounds. */
1870 if (known_ge (th, bound_prolog + bound_epilog))
1872 *bound_scalar = th;
1873 return build_int_cst (type, th);
1875 /* Need to do runtime comparison. */
1876 else if (maybe_gt (th, bound_epilog))
1878 *bound_scalar = upper_bound (*bound_scalar, th);
1879 return fold_build2 (MAX_EXPR, type,
1880 build_int_cst (type, th), niters);
1883 return niters;
1886 /* NITERS is the number of times that the original scalar loop executes
1887 after peeling. Work out the maximum number of iterations N that can
1888 be handled by the vectorized form of the loop and then either:
1890 a) set *STEP_VECTOR_PTR to the vectorization factor and generate:
1892 niters_vector = N
1894 b) set *STEP_VECTOR_PTR to one and generate:
1896 niters_vector = N / vf
1898 In both cases, store niters_vector in *NITERS_VECTOR_PTR and add
1899 any new statements on the loop preheader edge. NITERS_NO_OVERFLOW
1900 is true if NITERS doesn't overflow (i.e. if NITERS is always nonzero). */
1902 void
1903 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
1904 tree *niters_vector_ptr, tree *step_vector_ptr,
1905 bool niters_no_overflow)
1907 tree ni_minus_gap, var;
1908 tree niters_vector, step_vector, type = TREE_TYPE (niters);
1909 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1910 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1911 tree log_vf = NULL_TREE;
1913 /* If epilogue loop is required because of data accesses with gaps, we
1914 subtract one iteration from the total number of iterations here for
1915 correct calculation of RATIO. */
1916 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1918 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
1919 build_one_cst (type));
1920 if (!is_gimple_val (ni_minus_gap))
1922 var = create_tmp_var (type, "ni_gap");
1923 gimple *stmts = NULL;
1924 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
1925 true, var);
1926 gsi_insert_seq_on_edge_immediate (pe, stmts);
1929 else
1930 ni_minus_gap = niters;
1932 unsigned HOST_WIDE_INT const_vf;
1933 if (vf.is_constant (&const_vf)
1934 && !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
1936 /* Create: niters >> log2(vf) */
1937 /* If it's known that niters == number of latch executions + 1 doesn't
1938 overflow, we can generate niters >> log2(vf); otherwise we generate
1939 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
1940 will be at least one. */
1941 log_vf = build_int_cst (type, exact_log2 (const_vf));
1942 if (niters_no_overflow)
1943 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
1944 else
1945 niters_vector
1946 = fold_build2 (PLUS_EXPR, type,
1947 fold_build2 (RSHIFT_EXPR, type,
1948 fold_build2 (MINUS_EXPR, type,
1949 ni_minus_gap,
1950 build_int_cst (type, vf)),
1951 log_vf),
1952 build_int_cst (type, 1));
1953 step_vector = build_one_cst (type);
1955 else
1957 niters_vector = ni_minus_gap;
1958 step_vector = build_int_cst (type, vf);
1961 if (!is_gimple_val (niters_vector))
1963 var = create_tmp_var (type, "bnd");
1964 gimple_seq stmts = NULL;
1965 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
1966 gsi_insert_seq_on_edge_immediate (pe, stmts);
1967 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
1968 we set range information to make niters analyzer's life easier. */
1969 if (stmts != NULL && log_vf)
1970 set_range_info (niters_vector, VR_RANGE,
1971 wi::to_wide (build_int_cst (type, 1)),
1972 wi::to_wide (fold_build2 (RSHIFT_EXPR, type,
1973 TYPE_MAX_VALUE (type),
1974 log_vf)));
1976 *niters_vector_ptr = niters_vector;
1977 *step_vector_ptr = step_vector;
1979 return;
1982 /* Given NITERS_VECTOR which is the number of iterations for vectorized
1983 loop specified by LOOP_VINFO after vectorization, compute the number
1984 of iterations before vectorization (niters_vector * vf) and store it
1985 to NITERS_VECTOR_MULT_VF_PTR. */
1987 static void
1988 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
1989 tree niters_vector,
1990 tree *niters_vector_mult_vf_ptr)
1992 /* We should be using a step_vector of VF if VF is variable. */
1993 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo).to_constant ();
1994 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1995 tree type = TREE_TYPE (niters_vector);
1996 tree log_vf = build_int_cst (type, exact_log2 (vf));
1997 basic_block exit_bb = single_exit (loop)->dest;
1999 gcc_assert (niters_vector_mult_vf_ptr != NULL);
2000 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
2001 niters_vector, log_vf);
2002 if (!is_gimple_val (niters_vector_mult_vf))
2004 tree var = create_tmp_var (type, "niters_vector_mult_vf");
2005 gimple_seq stmts = NULL;
2006 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
2007 &stmts, true, var);
2008 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
2009 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
2011 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
2014 /* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
2015 from SECOND/FIRST and puts it at the original loop's preheader/exit
2016 edge, the two loops are arranged as below:
2018 preheader_a:
2019 first_loop:
2020 header_a:
2021 i_1 = PHI<i_0, i_2>;
2023 i_2 = i_1 + 1;
2024 if (cond_a)
2025 goto latch_a;
2026 else
2027 goto between_bb;
2028 latch_a:
2029 goto header_a;
2031 between_bb:
2032 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
2034 second_loop:
2035 header_b:
2036 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
2037 or with i_2 if no LCSSA phi is created
2038 under condition of CREATE_LCSSA_FOR_IV_PHIS.
2040 i_4 = i_3 + 1;
2041 if (cond_b)
2042 goto latch_b;
2043 else
2044 goto exit_bb;
2045 latch_b:
2046 goto header_b;
2048 exit_bb:
2050 This function creates loop closed SSA for the first loop; update the
2051 second loop's PHI nodes by replacing argument on incoming edge with the
2052 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
2053 is false, Loop closed ssa phis will only be created for non-iv phis for
2054 the first loop.
2056 This function assumes exit bb of the first loop is preheader bb of the
2057 second loop, i.e, between_bb in the example code. With PHIs updated,
2058 the second loop will execute rest iterations of the first. */
2060 static void
2061 slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
2062 struct loop *first, struct loop *second,
2063 bool create_lcssa_for_iv_phis)
2065 gphi_iterator gsi_update, gsi_orig;
2066 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2068 edge first_latch_e = EDGE_SUCC (first->latch, 0);
2069 edge second_preheader_e = loop_preheader_edge (second);
2070 basic_block between_bb = single_exit (first)->dest;
2072 gcc_assert (between_bb == second_preheader_e->src);
2073 gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
2074 /* Either the first loop or the second is the loop to be vectorized. */
2075 gcc_assert (loop == first || loop == second);
2077 for (gsi_orig = gsi_start_phis (first->header),
2078 gsi_update = gsi_start_phis (second->header);
2079 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2080 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2082 gphi *orig_phi = gsi_orig.phi ();
2083 gphi *update_phi = gsi_update.phi ();
2085 tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
2086 /* Generate lcssa PHI node for the first loop. */
2087 gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
2088 if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi))
2090 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2091 gphi *lcssa_phi = create_phi_node (new_res, between_bb);
2092 add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
2093 arg = new_res;
2096 /* Update PHI node in the second loop by replacing arg on the loop's
2097 incoming edge. */
2098 adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
2102 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
2103 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
2104 are two pred edges of the merge point before UPDATE_LOOP. The two loops
2105 appear like below:
2107 guard_bb:
2108 if (cond)
2109 goto merge_bb;
2110 else
2111 goto skip_loop;
2113 skip_loop:
2114 header_a:
2115 i_1 = PHI<i_0, i_2>;
2117 i_2 = i_1 + 1;
2118 if (cond_a)
2119 goto latch_a;
2120 else
2121 goto exit_a;
2122 latch_a:
2123 goto header_a;
2125 exit_a:
2126 i_5 = PHI<i_2>;
2128 merge_bb:
2129 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
2131 update_loop:
2132 header_b:
2133 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
2135 i_4 = i_3 + 1;
2136 if (cond_b)
2137 goto latch_b;
2138 else
2139 goto exit_bb;
2140 latch_b:
2141 goto header_b;
2143 exit_bb:
2145 This function creates PHI nodes at merge_bb and replaces the use of i_5
2146 in the update_loop's PHI node with the result of new PHI result. */
2148 static void
2149 slpeel_update_phi_nodes_for_guard1 (struct loop *skip_loop,
2150 struct loop *update_loop,
2151 edge guard_edge, edge merge_edge)
2153 source_location merge_loc, guard_loc;
2154 edge orig_e = loop_preheader_edge (skip_loop);
2155 edge update_e = loop_preheader_edge (update_loop);
2156 gphi_iterator gsi_orig, gsi_update;
2158 for ((gsi_orig = gsi_start_phis (skip_loop->header),
2159 gsi_update = gsi_start_phis (update_loop->header));
2160 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
2161 gsi_next (&gsi_orig), gsi_next (&gsi_update))
2163 gphi *orig_phi = gsi_orig.phi ();
2164 gphi *update_phi = gsi_update.phi ();
2166 /* Generate new phi node at merge bb of the guard. */
2167 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2168 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
2170 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
2171 args in NEW_PHI for these edges. */
2172 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
2173 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
2174 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
2175 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
2176 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
2177 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
2179 /* Update phi in UPDATE_PHI. */
2180 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
2184 /* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
2185 this function searches for the corresponding lcssa phi node in exit
2186 bb of LOOP. If it is found, return the phi result; otherwise return
2187 NULL. */
2189 static tree
2190 find_guard_arg (struct loop *loop, struct loop *epilog ATTRIBUTE_UNUSED,
2191 gphi *lcssa_phi)
2193 gphi_iterator gsi;
2194 edge e = single_exit (loop);
2196 gcc_assert (single_pred_p (e->dest));
2197 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
2199 gphi *phi = gsi.phi ();
2200 if (operand_equal_p (PHI_ARG_DEF (phi, 0),
2201 PHI_ARG_DEF (lcssa_phi, 0), 0))
2202 return PHI_RESULT (phi);
2204 return NULL_TREE;
2207 /* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
2208 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
2209 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
2210 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
2211 The CFG looks like:
2213 loop:
2214 header_a:
2215 i_1 = PHI<i_0, i_2>;
2217 i_2 = i_1 + 1;
2218 if (cond_a)
2219 goto latch_a;
2220 else
2221 goto exit_a;
2222 latch_a:
2223 goto header_a;
2225 exit_a:
2227 guard_bb:
2228 if (cond)
2229 goto merge_bb;
2230 else
2231 goto epilog_loop;
2233 ;; fall_through_bb
2235 epilog_loop:
2236 header_b:
2237 i_3 = PHI<i_2, i_4>;
2239 i_4 = i_3 + 1;
2240 if (cond_b)
2241 goto latch_b;
2242 else
2243 goto merge_bb;
2244 latch_b:
2245 goto header_b;
2247 merge_bb:
2248 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
2250 exit_bb:
2251 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
2253 For each name used out side EPILOG (i.e - for each name that has a lcssa
2254 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
2255 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
2256 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
2257 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
2258 in exit_bb will also be updated. */
2260 static void
2261 slpeel_update_phi_nodes_for_guard2 (struct loop *loop, struct loop *epilog,
2262 edge guard_edge, edge merge_edge)
2264 gphi_iterator gsi;
2265 basic_block merge_bb = guard_edge->dest;
2267 gcc_assert (single_succ_p (merge_bb));
2268 edge e = single_succ_edge (merge_bb);
2269 basic_block exit_bb = e->dest;
2270 gcc_assert (single_pred_p (exit_bb));
2271 gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);
2273 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2275 gphi *update_phi = gsi.phi ();
2276 tree old_arg = PHI_ARG_DEF (update_phi, 0);
2277 /* This loop-closed-phi actually doesn't represent a use out of the
2278 loop - the phi arg is a constant. */
2279 if (TREE_CODE (old_arg) != SSA_NAME)
2280 continue;
2282 tree merge_arg = get_current_def (old_arg);
2283 if (!merge_arg)
2284 merge_arg = old_arg;
2286 tree guard_arg = find_guard_arg (loop, epilog, update_phi);
2287 /* If the var is live after loop but not a reduction, we simply
2288 use the old arg. */
2289 if (!guard_arg)
2290 guard_arg = old_arg;
2292 /* Create new phi node in MERGE_BB: */
2293 tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
2294 gphi *merge_phi = create_phi_node (new_res, merge_bb);
2296 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
2297 the two PHI args in merge_phi for these edges. */
2298 add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
2299 add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
2301 /* Update the original phi in exit_bb. */
2302 adjust_phi_and_debug_stmts (update_phi, e, new_res);
2306 /* EPILOG loop is duplicated from the original loop for vectorizing,
2307 the arg of its loop closed ssa PHI needs to be updated. */
2309 static void
2310 slpeel_update_phi_nodes_for_lcssa (struct loop *epilog)
2312 gphi_iterator gsi;
2313 basic_block exit_bb = single_exit (epilog)->dest;
2315 gcc_assert (single_pred_p (exit_bb));
2316 edge e = EDGE_PRED (exit_bb, 0);
2317 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2318 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
2321 /* Function vect_do_peeling.
2323 Input:
2324 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
2326 preheader:
2327 LOOP:
2328 header_bb:
2329 loop_body
2330 if (exit_loop_cond) goto exit_bb
2331 else goto header_bb
2332 exit_bb:
2334 - NITERS: The number of iterations of the loop.
2335 - NITERSM1: The number of iterations of the loop's latch.
2336 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
2337 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
2338 CHECK_PROFITABILITY is true.
2339 Output:
2340 - *NITERS_VECTOR and *STEP_VECTOR describe how the main loop should
2341 iterate after vectorization; see vect_set_loop_condition for details.
2342 - *NITERS_VECTOR_MULT_VF_VAR is either null or an SSA name that
2343 should be set to the number of scalar iterations handled by the
2344 vector loop. The SSA name is only used on exit from the loop.
2346 This function peels prolog and epilog from the loop, adds guards skipping
2347 PROLOG and EPILOG for various conditions. As a result, the changed CFG
2348 would look like:
2350 guard_bb_1:
2351 if (prefer_scalar_loop) goto merge_bb_1
2352 else goto guard_bb_2
2354 guard_bb_2:
2355 if (skip_prolog) goto merge_bb_2
2356 else goto prolog_preheader
2358 prolog_preheader:
2359 PROLOG:
2360 prolog_header_bb:
2361 prolog_body
2362 if (exit_prolog_cond) goto prolog_exit_bb
2363 else goto prolog_header_bb
2364 prolog_exit_bb:
2366 merge_bb_2:
2368 vector_preheader:
2369 VECTOR LOOP:
2370 vector_header_bb:
2371 vector_body
2372 if (exit_vector_cond) goto vector_exit_bb
2373 else goto vector_header_bb
2374 vector_exit_bb:
2376 guard_bb_3:
2377 if (skip_epilog) goto merge_bb_3
2378 else goto epilog_preheader
2380 merge_bb_1:
2382 epilog_preheader:
2383 EPILOG:
2384 epilog_header_bb:
2385 epilog_body
2386 if (exit_epilog_cond) goto merge_bb_3
2387 else goto epilog_header_bb
2389 merge_bb_3:
2391 Note this function peels prolog and epilog only if it's necessary,
2392 as well as guards.
2393 Returns created epilogue or NULL.
2395 TODO: Guard for prefer_scalar_loop should be emitted along with
2396 versioning conditions if loop versioning is needed. */
2399 struct loop *
2400 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
2401 tree *niters_vector, tree *step_vector,
2402 tree *niters_vector_mult_vf_var, int th,
2403 bool check_profitability, bool niters_no_overflow)
2405 edge e, guard_e;
2406 tree type = TREE_TYPE (niters), guard_cond;
2407 basic_block guard_bb, guard_to;
2408 profile_probability prob_prolog, prob_vector, prob_epilog;
2409 int estimated_vf;
2410 int prolog_peeling = 0;
2411 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
2412 prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2414 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2415 poly_uint64 bound_epilog = 0;
2416 if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
2417 && LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2418 bound_epilog += vf - 1;
2419 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2420 bound_epilog += 1;
2421 bool epilog_peeling = maybe_ne (bound_epilog, 0U);
2422 poly_uint64 bound_scalar = bound_epilog;
2424 if (!prolog_peeling && !epilog_peeling)
2425 return NULL;
2427 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
2428 estimated_vf = vect_vf_for_cost (loop_vinfo);
2429 if (estimated_vf == 2)
2430 estimated_vf = 3;
2431 prob_prolog = prob_epilog = profile_probability::guessed_always ()
2432 .apply_scale (estimated_vf - 1, estimated_vf);
2434 struct loop *prolog, *epilog = NULL, *loop = LOOP_VINFO_LOOP (loop_vinfo);
2435 struct loop *first_loop = loop;
2436 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
2437 create_lcssa_for_virtual_phi (loop);
2438 update_ssa (TODO_update_ssa_only_virtuals);
2440 if (MAY_HAVE_DEBUG_BIND_STMTS)
2442 gcc_assert (!adjust_vec.exists ());
2443 adjust_vec.create (32);
2445 initialize_original_copy_tables ();
2447 /* Record the anchor bb at which the guard should be placed if the scalar
2448 loop might be preferred. */
2449 basic_block anchor = loop_preheader_edge (loop)->src;
2451 /* Generate the number of iterations for the prolog loop. We do this here
2452 so that we can also get the upper bound on the number of iterations. */
2453 tree niters_prolog;
2454 int bound_prolog = 0;
2455 if (prolog_peeling)
2456 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
2457 &bound_prolog);
2458 else
2459 niters_prolog = build_int_cst (type, 0);
2461 /* Prolog loop may be skipped. */
2462 bool skip_prolog = (prolog_peeling != 0);
2463 /* Skip to epilog if scalar loop may be preferred. It's only needed
2464 when we peel for epilog loop and when it hasn't been checked with
2465 loop versioning. */
2466 bool skip_vector = (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2467 ? maybe_lt (LOOP_VINFO_INT_NITERS (loop_vinfo),
2468 bound_prolog + bound_epilog)
2469 : !LOOP_REQUIRES_VERSIONING (loop_vinfo));
2470 /* Epilog loop must be executed if the number of iterations for epilog
2471 loop is known at compile time, otherwise we need to add a check at
2472 the end of vector loop and skip to the end of epilog loop. */
2473 bool skip_epilog = (prolog_peeling < 0
2474 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2475 || !vf.is_constant ());
2476 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
2477 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2478 skip_epilog = false;
2480 if (skip_vector)
2482 split_edge (loop_preheader_edge (loop));
2484 /* Due to the order in which we peel prolog and epilog, we first
2485 propagate probability to the whole loop. The purpose is to
2486 avoid adjusting probabilities of both prolog and vector loops
2487 separately. Note in this case, the probability of epilog loop
2488 needs to be scaled back later. */
2489 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
2490 if (prob_vector.initialized_p ())
2492 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
2493 scale_loop_profile (loop, prob_vector, 0);
2497 source_location loop_loc = find_loop_location (loop);
2498 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2499 if (prolog_peeling)
2501 e = loop_preheader_edge (loop);
2502 if (!slpeel_can_duplicate_loop_p (loop, e))
2504 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2505 "loop can't be duplicated to preheader edge.\n");
2506 gcc_unreachable ();
2508 /* Peel prolog and put it on preheader edge of loop. */
2509 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
2510 if (!prolog)
2512 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2513 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2514 gcc_unreachable ();
2516 slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
2517 first_loop = prolog;
2518 reset_original_copy_tables ();
2520 /* Update the number of iterations for prolog loop. */
2521 tree step_prolog = build_one_cst (TREE_TYPE (niters_prolog));
2522 vect_set_loop_condition (prolog, NULL, niters_prolog,
2523 step_prolog, NULL_TREE, false);
2525 /* Skip the prolog loop. */
2526 if (skip_prolog)
2528 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2529 niters_prolog, build_int_cst (type, 0));
2530 guard_bb = loop_preheader_edge (prolog)->src;
2531 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
2532 guard_to = split_edge (loop_preheader_edge (loop));
2533 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2534 guard_to, guard_bb,
2535 prob_prolog.invert (),
2536 irred_flag);
2537 e = EDGE_PRED (guard_to, 0);
2538 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2539 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
2541 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
2542 scale_loop_profile (prolog, prob_prolog, bound_prolog);
2544 /* Update init address of DRs. */
2545 vect_update_inits_of_drs (loop_vinfo, niters_prolog, PLUS_EXPR);
2546 /* Update niters for vector loop. */
2547 LOOP_VINFO_NITERS (loop_vinfo)
2548 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
2549 LOOP_VINFO_NITERSM1 (loop_vinfo)
2550 = fold_build2 (MINUS_EXPR, type,
2551 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
2552 bool new_var_p = false;
2553 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
2554 /* It's guaranteed that vector loop bound before vectorization is at
2555 least VF, so set range information for newly generated var. */
2556 if (new_var_p)
2557 set_range_info (niters, VR_RANGE,
2558 wi::to_wide (build_int_cst (type, vf)),
2559 wi::to_wide (TYPE_MAX_VALUE (type)));
2561 /* Prolog iterates at most bound_prolog times, latch iterates at
2562 most bound_prolog - 1 times. */
2563 record_niter_bound (prolog, bound_prolog - 1, false, true);
2564 delete_update_ssa ();
2565 adjust_vec_debug_stmts ();
2566 scev_reset ();
2569 if (epilog_peeling)
2571 e = single_exit (loop);
2572 if (!slpeel_can_duplicate_loop_p (loop, e))
2574 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2575 "loop can't be duplicated to exit edge.\n");
2576 gcc_unreachable ();
2578 /* Peel epilog and put it on exit edge of loop. */
2579 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
2580 if (!epilog)
2582 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
2583 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
2584 gcc_unreachable ();
2586 slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);
2588 /* Scalar version loop may be preferred. In this case, add guard
2589 and skip to epilog. Note this only happens when the number of
2590 iterations of loop is unknown at compile time, otherwise this
2591 won't be vectorized. */
2592 if (skip_vector)
2594 /* Additional epilogue iteration is peeled if gap exists. */
2595 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
2596 bound_prolog, bound_epilog,
2597 th, &bound_scalar,
2598 check_profitability);
2599 /* Build guard against NITERSM1 since NITERS may overflow. */
2600 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
2601 guard_bb = anchor;
2602 guard_to = split_edge (loop_preheader_edge (epilog));
2603 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
2604 guard_to, guard_bb,
2605 prob_vector.invert (),
2606 irred_flag);
2607 e = EDGE_PRED (guard_to, 0);
2608 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
2609 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
2611 /* Simply propagate profile info from guard_bb to guard_to which is
2612 a merge point of control flow. */
2613 guard_to->count = guard_bb->count;
2615 /* Scale probability of epilog loop back.
2616 FIXME: We should avoid scaling down and back up. Profile may
2617 get lost if we scale down to 0. */
2618 basic_block *bbs = get_loop_body (epilog);
2619 for (unsigned int i = 0; i < epilog->num_nodes; i++)
2620 bbs[i]->count = bbs[i]->count.apply_scale
2621 (bbs[i]->count,
2622 bbs[i]->count.apply_probability
2623 (prob_vector));
2624 free (bbs);
2627 basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
2628 tree niters_vector_mult_vf;
2629 /* If loop is peeled for non-zero constant times, now niters refers to
2630 orig_niters - prolog_peeling, it won't overflow even the orig_niters
2631 overflows. */
2632 niters_no_overflow |= (prolog_peeling > 0);
2633 vect_gen_vector_loop_niters (loop_vinfo, niters,
2634 niters_vector, step_vector,
2635 niters_no_overflow);
2636 if (!integer_onep (*step_vector))
2638 /* On exit from the loop we will have an easy way of calcalating
2639 NITERS_VECTOR / STEP * STEP. Install a dummy definition
2640 until then. */
2641 niters_vector_mult_vf = make_ssa_name (TREE_TYPE (*niters_vector));
2642 SSA_NAME_DEF_STMT (niters_vector_mult_vf) = gimple_build_nop ();
2643 *niters_vector_mult_vf_var = niters_vector_mult_vf;
2645 else
2646 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
2647 &niters_vector_mult_vf);
2648 /* Update IVs of original loop as if they were advanced by
2649 niters_vector_mult_vf steps. */
2650 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
2651 edge update_e = skip_vector ? e : loop_preheader_edge (epilog);
2652 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
2653 update_e);
2655 if (skip_epilog)
2657 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
2658 niters, niters_vector_mult_vf);
2659 guard_bb = single_exit (loop)->dest;
2660 guard_to = split_edge (single_exit (epilog));
2661 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
2662 skip_vector ? anchor : guard_bb,
2663 prob_epilog.invert (),
2664 irred_flag);
2665 slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
2666 single_exit (epilog));
2667 /* Only need to handle basic block before epilog loop if it's not
2668 the guard_bb, which is the case when skip_vector is true. */
2669 if (guard_bb != bb_before_epilog)
2671 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
2673 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
2675 scale_loop_profile (epilog, prob_epilog, 0);
2677 else
2678 slpeel_update_phi_nodes_for_lcssa (epilog);
2680 unsigned HOST_WIDE_INT bound;
2681 if (bound_scalar.is_constant (&bound))
2683 gcc_assert (bound != 0);
2684 /* -1 to convert loop iterations to latch iterations. */
2685 record_niter_bound (epilog, bound - 1, false, true);
2688 delete_update_ssa ();
2689 adjust_vec_debug_stmts ();
2690 scev_reset ();
2692 adjust_vec.release ();
2693 free_original_copy_tables ();
2695 return epilog;
2698 /* Function vect_create_cond_for_niters_checks.
2700 Create a conditional expression that represents the run-time checks for
2701 loop's niter. The loop is guaranteed to terminate if the run-time
2702 checks hold.
2704 Input:
2705 COND_EXPR - input conditional expression. New conditions will be chained
2706 with logical AND operation. If it is NULL, then the function
2707 is used to return the number of alias checks.
2708 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2709 to be checked.
2711 Output:
2712 COND_EXPR - conditional expression.
2714 The returned COND_EXPR is the conditional expression to be used in the
2715 if statement that controls which version of the loop gets executed at
2716 runtime. */
2718 static void
2719 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
2721 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
2723 if (*cond_expr)
2724 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2725 *cond_expr, part_cond_expr);
2726 else
2727 *cond_expr = part_cond_expr;
2730 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
2731 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
2733 static void
2734 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
2736 if (*cond_expr)
2737 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2738 *cond_expr, part_cond_expr);
2739 else
2740 *cond_expr = part_cond_expr;
2743 /* Function vect_create_cond_for_align_checks.
2745 Create a conditional expression that represents the alignment checks for
2746 all of data references (array element references) whose alignment must be
2747 checked at runtime.
2749 Input:
2750 COND_EXPR - input conditional expression. New conditions will be chained
2751 with logical AND operation.
2752 LOOP_VINFO - two fields of the loop information are used.
2753 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2754 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2756 Output:
2757 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2758 expression.
2759 The returned value is the conditional expression to be used in the if
2760 statement that controls which version of the loop gets executed at runtime.
2762 The algorithm makes two assumptions:
2763 1) The number of bytes "n" in a vector is a power of 2.
2764 2) An address "a" is aligned if a%n is zero and that this
2765 test can be done as a&(n-1) == 0. For example, for 16
2766 byte vectors the test is a&0xf == 0. */
2768 static void
2769 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2770 tree *cond_expr,
2771 gimple_seq *cond_expr_stmt_list)
2773 vec<gimple *> may_misalign_stmts
2774 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2775 gimple *ref_stmt;
2776 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2777 tree mask_cst;
2778 unsigned int i;
2779 tree int_ptrsize_type;
2780 char tmp_name[20];
2781 tree or_tmp_name = NULL_TREE;
2782 tree and_tmp_name;
2783 gimple *and_stmt;
2784 tree ptrsize_zero;
2785 tree part_cond_expr;
2787 /* Check that mask is one less than a power of 2, i.e., mask is
2788 all zeros followed by all ones. */
2789 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2791 int_ptrsize_type = signed_type_for (ptr_type_node);
2793 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2794 of the first vector of the i'th data reference. */
2796 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2798 gimple_seq new_stmt_list = NULL;
2799 tree addr_base;
2800 tree addr_tmp_name;
2801 tree new_or_tmp_name;
2802 gimple *addr_stmt, *or_stmt;
2803 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2804 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2805 bool negative = tree_int_cst_compare
2806 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2807 tree offset = negative
2808 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2810 /* create: addr_tmp = (int)(address_of_first_vector) */
2811 addr_base =
2812 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2813 offset);
2814 if (new_stmt_list != NULL)
2815 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2817 sprintf (tmp_name, "addr2int%d", i);
2818 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2819 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2820 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2822 /* The addresses are OR together. */
2824 if (or_tmp_name != NULL_TREE)
2826 /* create: or_tmp = or_tmp | addr_tmp */
2827 sprintf (tmp_name, "orptrs%d", i);
2828 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2829 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2830 or_tmp_name, addr_tmp_name);
2831 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2832 or_tmp_name = new_or_tmp_name;
2834 else
2835 or_tmp_name = addr_tmp_name;
2837 } /* end for i */
2839 mask_cst = build_int_cst (int_ptrsize_type, mask);
2841 /* create: and_tmp = or_tmp & mask */
2842 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2844 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2845 or_tmp_name, mask_cst);
2846 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2848 /* Make and_tmp the left operand of the conditional test against zero.
2849 if and_tmp has a nonzero bit then some address is unaligned. */
2850 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2851 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2852 and_tmp_name, ptrsize_zero);
2853 chain_cond_expr (cond_expr, part_cond_expr);
2856 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
2857 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
2858 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
2859 and this new condition are true. Treat a null *COND_EXPR as "true". */
2861 static void
2862 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
2864 vec<vec_object_pair> pairs = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
2865 unsigned int i;
2866 vec_object_pair *pair;
2867 FOR_EACH_VEC_ELT (pairs, i, pair)
2869 tree addr1 = build_fold_addr_expr (pair->first);
2870 tree addr2 = build_fold_addr_expr (pair->second);
2871 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
2872 addr1, addr2);
2873 chain_cond_expr (cond_expr, part_cond_expr);
2877 /* Create an expression that is true when all lower-bound conditions for
2878 the vectorized loop are met. Chain this condition with *COND_EXPR. */
2880 static void
2881 vect_create_cond_for_lower_bounds (loop_vec_info loop_vinfo, tree *cond_expr)
2883 vec<vec_lower_bound> lower_bounds = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo);
2884 for (unsigned int i = 0; i < lower_bounds.length (); ++i)
2886 tree expr = lower_bounds[i].expr;
2887 tree type = unsigned_type_for (TREE_TYPE (expr));
2888 expr = fold_convert (type, expr);
2889 poly_uint64 bound = lower_bounds[i].min_value;
2890 if (!lower_bounds[i].unsigned_p)
2892 expr = fold_build2 (PLUS_EXPR, type, expr,
2893 build_int_cstu (type, bound - 1));
2894 bound += bound - 1;
2896 tree part_cond_expr = fold_build2 (GE_EXPR, boolean_type_node, expr,
2897 build_int_cstu (type, bound));
2898 chain_cond_expr (cond_expr, part_cond_expr);
2902 /* Function vect_create_cond_for_alias_checks.
2904 Create a conditional expression that represents the run-time checks for
2905 overlapping of address ranges represented by a list of data references
2906 relations passed as input.
2908 Input:
2909 COND_EXPR - input conditional expression. New conditions will be chained
2910 with logical AND operation. If it is NULL, then the function
2911 is used to return the number of alias checks.
2912 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2913 to be checked.
2915 Output:
2916 COND_EXPR - conditional expression.
2918 The returned COND_EXPR is the conditional expression to be used in the if
2919 statement that controls which version of the loop gets executed at runtime.
2922 void
2923 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2925 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2926 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2928 if (comp_alias_ddrs.is_empty ())
2929 return;
2931 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
2932 &comp_alias_ddrs, cond_expr);
2933 if (dump_enabled_p ())
2934 dump_printf_loc (MSG_NOTE, vect_location,
2935 "created %u versioning for alias checks.\n",
2936 comp_alias_ddrs.length ());
2940 /* Function vect_loop_versioning.
2942 If the loop has data references that may or may not be aligned or/and
2943 has data reference relations whose independence was not proven then
2944 two versions of the loop need to be generated, one which is vectorized
2945 and one which isn't. A test is then generated to control which of the
2946 loops is executed. The test checks for the alignment of all of the
2947 data references that may or may not be aligned. An additional
2948 sequence of runtime tests is generated for each pairs of DDRs whose
2949 independence was not proven. The vectorized version of loop is
2950 executed only if both alias and alignment tests are passed.
2952 The test generated to check which version of loop is executed
2953 is modified to also check for profitability as indicated by the
2954 cost model threshold TH.
2956 The versioning precondition(s) are placed in *COND_EXPR and
2957 *COND_EXPR_STMT_LIST. */
2959 void
2960 vect_loop_versioning (loop_vec_info loop_vinfo,
2961 unsigned int th, bool check_profitability,
2962 poly_uint64 versioning_threshold)
2964 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
2965 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2966 basic_block condition_bb;
2967 gphi_iterator gsi;
2968 gimple_stmt_iterator cond_exp_gsi;
2969 basic_block merge_bb;
2970 basic_block new_exit_bb;
2971 edge new_exit_e, e;
2972 gphi *orig_phi, *new_phi;
2973 tree cond_expr = NULL_TREE;
2974 gimple_seq cond_expr_stmt_list = NULL;
2975 tree arg;
2976 profile_probability prob = profile_probability::likely ();
2977 gimple_seq gimplify_stmt_list = NULL;
2978 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2979 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2980 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2981 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
2983 if (check_profitability)
2984 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
2985 build_int_cst (TREE_TYPE (scalar_loop_iters),
2986 th - 1));
2987 if (maybe_ne (versioning_threshold, 0U))
2989 tree expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
2990 build_int_cst (TREE_TYPE (scalar_loop_iters),
2991 versioning_threshold - 1));
2992 if (cond_expr)
2993 cond_expr = fold_build2 (BIT_AND_EXPR, boolean_type_node,
2994 expr, cond_expr);
2995 else
2996 cond_expr = expr;
2999 if (version_niter)
3000 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
3002 if (cond_expr)
3003 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
3004 is_gimple_condexpr, NULL_TREE);
3006 if (version_align)
3007 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
3008 &cond_expr_stmt_list);
3010 if (version_alias)
3012 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
3013 vect_create_cond_for_lower_bounds (loop_vinfo, &cond_expr);
3014 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
3017 cond_expr = force_gimple_operand_1 (unshare_expr (cond_expr),
3018 &gimplify_stmt_list,
3019 is_gimple_condexpr, NULL_TREE);
3020 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
3022 initialize_original_copy_tables ();
3023 if (scalar_loop)
3025 edge scalar_e;
3026 basic_block preheader, scalar_preheader;
3028 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
3029 scale LOOP's frequencies instead. */
3030 nloop = loop_version (scalar_loop, cond_expr, &condition_bb,
3031 prob, prob.invert (), prob, prob.invert (), true);
3032 scale_loop_frequencies (loop, prob);
3033 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
3034 while we need to move it above LOOP's preheader. */
3035 e = loop_preheader_edge (loop);
3036 scalar_e = loop_preheader_edge (scalar_loop);
3037 gcc_assert (empty_block_p (e->src)
3038 && single_pred_p (e->src));
3039 gcc_assert (empty_block_p (scalar_e->src)
3040 && single_pred_p (scalar_e->src));
3041 gcc_assert (single_pred_p (condition_bb));
3042 preheader = e->src;
3043 scalar_preheader = scalar_e->src;
3044 scalar_e = find_edge (condition_bb, scalar_preheader);
3045 e = single_pred_edge (preheader);
3046 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
3047 scalar_preheader);
3048 redirect_edge_and_branch_force (scalar_e, preheader);
3049 redirect_edge_and_branch_force (e, condition_bb);
3050 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
3051 single_pred (condition_bb));
3052 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
3053 single_pred (scalar_preheader));
3054 set_immediate_dominator (CDI_DOMINATORS, preheader,
3055 condition_bb);
3057 else
3058 nloop = loop_version (loop, cond_expr, &condition_bb,
3059 prob, prob.invert (), prob, prob.invert (), true);
3061 if (version_niter)
3063 /* The versioned loop could be infinite, we need to clear existing
3064 niter information which is copied from the original loop. */
3065 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
3066 vect_free_loop_info_assumptions (nloop);
3067 /* And set constraint LOOP_C_INFINITE for niter analyzer. */
3068 loop_constraint_set (loop, LOOP_C_INFINITE);
3071 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
3072 && dump_enabled_p ())
3074 if (version_alias)
3075 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
3076 "loop versioned for vectorization because of "
3077 "possible aliasing\n");
3078 if (version_align)
3079 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
3080 "loop versioned for vectorization to enhance "
3081 "alignment\n");
3084 free_original_copy_tables ();
3086 /* Loop versioning violates an assumption we try to maintain during
3087 vectorization - that the loop exit block has a single predecessor.
3088 After versioning, the exit block of both loop versions is the same
3089 basic block (i.e. it has two predecessors). Just in order to simplify
3090 following transformations in the vectorizer, we fix this situation
3091 here by adding a new (empty) block on the exit-edge of the loop,
3092 with the proper loop-exit phis to maintain loop-closed-form.
3093 If loop versioning wasn't done from loop, but scalar_loop instead,
3094 merge_bb will have already just a single successor. */
3096 merge_bb = single_exit (loop)->dest;
3097 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
3099 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
3100 new_exit_bb = split_edge (single_exit (loop));
3101 new_exit_e = single_exit (loop);
3102 e = EDGE_SUCC (new_exit_bb, 0);
3104 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
3106 tree new_res;
3107 orig_phi = gsi.phi ();
3108 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
3109 new_phi = create_phi_node (new_res, new_exit_bb);
3110 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
3111 add_phi_arg (new_phi, arg, new_exit_e,
3112 gimple_phi_arg_location_from_edge (orig_phi, e));
3113 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
3117 /* End loop-exit-fixes after versioning. */
3119 if (cond_expr_stmt_list)
3121 cond_exp_gsi = gsi_last_bb (condition_bb);
3122 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
3123 GSI_SAME_STMT);
3125 update_ssa (TODO_update_ssa);