debug/dwarf: support 64-bit DWARF in byte order check
[official-gcc.git] / gcc / reload1.c
blob5e200b94ebb238abe0927533c5bbe59320f043d3
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
100 /* Widest width in which each pseudo reg is referred to (via subreg). */
101 static unsigned int *reg_max_ref_width;
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
202 /* Width allocated so far for that stack slot. */
203 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
260 struct elim_table
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 HOST_WIDE_INT offset; /* Current offset between the two regs. */
270 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
280 static struct elim_table *reg_eliminate = 0;
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
290 ELIMINABLE_REGS;
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
314 static int first_label_num;
315 static char *offsets_known_at;
316 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
318 vec<reg_equivs_t, va_gc> *reg_equivs;
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
333 /* Number of labels in the current function. */
335 static int num_labels;
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, int);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
412 void
413 init_reload (void)
415 int i;
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
429 while (memory_address_p (QImode, tem))
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
440 /* See if reg+reg is a valid (and offsettable) address. */
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
476 struct insn_chain *c;
478 if (unused_insn_chains == 0)
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
484 else
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
502 unsigned int regno;
503 reg_set_iterator rsi;
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
507 int r = reg_renumber[regno];
509 if (r < 0)
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
533 if (! x)
534 return;
536 code = GET_CODE (x);
537 if (code == REG)
539 unsigned int regno = REGNO (x);
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
567 return;
569 else if (code == MEM)
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
588 static bool
589 has_nonexceptional_receiver (void)
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
612 bb = *--tos;
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
617 basic_block src = e->src;
619 if (!(src->flags & BB_REACHABLE))
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
626 free (worklist);
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
657 /* Global variables used by reload and its subroutines. */
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
719 if (can_throw_internal (insn))
720 return false;
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
731 return false;
734 /* Main entry point for the reload pass.
736 FIRST is the first insn of the function being compiled.
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
748 bool
749 reload (rtx_insn *first, int global)
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
760 failure = 0;
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
771 /* Initialize the secondary memory table. */
772 clear_secondary_mem ();
774 /* We don't have a stack slot for any spill reg yet. */
775 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
776 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
778 /* Initialize the save area information for caller-save, in case some
779 are needed. */
780 init_save_areas ();
782 /* Compute which hard registers are now in use
783 as homes for pseudo registers.
784 This is done here rather than (eg) in global_alloc
785 because this point is reached even if not optimizing. */
786 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
787 mark_home_live (i);
789 /* A function that has a nonlocal label that can reach the exit
790 block via non-exceptional paths must save all call-saved
791 registers. */
792 if (cfun->has_nonlocal_label
793 && has_nonexceptional_receiver ())
794 crtl->saves_all_registers = 1;
796 if (crtl->saves_all_registers)
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
798 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
799 df_set_regs_ever_live (i, true);
801 /* Find all the pseudo registers that didn't get hard regs
802 but do have known equivalent constants or memory slots.
803 These include parameters (known equivalent to parameter slots)
804 and cse'd or loop-moved constant memory addresses.
806 Record constant equivalents in reg_equiv_constant
807 so they will be substituted by find_reloads.
808 Record memory equivalents in reg_mem_equiv so they can
809 be substituted eventually by altering the REG-rtx's. */
811 grow_reg_equivs ();
812 reg_old_renumber = XCNEWVEC (short, max_regno);
813 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
814 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
815 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
817 CLEAR_HARD_REG_SET (bad_spill_regs_global);
819 init_eliminable_invariants (first, true);
820 init_elim_table ();
822 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
823 stack slots to the pseudos that lack hard regs or equivalents.
824 Do not touch virtual registers. */
826 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
827 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
828 temp_pseudo_reg_arr[n++] = i;
830 if (ira_conflicts_p)
831 /* Ask IRA to order pseudo-registers for better stack slot
832 sharing. */
833 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
835 for (i = 0; i < n; i++)
836 alter_reg (temp_pseudo_reg_arr[i], -1, false);
838 /* If we have some registers we think can be eliminated, scan all insns to
839 see if there is an insn that sets one of these registers to something
840 other than itself plus a constant. If so, the register cannot be
841 eliminated. Doing this scan here eliminates an extra pass through the
842 main reload loop in the most common case where register elimination
843 cannot be done. */
844 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
845 if (INSN_P (insn))
846 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
848 maybe_fix_stack_asms ();
850 insns_need_reload = 0;
851 something_needs_elimination = 0;
853 /* Initialize to -1, which means take the first spill register. */
854 last_spill_reg = -1;
856 /* Spill any hard regs that we know we can't eliminate. */
857 CLEAR_HARD_REG_SET (used_spill_regs);
858 /* There can be multiple ways to eliminate a register;
859 they should be listed adjacently.
860 Elimination for any register fails only if all possible ways fail. */
861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
863 int from = ep->from;
864 int can_eliminate = 0;
867 can_eliminate |= ep->can_eliminate;
868 ep++;
870 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
871 if (! can_eliminate)
872 spill_hard_reg (from, 1);
875 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
876 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
878 finish_spills (global);
880 /* From now on, we may need to generate moves differently. We may also
881 allow modifications of insns which cause them to not be recognized.
882 Any such modifications will be cleaned up during reload itself. */
883 reload_in_progress = 1;
885 /* This loop scans the entire function each go-round
886 and repeats until one repetition spills no additional hard regs. */
887 for (;;)
889 int something_changed;
890 HOST_WIDE_INT starting_frame_size;
892 starting_frame_size = get_frame_size ();
893 something_was_spilled = false;
895 set_initial_elim_offsets ();
896 set_initial_label_offsets ();
898 /* For each pseudo register that has an equivalent location defined,
899 try to eliminate any eliminable registers (such as the frame pointer)
900 assuming initial offsets for the replacement register, which
901 is the normal case.
903 If the resulting location is directly addressable, substitute
904 the MEM we just got directly for the old REG.
906 If it is not addressable but is a constant or the sum of a hard reg
907 and constant, it is probably not addressable because the constant is
908 out of range, in that case record the address; we will generate
909 hairy code to compute the address in a register each time it is
910 needed. Similarly if it is a hard register, but one that is not
911 valid as an address register.
913 If the location is not addressable, but does not have one of the
914 above forms, assign a stack slot. We have to do this to avoid the
915 potential of producing lots of reloads if, e.g., a location involves
916 a pseudo that didn't get a hard register and has an equivalent memory
917 location that also involves a pseudo that didn't get a hard register.
919 Perhaps at some point we will improve reload_when_needed handling
920 so this problem goes away. But that's very hairy. */
922 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
923 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
925 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
926 NULL_RTX);
928 if (strict_memory_address_addr_space_p
929 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
930 MEM_ADDR_SPACE (x)))
931 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
932 else if (CONSTANT_P (XEXP (x, 0))
933 || (REG_P (XEXP (x, 0))
934 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
935 || (GET_CODE (XEXP (x, 0)) == PLUS
936 && REG_P (XEXP (XEXP (x, 0), 0))
937 && (REGNO (XEXP (XEXP (x, 0), 0))
938 < FIRST_PSEUDO_REGISTER)
939 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
940 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
941 else
943 /* Make a new stack slot. Then indicate that something
944 changed so we go back and recompute offsets for
945 eliminable registers because the allocation of memory
946 below might change some offset. reg_equiv_{mem,address}
947 will be set up for this pseudo on the next pass around
948 the loop. */
949 reg_equiv_memory_loc (i) = 0;
950 reg_equiv_init (i) = 0;
951 alter_reg (i, -1, true);
955 if (caller_save_needed)
956 setup_save_areas ();
958 if (starting_frame_size && crtl->stack_alignment_needed)
960 /* If we have a stack frame, we must align it now. The
961 stack size may be a part of the offset computation for
962 register elimination. So if this changes the stack size,
963 then repeat the elimination bookkeeping. We don't
964 realign when there is no stack, as that will cause a
965 stack frame when none is needed should
966 STARTING_FRAME_OFFSET not be already aligned to
967 STACK_BOUNDARY. */
968 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
970 /* If we allocated another stack slot, redo elimination bookkeeping. */
971 if (something_was_spilled || starting_frame_size != get_frame_size ())
973 if (update_eliminables_and_spill ())
974 finish_spills (0);
975 continue;
978 if (caller_save_needed)
980 save_call_clobbered_regs ();
981 /* That might have allocated new insn_chain structures. */
982 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
985 calculate_needs_all_insns (global);
987 if (! ira_conflicts_p)
988 /* Don't do it for IRA. We need this info because we don't
989 change live_throughout and dead_or_set for chains when IRA
990 is used. */
991 CLEAR_REG_SET (&spilled_pseudos);
993 something_changed = 0;
995 /* If we allocated any new memory locations, make another pass
996 since it might have changed elimination offsets. */
997 if (something_was_spilled || starting_frame_size != get_frame_size ())
998 something_changed = 1;
1000 /* Even if the frame size remained the same, we might still have
1001 changed elimination offsets, e.g. if find_reloads called
1002 force_const_mem requiring the back end to allocate a constant
1003 pool base register that needs to be saved on the stack. */
1004 else if (!verify_initial_elim_offsets ())
1005 something_changed = 1;
1007 if (update_eliminables_and_spill ())
1009 finish_spills (0);
1010 something_changed = 1;
1012 else
1014 select_reload_regs ();
1015 if (failure)
1016 goto failed;
1017 if (insns_need_reload)
1018 something_changed |= finish_spills (global);
1021 if (! something_changed)
1022 break;
1024 if (caller_save_needed)
1025 delete_caller_save_insns ();
1027 obstack_free (&reload_obstack, reload_firstobj);
1030 /* If global-alloc was run, notify it of any register eliminations we have
1031 done. */
1032 if (global)
1033 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1034 if (ep->can_eliminate)
1035 mark_elimination (ep->from, ep->to);
1037 remove_init_insns ();
1039 /* Use the reload registers where necessary
1040 by generating move instructions to move the must-be-register
1041 values into or out of the reload registers. */
1043 if (insns_need_reload != 0 || something_needs_elimination
1044 || something_needs_operands_changed)
1046 HOST_WIDE_INT old_frame_size = get_frame_size ();
1048 reload_as_needed (global);
1050 gcc_assert (old_frame_size == get_frame_size ());
1052 gcc_assert (verify_initial_elim_offsets ());
1055 /* If we were able to eliminate the frame pointer, show that it is no
1056 longer live at the start of any basic block. If it ls live by
1057 virtue of being in a pseudo, that pseudo will be marked live
1058 and hence the frame pointer will be known to be live via that
1059 pseudo. */
1061 if (! frame_pointer_needed)
1062 FOR_EACH_BB_FN (bb, cfun)
1063 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1065 /* Come here (with failure set nonzero) if we can't get enough spill
1066 regs. */
1067 failed:
1069 CLEAR_REG_SET (&changed_allocation_pseudos);
1070 CLEAR_REG_SET (&spilled_pseudos);
1071 reload_in_progress = 0;
1073 /* Now eliminate all pseudo regs by modifying them into
1074 their equivalent memory references.
1075 The REG-rtx's for the pseudos are modified in place,
1076 so all insns that used to refer to them now refer to memory.
1078 For a reg that has a reg_equiv_address, all those insns
1079 were changed by reloading so that no insns refer to it any longer;
1080 but the DECL_RTL of a variable decl may refer to it,
1081 and if so this causes the debugging info to mention the variable. */
1083 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1085 rtx addr = 0;
1087 if (reg_equiv_mem (i))
1088 addr = XEXP (reg_equiv_mem (i), 0);
1090 if (reg_equiv_address (i))
1091 addr = reg_equiv_address (i);
1093 if (addr)
1095 if (reg_renumber[i] < 0)
1097 rtx reg = regno_reg_rtx[i];
1099 REG_USERVAR_P (reg) = 0;
1100 PUT_CODE (reg, MEM);
1101 XEXP (reg, 0) = addr;
1102 if (reg_equiv_memory_loc (i))
1103 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1104 else
1105 MEM_ATTRS (reg) = 0;
1106 MEM_NOTRAP_P (reg) = 1;
1108 else if (reg_equiv_mem (i))
1109 XEXP (reg_equiv_mem (i), 0) = addr;
1112 /* We don't want complex addressing modes in debug insns
1113 if simpler ones will do, so delegitimize equivalences
1114 in debug insns. */
1115 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1117 rtx reg = regno_reg_rtx[i];
1118 rtx equiv = 0;
1119 df_ref use, next;
1121 if (reg_equiv_constant (i))
1122 equiv = reg_equiv_constant (i);
1123 else if (reg_equiv_invariant (i))
1124 equiv = reg_equiv_invariant (i);
1125 else if (reg && MEM_P (reg))
1126 equiv = targetm.delegitimize_address (reg);
1127 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1128 equiv = reg;
1130 if (equiv == reg)
1131 continue;
1133 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1135 insn = DF_REF_INSN (use);
1137 /* Make sure the next ref is for a different instruction,
1138 so that we're not affected by the rescan. */
1139 next = DF_REF_NEXT_REG (use);
1140 while (next && DF_REF_INSN (next) == insn)
1141 next = DF_REF_NEXT_REG (next);
1143 if (DEBUG_INSN_P (insn))
1145 if (!equiv)
1147 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1148 df_insn_rescan_debug_internal (insn);
1150 else
1151 INSN_VAR_LOCATION_LOC (insn)
1152 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1153 reg, equiv);
1159 /* We must set reload_completed now since the cleanup_subreg_operands call
1160 below will re-recognize each insn and reload may have generated insns
1161 which are only valid during and after reload. */
1162 reload_completed = 1;
1164 /* Make a pass over all the insns and delete all USEs which we inserted
1165 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1166 notes. Delete all CLOBBER insns, except those that refer to the return
1167 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1168 from misarranging variable-array code, and simplify (subreg (reg))
1169 operands. Strip and regenerate REG_INC notes that may have been moved
1170 around. */
1172 for (insn = first; insn; insn = NEXT_INSN (insn))
1173 if (INSN_P (insn))
1175 rtx *pnote;
1177 if (CALL_P (insn))
1178 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1179 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1181 if ((GET_CODE (PATTERN (insn)) == USE
1182 /* We mark with QImode USEs introduced by reload itself. */
1183 && (GET_MODE (insn) == QImode
1184 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1185 || (GET_CODE (PATTERN (insn)) == CLOBBER
1186 && (!MEM_P (XEXP (PATTERN (insn), 0))
1187 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1188 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1189 && XEXP (XEXP (PATTERN (insn), 0), 0)
1190 != stack_pointer_rtx))
1191 && (!REG_P (XEXP (PATTERN (insn), 0))
1192 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1194 delete_insn (insn);
1195 continue;
1198 /* Some CLOBBERs may survive until here and still reference unassigned
1199 pseudos with const equivalent, which may in turn cause ICE in later
1200 passes if the reference remains in place. */
1201 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1202 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1203 VOIDmode, PATTERN (insn));
1205 /* Discard obvious no-ops, even without -O. This optimization
1206 is fast and doesn't interfere with debugging. */
1207 if (NONJUMP_INSN_P (insn)
1208 && GET_CODE (PATTERN (insn)) == SET
1209 && REG_P (SET_SRC (PATTERN (insn)))
1210 && REG_P (SET_DEST (PATTERN (insn)))
1211 && (REGNO (SET_SRC (PATTERN (insn)))
1212 == REGNO (SET_DEST (PATTERN (insn)))))
1214 delete_insn (insn);
1215 continue;
1218 pnote = &REG_NOTES (insn);
1219 while (*pnote != 0)
1221 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1222 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1223 || REG_NOTE_KIND (*pnote) == REG_INC)
1224 *pnote = XEXP (*pnote, 1);
1225 else
1226 pnote = &XEXP (*pnote, 1);
1229 if (AUTO_INC_DEC)
1230 add_auto_inc_notes (insn, PATTERN (insn));
1232 /* Simplify (subreg (reg)) if it appears as an operand. */
1233 cleanup_subreg_operands (insn);
1235 /* Clean up invalid ASMs so that they don't confuse later passes.
1236 See PR 21299. */
1237 if (asm_noperands (PATTERN (insn)) >= 0)
1239 extract_insn (insn);
1240 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1242 error_for_asm (insn,
1243 "%<asm%> operand has impossible constraints");
1244 delete_insn (insn);
1245 continue;
1250 free (temp_pseudo_reg_arr);
1252 /* Indicate that we no longer have known memory locations or constants. */
1253 free_reg_equiv ();
1255 free (reg_max_ref_width);
1256 free (reg_old_renumber);
1257 free (pseudo_previous_regs);
1258 free (pseudo_forbidden_regs);
1260 CLEAR_HARD_REG_SET (used_spill_regs);
1261 for (i = 0; i < n_spills; i++)
1262 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1264 /* Free all the insn_chain structures at once. */
1265 obstack_free (&reload_obstack, reload_startobj);
1266 unused_insn_chains = 0;
1268 inserted = fixup_abnormal_edges ();
1270 /* We've possibly turned single trapping insn into multiple ones. */
1271 if (cfun->can_throw_non_call_exceptions)
1273 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1274 bitmap_ones (blocks);
1275 find_many_sub_basic_blocks (blocks);
1278 if (inserted)
1279 commit_edge_insertions ();
1281 /* Replacing pseudos with their memory equivalents might have
1282 created shared rtx. Subsequent passes would get confused
1283 by this, so unshare everything here. */
1284 unshare_all_rtl_again (first);
1286 #ifdef STACK_BOUNDARY
1287 /* init_emit has set the alignment of the hard frame pointer
1288 to STACK_BOUNDARY. It is very likely no longer valid if
1289 the hard frame pointer was used for register allocation. */
1290 if (!frame_pointer_needed)
1291 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1292 #endif
1294 substitute_stack.release ();
1296 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1298 reload_completed = !failure;
1300 return need_dce;
1303 /* Yet another special case. Unfortunately, reg-stack forces people to
1304 write incorrect clobbers in asm statements. These clobbers must not
1305 cause the register to appear in bad_spill_regs, otherwise we'll call
1306 fatal_insn later. We clear the corresponding regnos in the live
1307 register sets to avoid this.
1308 The whole thing is rather sick, I'm afraid. */
1310 static void
1311 maybe_fix_stack_asms (void)
1313 #ifdef STACK_REGS
1314 const char *constraints[MAX_RECOG_OPERANDS];
1315 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1316 struct insn_chain *chain;
1318 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1320 int i, noperands;
1321 HARD_REG_SET clobbered, allowed;
1322 rtx pat;
1324 if (! INSN_P (chain->insn)
1325 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1326 continue;
1327 pat = PATTERN (chain->insn);
1328 if (GET_CODE (pat) != PARALLEL)
1329 continue;
1331 CLEAR_HARD_REG_SET (clobbered);
1332 CLEAR_HARD_REG_SET (allowed);
1334 /* First, make a mask of all stack regs that are clobbered. */
1335 for (i = 0; i < XVECLEN (pat, 0); i++)
1337 rtx t = XVECEXP (pat, 0, i);
1338 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1339 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1342 /* Get the operand values and constraints out of the insn. */
1343 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1344 constraints, operand_mode, NULL);
1346 /* For every operand, see what registers are allowed. */
1347 for (i = 0; i < noperands; i++)
1349 const char *p = constraints[i];
1350 /* For every alternative, we compute the class of registers allowed
1351 for reloading in CLS, and merge its contents into the reg set
1352 ALLOWED. */
1353 int cls = (int) NO_REGS;
1355 for (;;)
1357 char c = *p;
1359 if (c == '\0' || c == ',' || c == '#')
1361 /* End of one alternative - mark the regs in the current
1362 class, and reset the class. */
1363 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1364 cls = NO_REGS;
1365 p++;
1366 if (c == '#')
1367 do {
1368 c = *p++;
1369 } while (c != '\0' && c != ',');
1370 if (c == '\0')
1371 break;
1372 continue;
1375 switch (c)
1377 case 'g':
1378 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1379 break;
1381 default:
1382 enum constraint_num cn = lookup_constraint (p);
1383 if (insn_extra_address_constraint (cn))
1384 cls = (int) reg_class_subunion[cls]
1385 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1386 ADDRESS, SCRATCH)];
1387 else
1388 cls = (int) reg_class_subunion[cls]
1389 [reg_class_for_constraint (cn)];
1390 break;
1392 p += CONSTRAINT_LEN (c, p);
1395 /* Those of the registers which are clobbered, but allowed by the
1396 constraints, must be usable as reload registers. So clear them
1397 out of the life information. */
1398 AND_HARD_REG_SET (allowed, clobbered);
1399 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1400 if (TEST_HARD_REG_BIT (allowed, i))
1402 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1403 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1407 #endif
1410 /* Copy the global variables n_reloads and rld into the corresponding elts
1411 of CHAIN. */
1412 static void
1413 copy_reloads (struct insn_chain *chain)
1415 chain->n_reloads = n_reloads;
1416 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1417 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1418 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1421 /* Walk the chain of insns, and determine for each whether it needs reloads
1422 and/or eliminations. Build the corresponding insns_need_reload list, and
1423 set something_needs_elimination as appropriate. */
1424 static void
1425 calculate_needs_all_insns (int global)
1427 struct insn_chain **pprev_reload = &insns_need_reload;
1428 struct insn_chain *chain, *next = 0;
1430 something_needs_elimination = 0;
1432 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1433 for (chain = reload_insn_chain; chain != 0; chain = next)
1435 rtx_insn *insn = chain->insn;
1437 next = chain->next;
1439 /* Clear out the shortcuts. */
1440 chain->n_reloads = 0;
1441 chain->need_elim = 0;
1442 chain->need_reload = 0;
1443 chain->need_operand_change = 0;
1445 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1446 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1447 what effects this has on the known offsets at labels. */
1449 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1450 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1451 set_label_offsets (insn, insn, 0);
1453 if (INSN_P (insn))
1455 rtx old_body = PATTERN (insn);
1456 int old_code = INSN_CODE (insn);
1457 rtx old_notes = REG_NOTES (insn);
1458 int did_elimination = 0;
1459 int operands_changed = 0;
1461 /* Skip insns that only set an equivalence. */
1462 if (will_delete_init_insn_p (insn))
1463 continue;
1465 /* If needed, eliminate any eliminable registers. */
1466 if (num_eliminable || num_eliminable_invariants)
1467 did_elimination = eliminate_regs_in_insn (insn, 0);
1469 /* Analyze the instruction. */
1470 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1471 global, spill_reg_order);
1473 /* If a no-op set needs more than one reload, this is likely
1474 to be something that needs input address reloads. We
1475 can't get rid of this cleanly later, and it is of no use
1476 anyway, so discard it now.
1477 We only do this when expensive_optimizations is enabled,
1478 since this complements reload inheritance / output
1479 reload deletion, and it can make debugging harder. */
1480 if (flag_expensive_optimizations && n_reloads > 1)
1482 rtx set = single_set (insn);
1483 if (set
1485 ((SET_SRC (set) == SET_DEST (set)
1486 && REG_P (SET_SRC (set))
1487 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1488 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1489 && reg_renumber[REGNO (SET_SRC (set))] < 0
1490 && reg_renumber[REGNO (SET_DEST (set))] < 0
1491 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1492 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1493 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1494 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1496 if (ira_conflicts_p)
1497 /* Inform IRA about the insn deletion. */
1498 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1499 REGNO (SET_SRC (set)));
1500 delete_insn (insn);
1501 /* Delete it from the reload chain. */
1502 if (chain->prev)
1503 chain->prev->next = next;
1504 else
1505 reload_insn_chain = next;
1506 if (next)
1507 next->prev = chain->prev;
1508 chain->next = unused_insn_chains;
1509 unused_insn_chains = chain;
1510 continue;
1513 if (num_eliminable)
1514 update_eliminable_offsets ();
1516 /* Remember for later shortcuts which insns had any reloads or
1517 register eliminations. */
1518 chain->need_elim = did_elimination;
1519 chain->need_reload = n_reloads > 0;
1520 chain->need_operand_change = operands_changed;
1522 /* Discard any register replacements done. */
1523 if (did_elimination)
1525 obstack_free (&reload_obstack, reload_insn_firstobj);
1526 PATTERN (insn) = old_body;
1527 INSN_CODE (insn) = old_code;
1528 REG_NOTES (insn) = old_notes;
1529 something_needs_elimination = 1;
1532 something_needs_operands_changed |= operands_changed;
1534 if (n_reloads != 0)
1536 copy_reloads (chain);
1537 *pprev_reload = chain;
1538 pprev_reload = &chain->next_need_reload;
1542 *pprev_reload = 0;
1545 /* This function is called from the register allocator to set up estimates
1546 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1547 an invariant. The structure is similar to calculate_needs_all_insns. */
1549 void
1550 calculate_elim_costs_all_insns (void)
1552 int *reg_equiv_init_cost;
1553 basic_block bb;
1554 int i;
1556 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1557 init_elim_table ();
1558 init_eliminable_invariants (get_insns (), false);
1560 set_initial_elim_offsets ();
1561 set_initial_label_offsets ();
1563 FOR_EACH_BB_FN (bb, cfun)
1565 rtx_insn *insn;
1566 elim_bb = bb;
1568 FOR_BB_INSNS (bb, insn)
1570 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1571 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1572 what effects this has on the known offsets at labels. */
1574 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1575 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1576 set_label_offsets (insn, insn, 0);
1578 if (INSN_P (insn))
1580 rtx set = single_set (insn);
1582 /* Skip insns that only set an equivalence. */
1583 if (set && REG_P (SET_DEST (set))
1584 && reg_renumber[REGNO (SET_DEST (set))] < 0
1585 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1586 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1588 unsigned regno = REGNO (SET_DEST (set));
1589 rtx_insn_list *init = reg_equiv_init (regno);
1590 if (init)
1592 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1593 false, true);
1594 machine_mode mode = GET_MODE (SET_DEST (set));
1595 int cost = set_src_cost (t, mode,
1596 optimize_bb_for_speed_p (bb));
1597 int freq = REG_FREQ_FROM_BB (bb);
1599 reg_equiv_init_cost[regno] = cost * freq;
1600 continue;
1603 /* If needed, eliminate any eliminable registers. */
1604 if (num_eliminable || num_eliminable_invariants)
1605 elimination_costs_in_insn (insn);
1607 if (num_eliminable)
1608 update_eliminable_offsets ();
1612 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1614 if (reg_equiv_invariant (i))
1616 if (reg_equiv_init (i))
1618 int cost = reg_equiv_init_cost[i];
1619 if (dump_file)
1620 fprintf (dump_file,
1621 "Reg %d has equivalence, initial gains %d\n", i, cost);
1622 if (cost != 0)
1623 ira_adjust_equiv_reg_cost (i, cost);
1625 else
1627 if (dump_file)
1628 fprintf (dump_file,
1629 "Reg %d had equivalence, but can't be eliminated\n",
1631 ira_adjust_equiv_reg_cost (i, 0);
1636 free (reg_equiv_init_cost);
1637 free (offsets_known_at);
1638 free (offsets_at);
1639 offsets_at = NULL;
1640 offsets_known_at = NULL;
1643 /* Comparison function for qsort to decide which of two reloads
1644 should be handled first. *P1 and *P2 are the reload numbers. */
1646 static int
1647 reload_reg_class_lower (const void *r1p, const void *r2p)
1649 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1650 int t;
1652 /* Consider required reloads before optional ones. */
1653 t = rld[r1].optional - rld[r2].optional;
1654 if (t != 0)
1655 return t;
1657 /* Count all solitary classes before non-solitary ones. */
1658 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1659 - (reg_class_size[(int) rld[r1].rclass] == 1));
1660 if (t != 0)
1661 return t;
1663 /* Aside from solitaires, consider all multi-reg groups first. */
1664 t = rld[r2].nregs - rld[r1].nregs;
1665 if (t != 0)
1666 return t;
1668 /* Consider reloads in order of increasing reg-class number. */
1669 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1670 if (t != 0)
1671 return t;
1673 /* If reloads are equally urgent, sort by reload number,
1674 so that the results of qsort leave nothing to chance. */
1675 return r1 - r2;
1678 /* The cost of spilling each hard reg. */
1679 static int spill_cost[FIRST_PSEUDO_REGISTER];
1681 /* When spilling multiple hard registers, we use SPILL_COST for the first
1682 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1683 only the first hard reg for a multi-reg pseudo. */
1684 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1686 /* Map of hard regno to pseudo regno currently occupying the hard
1687 reg. */
1688 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1690 /* Update the spill cost arrays, considering that pseudo REG is live. */
1692 static void
1693 count_pseudo (int reg)
1695 int freq = REG_FREQ (reg);
1696 int r = reg_renumber[reg];
1697 int nregs;
1699 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1700 if (ira_conflicts_p && r < 0)
1701 return;
1703 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1704 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1705 return;
1707 SET_REGNO_REG_SET (&pseudos_counted, reg);
1709 gcc_assert (r >= 0);
1711 spill_add_cost[r] += freq;
1712 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1713 while (nregs-- > 0)
1715 hard_regno_to_pseudo_regno[r + nregs] = reg;
1716 spill_cost[r + nregs] += freq;
1720 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1721 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1723 static void
1724 order_regs_for_reload (struct insn_chain *chain)
1726 unsigned i;
1727 HARD_REG_SET used_by_pseudos;
1728 HARD_REG_SET used_by_pseudos2;
1729 reg_set_iterator rsi;
1731 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1733 memset (spill_cost, 0, sizeof spill_cost);
1734 memset (spill_add_cost, 0, sizeof spill_add_cost);
1735 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1736 hard_regno_to_pseudo_regno[i] = -1;
1738 /* Count number of uses of each hard reg by pseudo regs allocated to it
1739 and then order them by decreasing use. First exclude hard registers
1740 that are live in or across this insn. */
1742 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1743 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1744 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1745 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1747 /* Now find out which pseudos are allocated to it, and update
1748 hard_reg_n_uses. */
1749 CLEAR_REG_SET (&pseudos_counted);
1751 EXECUTE_IF_SET_IN_REG_SET
1752 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1754 count_pseudo (i);
1756 EXECUTE_IF_SET_IN_REG_SET
1757 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1759 count_pseudo (i);
1761 CLEAR_REG_SET (&pseudos_counted);
1764 /* Vector of reload-numbers showing the order in which the reloads should
1765 be processed. */
1766 static short reload_order[MAX_RELOADS];
1768 /* This is used to keep track of the spill regs used in one insn. */
1769 static HARD_REG_SET used_spill_regs_local;
1771 /* We decided to spill hard register SPILLED, which has a size of
1772 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1773 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1774 update SPILL_COST/SPILL_ADD_COST. */
1776 static void
1777 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1779 int freq = REG_FREQ (reg);
1780 int r = reg_renumber[reg];
1781 int nregs;
1783 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1784 if (ira_conflicts_p && r < 0)
1785 return;
1787 gcc_assert (r >= 0);
1789 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1791 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1792 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1793 return;
1795 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1797 spill_add_cost[r] -= freq;
1798 while (nregs-- > 0)
1800 hard_regno_to_pseudo_regno[r + nregs] = -1;
1801 spill_cost[r + nregs] -= freq;
1805 /* Find reload register to use for reload number ORDER. */
1807 static int
1808 find_reg (struct insn_chain *chain, int order)
1810 int rnum = reload_order[order];
1811 struct reload *rl = rld + rnum;
1812 int best_cost = INT_MAX;
1813 int best_reg = -1;
1814 unsigned int i, j, n;
1815 int k;
1816 HARD_REG_SET not_usable;
1817 HARD_REG_SET used_by_other_reload;
1818 reg_set_iterator rsi;
1819 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1820 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1822 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1823 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1824 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1826 CLEAR_HARD_REG_SET (used_by_other_reload);
1827 for (k = 0; k < order; k++)
1829 int other = reload_order[k];
1831 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1832 for (j = 0; j < rld[other].nregs; j++)
1833 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1836 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1838 #ifdef REG_ALLOC_ORDER
1839 unsigned int regno = reg_alloc_order[i];
1840 #else
1841 unsigned int regno = i;
1842 #endif
1844 if (! TEST_HARD_REG_BIT (not_usable, regno)
1845 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1846 && targetm.hard_regno_mode_ok (regno, rl->mode))
1848 int this_cost = spill_cost[regno];
1849 int ok = 1;
1850 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1852 for (j = 1; j < this_nregs; j++)
1854 this_cost += spill_add_cost[regno + j];
1855 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1856 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1857 ok = 0;
1859 if (! ok)
1860 continue;
1862 if (ira_conflicts_p)
1864 /* Ask IRA to find a better pseudo-register for
1865 spilling. */
1866 for (n = j = 0; j < this_nregs; j++)
1868 int r = hard_regno_to_pseudo_regno[regno + j];
1870 if (r < 0)
1871 continue;
1872 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1873 regno_pseudo_regs[n++] = r;
1875 regno_pseudo_regs[n++] = -1;
1876 if (best_reg < 0
1877 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1878 best_regno_pseudo_regs,
1879 rl->in, rl->out,
1880 chain->insn))
1882 best_reg = regno;
1883 for (j = 0;; j++)
1885 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1886 if (regno_pseudo_regs[j] < 0)
1887 break;
1890 continue;
1893 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1894 this_cost--;
1895 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1896 this_cost--;
1897 if (this_cost < best_cost
1898 /* Among registers with equal cost, prefer caller-saved ones, or
1899 use REG_ALLOC_ORDER if it is defined. */
1900 || (this_cost == best_cost
1901 #ifdef REG_ALLOC_ORDER
1902 && (inv_reg_alloc_order[regno]
1903 < inv_reg_alloc_order[best_reg])
1904 #else
1905 && call_used_regs[regno]
1906 && ! call_used_regs[best_reg]
1907 #endif
1910 best_reg = regno;
1911 best_cost = this_cost;
1915 if (best_reg == -1)
1916 return 0;
1918 if (dump_file)
1919 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1921 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1922 rl->regno = best_reg;
1924 EXECUTE_IF_SET_IN_REG_SET
1925 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1927 count_spilled_pseudo (best_reg, rl->nregs, j);
1930 EXECUTE_IF_SET_IN_REG_SET
1931 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1933 count_spilled_pseudo (best_reg, rl->nregs, j);
1936 for (i = 0; i < rl->nregs; i++)
1938 gcc_assert (spill_cost[best_reg + i] == 0);
1939 gcc_assert (spill_add_cost[best_reg + i] == 0);
1940 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1941 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1943 return 1;
1946 /* Find more reload regs to satisfy the remaining need of an insn, which
1947 is given by CHAIN.
1948 Do it by ascending class number, since otherwise a reg
1949 might be spilled for a big class and might fail to count
1950 for a smaller class even though it belongs to that class. */
1952 static void
1953 find_reload_regs (struct insn_chain *chain)
1955 int i;
1957 /* In order to be certain of getting the registers we need,
1958 we must sort the reloads into order of increasing register class.
1959 Then our grabbing of reload registers will parallel the process
1960 that provided the reload registers. */
1961 for (i = 0; i < chain->n_reloads; i++)
1963 /* Show whether this reload already has a hard reg. */
1964 if (chain->rld[i].reg_rtx)
1966 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1967 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1969 else
1970 chain->rld[i].regno = -1;
1971 reload_order[i] = i;
1974 n_reloads = chain->n_reloads;
1975 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1977 CLEAR_HARD_REG_SET (used_spill_regs_local);
1979 if (dump_file)
1980 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1982 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1984 /* Compute the order of preference for hard registers to spill. */
1986 order_regs_for_reload (chain);
1988 for (i = 0; i < n_reloads; i++)
1990 int r = reload_order[i];
1992 /* Ignore reloads that got marked inoperative. */
1993 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1994 && ! rld[r].optional
1995 && rld[r].regno == -1)
1996 if (! find_reg (chain, i))
1998 if (dump_file)
1999 fprintf (dump_file, "reload failure for reload %d\n", r);
2000 spill_failure (chain->insn, rld[r].rclass);
2001 failure = 1;
2002 return;
2006 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2007 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2009 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2012 static void
2013 select_reload_regs (void)
2015 struct insn_chain *chain;
2017 /* Try to satisfy the needs for each insn. */
2018 for (chain = insns_need_reload; chain != 0;
2019 chain = chain->next_need_reload)
2020 find_reload_regs (chain);
2023 /* Delete all insns that were inserted by emit_caller_save_insns during
2024 this iteration. */
2025 static void
2026 delete_caller_save_insns (void)
2028 struct insn_chain *c = reload_insn_chain;
2030 while (c != 0)
2032 while (c != 0 && c->is_caller_save_insn)
2034 struct insn_chain *next = c->next;
2035 rtx_insn *insn = c->insn;
2037 if (c == reload_insn_chain)
2038 reload_insn_chain = next;
2039 delete_insn (insn);
2041 if (next)
2042 next->prev = c->prev;
2043 if (c->prev)
2044 c->prev->next = next;
2045 c->next = unused_insn_chains;
2046 unused_insn_chains = c;
2047 c = next;
2049 if (c != 0)
2050 c = c->next;
2054 /* Handle the failure to find a register to spill.
2055 INSN should be one of the insns which needed this particular spill reg. */
2057 static void
2058 spill_failure (rtx_insn *insn, enum reg_class rclass)
2060 if (asm_noperands (PATTERN (insn)) >= 0)
2061 error_for_asm (insn, "can%'t find a register in class %qs while "
2062 "reloading %<asm%>",
2063 reg_class_names[rclass]);
2064 else
2066 error ("unable to find a register to spill in class %qs",
2067 reg_class_names[rclass]);
2069 if (dump_file)
2071 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2072 debug_reload_to_stream (dump_file);
2074 fatal_insn ("this is the insn:", insn);
2078 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2079 data that is dead in INSN. */
2081 static void
2082 delete_dead_insn (rtx_insn *insn)
2084 rtx_insn *prev = prev_active_insn (insn);
2085 rtx prev_dest;
2087 /* If the previous insn sets a register that dies in our insn make
2088 a note that we want to run DCE immediately after reload.
2090 We used to delete the previous insn & recurse, but that's wrong for
2091 block local equivalences. Instead of trying to figure out the exact
2092 circumstances where we can delete the potentially dead insns, just
2093 let DCE do the job. */
2094 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2095 && GET_CODE (PATTERN (prev)) == SET
2096 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2097 && reg_mentioned_p (prev_dest, PATTERN (insn))
2098 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2099 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2100 need_dce = 1;
2102 SET_INSN_DELETED (insn);
2105 /* Modify the home of pseudo-reg I.
2106 The new home is present in reg_renumber[I].
2108 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2109 or it may be -1, meaning there is none or it is not relevant.
2110 This is used so that all pseudos spilled from a given hard reg
2111 can share one stack slot. */
2113 static void
2114 alter_reg (int i, int from_reg, bool dont_share_p)
2116 /* When outputting an inline function, this can happen
2117 for a reg that isn't actually used. */
2118 if (regno_reg_rtx[i] == 0)
2119 return;
2121 /* If the reg got changed to a MEM at rtl-generation time,
2122 ignore it. */
2123 if (!REG_P (regno_reg_rtx[i]))
2124 return;
2126 /* Modify the reg-rtx to contain the new hard reg
2127 number or else to contain its pseudo reg number. */
2128 SET_REGNO (regno_reg_rtx[i],
2129 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2131 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2132 allocate a stack slot for it. */
2134 if (reg_renumber[i] < 0
2135 && REG_N_REFS (i) > 0
2136 && reg_equiv_constant (i) == 0
2137 && (reg_equiv_invariant (i) == 0
2138 || reg_equiv_init (i) == 0)
2139 && reg_equiv_memory_loc (i) == 0)
2141 rtx x = NULL_RTX;
2142 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2143 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2144 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2145 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2146 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2147 int adjust = 0;
2149 something_was_spilled = true;
2151 if (ira_conflicts_p)
2153 /* Mark the spill for IRA. */
2154 SET_REGNO_REG_SET (&spilled_pseudos, i);
2155 if (!dont_share_p)
2156 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2159 if (x)
2162 /* Each pseudo reg has an inherent size which comes from its own mode,
2163 and a total size which provides room for paradoxical subregs
2164 which refer to the pseudo reg in wider modes.
2166 We can use a slot already allocated if it provides both
2167 enough inherent space and enough total space.
2168 Otherwise, we allocate a new slot, making sure that it has no less
2169 inherent space, and no less total space, then the previous slot. */
2170 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2172 rtx stack_slot;
2174 /* No known place to spill from => no slot to reuse. */
2175 x = assign_stack_local (mode, total_size,
2176 min_align > inherent_align
2177 || total_size > inherent_size ? -1 : 0);
2179 stack_slot = x;
2181 /* Cancel the big-endian correction done in assign_stack_local.
2182 Get the address of the beginning of the slot. This is so we
2183 can do a big-endian correction unconditionally below. */
2184 if (BYTES_BIG_ENDIAN)
2186 adjust = inherent_size - total_size;
2187 if (adjust)
2189 unsigned int total_bits = total_size * BITS_PER_UNIT;
2190 machine_mode mem_mode
2191 = int_mode_for_size (total_bits, 1).else_blk ();
2192 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2196 if (! dont_share_p && ira_conflicts_p)
2197 /* Inform IRA about allocation a new stack slot. */
2198 ira_mark_new_stack_slot (stack_slot, i, total_size);
2201 /* Reuse a stack slot if possible. */
2202 else if (spill_stack_slot[from_reg] != 0
2203 && spill_stack_slot_width[from_reg] >= total_size
2204 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2205 >= inherent_size)
2206 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2207 x = spill_stack_slot[from_reg];
2209 /* Allocate a bigger slot. */
2210 else
2212 /* Compute maximum size needed, both for inherent size
2213 and for total size. */
2214 rtx stack_slot;
2216 if (spill_stack_slot[from_reg])
2218 if (partial_subreg_p (mode,
2219 GET_MODE (spill_stack_slot[from_reg])))
2220 mode = GET_MODE (spill_stack_slot[from_reg]);
2221 if (spill_stack_slot_width[from_reg] > total_size)
2222 total_size = spill_stack_slot_width[from_reg];
2223 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2224 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2227 /* Make a slot with that size. */
2228 x = assign_stack_local (mode, total_size,
2229 min_align > inherent_align
2230 || total_size > inherent_size ? -1 : 0);
2231 stack_slot = x;
2233 /* Cancel the big-endian correction done in assign_stack_local.
2234 Get the address of the beginning of the slot. This is so we
2235 can do a big-endian correction unconditionally below. */
2236 if (BYTES_BIG_ENDIAN)
2238 adjust = GET_MODE_SIZE (mode) - total_size;
2239 if (adjust)
2241 unsigned int total_bits = total_size * BITS_PER_UNIT;
2242 machine_mode mem_mode
2243 = int_mode_for_size (total_bits, 1).else_blk ();
2244 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2248 spill_stack_slot[from_reg] = stack_slot;
2249 spill_stack_slot_width[from_reg] = total_size;
2252 /* On a big endian machine, the "address" of the slot
2253 is the address of the low part that fits its inherent mode. */
2254 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2255 adjust += (total_size - inherent_size);
2257 /* If we have any adjustment to make, or if the stack slot is the
2258 wrong mode, make a new stack slot. */
2259 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2261 /* Set all of the memory attributes as appropriate for a spill. */
2262 set_mem_attrs_for_spill (x);
2264 /* Save the stack slot for later. */
2265 reg_equiv_memory_loc (i) = x;
2269 /* Mark the slots in regs_ever_live for the hard regs used by
2270 pseudo-reg number REGNO, accessed in MODE. */
2272 static void
2273 mark_home_live_1 (int regno, machine_mode mode)
2275 int i, lim;
2277 i = reg_renumber[regno];
2278 if (i < 0)
2279 return;
2280 lim = end_hard_regno (mode, i);
2281 while (i < lim)
2282 df_set_regs_ever_live (i++, true);
2285 /* Mark the slots in regs_ever_live for the hard regs
2286 used by pseudo-reg number REGNO. */
2288 void
2289 mark_home_live (int regno)
2291 if (reg_renumber[regno] >= 0)
2292 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2295 /* This function handles the tracking of elimination offsets around branches.
2297 X is a piece of RTL being scanned.
2299 INSN is the insn that it came from, if any.
2301 INITIAL_P is nonzero if we are to set the offset to be the initial
2302 offset and zero if we are setting the offset of the label to be the
2303 current offset. */
2305 static void
2306 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2308 enum rtx_code code = GET_CODE (x);
2309 rtx tem;
2310 unsigned int i;
2311 struct elim_table *p;
2313 switch (code)
2315 case LABEL_REF:
2316 if (LABEL_REF_NONLOCAL_P (x))
2317 return;
2319 x = label_ref_label (x);
2321 /* fall through */
2323 case CODE_LABEL:
2324 /* If we know nothing about this label, set the desired offsets. Note
2325 that this sets the offset at a label to be the offset before a label
2326 if we don't know anything about the label. This is not correct for
2327 the label after a BARRIER, but is the best guess we can make. If
2328 we guessed wrong, we will suppress an elimination that might have
2329 been possible had we been able to guess correctly. */
2331 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2333 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2334 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2335 = (initial_p ? reg_eliminate[i].initial_offset
2336 : reg_eliminate[i].offset);
2337 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2340 /* Otherwise, if this is the definition of a label and it is
2341 preceded by a BARRIER, set our offsets to the known offset of
2342 that label. */
2344 else if (x == insn
2345 && (tem = prev_nonnote_insn (insn)) != 0
2346 && BARRIER_P (tem))
2347 set_offsets_for_label (insn);
2348 else
2349 /* If neither of the above cases is true, compare each offset
2350 with those previously recorded and suppress any eliminations
2351 where the offsets disagree. */
2353 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2354 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2355 != (initial_p ? reg_eliminate[i].initial_offset
2356 : reg_eliminate[i].offset))
2357 reg_eliminate[i].can_eliminate = 0;
2359 return;
2361 case JUMP_TABLE_DATA:
2362 set_label_offsets (PATTERN (insn), insn, initial_p);
2363 return;
2365 case JUMP_INSN:
2366 set_label_offsets (PATTERN (insn), insn, initial_p);
2368 /* fall through */
2370 case INSN:
2371 case CALL_INSN:
2372 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2373 to indirectly and hence must have all eliminations at their
2374 initial offsets. */
2375 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2376 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2377 set_label_offsets (XEXP (tem, 0), insn, 1);
2378 return;
2380 case PARALLEL:
2381 case ADDR_VEC:
2382 case ADDR_DIFF_VEC:
2383 /* Each of the labels in the parallel or address vector must be
2384 at their initial offsets. We want the first field for PARALLEL
2385 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2387 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2388 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2389 insn, initial_p);
2390 return;
2392 case SET:
2393 /* We only care about setting PC. If the source is not RETURN,
2394 IF_THEN_ELSE, or a label, disable any eliminations not at
2395 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2396 isn't one of those possibilities. For branches to a label,
2397 call ourselves recursively.
2399 Note that this can disable elimination unnecessarily when we have
2400 a non-local goto since it will look like a non-constant jump to
2401 someplace in the current function. This isn't a significant
2402 problem since such jumps will normally be when all elimination
2403 pairs are back to their initial offsets. */
2405 if (SET_DEST (x) != pc_rtx)
2406 return;
2408 switch (GET_CODE (SET_SRC (x)))
2410 case PC:
2411 case RETURN:
2412 return;
2414 case LABEL_REF:
2415 set_label_offsets (SET_SRC (x), insn, initial_p);
2416 return;
2418 case IF_THEN_ELSE:
2419 tem = XEXP (SET_SRC (x), 1);
2420 if (GET_CODE (tem) == LABEL_REF)
2421 set_label_offsets (label_ref_label (tem), insn, initial_p);
2422 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2423 break;
2425 tem = XEXP (SET_SRC (x), 2);
2426 if (GET_CODE (tem) == LABEL_REF)
2427 set_label_offsets (label_ref_label (tem), insn, initial_p);
2428 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2429 break;
2430 return;
2432 default:
2433 break;
2436 /* If we reach here, all eliminations must be at their initial
2437 offset because we are doing a jump to a variable address. */
2438 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2439 if (p->offset != p->initial_offset)
2440 p->can_eliminate = 0;
2441 break;
2443 default:
2444 break;
2448 /* This function examines every reg that occurs in X and adjusts the
2449 costs for its elimination which are gathered by IRA. INSN is the
2450 insn in which X occurs. We do not recurse into MEM expressions. */
2452 static void
2453 note_reg_elim_costly (const_rtx x, rtx insn)
2455 subrtx_iterator::array_type array;
2456 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2458 const_rtx x = *iter;
2459 if (MEM_P (x))
2460 iter.skip_subrtxes ();
2461 else if (REG_P (x)
2462 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2463 && reg_equiv_init (REGNO (x))
2464 && reg_equiv_invariant (REGNO (x)))
2466 rtx t = reg_equiv_invariant (REGNO (x));
2467 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2468 int cost = set_src_cost (new_rtx, Pmode,
2469 optimize_bb_for_speed_p (elim_bb));
2470 int freq = REG_FREQ_FROM_BB (elim_bb);
2472 if (cost != 0)
2473 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2478 /* Scan X and replace any eliminable registers (such as fp) with a
2479 replacement (such as sp), plus an offset.
2481 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2482 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2483 MEM, we are allowed to replace a sum of a register and the constant zero
2484 with the register, which we cannot do outside a MEM. In addition, we need
2485 to record the fact that a register is referenced outside a MEM.
2487 If INSN is an insn, it is the insn containing X. If we replace a REG
2488 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2489 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2490 the REG is being modified.
2492 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2493 That's used when we eliminate in expressions stored in notes.
2494 This means, do not set ref_outside_mem even if the reference
2495 is outside of MEMs.
2497 If FOR_COSTS is true, we are being called before reload in order to
2498 estimate the costs of keeping registers with an equivalence unallocated.
2500 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2501 replacements done assuming all offsets are at their initial values. If
2502 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2503 encounter, return the actual location so that find_reloads will do
2504 the proper thing. */
2506 static rtx
2507 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2508 bool may_use_invariant, bool for_costs)
2510 enum rtx_code code = GET_CODE (x);
2511 struct elim_table *ep;
2512 int regno;
2513 rtx new_rtx;
2514 int i, j;
2515 const char *fmt;
2516 int copied = 0;
2518 if (! current_function_decl)
2519 return x;
2521 switch (code)
2523 CASE_CONST_ANY:
2524 case CONST:
2525 case SYMBOL_REF:
2526 case CODE_LABEL:
2527 case PC:
2528 case CC0:
2529 case ASM_INPUT:
2530 case ADDR_VEC:
2531 case ADDR_DIFF_VEC:
2532 case RETURN:
2533 return x;
2535 case REG:
2536 regno = REGNO (x);
2538 /* First handle the case where we encounter a bare register that
2539 is eliminable. Replace it with a PLUS. */
2540 if (regno < FIRST_PSEUDO_REGISTER)
2542 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2543 ep++)
2544 if (ep->from_rtx == x && ep->can_eliminate)
2545 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2548 else if (reg_renumber && reg_renumber[regno] < 0
2549 && reg_equivs
2550 && reg_equiv_invariant (regno))
2552 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2553 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2554 mem_mode, insn, true, for_costs);
2555 /* There exists at least one use of REGNO that cannot be
2556 eliminated. Prevent the defining insn from being deleted. */
2557 reg_equiv_init (regno) = NULL;
2558 if (!for_costs)
2559 alter_reg (regno, -1, true);
2561 return x;
2563 /* You might think handling MINUS in a manner similar to PLUS is a
2564 good idea. It is not. It has been tried multiple times and every
2565 time the change has had to have been reverted.
2567 Other parts of reload know a PLUS is special (gen_reload for example)
2568 and require special code to handle code a reloaded PLUS operand.
2570 Also consider backends where the flags register is clobbered by a
2571 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2572 lea instruction comes to mind). If we try to reload a MINUS, we
2573 may kill the flags register that was holding a useful value.
2575 So, please before trying to handle MINUS, consider reload as a
2576 whole instead of this little section as well as the backend issues. */
2577 case PLUS:
2578 /* If this is the sum of an eliminable register and a constant, rework
2579 the sum. */
2580 if (REG_P (XEXP (x, 0))
2581 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2582 && CONSTANT_P (XEXP (x, 1)))
2584 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2585 ep++)
2586 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2588 /* The only time we want to replace a PLUS with a REG (this
2589 occurs when the constant operand of the PLUS is the negative
2590 of the offset) is when we are inside a MEM. We won't want
2591 to do so at other times because that would change the
2592 structure of the insn in a way that reload can't handle.
2593 We special-case the commonest situation in
2594 eliminate_regs_in_insn, so just replace a PLUS with a
2595 PLUS here, unless inside a MEM. */
2596 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2597 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2598 return ep->to_rtx;
2599 else
2600 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2601 plus_constant (Pmode, XEXP (x, 1),
2602 ep->previous_offset));
2605 /* If the register is not eliminable, we are done since the other
2606 operand is a constant. */
2607 return x;
2610 /* If this is part of an address, we want to bring any constant to the
2611 outermost PLUS. We will do this by doing register replacement in
2612 our operands and seeing if a constant shows up in one of them.
2614 Note that there is no risk of modifying the structure of the insn,
2615 since we only get called for its operands, thus we are either
2616 modifying the address inside a MEM, or something like an address
2617 operand of a load-address insn. */
2620 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2621 for_costs);
2622 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2623 for_costs);
2625 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2627 /* If one side is a PLUS and the other side is a pseudo that
2628 didn't get a hard register but has a reg_equiv_constant,
2629 we must replace the constant here since it may no longer
2630 be in the position of any operand. */
2631 if (GET_CODE (new0) == PLUS && REG_P (new1)
2632 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2633 && reg_renumber[REGNO (new1)] < 0
2634 && reg_equivs
2635 && reg_equiv_constant (REGNO (new1)) != 0)
2636 new1 = reg_equiv_constant (REGNO (new1));
2637 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2638 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2639 && reg_renumber[REGNO (new0)] < 0
2640 && reg_equiv_constant (REGNO (new0)) != 0)
2641 new0 = reg_equiv_constant (REGNO (new0));
2643 new_rtx = form_sum (GET_MODE (x), new0, new1);
2645 /* As above, if we are not inside a MEM we do not want to
2646 turn a PLUS into something else. We might try to do so here
2647 for an addition of 0 if we aren't optimizing. */
2648 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2649 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2650 else
2651 return new_rtx;
2654 return x;
2656 case MULT:
2657 /* If this is the product of an eliminable register and a
2658 constant, apply the distribute law and move the constant out
2659 so that we have (plus (mult ..) ..). This is needed in order
2660 to keep load-address insns valid. This case is pathological.
2661 We ignore the possibility of overflow here. */
2662 if (REG_P (XEXP (x, 0))
2663 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2664 && CONST_INT_P (XEXP (x, 1)))
2665 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2666 ep++)
2667 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2669 if (! mem_mode
2670 /* Refs inside notes or in DEBUG_INSNs don't count for
2671 this purpose. */
2672 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2673 || GET_CODE (insn) == INSN_LIST
2674 || DEBUG_INSN_P (insn))))
2675 ep->ref_outside_mem = 1;
2677 return
2678 plus_constant (Pmode,
2679 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2680 ep->previous_offset * INTVAL (XEXP (x, 1)));
2683 /* fall through */
2685 case CALL:
2686 case COMPARE:
2687 /* See comments before PLUS about handling MINUS. */
2688 case MINUS:
2689 case DIV: case UDIV:
2690 case MOD: case UMOD:
2691 case AND: case IOR: case XOR:
2692 case ROTATERT: case ROTATE:
2693 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2694 case NE: case EQ:
2695 case GE: case GT: case GEU: case GTU:
2696 case LE: case LT: case LEU: case LTU:
2698 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2699 for_costs);
2700 rtx new1 = XEXP (x, 1)
2701 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2702 for_costs) : 0;
2704 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2705 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2707 return x;
2709 case EXPR_LIST:
2710 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2711 if (XEXP (x, 0))
2713 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2714 for_costs);
2715 if (new_rtx != XEXP (x, 0))
2717 /* If this is a REG_DEAD note, it is not valid anymore.
2718 Using the eliminated version could result in creating a
2719 REG_DEAD note for the stack or frame pointer. */
2720 if (REG_NOTE_KIND (x) == REG_DEAD)
2721 return (XEXP (x, 1)
2722 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2723 for_costs)
2724 : NULL_RTX);
2726 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2730 /* fall through */
2732 case INSN_LIST:
2733 case INT_LIST:
2734 /* Now do eliminations in the rest of the chain. If this was
2735 an EXPR_LIST, this might result in allocating more memory than is
2736 strictly needed, but it simplifies the code. */
2737 if (XEXP (x, 1))
2739 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2740 for_costs);
2741 if (new_rtx != XEXP (x, 1))
2742 return
2743 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2745 return x;
2747 case PRE_INC:
2748 case POST_INC:
2749 case PRE_DEC:
2750 case POST_DEC:
2751 /* We do not support elimination of a register that is modified.
2752 elimination_effects has already make sure that this does not
2753 happen. */
2754 return x;
2756 case PRE_MODIFY:
2757 case POST_MODIFY:
2758 /* We do not support elimination of a register that is modified.
2759 elimination_effects has already make sure that this does not
2760 happen. The only remaining case we need to consider here is
2761 that the increment value may be an eliminable register. */
2762 if (GET_CODE (XEXP (x, 1)) == PLUS
2763 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2765 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2766 insn, true, for_costs);
2768 if (new_rtx != XEXP (XEXP (x, 1), 1))
2769 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2770 gen_rtx_PLUS (GET_MODE (x),
2771 XEXP (x, 0), new_rtx));
2773 return x;
2775 case STRICT_LOW_PART:
2776 case NEG: case NOT:
2777 case SIGN_EXTEND: case ZERO_EXTEND:
2778 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2779 case FLOAT: case FIX:
2780 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2781 case ABS:
2782 case SQRT:
2783 case FFS:
2784 case CLZ:
2785 case CTZ:
2786 case POPCOUNT:
2787 case PARITY:
2788 case BSWAP:
2789 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2790 for_costs);
2791 if (new_rtx != XEXP (x, 0))
2792 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2793 return x;
2795 case SUBREG:
2796 /* Similar to above processing, but preserve SUBREG_BYTE.
2797 Convert (subreg (mem)) to (mem) if not paradoxical.
2798 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2799 pseudo didn't get a hard reg, we must replace this with the
2800 eliminated version of the memory location because push_reload
2801 may do the replacement in certain circumstances. */
2802 if (REG_P (SUBREG_REG (x))
2803 && !paradoxical_subreg_p (x)
2804 && reg_equivs
2805 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2807 new_rtx = SUBREG_REG (x);
2809 else
2810 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2812 if (new_rtx != SUBREG_REG (x))
2814 int x_size = GET_MODE_SIZE (GET_MODE (x));
2815 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2817 if (MEM_P (new_rtx)
2818 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2819 /* On RISC machines, combine can create rtl of the form
2820 (set (subreg:m1 (reg:m2 R) 0) ...)
2821 where m1 < m2, and expects something interesting to
2822 happen to the entire word. Moreover, it will use the
2823 (reg:m2 R) later, expecting all bits to be preserved.
2824 So if the number of words is the same, preserve the
2825 subreg so that push_reload can see it. */
2826 && !(WORD_REGISTER_OPERATIONS
2827 && (x_size - 1) / UNITS_PER_WORD
2828 == (new_size -1 ) / UNITS_PER_WORD))
2829 || x_size == new_size)
2831 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2832 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2833 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2834 else
2835 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2838 return x;
2840 case MEM:
2841 /* Our only special processing is to pass the mode of the MEM to our
2842 recursive call and copy the flags. While we are here, handle this
2843 case more efficiently. */
2845 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2846 for_costs);
2847 if (for_costs
2848 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2849 && !memory_address_p (GET_MODE (x), new_rtx))
2850 note_reg_elim_costly (XEXP (x, 0), insn);
2852 return replace_equiv_address_nv (x, new_rtx);
2854 case USE:
2855 /* Handle insn_list USE that a call to a pure function may generate. */
2856 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2857 for_costs);
2858 if (new_rtx != XEXP (x, 0))
2859 return gen_rtx_USE (GET_MODE (x), new_rtx);
2860 return x;
2862 case CLOBBER:
2863 case ASM_OPERANDS:
2864 gcc_assert (insn && DEBUG_INSN_P (insn));
2865 break;
2867 case SET:
2868 gcc_unreachable ();
2870 default:
2871 break;
2874 /* Process each of our operands recursively. If any have changed, make a
2875 copy of the rtx. */
2876 fmt = GET_RTX_FORMAT (code);
2877 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2879 if (*fmt == 'e')
2881 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2882 for_costs);
2883 if (new_rtx != XEXP (x, i) && ! copied)
2885 x = shallow_copy_rtx (x);
2886 copied = 1;
2888 XEXP (x, i) = new_rtx;
2890 else if (*fmt == 'E')
2892 int copied_vec = 0;
2893 for (j = 0; j < XVECLEN (x, i); j++)
2895 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2896 for_costs);
2897 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2899 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2900 XVEC (x, i)->elem);
2901 if (! copied)
2903 x = shallow_copy_rtx (x);
2904 copied = 1;
2906 XVEC (x, i) = new_v;
2907 copied_vec = 1;
2909 XVECEXP (x, i, j) = new_rtx;
2914 return x;
2918 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2920 if (reg_eliminate == NULL)
2922 gcc_assert (targetm.no_register_allocation);
2923 return x;
2925 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2928 /* Scan rtx X for modifications of elimination target registers. Update
2929 the table of eliminables to reflect the changed state. MEM_MODE is
2930 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2932 static void
2933 elimination_effects (rtx x, machine_mode mem_mode)
2935 enum rtx_code code = GET_CODE (x);
2936 struct elim_table *ep;
2937 int regno;
2938 int i, j;
2939 const char *fmt;
2941 switch (code)
2943 CASE_CONST_ANY:
2944 case CONST:
2945 case SYMBOL_REF:
2946 case CODE_LABEL:
2947 case PC:
2948 case CC0:
2949 case ASM_INPUT:
2950 case ADDR_VEC:
2951 case ADDR_DIFF_VEC:
2952 case RETURN:
2953 return;
2955 case REG:
2956 regno = REGNO (x);
2958 /* First handle the case where we encounter a bare register that
2959 is eliminable. Replace it with a PLUS. */
2960 if (regno < FIRST_PSEUDO_REGISTER)
2962 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2963 ep++)
2964 if (ep->from_rtx == x && ep->can_eliminate)
2966 if (! mem_mode)
2967 ep->ref_outside_mem = 1;
2968 return;
2972 else if (reg_renumber[regno] < 0
2973 && reg_equivs
2974 && reg_equiv_constant (regno)
2975 && ! function_invariant_p (reg_equiv_constant (regno)))
2976 elimination_effects (reg_equiv_constant (regno), mem_mode);
2977 return;
2979 case PRE_INC:
2980 case POST_INC:
2981 case PRE_DEC:
2982 case POST_DEC:
2983 case POST_MODIFY:
2984 case PRE_MODIFY:
2985 /* If we modify the source of an elimination rule, disable it. */
2986 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2987 if (ep->from_rtx == XEXP (x, 0))
2988 ep->can_eliminate = 0;
2990 /* If we modify the target of an elimination rule by adding a constant,
2991 update its offset. If we modify the target in any other way, we'll
2992 have to disable the rule as well. */
2993 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2994 if (ep->to_rtx == XEXP (x, 0))
2996 int size = GET_MODE_SIZE (mem_mode);
2998 /* If more bytes than MEM_MODE are pushed, account for them. */
2999 #ifdef PUSH_ROUNDING
3000 if (ep->to_rtx == stack_pointer_rtx)
3001 size = PUSH_ROUNDING (size);
3002 #endif
3003 if (code == PRE_DEC || code == POST_DEC)
3004 ep->offset += size;
3005 else if (code == PRE_INC || code == POST_INC)
3006 ep->offset -= size;
3007 else if (code == PRE_MODIFY || code == POST_MODIFY)
3009 if (GET_CODE (XEXP (x, 1)) == PLUS
3010 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3011 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3012 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3013 else
3014 ep->can_eliminate = 0;
3018 /* These two aren't unary operators. */
3019 if (code == POST_MODIFY || code == PRE_MODIFY)
3020 break;
3022 /* Fall through to generic unary operation case. */
3023 gcc_fallthrough ();
3024 case STRICT_LOW_PART:
3025 case NEG: case NOT:
3026 case SIGN_EXTEND: case ZERO_EXTEND:
3027 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3028 case FLOAT: case FIX:
3029 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3030 case ABS:
3031 case SQRT:
3032 case FFS:
3033 case CLZ:
3034 case CTZ:
3035 case POPCOUNT:
3036 case PARITY:
3037 case BSWAP:
3038 elimination_effects (XEXP (x, 0), mem_mode);
3039 return;
3041 case SUBREG:
3042 if (REG_P (SUBREG_REG (x))
3043 && !paradoxical_subreg_p (x)
3044 && reg_equivs
3045 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3046 return;
3048 elimination_effects (SUBREG_REG (x), mem_mode);
3049 return;
3051 case USE:
3052 /* If using a register that is the source of an eliminate we still
3053 think can be performed, note it cannot be performed since we don't
3054 know how this register is used. */
3055 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3056 if (ep->from_rtx == XEXP (x, 0))
3057 ep->can_eliminate = 0;
3059 elimination_effects (XEXP (x, 0), mem_mode);
3060 return;
3062 case CLOBBER:
3063 /* If clobbering a register that is the replacement register for an
3064 elimination we still think can be performed, note that it cannot
3065 be performed. Otherwise, we need not be concerned about it. */
3066 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3067 if (ep->to_rtx == XEXP (x, 0))
3068 ep->can_eliminate = 0;
3070 elimination_effects (XEXP (x, 0), mem_mode);
3071 return;
3073 case SET:
3074 /* Check for setting a register that we know about. */
3075 if (REG_P (SET_DEST (x)))
3077 /* See if this is setting the replacement register for an
3078 elimination.
3080 If DEST is the hard frame pointer, we do nothing because we
3081 assume that all assignments to the frame pointer are for
3082 non-local gotos and are being done at a time when they are valid
3083 and do not disturb anything else. Some machines want to
3084 eliminate a fake argument pointer (or even a fake frame pointer)
3085 with either the real frame or the stack pointer. Assignments to
3086 the hard frame pointer must not prevent this elimination. */
3088 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3089 ep++)
3090 if (ep->to_rtx == SET_DEST (x)
3091 && SET_DEST (x) != hard_frame_pointer_rtx)
3093 /* If it is being incremented, adjust the offset. Otherwise,
3094 this elimination can't be done. */
3095 rtx src = SET_SRC (x);
3097 if (GET_CODE (src) == PLUS
3098 && XEXP (src, 0) == SET_DEST (x)
3099 && CONST_INT_P (XEXP (src, 1)))
3100 ep->offset -= INTVAL (XEXP (src, 1));
3101 else
3102 ep->can_eliminate = 0;
3106 elimination_effects (SET_DEST (x), VOIDmode);
3107 elimination_effects (SET_SRC (x), VOIDmode);
3108 return;
3110 case MEM:
3111 /* Our only special processing is to pass the mode of the MEM to our
3112 recursive call. */
3113 elimination_effects (XEXP (x, 0), GET_MODE (x));
3114 return;
3116 default:
3117 break;
3120 fmt = GET_RTX_FORMAT (code);
3121 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3123 if (*fmt == 'e')
3124 elimination_effects (XEXP (x, i), mem_mode);
3125 else if (*fmt == 'E')
3126 for (j = 0; j < XVECLEN (x, i); j++)
3127 elimination_effects (XVECEXP (x, i, j), mem_mode);
3131 /* Descend through rtx X and verify that no references to eliminable registers
3132 remain. If any do remain, mark the involved register as not
3133 eliminable. */
3135 static void
3136 check_eliminable_occurrences (rtx x)
3138 const char *fmt;
3139 int i;
3140 enum rtx_code code;
3142 if (x == 0)
3143 return;
3145 code = GET_CODE (x);
3147 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3149 struct elim_table *ep;
3151 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3152 if (ep->from_rtx == x)
3153 ep->can_eliminate = 0;
3154 return;
3157 fmt = GET_RTX_FORMAT (code);
3158 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3160 if (*fmt == 'e')
3161 check_eliminable_occurrences (XEXP (x, i));
3162 else if (*fmt == 'E')
3164 int j;
3165 for (j = 0; j < XVECLEN (x, i); j++)
3166 check_eliminable_occurrences (XVECEXP (x, i, j));
3171 /* Scan INSN and eliminate all eliminable registers in it.
3173 If REPLACE is nonzero, do the replacement destructively. Also
3174 delete the insn as dead it if it is setting an eliminable register.
3176 If REPLACE is zero, do all our allocations in reload_obstack.
3178 If no eliminations were done and this insn doesn't require any elimination
3179 processing (these are not identical conditions: it might be updating sp,
3180 but not referencing fp; this needs to be seen during reload_as_needed so
3181 that the offset between fp and sp can be taken into consideration), zero
3182 is returned. Otherwise, 1 is returned. */
3184 static int
3185 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3187 int icode = recog_memoized (insn);
3188 rtx old_body = PATTERN (insn);
3189 int insn_is_asm = asm_noperands (old_body) >= 0;
3190 rtx old_set = single_set (insn);
3191 rtx new_body;
3192 int val = 0;
3193 int i;
3194 rtx substed_operand[MAX_RECOG_OPERANDS];
3195 rtx orig_operand[MAX_RECOG_OPERANDS];
3196 struct elim_table *ep;
3197 rtx plus_src, plus_cst_src;
3199 if (! insn_is_asm && icode < 0)
3201 gcc_assert (DEBUG_INSN_P (insn)
3202 || GET_CODE (PATTERN (insn)) == USE
3203 || GET_CODE (PATTERN (insn)) == CLOBBER
3204 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3205 if (DEBUG_INSN_P (insn))
3206 INSN_VAR_LOCATION_LOC (insn)
3207 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3208 return 0;
3211 if (old_set != 0 && REG_P (SET_DEST (old_set))
3212 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3214 /* Check for setting an eliminable register. */
3215 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3216 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3218 /* If this is setting the frame pointer register to the
3219 hardware frame pointer register and this is an elimination
3220 that will be done (tested above), this insn is really
3221 adjusting the frame pointer downward to compensate for
3222 the adjustment done before a nonlocal goto. */
3223 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3224 && ep->from == FRAME_POINTER_REGNUM
3225 && ep->to == HARD_FRAME_POINTER_REGNUM)
3227 rtx base = SET_SRC (old_set);
3228 rtx_insn *base_insn = insn;
3229 HOST_WIDE_INT offset = 0;
3231 while (base != ep->to_rtx)
3233 rtx_insn *prev_insn;
3234 rtx prev_set;
3236 if (GET_CODE (base) == PLUS
3237 && CONST_INT_P (XEXP (base, 1)))
3239 offset += INTVAL (XEXP (base, 1));
3240 base = XEXP (base, 0);
3242 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3243 && (prev_set = single_set (prev_insn)) != 0
3244 && rtx_equal_p (SET_DEST (prev_set), base))
3246 base = SET_SRC (prev_set);
3247 base_insn = prev_insn;
3249 else
3250 break;
3253 if (base == ep->to_rtx)
3255 rtx src = plus_constant (Pmode, ep->to_rtx,
3256 offset - ep->offset);
3258 new_body = old_body;
3259 if (! replace)
3261 new_body = copy_insn (old_body);
3262 if (REG_NOTES (insn))
3263 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3265 PATTERN (insn) = new_body;
3266 old_set = single_set (insn);
3268 /* First see if this insn remains valid when we
3269 make the change. If not, keep the INSN_CODE
3270 the same and let reload fit it up. */
3271 validate_change (insn, &SET_SRC (old_set), src, 1);
3272 validate_change (insn, &SET_DEST (old_set),
3273 ep->to_rtx, 1);
3274 if (! apply_change_group ())
3276 SET_SRC (old_set) = src;
3277 SET_DEST (old_set) = ep->to_rtx;
3280 val = 1;
3281 goto done;
3285 /* In this case this insn isn't serving a useful purpose. We
3286 will delete it in reload_as_needed once we know that this
3287 elimination is, in fact, being done.
3289 If REPLACE isn't set, we can't delete this insn, but needn't
3290 process it since it won't be used unless something changes. */
3291 if (replace)
3293 delete_dead_insn (insn);
3294 return 1;
3296 val = 1;
3297 goto done;
3301 /* We allow one special case which happens to work on all machines we
3302 currently support: a single set with the source or a REG_EQUAL
3303 note being a PLUS of an eliminable register and a constant. */
3304 plus_src = plus_cst_src = 0;
3305 if (old_set && REG_P (SET_DEST (old_set)))
3307 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3308 plus_src = SET_SRC (old_set);
3309 /* First see if the source is of the form (plus (...) CST). */
3310 if (plus_src
3311 && CONST_INT_P (XEXP (plus_src, 1)))
3312 plus_cst_src = plus_src;
3313 else if (REG_P (SET_SRC (old_set))
3314 || plus_src)
3316 /* Otherwise, see if we have a REG_EQUAL note of the form
3317 (plus (...) CST). */
3318 rtx links;
3319 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3321 if ((REG_NOTE_KIND (links) == REG_EQUAL
3322 || REG_NOTE_KIND (links) == REG_EQUIV)
3323 && GET_CODE (XEXP (links, 0)) == PLUS
3324 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3326 plus_cst_src = XEXP (links, 0);
3327 break;
3332 /* Check that the first operand of the PLUS is a hard reg or
3333 the lowpart subreg of one. */
3334 if (plus_cst_src)
3336 rtx reg = XEXP (plus_cst_src, 0);
3337 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3338 reg = SUBREG_REG (reg);
3340 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3341 plus_cst_src = 0;
3344 if (plus_cst_src)
3346 rtx reg = XEXP (plus_cst_src, 0);
3347 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3349 if (GET_CODE (reg) == SUBREG)
3350 reg = SUBREG_REG (reg);
3352 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3353 if (ep->from_rtx == reg && ep->can_eliminate)
3355 rtx to_rtx = ep->to_rtx;
3356 offset += ep->offset;
3357 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3359 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3360 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3361 to_rtx);
3362 /* If we have a nonzero offset, and the source is already
3363 a simple REG, the following transformation would
3364 increase the cost of the insn by replacing a simple REG
3365 with (plus (reg sp) CST). So try only when we already
3366 had a PLUS before. */
3367 if (offset == 0 || plus_src)
3369 rtx new_src = plus_constant (GET_MODE (to_rtx),
3370 to_rtx, offset);
3372 new_body = old_body;
3373 if (! replace)
3375 new_body = copy_insn (old_body);
3376 if (REG_NOTES (insn))
3377 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3379 PATTERN (insn) = new_body;
3380 old_set = single_set (insn);
3382 /* First see if this insn remains valid when we make the
3383 change. If not, try to replace the whole pattern with
3384 a simple set (this may help if the original insn was a
3385 PARALLEL that was only recognized as single_set due to
3386 REG_UNUSED notes). If this isn't valid either, keep
3387 the INSN_CODE the same and let reload fix it up. */
3388 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3390 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3392 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3393 SET_SRC (old_set) = new_src;
3396 else
3397 break;
3399 val = 1;
3400 /* This can't have an effect on elimination offsets, so skip right
3401 to the end. */
3402 goto done;
3406 /* Determine the effects of this insn on elimination offsets. */
3407 elimination_effects (old_body, VOIDmode);
3409 /* Eliminate all eliminable registers occurring in operands that
3410 can be handled by reload. */
3411 extract_insn (insn);
3412 for (i = 0; i < recog_data.n_operands; i++)
3414 orig_operand[i] = recog_data.operand[i];
3415 substed_operand[i] = recog_data.operand[i];
3417 /* For an asm statement, every operand is eliminable. */
3418 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3420 bool is_set_src, in_plus;
3422 /* Check for setting a register that we know about. */
3423 if (recog_data.operand_type[i] != OP_IN
3424 && REG_P (orig_operand[i]))
3426 /* If we are assigning to a register that can be eliminated, it
3427 must be as part of a PARALLEL, since the code above handles
3428 single SETs. We must indicate that we can no longer
3429 eliminate this reg. */
3430 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3431 ep++)
3432 if (ep->from_rtx == orig_operand[i])
3433 ep->can_eliminate = 0;
3436 /* Companion to the above plus substitution, we can allow
3437 invariants as the source of a plain move. */
3438 is_set_src = false;
3439 if (old_set
3440 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3441 is_set_src = true;
3442 in_plus = false;
3443 if (plus_src
3444 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3445 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3446 in_plus = true;
3448 substed_operand[i]
3449 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3450 replace ? insn : NULL_RTX,
3451 is_set_src || in_plus, false);
3452 if (substed_operand[i] != orig_operand[i])
3453 val = 1;
3454 /* Terminate the search in check_eliminable_occurrences at
3455 this point. */
3456 *recog_data.operand_loc[i] = 0;
3458 /* If an output operand changed from a REG to a MEM and INSN is an
3459 insn, write a CLOBBER insn. */
3460 if (recog_data.operand_type[i] != OP_IN
3461 && REG_P (orig_operand[i])
3462 && MEM_P (substed_operand[i])
3463 && replace)
3464 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3468 for (i = 0; i < recog_data.n_dups; i++)
3469 *recog_data.dup_loc[i]
3470 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3472 /* If any eliminable remain, they aren't eliminable anymore. */
3473 check_eliminable_occurrences (old_body);
3475 /* Substitute the operands; the new values are in the substed_operand
3476 array. */
3477 for (i = 0; i < recog_data.n_operands; i++)
3478 *recog_data.operand_loc[i] = substed_operand[i];
3479 for (i = 0; i < recog_data.n_dups; i++)
3480 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3482 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3483 re-recognize the insn. We do this in case we had a simple addition
3484 but now can do this as a load-address. This saves an insn in this
3485 common case.
3486 If re-recognition fails, the old insn code number will still be used,
3487 and some register operands may have changed into PLUS expressions.
3488 These will be handled by find_reloads by loading them into a register
3489 again. */
3491 if (val)
3493 /* If we aren't replacing things permanently and we changed something,
3494 make another copy to ensure that all the RTL is new. Otherwise
3495 things can go wrong if find_reload swaps commutative operands
3496 and one is inside RTL that has been copied while the other is not. */
3497 new_body = old_body;
3498 if (! replace)
3500 new_body = copy_insn (old_body);
3501 if (REG_NOTES (insn))
3502 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3504 PATTERN (insn) = new_body;
3506 /* If we had a move insn but now we don't, rerecognize it. This will
3507 cause spurious re-recognition if the old move had a PARALLEL since
3508 the new one still will, but we can't call single_set without
3509 having put NEW_BODY into the insn and the re-recognition won't
3510 hurt in this rare case. */
3511 /* ??? Why this huge if statement - why don't we just rerecognize the
3512 thing always? */
3513 if (! insn_is_asm
3514 && old_set != 0
3515 && ((REG_P (SET_SRC (old_set))
3516 && (GET_CODE (new_body) != SET
3517 || !REG_P (SET_SRC (new_body))))
3518 /* If this was a load from or store to memory, compare
3519 the MEM in recog_data.operand to the one in the insn.
3520 If they are not equal, then rerecognize the insn. */
3521 || (old_set != 0
3522 && ((MEM_P (SET_SRC (old_set))
3523 && SET_SRC (old_set) != recog_data.operand[1])
3524 || (MEM_P (SET_DEST (old_set))
3525 && SET_DEST (old_set) != recog_data.operand[0])))
3526 /* If this was an add insn before, rerecognize. */
3527 || GET_CODE (SET_SRC (old_set)) == PLUS))
3529 int new_icode = recog (PATTERN (insn), insn, 0);
3530 if (new_icode >= 0)
3531 INSN_CODE (insn) = new_icode;
3535 /* Restore the old body. If there were any changes to it, we made a copy
3536 of it while the changes were still in place, so we'll correctly return
3537 a modified insn below. */
3538 if (! replace)
3540 /* Restore the old body. */
3541 for (i = 0; i < recog_data.n_operands; i++)
3542 /* Restoring a top-level match_parallel would clobber the new_body
3543 we installed in the insn. */
3544 if (recog_data.operand_loc[i] != &PATTERN (insn))
3545 *recog_data.operand_loc[i] = orig_operand[i];
3546 for (i = 0; i < recog_data.n_dups; i++)
3547 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3550 /* Update all elimination pairs to reflect the status after the current
3551 insn. The changes we make were determined by the earlier call to
3552 elimination_effects.
3554 We also detect cases where register elimination cannot be done,
3555 namely, if a register would be both changed and referenced outside a MEM
3556 in the resulting insn since such an insn is often undefined and, even if
3557 not, we cannot know what meaning will be given to it. Note that it is
3558 valid to have a register used in an address in an insn that changes it
3559 (presumably with a pre- or post-increment or decrement).
3561 If anything changes, return nonzero. */
3563 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3565 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3566 ep->can_eliminate = 0;
3568 ep->ref_outside_mem = 0;
3570 if (ep->previous_offset != ep->offset)
3571 val = 1;
3574 done:
3575 /* If we changed something, perform elimination in REG_NOTES. This is
3576 needed even when REPLACE is zero because a REG_DEAD note might refer
3577 to a register that we eliminate and could cause a different number
3578 of spill registers to be needed in the final reload pass than in
3579 the pre-passes. */
3580 if (val && REG_NOTES (insn) != 0)
3581 REG_NOTES (insn)
3582 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3583 false);
3585 return val;
3588 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3589 register allocator. INSN is the instruction we need to examine, we perform
3590 eliminations in its operands and record cases where eliminating a reg with
3591 an invariant equivalence would add extra cost. */
3593 #pragma GCC diagnostic push
3594 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3595 static void
3596 elimination_costs_in_insn (rtx_insn *insn)
3598 int icode = recog_memoized (insn);
3599 rtx old_body = PATTERN (insn);
3600 int insn_is_asm = asm_noperands (old_body) >= 0;
3601 rtx old_set = single_set (insn);
3602 int i;
3603 rtx orig_operand[MAX_RECOG_OPERANDS];
3604 rtx orig_dup[MAX_RECOG_OPERANDS];
3605 struct elim_table *ep;
3606 rtx plus_src, plus_cst_src;
3607 bool sets_reg_p;
3609 if (! insn_is_asm && icode < 0)
3611 gcc_assert (DEBUG_INSN_P (insn)
3612 || GET_CODE (PATTERN (insn)) == USE
3613 || GET_CODE (PATTERN (insn)) == CLOBBER
3614 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3615 return;
3618 if (old_set != 0 && REG_P (SET_DEST (old_set))
3619 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3621 /* Check for setting an eliminable register. */
3622 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3623 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3624 return;
3627 /* We allow one special case which happens to work on all machines we
3628 currently support: a single set with the source or a REG_EQUAL
3629 note being a PLUS of an eliminable register and a constant. */
3630 plus_src = plus_cst_src = 0;
3631 sets_reg_p = false;
3632 if (old_set && REG_P (SET_DEST (old_set)))
3634 sets_reg_p = true;
3635 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3636 plus_src = SET_SRC (old_set);
3637 /* First see if the source is of the form (plus (...) CST). */
3638 if (plus_src
3639 && CONST_INT_P (XEXP (plus_src, 1)))
3640 plus_cst_src = plus_src;
3641 else if (REG_P (SET_SRC (old_set))
3642 || plus_src)
3644 /* Otherwise, see if we have a REG_EQUAL note of the form
3645 (plus (...) CST). */
3646 rtx links;
3647 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3649 if ((REG_NOTE_KIND (links) == REG_EQUAL
3650 || REG_NOTE_KIND (links) == REG_EQUIV)
3651 && GET_CODE (XEXP (links, 0)) == PLUS
3652 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3654 plus_cst_src = XEXP (links, 0);
3655 break;
3661 /* Determine the effects of this insn on elimination offsets. */
3662 elimination_effects (old_body, VOIDmode);
3664 /* Eliminate all eliminable registers occurring in operands that
3665 can be handled by reload. */
3666 extract_insn (insn);
3667 int n_dups = recog_data.n_dups;
3668 for (i = 0; i < n_dups; i++)
3669 orig_dup[i] = *recog_data.dup_loc[i];
3671 int n_operands = recog_data.n_operands;
3672 for (i = 0; i < n_operands; i++)
3674 orig_operand[i] = recog_data.operand[i];
3676 /* For an asm statement, every operand is eliminable. */
3677 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3679 bool is_set_src, in_plus;
3681 /* Check for setting a register that we know about. */
3682 if (recog_data.operand_type[i] != OP_IN
3683 && REG_P (orig_operand[i]))
3685 /* If we are assigning to a register that can be eliminated, it
3686 must be as part of a PARALLEL, since the code above handles
3687 single SETs. We must indicate that we can no longer
3688 eliminate this reg. */
3689 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3690 ep++)
3691 if (ep->from_rtx == orig_operand[i])
3692 ep->can_eliminate = 0;
3695 /* Companion to the above plus substitution, we can allow
3696 invariants as the source of a plain move. */
3697 is_set_src = false;
3698 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3699 is_set_src = true;
3700 if (is_set_src && !sets_reg_p)
3701 note_reg_elim_costly (SET_SRC (old_set), insn);
3702 in_plus = false;
3703 if (plus_src && sets_reg_p
3704 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3705 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3706 in_plus = true;
3708 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3709 NULL_RTX,
3710 is_set_src || in_plus, true);
3711 /* Terminate the search in check_eliminable_occurrences at
3712 this point. */
3713 *recog_data.operand_loc[i] = 0;
3717 for (i = 0; i < n_dups; i++)
3718 *recog_data.dup_loc[i]
3719 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3721 /* If any eliminable remain, they aren't eliminable anymore. */
3722 check_eliminable_occurrences (old_body);
3724 /* Restore the old body. */
3725 for (i = 0; i < n_operands; i++)
3726 *recog_data.operand_loc[i] = orig_operand[i];
3727 for (i = 0; i < n_dups; i++)
3728 *recog_data.dup_loc[i] = orig_dup[i];
3730 /* Update all elimination pairs to reflect the status after the current
3731 insn. The changes we make were determined by the earlier call to
3732 elimination_effects. */
3734 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3736 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3737 ep->can_eliminate = 0;
3739 ep->ref_outside_mem = 0;
3742 return;
3744 #pragma GCC diagnostic pop
3746 /* Loop through all elimination pairs.
3747 Recalculate the number not at initial offset.
3749 Compute the maximum offset (minimum offset if the stack does not
3750 grow downward) for each elimination pair. */
3752 static void
3753 update_eliminable_offsets (void)
3755 struct elim_table *ep;
3757 num_not_at_initial_offset = 0;
3758 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3760 ep->previous_offset = ep->offset;
3761 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3762 num_not_at_initial_offset++;
3766 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3767 replacement we currently believe is valid, mark it as not eliminable if X
3768 modifies DEST in any way other than by adding a constant integer to it.
3770 If DEST is the frame pointer, we do nothing because we assume that
3771 all assignments to the hard frame pointer are nonlocal gotos and are being
3772 done at a time when they are valid and do not disturb anything else.
3773 Some machines want to eliminate a fake argument pointer with either the
3774 frame or stack pointer. Assignments to the hard frame pointer must not
3775 prevent this elimination.
3777 Called via note_stores from reload before starting its passes to scan
3778 the insns of the function. */
3780 static void
3781 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3783 unsigned int i;
3785 /* A SUBREG of a hard register here is just changing its mode. We should
3786 not see a SUBREG of an eliminable hard register, but check just in
3787 case. */
3788 if (GET_CODE (dest) == SUBREG)
3789 dest = SUBREG_REG (dest);
3791 if (dest == hard_frame_pointer_rtx)
3792 return;
3794 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3795 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3796 && (GET_CODE (x) != SET
3797 || GET_CODE (SET_SRC (x)) != PLUS
3798 || XEXP (SET_SRC (x), 0) != dest
3799 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3801 reg_eliminate[i].can_eliminate_previous
3802 = reg_eliminate[i].can_eliminate = 0;
3803 num_eliminable--;
3807 /* Verify that the initial elimination offsets did not change since the
3808 last call to set_initial_elim_offsets. This is used to catch cases
3809 where something illegal happened during reload_as_needed that could
3810 cause incorrect code to be generated if we did not check for it. */
3812 static bool
3813 verify_initial_elim_offsets (void)
3815 HOST_WIDE_INT t;
3816 struct elim_table *ep;
3818 if (!num_eliminable)
3819 return true;
3821 targetm.compute_frame_layout ();
3822 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3824 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3825 if (t != ep->initial_offset)
3826 return false;
3829 return true;
3832 /* Reset all offsets on eliminable registers to their initial values. */
3834 static void
3835 set_initial_elim_offsets (void)
3837 struct elim_table *ep = reg_eliminate;
3839 targetm.compute_frame_layout ();
3840 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3842 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3843 ep->previous_offset = ep->offset = ep->initial_offset;
3846 num_not_at_initial_offset = 0;
3849 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3851 static void
3852 set_initial_eh_label_offset (rtx label)
3854 set_label_offsets (label, NULL, 1);
3857 /* Initialize the known label offsets.
3858 Set a known offset for each forced label to be at the initial offset
3859 of each elimination. We do this because we assume that all
3860 computed jumps occur from a location where each elimination is
3861 at its initial offset.
3862 For all other labels, show that we don't know the offsets. */
3864 static void
3865 set_initial_label_offsets (void)
3867 memset (offsets_known_at, 0, num_labels);
3869 unsigned int i;
3870 rtx_insn *insn;
3871 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3872 set_label_offsets (insn, NULL, 1);
3874 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3875 if (x->insn ())
3876 set_label_offsets (x->insn (), NULL, 1);
3878 for_each_eh_label (set_initial_eh_label_offset);
3881 /* Set all elimination offsets to the known values for the code label given
3882 by INSN. */
3884 static void
3885 set_offsets_for_label (rtx_insn *insn)
3887 unsigned int i;
3888 int label_nr = CODE_LABEL_NUMBER (insn);
3889 struct elim_table *ep;
3891 num_not_at_initial_offset = 0;
3892 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3894 ep->offset = ep->previous_offset
3895 = offsets_at[label_nr - first_label_num][i];
3896 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3897 num_not_at_initial_offset++;
3901 /* See if anything that happened changes which eliminations are valid.
3902 For example, on the SPARC, whether or not the frame pointer can
3903 be eliminated can depend on what registers have been used. We need
3904 not check some conditions again (such as flag_omit_frame_pointer)
3905 since they can't have changed. */
3907 static void
3908 update_eliminables (HARD_REG_SET *pset)
3910 int previous_frame_pointer_needed = frame_pointer_needed;
3911 struct elim_table *ep;
3913 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3914 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3915 && targetm.frame_pointer_required ())
3916 || ! targetm.can_eliminate (ep->from, ep->to)
3918 ep->can_eliminate = 0;
3920 /* Look for the case where we have discovered that we can't replace
3921 register A with register B and that means that we will now be
3922 trying to replace register A with register C. This means we can
3923 no longer replace register C with register B and we need to disable
3924 such an elimination, if it exists. This occurs often with A == ap,
3925 B == sp, and C == fp. */
3927 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3929 struct elim_table *op;
3930 int new_to = -1;
3932 if (! ep->can_eliminate && ep->can_eliminate_previous)
3934 /* Find the current elimination for ep->from, if there is a
3935 new one. */
3936 for (op = reg_eliminate;
3937 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3938 if (op->from == ep->from && op->can_eliminate)
3940 new_to = op->to;
3941 break;
3944 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3945 disable it. */
3946 for (op = reg_eliminate;
3947 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3948 if (op->from == new_to && op->to == ep->to)
3949 op->can_eliminate = 0;
3953 /* See if any registers that we thought we could eliminate the previous
3954 time are no longer eliminable. If so, something has changed and we
3955 must spill the register. Also, recompute the number of eliminable
3956 registers and see if the frame pointer is needed; it is if there is
3957 no elimination of the frame pointer that we can perform. */
3959 frame_pointer_needed = 1;
3960 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3962 if (ep->can_eliminate
3963 && ep->from == FRAME_POINTER_REGNUM
3964 && ep->to != HARD_FRAME_POINTER_REGNUM
3965 && (! SUPPORTS_STACK_ALIGNMENT
3966 || ! crtl->stack_realign_needed))
3967 frame_pointer_needed = 0;
3969 if (! ep->can_eliminate && ep->can_eliminate_previous)
3971 ep->can_eliminate_previous = 0;
3972 SET_HARD_REG_BIT (*pset, ep->from);
3973 num_eliminable--;
3977 /* If we didn't need a frame pointer last time, but we do now, spill
3978 the hard frame pointer. */
3979 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3980 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3983 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3984 Return true iff a register was spilled. */
3986 static bool
3987 update_eliminables_and_spill (void)
3989 int i;
3990 bool did_spill = false;
3991 HARD_REG_SET to_spill;
3992 CLEAR_HARD_REG_SET (to_spill);
3993 update_eliminables (&to_spill);
3994 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
3996 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3997 if (TEST_HARD_REG_BIT (to_spill, i))
3999 spill_hard_reg (i, 1);
4000 did_spill = true;
4002 /* Regardless of the state of spills, if we previously had
4003 a register that we thought we could eliminate, but now can
4004 not eliminate, we must run another pass.
4006 Consider pseudos which have an entry in reg_equiv_* which
4007 reference an eliminable register. We must make another pass
4008 to update reg_equiv_* so that we do not substitute in the
4009 old value from when we thought the elimination could be
4010 performed. */
4012 return did_spill;
4015 /* Return true if X is used as the target register of an elimination. */
4017 bool
4018 elimination_target_reg_p (rtx x)
4020 struct elim_table *ep;
4022 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4023 if (ep->to_rtx == x && ep->can_eliminate)
4024 return true;
4026 return false;
4029 /* Initialize the table of registers to eliminate.
4030 Pre-condition: global flag frame_pointer_needed has been set before
4031 calling this function. */
4033 static void
4034 init_elim_table (void)
4036 struct elim_table *ep;
4037 const struct elim_table_1 *ep1;
4039 if (!reg_eliminate)
4040 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4042 num_eliminable = 0;
4044 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4045 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4047 ep->from = ep1->from;
4048 ep->to = ep1->to;
4049 ep->can_eliminate = ep->can_eliminate_previous
4050 = (targetm.can_eliminate (ep->from, ep->to)
4051 && ! (ep->to == STACK_POINTER_REGNUM
4052 && frame_pointer_needed
4053 && (! SUPPORTS_STACK_ALIGNMENT
4054 || ! stack_realign_fp)));
4057 /* Count the number of eliminable registers and build the FROM and TO
4058 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4059 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4060 We depend on this. */
4061 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4063 num_eliminable += ep->can_eliminate;
4064 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4065 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4069 /* Find all the pseudo registers that didn't get hard regs
4070 but do have known equivalent constants or memory slots.
4071 These include parameters (known equivalent to parameter slots)
4072 and cse'd or loop-moved constant memory addresses.
4074 Record constant equivalents in reg_equiv_constant
4075 so they will be substituted by find_reloads.
4076 Record memory equivalents in reg_mem_equiv so they can
4077 be substituted eventually by altering the REG-rtx's. */
4079 static void
4080 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4082 int i;
4083 rtx_insn *insn;
4085 grow_reg_equivs ();
4086 if (do_subregs)
4087 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4088 else
4089 reg_max_ref_width = NULL;
4091 num_eliminable_invariants = 0;
4093 first_label_num = get_first_label_num ();
4094 num_labels = max_label_num () - first_label_num;
4096 /* Allocate the tables used to store offset information at labels. */
4097 offsets_known_at = XNEWVEC (char, num_labels);
4098 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4100 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4101 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4102 find largest such for each pseudo. FIRST is the head of the insn
4103 list. */
4105 for (insn = first; insn; insn = NEXT_INSN (insn))
4107 rtx set = single_set (insn);
4109 /* We may introduce USEs that we want to remove at the end, so
4110 we'll mark them with QImode. Make sure there are no
4111 previously-marked insns left by say regmove. */
4112 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4113 && GET_MODE (insn) != VOIDmode)
4114 PUT_MODE (insn, VOIDmode);
4116 if (do_subregs && NONDEBUG_INSN_P (insn))
4117 scan_paradoxical_subregs (PATTERN (insn));
4119 if (set != 0 && REG_P (SET_DEST (set)))
4121 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4122 rtx x;
4124 if (! note)
4125 continue;
4127 i = REGNO (SET_DEST (set));
4128 x = XEXP (note, 0);
4130 if (i <= LAST_VIRTUAL_REGISTER)
4131 continue;
4133 /* If flag_pic and we have constant, verify it's legitimate. */
4134 if (!CONSTANT_P (x)
4135 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4137 /* It can happen that a REG_EQUIV note contains a MEM
4138 that is not a legitimate memory operand. As later
4139 stages of reload assume that all addresses found
4140 in the reg_equiv_* arrays were originally legitimate,
4141 we ignore such REG_EQUIV notes. */
4142 if (memory_operand (x, VOIDmode))
4144 /* Always unshare the equivalence, so we can
4145 substitute into this insn without touching the
4146 equivalence. */
4147 reg_equiv_memory_loc (i) = copy_rtx (x);
4149 else if (function_invariant_p (x))
4151 machine_mode mode;
4153 mode = GET_MODE (SET_DEST (set));
4154 if (GET_CODE (x) == PLUS)
4156 /* This is PLUS of frame pointer and a constant,
4157 and might be shared. Unshare it. */
4158 reg_equiv_invariant (i) = copy_rtx (x);
4159 num_eliminable_invariants++;
4161 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4163 reg_equiv_invariant (i) = x;
4164 num_eliminable_invariants++;
4166 else if (targetm.legitimate_constant_p (mode, x))
4167 reg_equiv_constant (i) = x;
4168 else
4170 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4171 if (! reg_equiv_memory_loc (i))
4172 reg_equiv_init (i) = NULL;
4175 else
4177 reg_equiv_init (i) = NULL;
4178 continue;
4181 else
4182 reg_equiv_init (i) = NULL;
4186 if (dump_file)
4187 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4188 if (reg_equiv_init (i))
4190 fprintf (dump_file, "init_insns for %u: ", i);
4191 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4192 fprintf (dump_file, "\n");
4196 /* Indicate that we no longer have known memory locations or constants.
4197 Free all data involved in tracking these. */
4199 static void
4200 free_reg_equiv (void)
4202 int i;
4204 free (offsets_known_at);
4205 free (offsets_at);
4206 offsets_at = 0;
4207 offsets_known_at = 0;
4209 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4210 if (reg_equiv_alt_mem_list (i))
4211 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4212 vec_free (reg_equivs);
4215 /* Kick all pseudos out of hard register REGNO.
4217 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4218 because we found we can't eliminate some register. In the case, no pseudos
4219 are allowed to be in the register, even if they are only in a block that
4220 doesn't require spill registers, unlike the case when we are spilling this
4221 hard reg to produce another spill register.
4223 Return nonzero if any pseudos needed to be kicked out. */
4225 static void
4226 spill_hard_reg (unsigned int regno, int cant_eliminate)
4228 int i;
4230 if (cant_eliminate)
4232 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4233 df_set_regs_ever_live (regno, true);
4236 /* Spill every pseudo reg that was allocated to this reg
4237 or to something that overlaps this reg. */
4239 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4240 if (reg_renumber[i] >= 0
4241 && (unsigned int) reg_renumber[i] <= regno
4242 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4243 SET_REGNO_REG_SET (&spilled_pseudos, i);
4246 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4247 insns that need reloads, this function is used to actually spill pseudo
4248 registers and try to reallocate them. It also sets up the spill_regs
4249 array for use by choose_reload_regs.
4251 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4252 that we displace from hard registers. */
4254 static int
4255 finish_spills (int global)
4257 struct insn_chain *chain;
4258 int something_changed = 0;
4259 unsigned i;
4260 reg_set_iterator rsi;
4262 /* Build the spill_regs array for the function. */
4263 /* If there are some registers still to eliminate and one of the spill regs
4264 wasn't ever used before, additional stack space may have to be
4265 allocated to store this register. Thus, we may have changed the offset
4266 between the stack and frame pointers, so mark that something has changed.
4268 One might think that we need only set VAL to 1 if this is a call-used
4269 register. However, the set of registers that must be saved by the
4270 prologue is not identical to the call-used set. For example, the
4271 register used by the call insn for the return PC is a call-used register,
4272 but must be saved by the prologue. */
4274 n_spills = 0;
4275 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4276 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4278 spill_reg_order[i] = n_spills;
4279 spill_regs[n_spills++] = i;
4280 if (num_eliminable && ! df_regs_ever_live_p (i))
4281 something_changed = 1;
4282 df_set_regs_ever_live (i, true);
4284 else
4285 spill_reg_order[i] = -1;
4287 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4288 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4290 /* Record the current hard register the pseudo is allocated to
4291 in pseudo_previous_regs so we avoid reallocating it to the
4292 same hard reg in a later pass. */
4293 gcc_assert (reg_renumber[i] >= 0);
4295 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4296 /* Mark it as no longer having a hard register home. */
4297 reg_renumber[i] = -1;
4298 if (ira_conflicts_p)
4299 /* Inform IRA about the change. */
4300 ira_mark_allocation_change (i);
4301 /* We will need to scan everything again. */
4302 something_changed = 1;
4305 /* Retry global register allocation if possible. */
4306 if (global && ira_conflicts_p)
4308 unsigned int n;
4310 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4311 /* For every insn that needs reloads, set the registers used as spill
4312 regs in pseudo_forbidden_regs for every pseudo live across the
4313 insn. */
4314 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4316 EXECUTE_IF_SET_IN_REG_SET
4317 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4319 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4320 chain->used_spill_regs);
4322 EXECUTE_IF_SET_IN_REG_SET
4323 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4325 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4326 chain->used_spill_regs);
4330 /* Retry allocating the pseudos spilled in IRA and the
4331 reload. For each reg, merge the various reg sets that
4332 indicate which hard regs can't be used, and call
4333 ira_reassign_pseudos. */
4334 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4335 if (reg_old_renumber[i] != reg_renumber[i])
4337 if (reg_renumber[i] < 0)
4338 temp_pseudo_reg_arr[n++] = i;
4339 else
4340 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4342 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4343 bad_spill_regs_global,
4344 pseudo_forbidden_regs, pseudo_previous_regs,
4345 &spilled_pseudos))
4346 something_changed = 1;
4348 /* Fix up the register information in the insn chain.
4349 This involves deleting those of the spilled pseudos which did not get
4350 a new hard register home from the live_{before,after} sets. */
4351 for (chain = reload_insn_chain; chain; chain = chain->next)
4353 HARD_REG_SET used_by_pseudos;
4354 HARD_REG_SET used_by_pseudos2;
4356 if (! ira_conflicts_p)
4358 /* Don't do it for IRA because IRA and the reload still can
4359 assign hard registers to the spilled pseudos on next
4360 reload iterations. */
4361 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4362 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4364 /* Mark any unallocated hard regs as available for spills. That
4365 makes inheritance work somewhat better. */
4366 if (chain->need_reload)
4368 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4369 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4370 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4372 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4373 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4374 /* Value of chain->used_spill_regs from previous iteration
4375 may be not included in the value calculated here because
4376 of possible removing caller-saves insns (see function
4377 delete_caller_save_insns. */
4378 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4379 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4383 CLEAR_REG_SET (&changed_allocation_pseudos);
4384 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4385 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4387 int regno = reg_renumber[i];
4388 if (reg_old_renumber[i] == regno)
4389 continue;
4391 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4393 alter_reg (i, reg_old_renumber[i], false);
4394 reg_old_renumber[i] = regno;
4395 if (dump_file)
4397 if (regno == -1)
4398 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4399 else
4400 fprintf (dump_file, " Register %d now in %d.\n\n",
4401 i, reg_renumber[i]);
4405 return something_changed;
4408 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4410 static void
4411 scan_paradoxical_subregs (rtx x)
4413 int i;
4414 const char *fmt;
4415 enum rtx_code code = GET_CODE (x);
4417 switch (code)
4419 case REG:
4420 case CONST:
4421 case SYMBOL_REF:
4422 case LABEL_REF:
4423 CASE_CONST_ANY:
4424 case CC0:
4425 case PC:
4426 case USE:
4427 case CLOBBER:
4428 return;
4430 case SUBREG:
4431 if (REG_P (SUBREG_REG (x))
4432 && (GET_MODE_SIZE (GET_MODE (x))
4433 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4435 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4436 = GET_MODE_SIZE (GET_MODE (x));
4437 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4439 return;
4441 default:
4442 break;
4445 fmt = GET_RTX_FORMAT (code);
4446 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4448 if (fmt[i] == 'e')
4449 scan_paradoxical_subregs (XEXP (x, i));
4450 else if (fmt[i] == 'E')
4452 int j;
4453 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4454 scan_paradoxical_subregs (XVECEXP (x, i, j));
4459 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4460 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4461 and apply the corresponding narrowing subreg to *OTHER_PTR.
4462 Return true if the operands were changed, false otherwise. */
4464 static bool
4465 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4467 rtx op, inner, other, tem;
4469 op = *op_ptr;
4470 if (!paradoxical_subreg_p (op))
4471 return false;
4472 inner = SUBREG_REG (op);
4474 other = *other_ptr;
4475 tem = gen_lowpart_common (GET_MODE (inner), other);
4476 if (!tem)
4477 return false;
4479 /* If the lowpart operation turned a hard register into a subreg,
4480 rather than simplifying it to another hard register, then the
4481 mode change cannot be properly represented. For example, OTHER
4482 might be valid in its current mode, but not in the new one. */
4483 if (GET_CODE (tem) == SUBREG
4484 && REG_P (other)
4485 && HARD_REGISTER_P (other))
4486 return false;
4488 *op_ptr = inner;
4489 *other_ptr = tem;
4490 return true;
4493 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4494 examine all of the reload insns between PREV and NEXT exclusive, and
4495 annotate all that may trap. */
4497 static void
4498 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4500 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4501 if (note == NULL)
4502 return;
4503 if (!insn_could_throw_p (insn))
4504 remove_note (insn, note);
4505 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4508 /* Reload pseudo-registers into hard regs around each insn as needed.
4509 Additional register load insns are output before the insn that needs it
4510 and perhaps store insns after insns that modify the reloaded pseudo reg.
4512 reg_last_reload_reg and reg_reloaded_contents keep track of
4513 which registers are already available in reload registers.
4514 We update these for the reloads that we perform,
4515 as the insns are scanned. */
4517 static void
4518 reload_as_needed (int live_known)
4520 struct insn_chain *chain;
4521 #if AUTO_INC_DEC
4522 int i;
4523 #endif
4524 rtx_note *marker;
4526 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4527 memset (spill_reg_store, 0, sizeof spill_reg_store);
4528 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4529 INIT_REG_SET (&reg_has_output_reload);
4530 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4531 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4533 set_initial_elim_offsets ();
4535 /* Generate a marker insn that we will move around. */
4536 marker = emit_note (NOTE_INSN_DELETED);
4537 unlink_insn_chain (marker, marker);
4539 for (chain = reload_insn_chain; chain; chain = chain->next)
4541 rtx_insn *prev = 0;
4542 rtx_insn *insn = chain->insn;
4543 rtx_insn *old_next = NEXT_INSN (insn);
4544 #if AUTO_INC_DEC
4545 rtx_insn *old_prev = PREV_INSN (insn);
4546 #endif
4548 if (will_delete_init_insn_p (insn))
4549 continue;
4551 /* If we pass a label, copy the offsets from the label information
4552 into the current offsets of each elimination. */
4553 if (LABEL_P (insn))
4554 set_offsets_for_label (insn);
4556 else if (INSN_P (insn))
4558 regset_head regs_to_forget;
4559 INIT_REG_SET (&regs_to_forget);
4560 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4562 /* If this is a USE and CLOBBER of a MEM, ensure that any
4563 references to eliminable registers have been removed. */
4565 if ((GET_CODE (PATTERN (insn)) == USE
4566 || GET_CODE (PATTERN (insn)) == CLOBBER)
4567 && MEM_P (XEXP (PATTERN (insn), 0)))
4568 XEXP (XEXP (PATTERN (insn), 0), 0)
4569 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4570 GET_MODE (XEXP (PATTERN (insn), 0)),
4571 NULL_RTX);
4573 /* If we need to do register elimination processing, do so.
4574 This might delete the insn, in which case we are done. */
4575 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4577 eliminate_regs_in_insn (insn, 1);
4578 if (NOTE_P (insn))
4580 update_eliminable_offsets ();
4581 CLEAR_REG_SET (&regs_to_forget);
4582 continue;
4586 /* If need_elim is nonzero but need_reload is zero, one might think
4587 that we could simply set n_reloads to 0. However, find_reloads
4588 could have done some manipulation of the insn (such as swapping
4589 commutative operands), and these manipulations are lost during
4590 the first pass for every insn that needs register elimination.
4591 So the actions of find_reloads must be redone here. */
4593 if (! chain->need_elim && ! chain->need_reload
4594 && ! chain->need_operand_change)
4595 n_reloads = 0;
4596 /* First find the pseudo regs that must be reloaded for this insn.
4597 This info is returned in the tables reload_... (see reload.h).
4598 Also modify the body of INSN by substituting RELOAD
4599 rtx's for those pseudo regs. */
4600 else
4602 CLEAR_REG_SET (&reg_has_output_reload);
4603 CLEAR_HARD_REG_SET (reg_is_output_reload);
4605 find_reloads (insn, 1, spill_indirect_levels, live_known,
4606 spill_reg_order);
4609 if (n_reloads > 0)
4611 rtx_insn *next = NEXT_INSN (insn);
4613 /* ??? PREV can get deleted by reload inheritance.
4614 Work around this by emitting a marker note. */
4615 prev = PREV_INSN (insn);
4616 reorder_insns_nobb (marker, marker, prev);
4618 /* Now compute which reload regs to reload them into. Perhaps
4619 reusing reload regs from previous insns, or else output
4620 load insns to reload them. Maybe output store insns too.
4621 Record the choices of reload reg in reload_reg_rtx. */
4622 choose_reload_regs (chain);
4624 /* Generate the insns to reload operands into or out of
4625 their reload regs. */
4626 emit_reload_insns (chain);
4628 /* Substitute the chosen reload regs from reload_reg_rtx
4629 into the insn's body (or perhaps into the bodies of other
4630 load and store insn that we just made for reloading
4631 and that we moved the structure into). */
4632 subst_reloads (insn);
4634 prev = PREV_INSN (marker);
4635 unlink_insn_chain (marker, marker);
4637 /* Adjust the exception region notes for loads and stores. */
4638 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4639 fixup_eh_region_note (insn, prev, next);
4641 /* Adjust the location of REG_ARGS_SIZE. */
4642 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4643 if (p)
4645 remove_note (insn, p);
4646 fixup_args_size_notes (prev, PREV_INSN (next),
4647 INTVAL (XEXP (p, 0)));
4650 /* If this was an ASM, make sure that all the reload insns
4651 we have generated are valid. If not, give an error
4652 and delete them. */
4653 if (asm_noperands (PATTERN (insn)) >= 0)
4654 for (rtx_insn *p = NEXT_INSN (prev);
4655 p != next;
4656 p = NEXT_INSN (p))
4657 if (p != insn && INSN_P (p)
4658 && GET_CODE (PATTERN (p)) != USE
4659 && (recog_memoized (p) < 0
4660 || (extract_insn (p),
4661 !(constrain_operands (1,
4662 get_enabled_alternatives (p))))))
4664 error_for_asm (insn,
4665 "%<asm%> operand requires "
4666 "impossible reload");
4667 delete_insn (p);
4671 if (num_eliminable && chain->need_elim)
4672 update_eliminable_offsets ();
4674 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4675 is no longer validly lying around to save a future reload.
4676 Note that this does not detect pseudos that were reloaded
4677 for this insn in order to be stored in
4678 (obeying register constraints). That is correct; such reload
4679 registers ARE still valid. */
4680 forget_marked_reloads (&regs_to_forget);
4681 CLEAR_REG_SET (&regs_to_forget);
4683 /* There may have been CLOBBER insns placed after INSN. So scan
4684 between INSN and NEXT and use them to forget old reloads. */
4685 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4686 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4687 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4689 #if AUTO_INC_DEC
4690 /* Likewise for regs altered by auto-increment in this insn.
4691 REG_INC notes have been changed by reloading:
4692 find_reloads_address_1 records substitutions for them,
4693 which have been performed by subst_reloads above. */
4694 for (i = n_reloads - 1; i >= 0; i--)
4696 rtx in_reg = rld[i].in_reg;
4697 if (in_reg)
4699 enum rtx_code code = GET_CODE (in_reg);
4700 /* PRE_INC / PRE_DEC will have the reload register ending up
4701 with the same value as the stack slot, but that doesn't
4702 hold true for POST_INC / POST_DEC. Either we have to
4703 convert the memory access to a true POST_INC / POST_DEC,
4704 or we can't use the reload register for inheritance. */
4705 if ((code == POST_INC || code == POST_DEC)
4706 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4707 REGNO (rld[i].reg_rtx))
4708 /* Make sure it is the inc/dec pseudo, and not
4709 some other (e.g. output operand) pseudo. */
4710 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4711 == REGNO (XEXP (in_reg, 0))))
4714 rtx reload_reg = rld[i].reg_rtx;
4715 machine_mode mode = GET_MODE (reload_reg);
4716 int n = 0;
4717 rtx_insn *p;
4719 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4721 /* We really want to ignore REG_INC notes here, so
4722 use PATTERN (p) as argument to reg_set_p . */
4723 if (reg_set_p (reload_reg, PATTERN (p)))
4724 break;
4725 n = count_occurrences (PATTERN (p), reload_reg, 0);
4726 if (! n)
4727 continue;
4728 if (n == 1)
4730 rtx replace_reg
4731 = gen_rtx_fmt_e (code, mode, reload_reg);
4733 validate_replace_rtx_group (reload_reg,
4734 replace_reg, p);
4735 n = verify_changes (0);
4737 /* We must also verify that the constraints
4738 are met after the replacement. Make sure
4739 extract_insn is only called for an insn
4740 where the replacements were found to be
4741 valid so far. */
4742 if (n)
4744 extract_insn (p);
4745 n = constrain_operands (1,
4746 get_enabled_alternatives (p));
4749 /* If the constraints were not met, then
4750 undo the replacement, else confirm it. */
4751 if (!n)
4752 cancel_changes (0);
4753 else
4754 confirm_change_group ();
4756 break;
4758 if (n == 1)
4760 add_reg_note (p, REG_INC, reload_reg);
4761 /* Mark this as having an output reload so that the
4762 REG_INC processing code below won't invalidate
4763 the reload for inheritance. */
4764 SET_HARD_REG_BIT (reg_is_output_reload,
4765 REGNO (reload_reg));
4766 SET_REGNO_REG_SET (&reg_has_output_reload,
4767 REGNO (XEXP (in_reg, 0)));
4769 else
4770 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4771 NULL);
4773 else if ((code == PRE_INC || code == PRE_DEC)
4774 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4775 REGNO (rld[i].reg_rtx))
4776 /* Make sure it is the inc/dec pseudo, and not
4777 some other (e.g. output operand) pseudo. */
4778 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4779 == REGNO (XEXP (in_reg, 0))))
4781 SET_HARD_REG_BIT (reg_is_output_reload,
4782 REGNO (rld[i].reg_rtx));
4783 SET_REGNO_REG_SET (&reg_has_output_reload,
4784 REGNO (XEXP (in_reg, 0)));
4786 else if (code == PRE_INC || code == PRE_DEC
4787 || code == POST_INC || code == POST_DEC)
4789 int in_regno = REGNO (XEXP (in_reg, 0));
4791 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4793 int in_hard_regno;
4794 bool forget_p = true;
4796 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4797 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4798 in_hard_regno))
4800 for (rtx_insn *x = (old_prev ?
4801 NEXT_INSN (old_prev) : insn);
4802 x != old_next;
4803 x = NEXT_INSN (x))
4804 if (x == reg_reloaded_insn[in_hard_regno])
4806 forget_p = false;
4807 break;
4810 /* If for some reasons, we didn't set up
4811 reg_last_reload_reg in this insn,
4812 invalidate inheritance from previous
4813 insns for the incremented/decremented
4814 register. Such registers will be not in
4815 reg_has_output_reload. Invalidate it
4816 also if the corresponding element in
4817 reg_reloaded_insn is also
4818 invalidated. */
4819 if (forget_p)
4820 forget_old_reloads_1 (XEXP (in_reg, 0),
4821 NULL_RTX, NULL);
4826 /* If a pseudo that got a hard register is auto-incremented,
4827 we must purge records of copying it into pseudos without
4828 hard registers. */
4829 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4830 if (REG_NOTE_KIND (x) == REG_INC)
4832 /* See if this pseudo reg was reloaded in this insn.
4833 If so, its last-reload info is still valid
4834 because it is based on this insn's reload. */
4835 for (i = 0; i < n_reloads; i++)
4836 if (rld[i].out == XEXP (x, 0))
4837 break;
4839 if (i == n_reloads)
4840 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4842 #endif
4844 /* A reload reg's contents are unknown after a label. */
4845 if (LABEL_P (insn))
4846 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4848 /* Don't assume a reload reg is still good after a call insn
4849 if it is a call-used reg, or if it contains a value that will
4850 be partially clobbered by the call. */
4851 else if (CALL_P (insn))
4853 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4854 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4856 /* If this is a call to a setjmp-type function, we must not
4857 reuse any reload reg contents across the call; that will
4858 just be clobbered by other uses of the register in later
4859 code, before the longjmp. */
4860 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4861 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4865 /* Clean up. */
4866 free (reg_last_reload_reg);
4867 CLEAR_REG_SET (&reg_has_output_reload);
4870 /* Discard all record of any value reloaded from X,
4871 or reloaded in X from someplace else;
4872 unless X is an output reload reg of the current insn.
4874 X may be a hard reg (the reload reg)
4875 or it may be a pseudo reg that was reloaded from.
4877 When DATA is non-NULL just mark the registers in regset
4878 to be forgotten later. */
4880 static void
4881 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4882 void *data)
4884 unsigned int regno;
4885 unsigned int nr;
4886 regset regs = (regset) data;
4888 /* note_stores does give us subregs of hard regs,
4889 subreg_regno_offset requires a hard reg. */
4890 while (GET_CODE (x) == SUBREG)
4892 /* We ignore the subreg offset when calculating the regno,
4893 because we are using the entire underlying hard register
4894 below. */
4895 x = SUBREG_REG (x);
4898 if (!REG_P (x))
4899 return;
4901 regno = REGNO (x);
4903 if (regno >= FIRST_PSEUDO_REGISTER)
4904 nr = 1;
4905 else
4907 unsigned int i;
4909 nr = REG_NREGS (x);
4910 /* Storing into a spilled-reg invalidates its contents.
4911 This can happen if a block-local pseudo is allocated to that reg
4912 and it wasn't spilled because this block's total need is 0.
4913 Then some insn might have an optional reload and use this reg. */
4914 if (!regs)
4915 for (i = 0; i < nr; i++)
4916 /* But don't do this if the reg actually serves as an output
4917 reload reg in the current instruction. */
4918 if (n_reloads == 0
4919 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4921 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4922 spill_reg_store[regno + i] = 0;
4926 if (regs)
4927 while (nr-- > 0)
4928 SET_REGNO_REG_SET (regs, regno + nr);
4929 else
4931 /* Since value of X has changed,
4932 forget any value previously copied from it. */
4934 while (nr-- > 0)
4935 /* But don't forget a copy if this is the output reload
4936 that establishes the copy's validity. */
4937 if (n_reloads == 0
4938 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4939 reg_last_reload_reg[regno + nr] = 0;
4943 /* Forget the reloads marked in regset by previous function. */
4944 static void
4945 forget_marked_reloads (regset regs)
4947 unsigned int reg;
4948 reg_set_iterator rsi;
4949 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4951 if (reg < FIRST_PSEUDO_REGISTER
4952 /* But don't do this if the reg actually serves as an output
4953 reload reg in the current instruction. */
4954 && (n_reloads == 0
4955 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4957 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4958 spill_reg_store[reg] = 0;
4960 if (n_reloads == 0
4961 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4962 reg_last_reload_reg[reg] = 0;
4966 /* The following HARD_REG_SETs indicate when each hard register is
4967 used for a reload of various parts of the current insn. */
4969 /* If reg is unavailable for all reloads. */
4970 static HARD_REG_SET reload_reg_unavailable;
4971 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4972 static HARD_REG_SET reload_reg_used;
4973 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4974 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4975 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4976 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4977 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4978 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4979 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4980 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4981 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4982 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4983 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4984 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4985 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4986 static HARD_REG_SET reload_reg_used_in_op_addr;
4987 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4988 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4989 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4990 static HARD_REG_SET reload_reg_used_in_insn;
4991 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4992 static HARD_REG_SET reload_reg_used_in_other_addr;
4994 /* If reg is in use as a reload reg for any sort of reload. */
4995 static HARD_REG_SET reload_reg_used_at_all;
4997 /* If reg is use as an inherited reload. We just mark the first register
4998 in the group. */
4999 static HARD_REG_SET reload_reg_used_for_inherit;
5001 /* Records which hard regs are used in any way, either as explicit use or
5002 by being allocated to a pseudo during any point of the current insn. */
5003 static HARD_REG_SET reg_used_in_insn;
5005 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5006 TYPE. MODE is used to indicate how many consecutive regs are
5007 actually used. */
5009 static void
5010 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5011 machine_mode mode)
5013 switch (type)
5015 case RELOAD_OTHER:
5016 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5017 break;
5019 case RELOAD_FOR_INPUT_ADDRESS:
5020 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5021 break;
5023 case RELOAD_FOR_INPADDR_ADDRESS:
5024 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5025 break;
5027 case RELOAD_FOR_OUTPUT_ADDRESS:
5028 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5029 break;
5031 case RELOAD_FOR_OUTADDR_ADDRESS:
5032 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5033 break;
5035 case RELOAD_FOR_OPERAND_ADDRESS:
5036 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5037 break;
5039 case RELOAD_FOR_OPADDR_ADDR:
5040 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5041 break;
5043 case RELOAD_FOR_OTHER_ADDRESS:
5044 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5045 break;
5047 case RELOAD_FOR_INPUT:
5048 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5049 break;
5051 case RELOAD_FOR_OUTPUT:
5052 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5053 break;
5055 case RELOAD_FOR_INSN:
5056 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5057 break;
5060 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5063 /* Similarly, but show REGNO is no longer in use for a reload. */
5065 static void
5066 clear_reload_reg_in_use (unsigned int regno, int opnum,
5067 enum reload_type type, machine_mode mode)
5069 unsigned int nregs = hard_regno_nregs (regno, mode);
5070 unsigned int start_regno, end_regno, r;
5071 int i;
5072 /* A complication is that for some reload types, inheritance might
5073 allow multiple reloads of the same types to share a reload register.
5074 We set check_opnum if we have to check only reloads with the same
5075 operand number, and check_any if we have to check all reloads. */
5076 int check_opnum = 0;
5077 int check_any = 0;
5078 HARD_REG_SET *used_in_set;
5080 switch (type)
5082 case RELOAD_OTHER:
5083 used_in_set = &reload_reg_used;
5084 break;
5086 case RELOAD_FOR_INPUT_ADDRESS:
5087 used_in_set = &reload_reg_used_in_input_addr[opnum];
5088 break;
5090 case RELOAD_FOR_INPADDR_ADDRESS:
5091 check_opnum = 1;
5092 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5093 break;
5095 case RELOAD_FOR_OUTPUT_ADDRESS:
5096 used_in_set = &reload_reg_used_in_output_addr[opnum];
5097 break;
5099 case RELOAD_FOR_OUTADDR_ADDRESS:
5100 check_opnum = 1;
5101 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5102 break;
5104 case RELOAD_FOR_OPERAND_ADDRESS:
5105 used_in_set = &reload_reg_used_in_op_addr;
5106 break;
5108 case RELOAD_FOR_OPADDR_ADDR:
5109 check_any = 1;
5110 used_in_set = &reload_reg_used_in_op_addr_reload;
5111 break;
5113 case RELOAD_FOR_OTHER_ADDRESS:
5114 used_in_set = &reload_reg_used_in_other_addr;
5115 check_any = 1;
5116 break;
5118 case RELOAD_FOR_INPUT:
5119 used_in_set = &reload_reg_used_in_input[opnum];
5120 break;
5122 case RELOAD_FOR_OUTPUT:
5123 used_in_set = &reload_reg_used_in_output[opnum];
5124 break;
5126 case RELOAD_FOR_INSN:
5127 used_in_set = &reload_reg_used_in_insn;
5128 break;
5129 default:
5130 gcc_unreachable ();
5132 /* We resolve conflicts with remaining reloads of the same type by
5133 excluding the intervals of reload registers by them from the
5134 interval of freed reload registers. Since we only keep track of
5135 one set of interval bounds, we might have to exclude somewhat
5136 more than what would be necessary if we used a HARD_REG_SET here.
5137 But this should only happen very infrequently, so there should
5138 be no reason to worry about it. */
5140 start_regno = regno;
5141 end_regno = regno + nregs;
5142 if (check_opnum || check_any)
5144 for (i = n_reloads - 1; i >= 0; i--)
5146 if (rld[i].when_needed == type
5147 && (check_any || rld[i].opnum == opnum)
5148 && rld[i].reg_rtx)
5150 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5151 unsigned int conflict_end
5152 = end_hard_regno (rld[i].mode, conflict_start);
5154 /* If there is an overlap with the first to-be-freed register,
5155 adjust the interval start. */
5156 if (conflict_start <= start_regno && conflict_end > start_regno)
5157 start_regno = conflict_end;
5158 /* Otherwise, if there is a conflict with one of the other
5159 to-be-freed registers, adjust the interval end. */
5160 if (conflict_start > start_regno && conflict_start < end_regno)
5161 end_regno = conflict_start;
5166 for (r = start_regno; r < end_regno; r++)
5167 CLEAR_HARD_REG_BIT (*used_in_set, r);
5170 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5171 specified by OPNUM and TYPE. */
5173 static int
5174 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5176 int i;
5178 /* In use for a RELOAD_OTHER means it's not available for anything. */
5179 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5180 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5181 return 0;
5183 switch (type)
5185 case RELOAD_OTHER:
5186 /* In use for anything means we can't use it for RELOAD_OTHER. */
5187 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5188 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5189 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5190 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5191 return 0;
5193 for (i = 0; i < reload_n_operands; i++)
5194 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5195 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5196 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5197 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5198 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5199 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5200 return 0;
5202 return 1;
5204 case RELOAD_FOR_INPUT:
5205 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5206 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5207 return 0;
5209 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5210 return 0;
5212 /* If it is used for some other input, can't use it. */
5213 for (i = 0; i < reload_n_operands; i++)
5214 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5215 return 0;
5217 /* If it is used in a later operand's address, can't use it. */
5218 for (i = opnum + 1; i < reload_n_operands; i++)
5219 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5220 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5221 return 0;
5223 return 1;
5225 case RELOAD_FOR_INPUT_ADDRESS:
5226 /* Can't use a register if it is used for an input address for this
5227 operand or used as an input in an earlier one. */
5228 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5229 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5230 return 0;
5232 for (i = 0; i < opnum; i++)
5233 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5234 return 0;
5236 return 1;
5238 case RELOAD_FOR_INPADDR_ADDRESS:
5239 /* Can't use a register if it is used for an input address
5240 for this operand or used as an input in an earlier
5241 one. */
5242 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5243 return 0;
5245 for (i = 0; i < opnum; i++)
5246 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5247 return 0;
5249 return 1;
5251 case RELOAD_FOR_OUTPUT_ADDRESS:
5252 /* Can't use a register if it is used for an output address for this
5253 operand or used as an output in this or a later operand. Note
5254 that multiple output operands are emitted in reverse order, so
5255 the conflicting ones are those with lower indices. */
5256 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5257 return 0;
5259 for (i = 0; i <= opnum; i++)
5260 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5261 return 0;
5263 return 1;
5265 case RELOAD_FOR_OUTADDR_ADDRESS:
5266 /* Can't use a register if it is used for an output address
5267 for this operand or used as an output in this or a
5268 later operand. Note that multiple output operands are
5269 emitted in reverse order, so the conflicting ones are
5270 those with lower indices. */
5271 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5272 return 0;
5274 for (i = 0; i <= opnum; i++)
5275 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5276 return 0;
5278 return 1;
5280 case RELOAD_FOR_OPERAND_ADDRESS:
5281 for (i = 0; i < reload_n_operands; i++)
5282 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5283 return 0;
5285 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5286 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5288 case RELOAD_FOR_OPADDR_ADDR:
5289 for (i = 0; i < reload_n_operands; i++)
5290 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5291 return 0;
5293 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5295 case RELOAD_FOR_OUTPUT:
5296 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5297 outputs, or an operand address for this or an earlier output.
5298 Note that multiple output operands are emitted in reverse order,
5299 so the conflicting ones are those with higher indices. */
5300 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5301 return 0;
5303 for (i = 0; i < reload_n_operands; i++)
5304 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5305 return 0;
5307 for (i = opnum; i < reload_n_operands; i++)
5308 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5309 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5310 return 0;
5312 return 1;
5314 case RELOAD_FOR_INSN:
5315 for (i = 0; i < reload_n_operands; i++)
5316 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5317 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5318 return 0;
5320 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5321 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5323 case RELOAD_FOR_OTHER_ADDRESS:
5324 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5326 default:
5327 gcc_unreachable ();
5331 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5332 the number RELOADNUM, is still available in REGNO at the end of the insn.
5334 We can assume that the reload reg was already tested for availability
5335 at the time it is needed, and we should not check this again,
5336 in case the reg has already been marked in use. */
5338 static int
5339 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5341 int opnum = rld[reloadnum].opnum;
5342 enum reload_type type = rld[reloadnum].when_needed;
5343 int i;
5345 /* See if there is a reload with the same type for this operand, using
5346 the same register. This case is not handled by the code below. */
5347 for (i = reloadnum + 1; i < n_reloads; i++)
5349 rtx reg;
5351 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5352 continue;
5353 reg = rld[i].reg_rtx;
5354 if (reg == NULL_RTX)
5355 continue;
5356 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5357 return 0;
5360 switch (type)
5362 case RELOAD_OTHER:
5363 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5364 its value must reach the end. */
5365 return 1;
5367 /* If this use is for part of the insn,
5368 its value reaches if no subsequent part uses the same register.
5369 Just like the above function, don't try to do this with lots
5370 of fallthroughs. */
5372 case RELOAD_FOR_OTHER_ADDRESS:
5373 /* Here we check for everything else, since these don't conflict
5374 with anything else and everything comes later. */
5376 for (i = 0; i < reload_n_operands; i++)
5377 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5378 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5379 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5380 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5381 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5382 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5383 return 0;
5385 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5386 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5387 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5388 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5390 case RELOAD_FOR_INPUT_ADDRESS:
5391 case RELOAD_FOR_INPADDR_ADDRESS:
5392 /* Similar, except that we check only for this and subsequent inputs
5393 and the address of only subsequent inputs and we do not need
5394 to check for RELOAD_OTHER objects since they are known not to
5395 conflict. */
5397 for (i = opnum; i < reload_n_operands; i++)
5398 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5399 return 0;
5401 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5402 could be killed if the register is also used by reload with type
5403 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5404 if (type == RELOAD_FOR_INPADDR_ADDRESS
5405 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5406 return 0;
5408 for (i = opnum + 1; i < reload_n_operands; i++)
5409 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5410 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5411 return 0;
5413 for (i = 0; i < reload_n_operands; i++)
5414 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5415 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5416 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5417 return 0;
5419 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5420 return 0;
5422 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5423 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5424 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5426 case RELOAD_FOR_INPUT:
5427 /* Similar to input address, except we start at the next operand for
5428 both input and input address and we do not check for
5429 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5430 would conflict. */
5432 for (i = opnum + 1; i < reload_n_operands; i++)
5433 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5434 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5435 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5436 return 0;
5438 /* ... fall through ... */
5440 case RELOAD_FOR_OPERAND_ADDRESS:
5441 /* Check outputs and their addresses. */
5443 for (i = 0; i < reload_n_operands; i++)
5444 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5445 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5446 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5447 return 0;
5449 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5451 case RELOAD_FOR_OPADDR_ADDR:
5452 for (i = 0; i < reload_n_operands; i++)
5453 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5454 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5455 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5456 return 0;
5458 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5459 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5460 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5462 case RELOAD_FOR_INSN:
5463 /* These conflict with other outputs with RELOAD_OTHER. So
5464 we need only check for output addresses. */
5466 opnum = reload_n_operands;
5468 /* fall through */
5470 case RELOAD_FOR_OUTPUT:
5471 case RELOAD_FOR_OUTPUT_ADDRESS:
5472 case RELOAD_FOR_OUTADDR_ADDRESS:
5473 /* We already know these can't conflict with a later output. So the
5474 only thing to check are later output addresses.
5475 Note that multiple output operands are emitted in reverse order,
5476 so the conflicting ones are those with lower indices. */
5477 for (i = 0; i < opnum; i++)
5478 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5479 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5480 return 0;
5482 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5483 could be killed if the register is also used by reload with type
5484 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5485 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5486 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5487 return 0;
5489 return 1;
5491 default:
5492 gcc_unreachable ();
5496 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5497 every register in REG. */
5499 static bool
5500 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5502 unsigned int i;
5504 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5505 if (!reload_reg_reaches_end_p (i, reloadnum))
5506 return false;
5507 return true;
5511 /* Returns whether R1 and R2 are uniquely chained: the value of one
5512 is used by the other, and that value is not used by any other
5513 reload for this insn. This is used to partially undo the decision
5514 made in find_reloads when in the case of multiple
5515 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5516 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5517 reloads. This code tries to avoid the conflict created by that
5518 change. It might be cleaner to explicitly keep track of which
5519 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5520 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5521 this after the fact. */
5522 static bool
5523 reloads_unique_chain_p (int r1, int r2)
5525 int i;
5527 /* We only check input reloads. */
5528 if (! rld[r1].in || ! rld[r2].in)
5529 return false;
5531 /* Avoid anything with output reloads. */
5532 if (rld[r1].out || rld[r2].out)
5533 return false;
5535 /* "chained" means one reload is a component of the other reload,
5536 not the same as the other reload. */
5537 if (rld[r1].opnum != rld[r2].opnum
5538 || rtx_equal_p (rld[r1].in, rld[r2].in)
5539 || rld[r1].optional || rld[r2].optional
5540 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5541 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5542 return false;
5544 /* The following loop assumes that r1 is the reload that feeds r2. */
5545 if (r1 > r2)
5546 std::swap (r1, r2);
5548 for (i = 0; i < n_reloads; i ++)
5549 /* Look for input reloads that aren't our two */
5550 if (i != r1 && i != r2 && rld[i].in)
5552 /* If our reload is mentioned at all, it isn't a simple chain. */
5553 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5554 return false;
5556 return true;
5559 /* The recursive function change all occurrences of WHAT in *WHERE
5560 to REPL. */
5561 static void
5562 substitute (rtx *where, const_rtx what, rtx repl)
5564 const char *fmt;
5565 int i;
5566 enum rtx_code code;
5568 if (*where == 0)
5569 return;
5571 if (*where == what || rtx_equal_p (*where, what))
5573 /* Record the location of the changed rtx. */
5574 substitute_stack.safe_push (where);
5575 *where = repl;
5576 return;
5579 code = GET_CODE (*where);
5580 fmt = GET_RTX_FORMAT (code);
5581 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5583 if (fmt[i] == 'E')
5585 int j;
5587 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5588 substitute (&XVECEXP (*where, i, j), what, repl);
5590 else if (fmt[i] == 'e')
5591 substitute (&XEXP (*where, i), what, repl);
5595 /* The function returns TRUE if chain of reload R1 and R2 (in any
5596 order) can be evaluated without usage of intermediate register for
5597 the reload containing another reload. It is important to see
5598 gen_reload to understand what the function is trying to do. As an
5599 example, let us have reload chain
5601 r2: const
5602 r1: <something> + const
5604 and reload R2 got reload reg HR. The function returns true if
5605 there is a correct insn HR = HR + <something>. Otherwise,
5606 gen_reload will use intermediate register (and this is the reload
5607 reg for R1) to reload <something>.
5609 We need this function to find a conflict for chain reloads. In our
5610 example, if HR = HR + <something> is incorrect insn, then we cannot
5611 use HR as a reload register for R2. If we do use it then we get a
5612 wrong code:
5614 HR = const
5615 HR = <something>
5616 HR = HR + HR
5619 static bool
5620 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5622 /* Assume other cases in gen_reload are not possible for
5623 chain reloads or do need an intermediate hard registers. */
5624 bool result = true;
5625 int regno, code;
5626 rtx out, in;
5627 rtx_insn *insn;
5628 rtx_insn *last = get_last_insn ();
5630 /* Make r2 a component of r1. */
5631 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5632 std::swap (r1, r2);
5634 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5635 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5636 gcc_assert (regno >= 0);
5637 out = gen_rtx_REG (rld[r1].mode, regno);
5638 in = rld[r1].in;
5639 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5641 /* If IN is a paradoxical SUBREG, remove it and try to put the
5642 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5643 strip_paradoxical_subreg (&in, &out);
5645 if (GET_CODE (in) == PLUS
5646 && (REG_P (XEXP (in, 0))
5647 || GET_CODE (XEXP (in, 0)) == SUBREG
5648 || MEM_P (XEXP (in, 0)))
5649 && (REG_P (XEXP (in, 1))
5650 || GET_CODE (XEXP (in, 1)) == SUBREG
5651 || CONSTANT_P (XEXP (in, 1))
5652 || MEM_P (XEXP (in, 1))))
5654 insn = emit_insn (gen_rtx_SET (out, in));
5655 code = recog_memoized (insn);
5656 result = false;
5658 if (code >= 0)
5660 extract_insn (insn);
5661 /* We want constrain operands to treat this insn strictly in
5662 its validity determination, i.e., the way it would after
5663 reload has completed. */
5664 result = constrain_operands (1, get_enabled_alternatives (insn));
5667 delete_insns_since (last);
5670 /* Restore the original value at each changed address within R1. */
5671 while (!substitute_stack.is_empty ())
5673 rtx *where = substitute_stack.pop ();
5674 *where = rld[r2].in;
5677 return result;
5680 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5681 Return 0 otherwise.
5683 This function uses the same algorithm as reload_reg_free_p above. */
5685 static int
5686 reloads_conflict (int r1, int r2)
5688 enum reload_type r1_type = rld[r1].when_needed;
5689 enum reload_type r2_type = rld[r2].when_needed;
5690 int r1_opnum = rld[r1].opnum;
5691 int r2_opnum = rld[r2].opnum;
5693 /* RELOAD_OTHER conflicts with everything. */
5694 if (r2_type == RELOAD_OTHER)
5695 return 1;
5697 /* Otherwise, check conflicts differently for each type. */
5699 switch (r1_type)
5701 case RELOAD_FOR_INPUT:
5702 return (r2_type == RELOAD_FOR_INSN
5703 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5704 || r2_type == RELOAD_FOR_OPADDR_ADDR
5705 || r2_type == RELOAD_FOR_INPUT
5706 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5707 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5708 && r2_opnum > r1_opnum));
5710 case RELOAD_FOR_INPUT_ADDRESS:
5711 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5712 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5714 case RELOAD_FOR_INPADDR_ADDRESS:
5715 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5716 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5718 case RELOAD_FOR_OUTPUT_ADDRESS:
5719 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5720 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5722 case RELOAD_FOR_OUTADDR_ADDRESS:
5723 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5724 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5726 case RELOAD_FOR_OPERAND_ADDRESS:
5727 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5728 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5729 && (!reloads_unique_chain_p (r1, r2)
5730 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5732 case RELOAD_FOR_OPADDR_ADDR:
5733 return (r2_type == RELOAD_FOR_INPUT
5734 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5736 case RELOAD_FOR_OUTPUT:
5737 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5738 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5739 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5740 && r2_opnum >= r1_opnum));
5742 case RELOAD_FOR_INSN:
5743 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5744 || r2_type == RELOAD_FOR_INSN
5745 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5747 case RELOAD_FOR_OTHER_ADDRESS:
5748 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5750 case RELOAD_OTHER:
5751 return 1;
5753 default:
5754 gcc_unreachable ();
5758 /* Indexed by reload number, 1 if incoming value
5759 inherited from previous insns. */
5760 static char reload_inherited[MAX_RELOADS];
5762 /* For an inherited reload, this is the insn the reload was inherited from,
5763 if we know it. Otherwise, this is 0. */
5764 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5766 /* If nonzero, this is a place to get the value of the reload,
5767 rather than using reload_in. */
5768 static rtx reload_override_in[MAX_RELOADS];
5770 /* For each reload, the hard register number of the register used,
5771 or -1 if we did not need a register for this reload. */
5772 static int reload_spill_index[MAX_RELOADS];
5774 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5775 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5777 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5778 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5780 /* Subroutine of free_for_value_p, used to check a single register.
5781 START_REGNO is the starting regno of the full reload register
5782 (possibly comprising multiple hard registers) that we are considering. */
5784 static int
5785 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5786 enum reload_type type, rtx value, rtx out,
5787 int reloadnum, int ignore_address_reloads)
5789 int time1;
5790 /* Set if we see an input reload that must not share its reload register
5791 with any new earlyclobber, but might otherwise share the reload
5792 register with an output or input-output reload. */
5793 int check_earlyclobber = 0;
5794 int i;
5795 int copy = 0;
5797 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5798 return 0;
5800 if (out == const0_rtx)
5802 copy = 1;
5803 out = NULL_RTX;
5806 /* We use some pseudo 'time' value to check if the lifetimes of the
5807 new register use would overlap with the one of a previous reload
5808 that is not read-only or uses a different value.
5809 The 'time' used doesn't have to be linear in any shape or form, just
5810 monotonic.
5811 Some reload types use different 'buckets' for each operand.
5812 So there are MAX_RECOG_OPERANDS different time values for each
5813 such reload type.
5814 We compute TIME1 as the time when the register for the prospective
5815 new reload ceases to be live, and TIME2 for each existing
5816 reload as the time when that the reload register of that reload
5817 becomes live.
5818 Where there is little to be gained by exact lifetime calculations,
5819 we just make conservative assumptions, i.e. a longer lifetime;
5820 this is done in the 'default:' cases. */
5821 switch (type)
5823 case RELOAD_FOR_OTHER_ADDRESS:
5824 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5825 time1 = copy ? 0 : 1;
5826 break;
5827 case RELOAD_OTHER:
5828 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5829 break;
5830 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5831 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5832 respectively, to the time values for these, we get distinct time
5833 values. To get distinct time values for each operand, we have to
5834 multiply opnum by at least three. We round that up to four because
5835 multiply by four is often cheaper. */
5836 case RELOAD_FOR_INPADDR_ADDRESS:
5837 time1 = opnum * 4 + 2;
5838 break;
5839 case RELOAD_FOR_INPUT_ADDRESS:
5840 time1 = opnum * 4 + 3;
5841 break;
5842 case RELOAD_FOR_INPUT:
5843 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5844 executes (inclusive). */
5845 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5846 break;
5847 case RELOAD_FOR_OPADDR_ADDR:
5848 /* opnum * 4 + 4
5849 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5850 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5851 break;
5852 case RELOAD_FOR_OPERAND_ADDRESS:
5853 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5854 is executed. */
5855 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5856 break;
5857 case RELOAD_FOR_OUTADDR_ADDRESS:
5858 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5859 break;
5860 case RELOAD_FOR_OUTPUT_ADDRESS:
5861 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5862 break;
5863 default:
5864 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5867 for (i = 0; i < n_reloads; i++)
5869 rtx reg = rld[i].reg_rtx;
5870 if (reg && REG_P (reg)
5871 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5872 && i != reloadnum)
5874 rtx other_input = rld[i].in;
5876 /* If the other reload loads the same input value, that
5877 will not cause a conflict only if it's loading it into
5878 the same register. */
5879 if (true_regnum (reg) != start_regno)
5880 other_input = NULL_RTX;
5881 if (! other_input || ! rtx_equal_p (other_input, value)
5882 || rld[i].out || out)
5884 int time2;
5885 switch (rld[i].when_needed)
5887 case RELOAD_FOR_OTHER_ADDRESS:
5888 time2 = 0;
5889 break;
5890 case RELOAD_FOR_INPADDR_ADDRESS:
5891 /* find_reloads makes sure that a
5892 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5893 by at most one - the first -
5894 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5895 address reload is inherited, the address address reload
5896 goes away, so we can ignore this conflict. */
5897 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5898 && ignore_address_reloads
5899 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5900 Then the address address is still needed to store
5901 back the new address. */
5902 && ! rld[reloadnum].out)
5903 continue;
5904 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5905 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5906 reloads go away. */
5907 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5908 && ignore_address_reloads
5909 /* Unless we are reloading an auto_inc expression. */
5910 && ! rld[reloadnum].out)
5911 continue;
5912 time2 = rld[i].opnum * 4 + 2;
5913 break;
5914 case RELOAD_FOR_INPUT_ADDRESS:
5915 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5916 && ignore_address_reloads
5917 && ! rld[reloadnum].out)
5918 continue;
5919 time2 = rld[i].opnum * 4 + 3;
5920 break;
5921 case RELOAD_FOR_INPUT:
5922 time2 = rld[i].opnum * 4 + 4;
5923 check_earlyclobber = 1;
5924 break;
5925 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5926 == MAX_RECOG_OPERAND * 4 */
5927 case RELOAD_FOR_OPADDR_ADDR:
5928 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5929 && ignore_address_reloads
5930 && ! rld[reloadnum].out)
5931 continue;
5932 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5933 break;
5934 case RELOAD_FOR_OPERAND_ADDRESS:
5935 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5936 check_earlyclobber = 1;
5937 break;
5938 case RELOAD_FOR_INSN:
5939 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5940 break;
5941 case RELOAD_FOR_OUTPUT:
5942 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5943 instruction is executed. */
5944 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5945 break;
5946 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5947 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5948 value. */
5949 case RELOAD_FOR_OUTADDR_ADDRESS:
5950 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5951 && ignore_address_reloads
5952 && ! rld[reloadnum].out)
5953 continue;
5954 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5955 break;
5956 case RELOAD_FOR_OUTPUT_ADDRESS:
5957 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5958 break;
5959 case RELOAD_OTHER:
5960 /* If there is no conflict in the input part, handle this
5961 like an output reload. */
5962 if (! rld[i].in || rtx_equal_p (other_input, value))
5964 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5965 /* Earlyclobbered outputs must conflict with inputs. */
5966 if (earlyclobber_operand_p (rld[i].out))
5967 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5969 break;
5971 time2 = 1;
5972 /* RELOAD_OTHER might be live beyond instruction execution,
5973 but this is not obvious when we set time2 = 1. So check
5974 here if there might be a problem with the new reload
5975 clobbering the register used by the RELOAD_OTHER. */
5976 if (out)
5977 return 0;
5978 break;
5979 default:
5980 return 0;
5982 if ((time1 >= time2
5983 && (! rld[i].in || rld[i].out
5984 || ! rtx_equal_p (other_input, value)))
5985 || (out && rld[reloadnum].out_reg
5986 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5987 return 0;
5992 /* Earlyclobbered outputs must conflict with inputs. */
5993 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5994 return 0;
5996 return 1;
5999 /* Return 1 if the value in reload reg REGNO, as used by a reload
6000 needed for the part of the insn specified by OPNUM and TYPE,
6001 may be used to load VALUE into it.
6003 MODE is the mode in which the register is used, this is needed to
6004 determine how many hard regs to test.
6006 Other read-only reloads with the same value do not conflict
6007 unless OUT is nonzero and these other reloads have to live while
6008 output reloads live.
6009 If OUT is CONST0_RTX, this is a special case: it means that the
6010 test should not be for using register REGNO as reload register, but
6011 for copying from register REGNO into the reload register.
6013 RELOADNUM is the number of the reload we want to load this value for;
6014 a reload does not conflict with itself.
6016 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6017 reloads that load an address for the very reload we are considering.
6019 The caller has to make sure that there is no conflict with the return
6020 register. */
6022 static int
6023 free_for_value_p (int regno, machine_mode mode, int opnum,
6024 enum reload_type type, rtx value, rtx out, int reloadnum,
6025 int ignore_address_reloads)
6027 int nregs = hard_regno_nregs (regno, mode);
6028 while (nregs-- > 0)
6029 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6030 value, out, reloadnum,
6031 ignore_address_reloads))
6032 return 0;
6033 return 1;
6036 /* Return nonzero if the rtx X is invariant over the current function. */
6037 /* ??? Actually, the places where we use this expect exactly what is
6038 tested here, and not everything that is function invariant. In
6039 particular, the frame pointer and arg pointer are special cased;
6040 pic_offset_table_rtx is not, and we must not spill these things to
6041 memory. */
6044 function_invariant_p (const_rtx x)
6046 if (CONSTANT_P (x))
6047 return 1;
6048 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6049 return 1;
6050 if (GET_CODE (x) == PLUS
6051 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6052 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6053 return 1;
6054 return 0;
6057 /* Determine whether the reload reg X overlaps any rtx'es used for
6058 overriding inheritance. Return nonzero if so. */
6060 static int
6061 conflicts_with_override (rtx x)
6063 int i;
6064 for (i = 0; i < n_reloads; i++)
6065 if (reload_override_in[i]
6066 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6067 return 1;
6068 return 0;
6071 /* Give an error message saying we failed to find a reload for INSN,
6072 and clear out reload R. */
6073 static void
6074 failed_reload (rtx_insn *insn, int r)
6076 if (asm_noperands (PATTERN (insn)) < 0)
6077 /* It's the compiler's fault. */
6078 fatal_insn ("could not find a spill register", insn);
6080 /* It's the user's fault; the operand's mode and constraint
6081 don't match. Disable this reload so we don't crash in final. */
6082 error_for_asm (insn,
6083 "%<asm%> operand constraint incompatible with operand size");
6084 rld[r].in = 0;
6085 rld[r].out = 0;
6086 rld[r].reg_rtx = 0;
6087 rld[r].optional = 1;
6088 rld[r].secondary_p = 1;
6091 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6092 for reload R. If it's valid, get an rtx for it. Return nonzero if
6093 successful. */
6094 static int
6095 set_reload_reg (int i, int r)
6097 int regno;
6098 rtx reg = spill_reg_rtx[i];
6100 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6101 spill_reg_rtx[i] = reg
6102 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6104 regno = true_regnum (reg);
6106 /* Detect when the reload reg can't hold the reload mode.
6107 This used to be one `if', but Sequent compiler can't handle that. */
6108 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6110 machine_mode test_mode = VOIDmode;
6111 if (rld[r].in)
6112 test_mode = GET_MODE (rld[r].in);
6113 /* If rld[r].in has VOIDmode, it means we will load it
6114 in whatever mode the reload reg has: to wit, rld[r].mode.
6115 We have already tested that for validity. */
6116 /* Aside from that, we need to test that the expressions
6117 to reload from or into have modes which are valid for this
6118 reload register. Otherwise the reload insns would be invalid. */
6119 if (! (rld[r].in != 0 && test_mode != VOIDmode
6120 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6121 if (! (rld[r].out != 0
6122 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6124 /* The reg is OK. */
6125 last_spill_reg = i;
6127 /* Mark as in use for this insn the reload regs we use
6128 for this. */
6129 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6130 rld[r].when_needed, rld[r].mode);
6132 rld[r].reg_rtx = reg;
6133 reload_spill_index[r] = spill_regs[i];
6134 return 1;
6137 return 0;
6140 /* Find a spill register to use as a reload register for reload R.
6141 LAST_RELOAD is nonzero if this is the last reload for the insn being
6142 processed.
6144 Set rld[R].reg_rtx to the register allocated.
6146 We return 1 if successful, or 0 if we couldn't find a spill reg and
6147 we didn't change anything. */
6149 static int
6150 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6151 int last_reload)
6153 int i, pass, count;
6155 /* If we put this reload ahead, thinking it is a group,
6156 then insist on finding a group. Otherwise we can grab a
6157 reg that some other reload needs.
6158 (That can happen when we have a 68000 DATA_OR_FP_REG
6159 which is a group of data regs or one fp reg.)
6160 We need not be so restrictive if there are no more reloads
6161 for this insn.
6163 ??? Really it would be nicer to have smarter handling
6164 for that kind of reg class, where a problem like this is normal.
6165 Perhaps those classes should be avoided for reloading
6166 by use of more alternatives. */
6168 int force_group = rld[r].nregs > 1 && ! last_reload;
6170 /* If we want a single register and haven't yet found one,
6171 take any reg in the right class and not in use.
6172 If we want a consecutive group, here is where we look for it.
6174 We use three passes so we can first look for reload regs to
6175 reuse, which are already in use for other reloads in this insn,
6176 and only then use additional registers which are not "bad", then
6177 finally any register.
6179 I think that maximizing reuse is needed to make sure we don't
6180 run out of reload regs. Suppose we have three reloads, and
6181 reloads A and B can share regs. These need two regs.
6182 Suppose A and B are given different regs.
6183 That leaves none for C. */
6184 for (pass = 0; pass < 3; pass++)
6186 /* I is the index in spill_regs.
6187 We advance it round-robin between insns to use all spill regs
6188 equally, so that inherited reloads have a chance
6189 of leapfrogging each other. */
6191 i = last_spill_reg;
6193 for (count = 0; count < n_spills; count++)
6195 int rclass = (int) rld[r].rclass;
6196 int regnum;
6198 i++;
6199 if (i >= n_spills)
6200 i -= n_spills;
6201 regnum = spill_regs[i];
6203 if ((reload_reg_free_p (regnum, rld[r].opnum,
6204 rld[r].when_needed)
6205 || (rld[r].in
6206 /* We check reload_reg_used to make sure we
6207 don't clobber the return register. */
6208 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6209 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6210 rld[r].when_needed, rld[r].in,
6211 rld[r].out, r, 1)))
6212 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6213 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6214 /* Look first for regs to share, then for unshared. But
6215 don't share regs used for inherited reloads; they are
6216 the ones we want to preserve. */
6217 && (pass
6218 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6219 regnum)
6220 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6221 regnum))))
6223 int nr = hard_regno_nregs (regnum, rld[r].mode);
6225 /* During the second pass we want to avoid reload registers
6226 which are "bad" for this reload. */
6227 if (pass == 1
6228 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6229 continue;
6231 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6232 (on 68000) got us two FP regs. If NR is 1,
6233 we would reject both of them. */
6234 if (force_group)
6235 nr = rld[r].nregs;
6236 /* If we need only one reg, we have already won. */
6237 if (nr == 1)
6239 /* But reject a single reg if we demand a group. */
6240 if (force_group)
6241 continue;
6242 break;
6244 /* Otherwise check that as many consecutive regs as we need
6245 are available here. */
6246 while (nr > 1)
6248 int regno = regnum + nr - 1;
6249 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6250 && spill_reg_order[regno] >= 0
6251 && reload_reg_free_p (regno, rld[r].opnum,
6252 rld[r].when_needed)))
6253 break;
6254 nr--;
6256 if (nr == 1)
6257 break;
6261 /* If we found something on the current pass, omit later passes. */
6262 if (count < n_spills)
6263 break;
6266 /* We should have found a spill register by now. */
6267 if (count >= n_spills)
6268 return 0;
6270 /* I is the index in SPILL_REG_RTX of the reload register we are to
6271 allocate. Get an rtx for it and find its register number. */
6273 return set_reload_reg (i, r);
6276 /* Initialize all the tables needed to allocate reload registers.
6277 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6278 is the array we use to restore the reg_rtx field for every reload. */
6280 static void
6281 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6283 int i;
6285 for (i = 0; i < n_reloads; i++)
6286 rld[i].reg_rtx = save_reload_reg_rtx[i];
6288 memset (reload_inherited, 0, MAX_RELOADS);
6289 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6290 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6292 CLEAR_HARD_REG_SET (reload_reg_used);
6293 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6294 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6295 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6296 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6297 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6299 CLEAR_HARD_REG_SET (reg_used_in_insn);
6301 HARD_REG_SET tmp;
6302 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6303 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6304 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6305 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6306 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6307 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6310 for (i = 0; i < reload_n_operands; i++)
6312 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6313 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6314 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6315 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6316 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6317 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6320 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6322 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6324 for (i = 0; i < n_reloads; i++)
6325 /* If we have already decided to use a certain register,
6326 don't use it in another way. */
6327 if (rld[i].reg_rtx)
6328 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6329 rld[i].when_needed, rld[i].mode);
6332 /* If X is not a subreg, return it unmodified. If it is a subreg,
6333 look up whether we made a replacement for the SUBREG_REG. Return
6334 either the replacement or the SUBREG_REG. */
6336 static rtx
6337 replaced_subreg (rtx x)
6339 if (GET_CODE (x) == SUBREG)
6340 return find_replacement (&SUBREG_REG (x));
6341 return x;
6344 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6345 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6346 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6347 otherwise it is NULL. */
6349 static int
6350 compute_reload_subreg_offset (machine_mode outermode,
6351 rtx subreg,
6352 machine_mode innermode)
6354 int outer_offset;
6355 machine_mode middlemode;
6357 if (!subreg)
6358 return subreg_lowpart_offset (outermode, innermode);
6360 outer_offset = SUBREG_BYTE (subreg);
6361 middlemode = GET_MODE (SUBREG_REG (subreg));
6363 /* If SUBREG is paradoxical then return the normal lowpart offset
6364 for OUTERMODE and INNERMODE. Our caller has already checked
6365 that OUTERMODE fits in INNERMODE. */
6366 if (paradoxical_subreg_p (outermode, middlemode))
6367 return subreg_lowpart_offset (outermode, innermode);
6369 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6370 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6371 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6374 /* Assign hard reg targets for the pseudo-registers we must reload
6375 into hard regs for this insn.
6376 Also output the instructions to copy them in and out of the hard regs.
6378 For machines with register classes, we are responsible for
6379 finding a reload reg in the proper class. */
6381 static void
6382 choose_reload_regs (struct insn_chain *chain)
6384 rtx_insn *insn = chain->insn;
6385 int i, j;
6386 unsigned int max_group_size = 1;
6387 enum reg_class group_class = NO_REGS;
6388 int pass, win, inheritance;
6390 rtx save_reload_reg_rtx[MAX_RELOADS];
6392 /* In order to be certain of getting the registers we need,
6393 we must sort the reloads into order of increasing register class.
6394 Then our grabbing of reload registers will parallel the process
6395 that provided the reload registers.
6397 Also note whether any of the reloads wants a consecutive group of regs.
6398 If so, record the maximum size of the group desired and what
6399 register class contains all the groups needed by this insn. */
6401 for (j = 0; j < n_reloads; j++)
6403 reload_order[j] = j;
6404 if (rld[j].reg_rtx != NULL_RTX)
6406 gcc_assert (REG_P (rld[j].reg_rtx)
6407 && HARD_REGISTER_P (rld[j].reg_rtx));
6408 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6410 else
6411 reload_spill_index[j] = -1;
6413 if (rld[j].nregs > 1)
6415 max_group_size = MAX (rld[j].nregs, max_group_size);
6416 group_class
6417 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6420 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6423 if (n_reloads > 1)
6424 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6426 /* If -O, try first with inheritance, then turning it off.
6427 If not -O, don't do inheritance.
6428 Using inheritance when not optimizing leads to paradoxes
6429 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6430 because one side of the comparison might be inherited. */
6431 win = 0;
6432 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6434 choose_reload_regs_init (chain, save_reload_reg_rtx);
6436 /* Process the reloads in order of preference just found.
6437 Beyond this point, subregs can be found in reload_reg_rtx.
6439 This used to look for an existing reloaded home for all of the
6440 reloads, and only then perform any new reloads. But that could lose
6441 if the reloads were done out of reg-class order because a later
6442 reload with a looser constraint might have an old home in a register
6443 needed by an earlier reload with a tighter constraint.
6445 To solve this, we make two passes over the reloads, in the order
6446 described above. In the first pass we try to inherit a reload
6447 from a previous insn. If there is a later reload that needs a
6448 class that is a proper subset of the class being processed, we must
6449 also allocate a spill register during the first pass.
6451 Then make a second pass over the reloads to allocate any reloads
6452 that haven't been given registers yet. */
6454 for (j = 0; j < n_reloads; j++)
6456 int r = reload_order[j];
6457 rtx search_equiv = NULL_RTX;
6459 /* Ignore reloads that got marked inoperative. */
6460 if (rld[r].out == 0 && rld[r].in == 0
6461 && ! rld[r].secondary_p)
6462 continue;
6464 /* If find_reloads chose to use reload_in or reload_out as a reload
6465 register, we don't need to chose one. Otherwise, try even if it
6466 found one since we might save an insn if we find the value lying
6467 around.
6468 Try also when reload_in is a pseudo without a hard reg. */
6469 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6470 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6471 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6472 && !MEM_P (rld[r].in)
6473 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6474 continue;
6476 #if 0 /* No longer needed for correct operation.
6477 It might give better code, or might not; worth an experiment? */
6478 /* If this is an optional reload, we can't inherit from earlier insns
6479 until we are sure that any non-optional reloads have been allocated.
6480 The following code takes advantage of the fact that optional reloads
6481 are at the end of reload_order. */
6482 if (rld[r].optional != 0)
6483 for (i = 0; i < j; i++)
6484 if ((rld[reload_order[i]].out != 0
6485 || rld[reload_order[i]].in != 0
6486 || rld[reload_order[i]].secondary_p)
6487 && ! rld[reload_order[i]].optional
6488 && rld[reload_order[i]].reg_rtx == 0)
6489 allocate_reload_reg (chain, reload_order[i], 0);
6490 #endif
6492 /* First see if this pseudo is already available as reloaded
6493 for a previous insn. We cannot try to inherit for reloads
6494 that are smaller than the maximum number of registers needed
6495 for groups unless the register we would allocate cannot be used
6496 for the groups.
6498 We could check here to see if this is a secondary reload for
6499 an object that is already in a register of the desired class.
6500 This would avoid the need for the secondary reload register.
6501 But this is complex because we can't easily determine what
6502 objects might want to be loaded via this reload. So let a
6503 register be allocated here. In `emit_reload_insns' we suppress
6504 one of the loads in the case described above. */
6506 if (inheritance)
6508 int byte = 0;
6509 int regno = -1;
6510 machine_mode mode = VOIDmode;
6511 rtx subreg = NULL_RTX;
6513 if (rld[r].in == 0)
6515 else if (REG_P (rld[r].in))
6517 regno = REGNO (rld[r].in);
6518 mode = GET_MODE (rld[r].in);
6520 else if (REG_P (rld[r].in_reg))
6522 regno = REGNO (rld[r].in_reg);
6523 mode = GET_MODE (rld[r].in_reg);
6525 else if (GET_CODE (rld[r].in_reg) == SUBREG
6526 && REG_P (SUBREG_REG (rld[r].in_reg)))
6528 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6529 if (regno < FIRST_PSEUDO_REGISTER)
6530 regno = subreg_regno (rld[r].in_reg);
6531 else
6533 subreg = rld[r].in_reg;
6534 byte = SUBREG_BYTE (subreg);
6536 mode = GET_MODE (rld[r].in_reg);
6538 #if AUTO_INC_DEC
6539 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6540 && REG_P (XEXP (rld[r].in_reg, 0)))
6542 regno = REGNO (XEXP (rld[r].in_reg, 0));
6543 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6544 rld[r].out = rld[r].in;
6546 #endif
6547 #if 0
6548 /* This won't work, since REGNO can be a pseudo reg number.
6549 Also, it takes much more hair to keep track of all the things
6550 that can invalidate an inherited reload of part of a pseudoreg. */
6551 else if (GET_CODE (rld[r].in) == SUBREG
6552 && REG_P (SUBREG_REG (rld[r].in)))
6553 regno = subreg_regno (rld[r].in);
6554 #endif
6556 if (regno >= 0
6557 && reg_last_reload_reg[regno] != 0
6558 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6559 >= GET_MODE_SIZE (mode) + byte)
6560 /* Verify that the register it's in can be used in
6561 mode MODE. */
6562 && (REG_CAN_CHANGE_MODE_P
6563 (REGNO (reg_last_reload_reg[regno]),
6564 GET_MODE (reg_last_reload_reg[regno]),
6565 mode)))
6567 enum reg_class rclass = rld[r].rclass, last_class;
6568 rtx last_reg = reg_last_reload_reg[regno];
6570 i = REGNO (last_reg);
6571 byte = compute_reload_subreg_offset (mode,
6572 subreg,
6573 GET_MODE (last_reg));
6574 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6575 last_class = REGNO_REG_CLASS (i);
6577 if (reg_reloaded_contents[i] == regno
6578 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6579 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6580 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6581 /* Even if we can't use this register as a reload
6582 register, we might use it for reload_override_in,
6583 if copying it to the desired class is cheap
6584 enough. */
6585 || ((register_move_cost (mode, last_class, rclass)
6586 < memory_move_cost (mode, rclass, true))
6587 && (secondary_reload_class (1, rclass, mode,
6588 last_reg)
6589 == NO_REGS)
6590 && !(targetm.secondary_memory_needed
6591 (mode, last_class, rclass))))
6592 && (rld[r].nregs == max_group_size
6593 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6595 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6596 rld[r].when_needed, rld[r].in,
6597 const0_rtx, r, 1))
6599 /* If a group is needed, verify that all the subsequent
6600 registers still have their values intact. */
6601 int nr = hard_regno_nregs (i, rld[r].mode);
6602 int k;
6604 for (k = 1; k < nr; k++)
6605 if (reg_reloaded_contents[i + k] != regno
6606 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6607 break;
6609 if (k == nr)
6611 int i1;
6612 int bad_for_class;
6614 last_reg = (GET_MODE (last_reg) == mode
6615 ? last_reg : gen_rtx_REG (mode, i));
6617 bad_for_class = 0;
6618 for (k = 0; k < nr; k++)
6619 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6620 i+k);
6622 /* We found a register that contains the
6623 value we need. If this register is the
6624 same as an `earlyclobber' operand of the
6625 current insn, just mark it as a place to
6626 reload from since we can't use it as the
6627 reload register itself. */
6629 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6630 if (reg_overlap_mentioned_for_reload_p
6631 (reg_last_reload_reg[regno],
6632 reload_earlyclobbers[i1]))
6633 break;
6635 if (i1 != n_earlyclobbers
6636 || ! (free_for_value_p (i, rld[r].mode,
6637 rld[r].opnum,
6638 rld[r].when_needed, rld[r].in,
6639 rld[r].out, r, 1))
6640 /* Don't use it if we'd clobber a pseudo reg. */
6641 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6642 && rld[r].out
6643 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6644 /* Don't clobber the frame pointer. */
6645 || (i == HARD_FRAME_POINTER_REGNUM
6646 && frame_pointer_needed
6647 && rld[r].out)
6648 /* Don't really use the inherited spill reg
6649 if we need it wider than we've got it. */
6650 || paradoxical_subreg_p (rld[r].mode, mode)
6651 || bad_for_class
6653 /* If find_reloads chose reload_out as reload
6654 register, stay with it - that leaves the
6655 inherited register for subsequent reloads. */
6656 || (rld[r].out && rld[r].reg_rtx
6657 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6659 if (! rld[r].optional)
6661 reload_override_in[r] = last_reg;
6662 reload_inheritance_insn[r]
6663 = reg_reloaded_insn[i];
6666 else
6668 int k;
6669 /* We can use this as a reload reg. */
6670 /* Mark the register as in use for this part of
6671 the insn. */
6672 mark_reload_reg_in_use (i,
6673 rld[r].opnum,
6674 rld[r].when_needed,
6675 rld[r].mode);
6676 rld[r].reg_rtx = last_reg;
6677 reload_inherited[r] = 1;
6678 reload_inheritance_insn[r]
6679 = reg_reloaded_insn[i];
6680 reload_spill_index[r] = i;
6681 for (k = 0; k < nr; k++)
6682 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6683 i + k);
6690 /* Here's another way to see if the value is already lying around. */
6691 if (inheritance
6692 && rld[r].in != 0
6693 && ! reload_inherited[r]
6694 && rld[r].out == 0
6695 && (CONSTANT_P (rld[r].in)
6696 || GET_CODE (rld[r].in) == PLUS
6697 || REG_P (rld[r].in)
6698 || MEM_P (rld[r].in))
6699 && (rld[r].nregs == max_group_size
6700 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6701 search_equiv = rld[r].in;
6703 if (search_equiv)
6705 rtx equiv
6706 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6707 -1, NULL, 0, rld[r].mode);
6708 int regno = 0;
6710 if (equiv != 0)
6712 if (REG_P (equiv))
6713 regno = REGNO (equiv);
6714 else
6716 /* This must be a SUBREG of a hard register.
6717 Make a new REG since this might be used in an
6718 address and not all machines support SUBREGs
6719 there. */
6720 gcc_assert (GET_CODE (equiv) == SUBREG);
6721 regno = subreg_regno (equiv);
6722 equiv = gen_rtx_REG (rld[r].mode, regno);
6723 /* If we choose EQUIV as the reload register, but the
6724 loop below decides to cancel the inheritance, we'll
6725 end up reloading EQUIV in rld[r].mode, not the mode
6726 it had originally. That isn't safe when EQUIV isn't
6727 available as a spill register since its value might
6728 still be live at this point. */
6729 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6730 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6731 equiv = 0;
6735 /* If we found a spill reg, reject it unless it is free
6736 and of the desired class. */
6737 if (equiv != 0)
6739 int regs_used = 0;
6740 int bad_for_class = 0;
6741 int max_regno = regno + rld[r].nregs;
6743 for (i = regno; i < max_regno; i++)
6745 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6747 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6751 if ((regs_used
6752 && ! free_for_value_p (regno, rld[r].mode,
6753 rld[r].opnum, rld[r].when_needed,
6754 rld[r].in, rld[r].out, r, 1))
6755 || bad_for_class)
6756 equiv = 0;
6759 if (equiv != 0
6760 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6761 equiv = 0;
6763 /* We found a register that contains the value we need.
6764 If this register is the same as an `earlyclobber' operand
6765 of the current insn, just mark it as a place to reload from
6766 since we can't use it as the reload register itself. */
6768 if (equiv != 0)
6769 for (i = 0; i < n_earlyclobbers; i++)
6770 if (reg_overlap_mentioned_for_reload_p (equiv,
6771 reload_earlyclobbers[i]))
6773 if (! rld[r].optional)
6774 reload_override_in[r] = equiv;
6775 equiv = 0;
6776 break;
6779 /* If the equiv register we have found is explicitly clobbered
6780 in the current insn, it depends on the reload type if we
6781 can use it, use it for reload_override_in, or not at all.
6782 In particular, we then can't use EQUIV for a
6783 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6785 if (equiv != 0)
6787 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6788 switch (rld[r].when_needed)
6790 case RELOAD_FOR_OTHER_ADDRESS:
6791 case RELOAD_FOR_INPADDR_ADDRESS:
6792 case RELOAD_FOR_INPUT_ADDRESS:
6793 case RELOAD_FOR_OPADDR_ADDR:
6794 break;
6795 case RELOAD_OTHER:
6796 case RELOAD_FOR_INPUT:
6797 case RELOAD_FOR_OPERAND_ADDRESS:
6798 if (! rld[r].optional)
6799 reload_override_in[r] = equiv;
6800 /* Fall through. */
6801 default:
6802 equiv = 0;
6803 break;
6805 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6806 switch (rld[r].when_needed)
6808 case RELOAD_FOR_OTHER_ADDRESS:
6809 case RELOAD_FOR_INPADDR_ADDRESS:
6810 case RELOAD_FOR_INPUT_ADDRESS:
6811 case RELOAD_FOR_OPADDR_ADDR:
6812 case RELOAD_FOR_OPERAND_ADDRESS:
6813 case RELOAD_FOR_INPUT:
6814 break;
6815 case RELOAD_OTHER:
6816 if (! rld[r].optional)
6817 reload_override_in[r] = equiv;
6818 /* Fall through. */
6819 default:
6820 equiv = 0;
6821 break;
6825 /* If we found an equivalent reg, say no code need be generated
6826 to load it, and use it as our reload reg. */
6827 if (equiv != 0
6828 && (regno != HARD_FRAME_POINTER_REGNUM
6829 || !frame_pointer_needed))
6831 int nr = hard_regno_nregs (regno, rld[r].mode);
6832 int k;
6833 rld[r].reg_rtx = equiv;
6834 reload_spill_index[r] = regno;
6835 reload_inherited[r] = 1;
6837 /* If reg_reloaded_valid is not set for this register,
6838 there might be a stale spill_reg_store lying around.
6839 We must clear it, since otherwise emit_reload_insns
6840 might delete the store. */
6841 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6842 spill_reg_store[regno] = NULL;
6843 /* If any of the hard registers in EQUIV are spill
6844 registers, mark them as in use for this insn. */
6845 for (k = 0; k < nr; k++)
6847 i = spill_reg_order[regno + k];
6848 if (i >= 0)
6850 mark_reload_reg_in_use (regno, rld[r].opnum,
6851 rld[r].when_needed,
6852 rld[r].mode);
6853 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6854 regno + k);
6860 /* If we found a register to use already, or if this is an optional
6861 reload, we are done. */
6862 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6863 continue;
6865 #if 0
6866 /* No longer needed for correct operation. Might or might
6867 not give better code on the average. Want to experiment? */
6869 /* See if there is a later reload that has a class different from our
6870 class that intersects our class or that requires less register
6871 than our reload. If so, we must allocate a register to this
6872 reload now, since that reload might inherit a previous reload
6873 and take the only available register in our class. Don't do this
6874 for optional reloads since they will force all previous reloads
6875 to be allocated. Also don't do this for reloads that have been
6876 turned off. */
6878 for (i = j + 1; i < n_reloads; i++)
6880 int s = reload_order[i];
6882 if ((rld[s].in == 0 && rld[s].out == 0
6883 && ! rld[s].secondary_p)
6884 || rld[s].optional)
6885 continue;
6887 if ((rld[s].rclass != rld[r].rclass
6888 && reg_classes_intersect_p (rld[r].rclass,
6889 rld[s].rclass))
6890 || rld[s].nregs < rld[r].nregs)
6891 break;
6894 if (i == n_reloads)
6895 continue;
6897 allocate_reload_reg (chain, r, j == n_reloads - 1);
6898 #endif
6901 /* Now allocate reload registers for anything non-optional that
6902 didn't get one yet. */
6903 for (j = 0; j < n_reloads; j++)
6905 int r = reload_order[j];
6907 /* Ignore reloads that got marked inoperative. */
6908 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6909 continue;
6911 /* Skip reloads that already have a register allocated or are
6912 optional. */
6913 if (rld[r].reg_rtx != 0 || rld[r].optional)
6914 continue;
6916 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6917 break;
6920 /* If that loop got all the way, we have won. */
6921 if (j == n_reloads)
6923 win = 1;
6924 break;
6927 /* Loop around and try without any inheritance. */
6930 if (! win)
6932 /* First undo everything done by the failed attempt
6933 to allocate with inheritance. */
6934 choose_reload_regs_init (chain, save_reload_reg_rtx);
6936 /* Some sanity tests to verify that the reloads found in the first
6937 pass are identical to the ones we have now. */
6938 gcc_assert (chain->n_reloads == n_reloads);
6940 for (i = 0; i < n_reloads; i++)
6942 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6943 continue;
6944 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6945 for (j = 0; j < n_spills; j++)
6946 if (spill_regs[j] == chain->rld[i].regno)
6947 if (! set_reload_reg (j, i))
6948 failed_reload (chain->insn, i);
6952 /* If we thought we could inherit a reload, because it seemed that
6953 nothing else wanted the same reload register earlier in the insn,
6954 verify that assumption, now that all reloads have been assigned.
6955 Likewise for reloads where reload_override_in has been set. */
6957 /* If doing expensive optimizations, do one preliminary pass that doesn't
6958 cancel any inheritance, but removes reloads that have been needed only
6959 for reloads that we know can be inherited. */
6960 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6962 for (j = 0; j < n_reloads; j++)
6964 int r = reload_order[j];
6965 rtx check_reg;
6966 rtx tem;
6967 if (reload_inherited[r] && rld[r].reg_rtx)
6968 check_reg = rld[r].reg_rtx;
6969 else if (reload_override_in[r]
6970 && (REG_P (reload_override_in[r])
6971 || GET_CODE (reload_override_in[r]) == SUBREG))
6972 check_reg = reload_override_in[r];
6973 else
6974 continue;
6975 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6976 rld[r].opnum, rld[r].when_needed, rld[r].in,
6977 (reload_inherited[r]
6978 ? rld[r].out : const0_rtx),
6979 r, 1))
6981 if (pass)
6982 continue;
6983 reload_inherited[r] = 0;
6984 reload_override_in[r] = 0;
6986 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6987 reload_override_in, then we do not need its related
6988 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6989 likewise for other reload types.
6990 We handle this by removing a reload when its only replacement
6991 is mentioned in reload_in of the reload we are going to inherit.
6992 A special case are auto_inc expressions; even if the input is
6993 inherited, we still need the address for the output. We can
6994 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6995 If we succeeded removing some reload and we are doing a preliminary
6996 pass just to remove such reloads, make another pass, since the
6997 removal of one reload might allow us to inherit another one. */
6998 else if (rld[r].in
6999 && rld[r].out != rld[r].in
7000 && remove_address_replacements (rld[r].in))
7002 if (pass)
7003 pass = 2;
7005 /* If we needed a memory location for the reload, we also have to
7006 remove its related reloads. */
7007 else if (rld[r].in
7008 && rld[r].out != rld[r].in
7009 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7010 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7011 && (targetm.secondary_memory_needed
7012 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
7013 rld[r].rclass))
7014 && remove_address_replacements
7015 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7016 rld[r].when_needed)))
7018 if (pass)
7019 pass = 2;
7024 /* Now that reload_override_in is known valid,
7025 actually override reload_in. */
7026 for (j = 0; j < n_reloads; j++)
7027 if (reload_override_in[j])
7028 rld[j].in = reload_override_in[j];
7030 /* If this reload won't be done because it has been canceled or is
7031 optional and not inherited, clear reload_reg_rtx so other
7032 routines (such as subst_reloads) don't get confused. */
7033 for (j = 0; j < n_reloads; j++)
7034 if (rld[j].reg_rtx != 0
7035 && ((rld[j].optional && ! reload_inherited[j])
7036 || (rld[j].in == 0 && rld[j].out == 0
7037 && ! rld[j].secondary_p)))
7039 int regno = true_regnum (rld[j].reg_rtx);
7041 if (spill_reg_order[regno] >= 0)
7042 clear_reload_reg_in_use (regno, rld[j].opnum,
7043 rld[j].when_needed, rld[j].mode);
7044 rld[j].reg_rtx = 0;
7045 reload_spill_index[j] = -1;
7048 /* Record which pseudos and which spill regs have output reloads. */
7049 for (j = 0; j < n_reloads; j++)
7051 int r = reload_order[j];
7053 i = reload_spill_index[r];
7055 /* I is nonneg if this reload uses a register.
7056 If rld[r].reg_rtx is 0, this is an optional reload
7057 that we opted to ignore. */
7058 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7059 && rld[r].reg_rtx != 0)
7061 int nregno = REGNO (rld[r].out_reg);
7062 int nr = 1;
7064 if (nregno < FIRST_PSEUDO_REGISTER)
7065 nr = hard_regno_nregs (nregno, rld[r].mode);
7067 while (--nr >= 0)
7068 SET_REGNO_REG_SET (&reg_has_output_reload,
7069 nregno + nr);
7071 if (i >= 0)
7072 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7074 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7075 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7076 || rld[r].when_needed == RELOAD_FOR_INSN);
7081 /* Deallocate the reload register for reload R. This is called from
7082 remove_address_replacements. */
7084 void
7085 deallocate_reload_reg (int r)
7087 int regno;
7089 if (! rld[r].reg_rtx)
7090 return;
7091 regno = true_regnum (rld[r].reg_rtx);
7092 rld[r].reg_rtx = 0;
7093 if (spill_reg_order[regno] >= 0)
7094 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7095 rld[r].mode);
7096 reload_spill_index[r] = -1;
7099 /* These arrays are filled by emit_reload_insns and its subroutines. */
7100 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7101 static rtx_insn *other_input_address_reload_insns = 0;
7102 static rtx_insn *other_input_reload_insns = 0;
7103 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7104 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7105 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7106 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7107 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7108 static rtx_insn *operand_reload_insns = 0;
7109 static rtx_insn *other_operand_reload_insns = 0;
7110 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7112 /* Values to be put in spill_reg_store are put here first. Instructions
7113 must only be placed here if the associated reload register reaches
7114 the end of the instruction's reload sequence. */
7115 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7116 static HARD_REG_SET reg_reloaded_died;
7118 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7119 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7120 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7121 adjusted register, and return true. Otherwise, return false. */
7122 static bool
7123 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7124 enum reg_class new_class,
7125 machine_mode new_mode)
7128 rtx reg;
7130 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7132 unsigned regno = REGNO (reg);
7134 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7135 continue;
7136 if (GET_MODE (reg) != new_mode)
7138 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7139 continue;
7140 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7141 continue;
7142 reg = reload_adjust_reg_for_mode (reg, new_mode);
7144 *reload_reg = reg;
7145 return true;
7147 return false;
7150 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7151 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7152 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7153 adjusted register, and return true. Otherwise, return false. */
7154 static bool
7155 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7156 enum insn_code icode)
7159 enum reg_class new_class = scratch_reload_class (icode);
7160 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7162 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7163 new_class, new_mode);
7166 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7167 has the number J. OLD contains the value to be used as input. */
7169 static void
7170 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7171 rtx old, int j)
7173 rtx_insn *insn = chain->insn;
7174 rtx reloadreg;
7175 rtx oldequiv_reg = 0;
7176 rtx oldequiv = 0;
7177 int special = 0;
7178 machine_mode mode;
7179 rtx_insn **where;
7181 /* delete_output_reload is only invoked properly if old contains
7182 the original pseudo register. Since this is replaced with a
7183 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7184 find the pseudo in RELOAD_IN_REG. This is also used to
7185 determine whether a secondary reload is needed. */
7186 if (reload_override_in[j]
7187 && (REG_P (rl->in_reg)
7188 || (GET_CODE (rl->in_reg) == SUBREG
7189 && REG_P (SUBREG_REG (rl->in_reg)))))
7191 oldequiv = old;
7192 old = rl->in_reg;
7194 if (oldequiv == 0)
7195 oldequiv = old;
7196 else if (REG_P (oldequiv))
7197 oldequiv_reg = oldequiv;
7198 else if (GET_CODE (oldequiv) == SUBREG)
7199 oldequiv_reg = SUBREG_REG (oldequiv);
7201 reloadreg = reload_reg_rtx_for_input[j];
7202 mode = GET_MODE (reloadreg);
7204 /* If we are reloading from a register that was recently stored in
7205 with an output-reload, see if we can prove there was
7206 actually no need to store the old value in it. */
7208 if (optimize && REG_P (oldequiv)
7209 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7210 && spill_reg_store[REGNO (oldequiv)]
7211 && REG_P (old)
7212 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7213 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7214 rl->out_reg)))
7215 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7217 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7218 OLDEQUIV. */
7220 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7221 oldequiv = SUBREG_REG (oldequiv);
7222 if (GET_MODE (oldequiv) != VOIDmode
7223 && mode != GET_MODE (oldequiv))
7224 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7226 /* Switch to the right place to emit the reload insns. */
7227 switch (rl->when_needed)
7229 case RELOAD_OTHER:
7230 where = &other_input_reload_insns;
7231 break;
7232 case RELOAD_FOR_INPUT:
7233 where = &input_reload_insns[rl->opnum];
7234 break;
7235 case RELOAD_FOR_INPUT_ADDRESS:
7236 where = &input_address_reload_insns[rl->opnum];
7237 break;
7238 case RELOAD_FOR_INPADDR_ADDRESS:
7239 where = &inpaddr_address_reload_insns[rl->opnum];
7240 break;
7241 case RELOAD_FOR_OUTPUT_ADDRESS:
7242 where = &output_address_reload_insns[rl->opnum];
7243 break;
7244 case RELOAD_FOR_OUTADDR_ADDRESS:
7245 where = &outaddr_address_reload_insns[rl->opnum];
7246 break;
7247 case RELOAD_FOR_OPERAND_ADDRESS:
7248 where = &operand_reload_insns;
7249 break;
7250 case RELOAD_FOR_OPADDR_ADDR:
7251 where = &other_operand_reload_insns;
7252 break;
7253 case RELOAD_FOR_OTHER_ADDRESS:
7254 where = &other_input_address_reload_insns;
7255 break;
7256 default:
7257 gcc_unreachable ();
7260 push_to_sequence (*where);
7262 /* Auto-increment addresses must be reloaded in a special way. */
7263 if (rl->out && ! rl->out_reg)
7265 /* We are not going to bother supporting the case where a
7266 incremented register can't be copied directly from
7267 OLDEQUIV since this seems highly unlikely. */
7268 gcc_assert (rl->secondary_in_reload < 0);
7270 if (reload_inherited[j])
7271 oldequiv = reloadreg;
7273 old = XEXP (rl->in_reg, 0);
7275 /* Prevent normal processing of this reload. */
7276 special = 1;
7277 /* Output a special code sequence for this case. */
7278 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7281 /* If we are reloading a pseudo-register that was set by the previous
7282 insn, see if we can get rid of that pseudo-register entirely
7283 by redirecting the previous insn into our reload register. */
7285 else if (optimize && REG_P (old)
7286 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7287 && dead_or_set_p (insn, old)
7288 /* This is unsafe if some other reload
7289 uses the same reg first. */
7290 && ! conflicts_with_override (reloadreg)
7291 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7292 rl->when_needed, old, rl->out, j, 0))
7294 rtx_insn *temp = PREV_INSN (insn);
7295 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7296 temp = PREV_INSN (temp);
7297 if (temp
7298 && NONJUMP_INSN_P (temp)
7299 && GET_CODE (PATTERN (temp)) == SET
7300 && SET_DEST (PATTERN (temp)) == old
7301 /* Make sure we can access insn_operand_constraint. */
7302 && asm_noperands (PATTERN (temp)) < 0
7303 /* This is unsafe if operand occurs more than once in current
7304 insn. Perhaps some occurrences aren't reloaded. */
7305 && count_occurrences (PATTERN (insn), old, 0) == 1)
7307 rtx old = SET_DEST (PATTERN (temp));
7308 /* Store into the reload register instead of the pseudo. */
7309 SET_DEST (PATTERN (temp)) = reloadreg;
7311 /* Verify that resulting insn is valid.
7313 Note that we have replaced the destination of TEMP with
7314 RELOADREG. If TEMP references RELOADREG within an
7315 autoincrement addressing mode, then the resulting insn
7316 is ill-formed and we must reject this optimization. */
7317 extract_insn (temp);
7318 if (constrain_operands (1, get_enabled_alternatives (temp))
7319 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7321 /* If the previous insn is an output reload, the source is
7322 a reload register, and its spill_reg_store entry will
7323 contain the previous destination. This is now
7324 invalid. */
7325 if (REG_P (SET_SRC (PATTERN (temp)))
7326 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7328 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7329 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7332 /* If these are the only uses of the pseudo reg,
7333 pretend for GDB it lives in the reload reg we used. */
7334 if (REG_N_DEATHS (REGNO (old)) == 1
7335 && REG_N_SETS (REGNO (old)) == 1)
7337 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7338 if (ira_conflicts_p)
7339 /* Inform IRA about the change. */
7340 ira_mark_allocation_change (REGNO (old));
7341 alter_reg (REGNO (old), -1, false);
7343 special = 1;
7345 /* Adjust any debug insns between temp and insn. */
7346 while ((temp = NEXT_INSN (temp)) != insn)
7347 if (DEBUG_INSN_P (temp))
7348 INSN_VAR_LOCATION_LOC (temp)
7349 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7350 old, reloadreg);
7351 else
7352 gcc_assert (NOTE_P (temp));
7354 else
7356 SET_DEST (PATTERN (temp)) = old;
7361 /* We can't do that, so output an insn to load RELOADREG. */
7363 /* If we have a secondary reload, pick up the secondary register
7364 and icode, if any. If OLDEQUIV and OLD are different or
7365 if this is an in-out reload, recompute whether or not we
7366 still need a secondary register and what the icode should
7367 be. If we still need a secondary register and the class or
7368 icode is different, go back to reloading from OLD if using
7369 OLDEQUIV means that we got the wrong type of register. We
7370 cannot have different class or icode due to an in-out reload
7371 because we don't make such reloads when both the input and
7372 output need secondary reload registers. */
7374 if (! special && rl->secondary_in_reload >= 0)
7376 rtx second_reload_reg = 0;
7377 rtx third_reload_reg = 0;
7378 int secondary_reload = rl->secondary_in_reload;
7379 rtx real_oldequiv = oldequiv;
7380 rtx real_old = old;
7381 rtx tmp;
7382 enum insn_code icode;
7383 enum insn_code tertiary_icode = CODE_FOR_nothing;
7385 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7386 and similarly for OLD.
7387 See comments in get_secondary_reload in reload.c. */
7388 /* If it is a pseudo that cannot be replaced with its
7389 equivalent MEM, we must fall back to reload_in, which
7390 will have all the necessary substitutions registered.
7391 Likewise for a pseudo that can't be replaced with its
7392 equivalent constant.
7394 Take extra care for subregs of such pseudos. Note that
7395 we cannot use reg_equiv_mem in this case because it is
7396 not in the right mode. */
7398 tmp = oldequiv;
7399 if (GET_CODE (tmp) == SUBREG)
7400 tmp = SUBREG_REG (tmp);
7401 if (REG_P (tmp)
7402 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7403 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7404 || reg_equiv_constant (REGNO (tmp)) != 0))
7406 if (! reg_equiv_mem (REGNO (tmp))
7407 || num_not_at_initial_offset
7408 || GET_CODE (oldequiv) == SUBREG)
7409 real_oldequiv = rl->in;
7410 else
7411 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7414 tmp = old;
7415 if (GET_CODE (tmp) == SUBREG)
7416 tmp = SUBREG_REG (tmp);
7417 if (REG_P (tmp)
7418 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7419 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7420 || reg_equiv_constant (REGNO (tmp)) != 0))
7422 if (! reg_equiv_mem (REGNO (tmp))
7423 || num_not_at_initial_offset
7424 || GET_CODE (old) == SUBREG)
7425 real_old = rl->in;
7426 else
7427 real_old = reg_equiv_mem (REGNO (tmp));
7430 second_reload_reg = rld[secondary_reload].reg_rtx;
7431 if (rld[secondary_reload].secondary_in_reload >= 0)
7433 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7435 third_reload_reg = rld[tertiary_reload].reg_rtx;
7436 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7437 /* We'd have to add more code for quartary reloads. */
7438 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7440 icode = rl->secondary_in_icode;
7442 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7443 || (rl->in != 0 && rl->out != 0))
7445 secondary_reload_info sri, sri2;
7446 enum reg_class new_class, new_t_class;
7448 sri.icode = CODE_FOR_nothing;
7449 sri.prev_sri = NULL;
7450 new_class
7451 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7452 rl->rclass, mode,
7453 &sri);
7455 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7456 second_reload_reg = 0;
7457 else if (new_class == NO_REGS)
7459 if (reload_adjust_reg_for_icode (&second_reload_reg,
7460 third_reload_reg,
7461 (enum insn_code) sri.icode))
7463 icode = (enum insn_code) sri.icode;
7464 third_reload_reg = 0;
7466 else
7468 oldequiv = old;
7469 real_oldequiv = real_old;
7472 else if (sri.icode != CODE_FOR_nothing)
7473 /* We currently lack a way to express this in reloads. */
7474 gcc_unreachable ();
7475 else
7477 sri2.icode = CODE_FOR_nothing;
7478 sri2.prev_sri = &sri;
7479 new_t_class
7480 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7481 new_class, mode,
7482 &sri);
7483 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7485 if (reload_adjust_reg_for_temp (&second_reload_reg,
7486 third_reload_reg,
7487 new_class, mode))
7489 third_reload_reg = 0;
7490 tertiary_icode = (enum insn_code) sri2.icode;
7492 else
7494 oldequiv = old;
7495 real_oldequiv = real_old;
7498 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7500 rtx intermediate = second_reload_reg;
7502 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7503 new_class, mode)
7504 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7505 ((enum insn_code)
7506 sri2.icode)))
7508 second_reload_reg = intermediate;
7509 tertiary_icode = (enum insn_code) sri2.icode;
7511 else
7513 oldequiv = old;
7514 real_oldequiv = real_old;
7517 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7519 rtx intermediate = second_reload_reg;
7521 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7522 new_class, mode)
7523 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7524 new_t_class, mode))
7526 second_reload_reg = intermediate;
7527 tertiary_icode = (enum insn_code) sri2.icode;
7529 else
7531 oldequiv = old;
7532 real_oldequiv = real_old;
7535 else
7537 /* This could be handled more intelligently too. */
7538 oldequiv = old;
7539 real_oldequiv = real_old;
7544 /* If we still need a secondary reload register, check
7545 to see if it is being used as a scratch or intermediate
7546 register and generate code appropriately. If we need
7547 a scratch register, use REAL_OLDEQUIV since the form of
7548 the insn may depend on the actual address if it is
7549 a MEM. */
7551 if (second_reload_reg)
7553 if (icode != CODE_FOR_nothing)
7555 /* We'd have to add extra code to handle this case. */
7556 gcc_assert (!third_reload_reg);
7558 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7559 second_reload_reg));
7560 special = 1;
7562 else
7564 /* See if we need a scratch register to load the
7565 intermediate register (a tertiary reload). */
7566 if (tertiary_icode != CODE_FOR_nothing)
7568 emit_insn ((GEN_FCN (tertiary_icode)
7569 (second_reload_reg, real_oldequiv,
7570 third_reload_reg)));
7572 else if (third_reload_reg)
7574 gen_reload (third_reload_reg, real_oldequiv,
7575 rl->opnum,
7576 rl->when_needed);
7577 gen_reload (second_reload_reg, third_reload_reg,
7578 rl->opnum,
7579 rl->when_needed);
7581 else
7582 gen_reload (second_reload_reg, real_oldequiv,
7583 rl->opnum,
7584 rl->when_needed);
7586 oldequiv = second_reload_reg;
7591 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7593 rtx real_oldequiv = oldequiv;
7595 if ((REG_P (oldequiv)
7596 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7597 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7598 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7599 || (GET_CODE (oldequiv) == SUBREG
7600 && REG_P (SUBREG_REG (oldequiv))
7601 && (REGNO (SUBREG_REG (oldequiv))
7602 >= FIRST_PSEUDO_REGISTER)
7603 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7604 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7605 || (CONSTANT_P (oldequiv)
7606 && (targetm.preferred_reload_class (oldequiv,
7607 REGNO_REG_CLASS (REGNO (reloadreg)))
7608 == NO_REGS)))
7609 real_oldequiv = rl->in;
7610 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7611 rl->when_needed);
7614 if (cfun->can_throw_non_call_exceptions)
7615 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7617 /* End this sequence. */
7618 *where = get_insns ();
7619 end_sequence ();
7621 /* Update reload_override_in so that delete_address_reloads_1
7622 can see the actual register usage. */
7623 if (oldequiv_reg)
7624 reload_override_in[j] = oldequiv;
7627 /* Generate insns to for the output reload RL, which is for the insn described
7628 by CHAIN and has the number J. */
7629 static void
7630 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7631 int j)
7633 rtx reloadreg;
7634 rtx_insn *insn = chain->insn;
7635 int special = 0;
7636 rtx old = rl->out;
7637 machine_mode mode;
7638 rtx_insn *p;
7639 rtx rl_reg_rtx;
7641 if (rl->when_needed == RELOAD_OTHER)
7642 start_sequence ();
7643 else
7644 push_to_sequence (output_reload_insns[rl->opnum]);
7646 rl_reg_rtx = reload_reg_rtx_for_output[j];
7647 mode = GET_MODE (rl_reg_rtx);
7649 reloadreg = rl_reg_rtx;
7651 /* If we need two reload regs, set RELOADREG to the intermediate
7652 one, since it will be stored into OLD. We might need a secondary
7653 register only for an input reload, so check again here. */
7655 if (rl->secondary_out_reload >= 0)
7657 rtx real_old = old;
7658 int secondary_reload = rl->secondary_out_reload;
7659 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7661 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7662 && reg_equiv_mem (REGNO (old)) != 0)
7663 real_old = reg_equiv_mem (REGNO (old));
7665 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7667 rtx second_reloadreg = reloadreg;
7668 reloadreg = rld[secondary_reload].reg_rtx;
7670 /* See if RELOADREG is to be used as a scratch register
7671 or as an intermediate register. */
7672 if (rl->secondary_out_icode != CODE_FOR_nothing)
7674 /* We'd have to add extra code to handle this case. */
7675 gcc_assert (tertiary_reload < 0);
7677 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7678 (real_old, second_reloadreg, reloadreg)));
7679 special = 1;
7681 else
7683 /* See if we need both a scratch and intermediate reload
7684 register. */
7686 enum insn_code tertiary_icode
7687 = rld[secondary_reload].secondary_out_icode;
7689 /* We'd have to add more code for quartary reloads. */
7690 gcc_assert (tertiary_reload < 0
7691 || rld[tertiary_reload].secondary_out_reload < 0);
7693 if (GET_MODE (reloadreg) != mode)
7694 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7696 if (tertiary_icode != CODE_FOR_nothing)
7698 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7700 /* Copy primary reload reg to secondary reload reg.
7701 (Note that these have been swapped above, then
7702 secondary reload reg to OLD using our insn.) */
7704 /* If REAL_OLD is a paradoxical SUBREG, remove it
7705 and try to put the opposite SUBREG on
7706 RELOADREG. */
7707 strip_paradoxical_subreg (&real_old, &reloadreg);
7709 gen_reload (reloadreg, second_reloadreg,
7710 rl->opnum, rl->when_needed);
7711 emit_insn ((GEN_FCN (tertiary_icode)
7712 (real_old, reloadreg, third_reloadreg)));
7713 special = 1;
7716 else
7718 /* Copy between the reload regs here and then to
7719 OUT later. */
7721 gen_reload (reloadreg, second_reloadreg,
7722 rl->opnum, rl->when_needed);
7723 if (tertiary_reload >= 0)
7725 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7727 gen_reload (third_reloadreg, reloadreg,
7728 rl->opnum, rl->when_needed);
7729 reloadreg = third_reloadreg;
7736 /* Output the last reload insn. */
7737 if (! special)
7739 rtx set;
7741 /* Don't output the last reload if OLD is not the dest of
7742 INSN and is in the src and is clobbered by INSN. */
7743 if (! flag_expensive_optimizations
7744 || !REG_P (old)
7745 || !(set = single_set (insn))
7746 || rtx_equal_p (old, SET_DEST (set))
7747 || !reg_mentioned_p (old, SET_SRC (set))
7748 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7749 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7750 gen_reload (old, reloadreg, rl->opnum,
7751 rl->when_needed);
7754 /* Look at all insns we emitted, just to be safe. */
7755 for (p = get_insns (); p; p = NEXT_INSN (p))
7756 if (INSN_P (p))
7758 rtx pat = PATTERN (p);
7760 /* If this output reload doesn't come from a spill reg,
7761 clear any memory of reloaded copies of the pseudo reg.
7762 If this output reload comes from a spill reg,
7763 reg_has_output_reload will make this do nothing. */
7764 note_stores (pat, forget_old_reloads_1, NULL);
7766 if (reg_mentioned_p (rl_reg_rtx, pat))
7768 rtx set = single_set (insn);
7769 if (reload_spill_index[j] < 0
7770 && set
7771 && SET_SRC (set) == rl_reg_rtx)
7773 int src = REGNO (SET_SRC (set));
7775 reload_spill_index[j] = src;
7776 SET_HARD_REG_BIT (reg_is_output_reload, src);
7777 if (find_regno_note (insn, REG_DEAD, src))
7778 SET_HARD_REG_BIT (reg_reloaded_died, src);
7780 if (HARD_REGISTER_P (rl_reg_rtx))
7782 int s = rl->secondary_out_reload;
7783 set = single_set (p);
7784 /* If this reload copies only to the secondary reload
7785 register, the secondary reload does the actual
7786 store. */
7787 if (s >= 0 && set == NULL_RTX)
7788 /* We can't tell what function the secondary reload
7789 has and where the actual store to the pseudo is
7790 made; leave new_spill_reg_store alone. */
7792 else if (s >= 0
7793 && SET_SRC (set) == rl_reg_rtx
7794 && SET_DEST (set) == rld[s].reg_rtx)
7796 /* Usually the next instruction will be the
7797 secondary reload insn; if we can confirm
7798 that it is, setting new_spill_reg_store to
7799 that insn will allow an extra optimization. */
7800 rtx s_reg = rld[s].reg_rtx;
7801 rtx_insn *next = NEXT_INSN (p);
7802 rld[s].out = rl->out;
7803 rld[s].out_reg = rl->out_reg;
7804 set = single_set (next);
7805 if (set && SET_SRC (set) == s_reg
7806 && reload_reg_rtx_reaches_end_p (s_reg, s))
7808 SET_HARD_REG_BIT (reg_is_output_reload,
7809 REGNO (s_reg));
7810 new_spill_reg_store[REGNO (s_reg)] = next;
7813 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7814 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7819 if (rl->when_needed == RELOAD_OTHER)
7821 emit_insn (other_output_reload_insns[rl->opnum]);
7822 other_output_reload_insns[rl->opnum] = get_insns ();
7824 else
7825 output_reload_insns[rl->opnum] = get_insns ();
7827 if (cfun->can_throw_non_call_exceptions)
7828 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7830 end_sequence ();
7833 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7834 and has the number J. */
7835 static void
7836 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7838 rtx_insn *insn = chain->insn;
7839 rtx old = (rl->in && MEM_P (rl->in)
7840 ? rl->in_reg : rl->in);
7841 rtx reg_rtx = rl->reg_rtx;
7843 if (old && reg_rtx)
7845 machine_mode mode;
7847 /* Determine the mode to reload in.
7848 This is very tricky because we have three to choose from.
7849 There is the mode the insn operand wants (rl->inmode).
7850 There is the mode of the reload register RELOADREG.
7851 There is the intrinsic mode of the operand, which we could find
7852 by stripping some SUBREGs.
7853 It turns out that RELOADREG's mode is irrelevant:
7854 we can change that arbitrarily.
7856 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7857 then the reload reg may not support QImode moves, so use SImode.
7858 If foo is in memory due to spilling a pseudo reg, this is safe,
7859 because the QImode value is in the least significant part of a
7860 slot big enough for a SImode. If foo is some other sort of
7861 memory reference, then it is impossible to reload this case,
7862 so previous passes had better make sure this never happens.
7864 Then consider a one-word union which has SImode and one of its
7865 members is a float, being fetched as (SUBREG:SF union:SI).
7866 We must fetch that as SFmode because we could be loading into
7867 a float-only register. In this case OLD's mode is correct.
7869 Consider an immediate integer: it has VOIDmode. Here we need
7870 to get a mode from something else.
7872 In some cases, there is a fourth mode, the operand's
7873 containing mode. If the insn specifies a containing mode for
7874 this operand, it overrides all others.
7876 I am not sure whether the algorithm here is always right,
7877 but it does the right things in those cases. */
7879 mode = GET_MODE (old);
7880 if (mode == VOIDmode)
7881 mode = rl->inmode;
7883 /* We cannot use gen_lowpart_common since it can do the wrong thing
7884 when REG_RTX has a multi-word mode. Note that REG_RTX must
7885 always be a REG here. */
7886 if (GET_MODE (reg_rtx) != mode)
7887 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7889 reload_reg_rtx_for_input[j] = reg_rtx;
7891 if (old != 0
7892 /* AUTO_INC reloads need to be handled even if inherited. We got an
7893 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7894 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7895 && ! rtx_equal_p (reg_rtx, old)
7896 && reg_rtx != 0)
7897 emit_input_reload_insns (chain, rld + j, old, j);
7899 /* When inheriting a wider reload, we have a MEM in rl->in,
7900 e.g. inheriting a SImode output reload for
7901 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7902 if (optimize && reload_inherited[j] && rl->in
7903 && MEM_P (rl->in)
7904 && MEM_P (rl->in_reg)
7905 && reload_spill_index[j] >= 0
7906 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7907 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7909 /* If we are reloading a register that was recently stored in with an
7910 output-reload, see if we can prove there was
7911 actually no need to store the old value in it. */
7913 if (optimize
7914 && (reload_inherited[j] || reload_override_in[j])
7915 && reg_rtx
7916 && REG_P (reg_rtx)
7917 && spill_reg_store[REGNO (reg_rtx)] != 0
7918 #if 0
7919 /* There doesn't seem to be any reason to restrict this to pseudos
7920 and doing so loses in the case where we are copying from a
7921 register of the wrong class. */
7922 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7923 #endif
7924 /* The insn might have already some references to stackslots
7925 replaced by MEMs, while reload_out_reg still names the
7926 original pseudo. */
7927 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7928 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7929 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7932 /* Do output reloading for reload RL, which is for the insn described by
7933 CHAIN and has the number J.
7934 ??? At some point we need to support handling output reloads of
7935 JUMP_INSNs or insns that set cc0. */
7936 static void
7937 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7939 rtx note, old;
7940 rtx_insn *insn = chain->insn;
7941 /* If this is an output reload that stores something that is
7942 not loaded in this same reload, see if we can eliminate a previous
7943 store. */
7944 rtx pseudo = rl->out_reg;
7945 rtx reg_rtx = rl->reg_rtx;
7947 if (rl->out && reg_rtx)
7949 machine_mode mode;
7951 /* Determine the mode to reload in.
7952 See comments above (for input reloading). */
7953 mode = GET_MODE (rl->out);
7954 if (mode == VOIDmode)
7956 /* VOIDmode should never happen for an output. */
7957 if (asm_noperands (PATTERN (insn)) < 0)
7958 /* It's the compiler's fault. */
7959 fatal_insn ("VOIDmode on an output", insn);
7960 error_for_asm (insn, "output operand is constant in %<asm%>");
7961 /* Prevent crash--use something we know is valid. */
7962 mode = word_mode;
7963 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7965 if (GET_MODE (reg_rtx) != mode)
7966 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7968 reload_reg_rtx_for_output[j] = reg_rtx;
7970 if (pseudo
7971 && optimize
7972 && REG_P (pseudo)
7973 && ! rtx_equal_p (rl->in_reg, pseudo)
7974 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7975 && reg_last_reload_reg[REGNO (pseudo)])
7977 int pseudo_no = REGNO (pseudo);
7978 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7980 /* We don't need to test full validity of last_regno for
7981 inherit here; we only want to know if the store actually
7982 matches the pseudo. */
7983 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7984 && reg_reloaded_contents[last_regno] == pseudo_no
7985 && spill_reg_store[last_regno]
7986 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7987 delete_output_reload (insn, j, last_regno, reg_rtx);
7990 old = rl->out_reg;
7991 if (old == 0
7992 || reg_rtx == 0
7993 || rtx_equal_p (old, reg_rtx))
7994 return;
7996 /* An output operand that dies right away does need a reload,
7997 but need not be copied from it. Show the new location in the
7998 REG_UNUSED note. */
7999 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8000 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8002 XEXP (note, 0) = reg_rtx;
8003 return;
8005 /* Likewise for a SUBREG of an operand that dies. */
8006 else if (GET_CODE (old) == SUBREG
8007 && REG_P (SUBREG_REG (old))
8008 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8009 SUBREG_REG (old))))
8011 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8012 return;
8014 else if (GET_CODE (old) == SCRATCH)
8015 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8016 but we don't want to make an output reload. */
8017 return;
8019 /* If is a JUMP_INSN, we can't support output reloads yet. */
8020 gcc_assert (NONJUMP_INSN_P (insn));
8022 emit_output_reload_insns (chain, rld + j, j);
8025 /* A reload copies values of MODE from register SRC to register DEST.
8026 Return true if it can be treated for inheritance purposes like a
8027 group of reloads, each one reloading a single hard register. The
8028 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8029 occupy the same number of hard registers. */
8031 static bool
8032 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8033 int src ATTRIBUTE_UNUSED,
8034 machine_mode mode ATTRIBUTE_UNUSED)
8036 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8037 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8040 /* Output insns to reload values in and out of the chosen reload regs. */
8042 static void
8043 emit_reload_insns (struct insn_chain *chain)
8045 rtx_insn *insn = chain->insn;
8047 int j;
8049 CLEAR_HARD_REG_SET (reg_reloaded_died);
8051 for (j = 0; j < reload_n_operands; j++)
8052 input_reload_insns[j] = input_address_reload_insns[j]
8053 = inpaddr_address_reload_insns[j]
8054 = output_reload_insns[j] = output_address_reload_insns[j]
8055 = outaddr_address_reload_insns[j]
8056 = other_output_reload_insns[j] = 0;
8057 other_input_address_reload_insns = 0;
8058 other_input_reload_insns = 0;
8059 operand_reload_insns = 0;
8060 other_operand_reload_insns = 0;
8062 /* Dump reloads into the dump file. */
8063 if (dump_file)
8065 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8066 debug_reload_to_stream (dump_file);
8069 for (j = 0; j < n_reloads; j++)
8070 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8072 unsigned int i;
8074 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8075 new_spill_reg_store[i] = 0;
8078 /* Now output the instructions to copy the data into and out of the
8079 reload registers. Do these in the order that the reloads were reported,
8080 since reloads of base and index registers precede reloads of operands
8081 and the operands may need the base and index registers reloaded. */
8083 for (j = 0; j < n_reloads; j++)
8085 do_input_reload (chain, rld + j, j);
8086 do_output_reload (chain, rld + j, j);
8089 /* Now write all the insns we made for reloads in the order expected by
8090 the allocation functions. Prior to the insn being reloaded, we write
8091 the following reloads:
8093 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8095 RELOAD_OTHER reloads.
8097 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8098 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8099 RELOAD_FOR_INPUT reload for the operand.
8101 RELOAD_FOR_OPADDR_ADDRS reloads.
8103 RELOAD_FOR_OPERAND_ADDRESS reloads.
8105 After the insn being reloaded, we write the following:
8107 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8108 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8109 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8110 reloads for the operand. The RELOAD_OTHER output reloads are
8111 output in descending order by reload number. */
8113 emit_insn_before (other_input_address_reload_insns, insn);
8114 emit_insn_before (other_input_reload_insns, insn);
8116 for (j = 0; j < reload_n_operands; j++)
8118 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8119 emit_insn_before (input_address_reload_insns[j], insn);
8120 emit_insn_before (input_reload_insns[j], insn);
8123 emit_insn_before (other_operand_reload_insns, insn);
8124 emit_insn_before (operand_reload_insns, insn);
8126 for (j = 0; j < reload_n_operands; j++)
8128 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8129 x = emit_insn_after (output_address_reload_insns[j], x);
8130 x = emit_insn_after (output_reload_insns[j], x);
8131 emit_insn_after (other_output_reload_insns[j], x);
8134 /* For all the spill regs newly reloaded in this instruction,
8135 record what they were reloaded from, so subsequent instructions
8136 can inherit the reloads.
8138 Update spill_reg_store for the reloads of this insn.
8139 Copy the elements that were updated in the loop above. */
8141 for (j = 0; j < n_reloads; j++)
8143 int r = reload_order[j];
8144 int i = reload_spill_index[r];
8146 /* If this is a non-inherited input reload from a pseudo, we must
8147 clear any memory of a previous store to the same pseudo. Only do
8148 something if there will not be an output reload for the pseudo
8149 being reloaded. */
8150 if (rld[r].in_reg != 0
8151 && ! (reload_inherited[r] || reload_override_in[r]))
8153 rtx reg = rld[r].in_reg;
8155 if (GET_CODE (reg) == SUBREG)
8156 reg = SUBREG_REG (reg);
8158 if (REG_P (reg)
8159 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8160 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8162 int nregno = REGNO (reg);
8164 if (reg_last_reload_reg[nregno])
8166 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8168 if (reg_reloaded_contents[last_regno] == nregno)
8169 spill_reg_store[last_regno] = 0;
8174 /* I is nonneg if this reload used a register.
8175 If rld[r].reg_rtx is 0, this is an optional reload
8176 that we opted to ignore. */
8178 if (i >= 0 && rld[r].reg_rtx != 0)
8180 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8181 int k;
8183 /* For a multi register reload, we need to check if all or part
8184 of the value lives to the end. */
8185 for (k = 0; k < nr; k++)
8186 if (reload_reg_reaches_end_p (i + k, r))
8187 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8189 /* Maybe the spill reg contains a copy of reload_out. */
8190 if (rld[r].out != 0
8191 && (REG_P (rld[r].out)
8192 || (rld[r].out_reg
8193 ? REG_P (rld[r].out_reg)
8194 /* The reload value is an auto-modification of
8195 some kind. For PRE_INC, POST_INC, PRE_DEC
8196 and POST_DEC, we record an equivalence
8197 between the reload register and the operand
8198 on the optimistic assumption that we can make
8199 the equivalence hold. reload_as_needed must
8200 then either make it hold or invalidate the
8201 equivalence.
8203 PRE_MODIFY and POST_MODIFY addresses are reloaded
8204 somewhat differently, and allowing them here leads
8205 to problems. */
8206 : (GET_CODE (rld[r].out) != POST_MODIFY
8207 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8209 rtx reg;
8211 reg = reload_reg_rtx_for_output[r];
8212 if (reload_reg_rtx_reaches_end_p (reg, r))
8214 machine_mode mode = GET_MODE (reg);
8215 int regno = REGNO (reg);
8216 int nregs = REG_NREGS (reg);
8217 rtx out = (REG_P (rld[r].out)
8218 ? rld[r].out
8219 : rld[r].out_reg
8220 ? rld[r].out_reg
8221 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8222 int out_regno = REGNO (out);
8223 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8224 : hard_regno_nregs (out_regno, mode));
8225 bool piecemeal;
8227 spill_reg_store[regno] = new_spill_reg_store[regno];
8228 spill_reg_stored_to[regno] = out;
8229 reg_last_reload_reg[out_regno] = reg;
8231 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8232 && nregs == out_nregs
8233 && inherit_piecemeal_p (out_regno, regno, mode));
8235 /* If OUT_REGNO is a hard register, it may occupy more than
8236 one register. If it does, say what is in the
8237 rest of the registers assuming that both registers
8238 agree on how many words the object takes. If not,
8239 invalidate the subsequent registers. */
8241 if (HARD_REGISTER_NUM_P (out_regno))
8242 for (k = 1; k < out_nregs; k++)
8243 reg_last_reload_reg[out_regno + k]
8244 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8246 /* Now do the inverse operation. */
8247 for (k = 0; k < nregs; k++)
8249 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8250 reg_reloaded_contents[regno + k]
8251 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8252 ? out_regno
8253 : out_regno + k);
8254 reg_reloaded_insn[regno + k] = insn;
8255 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8256 if (targetm.hard_regno_call_part_clobbered (regno + k,
8257 mode))
8258 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8259 regno + k);
8260 else
8261 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8262 regno + k);
8266 /* Maybe the spill reg contains a copy of reload_in. Only do
8267 something if there will not be an output reload for
8268 the register being reloaded. */
8269 else if (rld[r].out_reg == 0
8270 && rld[r].in != 0
8271 && ((REG_P (rld[r].in)
8272 && !HARD_REGISTER_P (rld[r].in)
8273 && !REGNO_REG_SET_P (&reg_has_output_reload,
8274 REGNO (rld[r].in)))
8275 || (REG_P (rld[r].in_reg)
8276 && !REGNO_REG_SET_P (&reg_has_output_reload,
8277 REGNO (rld[r].in_reg))))
8278 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8280 rtx reg;
8282 reg = reload_reg_rtx_for_input[r];
8283 if (reload_reg_rtx_reaches_end_p (reg, r))
8285 machine_mode mode;
8286 int regno;
8287 int nregs;
8288 int in_regno;
8289 int in_nregs;
8290 rtx in;
8291 bool piecemeal;
8293 mode = GET_MODE (reg);
8294 regno = REGNO (reg);
8295 nregs = REG_NREGS (reg);
8296 if (REG_P (rld[r].in)
8297 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8298 in = rld[r].in;
8299 else if (REG_P (rld[r].in_reg))
8300 in = rld[r].in_reg;
8301 else
8302 in = XEXP (rld[r].in_reg, 0);
8303 in_regno = REGNO (in);
8305 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8306 : hard_regno_nregs (in_regno, mode));
8308 reg_last_reload_reg[in_regno] = reg;
8310 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8311 && nregs == in_nregs
8312 && inherit_piecemeal_p (regno, in_regno, mode));
8314 if (HARD_REGISTER_NUM_P (in_regno))
8315 for (k = 1; k < in_nregs; k++)
8316 reg_last_reload_reg[in_regno + k]
8317 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8319 /* Unless we inherited this reload, show we haven't
8320 recently done a store.
8321 Previous stores of inherited auto_inc expressions
8322 also have to be discarded. */
8323 if (! reload_inherited[r]
8324 || (rld[r].out && ! rld[r].out_reg))
8325 spill_reg_store[regno] = 0;
8327 for (k = 0; k < nregs; k++)
8329 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8330 reg_reloaded_contents[regno + k]
8331 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8332 ? in_regno
8333 : in_regno + k);
8334 reg_reloaded_insn[regno + k] = insn;
8335 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8336 if (targetm.hard_regno_call_part_clobbered (regno + k,
8337 mode))
8338 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8339 regno + k);
8340 else
8341 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8342 regno + k);
8348 /* The following if-statement was #if 0'd in 1.34 (or before...).
8349 It's reenabled in 1.35 because supposedly nothing else
8350 deals with this problem. */
8352 /* If a register gets output-reloaded from a non-spill register,
8353 that invalidates any previous reloaded copy of it.
8354 But forget_old_reloads_1 won't get to see it, because
8355 it thinks only about the original insn. So invalidate it here.
8356 Also do the same thing for RELOAD_OTHER constraints where the
8357 output is discarded. */
8358 if (i < 0
8359 && ((rld[r].out != 0
8360 && (REG_P (rld[r].out)
8361 || (MEM_P (rld[r].out)
8362 && REG_P (rld[r].out_reg))))
8363 || (rld[r].out == 0 && rld[r].out_reg
8364 && REG_P (rld[r].out_reg))))
8366 rtx out = ((rld[r].out && REG_P (rld[r].out))
8367 ? rld[r].out : rld[r].out_reg);
8368 int out_regno = REGNO (out);
8369 machine_mode mode = GET_MODE (out);
8371 /* REG_RTX is now set or clobbered by the main instruction.
8372 As the comment above explains, forget_old_reloads_1 only
8373 sees the original instruction, and there is no guarantee
8374 that the original instruction also clobbered REG_RTX.
8375 For example, if find_reloads sees that the input side of
8376 a matched operand pair dies in this instruction, it may
8377 use the input register as the reload register.
8379 Calling forget_old_reloads_1 is a waste of effort if
8380 REG_RTX is also the output register.
8382 If we know that REG_RTX holds the value of a pseudo
8383 register, the code after the call will record that fact. */
8384 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8385 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8387 if (!HARD_REGISTER_NUM_P (out_regno))
8389 rtx src_reg;
8390 rtx_insn *store_insn = NULL;
8392 reg_last_reload_reg[out_regno] = 0;
8394 /* If we can find a hard register that is stored, record
8395 the storing insn so that we may delete this insn with
8396 delete_output_reload. */
8397 src_reg = reload_reg_rtx_for_output[r];
8399 if (src_reg)
8401 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8402 store_insn = new_spill_reg_store[REGNO (src_reg)];
8403 else
8404 src_reg = NULL_RTX;
8406 else
8408 /* If this is an optional reload, try to find the
8409 source reg from an input reload. */
8410 rtx set = single_set (insn);
8411 if (set && SET_DEST (set) == rld[r].out)
8413 int k;
8415 src_reg = SET_SRC (set);
8416 store_insn = insn;
8417 for (k = 0; k < n_reloads; k++)
8419 if (rld[k].in == src_reg)
8421 src_reg = reload_reg_rtx_for_input[k];
8422 break;
8427 if (src_reg && REG_P (src_reg)
8428 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8430 int src_regno, src_nregs, k;
8431 rtx note;
8433 gcc_assert (GET_MODE (src_reg) == mode);
8434 src_regno = REGNO (src_reg);
8435 src_nregs = hard_regno_nregs (src_regno, mode);
8436 /* The place where to find a death note varies with
8437 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8438 necessarily checked exactly in the code that moves
8439 notes, so just check both locations. */
8440 note = find_regno_note (insn, REG_DEAD, src_regno);
8441 if (! note && store_insn)
8442 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8443 for (k = 0; k < src_nregs; k++)
8445 spill_reg_store[src_regno + k] = store_insn;
8446 spill_reg_stored_to[src_regno + k] = out;
8447 reg_reloaded_contents[src_regno + k] = out_regno;
8448 reg_reloaded_insn[src_regno + k] = store_insn;
8449 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8450 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8451 if (targetm.hard_regno_call_part_clobbered
8452 (src_regno + k, mode))
8453 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8454 src_regno + k);
8455 else
8456 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8457 src_regno + k);
8458 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8459 if (note)
8460 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8461 else
8462 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8464 reg_last_reload_reg[out_regno] = src_reg;
8465 /* We have to set reg_has_output_reload here, or else
8466 forget_old_reloads_1 will clear reg_last_reload_reg
8467 right away. */
8468 SET_REGNO_REG_SET (&reg_has_output_reload,
8469 out_regno);
8472 else
8474 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8476 for (k = 0; k < out_nregs; k++)
8477 reg_last_reload_reg[out_regno + k] = 0;
8481 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8484 /* Go through the motions to emit INSN and test if it is strictly valid.
8485 Return the emitted insn if valid, else return NULL. */
8487 static rtx_insn *
8488 emit_insn_if_valid_for_reload (rtx pat)
8490 rtx_insn *last = get_last_insn ();
8491 int code;
8493 rtx_insn *insn = emit_insn (pat);
8494 code = recog_memoized (insn);
8496 if (code >= 0)
8498 extract_insn (insn);
8499 /* We want constrain operands to treat this insn strictly in its
8500 validity determination, i.e., the way it would after reload has
8501 completed. */
8502 if (constrain_operands (1, get_enabled_alternatives (insn)))
8503 return insn;
8506 delete_insns_since (last);
8507 return NULL;
8510 /* Emit code to perform a reload from IN (which may be a reload register) to
8511 OUT (which may also be a reload register). IN or OUT is from operand
8512 OPNUM with reload type TYPE.
8514 Returns first insn emitted. */
8516 static rtx_insn *
8517 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8519 rtx_insn *last = get_last_insn ();
8520 rtx_insn *tem;
8521 rtx tem1, tem2;
8523 /* If IN is a paradoxical SUBREG, remove it and try to put the
8524 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8525 if (!strip_paradoxical_subreg (&in, &out))
8526 strip_paradoxical_subreg (&out, &in);
8528 /* How to do this reload can get quite tricky. Normally, we are being
8529 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8530 register that didn't get a hard register. In that case we can just
8531 call emit_move_insn.
8533 We can also be asked to reload a PLUS that adds a register or a MEM to
8534 another register, constant or MEM. This can occur during frame pointer
8535 elimination and while reloading addresses. This case is handled by
8536 trying to emit a single insn to perform the add. If it is not valid,
8537 we use a two insn sequence.
8539 Or we can be asked to reload an unary operand that was a fragment of
8540 an addressing mode, into a register. If it isn't recognized as-is,
8541 we try making the unop operand and the reload-register the same:
8542 (set reg:X (unop:X expr:Y))
8543 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8545 Finally, we could be called to handle an 'o' constraint by putting
8546 an address into a register. In that case, we first try to do this
8547 with a named pattern of "reload_load_address". If no such pattern
8548 exists, we just emit a SET insn and hope for the best (it will normally
8549 be valid on machines that use 'o').
8551 This entire process is made complex because reload will never
8552 process the insns we generate here and so we must ensure that
8553 they will fit their constraints and also by the fact that parts of
8554 IN might be being reloaded separately and replaced with spill registers.
8555 Because of this, we are, in some sense, just guessing the right approach
8556 here. The one listed above seems to work.
8558 ??? At some point, this whole thing needs to be rethought. */
8560 if (GET_CODE (in) == PLUS
8561 && (REG_P (XEXP (in, 0))
8562 || GET_CODE (XEXP (in, 0)) == SUBREG
8563 || MEM_P (XEXP (in, 0)))
8564 && (REG_P (XEXP (in, 1))
8565 || GET_CODE (XEXP (in, 1)) == SUBREG
8566 || CONSTANT_P (XEXP (in, 1))
8567 || MEM_P (XEXP (in, 1))))
8569 /* We need to compute the sum of a register or a MEM and another
8570 register, constant, or MEM, and put it into the reload
8571 register. The best possible way of doing this is if the machine
8572 has a three-operand ADD insn that accepts the required operands.
8574 The simplest approach is to try to generate such an insn and see if it
8575 is recognized and matches its constraints. If so, it can be used.
8577 It might be better not to actually emit the insn unless it is valid,
8578 but we need to pass the insn as an operand to `recog' and
8579 `extract_insn' and it is simpler to emit and then delete the insn if
8580 not valid than to dummy things up. */
8582 rtx op0, op1, tem;
8583 rtx_insn *insn;
8584 enum insn_code code;
8586 op0 = find_replacement (&XEXP (in, 0));
8587 op1 = find_replacement (&XEXP (in, 1));
8589 /* Since constraint checking is strict, commutativity won't be
8590 checked, so we need to do that here to avoid spurious failure
8591 if the add instruction is two-address and the second operand
8592 of the add is the same as the reload reg, which is frequently
8593 the case. If the insn would be A = B + A, rearrange it so
8594 it will be A = A + B as constrain_operands expects. */
8596 if (REG_P (XEXP (in, 1))
8597 && REGNO (out) == REGNO (XEXP (in, 1)))
8598 tem = op0, op0 = op1, op1 = tem;
8600 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8601 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8603 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8604 if (insn)
8605 return insn;
8607 /* If that failed, we must use a conservative two-insn sequence.
8609 Use a move to copy one operand into the reload register. Prefer
8610 to reload a constant, MEM or pseudo since the move patterns can
8611 handle an arbitrary operand. If OP1 is not a constant, MEM or
8612 pseudo and OP1 is not a valid operand for an add instruction, then
8613 reload OP1.
8615 After reloading one of the operands into the reload register, add
8616 the reload register to the output register.
8618 If there is another way to do this for a specific machine, a
8619 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8620 we emit below. */
8622 code = optab_handler (add_optab, GET_MODE (out));
8624 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8625 || (REG_P (op1)
8626 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8627 || (code != CODE_FOR_nothing
8628 && !insn_operand_matches (code, 2, op1)))
8629 tem = op0, op0 = op1, op1 = tem;
8631 gen_reload (out, op0, opnum, type);
8633 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8634 This fixes a problem on the 32K where the stack pointer cannot
8635 be used as an operand of an add insn. */
8637 if (rtx_equal_p (op0, op1))
8638 op1 = out;
8640 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8641 if (insn)
8643 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8644 set_dst_reg_note (insn, REG_EQUIV, in, out);
8645 return insn;
8648 /* If that failed, copy the address register to the reload register.
8649 Then add the constant to the reload register. */
8651 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8652 gen_reload (out, op1, opnum, type);
8653 insn = emit_insn (gen_add2_insn (out, op0));
8654 set_dst_reg_note (insn, REG_EQUIV, in, out);
8657 /* If we need a memory location to do the move, do it that way. */
8658 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8659 (REG_P (tem1) && REG_P (tem2)))
8660 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8661 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8662 && targetm.secondary_memory_needed (GET_MODE (out),
8663 REGNO_REG_CLASS (REGNO (tem1)),
8664 REGNO_REG_CLASS (REGNO (tem2))))
8666 /* Get the memory to use and rewrite both registers to its mode. */
8667 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8669 if (GET_MODE (loc) != GET_MODE (out))
8670 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8672 if (GET_MODE (loc) != GET_MODE (in))
8673 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8675 gen_reload (loc, in, opnum, type);
8676 gen_reload (out, loc, opnum, type);
8678 else if (REG_P (out) && UNARY_P (in))
8680 rtx op1;
8681 rtx out_moded;
8682 rtx_insn *set;
8684 op1 = find_replacement (&XEXP (in, 0));
8685 if (op1 != XEXP (in, 0))
8686 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8688 /* First, try a plain SET. */
8689 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8690 if (set)
8691 return set;
8693 /* If that failed, move the inner operand to the reload
8694 register, and try the same unop with the inner expression
8695 replaced with the reload register. */
8697 if (GET_MODE (op1) != GET_MODE (out))
8698 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8699 else
8700 out_moded = out;
8702 gen_reload (out_moded, op1, opnum, type);
8704 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8705 out_moded));
8706 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8707 if (insn)
8709 set_unique_reg_note (insn, REG_EQUIV, in);
8710 return insn;
8713 fatal_insn ("failure trying to reload:", set);
8715 /* If IN is a simple operand, use gen_move_insn. */
8716 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8718 tem = emit_insn (gen_move_insn (out, in));
8719 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8720 mark_jump_label (in, tem, 0);
8723 else if (targetm.have_reload_load_address ())
8724 emit_insn (targetm.gen_reload_load_address (out, in));
8726 /* Otherwise, just write (set OUT IN) and hope for the best. */
8727 else
8728 emit_insn (gen_rtx_SET (out, in));
8730 /* Return the first insn emitted.
8731 We can not just return get_last_insn, because there may have
8732 been multiple instructions emitted. Also note that gen_move_insn may
8733 emit more than one insn itself, so we can not assume that there is one
8734 insn emitted per emit_insn_before call. */
8736 return last ? NEXT_INSN (last) : get_insns ();
8739 /* Delete a previously made output-reload whose result we now believe
8740 is not needed. First we double-check.
8742 INSN is the insn now being processed.
8743 LAST_RELOAD_REG is the hard register number for which we want to delete
8744 the last output reload.
8745 J is the reload-number that originally used REG. The caller has made
8746 certain that reload J doesn't use REG any longer for input.
8747 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8749 static void
8750 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8751 rtx new_reload_reg)
8753 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8754 rtx reg = spill_reg_stored_to[last_reload_reg];
8755 int k;
8756 int n_occurrences;
8757 int n_inherited = 0;
8758 rtx substed;
8759 unsigned regno;
8760 int nregs;
8762 /* It is possible that this reload has been only used to set another reload
8763 we eliminated earlier and thus deleted this instruction too. */
8764 if (output_reload_insn->deleted ())
8765 return;
8767 /* Get the raw pseudo-register referred to. */
8769 while (GET_CODE (reg) == SUBREG)
8770 reg = SUBREG_REG (reg);
8771 substed = reg_equiv_memory_loc (REGNO (reg));
8773 /* This is unsafe if the operand occurs more often in the current
8774 insn than it is inherited. */
8775 for (k = n_reloads - 1; k >= 0; k--)
8777 rtx reg2 = rld[k].in;
8778 if (! reg2)
8779 continue;
8780 if (MEM_P (reg2) || reload_override_in[k])
8781 reg2 = rld[k].in_reg;
8783 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8784 reg2 = XEXP (rld[k].in_reg, 0);
8786 while (GET_CODE (reg2) == SUBREG)
8787 reg2 = SUBREG_REG (reg2);
8788 if (rtx_equal_p (reg2, reg))
8790 if (reload_inherited[k] || reload_override_in[k] || k == j)
8791 n_inherited++;
8792 else
8793 return;
8796 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8797 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8798 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8799 reg, 0);
8800 if (substed)
8801 n_occurrences += count_occurrences (PATTERN (insn),
8802 eliminate_regs (substed, VOIDmode,
8803 NULL_RTX), 0);
8804 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8806 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8807 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8809 if (n_occurrences > n_inherited)
8810 return;
8812 regno = REGNO (reg);
8813 nregs = REG_NREGS (reg);
8815 /* If the pseudo-reg we are reloading is no longer referenced
8816 anywhere between the store into it and here,
8817 and we're within the same basic block, then the value can only
8818 pass through the reload reg and end up here.
8819 Otherwise, give up--return. */
8820 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8821 i1 != insn; i1 = NEXT_INSN (i1))
8823 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8824 return;
8825 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8826 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8828 /* If this is USE in front of INSN, we only have to check that
8829 there are no more references than accounted for by inheritance. */
8830 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8832 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8833 i1 = NEXT_INSN (i1);
8835 if (n_occurrences <= n_inherited && i1 == insn)
8836 break;
8837 return;
8841 /* We will be deleting the insn. Remove the spill reg information. */
8842 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8844 spill_reg_store[last_reload_reg + k] = 0;
8845 spill_reg_stored_to[last_reload_reg + k] = 0;
8848 /* The caller has already checked that REG dies or is set in INSN.
8849 It has also checked that we are optimizing, and thus some
8850 inaccuracies in the debugging information are acceptable.
8851 So we could just delete output_reload_insn. But in some cases
8852 we can improve the debugging information without sacrificing
8853 optimization - maybe even improving the code: See if the pseudo
8854 reg has been completely replaced with reload regs. If so, delete
8855 the store insn and forget we had a stack slot for the pseudo. */
8856 if (rld[j].out != rld[j].in
8857 && REG_N_DEATHS (REGNO (reg)) == 1
8858 && REG_N_SETS (REGNO (reg)) == 1
8859 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8860 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8862 rtx_insn *i2;
8864 /* We know that it was used only between here and the beginning of
8865 the current basic block. (We also know that the last use before
8866 INSN was the output reload we are thinking of deleting, but never
8867 mind that.) Search that range; see if any ref remains. */
8868 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8870 rtx set = single_set (i2);
8872 /* Uses which just store in the pseudo don't count,
8873 since if they are the only uses, they are dead. */
8874 if (set != 0 && SET_DEST (set) == reg)
8875 continue;
8876 if (LABEL_P (i2) || JUMP_P (i2))
8877 break;
8878 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8879 && reg_mentioned_p (reg, PATTERN (i2)))
8881 /* Some other ref remains; just delete the output reload we
8882 know to be dead. */
8883 delete_address_reloads (output_reload_insn, insn);
8884 delete_insn (output_reload_insn);
8885 return;
8889 /* Delete the now-dead stores into this pseudo. Note that this
8890 loop also takes care of deleting output_reload_insn. */
8891 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8893 rtx set = single_set (i2);
8895 if (set != 0 && SET_DEST (set) == reg)
8897 delete_address_reloads (i2, insn);
8898 delete_insn (i2);
8900 if (LABEL_P (i2) || JUMP_P (i2))
8901 break;
8904 /* For the debugging info, say the pseudo lives in this reload reg. */
8905 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8906 if (ira_conflicts_p)
8907 /* Inform IRA about the change. */
8908 ira_mark_allocation_change (REGNO (reg));
8909 alter_reg (REGNO (reg), -1, false);
8911 else
8913 delete_address_reloads (output_reload_insn, insn);
8914 delete_insn (output_reload_insn);
8918 /* We are going to delete DEAD_INSN. Recursively delete loads of
8919 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8920 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8921 static void
8922 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8924 rtx set = single_set (dead_insn);
8925 rtx set2, dst;
8926 rtx_insn *prev, *next;
8927 if (set)
8929 rtx dst = SET_DEST (set);
8930 if (MEM_P (dst))
8931 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8933 /* If we deleted the store from a reloaded post_{in,de}c expression,
8934 we can delete the matching adds. */
8935 prev = PREV_INSN (dead_insn);
8936 next = NEXT_INSN (dead_insn);
8937 if (! prev || ! next)
8938 return;
8939 set = single_set (next);
8940 set2 = single_set (prev);
8941 if (! set || ! set2
8942 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8943 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8944 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8945 return;
8946 dst = SET_DEST (set);
8947 if (! rtx_equal_p (dst, SET_DEST (set2))
8948 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8949 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8950 || (INTVAL (XEXP (SET_SRC (set), 1))
8951 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8952 return;
8953 delete_related_insns (prev);
8954 delete_related_insns (next);
8957 /* Subfunction of delete_address_reloads: process registers found in X. */
8958 static void
8959 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8961 rtx_insn *prev, *i2;
8962 rtx set, dst;
8963 int i, j;
8964 enum rtx_code code = GET_CODE (x);
8966 if (code != REG)
8968 const char *fmt = GET_RTX_FORMAT (code);
8969 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8971 if (fmt[i] == 'e')
8972 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8973 else if (fmt[i] == 'E')
8975 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8976 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8977 current_insn);
8980 return;
8983 if (spill_reg_order[REGNO (x)] < 0)
8984 return;
8986 /* Scan backwards for the insn that sets x. This might be a way back due
8987 to inheritance. */
8988 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8990 code = GET_CODE (prev);
8991 if (code == CODE_LABEL || code == JUMP_INSN)
8992 return;
8993 if (!INSN_P (prev))
8994 continue;
8995 if (reg_set_p (x, PATTERN (prev)))
8996 break;
8997 if (reg_referenced_p (x, PATTERN (prev)))
8998 return;
9000 if (! prev || INSN_UID (prev) < reload_first_uid)
9001 return;
9002 /* Check that PREV only sets the reload register. */
9003 set = single_set (prev);
9004 if (! set)
9005 return;
9006 dst = SET_DEST (set);
9007 if (!REG_P (dst)
9008 || ! rtx_equal_p (dst, x))
9009 return;
9010 if (! reg_set_p (dst, PATTERN (dead_insn)))
9012 /* Check if DST was used in a later insn -
9013 it might have been inherited. */
9014 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9016 if (LABEL_P (i2))
9017 break;
9018 if (! INSN_P (i2))
9019 continue;
9020 if (reg_referenced_p (dst, PATTERN (i2)))
9022 /* If there is a reference to the register in the current insn,
9023 it might be loaded in a non-inherited reload. If no other
9024 reload uses it, that means the register is set before
9025 referenced. */
9026 if (i2 == current_insn)
9028 for (j = n_reloads - 1; j >= 0; j--)
9029 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9030 || reload_override_in[j] == dst)
9031 return;
9032 for (j = n_reloads - 1; j >= 0; j--)
9033 if (rld[j].in && rld[j].reg_rtx == dst)
9034 break;
9035 if (j >= 0)
9036 break;
9038 return;
9040 if (JUMP_P (i2))
9041 break;
9042 /* If DST is still live at CURRENT_INSN, check if it is used for
9043 any reload. Note that even if CURRENT_INSN sets DST, we still
9044 have to check the reloads. */
9045 if (i2 == current_insn)
9047 for (j = n_reloads - 1; j >= 0; j--)
9048 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9049 || reload_override_in[j] == dst)
9050 return;
9051 /* ??? We can't finish the loop here, because dst might be
9052 allocated to a pseudo in this block if no reload in this
9053 block needs any of the classes containing DST - see
9054 spill_hard_reg. There is no easy way to tell this, so we
9055 have to scan till the end of the basic block. */
9057 if (reg_set_p (dst, PATTERN (i2)))
9058 break;
9061 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9062 reg_reloaded_contents[REGNO (dst)] = -1;
9063 delete_insn (prev);
9066 /* Output reload-insns to reload VALUE into RELOADREG.
9067 VALUE is an autoincrement or autodecrement RTX whose operand
9068 is a register or memory location;
9069 so reloading involves incrementing that location.
9070 IN is either identical to VALUE, or some cheaper place to reload from.
9072 INC_AMOUNT is the number to increment or decrement by (always positive).
9073 This cannot be deduced from VALUE. */
9075 static void
9076 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9078 /* REG or MEM to be copied and incremented. */
9079 rtx incloc = find_replacement (&XEXP (value, 0));
9080 /* Nonzero if increment after copying. */
9081 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9082 || GET_CODE (value) == POST_MODIFY);
9083 rtx_insn *last;
9084 rtx inc;
9085 rtx_insn *add_insn;
9086 int code;
9087 rtx real_in = in == value ? incloc : in;
9089 /* No hard register is equivalent to this register after
9090 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9091 we could inc/dec that register as well (maybe even using it for
9092 the source), but I'm not sure it's worth worrying about. */
9093 if (REG_P (incloc))
9094 reg_last_reload_reg[REGNO (incloc)] = 0;
9096 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9098 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9099 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9101 else
9103 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9104 inc_amount = -inc_amount;
9106 inc = GEN_INT (inc_amount);
9109 /* If this is post-increment, first copy the location to the reload reg. */
9110 if (post && real_in != reloadreg)
9111 emit_insn (gen_move_insn (reloadreg, real_in));
9113 if (in == value)
9115 /* See if we can directly increment INCLOC. Use a method similar to
9116 that in gen_reload. */
9118 last = get_last_insn ();
9119 add_insn = emit_insn (gen_rtx_SET (incloc,
9120 gen_rtx_PLUS (GET_MODE (incloc),
9121 incloc, inc)));
9123 code = recog_memoized (add_insn);
9124 if (code >= 0)
9126 extract_insn (add_insn);
9127 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9129 /* If this is a pre-increment and we have incremented the value
9130 where it lives, copy the incremented value to RELOADREG to
9131 be used as an address. */
9133 if (! post)
9134 emit_insn (gen_move_insn (reloadreg, incloc));
9135 return;
9138 delete_insns_since (last);
9141 /* If couldn't do the increment directly, must increment in RELOADREG.
9142 The way we do this depends on whether this is pre- or post-increment.
9143 For pre-increment, copy INCLOC to the reload register, increment it
9144 there, then save back. */
9146 if (! post)
9148 if (in != reloadreg)
9149 emit_insn (gen_move_insn (reloadreg, real_in));
9150 emit_insn (gen_add2_insn (reloadreg, inc));
9151 emit_insn (gen_move_insn (incloc, reloadreg));
9153 else
9155 /* Postincrement.
9156 Because this might be a jump insn or a compare, and because RELOADREG
9157 may not be available after the insn in an input reload, we must do
9158 the incrementation before the insn being reloaded for.
9160 We have already copied IN to RELOADREG. Increment the copy in
9161 RELOADREG, save that back, then decrement RELOADREG so it has
9162 the original value. */
9164 emit_insn (gen_add2_insn (reloadreg, inc));
9165 emit_insn (gen_move_insn (incloc, reloadreg));
9166 if (CONST_INT_P (inc))
9167 emit_insn (gen_add2_insn (reloadreg,
9168 gen_int_mode (-INTVAL (inc),
9169 GET_MODE (reloadreg))));
9170 else
9171 emit_insn (gen_sub2_insn (reloadreg, inc));
9175 static void
9176 add_auto_inc_notes (rtx_insn *insn, rtx x)
9178 enum rtx_code code = GET_CODE (x);
9179 const char *fmt;
9180 int i, j;
9182 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9184 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9185 return;
9188 /* Scan all the operand sub-expressions. */
9189 fmt = GET_RTX_FORMAT (code);
9190 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9192 if (fmt[i] == 'e')
9193 add_auto_inc_notes (insn, XEXP (x, i));
9194 else if (fmt[i] == 'E')
9195 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9196 add_auto_inc_notes (insn, XVECEXP (x, i, j));