debug/dwarf: support 64-bit DWARF in byte order check
[official-gcc.git] / gcc / cfgloopmanip.c
blobaf65183bfaa4163c8f6708288ed6322b8243a3ae
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "gimple.h"
27 #include "cfghooks.h"
28 #include "cfganal.h"
29 #include "cfgloop.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "tree-ssa-loop-manip.h"
33 #include "dumpfile.h"
35 static void copy_loops_to (struct loop **, int,
36 struct loop *);
37 static void loop_redirect_edge (edge, basic_block);
38 static void remove_bbs (basic_block *, int);
39 static bool rpe_enum_p (const_basic_block, const void *);
40 static int find_path (edge, basic_block **);
41 static void fix_loop_placements (struct loop *, bool *);
42 static bool fix_bb_placement (basic_block);
43 static void fix_bb_placements (basic_block, bool *, bitmap);
45 /* Checks whether basic block BB is dominated by DATA. */
46 static bool
47 rpe_enum_p (const_basic_block bb, const void *data)
49 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
52 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
54 static void
55 remove_bbs (basic_block *bbs, int nbbs)
57 int i;
59 for (i = 0; i < nbbs; i++)
60 delete_basic_block (bbs[i]);
63 /* Find path -- i.e. the basic blocks dominated by edge E and put them
64 into array BBS, that will be allocated large enough to contain them.
65 E->dest must have exactly one predecessor for this to work (it is
66 easy to achieve and we do not put it here because we do not want to
67 alter anything by this function). The number of basic blocks in the
68 path is returned. */
69 static int
70 find_path (edge e, basic_block **bbs)
72 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
74 /* Find bbs in the path. */
75 *bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
76 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
77 n_basic_blocks_for_fn (cfun), e->dest);
80 /* Fix placement of basic block BB inside loop hierarchy --
81 Let L be a loop to that BB belongs. Then every successor of BB must either
82 1) belong to some superloop of loop L, or
83 2) be a header of loop K such that K->outer is superloop of L
84 Returns true if we had to move BB into other loop to enforce this condition,
85 false if the placement of BB was already correct (provided that placements
86 of its successors are correct). */
87 static bool
88 fix_bb_placement (basic_block bb)
90 edge e;
91 edge_iterator ei;
92 struct loop *loop = current_loops->tree_root, *act;
94 FOR_EACH_EDGE (e, ei, bb->succs)
96 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
97 continue;
99 act = e->dest->loop_father;
100 if (act->header == e->dest)
101 act = loop_outer (act);
103 if (flow_loop_nested_p (loop, act))
104 loop = act;
107 if (loop == bb->loop_father)
108 return false;
110 remove_bb_from_loops (bb);
111 add_bb_to_loop (bb, loop);
113 return true;
116 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
117 of LOOP to that leads at least one exit edge of LOOP, and set it
118 as the immediate superloop of LOOP. Return true if the immediate superloop
119 of LOOP changed.
121 IRRED_INVALIDATED is set to true if a change in the loop structures might
122 invalidate the information about irreducible regions. */
124 static bool
125 fix_loop_placement (struct loop *loop, bool *irred_invalidated)
127 unsigned i;
128 edge e;
129 vec<edge> exits = get_loop_exit_edges (loop);
130 struct loop *father = current_loops->tree_root, *act;
131 bool ret = false;
133 FOR_EACH_VEC_ELT (exits, i, e)
135 act = find_common_loop (loop, e->dest->loop_father);
136 if (flow_loop_nested_p (father, act))
137 father = act;
140 if (father != loop_outer (loop))
142 for (act = loop_outer (loop); act != father; act = loop_outer (act))
143 act->num_nodes -= loop->num_nodes;
144 flow_loop_tree_node_remove (loop);
145 flow_loop_tree_node_add (father, loop);
147 /* The exit edges of LOOP no longer exits its original immediate
148 superloops; remove them from the appropriate exit lists. */
149 FOR_EACH_VEC_ELT (exits, i, e)
151 /* We may need to recompute irreducible loops. */
152 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
153 *irred_invalidated = true;
154 rescan_loop_exit (e, false, false);
157 ret = true;
160 exits.release ();
161 return ret;
164 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
165 enforce condition stated in description of fix_bb_placement. We
166 start from basic block FROM that had some of its successors removed, so that
167 his placement no longer has to be correct, and iteratively fix placement of
168 its predecessors that may change if placement of FROM changed. Also fix
169 placement of subloops of FROM->loop_father, that might also be altered due
170 to this change; the condition for them is similar, except that instead of
171 successors we consider edges coming out of the loops.
173 If the changes may invalidate the information about irreducible regions,
174 IRRED_INVALIDATED is set to true.
176 If LOOP_CLOSED_SSA_INVLIDATED is non-zero then all basic blocks with
177 changed loop_father are collected there. */
179 static void
180 fix_bb_placements (basic_block from,
181 bool *irred_invalidated,
182 bitmap loop_closed_ssa_invalidated)
184 basic_block *queue, *qtop, *qbeg, *qend;
185 struct loop *base_loop, *target_loop;
186 edge e;
188 /* We pass through blocks back-reachable from FROM, testing whether some
189 of their successors moved to outer loop. It may be necessary to
190 iterate several times, but it is finite, as we stop unless we move
191 the basic block up the loop structure. The whole story is a bit
192 more complicated due to presence of subloops, those are moved using
193 fix_loop_placement. */
195 base_loop = from->loop_father;
196 /* If we are already in the outermost loop, the basic blocks cannot be moved
197 outside of it. If FROM is the header of the base loop, it cannot be moved
198 outside of it, either. In both cases, we can end now. */
199 if (base_loop == current_loops->tree_root
200 || from == base_loop->header)
201 return;
203 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
204 bitmap_clear (in_queue);
205 bitmap_set_bit (in_queue, from->index);
206 /* Prevent us from going out of the base_loop. */
207 bitmap_set_bit (in_queue, base_loop->header->index);
209 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
210 qtop = queue + base_loop->num_nodes + 1;
211 qbeg = queue;
212 qend = queue + 1;
213 *qbeg = from;
215 while (qbeg != qend)
217 edge_iterator ei;
218 from = *qbeg;
219 qbeg++;
220 if (qbeg == qtop)
221 qbeg = queue;
222 bitmap_clear_bit (in_queue, from->index);
224 if (from->loop_father->header == from)
226 /* Subloop header, maybe move the loop upward. */
227 if (!fix_loop_placement (from->loop_father, irred_invalidated))
228 continue;
229 target_loop = loop_outer (from->loop_father);
230 if (loop_closed_ssa_invalidated)
232 basic_block *bbs = get_loop_body (from->loop_father);
233 for (unsigned i = 0; i < from->loop_father->num_nodes; ++i)
234 bitmap_set_bit (loop_closed_ssa_invalidated, bbs[i]->index);
235 free (bbs);
238 else
240 /* Ordinary basic block. */
241 if (!fix_bb_placement (from))
242 continue;
243 target_loop = from->loop_father;
244 if (loop_closed_ssa_invalidated)
245 bitmap_set_bit (loop_closed_ssa_invalidated, from->index);
248 FOR_EACH_EDGE (e, ei, from->succs)
250 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
251 *irred_invalidated = true;
254 /* Something has changed, insert predecessors into queue. */
255 FOR_EACH_EDGE (e, ei, from->preds)
257 basic_block pred = e->src;
258 struct loop *nca;
260 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
261 *irred_invalidated = true;
263 if (bitmap_bit_p (in_queue, pred->index))
264 continue;
266 /* If it is subloop, then it either was not moved, or
267 the path up the loop tree from base_loop do not contain
268 it. */
269 nca = find_common_loop (pred->loop_father, base_loop);
270 if (pred->loop_father != base_loop
271 && (nca == base_loop
272 || nca != pred->loop_father))
273 pred = pred->loop_father->header;
274 else if (!flow_loop_nested_p (target_loop, pred->loop_father))
276 /* If PRED is already higher in the loop hierarchy than the
277 TARGET_LOOP to that we moved FROM, the change of the position
278 of FROM does not affect the position of PRED, so there is no
279 point in processing it. */
280 continue;
283 if (bitmap_bit_p (in_queue, pred->index))
284 continue;
286 /* Schedule the basic block. */
287 *qend = pred;
288 qend++;
289 if (qend == qtop)
290 qend = queue;
291 bitmap_set_bit (in_queue, pred->index);
294 free (queue);
297 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
298 and update loop structures and dominators. Return true if we were able
299 to remove the path, false otherwise (and nothing is affected then). */
300 bool
301 remove_path (edge e, bool *irred_invalidated,
302 bitmap loop_closed_ssa_invalidated)
304 edge ae;
305 basic_block *rem_bbs, *bord_bbs, from, bb;
306 vec<basic_block> dom_bbs;
307 int i, nrem, n_bord_bbs;
308 bool local_irred_invalidated = false;
309 edge_iterator ei;
310 struct loop *l, *f;
312 if (! irred_invalidated)
313 irred_invalidated = &local_irred_invalidated;
315 if (!can_remove_branch_p (e))
316 return false;
318 /* Keep track of whether we need to update information about irreducible
319 regions. This is the case if the removed area is a part of the
320 irreducible region, or if the set of basic blocks that belong to a loop
321 that is inside an irreducible region is changed, or if such a loop is
322 removed. */
323 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
324 *irred_invalidated = true;
326 /* We need to check whether basic blocks are dominated by the edge
327 e, but we only have basic block dominators. This is easy to
328 fix -- when e->dest has exactly one predecessor, this corresponds
329 to blocks dominated by e->dest, if not, split the edge. */
330 if (!single_pred_p (e->dest))
331 e = single_pred_edge (split_edge (e));
333 /* It may happen that by removing path we remove one or more loops
334 we belong to. In this case first unloop the loops, then proceed
335 normally. We may assume that e->dest is not a header of any loop,
336 as it now has exactly one predecessor. */
337 for (l = e->src->loop_father; loop_outer (l); l = f)
339 f = loop_outer (l);
340 if (dominated_by_p (CDI_DOMINATORS, l->latch, e->dest))
341 unloop (l, irred_invalidated, loop_closed_ssa_invalidated);
344 /* Identify the path. */
345 nrem = find_path (e, &rem_bbs);
347 n_bord_bbs = 0;
348 bord_bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
349 auto_sbitmap seen (last_basic_block_for_fn (cfun));
350 bitmap_clear (seen);
352 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
353 for (i = 0; i < nrem; i++)
354 bitmap_set_bit (seen, rem_bbs[i]->index);
355 if (!*irred_invalidated)
356 FOR_EACH_EDGE (ae, ei, e->src->succs)
357 if (ae != e && ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
358 && !bitmap_bit_p (seen, ae->dest->index)
359 && ae->flags & EDGE_IRREDUCIBLE_LOOP)
361 *irred_invalidated = true;
362 break;
365 for (i = 0; i < nrem; i++)
367 bb = rem_bbs[i];
368 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
369 if (ae->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
370 && !bitmap_bit_p (seen, ae->dest->index))
372 bitmap_set_bit (seen, ae->dest->index);
373 bord_bbs[n_bord_bbs++] = ae->dest;
375 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
376 *irred_invalidated = true;
380 /* Remove the path. */
381 from = e->src;
382 remove_branch (e);
383 dom_bbs.create (0);
385 /* Cancel loops contained in the path. */
386 for (i = 0; i < nrem; i++)
387 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
388 cancel_loop_tree (rem_bbs[i]->loop_father);
390 remove_bbs (rem_bbs, nrem);
391 free (rem_bbs);
393 /* Find blocks whose dominators may be affected. */
394 bitmap_clear (seen);
395 for (i = 0; i < n_bord_bbs; i++)
397 basic_block ldom;
399 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
400 if (bitmap_bit_p (seen, bb->index))
401 continue;
402 bitmap_set_bit (seen, bb->index);
404 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
405 ldom;
406 ldom = next_dom_son (CDI_DOMINATORS, ldom))
407 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
408 dom_bbs.safe_push (ldom);
411 /* Recount dominators. */
412 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
413 dom_bbs.release ();
414 free (bord_bbs);
416 /* Fix placements of basic blocks inside loops and the placement of
417 loops in the loop tree. */
418 fix_bb_placements (from, irred_invalidated, loop_closed_ssa_invalidated);
419 fix_loop_placements (from->loop_father, irred_invalidated);
421 if (local_irred_invalidated
422 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
423 mark_irreducible_loops ();
425 return true;
428 /* Creates place for a new LOOP in loops structure of FN. */
430 void
431 place_new_loop (struct function *fn, struct loop *loop)
433 loop->num = number_of_loops (fn);
434 vec_safe_push (loops_for_fn (fn)->larray, loop);
437 /* Given LOOP structure with filled header and latch, find the body of the
438 corresponding loop and add it to loops tree. Insert the LOOP as a son of
439 outer. */
441 void
442 add_loop (struct loop *loop, struct loop *outer)
444 basic_block *bbs;
445 int i, n;
446 struct loop *subloop;
447 edge e;
448 edge_iterator ei;
450 /* Add it to loop structure. */
451 place_new_loop (cfun, loop);
452 flow_loop_tree_node_add (outer, loop);
454 /* Find its nodes. */
455 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
456 n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
458 for (i = 0; i < n; i++)
460 if (bbs[i]->loop_father == outer)
462 remove_bb_from_loops (bbs[i]);
463 add_bb_to_loop (bbs[i], loop);
464 continue;
467 loop->num_nodes++;
469 /* If we find a direct subloop of OUTER, move it to LOOP. */
470 subloop = bbs[i]->loop_father;
471 if (loop_outer (subloop) == outer
472 && subloop->header == bbs[i])
474 flow_loop_tree_node_remove (subloop);
475 flow_loop_tree_node_add (loop, subloop);
479 /* Update the information about loop exit edges. */
480 for (i = 0; i < n; i++)
482 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
484 rescan_loop_exit (e, false, false);
488 free (bbs);
491 /* Scale profile of loop by P. */
493 void
494 scale_loop_frequencies (struct loop *loop, profile_probability p)
496 basic_block *bbs;
498 bbs = get_loop_body (loop);
499 scale_bbs_frequencies (bbs, loop->num_nodes, p);
500 free (bbs);
503 /* Scale profile in LOOP by P.
504 If ITERATION_BOUND is non-zero, scale even further if loop is predicted
505 to iterate too many times. */
507 void
508 scale_loop_profile (struct loop *loop, profile_probability p,
509 gcov_type iteration_bound)
511 gcov_type iterations = expected_loop_iterations_unbounded (loop);
512 edge e;
513 edge_iterator ei;
515 if (dump_file && (dump_flags & TDF_DETAILS))
517 fprintf (dump_file, ";; Scaling loop %i with scale ",
518 loop->num);
519 p.dump (dump_file);
520 fprintf (dump_file, " bounding iterations to %i from guessed %i\n",
521 (int)iteration_bound, (int)iterations);
524 /* See if loop is predicted to iterate too many times. */
525 if (iteration_bound && iterations > 0
526 && p.apply (iterations) > iteration_bound)
528 /* Fixing loop profile for different trip count is not trivial; the exit
529 probabilities has to be updated to match and frequencies propagated down
530 to the loop body.
532 We fully update only the simple case of loop with single exit that is
533 either from the latch or BB just before latch and leads from BB with
534 simple conditional jump. This is OK for use in vectorizer. */
535 e = single_exit (loop);
536 if (e)
538 edge other_e;
539 int freq_delta;
540 profile_count count_delta;
542 FOR_EACH_EDGE (other_e, ei, e->src->succs)
543 if (!(other_e->flags & (EDGE_ABNORMAL | EDGE_FAKE))
544 && e != other_e)
545 break;
547 /* Probability of exit must be 1/iterations. */
548 freq_delta = EDGE_FREQUENCY (e);
549 count_delta = e->count ();
550 e->probability = profile_probability::always ()
551 .apply_scale (1, iteration_bound);
552 other_e->probability = e->probability.invert ();
553 freq_delta -= EDGE_FREQUENCY (e);
554 count_delta -= e->count ();
556 /* If latch exists, change its frequency and count, since we changed
557 probability of exit. Theoretically we should update everything from
558 source of exit edge to latch, but for vectorizer this is enough. */
559 if (loop->latch
560 && loop->latch != e->src)
562 loop->latch->frequency += freq_delta;
563 if (loop->latch->frequency < 0)
564 loop->latch->frequency = 0;
565 loop->latch->count += count_delta;
569 /* Roughly speaking we want to reduce the loop body profile by the
570 difference of loop iterations. We however can do better if
571 we look at the actual profile, if it is available. */
572 p = p.apply_scale (iteration_bound, iterations);
574 bool determined = false;
575 if (loop->header->count.initialized_p ())
577 profile_count count_in = profile_count::zero ();
579 FOR_EACH_EDGE (e, ei, loop->header->preds)
580 if (e->src != loop->latch)
581 count_in += e->count ();
583 if (count_in > profile_count::zero () )
585 p = count_in.probability_in (loop->header->count.apply_scale
586 (iteration_bound, 1));
587 determined = true;
590 if (!determined && loop->header->frequency)
592 int freq_in = 0;
594 FOR_EACH_EDGE (e, ei, loop->header->preds)
595 if (e->src != loop->latch)
596 freq_in += EDGE_FREQUENCY (e);
598 if (freq_in != 0)
599 p = profile_probability::probability_in_gcov_type
600 (freq_in * iteration_bound, loop->header->frequency);
602 if (!(p > profile_probability::never ()))
603 p = profile_probability::very_unlikely ();
606 if (p >= profile_probability::always ()
607 || !p.initialized_p ())
608 return;
610 /* Scale the actual probabilities. */
611 scale_loop_frequencies (loop, p);
612 if (dump_file && (dump_flags & TDF_DETAILS))
613 fprintf (dump_file, ";; guessed iterations are now %i\n",
614 (int)expected_loop_iterations_unbounded (loop));
617 /* Recompute dominance information for basic blocks outside LOOP. */
619 static void
620 update_dominators_in_loop (struct loop *loop)
622 vec<basic_block> dom_bbs = vNULL;
623 basic_block *body;
624 unsigned i;
626 auto_sbitmap seen (last_basic_block_for_fn (cfun));
627 bitmap_clear (seen);
628 body = get_loop_body (loop);
630 for (i = 0; i < loop->num_nodes; i++)
631 bitmap_set_bit (seen, body[i]->index);
633 for (i = 0; i < loop->num_nodes; i++)
635 basic_block ldom;
637 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
638 ldom;
639 ldom = next_dom_son (CDI_DOMINATORS, ldom))
640 if (!bitmap_bit_p (seen, ldom->index))
642 bitmap_set_bit (seen, ldom->index);
643 dom_bbs.safe_push (ldom);
647 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
648 free (body);
649 dom_bbs.release ();
652 /* Creates an if region as shown above. CONDITION is used to create
653 the test for the if.
656 | ------------- -------------
657 | | pred_bb | | pred_bb |
658 | ------------- -------------
659 | | |
660 | | | ENTRY_EDGE
661 | | ENTRY_EDGE V
662 | | ====> -------------
663 | | | cond_bb |
664 | | | CONDITION |
665 | | -------------
666 | V / \
667 | ------------- e_false / \ e_true
668 | | succ_bb | V V
669 | ------------- ----------- -----------
670 | | false_bb | | true_bb |
671 | ----------- -----------
672 | \ /
673 | \ /
674 | V V
675 | -------------
676 | | join_bb |
677 | -------------
678 | | exit_edge (result)
680 | -----------
681 | | succ_bb |
682 | -----------
686 edge
687 create_empty_if_region_on_edge (edge entry_edge, tree condition)
690 basic_block cond_bb, true_bb, false_bb, join_bb;
691 edge e_true, e_false, exit_edge;
692 gcond *cond_stmt;
693 tree simple_cond;
694 gimple_stmt_iterator gsi;
696 cond_bb = split_edge (entry_edge);
698 /* Insert condition in cond_bb. */
699 gsi = gsi_last_bb (cond_bb);
700 simple_cond =
701 force_gimple_operand_gsi (&gsi, condition, true, NULL,
702 false, GSI_NEW_STMT);
703 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
704 gsi = gsi_last_bb (cond_bb);
705 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
707 join_bb = split_edge (single_succ_edge (cond_bb));
709 e_true = single_succ_edge (cond_bb);
710 true_bb = split_edge (e_true);
712 e_false = make_edge (cond_bb, join_bb, 0);
713 false_bb = split_edge (e_false);
715 e_true->flags &= ~EDGE_FALLTHRU;
716 e_true->flags |= EDGE_TRUE_VALUE;
717 e_false->flags &= ~EDGE_FALLTHRU;
718 e_false->flags |= EDGE_FALSE_VALUE;
720 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
721 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
722 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
723 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
725 exit_edge = single_succ_edge (join_bb);
727 if (single_pred_p (exit_edge->dest))
728 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
730 return exit_edge;
733 /* create_empty_loop_on_edge
735 | - pred_bb - ------ pred_bb ------
736 | | | | iv0 = initial_value |
737 | -----|----- ---------|-----------
738 | | ______ | entry_edge
739 | | entry_edge / | |
740 | | ====> | -V---V- loop_header -------------
741 | V | | iv_before = phi (iv0, iv_after) |
742 | - succ_bb - | ---|-----------------------------
743 | | | | |
744 | ----------- | ---V--- loop_body ---------------
745 | | | iv_after = iv_before + stride |
746 | | | if (iv_before < upper_bound) |
747 | | ---|--------------\--------------
748 | | | \ exit_e
749 | | V \
750 | | - loop_latch - V- succ_bb -
751 | | | | | |
752 | | /------------- -----------
753 | \ ___ /
755 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
756 that is used before the increment of IV. IV_BEFORE should be used for
757 adding code to the body that uses the IV. OUTER is the outer loop in
758 which the new loop should be inserted.
760 Both INITIAL_VALUE and UPPER_BOUND expressions are gimplified and
761 inserted on the loop entry edge. This implies that this function
762 should be used only when the UPPER_BOUND expression is a loop
763 invariant. */
765 struct loop *
766 create_empty_loop_on_edge (edge entry_edge,
767 tree initial_value,
768 tree stride, tree upper_bound,
769 tree iv,
770 tree *iv_before,
771 tree *iv_after,
772 struct loop *outer)
774 basic_block loop_header, loop_latch, succ_bb, pred_bb;
775 struct loop *loop;
776 gimple_stmt_iterator gsi;
777 gimple_seq stmts;
778 gcond *cond_expr;
779 tree exit_test;
780 edge exit_e;
782 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
784 /* Create header, latch and wire up the loop. */
785 pred_bb = entry_edge->src;
786 loop_header = split_edge (entry_edge);
787 loop_latch = split_edge (single_succ_edge (loop_header));
788 succ_bb = single_succ (loop_latch);
789 make_edge (loop_header, succ_bb, 0);
790 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
792 /* Set immediate dominator information. */
793 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
794 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
795 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
797 /* Initialize a loop structure and put it in a loop hierarchy. */
798 loop = alloc_loop ();
799 loop->header = loop_header;
800 loop->latch = loop_latch;
801 add_loop (loop, outer);
803 /* TODO: Fix frequencies and counts. */
804 scale_loop_frequencies (loop, profile_probability::even ());
806 /* Update dominators. */
807 update_dominators_in_loop (loop);
809 /* Modify edge flags. */
810 exit_e = single_exit (loop);
811 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
812 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
814 /* Construct IV code in loop. */
815 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
816 if (stmts)
818 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
819 gsi_commit_edge_inserts ();
822 upper_bound = force_gimple_operand (upper_bound, &stmts, true, NULL);
823 if (stmts)
825 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
826 gsi_commit_edge_inserts ();
829 gsi = gsi_last_bb (loop_header);
830 create_iv (initial_value, stride, iv, loop, &gsi, false,
831 iv_before, iv_after);
833 /* Insert loop exit condition. */
834 cond_expr = gimple_build_cond
835 (LT_EXPR, *iv_before, upper_bound, NULL_TREE, NULL_TREE);
837 exit_test = gimple_cond_lhs (cond_expr);
838 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
839 false, GSI_NEW_STMT);
840 gimple_cond_set_lhs (cond_expr, exit_test);
841 gsi = gsi_last_bb (exit_e->src);
842 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
844 split_block_after_labels (loop_header);
846 return loop;
849 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
850 latch to header and update loop tree and dominators
851 accordingly. Everything between them plus LATCH_EDGE destination must
852 be dominated by HEADER_EDGE destination, and back-reachable from
853 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
854 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
855 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
856 Returns the newly created loop. Frequencies and counts in the new loop
857 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
859 struct loop *
860 loopify (edge latch_edge, edge header_edge,
861 basic_block switch_bb, edge true_edge, edge false_edge,
862 bool redirect_all_edges, profile_probability true_scale,
863 profile_probability false_scale)
865 basic_block succ_bb = latch_edge->dest;
866 basic_block pred_bb = header_edge->src;
867 struct loop *loop = alloc_loop ();
868 struct loop *outer = loop_outer (succ_bb->loop_father);
869 int freq;
870 profile_count cnt;
872 loop->header = header_edge->dest;
873 loop->latch = latch_edge->src;
875 freq = EDGE_FREQUENCY (header_edge);
876 cnt = header_edge->count ();
878 /* Redirect edges. */
879 loop_redirect_edge (latch_edge, loop->header);
880 loop_redirect_edge (true_edge, succ_bb);
882 /* During loop versioning, one of the switch_bb edge is already properly
883 set. Do not redirect it again unless redirect_all_edges is true. */
884 if (redirect_all_edges)
886 loop_redirect_edge (header_edge, switch_bb);
887 loop_redirect_edge (false_edge, loop->header);
889 /* Update dominators. */
890 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
891 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
894 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
896 /* Compute new loop. */
897 add_loop (loop, outer);
899 /* Add switch_bb to appropriate loop. */
900 if (switch_bb->loop_father)
901 remove_bb_from_loops (switch_bb);
902 add_bb_to_loop (switch_bb, outer);
904 /* Fix frequencies. */
905 if (redirect_all_edges)
907 switch_bb->frequency = freq;
908 switch_bb->count = cnt;
910 scale_loop_frequencies (loop, false_scale);
911 scale_loop_frequencies (succ_bb->loop_father, true_scale);
912 update_dominators_in_loop (loop);
914 return loop;
917 /* Remove the latch edge of a LOOP and update loops to indicate that
918 the LOOP was removed. After this function, original loop latch will
919 have no successor, which caller is expected to fix somehow.
921 If this may cause the information about irreducible regions to become
922 invalid, IRRED_INVALIDATED is set to true.
924 LOOP_CLOSED_SSA_INVALIDATED, if non-NULL, is a bitmap where we store
925 basic blocks that had non-trivial update on their loop_father.*/
927 void
928 unloop (struct loop *loop, bool *irred_invalidated,
929 bitmap loop_closed_ssa_invalidated)
931 basic_block *body;
932 struct loop *ploop;
933 unsigned i, n;
934 basic_block latch = loop->latch;
935 bool dummy = false;
937 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
938 *irred_invalidated = true;
940 /* This is relatively straightforward. The dominators are unchanged, as
941 loop header dominates loop latch, so the only thing we have to care of
942 is the placement of loops and basic blocks inside the loop tree. We
943 move them all to the loop->outer, and then let fix_bb_placements do
944 its work. */
946 body = get_loop_body (loop);
947 n = loop->num_nodes;
948 for (i = 0; i < n; i++)
949 if (body[i]->loop_father == loop)
951 remove_bb_from_loops (body[i]);
952 add_bb_to_loop (body[i], loop_outer (loop));
954 free (body);
956 while (loop->inner)
958 ploop = loop->inner;
959 flow_loop_tree_node_remove (ploop);
960 flow_loop_tree_node_add (loop_outer (loop), ploop);
963 /* Remove the loop and free its data. */
964 delete_loop (loop);
966 remove_edge (single_succ_edge (latch));
968 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
969 there is an irreducible region inside the cancelled loop, the flags will
970 be still correct. */
971 fix_bb_placements (latch, &dummy, loop_closed_ssa_invalidated);
974 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
975 condition stated in description of fix_loop_placement holds for them.
976 It is used in case when we removed some edges coming out of LOOP, which
977 may cause the right placement of LOOP inside loop tree to change.
979 IRRED_INVALIDATED is set to true if a change in the loop structures might
980 invalidate the information about irreducible regions. */
982 static void
983 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
985 struct loop *outer;
987 while (loop_outer (loop))
989 outer = loop_outer (loop);
990 if (!fix_loop_placement (loop, irred_invalidated))
991 break;
993 /* Changing the placement of a loop in the loop tree may alter the
994 validity of condition 2) of the description of fix_bb_placement
995 for its preheader, because the successor is the header and belongs
996 to the loop. So call fix_bb_placements to fix up the placement
997 of the preheader and (possibly) of its predecessors. */
998 fix_bb_placements (loop_preheader_edge (loop)->src,
999 irred_invalidated, NULL);
1000 loop = outer;
1004 /* Duplicate loop bounds and other information we store about
1005 the loop into its duplicate. */
1007 void
1008 copy_loop_info (struct loop *loop, struct loop *target)
1010 gcc_checking_assert (!target->any_upper_bound && !target->any_estimate);
1011 target->any_upper_bound = loop->any_upper_bound;
1012 target->nb_iterations_upper_bound = loop->nb_iterations_upper_bound;
1013 target->any_likely_upper_bound = loop->any_likely_upper_bound;
1014 target->nb_iterations_likely_upper_bound
1015 = loop->nb_iterations_likely_upper_bound;
1016 target->any_estimate = loop->any_estimate;
1017 target->nb_iterations_estimate = loop->nb_iterations_estimate;
1018 target->estimate_state = loop->estimate_state;
1019 target->constraints = loop->constraints;
1020 target->warned_aggressive_loop_optimizations
1021 |= loop->warned_aggressive_loop_optimizations;
1022 target->in_oacc_kernels_region = loop->in_oacc_kernels_region;
1025 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
1026 created loop into loops structure. */
1027 struct loop *
1028 duplicate_loop (struct loop *loop, struct loop *target)
1030 struct loop *cloop;
1031 cloop = alloc_loop ();
1032 place_new_loop (cfun, cloop);
1034 copy_loop_info (loop, cloop);
1036 /* Mark the new loop as copy of LOOP. */
1037 set_loop_copy (loop, cloop);
1039 /* Add it to target. */
1040 flow_loop_tree_node_add (target, cloop);
1042 return cloop;
1045 /* Copies structure of subloops of LOOP into TARGET loop, placing
1046 newly created loops into loop tree. */
1047 void
1048 duplicate_subloops (struct loop *loop, struct loop *target)
1050 struct loop *aloop, *cloop;
1052 for (aloop = loop->inner; aloop; aloop = aloop->next)
1054 cloop = duplicate_loop (aloop, target);
1055 duplicate_subloops (aloop, cloop);
1059 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
1060 into TARGET loop, placing newly created loops into loop tree. */
1061 static void
1062 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
1064 struct loop *aloop;
1065 int i;
1067 for (i = 0; i < n; i++)
1069 aloop = duplicate_loop (copied_loops[i], target);
1070 duplicate_subloops (copied_loops[i], aloop);
1074 /* Redirects edge E to basic block DEST. */
1075 static void
1076 loop_redirect_edge (edge e, basic_block dest)
1078 if (e->dest == dest)
1079 return;
1081 redirect_edge_and_branch_force (e, dest);
1084 /* Check whether LOOP's body can be duplicated. */
1085 bool
1086 can_duplicate_loop_p (const struct loop *loop)
1088 int ret;
1089 basic_block *bbs = get_loop_body (loop);
1091 ret = can_copy_bbs_p (bbs, loop->num_nodes);
1092 free (bbs);
1094 return ret;
1097 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
1098 loop structure and dominators. E's destination must be LOOP header for
1099 this to work, i.e. it must be entry or latch edge of this loop; these are
1100 unique, as the loops must have preheaders for this function to work
1101 correctly (in case E is latch, the function unrolls the loop, if E is entry
1102 edge, it peels the loop). Store edges created by copying ORIG edge from
1103 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
1104 original LOOP body, the other copies are numbered in order given by control
1105 flow through them) into TO_REMOVE array. Returns false if duplication is
1106 impossible. */
1108 bool
1109 duplicate_loop_to_header_edge (struct loop *loop, edge e,
1110 unsigned int ndupl, sbitmap wont_exit,
1111 edge orig, vec<edge> *to_remove,
1112 int flags)
1114 struct loop *target, *aloop;
1115 struct loop **orig_loops;
1116 unsigned n_orig_loops;
1117 basic_block header = loop->header, latch = loop->latch;
1118 basic_block *new_bbs, *bbs, *first_active;
1119 basic_block new_bb, bb, first_active_latch = NULL;
1120 edge ae, latch_edge;
1121 edge spec_edges[2], new_spec_edges[2];
1122 #define SE_LATCH 0
1123 #define SE_ORIG 1
1124 unsigned i, j, n;
1125 int is_latch = (latch == e->src);
1126 int scale_act = 0, *scale_step = NULL, scale_main = 0;
1127 int scale_after_exit = 0;
1128 int p, freq_in, freq_le, freq_out_orig;
1129 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1130 int add_irreducible_flag;
1131 basic_block place_after;
1132 bitmap bbs_to_scale = NULL;
1133 bitmap_iterator bi;
1135 gcc_assert (e->dest == loop->header);
1136 gcc_assert (ndupl > 0);
1138 if (orig)
1140 /* Orig must be edge out of the loop. */
1141 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1142 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1145 n = loop->num_nodes;
1146 bbs = get_loop_body_in_dom_order (loop);
1147 gcc_assert (bbs[0] == loop->header);
1148 gcc_assert (bbs[n - 1] == loop->latch);
1150 /* Check whether duplication is possible. */
1151 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1153 free (bbs);
1154 return false;
1156 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1158 /* In case we are doing loop peeling and the loop is in the middle of
1159 irreducible region, the peeled copies will be inside it too. */
1160 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1161 gcc_assert (!is_latch || !add_irreducible_flag);
1163 /* Find edge from latch. */
1164 latch_edge = loop_latch_edge (loop);
1166 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1168 /* Calculate coefficients by that we have to scale frequencies
1169 of duplicated loop bodies. */
1170 freq_in = header->frequency;
1171 freq_le = EDGE_FREQUENCY (latch_edge);
1172 if (freq_in == 0)
1173 freq_in = 1;
1174 if (freq_in < freq_le)
1175 freq_in = freq_le;
1176 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1177 if (freq_out_orig > freq_in - freq_le)
1178 freq_out_orig = freq_in - freq_le;
1179 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1180 prob_pass_wont_exit =
1181 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1183 if (orig && orig->probability.initialized_p ()
1184 && !(orig->probability == profile_probability::always ()))
1186 /* The blocks that are dominated by a removed exit edge ORIG have
1187 frequencies scaled by this. */
1188 if (orig->probability.initialized_p ())
1189 scale_after_exit
1190 = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE,
1191 REG_BR_PROB_BASE
1192 - orig->probability.to_reg_br_prob_base ());
1193 else
1194 scale_after_exit = REG_BR_PROB_BASE;
1195 bbs_to_scale = BITMAP_ALLOC (NULL);
1196 for (i = 0; i < n; i++)
1198 if (bbs[i] != orig->src
1199 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1200 bitmap_set_bit (bbs_to_scale, i);
1204 scale_step = XNEWVEC (int, ndupl);
1206 for (i = 1; i <= ndupl; i++)
1207 scale_step[i - 1] = bitmap_bit_p (wont_exit, i)
1208 ? prob_pass_wont_exit
1209 : prob_pass_thru;
1211 /* Complete peeling is special as the probability of exit in last
1212 copy becomes 1. */
1213 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1215 int wanted_freq = EDGE_FREQUENCY (e);
1217 if (wanted_freq > freq_in)
1218 wanted_freq = freq_in;
1220 gcc_assert (!is_latch);
1221 /* First copy has frequency of incoming edge. Each subsequent
1222 frequency should be reduced by prob_pass_wont_exit. Caller
1223 should've managed the flags so all except for original loop
1224 has won't exist set. */
1225 scale_act = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1226 /* Now simulate the duplication adjustments and compute header
1227 frequency of the last copy. */
1228 for (i = 0; i < ndupl; i++)
1229 wanted_freq = combine_probabilities (wanted_freq, scale_step[i]);
1230 scale_main = GCOV_COMPUTE_SCALE (wanted_freq, freq_in);
1232 else if (is_latch)
1234 prob_pass_main = bitmap_bit_p (wont_exit, 0)
1235 ? prob_pass_wont_exit
1236 : prob_pass_thru;
1237 p = prob_pass_main;
1238 scale_main = REG_BR_PROB_BASE;
1239 for (i = 0; i < ndupl; i++)
1241 scale_main += p;
1242 p = combine_probabilities (p, scale_step[i]);
1244 scale_main = GCOV_COMPUTE_SCALE (REG_BR_PROB_BASE, scale_main);
1245 scale_act = combine_probabilities (scale_main, prob_pass_main);
1247 else
1249 int preheader_freq = EDGE_FREQUENCY (e);
1250 scale_main = REG_BR_PROB_BASE;
1251 for (i = 0; i < ndupl; i++)
1252 scale_main = combine_probabilities (scale_main, scale_step[i]);
1253 if (preheader_freq > freq_in)
1254 preheader_freq = freq_in;
1255 scale_act = GCOV_COMPUTE_SCALE (preheader_freq, freq_in);
1257 for (i = 0; i < ndupl; i++)
1258 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1259 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1260 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1263 /* Loop the new bbs will belong to. */
1264 target = e->src->loop_father;
1266 /* Original loops. */
1267 n_orig_loops = 0;
1268 for (aloop = loop->inner; aloop; aloop = aloop->next)
1269 n_orig_loops++;
1270 orig_loops = XNEWVEC (struct loop *, n_orig_loops);
1271 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1272 orig_loops[i] = aloop;
1274 set_loop_copy (loop, target);
1276 first_active = XNEWVEC (basic_block, n);
1277 if (is_latch)
1279 memcpy (first_active, bbs, n * sizeof (basic_block));
1280 first_active_latch = latch;
1283 spec_edges[SE_ORIG] = orig;
1284 spec_edges[SE_LATCH] = latch_edge;
1286 place_after = e->src;
1287 for (j = 0; j < ndupl; j++)
1289 /* Copy loops. */
1290 copy_loops_to (orig_loops, n_orig_loops, target);
1292 /* Copy bbs. */
1293 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1294 place_after, true);
1295 place_after = new_spec_edges[SE_LATCH]->src;
1297 if (flags & DLTHE_RECORD_COPY_NUMBER)
1298 for (i = 0; i < n; i++)
1300 gcc_assert (!new_bbs[i]->aux);
1301 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1304 /* Note whether the blocks and edges belong to an irreducible loop. */
1305 if (add_irreducible_flag)
1307 for (i = 0; i < n; i++)
1308 new_bbs[i]->flags |= BB_DUPLICATED;
1309 for (i = 0; i < n; i++)
1311 edge_iterator ei;
1312 new_bb = new_bbs[i];
1313 if (new_bb->loop_father == target)
1314 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1316 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1317 if ((ae->dest->flags & BB_DUPLICATED)
1318 && (ae->src->loop_father == target
1319 || ae->dest->loop_father == target))
1320 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1322 for (i = 0; i < n; i++)
1323 new_bbs[i]->flags &= ~BB_DUPLICATED;
1326 /* Redirect the special edges. */
1327 if (is_latch)
1329 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1330 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1331 loop->header);
1332 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1333 latch = loop->latch = new_bbs[n - 1];
1334 e = latch_edge = new_spec_edges[SE_LATCH];
1336 else
1338 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1339 loop->header);
1340 redirect_edge_and_branch_force (e, new_bbs[0]);
1341 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1342 e = new_spec_edges[SE_LATCH];
1345 /* Record exit edge in this copy. */
1346 if (orig && bitmap_bit_p (wont_exit, j + 1))
1348 if (to_remove)
1349 to_remove->safe_push (new_spec_edges[SE_ORIG]);
1350 force_edge_cold (new_spec_edges[SE_ORIG], true);
1352 /* Scale the frequencies of the blocks dominated by the exit. */
1353 if (bbs_to_scale)
1355 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1357 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1358 REG_BR_PROB_BASE);
1363 /* Record the first copy in the control flow order if it is not
1364 the original loop (i.e. in case of peeling). */
1365 if (!first_active_latch)
1367 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1368 first_active_latch = new_bbs[n - 1];
1371 /* Set counts and frequencies. */
1372 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1374 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1375 scale_act = combine_probabilities (scale_act, scale_step[j]);
1378 free (new_bbs);
1379 free (orig_loops);
1381 /* Record the exit edge in the original loop body, and update the frequencies. */
1382 if (orig && bitmap_bit_p (wont_exit, 0))
1384 if (to_remove)
1385 to_remove->safe_push (orig);
1386 force_edge_cold (orig, true);
1388 /* Scale the frequencies of the blocks dominated by the exit. */
1389 if (bbs_to_scale)
1391 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1393 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1394 REG_BR_PROB_BASE);
1399 /* Update the original loop. */
1400 if (!is_latch)
1401 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1402 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1404 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1405 free (scale_step);
1408 /* Update dominators of outer blocks if affected. */
1409 for (i = 0; i < n; i++)
1411 basic_block dominated, dom_bb;
1412 vec<basic_block> dom_bbs;
1413 unsigned j;
1415 bb = bbs[i];
1416 bb->aux = 0;
1418 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1419 FOR_EACH_VEC_ELT (dom_bbs, j, dominated)
1421 if (flow_bb_inside_loop_p (loop, dominated))
1422 continue;
1423 dom_bb = nearest_common_dominator (
1424 CDI_DOMINATORS, first_active[i], first_active_latch);
1425 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1427 dom_bbs.release ();
1429 free (first_active);
1431 free (bbs);
1432 BITMAP_FREE (bbs_to_scale);
1434 return true;
1437 /* A callback for make_forwarder block, to redirect all edges except for
1438 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1439 whether to redirect it. */
1441 edge mfb_kj_edge;
1442 bool
1443 mfb_keep_just (edge e)
1445 return e != mfb_kj_edge;
1448 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1450 static bool
1451 has_preds_from_loop (basic_block block, struct loop *loop)
1453 edge e;
1454 edge_iterator ei;
1456 FOR_EACH_EDGE (e, ei, block->preds)
1457 if (e->src->loop_father == loop)
1458 return true;
1459 return false;
1462 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1463 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1464 entry; otherwise we also force preheader block to have only one successor.
1465 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1466 to be a fallthru predecessor to the loop header and to have only
1467 predecessors from outside of the loop.
1468 The function also updates dominators. */
1470 basic_block
1471 create_preheader (struct loop *loop, int flags)
1473 edge e;
1474 basic_block dummy;
1475 int nentry = 0;
1476 bool irred = false;
1477 bool latch_edge_was_fallthru;
1478 edge one_succ_pred = NULL, single_entry = NULL;
1479 edge_iterator ei;
1481 FOR_EACH_EDGE (e, ei, loop->header->preds)
1483 if (e->src == loop->latch)
1484 continue;
1485 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1486 nentry++;
1487 single_entry = e;
1488 if (single_succ_p (e->src))
1489 one_succ_pred = e;
1491 gcc_assert (nentry);
1492 if (nentry == 1)
1494 bool need_forwarder_block = false;
1496 /* We do not allow entry block to be the loop preheader, since we
1497 cannot emit code there. */
1498 if (single_entry->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1499 need_forwarder_block = true;
1500 else
1502 /* If we want simple preheaders, also force the preheader to have
1503 just a single successor. */
1504 if ((flags & CP_SIMPLE_PREHEADERS)
1505 && !single_succ_p (single_entry->src))
1506 need_forwarder_block = true;
1507 /* If we want fallthru preheaders, also create forwarder block when
1508 preheader ends with a jump or has predecessors from loop. */
1509 else if ((flags & CP_FALLTHRU_PREHEADERS)
1510 && (JUMP_P (BB_END (single_entry->src))
1511 || has_preds_from_loop (single_entry->src, loop)))
1512 need_forwarder_block = true;
1514 if (! need_forwarder_block)
1515 return NULL;
1518 mfb_kj_edge = loop_latch_edge (loop);
1519 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1520 if (nentry == 1)
1521 dummy = split_edge (single_entry);
1522 else
1524 edge fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1525 dummy = fallthru->src;
1526 loop->header = fallthru->dest;
1529 /* Try to be clever in placing the newly created preheader. The idea is to
1530 avoid breaking any "fallthruness" relationship between blocks.
1532 The preheader was created just before the header and all incoming edges
1533 to the header were redirected to the preheader, except the latch edge.
1534 So the only problematic case is when this latch edge was a fallthru
1535 edge: it is not anymore after the preheader creation so we have broken
1536 the fallthruness. We're therefore going to look for a better place. */
1537 if (latch_edge_was_fallthru)
1539 if (one_succ_pred)
1540 e = one_succ_pred;
1541 else
1542 e = EDGE_PRED (dummy, 0);
1544 move_block_after (dummy, e->src);
1547 if (irred)
1549 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1550 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1553 if (dump_file)
1554 fprintf (dump_file, "Created preheader block for loop %i\n",
1555 loop->num);
1557 if (flags & CP_FALLTHRU_PREHEADERS)
1558 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1559 && !JUMP_P (BB_END (dummy)));
1561 return dummy;
1564 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1566 void
1567 create_preheaders (int flags)
1569 struct loop *loop;
1571 if (!current_loops)
1572 return;
1574 FOR_EACH_LOOP (loop, 0)
1575 create_preheader (loop, flags);
1576 loops_state_set (LOOPS_HAVE_PREHEADERS);
1579 /* Forces all loop latches to have only single successor. */
1581 void
1582 force_single_succ_latches (void)
1584 struct loop *loop;
1585 edge e;
1587 FOR_EACH_LOOP (loop, 0)
1589 if (loop->latch != loop->header && single_succ_p (loop->latch))
1590 continue;
1592 e = find_edge (loop->latch, loop->header);
1593 gcc_checking_assert (e != NULL);
1595 split_edge (e);
1597 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1600 /* This function is called from loop_version. It splits the entry edge
1601 of the loop we want to version, adds the versioning condition, and
1602 adjust the edges to the two versions of the loop appropriately.
1603 e is an incoming edge. Returns the basic block containing the
1604 condition.
1606 --- edge e ---- > [second_head]
1608 Split it and insert new conditional expression and adjust edges.
1610 --- edge e ---> [cond expr] ---> [first_head]
1612 +---------> [second_head]
1614 THEN_PROB is the probability of then branch of the condition.
1615 ELSE_PROB is the probability of else branch. Note that they may be both
1616 REG_BR_PROB_BASE when condition is IFN_LOOP_VECTORIZED or
1617 IFN_LOOP_DIST_ALIAS. */
1619 static basic_block
1620 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1621 edge e, void *cond_expr,
1622 profile_probability then_prob,
1623 profile_probability else_prob)
1625 basic_block new_head = NULL;
1626 edge e1;
1628 gcc_assert (e->dest == second_head);
1630 /* Split edge 'e'. This will create a new basic block, where we can
1631 insert conditional expr. */
1632 new_head = split_edge (e);
1634 lv_add_condition_to_bb (first_head, second_head, new_head,
1635 cond_expr);
1637 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1638 e = single_succ_edge (new_head);
1639 e1 = make_edge (new_head, first_head,
1640 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1641 e1->probability = then_prob;
1642 e->probability = else_prob;
1644 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1645 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1647 /* Adjust loop header phi nodes. */
1648 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1650 return new_head;
1653 /* Main entry point for Loop Versioning transformation.
1655 This transformation given a condition and a loop, creates
1656 -if (condition) { loop_copy1 } else { loop_copy2 },
1657 where loop_copy1 is the loop transformed in one way, and loop_copy2
1658 is the loop transformed in another way (or unchanged). COND_EXPR
1659 may be a run time test for things that were not resolved by static
1660 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1662 If non-NULL, CONDITION_BB is set to the basic block containing the
1663 condition.
1665 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1666 is the ratio by that the frequencies in the original loop should
1667 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1668 new loop should be scaled.
1670 If PLACE_AFTER is true, we place the new loop after LOOP in the
1671 instruction stream, otherwise it is placed before LOOP. */
1673 struct loop *
1674 loop_version (struct loop *loop,
1675 void *cond_expr, basic_block *condition_bb,
1676 profile_probability then_prob, profile_probability else_prob,
1677 profile_probability then_scale, profile_probability else_scale,
1678 bool place_after)
1680 basic_block first_head, second_head;
1681 edge entry, latch_edge, true_edge, false_edge;
1682 int irred_flag;
1683 struct loop *nloop;
1684 basic_block cond_bb;
1686 /* Record entry and latch edges for the loop */
1687 entry = loop_preheader_edge (loop);
1688 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1689 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1691 /* Note down head of loop as first_head. */
1692 first_head = entry->dest;
1694 /* Duplicate loop. */
1695 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1696 NULL, NULL, NULL, 0))
1698 entry->flags |= irred_flag;
1699 return NULL;
1702 /* After duplication entry edge now points to new loop head block.
1703 Note down new head as second_head. */
1704 second_head = entry->dest;
1706 /* Split loop entry edge and insert new block with cond expr. */
1707 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1708 entry, cond_expr, then_prob, else_prob);
1709 if (condition_bb)
1710 *condition_bb = cond_bb;
1712 if (!cond_bb)
1714 entry->flags |= irred_flag;
1715 return NULL;
1718 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1720 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1721 nloop = loopify (latch_edge,
1722 single_pred_edge (get_bb_copy (loop->header)),
1723 cond_bb, true_edge, false_edge,
1724 false /* Do not redirect all edges. */,
1725 then_scale, else_scale);
1727 copy_loop_info (loop, nloop);
1729 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1730 lv_flush_pending_stmts (latch_edge);
1732 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1733 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1734 lv_flush_pending_stmts (false_edge);
1735 /* Adjust irreducible flag. */
1736 if (irred_flag)
1738 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1739 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1740 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1741 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1744 if (place_after)
1746 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1747 unsigned i;
1749 after = loop->latch;
1751 for (i = 0; i < nloop->num_nodes; i++)
1753 move_block_after (bbs[i], after);
1754 after = bbs[i];
1756 free (bbs);
1759 /* At this point condition_bb is loop preheader with two successors,
1760 first_head and second_head. Make sure that loop preheader has only
1761 one successor. */
1762 split_edge (loop_preheader_edge (loop));
1763 split_edge (loop_preheader_edge (nloop));
1765 return nloop;