* cp-tree.h (enum cp_storage_class): Remove trailing comma.
[official-gcc.git] / gcc / reload.c
blob298db27cdaf61014af1d31a505bdd40bb3e1501f
1 /* Search an insn for pseudo regs that must be in hard regs and are not.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
22 /* This file contains subroutines used only from the file reload1.c.
23 It knows how to scan one insn for operands and values
24 that need to be copied into registers to make valid code.
25 It also finds other operands and values which are valid
26 but for which equivalent values in registers exist and
27 ought to be used instead.
29 Before processing the first insn of the function, call `init_reload'.
30 init_reload actually has to be called earlier anyway.
32 To scan an insn, call `find_reloads'. This does two things:
33 1. sets up tables describing which values must be reloaded
34 for this insn, and what kind of hard regs they must be reloaded into;
35 2. optionally record the locations where those values appear in
36 the data, so they can be replaced properly later.
37 This is done only if the second arg to `find_reloads' is nonzero.
39 The third arg to `find_reloads' specifies the number of levels
40 of indirect addressing supported by the machine. If it is zero,
41 indirect addressing is not valid. If it is one, (MEM (REG n))
42 is valid even if (REG n) did not get a hard register; if it is two,
43 (MEM (MEM (REG n))) is also valid even if (REG n) did not get a
44 hard register, and similarly for higher values.
46 Then you must choose the hard regs to reload those pseudo regs into,
47 and generate appropriate load insns before this insn and perhaps
48 also store insns after this insn. Set up the array `reload_reg_rtx'
49 to contain the REG rtx's for the registers you used. In some
50 cases `find_reloads' will return a nonzero value in `reload_reg_rtx'
51 for certain reloads. Then that tells you which register to use,
52 so you do not need to allocate one. But you still do need to add extra
53 instructions to copy the value into and out of that register.
55 Finally you must call `subst_reloads' to substitute the reload reg rtx's
56 into the locations already recorded.
58 NOTE SIDE EFFECTS:
60 find_reloads can alter the operands of the instruction it is called on.
62 1. Two operands of any sort may be interchanged, if they are in a
63 commutative instruction.
64 This happens only if find_reloads thinks the instruction will compile
65 better that way.
67 2. Pseudo-registers that are equivalent to constants are replaced
68 with those constants if they are not in hard registers.
70 1 happens every time find_reloads is called.
71 2 happens only when REPLACE is 1, which is only when
72 actually doing the reloads, not when just counting them.
74 Using a reload register for several reloads in one insn:
76 When an insn has reloads, it is considered as having three parts:
77 the input reloads, the insn itself after reloading, and the output reloads.
78 Reloads of values used in memory addresses are often needed for only one part.
80 When this is so, reload_when_needed records which part needs the reload.
81 Two reloads for different parts of the insn can share the same reload
82 register.
84 When a reload is used for addresses in multiple parts, or when it is
85 an ordinary operand, it is classified as RELOAD_OTHER, and cannot share
86 a register with any other reload. */
88 #define REG_OK_STRICT
90 #include "config.h"
91 #include "system.h"
92 #include "coretypes.h"
93 #include "tm.h"
94 #include "rtl.h"
95 #include "tm_p.h"
96 #include "insn-config.h"
97 #include "expr.h"
98 #include "optabs.h"
99 #include "recog.h"
100 #include "reload.h"
101 #include "regs.h"
102 #include "hard-reg-set.h"
103 #include "flags.h"
104 #include "real.h"
105 #include "output.h"
106 #include "function.h"
107 #include "toplev.h"
108 #include "params.h"
109 #include "target.h"
111 #ifndef REGNO_MODE_OK_FOR_BASE_P
112 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) REGNO_OK_FOR_BASE_P (REGNO)
113 #endif
115 #ifndef REG_MODE_OK_FOR_BASE_P
116 #define REG_MODE_OK_FOR_BASE_P(REGNO, MODE) REG_OK_FOR_BASE_P (REGNO)
117 #endif
119 /* True if X is a constant that can be forced into the constant pool. */
120 #define CONST_POOL_OK_P(X) \
121 (CONSTANT_P (X) \
122 && GET_CODE (X) != HIGH \
123 && !targetm.cannot_force_const_mem (X))
125 /* All reloads of the current insn are recorded here. See reload.h for
126 comments. */
127 int n_reloads;
128 struct reload rld[MAX_RELOADS];
130 /* All the "earlyclobber" operands of the current insn
131 are recorded here. */
132 int n_earlyclobbers;
133 rtx reload_earlyclobbers[MAX_RECOG_OPERANDS];
135 int reload_n_operands;
137 /* Replacing reloads.
139 If `replace_reloads' is nonzero, then as each reload is recorded
140 an entry is made for it in the table `replacements'.
141 Then later `subst_reloads' can look through that table and
142 perform all the replacements needed. */
144 /* Nonzero means record the places to replace. */
145 static int replace_reloads;
147 /* Each replacement is recorded with a structure like this. */
148 struct replacement
150 rtx *where; /* Location to store in */
151 rtx *subreg_loc; /* Location of SUBREG if WHERE is inside
152 a SUBREG; 0 otherwise. */
153 int what; /* which reload this is for */
154 enum machine_mode mode; /* mode it must have */
157 static struct replacement replacements[MAX_RECOG_OPERANDS * ((MAX_REGS_PER_ADDRESS * 2) + 1)];
159 /* Number of replacements currently recorded. */
160 static int n_replacements;
162 /* Used to track what is modified by an operand. */
163 struct decomposition
165 int reg_flag; /* Nonzero if referencing a register. */
166 int safe; /* Nonzero if this can't conflict with anything. */
167 rtx base; /* Base address for MEM. */
168 HOST_WIDE_INT start; /* Starting offset or register number. */
169 HOST_WIDE_INT end; /* Ending offset or register number. */
172 #ifdef SECONDARY_MEMORY_NEEDED
174 /* Save MEMs needed to copy from one class of registers to another. One MEM
175 is used per mode, but normally only one or two modes are ever used.
177 We keep two versions, before and after register elimination. The one
178 after register elimination is record separately for each operand. This
179 is done in case the address is not valid to be sure that we separately
180 reload each. */
182 static rtx secondary_memlocs[NUM_MACHINE_MODES];
183 static rtx secondary_memlocs_elim[NUM_MACHINE_MODES][MAX_RECOG_OPERANDS];
184 static int secondary_memlocs_elim_used = 0;
185 #endif
187 /* The instruction we are doing reloads for;
188 so we can test whether a register dies in it. */
189 static rtx this_insn;
191 /* Nonzero if this instruction is a user-specified asm with operands. */
192 static int this_insn_is_asm;
194 /* If hard_regs_live_known is nonzero,
195 we can tell which hard regs are currently live,
196 at least enough to succeed in choosing dummy reloads. */
197 static int hard_regs_live_known;
199 /* Indexed by hard reg number,
200 element is nonnegative if hard reg has been spilled.
201 This vector is passed to `find_reloads' as an argument
202 and is not changed here. */
203 static short *static_reload_reg_p;
205 /* Set to 1 in subst_reg_equivs if it changes anything. */
206 static int subst_reg_equivs_changed;
208 /* On return from push_reload, holds the reload-number for the OUT
209 operand, which can be different for that from the input operand. */
210 static int output_reloadnum;
212 /* Compare two RTX's. */
213 #define MATCHES(x, y) \
214 (x == y || (x != 0 && (REG_P (x) \
215 ? REG_P (y) && REGNO (x) == REGNO (y) \
216 : rtx_equal_p (x, y) && ! side_effects_p (x))))
218 /* Indicates if two reloads purposes are for similar enough things that we
219 can merge their reloads. */
220 #define MERGABLE_RELOADS(when1, when2, op1, op2) \
221 ((when1) == RELOAD_OTHER || (when2) == RELOAD_OTHER \
222 || ((when1) == (when2) && (op1) == (op2)) \
223 || ((when1) == RELOAD_FOR_INPUT && (when2) == RELOAD_FOR_INPUT) \
224 || ((when1) == RELOAD_FOR_OPERAND_ADDRESS \
225 && (when2) == RELOAD_FOR_OPERAND_ADDRESS) \
226 || ((when1) == RELOAD_FOR_OTHER_ADDRESS \
227 && (when2) == RELOAD_FOR_OTHER_ADDRESS))
229 /* Nonzero if these two reload purposes produce RELOAD_OTHER when merged. */
230 #define MERGE_TO_OTHER(when1, when2, op1, op2) \
231 ((when1) != (when2) \
232 || ! ((op1) == (op2) \
233 || (when1) == RELOAD_FOR_INPUT \
234 || (when1) == RELOAD_FOR_OPERAND_ADDRESS \
235 || (when1) == RELOAD_FOR_OTHER_ADDRESS))
237 /* If we are going to reload an address, compute the reload type to
238 use. */
239 #define ADDR_TYPE(type) \
240 ((type) == RELOAD_FOR_INPUT_ADDRESS \
241 ? RELOAD_FOR_INPADDR_ADDRESS \
242 : ((type) == RELOAD_FOR_OUTPUT_ADDRESS \
243 ? RELOAD_FOR_OUTADDR_ADDRESS \
244 : (type)))
246 #ifdef HAVE_SECONDARY_RELOADS
247 static int push_secondary_reload (int, rtx, int, int, enum reg_class,
248 enum machine_mode, enum reload_type,
249 enum insn_code *);
250 #endif
251 static enum reg_class find_valid_class (enum machine_mode, int, unsigned int);
252 static int reload_inner_reg_of_subreg (rtx, enum machine_mode, int);
253 static void push_replacement (rtx *, int, enum machine_mode);
254 static void dup_replacements (rtx *, rtx *);
255 static void combine_reloads (void);
256 static int find_reusable_reload (rtx *, rtx, enum reg_class,
257 enum reload_type, int, int);
258 static rtx find_dummy_reload (rtx, rtx, rtx *, rtx *, enum machine_mode,
259 enum machine_mode, enum reg_class, int, int);
260 static int hard_reg_set_here_p (unsigned int, unsigned int, rtx);
261 static struct decomposition decompose (rtx);
262 static int immune_p (rtx, rtx, struct decomposition);
263 static int alternative_allows_memconst (const char *, int);
264 static rtx find_reloads_toplev (rtx, int, enum reload_type, int, int, rtx,
265 int *);
266 static rtx make_memloc (rtx, int);
267 static int maybe_memory_address_p (enum machine_mode, rtx, rtx *);
268 static int find_reloads_address (enum machine_mode, rtx *, rtx, rtx *,
269 int, enum reload_type, int, rtx);
270 static rtx subst_reg_equivs (rtx, rtx);
271 static rtx subst_indexed_address (rtx);
272 static void update_auto_inc_notes (rtx, int, int);
273 static int find_reloads_address_1 (enum machine_mode, rtx, int, rtx *,
274 int, enum reload_type,int, rtx);
275 static void find_reloads_address_part (rtx, rtx *, enum reg_class,
276 enum machine_mode, int,
277 enum reload_type, int);
278 static rtx find_reloads_subreg_address (rtx, int, int, enum reload_type,
279 int, rtx);
280 static void copy_replacements_1 (rtx *, rtx *, int);
281 static int find_inc_amount (rtx, rtx);
283 #ifdef HAVE_SECONDARY_RELOADS
285 /* Determine if any secondary reloads are needed for loading (if IN_P is
286 nonzero) or storing (if IN_P is zero) X to or from a reload register of
287 register class RELOAD_CLASS in mode RELOAD_MODE. If secondary reloads
288 are needed, push them.
290 Return the reload number of the secondary reload we made, or -1 if
291 we didn't need one. *PICODE is set to the insn_code to use if we do
292 need a secondary reload. */
294 static int
295 push_secondary_reload (int in_p, rtx x, int opnum, int optional,
296 enum reg_class reload_class,
297 enum machine_mode reload_mode, enum reload_type type,
298 enum insn_code *picode)
300 enum reg_class class = NO_REGS;
301 enum machine_mode mode = reload_mode;
302 enum insn_code icode = CODE_FOR_nothing;
303 enum reg_class t_class = NO_REGS;
304 enum machine_mode t_mode = VOIDmode;
305 enum insn_code t_icode = CODE_FOR_nothing;
306 enum reload_type secondary_type;
307 int s_reload, t_reload = -1;
309 if (type == RELOAD_FOR_INPUT_ADDRESS
310 || type == RELOAD_FOR_OUTPUT_ADDRESS
311 || type == RELOAD_FOR_INPADDR_ADDRESS
312 || type == RELOAD_FOR_OUTADDR_ADDRESS)
313 secondary_type = type;
314 else
315 secondary_type = in_p ? RELOAD_FOR_INPUT_ADDRESS : RELOAD_FOR_OUTPUT_ADDRESS;
317 *picode = CODE_FOR_nothing;
319 /* If X is a paradoxical SUBREG, use the inner value to determine both the
320 mode and object being reloaded. */
321 if (GET_CODE (x) == SUBREG
322 && (GET_MODE_SIZE (GET_MODE (x))
323 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)))))
325 x = SUBREG_REG (x);
326 reload_mode = GET_MODE (x);
329 /* If X is a pseudo-register that has an equivalent MEM (actually, if it
330 is still a pseudo-register by now, it *must* have an equivalent MEM
331 but we don't want to assume that), use that equivalent when seeing if
332 a secondary reload is needed since whether or not a reload is needed
333 might be sensitive to the form of the MEM. */
335 if (REG_P (x) && REGNO (x) >= FIRST_PSEUDO_REGISTER
336 && reg_equiv_mem[REGNO (x)] != 0)
337 x = reg_equiv_mem[REGNO (x)];
339 #ifdef SECONDARY_INPUT_RELOAD_CLASS
340 if (in_p)
341 class = SECONDARY_INPUT_RELOAD_CLASS (reload_class, reload_mode, x);
342 #endif
344 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
345 if (! in_p)
346 class = SECONDARY_OUTPUT_RELOAD_CLASS (reload_class, reload_mode, x);
347 #endif
349 /* If we don't need any secondary registers, done. */
350 if (class == NO_REGS)
351 return -1;
353 /* Get a possible insn to use. If the predicate doesn't accept X, don't
354 use the insn. */
356 icode = (in_p ? reload_in_optab[(int) reload_mode]
357 : reload_out_optab[(int) reload_mode]);
359 if (icode != CODE_FOR_nothing
360 && insn_data[(int) icode].operand[in_p].predicate
361 && (! (insn_data[(int) icode].operand[in_p].predicate) (x, reload_mode)))
362 icode = CODE_FOR_nothing;
364 /* If we will be using an insn, see if it can directly handle the reload
365 register we will be using. If it can, the secondary reload is for a
366 scratch register. If it can't, we will use the secondary reload for
367 an intermediate register and require a tertiary reload for the scratch
368 register. */
370 if (icode != CODE_FOR_nothing)
372 /* If IN_P is nonzero, the reload register will be the output in
373 operand 0. If IN_P is zero, the reload register will be the input
374 in operand 1. Outputs should have an initial "=", which we must
375 skip. */
377 enum reg_class insn_class;
379 if (insn_data[(int) icode].operand[!in_p].constraint[0] == 0)
380 insn_class = ALL_REGS;
381 else
383 const char *insn_constraint
384 = &insn_data[(int) icode].operand[!in_p].constraint[in_p];
385 char insn_letter = *insn_constraint;
386 insn_class
387 = (insn_letter == 'r' ? GENERAL_REGS
388 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) insn_letter,
389 insn_constraint));
391 if (insn_class == NO_REGS)
392 abort ();
393 if (in_p
394 && insn_data[(int) icode].operand[!in_p].constraint[0] != '=')
395 abort ();
398 /* The scratch register's constraint must start with "=&". */
399 if (insn_data[(int) icode].operand[2].constraint[0] != '='
400 || insn_data[(int) icode].operand[2].constraint[1] != '&')
401 abort ();
403 if (reg_class_subset_p (reload_class, insn_class))
404 mode = insn_data[(int) icode].operand[2].mode;
405 else
407 const char *t_constraint
408 = &insn_data[(int) icode].operand[2].constraint[2];
409 char t_letter = *t_constraint;
410 class = insn_class;
411 t_mode = insn_data[(int) icode].operand[2].mode;
412 t_class = (t_letter == 'r' ? GENERAL_REGS
413 : REG_CLASS_FROM_CONSTRAINT ((unsigned char) t_letter,
414 t_constraint));
415 t_icode = icode;
416 icode = CODE_FOR_nothing;
420 /* This case isn't valid, so fail. Reload is allowed to use the same
421 register for RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT reloads, but
422 in the case of a secondary register, we actually need two different
423 registers for correct code. We fail here to prevent the possibility of
424 silently generating incorrect code later.
426 The convention is that secondary input reloads are valid only if the
427 secondary_class is different from class. If you have such a case, you
428 can not use secondary reloads, you must work around the problem some
429 other way.
431 Allow this when a reload_in/out pattern is being used. I.e. assume
432 that the generated code handles this case. */
434 if (in_p && class == reload_class && icode == CODE_FOR_nothing
435 && t_icode == CODE_FOR_nothing)
436 abort ();
438 /* If we need a tertiary reload, see if we have one we can reuse or else
439 make a new one. */
441 if (t_class != NO_REGS)
443 for (t_reload = 0; t_reload < n_reloads; t_reload++)
444 if (rld[t_reload].secondary_p
445 && (reg_class_subset_p (t_class, rld[t_reload].class)
446 || reg_class_subset_p (rld[t_reload].class, t_class))
447 && ((in_p && rld[t_reload].inmode == t_mode)
448 || (! in_p && rld[t_reload].outmode == t_mode))
449 && ((in_p && (rld[t_reload].secondary_in_icode
450 == CODE_FOR_nothing))
451 || (! in_p &&(rld[t_reload].secondary_out_icode
452 == CODE_FOR_nothing)))
453 && (reg_class_size[(int) t_class] == 1 || SMALL_REGISTER_CLASSES)
454 && MERGABLE_RELOADS (secondary_type,
455 rld[t_reload].when_needed,
456 opnum, rld[t_reload].opnum))
458 if (in_p)
459 rld[t_reload].inmode = t_mode;
460 if (! in_p)
461 rld[t_reload].outmode = t_mode;
463 if (reg_class_subset_p (t_class, rld[t_reload].class))
464 rld[t_reload].class = t_class;
466 rld[t_reload].opnum = MIN (rld[t_reload].opnum, opnum);
467 rld[t_reload].optional &= optional;
468 rld[t_reload].secondary_p = 1;
469 if (MERGE_TO_OTHER (secondary_type, rld[t_reload].when_needed,
470 opnum, rld[t_reload].opnum))
471 rld[t_reload].when_needed = RELOAD_OTHER;
474 if (t_reload == n_reloads)
476 /* We need to make a new tertiary reload for this register class. */
477 rld[t_reload].in = rld[t_reload].out = 0;
478 rld[t_reload].class = t_class;
479 rld[t_reload].inmode = in_p ? t_mode : VOIDmode;
480 rld[t_reload].outmode = ! in_p ? t_mode : VOIDmode;
481 rld[t_reload].reg_rtx = 0;
482 rld[t_reload].optional = optional;
483 rld[t_reload].inc = 0;
484 /* Maybe we could combine these, but it seems too tricky. */
485 rld[t_reload].nocombine = 1;
486 rld[t_reload].in_reg = 0;
487 rld[t_reload].out_reg = 0;
488 rld[t_reload].opnum = opnum;
489 rld[t_reload].when_needed = secondary_type;
490 rld[t_reload].secondary_in_reload = -1;
491 rld[t_reload].secondary_out_reload = -1;
492 rld[t_reload].secondary_in_icode = CODE_FOR_nothing;
493 rld[t_reload].secondary_out_icode = CODE_FOR_nothing;
494 rld[t_reload].secondary_p = 1;
496 n_reloads++;
500 /* See if we can reuse an existing secondary reload. */
501 for (s_reload = 0; s_reload < n_reloads; s_reload++)
502 if (rld[s_reload].secondary_p
503 && (reg_class_subset_p (class, rld[s_reload].class)
504 || reg_class_subset_p (rld[s_reload].class, class))
505 && ((in_p && rld[s_reload].inmode == mode)
506 || (! in_p && rld[s_reload].outmode == mode))
507 && ((in_p && rld[s_reload].secondary_in_reload == t_reload)
508 || (! in_p && rld[s_reload].secondary_out_reload == t_reload))
509 && ((in_p && rld[s_reload].secondary_in_icode == t_icode)
510 || (! in_p && rld[s_reload].secondary_out_icode == t_icode))
511 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
512 && MERGABLE_RELOADS (secondary_type, rld[s_reload].when_needed,
513 opnum, rld[s_reload].opnum))
515 if (in_p)
516 rld[s_reload].inmode = mode;
517 if (! in_p)
518 rld[s_reload].outmode = mode;
520 if (reg_class_subset_p (class, rld[s_reload].class))
521 rld[s_reload].class = class;
523 rld[s_reload].opnum = MIN (rld[s_reload].opnum, opnum);
524 rld[s_reload].optional &= optional;
525 rld[s_reload].secondary_p = 1;
526 if (MERGE_TO_OTHER (secondary_type, rld[s_reload].when_needed,
527 opnum, rld[s_reload].opnum))
528 rld[s_reload].when_needed = RELOAD_OTHER;
531 if (s_reload == n_reloads)
533 #ifdef SECONDARY_MEMORY_NEEDED
534 /* If we need a memory location to copy between the two reload regs,
535 set it up now. Note that we do the input case before making
536 the reload and the output case after. This is due to the
537 way reloads are output. */
539 if (in_p && icode == CODE_FOR_nothing
540 && SECONDARY_MEMORY_NEEDED (class, reload_class, mode))
542 get_secondary_mem (x, reload_mode, opnum, type);
544 /* We may have just added new reloads. Make sure we add
545 the new reload at the end. */
546 s_reload = n_reloads;
548 #endif
550 /* We need to make a new secondary reload for this register class. */
551 rld[s_reload].in = rld[s_reload].out = 0;
552 rld[s_reload].class = class;
554 rld[s_reload].inmode = in_p ? mode : VOIDmode;
555 rld[s_reload].outmode = ! in_p ? mode : VOIDmode;
556 rld[s_reload].reg_rtx = 0;
557 rld[s_reload].optional = optional;
558 rld[s_reload].inc = 0;
559 /* Maybe we could combine these, but it seems too tricky. */
560 rld[s_reload].nocombine = 1;
561 rld[s_reload].in_reg = 0;
562 rld[s_reload].out_reg = 0;
563 rld[s_reload].opnum = opnum;
564 rld[s_reload].when_needed = secondary_type;
565 rld[s_reload].secondary_in_reload = in_p ? t_reload : -1;
566 rld[s_reload].secondary_out_reload = ! in_p ? t_reload : -1;
567 rld[s_reload].secondary_in_icode = in_p ? t_icode : CODE_FOR_nothing;
568 rld[s_reload].secondary_out_icode
569 = ! in_p ? t_icode : CODE_FOR_nothing;
570 rld[s_reload].secondary_p = 1;
572 n_reloads++;
574 #ifdef SECONDARY_MEMORY_NEEDED
575 if (! in_p && icode == CODE_FOR_nothing
576 && SECONDARY_MEMORY_NEEDED (reload_class, class, mode))
577 get_secondary_mem (x, mode, opnum, type);
578 #endif
581 *picode = icode;
582 return s_reload;
584 #endif /* HAVE_SECONDARY_RELOADS */
586 #ifdef SECONDARY_MEMORY_NEEDED
588 /* Return a memory location that will be used to copy X in mode MODE.
589 If we haven't already made a location for this mode in this insn,
590 call find_reloads_address on the location being returned. */
593 get_secondary_mem (rtx x ATTRIBUTE_UNUSED, enum machine_mode mode,
594 int opnum, enum reload_type type)
596 rtx loc;
597 int mem_valid;
599 /* By default, if MODE is narrower than a word, widen it to a word.
600 This is required because most machines that require these memory
601 locations do not support short load and stores from all registers
602 (e.g., FP registers). */
604 #ifdef SECONDARY_MEMORY_NEEDED_MODE
605 mode = SECONDARY_MEMORY_NEEDED_MODE (mode);
606 #else
607 if (GET_MODE_BITSIZE (mode) < BITS_PER_WORD && INTEGRAL_MODE_P (mode))
608 mode = mode_for_size (BITS_PER_WORD, GET_MODE_CLASS (mode), 0);
609 #endif
611 /* If we already have made a MEM for this operand in MODE, return it. */
612 if (secondary_memlocs_elim[(int) mode][opnum] != 0)
613 return secondary_memlocs_elim[(int) mode][opnum];
615 /* If this is the first time we've tried to get a MEM for this mode,
616 allocate a new one. `something_changed' in reload will get set
617 by noticing that the frame size has changed. */
619 if (secondary_memlocs[(int) mode] == 0)
621 #ifdef SECONDARY_MEMORY_NEEDED_RTX
622 secondary_memlocs[(int) mode] = SECONDARY_MEMORY_NEEDED_RTX (mode);
623 #else
624 secondary_memlocs[(int) mode]
625 = assign_stack_local (mode, GET_MODE_SIZE (mode), 0);
626 #endif
629 /* Get a version of the address doing any eliminations needed. If that
630 didn't give us a new MEM, make a new one if it isn't valid. */
632 loc = eliminate_regs (secondary_memlocs[(int) mode], VOIDmode, NULL_RTX);
633 mem_valid = strict_memory_address_p (mode, XEXP (loc, 0));
635 if (! mem_valid && loc == secondary_memlocs[(int) mode])
636 loc = copy_rtx (loc);
638 /* The only time the call below will do anything is if the stack
639 offset is too large. In that case IND_LEVELS doesn't matter, so we
640 can just pass a zero. Adjust the type to be the address of the
641 corresponding object. If the address was valid, save the eliminated
642 address. If it wasn't valid, we need to make a reload each time, so
643 don't save it. */
645 if (! mem_valid)
647 type = (type == RELOAD_FOR_INPUT ? RELOAD_FOR_INPUT_ADDRESS
648 : type == RELOAD_FOR_OUTPUT ? RELOAD_FOR_OUTPUT_ADDRESS
649 : RELOAD_OTHER);
651 find_reloads_address (mode, &loc, XEXP (loc, 0), &XEXP (loc, 0),
652 opnum, type, 0, 0);
655 secondary_memlocs_elim[(int) mode][opnum] = loc;
656 if (secondary_memlocs_elim_used <= (int)mode)
657 secondary_memlocs_elim_used = (int)mode + 1;
658 return loc;
661 /* Clear any secondary memory locations we've made. */
663 void
664 clear_secondary_mem (void)
666 memset (secondary_memlocs, 0, sizeof secondary_memlocs);
668 #endif /* SECONDARY_MEMORY_NEEDED */
670 /* Find the largest class for which every register number plus N is valid in
671 M1 (if in range) and is cheap to move into REGNO.
672 Abort if no such class exists. */
674 static enum reg_class
675 find_valid_class (enum machine_mode m1 ATTRIBUTE_UNUSED, int n,
676 unsigned int dest_regno ATTRIBUTE_UNUSED)
678 int best_cost = -1;
679 int class;
680 int regno;
681 enum reg_class best_class = NO_REGS;
682 enum reg_class dest_class ATTRIBUTE_UNUSED = REGNO_REG_CLASS (dest_regno);
683 unsigned int best_size = 0;
684 int cost;
686 for (class = 1; class < N_REG_CLASSES; class++)
688 int bad = 0;
689 for (regno = 0; regno < FIRST_PSEUDO_REGISTER && ! bad; regno++)
690 if (TEST_HARD_REG_BIT (reg_class_contents[class], regno)
691 && TEST_HARD_REG_BIT (reg_class_contents[class], regno + n)
692 && ! HARD_REGNO_MODE_OK (regno + n, m1))
693 bad = 1;
695 if (bad)
696 continue;
697 cost = REGISTER_MOVE_COST (m1, class, dest_class);
699 if ((reg_class_size[class] > best_size
700 && (best_cost < 0 || best_cost >= cost))
701 || best_cost > cost)
703 best_class = class;
704 best_size = reg_class_size[class];
705 best_cost = REGISTER_MOVE_COST (m1, class, dest_class);
709 if (best_size == 0)
710 abort ();
712 return best_class;
715 /* Return the number of a previously made reload that can be combined with
716 a new one, or n_reloads if none of the existing reloads can be used.
717 OUT, CLASS, TYPE and OPNUM are the same arguments as passed to
718 push_reload, they determine the kind of the new reload that we try to
719 combine. P_IN points to the corresponding value of IN, which can be
720 modified by this function.
721 DONT_SHARE is nonzero if we can't share any input-only reload for IN. */
723 static int
724 find_reusable_reload (rtx *p_in, rtx out, enum reg_class class,
725 enum reload_type type, int opnum, int dont_share)
727 rtx in = *p_in;
728 int i;
729 /* We can't merge two reloads if the output of either one is
730 earlyclobbered. */
732 if (earlyclobber_operand_p (out))
733 return n_reloads;
735 /* We can use an existing reload if the class is right
736 and at least one of IN and OUT is a match
737 and the other is at worst neutral.
738 (A zero compared against anything is neutral.)
740 If SMALL_REGISTER_CLASSES, don't use existing reloads unless they are
741 for the same thing since that can cause us to need more reload registers
742 than we otherwise would. */
744 for (i = 0; i < n_reloads; i++)
745 if ((reg_class_subset_p (class, rld[i].class)
746 || reg_class_subset_p (rld[i].class, class))
747 /* If the existing reload has a register, it must fit our class. */
748 && (rld[i].reg_rtx == 0
749 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
750 true_regnum (rld[i].reg_rtx)))
751 && ((in != 0 && MATCHES (rld[i].in, in) && ! dont_share
752 && (out == 0 || rld[i].out == 0 || MATCHES (rld[i].out, out)))
753 || (out != 0 && MATCHES (rld[i].out, out)
754 && (in == 0 || rld[i].in == 0 || MATCHES (rld[i].in, in))))
755 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
756 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
757 && MERGABLE_RELOADS (type, rld[i].when_needed, opnum, rld[i].opnum))
758 return i;
760 /* Reloading a plain reg for input can match a reload to postincrement
761 that reg, since the postincrement's value is the right value.
762 Likewise, it can match a preincrement reload, since we regard
763 the preincrementation as happening before any ref in this insn
764 to that register. */
765 for (i = 0; i < n_reloads; i++)
766 if ((reg_class_subset_p (class, rld[i].class)
767 || reg_class_subset_p (rld[i].class, class))
768 /* If the existing reload has a register, it must fit our
769 class. */
770 && (rld[i].reg_rtx == 0
771 || TEST_HARD_REG_BIT (reg_class_contents[(int) class],
772 true_regnum (rld[i].reg_rtx)))
773 && out == 0 && rld[i].out == 0 && rld[i].in != 0
774 && ((REG_P (in)
775 && GET_RTX_CLASS (GET_CODE (rld[i].in)) == RTX_AUTOINC
776 && MATCHES (XEXP (rld[i].in, 0), in))
777 || (REG_P (rld[i].in)
778 && GET_RTX_CLASS (GET_CODE (in)) == RTX_AUTOINC
779 && MATCHES (XEXP (in, 0), rld[i].in)))
780 && (rld[i].out == 0 || ! earlyclobber_operand_p (rld[i].out))
781 && (reg_class_size[(int) class] == 1 || SMALL_REGISTER_CLASSES)
782 && MERGABLE_RELOADS (type, rld[i].when_needed,
783 opnum, rld[i].opnum))
785 /* Make sure reload_in ultimately has the increment,
786 not the plain register. */
787 if (REG_P (in))
788 *p_in = rld[i].in;
789 return i;
791 return n_reloads;
794 /* Return nonzero if X is a SUBREG which will require reloading of its
795 SUBREG_REG expression. */
797 static int
798 reload_inner_reg_of_subreg (rtx x, enum machine_mode mode, int output)
800 rtx inner;
802 /* Only SUBREGs are problematical. */
803 if (GET_CODE (x) != SUBREG)
804 return 0;
806 inner = SUBREG_REG (x);
808 /* If INNER is a constant or PLUS, then INNER must be reloaded. */
809 if (CONSTANT_P (inner) || GET_CODE (inner) == PLUS)
810 return 1;
812 /* If INNER is not a hard register, then INNER will not need to
813 be reloaded. */
814 if (!REG_P (inner)
815 || REGNO (inner) >= FIRST_PSEUDO_REGISTER)
816 return 0;
818 /* If INNER is not ok for MODE, then INNER will need reloading. */
819 if (! HARD_REGNO_MODE_OK (subreg_regno (x), mode))
820 return 1;
822 /* If the outer part is a word or smaller, INNER larger than a
823 word and the number of regs for INNER is not the same as the
824 number of words in INNER, then INNER will need reloading. */
825 return (GET_MODE_SIZE (mode) <= UNITS_PER_WORD
826 && output
827 && GET_MODE_SIZE (GET_MODE (inner)) > UNITS_PER_WORD
828 && ((GET_MODE_SIZE (GET_MODE (inner)) / UNITS_PER_WORD)
829 != (int) hard_regno_nregs[REGNO (inner)][GET_MODE (inner)]));
832 /* Return nonzero if IN can be reloaded into REGNO with mode MODE without
833 requiring an extra reload register. The caller has already found that
834 IN contains some reference to REGNO, so check that we can produce the
835 new value in a single step. E.g. if we have
836 (set (reg r13) (plus (reg r13) (const int 1))), and there is an
837 instruction that adds one to a register, this should succeed.
838 However, if we have something like
839 (set (reg r13) (plus (reg r13) (const int 999))), and the constant 999
840 needs to be loaded into a register first, we need a separate reload
841 register.
842 Such PLUS reloads are generated by find_reload_address_part.
843 The out-of-range PLUS expressions are usually introduced in the instruction
844 patterns by register elimination and substituting pseudos without a home
845 by their function-invariant equivalences. */
846 static int
847 can_reload_into (rtx in, int regno, enum machine_mode mode)
849 rtx dst, test_insn;
850 int r = 0;
851 struct recog_data save_recog_data;
853 /* For matching constraints, we often get notional input reloads where
854 we want to use the original register as the reload register. I.e.
855 technically this is a non-optional input-output reload, but IN is
856 already a valid register, and has been chosen as the reload register.
857 Speed this up, since it trivially works. */
858 if (REG_P (in))
859 return 1;
861 /* To test MEMs properly, we'd have to take into account all the reloads
862 that are already scheduled, which can become quite complicated.
863 And since we've already handled address reloads for this MEM, it
864 should always succeed anyway. */
865 if (GET_CODE (in) == MEM)
866 return 1;
868 /* If we can make a simple SET insn that does the job, everything should
869 be fine. */
870 dst = gen_rtx_REG (mode, regno);
871 test_insn = make_insn_raw (gen_rtx_SET (VOIDmode, dst, in));
872 save_recog_data = recog_data;
873 if (recog_memoized (test_insn) >= 0)
875 extract_insn (test_insn);
876 r = constrain_operands (1);
878 recog_data = save_recog_data;
879 return r;
882 /* Record one reload that needs to be performed.
883 IN is an rtx saying where the data are to be found before this instruction.
884 OUT says where they must be stored after the instruction.
885 (IN is zero for data not read, and OUT is zero for data not written.)
886 INLOC and OUTLOC point to the places in the instructions where
887 IN and OUT were found.
888 If IN and OUT are both nonzero, it means the same register must be used
889 to reload both IN and OUT.
891 CLASS is a register class required for the reloaded data.
892 INMODE is the machine mode that the instruction requires
893 for the reg that replaces IN and OUTMODE is likewise for OUT.
895 If IN is zero, then OUT's location and mode should be passed as
896 INLOC and INMODE.
898 STRICT_LOW is the 1 if there is a containing STRICT_LOW_PART rtx.
900 OPTIONAL nonzero means this reload does not need to be performed:
901 it can be discarded if that is more convenient.
903 OPNUM and TYPE say what the purpose of this reload is.
905 The return value is the reload-number for this reload.
907 If both IN and OUT are nonzero, in some rare cases we might
908 want to make two separate reloads. (Actually we never do this now.)
909 Therefore, the reload-number for OUT is stored in
910 output_reloadnum when we return; the return value applies to IN.
911 Usually (presently always), when IN and OUT are nonzero,
912 the two reload-numbers are equal, but the caller should be careful to
913 distinguish them. */
916 push_reload (rtx in, rtx out, rtx *inloc, rtx *outloc,
917 enum reg_class class, enum machine_mode inmode,
918 enum machine_mode outmode, int strict_low, int optional,
919 int opnum, enum reload_type type)
921 int i;
922 int dont_share = 0;
923 int dont_remove_subreg = 0;
924 rtx *in_subreg_loc = 0, *out_subreg_loc = 0;
925 int secondary_in_reload = -1, secondary_out_reload = -1;
926 enum insn_code secondary_in_icode = CODE_FOR_nothing;
927 enum insn_code secondary_out_icode = CODE_FOR_nothing;
929 /* INMODE and/or OUTMODE could be VOIDmode if no mode
930 has been specified for the operand. In that case,
931 use the operand's mode as the mode to reload. */
932 if (inmode == VOIDmode && in != 0)
933 inmode = GET_MODE (in);
934 if (outmode == VOIDmode && out != 0)
935 outmode = GET_MODE (out);
937 /* If IN is a pseudo register everywhere-equivalent to a constant, and
938 it is not in a hard register, reload straight from the constant,
939 since we want to get rid of such pseudo registers.
940 Often this is done earlier, but not always in find_reloads_address. */
941 if (in != 0 && REG_P (in))
943 int regno = REGNO (in);
945 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
946 && reg_equiv_constant[regno] != 0)
947 in = reg_equiv_constant[regno];
950 /* Likewise for OUT. Of course, OUT will never be equivalent to
951 an actual constant, but it might be equivalent to a memory location
952 (in the case of a parameter). */
953 if (out != 0 && REG_P (out))
955 int regno = REGNO (out);
957 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
958 && reg_equiv_constant[regno] != 0)
959 out = reg_equiv_constant[regno];
962 /* If we have a read-write operand with an address side-effect,
963 change either IN or OUT so the side-effect happens only once. */
964 if (in != 0 && out != 0 && GET_CODE (in) == MEM && rtx_equal_p (in, out))
965 switch (GET_CODE (XEXP (in, 0)))
967 case POST_INC: case POST_DEC: case POST_MODIFY:
968 in = replace_equiv_address_nv (in, XEXP (XEXP (in, 0), 0));
969 break;
971 case PRE_INC: case PRE_DEC: case PRE_MODIFY:
972 out = replace_equiv_address_nv (out, XEXP (XEXP (out, 0), 0));
973 break;
975 default:
976 break;
979 /* If we are reloading a (SUBREG constant ...), really reload just the
980 inside expression in its own mode. Similarly for (SUBREG (PLUS ...)).
981 If we have (SUBREG:M1 (MEM:M2 ...) ...) (or an inner REG that is still
982 a pseudo and hence will become a MEM) with M1 wider than M2 and the
983 register is a pseudo, also reload the inside expression.
984 For machines that extend byte loads, do this for any SUBREG of a pseudo
985 where both M1 and M2 are a word or smaller, M1 is wider than M2, and
986 M2 is an integral mode that gets extended when loaded.
987 Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
988 either M1 is not valid for R or M2 is wider than a word but we only
989 need one word to store an M2-sized quantity in R.
990 (However, if OUT is nonzero, we need to reload the reg *and*
991 the subreg, so do nothing here, and let following statement handle it.)
993 Note that the case of (SUBREG (CONST_INT...)...) is handled elsewhere;
994 we can't handle it here because CONST_INT does not indicate a mode.
996 Similarly, we must reload the inside expression if we have a
997 STRICT_LOW_PART (presumably, in == out in the cas).
999 Also reload the inner expression if it does not require a secondary
1000 reload but the SUBREG does.
1002 Finally, reload the inner expression if it is a register that is in
1003 the class whose registers cannot be referenced in a different size
1004 and M1 is not the same size as M2. If subreg_lowpart_p is false, we
1005 cannot reload just the inside since we might end up with the wrong
1006 register class. But if it is inside a STRICT_LOW_PART, we have
1007 no choice, so we hope we do get the right register class there. */
1009 if (in != 0 && GET_CODE (in) == SUBREG
1010 && (subreg_lowpart_p (in) || strict_low)
1011 #ifdef CANNOT_CHANGE_MODE_CLASS
1012 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (in)), inmode, class)
1013 #endif
1014 && (CONSTANT_P (SUBREG_REG (in))
1015 || GET_CODE (SUBREG_REG (in)) == PLUS
1016 || strict_low
1017 || (((REG_P (SUBREG_REG (in))
1018 && REGNO (SUBREG_REG (in)) >= FIRST_PSEUDO_REGISTER)
1019 || GET_CODE (SUBREG_REG (in)) == MEM)
1020 && ((GET_MODE_SIZE (inmode)
1021 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1022 #ifdef LOAD_EXTEND_OP
1023 || (GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1024 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1025 <= UNITS_PER_WORD)
1026 && (GET_MODE_SIZE (inmode)
1027 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1028 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (in)))
1029 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (in))) != NIL)
1030 #endif
1031 #ifdef WORD_REGISTER_OPERATIONS
1032 || ((GET_MODE_SIZE (inmode)
1033 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))))
1034 && ((GET_MODE_SIZE (inmode) - 1) / UNITS_PER_WORD ==
1035 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in))) - 1)
1036 / UNITS_PER_WORD)))
1037 #endif
1039 || (REG_P (SUBREG_REG (in))
1040 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1041 /* The case where out is nonzero
1042 is handled differently in the following statement. */
1043 && (out == 0 || subreg_lowpart_p (in))
1044 && ((GET_MODE_SIZE (inmode) <= UNITS_PER_WORD
1045 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1046 > UNITS_PER_WORD)
1047 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1048 / UNITS_PER_WORD)
1049 != (int) hard_regno_nregs[REGNO (SUBREG_REG (in))]
1050 [GET_MODE (SUBREG_REG (in))]))
1051 || ! HARD_REGNO_MODE_OK (subreg_regno (in), inmode)))
1052 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1053 || (SECONDARY_INPUT_RELOAD_CLASS (class, inmode, in) != NO_REGS
1054 && (SECONDARY_INPUT_RELOAD_CLASS (class,
1055 GET_MODE (SUBREG_REG (in)),
1056 SUBREG_REG (in))
1057 == NO_REGS))
1058 #endif
1059 #ifdef CANNOT_CHANGE_MODE_CLASS
1060 || (REG_P (SUBREG_REG (in))
1061 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1062 && REG_CANNOT_CHANGE_MODE_P
1063 (REGNO (SUBREG_REG (in)), GET_MODE (SUBREG_REG (in)), inmode))
1064 #endif
1067 in_subreg_loc = inloc;
1068 inloc = &SUBREG_REG (in);
1069 in = *inloc;
1070 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1071 if (GET_CODE (in) == MEM)
1072 /* This is supposed to happen only for paradoxical subregs made by
1073 combine.c. (SUBREG (MEM)) isn't supposed to occur other ways. */
1074 if (GET_MODE_SIZE (GET_MODE (in)) > GET_MODE_SIZE (inmode))
1075 abort ();
1076 #endif
1077 inmode = GET_MODE (in);
1080 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1081 either M1 is not valid for R or M2 is wider than a word but we only
1082 need one word to store an M2-sized quantity in R.
1084 However, we must reload the inner reg *as well as* the subreg in
1085 that case. */
1087 /* Similar issue for (SUBREG constant ...) if it was not handled by the
1088 code above. This can happen if SUBREG_BYTE != 0. */
1090 if (in != 0 && reload_inner_reg_of_subreg (in, inmode, 0))
1092 enum reg_class in_class = class;
1094 if (REG_P (SUBREG_REG (in)))
1095 in_class
1096 = find_valid_class (inmode,
1097 subreg_regno_offset (REGNO (SUBREG_REG (in)),
1098 GET_MODE (SUBREG_REG (in)),
1099 SUBREG_BYTE (in),
1100 GET_MODE (in)),
1101 REGNO (SUBREG_REG (in)));
1103 /* This relies on the fact that emit_reload_insns outputs the
1104 instructions for input reloads of type RELOAD_OTHER in the same
1105 order as the reloads. Thus if the outer reload is also of type
1106 RELOAD_OTHER, we are guaranteed that this inner reload will be
1107 output before the outer reload. */
1108 push_reload (SUBREG_REG (in), NULL_RTX, &SUBREG_REG (in), (rtx *) 0,
1109 in_class, VOIDmode, VOIDmode, 0, 0, opnum, type);
1110 dont_remove_subreg = 1;
1113 /* Similarly for paradoxical and problematical SUBREGs on the output.
1114 Note that there is no reason we need worry about the previous value
1115 of SUBREG_REG (out); even if wider than out,
1116 storing in a subreg is entitled to clobber it all
1117 (except in the case of STRICT_LOW_PART,
1118 and in that case the constraint should label it input-output.) */
1119 if (out != 0 && GET_CODE (out) == SUBREG
1120 && (subreg_lowpart_p (out) || strict_low)
1121 #ifdef CANNOT_CHANGE_MODE_CLASS
1122 && !CANNOT_CHANGE_MODE_CLASS (GET_MODE (SUBREG_REG (out)), outmode, class)
1123 #endif
1124 && (CONSTANT_P (SUBREG_REG (out))
1125 || strict_low
1126 || (((REG_P (SUBREG_REG (out))
1127 && REGNO (SUBREG_REG (out)) >= FIRST_PSEUDO_REGISTER)
1128 || GET_CODE (SUBREG_REG (out)) == MEM)
1129 && ((GET_MODE_SIZE (outmode)
1130 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1131 #ifdef WORD_REGISTER_OPERATIONS
1132 || ((GET_MODE_SIZE (outmode)
1133 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))))
1134 && ((GET_MODE_SIZE (outmode) - 1) / UNITS_PER_WORD ==
1135 ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out))) - 1)
1136 / UNITS_PER_WORD)))
1137 #endif
1139 || (REG_P (SUBREG_REG (out))
1140 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1141 && ((GET_MODE_SIZE (outmode) <= UNITS_PER_WORD
1142 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1143 > UNITS_PER_WORD)
1144 && ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (out)))
1145 / UNITS_PER_WORD)
1146 != (int) hard_regno_nregs[REGNO (SUBREG_REG (out))]
1147 [GET_MODE (SUBREG_REG (out))]))
1148 || ! HARD_REGNO_MODE_OK (subreg_regno (out), outmode)))
1149 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1150 || (SECONDARY_OUTPUT_RELOAD_CLASS (class, outmode, out) != NO_REGS
1151 && (SECONDARY_OUTPUT_RELOAD_CLASS (class,
1152 GET_MODE (SUBREG_REG (out)),
1153 SUBREG_REG (out))
1154 == NO_REGS))
1155 #endif
1156 #ifdef CANNOT_CHANGE_MODE_CLASS
1157 || (REG_P (SUBREG_REG (out))
1158 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1159 && REG_CANNOT_CHANGE_MODE_P (REGNO (SUBREG_REG (out)),
1160 GET_MODE (SUBREG_REG (out)),
1161 outmode))
1162 #endif
1165 out_subreg_loc = outloc;
1166 outloc = &SUBREG_REG (out);
1167 out = *outloc;
1168 #if ! defined (LOAD_EXTEND_OP) && ! defined (WORD_REGISTER_OPERATIONS)
1169 if (GET_CODE (out) == MEM
1170 && GET_MODE_SIZE (GET_MODE (out)) > GET_MODE_SIZE (outmode))
1171 abort ();
1172 #endif
1173 outmode = GET_MODE (out);
1176 /* Similar issue for (SUBREG:M1 (REG:M2 ...) ...) for a hard register R where
1177 either M1 is not valid for R or M2 is wider than a word but we only
1178 need one word to store an M2-sized quantity in R.
1180 However, we must reload the inner reg *as well as* the subreg in
1181 that case. In this case, the inner reg is an in-out reload. */
1183 if (out != 0 && reload_inner_reg_of_subreg (out, outmode, 1))
1185 /* This relies on the fact that emit_reload_insns outputs the
1186 instructions for output reloads of type RELOAD_OTHER in reverse
1187 order of the reloads. Thus if the outer reload is also of type
1188 RELOAD_OTHER, we are guaranteed that this inner reload will be
1189 output after the outer reload. */
1190 dont_remove_subreg = 1;
1191 push_reload (SUBREG_REG (out), SUBREG_REG (out), &SUBREG_REG (out),
1192 &SUBREG_REG (out),
1193 find_valid_class (outmode,
1194 subreg_regno_offset (REGNO (SUBREG_REG (out)),
1195 GET_MODE (SUBREG_REG (out)),
1196 SUBREG_BYTE (out),
1197 GET_MODE (out)),
1198 REGNO (SUBREG_REG (out))),
1199 VOIDmode, VOIDmode, 0, 0,
1200 opnum, RELOAD_OTHER);
1203 /* If IN appears in OUT, we can't share any input-only reload for IN. */
1204 if (in != 0 && out != 0 && GET_CODE (out) == MEM
1205 && (REG_P (in) || GET_CODE (in) == MEM)
1206 && reg_overlap_mentioned_for_reload_p (in, XEXP (out, 0)))
1207 dont_share = 1;
1209 /* If IN is a SUBREG of a hard register, make a new REG. This
1210 simplifies some of the cases below. */
1212 if (in != 0 && GET_CODE (in) == SUBREG && REG_P (SUBREG_REG (in))
1213 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER
1214 && ! dont_remove_subreg)
1215 in = gen_rtx_REG (GET_MODE (in), subreg_regno (in));
1217 /* Similarly for OUT. */
1218 if (out != 0 && GET_CODE (out) == SUBREG
1219 && REG_P (SUBREG_REG (out))
1220 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER
1221 && ! dont_remove_subreg)
1222 out = gen_rtx_REG (GET_MODE (out), subreg_regno (out));
1224 /* Narrow down the class of register wanted if that is
1225 desirable on this machine for efficiency. */
1226 if (in != 0)
1227 class = PREFERRED_RELOAD_CLASS (in, class);
1229 /* Output reloads may need analogous treatment, different in detail. */
1230 #ifdef PREFERRED_OUTPUT_RELOAD_CLASS
1231 if (out != 0)
1232 class = PREFERRED_OUTPUT_RELOAD_CLASS (out, class);
1233 #endif
1235 /* Make sure we use a class that can handle the actual pseudo
1236 inside any subreg. For example, on the 386, QImode regs
1237 can appear within SImode subregs. Although GENERAL_REGS
1238 can handle SImode, QImode needs a smaller class. */
1239 #ifdef LIMIT_RELOAD_CLASS
1240 if (in_subreg_loc)
1241 class = LIMIT_RELOAD_CLASS (inmode, class);
1242 else if (in != 0 && GET_CODE (in) == SUBREG)
1243 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (in)), class);
1245 if (out_subreg_loc)
1246 class = LIMIT_RELOAD_CLASS (outmode, class);
1247 if (out != 0 && GET_CODE (out) == SUBREG)
1248 class = LIMIT_RELOAD_CLASS (GET_MODE (SUBREG_REG (out)), class);
1249 #endif
1251 /* Verify that this class is at least possible for the mode that
1252 is specified. */
1253 if (this_insn_is_asm)
1255 enum machine_mode mode;
1256 if (GET_MODE_SIZE (inmode) > GET_MODE_SIZE (outmode))
1257 mode = inmode;
1258 else
1259 mode = outmode;
1260 if (mode == VOIDmode)
1262 error_for_asm (this_insn, "cannot reload integer constant operand in `asm'");
1263 mode = word_mode;
1264 if (in != 0)
1265 inmode = word_mode;
1266 if (out != 0)
1267 outmode = word_mode;
1269 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1270 if (HARD_REGNO_MODE_OK (i, mode)
1271 && TEST_HARD_REG_BIT (reg_class_contents[(int) class], i))
1273 int nregs = hard_regno_nregs[i][mode];
1275 int j;
1276 for (j = 1; j < nregs; j++)
1277 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class], i + j))
1278 break;
1279 if (j == nregs)
1280 break;
1282 if (i == FIRST_PSEUDO_REGISTER)
1284 error_for_asm (this_insn, "impossible register constraint in `asm'");
1285 class = ALL_REGS;
1289 /* Optional output reloads are always OK even if we have no register class,
1290 since the function of these reloads is only to have spill_reg_store etc.
1291 set, so that the storing insn can be deleted later. */
1292 if (class == NO_REGS
1293 && (optional == 0 || type != RELOAD_FOR_OUTPUT))
1294 abort ();
1296 i = find_reusable_reload (&in, out, class, type, opnum, dont_share);
1298 if (i == n_reloads)
1300 /* See if we need a secondary reload register to move between CLASS
1301 and IN or CLASS and OUT. Get the icode and push any required reloads
1302 needed for each of them if so. */
1304 #ifdef SECONDARY_INPUT_RELOAD_CLASS
1305 if (in != 0)
1306 secondary_in_reload
1307 = push_secondary_reload (1, in, opnum, optional, class, inmode, type,
1308 &secondary_in_icode);
1309 #endif
1311 #ifdef SECONDARY_OUTPUT_RELOAD_CLASS
1312 if (out != 0 && GET_CODE (out) != SCRATCH)
1313 secondary_out_reload
1314 = push_secondary_reload (0, out, opnum, optional, class, outmode,
1315 type, &secondary_out_icode);
1316 #endif
1318 /* We found no existing reload suitable for re-use.
1319 So add an additional reload. */
1321 #ifdef SECONDARY_MEMORY_NEEDED
1322 /* If a memory location is needed for the copy, make one. */
1323 if (in != 0 && (REG_P (in) || GET_CODE (in) == SUBREG)
1324 && reg_or_subregno (in) < FIRST_PSEUDO_REGISTER
1325 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (reg_or_subregno (in)),
1326 class, inmode))
1327 get_secondary_mem (in, inmode, opnum, type);
1328 #endif
1330 i = n_reloads;
1331 rld[i].in = in;
1332 rld[i].out = out;
1333 rld[i].class = class;
1334 rld[i].inmode = inmode;
1335 rld[i].outmode = outmode;
1336 rld[i].reg_rtx = 0;
1337 rld[i].optional = optional;
1338 rld[i].inc = 0;
1339 rld[i].nocombine = 0;
1340 rld[i].in_reg = inloc ? *inloc : 0;
1341 rld[i].out_reg = outloc ? *outloc : 0;
1342 rld[i].opnum = opnum;
1343 rld[i].when_needed = type;
1344 rld[i].secondary_in_reload = secondary_in_reload;
1345 rld[i].secondary_out_reload = secondary_out_reload;
1346 rld[i].secondary_in_icode = secondary_in_icode;
1347 rld[i].secondary_out_icode = secondary_out_icode;
1348 rld[i].secondary_p = 0;
1350 n_reloads++;
1352 #ifdef SECONDARY_MEMORY_NEEDED
1353 if (out != 0 && (REG_P (out) || GET_CODE (out) == SUBREG)
1354 && reg_or_subregno (out) < FIRST_PSEUDO_REGISTER
1355 && SECONDARY_MEMORY_NEEDED (class,
1356 REGNO_REG_CLASS (reg_or_subregno (out)),
1357 outmode))
1358 get_secondary_mem (out, outmode, opnum, type);
1359 #endif
1361 else
1363 /* We are reusing an existing reload,
1364 but we may have additional information for it.
1365 For example, we may now have both IN and OUT
1366 while the old one may have just one of them. */
1368 /* The modes can be different. If they are, we want to reload in
1369 the larger mode, so that the value is valid for both modes. */
1370 if (inmode != VOIDmode
1371 && GET_MODE_SIZE (inmode) > GET_MODE_SIZE (rld[i].inmode))
1372 rld[i].inmode = inmode;
1373 if (outmode != VOIDmode
1374 && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (rld[i].outmode))
1375 rld[i].outmode = outmode;
1376 if (in != 0)
1378 rtx in_reg = inloc ? *inloc : 0;
1379 /* If we merge reloads for two distinct rtl expressions that
1380 are identical in content, there might be duplicate address
1381 reloads. Remove the extra set now, so that if we later find
1382 that we can inherit this reload, we can get rid of the
1383 address reloads altogether.
1385 Do not do this if both reloads are optional since the result
1386 would be an optional reload which could potentially leave
1387 unresolved address replacements.
1389 It is not sufficient to call transfer_replacements since
1390 choose_reload_regs will remove the replacements for address
1391 reloads of inherited reloads which results in the same
1392 problem. */
1393 if (rld[i].in != in && rtx_equal_p (in, rld[i].in)
1394 && ! (rld[i].optional && optional))
1396 /* We must keep the address reload with the lower operand
1397 number alive. */
1398 if (opnum > rld[i].opnum)
1400 remove_address_replacements (in);
1401 in = rld[i].in;
1402 in_reg = rld[i].in_reg;
1404 else
1405 remove_address_replacements (rld[i].in);
1407 rld[i].in = in;
1408 rld[i].in_reg = in_reg;
1410 if (out != 0)
1412 rld[i].out = out;
1413 rld[i].out_reg = outloc ? *outloc : 0;
1415 if (reg_class_subset_p (class, rld[i].class))
1416 rld[i].class = class;
1417 rld[i].optional &= optional;
1418 if (MERGE_TO_OTHER (type, rld[i].when_needed,
1419 opnum, rld[i].opnum))
1420 rld[i].when_needed = RELOAD_OTHER;
1421 rld[i].opnum = MIN (rld[i].opnum, opnum);
1424 /* If the ostensible rtx being reloaded differs from the rtx found
1425 in the location to substitute, this reload is not safe to combine
1426 because we cannot reliably tell whether it appears in the insn. */
1428 if (in != 0 && in != *inloc)
1429 rld[i].nocombine = 1;
1431 #if 0
1432 /* This was replaced by changes in find_reloads_address_1 and the new
1433 function inc_for_reload, which go with a new meaning of reload_inc. */
1435 /* If this is an IN/OUT reload in an insn that sets the CC,
1436 it must be for an autoincrement. It doesn't work to store
1437 the incremented value after the insn because that would clobber the CC.
1438 So we must do the increment of the value reloaded from,
1439 increment it, store it back, then decrement again. */
1440 if (out != 0 && sets_cc0_p (PATTERN (this_insn)))
1442 out = 0;
1443 rld[i].out = 0;
1444 rld[i].inc = find_inc_amount (PATTERN (this_insn), in);
1445 /* If we did not find a nonzero amount-to-increment-by,
1446 that contradicts the belief that IN is being incremented
1447 in an address in this insn. */
1448 if (rld[i].inc == 0)
1449 abort ();
1451 #endif
1453 /* If we will replace IN and OUT with the reload-reg,
1454 record where they are located so that substitution need
1455 not do a tree walk. */
1457 if (replace_reloads)
1459 if (inloc != 0)
1461 struct replacement *r = &replacements[n_replacements++];
1462 r->what = i;
1463 r->subreg_loc = in_subreg_loc;
1464 r->where = inloc;
1465 r->mode = inmode;
1467 if (outloc != 0 && outloc != inloc)
1469 struct replacement *r = &replacements[n_replacements++];
1470 r->what = i;
1471 r->where = outloc;
1472 r->subreg_loc = out_subreg_loc;
1473 r->mode = outmode;
1477 /* If this reload is just being introduced and it has both
1478 an incoming quantity and an outgoing quantity that are
1479 supposed to be made to match, see if either one of the two
1480 can serve as the place to reload into.
1482 If one of them is acceptable, set rld[i].reg_rtx
1483 to that one. */
1485 if (in != 0 && out != 0 && in != out && rld[i].reg_rtx == 0)
1487 rld[i].reg_rtx = find_dummy_reload (in, out, inloc, outloc,
1488 inmode, outmode,
1489 rld[i].class, i,
1490 earlyclobber_operand_p (out));
1492 /* If the outgoing register already contains the same value
1493 as the incoming one, we can dispense with loading it.
1494 The easiest way to tell the caller that is to give a phony
1495 value for the incoming operand (same as outgoing one). */
1496 if (rld[i].reg_rtx == out
1497 && (REG_P (in) || CONSTANT_P (in))
1498 && 0 != find_equiv_reg (in, this_insn, 0, REGNO (out),
1499 static_reload_reg_p, i, inmode))
1500 rld[i].in = out;
1503 /* If this is an input reload and the operand contains a register that
1504 dies in this insn and is used nowhere else, see if it is the right class
1505 to be used for this reload. Use it if so. (This occurs most commonly
1506 in the case of paradoxical SUBREGs and in-out reloads). We cannot do
1507 this if it is also an output reload that mentions the register unless
1508 the output is a SUBREG that clobbers an entire register.
1510 Note that the operand might be one of the spill regs, if it is a
1511 pseudo reg and we are in a block where spilling has not taken place.
1512 But if there is no spilling in this block, that is OK.
1513 An explicitly used hard reg cannot be a spill reg. */
1515 if (rld[i].reg_rtx == 0 && in != 0)
1517 rtx note;
1518 int regno;
1519 enum machine_mode rel_mode = inmode;
1521 if (out && GET_MODE_SIZE (outmode) > GET_MODE_SIZE (inmode))
1522 rel_mode = outmode;
1524 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1525 if (REG_NOTE_KIND (note) == REG_DEAD
1526 && REG_P (XEXP (note, 0))
1527 && (regno = REGNO (XEXP (note, 0))) < FIRST_PSEUDO_REGISTER
1528 && reg_mentioned_p (XEXP (note, 0), in)
1529 && ! refers_to_regno_for_reload_p (regno,
1530 (regno
1531 + hard_regno_nregs[regno]
1532 [rel_mode]),
1533 PATTERN (this_insn), inloc)
1534 /* If this is also an output reload, IN cannot be used as
1535 the reload register if it is set in this insn unless IN
1536 is also OUT. */
1537 && (out == 0 || in == out
1538 || ! hard_reg_set_here_p (regno,
1539 (regno
1540 + hard_regno_nregs[regno]
1541 [rel_mode]),
1542 PATTERN (this_insn)))
1543 /* ??? Why is this code so different from the previous?
1544 Is there any simple coherent way to describe the two together?
1545 What's going on here. */
1546 && (in != out
1547 || (GET_CODE (in) == SUBREG
1548 && (((GET_MODE_SIZE (GET_MODE (in)) + (UNITS_PER_WORD - 1))
1549 / UNITS_PER_WORD)
1550 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (in)))
1551 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
1552 /* Make sure the operand fits in the reg that dies. */
1553 && (GET_MODE_SIZE (rel_mode)
1554 <= GET_MODE_SIZE (GET_MODE (XEXP (note, 0))))
1555 && HARD_REGNO_MODE_OK (regno, inmode)
1556 && HARD_REGNO_MODE_OK (regno, outmode))
1558 unsigned int offs;
1559 unsigned int nregs = MAX (hard_regno_nregs[regno][inmode],
1560 hard_regno_nregs[regno][outmode]);
1562 for (offs = 0; offs < nregs; offs++)
1563 if (fixed_regs[regno + offs]
1564 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1565 regno + offs))
1566 break;
1568 if (offs == nregs
1569 && (! (refers_to_regno_for_reload_p
1570 (regno, (regno + hard_regno_nregs[regno][inmode]),
1571 in, (rtx *)0))
1572 || can_reload_into (in, regno, inmode)))
1574 rld[i].reg_rtx = gen_rtx_REG (rel_mode, regno);
1575 break;
1580 if (out)
1581 output_reloadnum = i;
1583 return i;
1586 /* Record an additional place we must replace a value
1587 for which we have already recorded a reload.
1588 RELOADNUM is the value returned by push_reload
1589 when the reload was recorded.
1590 This is used in insn patterns that use match_dup. */
1592 static void
1593 push_replacement (rtx *loc, int reloadnum, enum machine_mode mode)
1595 if (replace_reloads)
1597 struct replacement *r = &replacements[n_replacements++];
1598 r->what = reloadnum;
1599 r->where = loc;
1600 r->subreg_loc = 0;
1601 r->mode = mode;
1605 /* Duplicate any replacement we have recorded to apply at
1606 location ORIG_LOC to also be performed at DUP_LOC.
1607 This is used in insn patterns that use match_dup. */
1609 static void
1610 dup_replacements (rtx *dup_loc, rtx *orig_loc)
1612 int i, n = n_replacements;
1614 for (i = 0; i < n; i++)
1616 struct replacement *r = &replacements[i];
1617 if (r->where == orig_loc)
1618 push_replacement (dup_loc, r->what, r->mode);
1622 /* Transfer all replacements that used to be in reload FROM to be in
1623 reload TO. */
1625 void
1626 transfer_replacements (int to, int from)
1628 int i;
1630 for (i = 0; i < n_replacements; i++)
1631 if (replacements[i].what == from)
1632 replacements[i].what = to;
1635 /* IN_RTX is the value loaded by a reload that we now decided to inherit,
1636 or a subpart of it. If we have any replacements registered for IN_RTX,
1637 cancel the reloads that were supposed to load them.
1638 Return nonzero if we canceled any reloads. */
1640 remove_address_replacements (rtx in_rtx)
1642 int i, j;
1643 char reload_flags[MAX_RELOADS];
1644 int something_changed = 0;
1646 memset (reload_flags, 0, sizeof reload_flags);
1647 for (i = 0, j = 0; i < n_replacements; i++)
1649 if (loc_mentioned_in_p (replacements[i].where, in_rtx))
1650 reload_flags[replacements[i].what] |= 1;
1651 else
1653 replacements[j++] = replacements[i];
1654 reload_flags[replacements[i].what] |= 2;
1657 /* Note that the following store must be done before the recursive calls. */
1658 n_replacements = j;
1660 for (i = n_reloads - 1; i >= 0; i--)
1662 if (reload_flags[i] == 1)
1664 deallocate_reload_reg (i);
1665 remove_address_replacements (rld[i].in);
1666 rld[i].in = 0;
1667 something_changed = 1;
1670 return something_changed;
1673 /* If there is only one output reload, and it is not for an earlyclobber
1674 operand, try to combine it with a (logically unrelated) input reload
1675 to reduce the number of reload registers needed.
1677 This is safe if the input reload does not appear in
1678 the value being output-reloaded, because this implies
1679 it is not needed any more once the original insn completes.
1681 If that doesn't work, see we can use any of the registers that
1682 die in this insn as a reload register. We can if it is of the right
1683 class and does not appear in the value being output-reloaded. */
1685 static void
1686 combine_reloads (void)
1688 int i;
1689 int output_reload = -1;
1690 int secondary_out = -1;
1691 rtx note;
1693 /* Find the output reload; return unless there is exactly one
1694 and that one is mandatory. */
1696 for (i = 0; i < n_reloads; i++)
1697 if (rld[i].out != 0)
1699 if (output_reload >= 0)
1700 return;
1701 output_reload = i;
1704 if (output_reload < 0 || rld[output_reload].optional)
1705 return;
1707 /* An input-output reload isn't combinable. */
1709 if (rld[output_reload].in != 0)
1710 return;
1712 /* If this reload is for an earlyclobber operand, we can't do anything. */
1713 if (earlyclobber_operand_p (rld[output_reload].out))
1714 return;
1716 /* If there is a reload for part of the address of this operand, we would
1717 need to chnage it to RELOAD_FOR_OTHER_ADDRESS. But that would extend
1718 its life to the point where doing this combine would not lower the
1719 number of spill registers needed. */
1720 for (i = 0; i < n_reloads; i++)
1721 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
1722 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
1723 && rld[i].opnum == rld[output_reload].opnum)
1724 return;
1726 /* Check each input reload; can we combine it? */
1728 for (i = 0; i < n_reloads; i++)
1729 if (rld[i].in && ! rld[i].optional && ! rld[i].nocombine
1730 /* Life span of this reload must not extend past main insn. */
1731 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS
1732 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
1733 && rld[i].when_needed != RELOAD_OTHER
1734 && (CLASS_MAX_NREGS (rld[i].class, rld[i].inmode)
1735 == CLASS_MAX_NREGS (rld[output_reload].class,
1736 rld[output_reload].outmode))
1737 && rld[i].inc == 0
1738 && rld[i].reg_rtx == 0
1739 #ifdef SECONDARY_MEMORY_NEEDED
1740 /* Don't combine two reloads with different secondary
1741 memory locations. */
1742 && (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum] == 0
1743 || secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] == 0
1744 || rtx_equal_p (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum],
1745 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum]))
1746 #endif
1747 && (SMALL_REGISTER_CLASSES
1748 ? (rld[i].class == rld[output_reload].class)
1749 : (reg_class_subset_p (rld[i].class,
1750 rld[output_reload].class)
1751 || reg_class_subset_p (rld[output_reload].class,
1752 rld[i].class)))
1753 && (MATCHES (rld[i].in, rld[output_reload].out)
1754 /* Args reversed because the first arg seems to be
1755 the one that we imagine being modified
1756 while the second is the one that might be affected. */
1757 || (! reg_overlap_mentioned_for_reload_p (rld[output_reload].out,
1758 rld[i].in)
1759 /* However, if the input is a register that appears inside
1760 the output, then we also can't share.
1761 Imagine (set (mem (reg 69)) (plus (reg 69) ...)).
1762 If the same reload reg is used for both reg 69 and the
1763 result to be stored in memory, then that result
1764 will clobber the address of the memory ref. */
1765 && ! (REG_P (rld[i].in)
1766 && reg_overlap_mentioned_for_reload_p (rld[i].in,
1767 rld[output_reload].out))))
1768 && ! reload_inner_reg_of_subreg (rld[i].in, rld[i].inmode,
1769 rld[i].when_needed != RELOAD_FOR_INPUT)
1770 && (reg_class_size[(int) rld[i].class]
1771 || SMALL_REGISTER_CLASSES)
1772 /* We will allow making things slightly worse by combining an
1773 input and an output, but no worse than that. */
1774 && (rld[i].when_needed == RELOAD_FOR_INPUT
1775 || rld[i].when_needed == RELOAD_FOR_OUTPUT))
1777 int j;
1779 /* We have found a reload to combine with! */
1780 rld[i].out = rld[output_reload].out;
1781 rld[i].out_reg = rld[output_reload].out_reg;
1782 rld[i].outmode = rld[output_reload].outmode;
1783 /* Mark the old output reload as inoperative. */
1784 rld[output_reload].out = 0;
1785 /* The combined reload is needed for the entire insn. */
1786 rld[i].when_needed = RELOAD_OTHER;
1787 /* If the output reload had a secondary reload, copy it. */
1788 if (rld[output_reload].secondary_out_reload != -1)
1790 rld[i].secondary_out_reload
1791 = rld[output_reload].secondary_out_reload;
1792 rld[i].secondary_out_icode
1793 = rld[output_reload].secondary_out_icode;
1796 #ifdef SECONDARY_MEMORY_NEEDED
1797 /* Copy any secondary MEM. */
1798 if (secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum] != 0)
1799 secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[i].opnum]
1800 = secondary_memlocs_elim[(int) rld[output_reload].outmode][rld[output_reload].opnum];
1801 #endif
1802 /* If required, minimize the register class. */
1803 if (reg_class_subset_p (rld[output_reload].class,
1804 rld[i].class))
1805 rld[i].class = rld[output_reload].class;
1807 /* Transfer all replacements from the old reload to the combined. */
1808 for (j = 0; j < n_replacements; j++)
1809 if (replacements[j].what == output_reload)
1810 replacements[j].what = i;
1812 return;
1815 /* If this insn has only one operand that is modified or written (assumed
1816 to be the first), it must be the one corresponding to this reload. It
1817 is safe to use anything that dies in this insn for that output provided
1818 that it does not occur in the output (we already know it isn't an
1819 earlyclobber. If this is an asm insn, give up. */
1821 if (INSN_CODE (this_insn) == -1)
1822 return;
1824 for (i = 1; i < insn_data[INSN_CODE (this_insn)].n_operands; i++)
1825 if (insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '='
1826 || insn_data[INSN_CODE (this_insn)].operand[i].constraint[0] == '+')
1827 return;
1829 /* See if some hard register that dies in this insn and is not used in
1830 the output is the right class. Only works if the register we pick
1831 up can fully hold our output reload. */
1832 for (note = REG_NOTES (this_insn); note; note = XEXP (note, 1))
1833 if (REG_NOTE_KIND (note) == REG_DEAD
1834 && REG_P (XEXP (note, 0))
1835 && ! reg_overlap_mentioned_for_reload_p (XEXP (note, 0),
1836 rld[output_reload].out)
1837 && REGNO (XEXP (note, 0)) < FIRST_PSEUDO_REGISTER
1838 && HARD_REGNO_MODE_OK (REGNO (XEXP (note, 0)), rld[output_reload].outmode)
1839 && TEST_HARD_REG_BIT (reg_class_contents[(int) rld[output_reload].class],
1840 REGNO (XEXP (note, 0)))
1841 && (hard_regno_nregs[REGNO (XEXP (note, 0))][rld[output_reload].outmode]
1842 <= hard_regno_nregs[REGNO (XEXP (note, 0))][GET_MODE (XEXP (note, 0))])
1843 /* Ensure that a secondary or tertiary reload for this output
1844 won't want this register. */
1845 && ((secondary_out = rld[output_reload].secondary_out_reload) == -1
1846 || (! (TEST_HARD_REG_BIT
1847 (reg_class_contents[(int) rld[secondary_out].class],
1848 REGNO (XEXP (note, 0))))
1849 && ((secondary_out = rld[secondary_out].secondary_out_reload) == -1
1850 || ! (TEST_HARD_REG_BIT
1851 (reg_class_contents[(int) rld[secondary_out].class],
1852 REGNO (XEXP (note, 0)))))))
1853 && ! fixed_regs[REGNO (XEXP (note, 0))])
1855 rld[output_reload].reg_rtx
1856 = gen_rtx_REG (rld[output_reload].outmode,
1857 REGNO (XEXP (note, 0)));
1858 return;
1862 /* Try to find a reload register for an in-out reload (expressions IN and OUT).
1863 See if one of IN and OUT is a register that may be used;
1864 this is desirable since a spill-register won't be needed.
1865 If so, return the register rtx that proves acceptable.
1867 INLOC and OUTLOC are locations where IN and OUT appear in the insn.
1868 CLASS is the register class required for the reload.
1870 If FOR_REAL is >= 0, it is the number of the reload,
1871 and in some cases when it can be discovered that OUT doesn't need
1872 to be computed, clear out rld[FOR_REAL].out.
1874 If FOR_REAL is -1, this should not be done, because this call
1875 is just to see if a register can be found, not to find and install it.
1877 EARLYCLOBBER is nonzero if OUT is an earlyclobber operand. This
1878 puts an additional constraint on being able to use IN for OUT since
1879 IN must not appear elsewhere in the insn (it is assumed that IN itself
1880 is safe from the earlyclobber). */
1882 static rtx
1883 find_dummy_reload (rtx real_in, rtx real_out, rtx *inloc, rtx *outloc,
1884 enum machine_mode inmode, enum machine_mode outmode,
1885 enum reg_class class, int for_real, int earlyclobber)
1887 rtx in = real_in;
1888 rtx out = real_out;
1889 int in_offset = 0;
1890 int out_offset = 0;
1891 rtx value = 0;
1893 /* If operands exceed a word, we can't use either of them
1894 unless they have the same size. */
1895 if (GET_MODE_SIZE (outmode) != GET_MODE_SIZE (inmode)
1896 && (GET_MODE_SIZE (outmode) > UNITS_PER_WORD
1897 || GET_MODE_SIZE (inmode) > UNITS_PER_WORD))
1898 return 0;
1900 /* Note that {in,out}_offset are needed only when 'in' or 'out'
1901 respectively refers to a hard register. */
1903 /* Find the inside of any subregs. */
1904 while (GET_CODE (out) == SUBREG)
1906 if (REG_P (SUBREG_REG (out))
1907 && REGNO (SUBREG_REG (out)) < FIRST_PSEUDO_REGISTER)
1908 out_offset += subreg_regno_offset (REGNO (SUBREG_REG (out)),
1909 GET_MODE (SUBREG_REG (out)),
1910 SUBREG_BYTE (out),
1911 GET_MODE (out));
1912 out = SUBREG_REG (out);
1914 while (GET_CODE (in) == SUBREG)
1916 if (REG_P (SUBREG_REG (in))
1917 && REGNO (SUBREG_REG (in)) < FIRST_PSEUDO_REGISTER)
1918 in_offset += subreg_regno_offset (REGNO (SUBREG_REG (in)),
1919 GET_MODE (SUBREG_REG (in)),
1920 SUBREG_BYTE (in),
1921 GET_MODE (in));
1922 in = SUBREG_REG (in);
1925 /* Narrow down the reg class, the same way push_reload will;
1926 otherwise we might find a dummy now, but push_reload won't. */
1927 class = PREFERRED_RELOAD_CLASS (in, class);
1929 /* See if OUT will do. */
1930 if (REG_P (out)
1931 && REGNO (out) < FIRST_PSEUDO_REGISTER)
1933 unsigned int regno = REGNO (out) + out_offset;
1934 unsigned int nwords = hard_regno_nregs[regno][outmode];
1935 rtx saved_rtx;
1937 /* When we consider whether the insn uses OUT,
1938 ignore references within IN. They don't prevent us
1939 from copying IN into OUT, because those refs would
1940 move into the insn that reloads IN.
1942 However, we only ignore IN in its role as this reload.
1943 If the insn uses IN elsewhere and it contains OUT,
1944 that counts. We can't be sure it's the "same" operand
1945 so it might not go through this reload. */
1946 saved_rtx = *inloc;
1947 *inloc = const0_rtx;
1949 if (regno < FIRST_PSEUDO_REGISTER
1950 && HARD_REGNO_MODE_OK (regno, outmode)
1951 && ! refers_to_regno_for_reload_p (regno, regno + nwords,
1952 PATTERN (this_insn), outloc))
1954 unsigned int i;
1956 for (i = 0; i < nwords; i++)
1957 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
1958 regno + i))
1959 break;
1961 if (i == nwords)
1963 if (REG_P (real_out))
1964 value = real_out;
1965 else
1966 value = gen_rtx_REG (outmode, regno);
1970 *inloc = saved_rtx;
1973 /* Consider using IN if OUT was not acceptable
1974 or if OUT dies in this insn (like the quotient in a divmod insn).
1975 We can't use IN unless it is dies in this insn,
1976 which means we must know accurately which hard regs are live.
1977 Also, the result can't go in IN if IN is used within OUT,
1978 or if OUT is an earlyclobber and IN appears elsewhere in the insn. */
1979 if (hard_regs_live_known
1980 && REG_P (in)
1981 && REGNO (in) < FIRST_PSEUDO_REGISTER
1982 && (value == 0
1983 || find_reg_note (this_insn, REG_UNUSED, real_out))
1984 && find_reg_note (this_insn, REG_DEAD, real_in)
1985 && !fixed_regs[REGNO (in)]
1986 && HARD_REGNO_MODE_OK (REGNO (in),
1987 /* The only case where out and real_out might
1988 have different modes is where real_out
1989 is a subreg, and in that case, out
1990 has a real mode. */
1991 (GET_MODE (out) != VOIDmode
1992 ? GET_MODE (out) : outmode)))
1994 unsigned int regno = REGNO (in) + in_offset;
1995 unsigned int nwords = hard_regno_nregs[regno][inmode];
1997 if (! refers_to_regno_for_reload_p (regno, regno + nwords, out, (rtx*) 0)
1998 && ! hard_reg_set_here_p (regno, regno + nwords,
1999 PATTERN (this_insn))
2000 && (! earlyclobber
2001 || ! refers_to_regno_for_reload_p (regno, regno + nwords,
2002 PATTERN (this_insn), inloc)))
2004 unsigned int i;
2006 for (i = 0; i < nwords; i++)
2007 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
2008 regno + i))
2009 break;
2011 if (i == nwords)
2013 /* If we were going to use OUT as the reload reg
2014 and changed our mind, it means OUT is a dummy that
2015 dies here. So don't bother copying value to it. */
2016 if (for_real >= 0 && value == real_out)
2017 rld[for_real].out = 0;
2018 if (REG_P (real_in))
2019 value = real_in;
2020 else
2021 value = gen_rtx_REG (inmode, regno);
2026 return value;
2029 /* This page contains subroutines used mainly for determining
2030 whether the IN or an OUT of a reload can serve as the
2031 reload register. */
2033 /* Return 1 if X is an operand of an insn that is being earlyclobbered. */
2036 earlyclobber_operand_p (rtx x)
2038 int i;
2040 for (i = 0; i < n_earlyclobbers; i++)
2041 if (reload_earlyclobbers[i] == x)
2042 return 1;
2044 return 0;
2047 /* Return 1 if expression X alters a hard reg in the range
2048 from BEG_REGNO (inclusive) to END_REGNO (exclusive),
2049 either explicitly or in the guise of a pseudo-reg allocated to REGNO.
2050 X should be the body of an instruction. */
2052 static int
2053 hard_reg_set_here_p (unsigned int beg_regno, unsigned int end_regno, rtx x)
2055 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
2057 rtx op0 = SET_DEST (x);
2059 while (GET_CODE (op0) == SUBREG)
2060 op0 = SUBREG_REG (op0);
2061 if (REG_P (op0))
2063 unsigned int r = REGNO (op0);
2065 /* See if this reg overlaps range under consideration. */
2066 if (r < end_regno
2067 && r + hard_regno_nregs[r][GET_MODE (op0)] > beg_regno)
2068 return 1;
2071 else if (GET_CODE (x) == PARALLEL)
2073 int i = XVECLEN (x, 0) - 1;
2075 for (; i >= 0; i--)
2076 if (hard_reg_set_here_p (beg_regno, end_regno, XVECEXP (x, 0, i)))
2077 return 1;
2080 return 0;
2083 /* Return 1 if ADDR is a valid memory address for mode MODE,
2084 and check that each pseudo reg has the proper kind of
2085 hard reg. */
2088 strict_memory_address_p (enum machine_mode mode ATTRIBUTE_UNUSED, rtx addr)
2090 GO_IF_LEGITIMATE_ADDRESS (mode, addr, win);
2091 return 0;
2093 win:
2094 return 1;
2097 /* Like rtx_equal_p except that it allows a REG and a SUBREG to match
2098 if they are the same hard reg, and has special hacks for
2099 autoincrement and autodecrement.
2100 This is specifically intended for find_reloads to use
2101 in determining whether two operands match.
2102 X is the operand whose number is the lower of the two.
2104 The value is 2 if Y contains a pre-increment that matches
2105 a non-incrementing address in X. */
2107 /* ??? To be completely correct, we should arrange to pass
2108 for X the output operand and for Y the input operand.
2109 For now, we assume that the output operand has the lower number
2110 because that is natural in (SET output (... input ...)). */
2113 operands_match_p (rtx x, rtx y)
2115 int i;
2116 RTX_CODE code = GET_CODE (x);
2117 const char *fmt;
2118 int success_2;
2120 if (x == y)
2121 return 1;
2122 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
2123 && (REG_P (y) || (GET_CODE (y) == SUBREG
2124 && REG_P (SUBREG_REG (y)))))
2126 int j;
2128 if (code == SUBREG)
2130 i = REGNO (SUBREG_REG (x));
2131 if (i >= FIRST_PSEUDO_REGISTER)
2132 goto slow;
2133 i += subreg_regno_offset (REGNO (SUBREG_REG (x)),
2134 GET_MODE (SUBREG_REG (x)),
2135 SUBREG_BYTE (x),
2136 GET_MODE (x));
2138 else
2139 i = REGNO (x);
2141 if (GET_CODE (y) == SUBREG)
2143 j = REGNO (SUBREG_REG (y));
2144 if (j >= FIRST_PSEUDO_REGISTER)
2145 goto slow;
2146 j += subreg_regno_offset (REGNO (SUBREG_REG (y)),
2147 GET_MODE (SUBREG_REG (y)),
2148 SUBREG_BYTE (y),
2149 GET_MODE (y));
2151 else
2152 j = REGNO (y);
2154 /* On a WORDS_BIG_ENDIAN machine, point to the last register of a
2155 multiple hard register group, so that for example (reg:DI 0) and
2156 (reg:SI 1) will be considered the same register. */
2157 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (x)) > UNITS_PER_WORD
2158 && i < FIRST_PSEUDO_REGISTER)
2159 i += hard_regno_nregs[i][GET_MODE (x)] - 1;
2160 if (WORDS_BIG_ENDIAN && GET_MODE_SIZE (GET_MODE (y)) > UNITS_PER_WORD
2161 && j < FIRST_PSEUDO_REGISTER)
2162 j += hard_regno_nregs[j][GET_MODE (y)] - 1;
2164 return i == j;
2166 /* If two operands must match, because they are really a single
2167 operand of an assembler insn, then two postincrements are invalid
2168 because the assembler insn would increment only once.
2169 On the other hand, a postincrement matches ordinary indexing
2170 if the postincrement is the output operand. */
2171 if (code == POST_DEC || code == POST_INC || code == POST_MODIFY)
2172 return operands_match_p (XEXP (x, 0), y);
2173 /* Two preincrements are invalid
2174 because the assembler insn would increment only once.
2175 On the other hand, a preincrement matches ordinary indexing
2176 if the preincrement is the input operand.
2177 In this case, return 2, since some callers need to do special
2178 things when this happens. */
2179 if (GET_CODE (y) == PRE_DEC || GET_CODE (y) == PRE_INC
2180 || GET_CODE (y) == PRE_MODIFY)
2181 return operands_match_p (x, XEXP (y, 0)) ? 2 : 0;
2183 slow:
2185 /* Now we have disposed of all the cases
2186 in which different rtx codes can match. */
2187 if (code != GET_CODE (y))
2188 return 0;
2189 if (code == LABEL_REF)
2190 return XEXP (x, 0) == XEXP (y, 0);
2191 if (code == SYMBOL_REF)
2192 return XSTR (x, 0) == XSTR (y, 0);
2194 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2196 if (GET_MODE (x) != GET_MODE (y))
2197 return 0;
2199 /* Compare the elements. If any pair of corresponding elements
2200 fail to match, return 0 for the whole things. */
2202 success_2 = 0;
2203 fmt = GET_RTX_FORMAT (code);
2204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2206 int val, j;
2207 switch (fmt[i])
2209 case 'w':
2210 if (XWINT (x, i) != XWINT (y, i))
2211 return 0;
2212 break;
2214 case 'i':
2215 if (XINT (x, i) != XINT (y, i))
2216 return 0;
2217 break;
2219 case 'e':
2220 val = operands_match_p (XEXP (x, i), XEXP (y, i));
2221 if (val == 0)
2222 return 0;
2223 /* If any subexpression returns 2,
2224 we should return 2 if we are successful. */
2225 if (val == 2)
2226 success_2 = 1;
2227 break;
2229 case '0':
2230 break;
2232 case 'E':
2233 if (XVECLEN (x, i) != XVECLEN (y, i))
2234 return 0;
2235 for (j = XVECLEN (x, i) - 1; j >= 0; --j)
2237 val = operands_match_p (XVECEXP (x, i, j), XVECEXP (y, i, j));
2238 if (val == 0)
2239 return 0;
2240 if (val == 2)
2241 success_2 = 1;
2243 break;
2245 /* It is believed that rtx's at this level will never
2246 contain anything but integers and other rtx's,
2247 except for within LABEL_REFs and SYMBOL_REFs. */
2248 default:
2249 abort ();
2252 return 1 + success_2;
2255 /* Describe the range of registers or memory referenced by X.
2256 If X is a register, set REG_FLAG and put the first register
2257 number into START and the last plus one into END.
2258 If X is a memory reference, put a base address into BASE
2259 and a range of integer offsets into START and END.
2260 If X is pushing on the stack, we can assume it causes no trouble,
2261 so we set the SAFE field. */
2263 static struct decomposition
2264 decompose (rtx x)
2266 struct decomposition val;
2267 int all_const = 0;
2269 memset (&val, 0, sizeof (val));
2271 if (GET_CODE (x) == MEM)
2273 rtx base = NULL_RTX, offset = 0;
2274 rtx addr = XEXP (x, 0);
2276 if (GET_CODE (addr) == PRE_DEC || GET_CODE (addr) == PRE_INC
2277 || GET_CODE (addr) == POST_DEC || GET_CODE (addr) == POST_INC)
2279 val.base = XEXP (addr, 0);
2280 val.start = -GET_MODE_SIZE (GET_MODE (x));
2281 val.end = GET_MODE_SIZE (GET_MODE (x));
2282 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2283 return val;
2286 if (GET_CODE (addr) == PRE_MODIFY || GET_CODE (addr) == POST_MODIFY)
2288 if (GET_CODE (XEXP (addr, 1)) == PLUS
2289 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
2290 && CONSTANT_P (XEXP (XEXP (addr, 1), 1)))
2292 val.base = XEXP (addr, 0);
2293 val.start = -INTVAL (XEXP (XEXP (addr, 1), 1));
2294 val.end = INTVAL (XEXP (XEXP (addr, 1), 1));
2295 val.safe = REGNO (val.base) == STACK_POINTER_REGNUM;
2296 return val;
2300 if (GET_CODE (addr) == CONST)
2302 addr = XEXP (addr, 0);
2303 all_const = 1;
2305 if (GET_CODE (addr) == PLUS)
2307 if (CONSTANT_P (XEXP (addr, 0)))
2309 base = XEXP (addr, 1);
2310 offset = XEXP (addr, 0);
2312 else if (CONSTANT_P (XEXP (addr, 1)))
2314 base = XEXP (addr, 0);
2315 offset = XEXP (addr, 1);
2319 if (offset == 0)
2321 base = addr;
2322 offset = const0_rtx;
2324 if (GET_CODE (offset) == CONST)
2325 offset = XEXP (offset, 0);
2326 if (GET_CODE (offset) == PLUS)
2328 if (GET_CODE (XEXP (offset, 0)) == CONST_INT)
2330 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 1));
2331 offset = XEXP (offset, 0);
2333 else if (GET_CODE (XEXP (offset, 1)) == CONST_INT)
2335 base = gen_rtx_PLUS (GET_MODE (base), base, XEXP (offset, 0));
2336 offset = XEXP (offset, 1);
2338 else
2340 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2341 offset = const0_rtx;
2344 else if (GET_CODE (offset) != CONST_INT)
2346 base = gen_rtx_PLUS (GET_MODE (base), base, offset);
2347 offset = const0_rtx;
2350 if (all_const && GET_CODE (base) == PLUS)
2351 base = gen_rtx_CONST (GET_MODE (base), base);
2353 if (GET_CODE (offset) != CONST_INT)
2354 abort ();
2356 val.start = INTVAL (offset);
2357 val.end = val.start + GET_MODE_SIZE (GET_MODE (x));
2358 val.base = base;
2359 return val;
2361 else if (REG_P (x))
2363 val.reg_flag = 1;
2364 val.start = true_regnum (x);
2365 if (val.start < 0)
2367 /* A pseudo with no hard reg. */
2368 val.start = REGNO (x);
2369 val.end = val.start + 1;
2371 else
2372 /* A hard reg. */
2373 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2375 else if (GET_CODE (x) == SUBREG)
2377 if (!REG_P (SUBREG_REG (x)))
2378 /* This could be more precise, but it's good enough. */
2379 return decompose (SUBREG_REG (x));
2380 val.reg_flag = 1;
2381 val.start = true_regnum (x);
2382 if (val.start < 0)
2383 return decompose (SUBREG_REG (x));
2384 else
2385 /* A hard reg. */
2386 val.end = val.start + hard_regno_nregs[val.start][GET_MODE (x)];
2388 else if (CONSTANT_P (x)
2389 /* This hasn't been assigned yet, so it can't conflict yet. */
2390 || GET_CODE (x) == SCRATCH)
2391 val.safe = 1;
2392 else
2393 abort ();
2394 return val;
2397 /* Return 1 if altering Y will not modify the value of X.
2398 Y is also described by YDATA, which should be decompose (Y). */
2400 static int
2401 immune_p (rtx x, rtx y, struct decomposition ydata)
2403 struct decomposition xdata;
2405 if (ydata.reg_flag)
2406 return !refers_to_regno_for_reload_p (ydata.start, ydata.end, x, (rtx*) 0);
2407 if (ydata.safe)
2408 return 1;
2410 if (GET_CODE (y) != MEM)
2411 abort ();
2412 /* If Y is memory and X is not, Y can't affect X. */
2413 if (GET_CODE (x) != MEM)
2414 return 1;
2416 xdata = decompose (x);
2418 if (! rtx_equal_p (xdata.base, ydata.base))
2420 /* If bases are distinct symbolic constants, there is no overlap. */
2421 if (CONSTANT_P (xdata.base) && CONSTANT_P (ydata.base))
2422 return 1;
2423 /* Constants and stack slots never overlap. */
2424 if (CONSTANT_P (xdata.base)
2425 && (ydata.base == frame_pointer_rtx
2426 || ydata.base == hard_frame_pointer_rtx
2427 || ydata.base == stack_pointer_rtx))
2428 return 1;
2429 if (CONSTANT_P (ydata.base)
2430 && (xdata.base == frame_pointer_rtx
2431 || xdata.base == hard_frame_pointer_rtx
2432 || xdata.base == stack_pointer_rtx))
2433 return 1;
2434 /* If either base is variable, we don't know anything. */
2435 return 0;
2438 return (xdata.start >= ydata.end || ydata.start >= xdata.end);
2441 /* Similar, but calls decompose. */
2444 safe_from_earlyclobber (rtx op, rtx clobber)
2446 struct decomposition early_data;
2448 early_data = decompose (clobber);
2449 return immune_p (op, clobber, early_data);
2452 /* Main entry point of this file: search the body of INSN
2453 for values that need reloading and record them with push_reload.
2454 REPLACE nonzero means record also where the values occur
2455 so that subst_reloads can be used.
2457 IND_LEVELS says how many levels of indirection are supported by this
2458 machine; a value of zero means that a memory reference is not a valid
2459 memory address.
2461 LIVE_KNOWN says we have valid information about which hard
2462 regs are live at each point in the program; this is true when
2463 we are called from global_alloc but false when stupid register
2464 allocation has been done.
2466 RELOAD_REG_P if nonzero is a vector indexed by hard reg number
2467 which is nonnegative if the reg has been commandeered for reloading into.
2468 It is copied into STATIC_RELOAD_REG_P and referenced from there
2469 by various subroutines.
2471 Return TRUE if some operands need to be changed, because of swapping
2472 commutative operands, reg_equiv_address substitution, or whatever. */
2475 find_reloads (rtx insn, int replace, int ind_levels, int live_known,
2476 short *reload_reg_p)
2478 int insn_code_number;
2479 int i, j;
2480 int noperands;
2481 /* These start out as the constraints for the insn
2482 and they are chewed up as we consider alternatives. */
2483 char *constraints[MAX_RECOG_OPERANDS];
2484 /* These are the preferred classes for an operand, or NO_REGS if it isn't
2485 a register. */
2486 enum reg_class preferred_class[MAX_RECOG_OPERANDS];
2487 char pref_or_nothing[MAX_RECOG_OPERANDS];
2488 /* Nonzero for a MEM operand whose entire address needs a reload. */
2489 int address_reloaded[MAX_RECOG_OPERANDS];
2490 /* Nonzero for an address operand that needs to be completely reloaded. */
2491 int address_operand_reloaded[MAX_RECOG_OPERANDS];
2492 /* Value of enum reload_type to use for operand. */
2493 enum reload_type operand_type[MAX_RECOG_OPERANDS];
2494 /* Value of enum reload_type to use within address of operand. */
2495 enum reload_type address_type[MAX_RECOG_OPERANDS];
2496 /* Save the usage of each operand. */
2497 enum reload_usage { RELOAD_READ, RELOAD_READ_WRITE, RELOAD_WRITE } modified[MAX_RECOG_OPERANDS];
2498 int no_input_reloads = 0, no_output_reloads = 0;
2499 int n_alternatives;
2500 int this_alternative[MAX_RECOG_OPERANDS];
2501 char this_alternative_match_win[MAX_RECOG_OPERANDS];
2502 char this_alternative_win[MAX_RECOG_OPERANDS];
2503 char this_alternative_offmemok[MAX_RECOG_OPERANDS];
2504 char this_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2505 int this_alternative_matches[MAX_RECOG_OPERANDS];
2506 int swapped;
2507 int goal_alternative[MAX_RECOG_OPERANDS];
2508 int this_alternative_number;
2509 int goal_alternative_number = 0;
2510 int operand_reloadnum[MAX_RECOG_OPERANDS];
2511 int goal_alternative_matches[MAX_RECOG_OPERANDS];
2512 int goal_alternative_matched[MAX_RECOG_OPERANDS];
2513 char goal_alternative_match_win[MAX_RECOG_OPERANDS];
2514 char goal_alternative_win[MAX_RECOG_OPERANDS];
2515 char goal_alternative_offmemok[MAX_RECOG_OPERANDS];
2516 char goal_alternative_earlyclobber[MAX_RECOG_OPERANDS];
2517 int goal_alternative_swapped;
2518 int best;
2519 int commutative;
2520 char operands_match[MAX_RECOG_OPERANDS][MAX_RECOG_OPERANDS];
2521 rtx substed_operand[MAX_RECOG_OPERANDS];
2522 rtx body = PATTERN (insn);
2523 rtx set = single_set (insn);
2524 int goal_earlyclobber = 0, this_earlyclobber;
2525 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
2526 int retval = 0;
2528 this_insn = insn;
2529 n_reloads = 0;
2530 n_replacements = 0;
2531 n_earlyclobbers = 0;
2532 replace_reloads = replace;
2533 hard_regs_live_known = live_known;
2534 static_reload_reg_p = reload_reg_p;
2536 /* JUMP_INSNs and CALL_INSNs are not allowed to have any output reloads;
2537 neither are insns that SET cc0. Insns that use CC0 are not allowed
2538 to have any input reloads. */
2539 if (GET_CODE (insn) == JUMP_INSN || GET_CODE (insn) == CALL_INSN)
2540 no_output_reloads = 1;
2542 #ifdef HAVE_cc0
2543 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
2544 no_input_reloads = 1;
2545 if (reg_set_p (cc0_rtx, PATTERN (insn)))
2546 no_output_reloads = 1;
2547 #endif
2549 #ifdef SECONDARY_MEMORY_NEEDED
2550 /* The eliminated forms of any secondary memory locations are per-insn, so
2551 clear them out here. */
2553 if (secondary_memlocs_elim_used)
2555 memset (secondary_memlocs_elim, 0,
2556 sizeof (secondary_memlocs_elim[0]) * secondary_memlocs_elim_used);
2557 secondary_memlocs_elim_used = 0;
2559 #endif
2561 /* Dispose quickly of (set (reg..) (reg..)) if both have hard regs and it
2562 is cheap to move between them. If it is not, there may not be an insn
2563 to do the copy, so we may need a reload. */
2564 if (GET_CODE (body) == SET
2565 && REG_P (SET_DEST (body))
2566 && REGNO (SET_DEST (body)) < FIRST_PSEUDO_REGISTER
2567 && REG_P (SET_SRC (body))
2568 && REGNO (SET_SRC (body)) < FIRST_PSEUDO_REGISTER
2569 && REGISTER_MOVE_COST (GET_MODE (SET_SRC (body)),
2570 REGNO_REG_CLASS (REGNO (SET_SRC (body))),
2571 REGNO_REG_CLASS (REGNO (SET_DEST (body)))) == 2)
2572 return 0;
2574 extract_insn (insn);
2576 noperands = reload_n_operands = recog_data.n_operands;
2577 n_alternatives = recog_data.n_alternatives;
2579 /* Just return "no reloads" if insn has no operands with constraints. */
2580 if (noperands == 0 || n_alternatives == 0)
2581 return 0;
2583 insn_code_number = INSN_CODE (insn);
2584 this_insn_is_asm = insn_code_number < 0;
2586 memcpy (operand_mode, recog_data.operand_mode,
2587 noperands * sizeof (enum machine_mode));
2588 memcpy (constraints, recog_data.constraints, noperands * sizeof (char *));
2590 commutative = -1;
2592 /* If we will need to know, later, whether some pair of operands
2593 are the same, we must compare them now and save the result.
2594 Reloading the base and index registers will clobber them
2595 and afterward they will fail to match. */
2597 for (i = 0; i < noperands; i++)
2599 char *p;
2600 int c;
2602 substed_operand[i] = recog_data.operand[i];
2603 p = constraints[i];
2605 modified[i] = RELOAD_READ;
2607 /* Scan this operand's constraint to see if it is an output operand,
2608 an in-out operand, is commutative, or should match another. */
2610 while ((c = *p))
2612 p += CONSTRAINT_LEN (c, p);
2613 switch (c)
2615 case '=':
2616 modified[i] = RELOAD_WRITE;
2617 break;
2618 case '+':
2619 modified[i] = RELOAD_READ_WRITE;
2620 break;
2621 case '%':
2623 /* The last operand should not be marked commutative. */
2624 if (i == noperands - 1)
2625 abort ();
2627 /* We currently only support one commutative pair of
2628 operands. Some existing asm code currently uses more
2629 than one pair. Previously, that would usually work,
2630 but sometimes it would crash the compiler. We
2631 continue supporting that case as well as we can by
2632 silently ignoring all but the first pair. In the
2633 future we may handle it correctly. */
2634 if (commutative < 0)
2635 commutative = i;
2636 else if (!this_insn_is_asm)
2637 abort ();
2639 break;
2640 /* Use of ISDIGIT is tempting here, but it may get expensive because
2641 of locale support we don't want. */
2642 case '0': case '1': case '2': case '3': case '4':
2643 case '5': case '6': case '7': case '8': case '9':
2645 c = strtoul (p - 1, &p, 10);
2647 operands_match[c][i]
2648 = operands_match_p (recog_data.operand[c],
2649 recog_data.operand[i]);
2651 /* An operand may not match itself. */
2652 if (c == i)
2653 abort ();
2655 /* If C can be commuted with C+1, and C might need to match I,
2656 then C+1 might also need to match I. */
2657 if (commutative >= 0)
2659 if (c == commutative || c == commutative + 1)
2661 int other = c + (c == commutative ? 1 : -1);
2662 operands_match[other][i]
2663 = operands_match_p (recog_data.operand[other],
2664 recog_data.operand[i]);
2666 if (i == commutative || i == commutative + 1)
2668 int other = i + (i == commutative ? 1 : -1);
2669 operands_match[c][other]
2670 = operands_match_p (recog_data.operand[c],
2671 recog_data.operand[other]);
2673 /* Note that C is supposed to be less than I.
2674 No need to consider altering both C and I because in
2675 that case we would alter one into the other. */
2682 /* Examine each operand that is a memory reference or memory address
2683 and reload parts of the addresses into index registers.
2684 Also here any references to pseudo regs that didn't get hard regs
2685 but are equivalent to constants get replaced in the insn itself
2686 with those constants. Nobody will ever see them again.
2688 Finally, set up the preferred classes of each operand. */
2690 for (i = 0; i < noperands; i++)
2692 RTX_CODE code = GET_CODE (recog_data.operand[i]);
2694 address_reloaded[i] = 0;
2695 address_operand_reloaded[i] = 0;
2696 operand_type[i] = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT
2697 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT
2698 : RELOAD_OTHER);
2699 address_type[i]
2700 = (modified[i] == RELOAD_READ ? RELOAD_FOR_INPUT_ADDRESS
2701 : modified[i] == RELOAD_WRITE ? RELOAD_FOR_OUTPUT_ADDRESS
2702 : RELOAD_OTHER);
2704 if (*constraints[i] == 0)
2705 /* Ignore things like match_operator operands. */
2707 else if (constraints[i][0] == 'p'
2708 || EXTRA_ADDRESS_CONSTRAINT (constraints[i][0], constraints[i]))
2710 address_operand_reloaded[i]
2711 = find_reloads_address (recog_data.operand_mode[i], (rtx*) 0,
2712 recog_data.operand[i],
2713 recog_data.operand_loc[i],
2714 i, operand_type[i], ind_levels, insn);
2716 /* If we now have a simple operand where we used to have a
2717 PLUS or MULT, re-recognize and try again. */
2718 if ((OBJECT_P (*recog_data.operand_loc[i])
2719 || GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2720 && (GET_CODE (recog_data.operand[i]) == MULT
2721 || GET_CODE (recog_data.operand[i]) == PLUS))
2723 INSN_CODE (insn) = -1;
2724 retval = find_reloads (insn, replace, ind_levels, live_known,
2725 reload_reg_p);
2726 return retval;
2729 recog_data.operand[i] = *recog_data.operand_loc[i];
2730 substed_operand[i] = recog_data.operand[i];
2732 /* Address operands are reloaded in their existing mode,
2733 no matter what is specified in the machine description. */
2734 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2736 else if (code == MEM)
2738 address_reloaded[i]
2739 = find_reloads_address (GET_MODE (recog_data.operand[i]),
2740 recog_data.operand_loc[i],
2741 XEXP (recog_data.operand[i], 0),
2742 &XEXP (recog_data.operand[i], 0),
2743 i, address_type[i], ind_levels, insn);
2744 recog_data.operand[i] = *recog_data.operand_loc[i];
2745 substed_operand[i] = recog_data.operand[i];
2747 else if (code == SUBREG)
2749 rtx reg = SUBREG_REG (recog_data.operand[i]);
2750 rtx op
2751 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2752 ind_levels,
2753 set != 0
2754 && &SET_DEST (set) == recog_data.operand_loc[i],
2755 insn,
2756 &address_reloaded[i]);
2758 /* If we made a MEM to load (a part of) the stackslot of a pseudo
2759 that didn't get a hard register, emit a USE with a REG_EQUAL
2760 note in front so that we might inherit a previous, possibly
2761 wider reload. */
2763 if (replace
2764 && GET_CODE (op) == MEM
2765 && REG_P (reg)
2766 && (GET_MODE_SIZE (GET_MODE (reg))
2767 >= GET_MODE_SIZE (GET_MODE (op))))
2768 set_unique_reg_note (emit_insn_before (gen_rtx_USE (VOIDmode, reg),
2769 insn),
2770 REG_EQUAL, reg_equiv_memory_loc[REGNO (reg)]);
2772 substed_operand[i] = recog_data.operand[i] = op;
2774 else if (code == PLUS || GET_RTX_CLASS (code) == RTX_UNARY)
2775 /* We can get a PLUS as an "operand" as a result of register
2776 elimination. See eliminate_regs and gen_reload. We handle
2777 a unary operator by reloading the operand. */
2778 substed_operand[i] = recog_data.operand[i]
2779 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2780 ind_levels, 0, insn,
2781 &address_reloaded[i]);
2782 else if (code == REG)
2784 /* This is equivalent to calling find_reloads_toplev.
2785 The code is duplicated for speed.
2786 When we find a pseudo always equivalent to a constant,
2787 we replace it by the constant. We must be sure, however,
2788 that we don't try to replace it in the insn in which it
2789 is being set. */
2790 int regno = REGNO (recog_data.operand[i]);
2791 if (reg_equiv_constant[regno] != 0
2792 && (set == 0 || &SET_DEST (set) != recog_data.operand_loc[i]))
2794 /* Record the existing mode so that the check if constants are
2795 allowed will work when operand_mode isn't specified. */
2797 if (operand_mode[i] == VOIDmode)
2798 operand_mode[i] = GET_MODE (recog_data.operand[i]);
2800 substed_operand[i] = recog_data.operand[i]
2801 = reg_equiv_constant[regno];
2803 if (reg_equiv_memory_loc[regno] != 0
2804 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
2805 /* We need not give a valid is_set_dest argument since the case
2806 of a constant equivalence was checked above. */
2807 substed_operand[i] = recog_data.operand[i]
2808 = find_reloads_toplev (recog_data.operand[i], i, address_type[i],
2809 ind_levels, 0, insn,
2810 &address_reloaded[i]);
2812 /* If the operand is still a register (we didn't replace it with an
2813 equivalent), get the preferred class to reload it into. */
2814 code = GET_CODE (recog_data.operand[i]);
2815 preferred_class[i]
2816 = ((code == REG && REGNO (recog_data.operand[i])
2817 >= FIRST_PSEUDO_REGISTER)
2818 ? reg_preferred_class (REGNO (recog_data.operand[i]))
2819 : NO_REGS);
2820 pref_or_nothing[i]
2821 = (code == REG
2822 && REGNO (recog_data.operand[i]) >= FIRST_PSEUDO_REGISTER
2823 && reg_alternate_class (REGNO (recog_data.operand[i])) == NO_REGS);
2826 /* If this is simply a copy from operand 1 to operand 0, merge the
2827 preferred classes for the operands. */
2828 if (set != 0 && noperands >= 2 && recog_data.operand[0] == SET_DEST (set)
2829 && recog_data.operand[1] == SET_SRC (set))
2831 preferred_class[0] = preferred_class[1]
2832 = reg_class_subunion[(int) preferred_class[0]][(int) preferred_class[1]];
2833 pref_or_nothing[0] |= pref_or_nothing[1];
2834 pref_or_nothing[1] |= pref_or_nothing[0];
2837 /* Now see what we need for pseudo-regs that didn't get hard regs
2838 or got the wrong kind of hard reg. For this, we must consider
2839 all the operands together against the register constraints. */
2841 best = MAX_RECOG_OPERANDS * 2 + 600;
2843 swapped = 0;
2844 goal_alternative_swapped = 0;
2845 try_swapped:
2847 /* The constraints are made of several alternatives.
2848 Each operand's constraint looks like foo,bar,... with commas
2849 separating the alternatives. The first alternatives for all
2850 operands go together, the second alternatives go together, etc.
2852 First loop over alternatives. */
2854 for (this_alternative_number = 0;
2855 this_alternative_number < n_alternatives;
2856 this_alternative_number++)
2858 /* Loop over operands for one constraint alternative. */
2859 /* LOSERS counts those that don't fit this alternative
2860 and would require loading. */
2861 int losers = 0;
2862 /* BAD is set to 1 if it some operand can't fit this alternative
2863 even after reloading. */
2864 int bad = 0;
2865 /* REJECT is a count of how undesirable this alternative says it is
2866 if any reloading is required. If the alternative matches exactly
2867 then REJECT is ignored, but otherwise it gets this much
2868 counted against it in addition to the reloading needed. Each
2869 ? counts three times here since we want the disparaging caused by
2870 a bad register class to only count 1/3 as much. */
2871 int reject = 0;
2873 this_earlyclobber = 0;
2875 for (i = 0; i < noperands; i++)
2877 char *p = constraints[i];
2878 char *end;
2879 int len;
2880 int win = 0;
2881 int did_match = 0;
2882 /* 0 => this operand can be reloaded somehow for this alternative. */
2883 int badop = 1;
2884 /* 0 => this operand can be reloaded if the alternative allows regs. */
2885 int winreg = 0;
2886 int c;
2887 int m;
2888 rtx operand = recog_data.operand[i];
2889 int offset = 0;
2890 /* Nonzero means this is a MEM that must be reloaded into a reg
2891 regardless of what the constraint says. */
2892 int force_reload = 0;
2893 int offmemok = 0;
2894 /* Nonzero if a constant forced into memory would be OK for this
2895 operand. */
2896 int constmemok = 0;
2897 int earlyclobber = 0;
2899 /* If the predicate accepts a unary operator, it means that
2900 we need to reload the operand, but do not do this for
2901 match_operator and friends. */
2902 if (UNARY_P (operand) && *p != 0)
2903 operand = XEXP (operand, 0);
2905 /* If the operand is a SUBREG, extract
2906 the REG or MEM (or maybe even a constant) within.
2907 (Constants can occur as a result of reg_equiv_constant.) */
2909 while (GET_CODE (operand) == SUBREG)
2911 /* Offset only matters when operand is a REG and
2912 it is a hard reg. This is because it is passed
2913 to reg_fits_class_p if it is a REG and all pseudos
2914 return 0 from that function. */
2915 if (REG_P (SUBREG_REG (operand))
2916 && REGNO (SUBREG_REG (operand)) < FIRST_PSEUDO_REGISTER)
2918 if (!subreg_offset_representable_p
2919 (REGNO (SUBREG_REG (operand)),
2920 GET_MODE (SUBREG_REG (operand)),
2921 SUBREG_BYTE (operand),
2922 GET_MODE (operand)))
2923 force_reload = 1;
2924 offset += subreg_regno_offset (REGNO (SUBREG_REG (operand)),
2925 GET_MODE (SUBREG_REG (operand)),
2926 SUBREG_BYTE (operand),
2927 GET_MODE (operand));
2929 operand = SUBREG_REG (operand);
2930 /* Force reload if this is a constant or PLUS or if there may
2931 be a problem accessing OPERAND in the outer mode. */
2932 if (CONSTANT_P (operand)
2933 || GET_CODE (operand) == PLUS
2934 /* We must force a reload of paradoxical SUBREGs
2935 of a MEM because the alignment of the inner value
2936 may not be enough to do the outer reference. On
2937 big-endian machines, it may also reference outside
2938 the object.
2940 On machines that extend byte operations and we have a
2941 SUBREG where both the inner and outer modes are no wider
2942 than a word and the inner mode is narrower, is integral,
2943 and gets extended when loaded from memory, combine.c has
2944 made assumptions about the behavior of the machine in such
2945 register access. If the data is, in fact, in memory we
2946 must always load using the size assumed to be in the
2947 register and let the insn do the different-sized
2948 accesses.
2950 This is doubly true if WORD_REGISTER_OPERATIONS. In
2951 this case eliminate_regs has left non-paradoxical
2952 subregs for push_reload to see. Make sure it does
2953 by forcing the reload.
2955 ??? When is it right at this stage to have a subreg
2956 of a mem that is _not_ to be handled specially? IMO
2957 those should have been reduced to just a mem. */
2958 || ((GET_CODE (operand) == MEM
2959 || (REG_P (operand)
2960 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
2961 #ifndef WORD_REGISTER_OPERATIONS
2962 && (((GET_MODE_BITSIZE (GET_MODE (operand))
2963 < BIGGEST_ALIGNMENT)
2964 && (GET_MODE_SIZE (operand_mode[i])
2965 > GET_MODE_SIZE (GET_MODE (operand))))
2966 || BYTES_BIG_ENDIAN
2967 #ifdef LOAD_EXTEND_OP
2968 || (GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
2969 && (GET_MODE_SIZE (GET_MODE (operand))
2970 <= UNITS_PER_WORD)
2971 && (GET_MODE_SIZE (operand_mode[i])
2972 > GET_MODE_SIZE (GET_MODE (operand)))
2973 && INTEGRAL_MODE_P (GET_MODE (operand))
2974 && LOAD_EXTEND_OP (GET_MODE (operand)) != NIL)
2975 #endif
2977 #endif
2980 force_reload = 1;
2983 this_alternative[i] = (int) NO_REGS;
2984 this_alternative_win[i] = 0;
2985 this_alternative_match_win[i] = 0;
2986 this_alternative_offmemok[i] = 0;
2987 this_alternative_earlyclobber[i] = 0;
2988 this_alternative_matches[i] = -1;
2990 /* An empty constraint or empty alternative
2991 allows anything which matched the pattern. */
2992 if (*p == 0 || *p == ',')
2993 win = 1, badop = 0;
2995 /* Scan this alternative's specs for this operand;
2996 set WIN if the operand fits any letter in this alternative.
2997 Otherwise, clear BADOP if this operand could
2998 fit some letter after reloads,
2999 or set WINREG if this operand could fit after reloads
3000 provided the constraint allows some registers. */
3003 switch ((c = *p, len = CONSTRAINT_LEN (c, p)), c)
3005 case '\0':
3006 len = 0;
3007 break;
3008 case ',':
3009 c = '\0';
3010 break;
3012 case '=': case '+': case '*':
3013 break;
3015 case '%':
3016 /* We only support one commutative marker, the first
3017 one. We already set commutative above. */
3018 break;
3020 case '?':
3021 reject += 6;
3022 break;
3024 case '!':
3025 reject = 600;
3026 break;
3028 case '#':
3029 /* Ignore rest of this alternative as far as
3030 reloading is concerned. */
3032 p++;
3033 while (*p && *p != ',');
3034 len = 0;
3035 break;
3037 case '0': case '1': case '2': case '3': case '4':
3038 case '5': case '6': case '7': case '8': case '9':
3039 m = strtoul (p, &end, 10);
3040 p = end;
3041 len = 0;
3043 this_alternative_matches[i] = m;
3044 /* We are supposed to match a previous operand.
3045 If we do, we win if that one did.
3046 If we do not, count both of the operands as losers.
3047 (This is too conservative, since most of the time
3048 only a single reload insn will be needed to make
3049 the two operands win. As a result, this alternative
3050 may be rejected when it is actually desirable.) */
3051 if ((swapped && (m != commutative || i != commutative + 1))
3052 /* If we are matching as if two operands were swapped,
3053 also pretend that operands_match had been computed
3054 with swapped.
3055 But if I is the second of those and C is the first,
3056 don't exchange them, because operands_match is valid
3057 only on one side of its diagonal. */
3058 ? (operands_match
3059 [(m == commutative || m == commutative + 1)
3060 ? 2 * commutative + 1 - m : m]
3061 [(i == commutative || i == commutative + 1)
3062 ? 2 * commutative + 1 - i : i])
3063 : operands_match[m][i])
3065 /* If we are matching a non-offsettable address where an
3066 offsettable address was expected, then we must reject
3067 this combination, because we can't reload it. */
3068 if (this_alternative_offmemok[m]
3069 && GET_CODE (recog_data.operand[m]) == MEM
3070 && this_alternative[m] == (int) NO_REGS
3071 && ! this_alternative_win[m])
3072 bad = 1;
3074 did_match = this_alternative_win[m];
3076 else
3078 /* Operands don't match. */
3079 rtx value;
3080 /* Retroactively mark the operand we had to match
3081 as a loser, if it wasn't already. */
3082 if (this_alternative_win[m])
3083 losers++;
3084 this_alternative_win[m] = 0;
3085 if (this_alternative[m] == (int) NO_REGS)
3086 bad = 1;
3087 /* But count the pair only once in the total badness of
3088 this alternative, if the pair can be a dummy reload. */
3089 value
3090 = find_dummy_reload (recog_data.operand[i],
3091 recog_data.operand[m],
3092 recog_data.operand_loc[i],
3093 recog_data.operand_loc[m],
3094 operand_mode[i], operand_mode[m],
3095 this_alternative[m], -1,
3096 this_alternative_earlyclobber[m]);
3098 if (value != 0)
3099 losers--;
3101 /* This can be fixed with reloads if the operand
3102 we are supposed to match can be fixed with reloads. */
3103 badop = 0;
3104 this_alternative[i] = this_alternative[m];
3106 /* If we have to reload this operand and some previous
3107 operand also had to match the same thing as this
3108 operand, we don't know how to do that. So reject this
3109 alternative. */
3110 if (! did_match || force_reload)
3111 for (j = 0; j < i; j++)
3112 if (this_alternative_matches[j]
3113 == this_alternative_matches[i])
3114 badop = 1;
3115 break;
3117 case 'p':
3118 /* All necessary reloads for an address_operand
3119 were handled in find_reloads_address. */
3120 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3121 win = 1;
3122 badop = 0;
3123 break;
3125 case 'm':
3126 if (force_reload)
3127 break;
3128 if (GET_CODE (operand) == MEM
3129 || (REG_P (operand)
3130 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3131 && reg_renumber[REGNO (operand)] < 0))
3132 win = 1;
3133 if (CONST_POOL_OK_P (operand))
3134 badop = 0;
3135 constmemok = 1;
3136 break;
3138 case '<':
3139 if (GET_CODE (operand) == MEM
3140 && ! address_reloaded[i]
3141 && (GET_CODE (XEXP (operand, 0)) == PRE_DEC
3142 || GET_CODE (XEXP (operand, 0)) == POST_DEC))
3143 win = 1;
3144 break;
3146 case '>':
3147 if (GET_CODE (operand) == MEM
3148 && ! address_reloaded[i]
3149 && (GET_CODE (XEXP (operand, 0)) == PRE_INC
3150 || GET_CODE (XEXP (operand, 0)) == POST_INC))
3151 win = 1;
3152 break;
3154 /* Memory operand whose address is not offsettable. */
3155 case 'V':
3156 if (force_reload)
3157 break;
3158 if (GET_CODE (operand) == MEM
3159 && ! (ind_levels ? offsettable_memref_p (operand)
3160 : offsettable_nonstrict_memref_p (operand))
3161 /* Certain mem addresses will become offsettable
3162 after they themselves are reloaded. This is important;
3163 we don't want our own handling of unoffsettables
3164 to override the handling of reg_equiv_address. */
3165 && !(REG_P (XEXP (operand, 0))
3166 && (ind_levels == 0
3167 || reg_equiv_address[REGNO (XEXP (operand, 0))] != 0)))
3168 win = 1;
3169 break;
3171 /* Memory operand whose address is offsettable. */
3172 case 'o':
3173 if (force_reload)
3174 break;
3175 if ((GET_CODE (operand) == MEM
3176 /* If IND_LEVELS, find_reloads_address won't reload a
3177 pseudo that didn't get a hard reg, so we have to
3178 reject that case. */
3179 && ((ind_levels ? offsettable_memref_p (operand)
3180 : offsettable_nonstrict_memref_p (operand))
3181 /* A reloaded address is offsettable because it is now
3182 just a simple register indirect. */
3183 || address_reloaded[i]))
3184 || (REG_P (operand)
3185 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3186 && reg_renumber[REGNO (operand)] < 0
3187 /* If reg_equiv_address is nonzero, we will be
3188 loading it into a register; hence it will be
3189 offsettable, but we cannot say that reg_equiv_mem
3190 is offsettable without checking. */
3191 && ((reg_equiv_mem[REGNO (operand)] != 0
3192 && offsettable_memref_p (reg_equiv_mem[REGNO (operand)]))
3193 || (reg_equiv_address[REGNO (operand)] != 0))))
3194 win = 1;
3195 if (CONST_POOL_OK_P (operand)
3196 || GET_CODE (operand) == MEM)
3197 badop = 0;
3198 constmemok = 1;
3199 offmemok = 1;
3200 break;
3202 case '&':
3203 /* Output operand that is stored before the need for the
3204 input operands (and their index registers) is over. */
3205 earlyclobber = 1, this_earlyclobber = 1;
3206 break;
3208 case 'E':
3209 case 'F':
3210 if (GET_CODE (operand) == CONST_DOUBLE
3211 || (GET_CODE (operand) == CONST_VECTOR
3212 && (GET_MODE_CLASS (GET_MODE (operand))
3213 == MODE_VECTOR_FLOAT)))
3214 win = 1;
3215 break;
3217 case 'G':
3218 case 'H':
3219 if (GET_CODE (operand) == CONST_DOUBLE
3220 && CONST_DOUBLE_OK_FOR_CONSTRAINT_P (operand, c, p))
3221 win = 1;
3222 break;
3224 case 's':
3225 if (GET_CODE (operand) == CONST_INT
3226 || (GET_CODE (operand) == CONST_DOUBLE
3227 && GET_MODE (operand) == VOIDmode))
3228 break;
3229 case 'i':
3230 if (CONSTANT_P (operand)
3231 #ifdef LEGITIMATE_PIC_OPERAND_P
3232 && (! flag_pic || LEGITIMATE_PIC_OPERAND_P (operand))
3233 #endif
3235 win = 1;
3236 break;
3238 case 'n':
3239 if (GET_CODE (operand) == CONST_INT
3240 || (GET_CODE (operand) == CONST_DOUBLE
3241 && GET_MODE (operand) == VOIDmode))
3242 win = 1;
3243 break;
3245 case 'I':
3246 case 'J':
3247 case 'K':
3248 case 'L':
3249 case 'M':
3250 case 'N':
3251 case 'O':
3252 case 'P':
3253 if (GET_CODE (operand) == CONST_INT
3254 && CONST_OK_FOR_CONSTRAINT_P (INTVAL (operand), c, p))
3255 win = 1;
3256 break;
3258 case 'X':
3259 win = 1;
3260 break;
3262 case 'g':
3263 if (! force_reload
3264 /* A PLUS is never a valid operand, but reload can make
3265 it from a register when eliminating registers. */
3266 && GET_CODE (operand) != PLUS
3267 /* A SCRATCH is not a valid operand. */
3268 && GET_CODE (operand) != SCRATCH
3269 #ifdef LEGITIMATE_PIC_OPERAND_P
3270 && (! CONSTANT_P (operand)
3271 || ! flag_pic
3272 || LEGITIMATE_PIC_OPERAND_P (operand))
3273 #endif
3274 && (GENERAL_REGS == ALL_REGS
3275 || !REG_P (operand)
3276 || (REGNO (operand) >= FIRST_PSEUDO_REGISTER
3277 && reg_renumber[REGNO (operand)] < 0)))
3278 win = 1;
3279 /* Drop through into 'r' case. */
3281 case 'r':
3282 this_alternative[i]
3283 = (int) reg_class_subunion[this_alternative[i]][(int) GENERAL_REGS];
3284 goto reg;
3286 default:
3287 if (REG_CLASS_FROM_CONSTRAINT (c, p) == NO_REGS)
3289 #ifdef EXTRA_CONSTRAINT_STR
3290 if (EXTRA_MEMORY_CONSTRAINT (c, p))
3292 if (force_reload)
3293 break;
3294 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3295 win = 1;
3296 /* If the address was already reloaded,
3297 we win as well. */
3298 else if (GET_CODE (operand) == MEM
3299 && address_reloaded[i])
3300 win = 1;
3301 /* Likewise if the address will be reloaded because
3302 reg_equiv_address is nonzero. For reg_equiv_mem
3303 we have to check. */
3304 else if (REG_P (operand)
3305 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3306 && reg_renumber[REGNO (operand)] < 0
3307 && ((reg_equiv_mem[REGNO (operand)] != 0
3308 && EXTRA_CONSTRAINT_STR (reg_equiv_mem[REGNO (operand)], c, p))
3309 || (reg_equiv_address[REGNO (operand)] != 0)))
3310 win = 1;
3312 /* If we didn't already win, we can reload
3313 constants via force_const_mem, and other
3314 MEMs by reloading the address like for 'o'. */
3315 if (CONST_POOL_OK_P (operand)
3316 || GET_CODE (operand) == MEM)
3317 badop = 0;
3318 constmemok = 1;
3319 offmemok = 1;
3320 break;
3322 if (EXTRA_ADDRESS_CONSTRAINT (c, p))
3324 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3325 win = 1;
3327 /* If we didn't already win, we can reload
3328 the address into a base register. */
3329 this_alternative[i] = (int) MODE_BASE_REG_CLASS (VOIDmode);
3330 badop = 0;
3331 break;
3334 if (EXTRA_CONSTRAINT_STR (operand, c, p))
3335 win = 1;
3336 #endif
3337 break;
3340 this_alternative[i]
3341 = (int) (reg_class_subunion
3342 [this_alternative[i]]
3343 [(int) REG_CLASS_FROM_CONSTRAINT (c, p)]);
3344 reg:
3345 if (GET_MODE (operand) == BLKmode)
3346 break;
3347 winreg = 1;
3348 if (REG_P (operand)
3349 && reg_fits_class_p (operand, this_alternative[i],
3350 offset, GET_MODE (recog_data.operand[i])))
3351 win = 1;
3352 break;
3354 while ((p += len), c);
3356 constraints[i] = p;
3358 /* If this operand could be handled with a reg,
3359 and some reg is allowed, then this operand can be handled. */
3360 if (winreg && this_alternative[i] != (int) NO_REGS)
3361 badop = 0;
3363 /* Record which operands fit this alternative. */
3364 this_alternative_earlyclobber[i] = earlyclobber;
3365 if (win && ! force_reload)
3366 this_alternative_win[i] = 1;
3367 else if (did_match && ! force_reload)
3368 this_alternative_match_win[i] = 1;
3369 else
3371 int const_to_mem = 0;
3373 this_alternative_offmemok[i] = offmemok;
3374 losers++;
3375 if (badop)
3376 bad = 1;
3377 /* Alternative loses if it has no regs for a reg operand. */
3378 if (REG_P (operand)
3379 && this_alternative[i] == (int) NO_REGS
3380 && this_alternative_matches[i] < 0)
3381 bad = 1;
3383 /* If this is a constant that is reloaded into the desired
3384 class by copying it to memory first, count that as another
3385 reload. This is consistent with other code and is
3386 required to avoid choosing another alternative when
3387 the constant is moved into memory by this function on
3388 an early reload pass. Note that the test here is
3389 precisely the same as in the code below that calls
3390 force_const_mem. */
3391 if (CONST_POOL_OK_P (operand)
3392 && ((PREFERRED_RELOAD_CLASS (operand,
3393 (enum reg_class) this_alternative[i])
3394 == NO_REGS)
3395 || no_input_reloads)
3396 && operand_mode[i] != VOIDmode)
3398 const_to_mem = 1;
3399 if (this_alternative[i] != (int) NO_REGS)
3400 losers++;
3403 /* If we can't reload this value at all, reject this
3404 alternative. Note that we could also lose due to
3405 LIMIT_RELOAD_RELOAD_CLASS, but we don't check that
3406 here. */
3408 if (! CONSTANT_P (operand)
3409 && (enum reg_class) this_alternative[i] != NO_REGS
3410 && (PREFERRED_RELOAD_CLASS (operand,
3411 (enum reg_class) this_alternative[i])
3412 == NO_REGS))
3413 bad = 1;
3415 /* Alternative loses if it requires a type of reload not
3416 permitted for this insn. We can always reload SCRATCH
3417 and objects with a REG_UNUSED note. */
3418 else if (GET_CODE (operand) != SCRATCH
3419 && modified[i] != RELOAD_READ && no_output_reloads
3420 && ! find_reg_note (insn, REG_UNUSED, operand))
3421 bad = 1;
3422 else if (modified[i] != RELOAD_WRITE && no_input_reloads
3423 && ! const_to_mem)
3424 bad = 1;
3426 /* We prefer to reload pseudos over reloading other things,
3427 since such reloads may be able to be eliminated later.
3428 If we are reloading a SCRATCH, we won't be generating any
3429 insns, just using a register, so it is also preferred.
3430 So bump REJECT in other cases. Don't do this in the
3431 case where we are forcing a constant into memory and
3432 it will then win since we don't want to have a different
3433 alternative match then. */
3434 if (! (REG_P (operand)
3435 && REGNO (operand) >= FIRST_PSEUDO_REGISTER)
3436 && GET_CODE (operand) != SCRATCH
3437 && ! (const_to_mem && constmemok))
3438 reject += 2;
3440 /* Input reloads can be inherited more often than output
3441 reloads can be removed, so penalize output reloads. */
3442 if (operand_type[i] != RELOAD_FOR_INPUT
3443 && GET_CODE (operand) != SCRATCH)
3444 reject++;
3447 /* If this operand is a pseudo register that didn't get a hard
3448 reg and this alternative accepts some register, see if the
3449 class that we want is a subset of the preferred class for this
3450 register. If not, but it intersects that class, use the
3451 preferred class instead. If it does not intersect the preferred
3452 class, show that usage of this alternative should be discouraged;
3453 it will be discouraged more still if the register is `preferred
3454 or nothing'. We do this because it increases the chance of
3455 reusing our spill register in a later insn and avoiding a pair
3456 of memory stores and loads.
3458 Don't bother with this if this alternative will accept this
3459 operand.
3461 Don't do this for a multiword operand, since it is only a
3462 small win and has the risk of requiring more spill registers,
3463 which could cause a large loss.
3465 Don't do this if the preferred class has only one register
3466 because we might otherwise exhaust the class. */
3468 if (! win && ! did_match
3469 && this_alternative[i] != (int) NO_REGS
3470 && GET_MODE_SIZE (operand_mode[i]) <= UNITS_PER_WORD
3471 && reg_class_size[(int) preferred_class[i]] > 1)
3473 if (! reg_class_subset_p (this_alternative[i],
3474 preferred_class[i]))
3476 /* Since we don't have a way of forming the intersection,
3477 we just do something special if the preferred class
3478 is a subset of the class we have; that's the most
3479 common case anyway. */
3480 if (reg_class_subset_p (preferred_class[i],
3481 this_alternative[i]))
3482 this_alternative[i] = (int) preferred_class[i];
3483 else
3484 reject += (2 + 2 * pref_or_nothing[i]);
3489 /* Now see if any output operands that are marked "earlyclobber"
3490 in this alternative conflict with any input operands
3491 or any memory addresses. */
3493 for (i = 0; i < noperands; i++)
3494 if (this_alternative_earlyclobber[i]
3495 && (this_alternative_win[i] || this_alternative_match_win[i]))
3497 struct decomposition early_data;
3499 early_data = decompose (recog_data.operand[i]);
3501 if (modified[i] == RELOAD_READ)
3502 abort ();
3504 if (this_alternative[i] == NO_REGS)
3506 this_alternative_earlyclobber[i] = 0;
3507 if (this_insn_is_asm)
3508 error_for_asm (this_insn,
3509 "`&' constraint used with no register class");
3510 else
3511 abort ();
3514 for (j = 0; j < noperands; j++)
3515 /* Is this an input operand or a memory ref? */
3516 if ((GET_CODE (recog_data.operand[j]) == MEM
3517 || modified[j] != RELOAD_WRITE)
3518 && j != i
3519 /* Ignore things like match_operator operands. */
3520 && *recog_data.constraints[j] != 0
3521 /* Don't count an input operand that is constrained to match
3522 the early clobber operand. */
3523 && ! (this_alternative_matches[j] == i
3524 && rtx_equal_p (recog_data.operand[i],
3525 recog_data.operand[j]))
3526 /* Is it altered by storing the earlyclobber operand? */
3527 && !immune_p (recog_data.operand[j], recog_data.operand[i],
3528 early_data))
3530 /* If the output is in a single-reg class,
3531 it's costly to reload it, so reload the input instead. */
3532 if (reg_class_size[this_alternative[i]] == 1
3533 && (REG_P (recog_data.operand[j])
3534 || GET_CODE (recog_data.operand[j]) == SUBREG))
3536 losers++;
3537 this_alternative_win[j] = 0;
3538 this_alternative_match_win[j] = 0;
3540 else
3541 break;
3543 /* If an earlyclobber operand conflicts with something,
3544 it must be reloaded, so request this and count the cost. */
3545 if (j != noperands)
3547 losers++;
3548 this_alternative_win[i] = 0;
3549 this_alternative_match_win[j] = 0;
3550 for (j = 0; j < noperands; j++)
3551 if (this_alternative_matches[j] == i
3552 && this_alternative_match_win[j])
3554 this_alternative_win[j] = 0;
3555 this_alternative_match_win[j] = 0;
3556 losers++;
3561 /* If one alternative accepts all the operands, no reload required,
3562 choose that alternative; don't consider the remaining ones. */
3563 if (losers == 0)
3565 /* Unswap these so that they are never swapped at `finish'. */
3566 if (commutative >= 0)
3568 recog_data.operand[commutative] = substed_operand[commutative];
3569 recog_data.operand[commutative + 1]
3570 = substed_operand[commutative + 1];
3572 for (i = 0; i < noperands; i++)
3574 goal_alternative_win[i] = this_alternative_win[i];
3575 goal_alternative_match_win[i] = this_alternative_match_win[i];
3576 goal_alternative[i] = this_alternative[i];
3577 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3578 goal_alternative_matches[i] = this_alternative_matches[i];
3579 goal_alternative_earlyclobber[i]
3580 = this_alternative_earlyclobber[i];
3582 goal_alternative_number = this_alternative_number;
3583 goal_alternative_swapped = swapped;
3584 goal_earlyclobber = this_earlyclobber;
3585 goto finish;
3588 /* REJECT, set by the ! and ? constraint characters and when a register
3589 would be reloaded into a non-preferred class, discourages the use of
3590 this alternative for a reload goal. REJECT is incremented by six
3591 for each ? and two for each non-preferred class. */
3592 losers = losers * 6 + reject;
3594 /* If this alternative can be made to work by reloading,
3595 and it needs less reloading than the others checked so far,
3596 record it as the chosen goal for reloading. */
3597 if (! bad && best > losers)
3599 for (i = 0; i < noperands; i++)
3601 goal_alternative[i] = this_alternative[i];
3602 goal_alternative_win[i] = this_alternative_win[i];
3603 goal_alternative_match_win[i] = this_alternative_match_win[i];
3604 goal_alternative_offmemok[i] = this_alternative_offmemok[i];
3605 goal_alternative_matches[i] = this_alternative_matches[i];
3606 goal_alternative_earlyclobber[i]
3607 = this_alternative_earlyclobber[i];
3609 goal_alternative_swapped = swapped;
3610 best = losers;
3611 goal_alternative_number = this_alternative_number;
3612 goal_earlyclobber = this_earlyclobber;
3616 /* If insn is commutative (it's safe to exchange a certain pair of operands)
3617 then we need to try each alternative twice,
3618 the second time matching those two operands
3619 as if we had exchanged them.
3620 To do this, really exchange them in operands.
3622 If we have just tried the alternatives the second time,
3623 return operands to normal and drop through. */
3625 if (commutative >= 0)
3627 swapped = !swapped;
3628 if (swapped)
3630 enum reg_class tclass;
3631 int t;
3633 recog_data.operand[commutative] = substed_operand[commutative + 1];
3634 recog_data.operand[commutative + 1] = substed_operand[commutative];
3635 /* Swap the duplicates too. */
3636 for (i = 0; i < recog_data.n_dups; i++)
3637 if (recog_data.dup_num[i] == commutative
3638 || recog_data.dup_num[i] == commutative + 1)
3639 *recog_data.dup_loc[i]
3640 = recog_data.operand[(int) recog_data.dup_num[i]];
3642 tclass = preferred_class[commutative];
3643 preferred_class[commutative] = preferred_class[commutative + 1];
3644 preferred_class[commutative + 1] = tclass;
3646 t = pref_or_nothing[commutative];
3647 pref_or_nothing[commutative] = pref_or_nothing[commutative + 1];
3648 pref_or_nothing[commutative + 1] = t;
3650 memcpy (constraints, recog_data.constraints,
3651 noperands * sizeof (char *));
3652 goto try_swapped;
3654 else
3656 recog_data.operand[commutative] = substed_operand[commutative];
3657 recog_data.operand[commutative + 1]
3658 = substed_operand[commutative + 1];
3659 /* Unswap the duplicates too. */
3660 for (i = 0; i < recog_data.n_dups; i++)
3661 if (recog_data.dup_num[i] == commutative
3662 || recog_data.dup_num[i] == commutative + 1)
3663 *recog_data.dup_loc[i]
3664 = recog_data.operand[(int) recog_data.dup_num[i]];
3668 /* The operands don't meet the constraints.
3669 goal_alternative describes the alternative
3670 that we could reach by reloading the fewest operands.
3671 Reload so as to fit it. */
3673 if (best == MAX_RECOG_OPERANDS * 2 + 600)
3675 /* No alternative works with reloads?? */
3676 if (insn_code_number >= 0)
3677 fatal_insn ("unable to generate reloads for:", insn);
3678 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3679 /* Avoid further trouble with this insn. */
3680 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3681 n_reloads = 0;
3682 return 0;
3685 /* Jump to `finish' from above if all operands are valid already.
3686 In that case, goal_alternative_win is all 1. */
3687 finish:
3689 /* Right now, for any pair of operands I and J that are required to match,
3690 with I < J,
3691 goal_alternative_matches[J] is I.
3692 Set up goal_alternative_matched as the inverse function:
3693 goal_alternative_matched[I] = J. */
3695 for (i = 0; i < noperands; i++)
3696 goal_alternative_matched[i] = -1;
3698 for (i = 0; i < noperands; i++)
3699 if (! goal_alternative_win[i]
3700 && goal_alternative_matches[i] >= 0)
3701 goal_alternative_matched[goal_alternative_matches[i]] = i;
3703 for (i = 0; i < noperands; i++)
3704 goal_alternative_win[i] |= goal_alternative_match_win[i];
3706 /* If the best alternative is with operands 1 and 2 swapped,
3707 consider them swapped before reporting the reloads. Update the
3708 operand numbers of any reloads already pushed. */
3710 if (goal_alternative_swapped)
3712 rtx tem;
3714 tem = substed_operand[commutative];
3715 substed_operand[commutative] = substed_operand[commutative + 1];
3716 substed_operand[commutative + 1] = tem;
3717 tem = recog_data.operand[commutative];
3718 recog_data.operand[commutative] = recog_data.operand[commutative + 1];
3719 recog_data.operand[commutative + 1] = tem;
3720 tem = *recog_data.operand_loc[commutative];
3721 *recog_data.operand_loc[commutative]
3722 = *recog_data.operand_loc[commutative + 1];
3723 *recog_data.operand_loc[commutative + 1] = tem;
3725 for (i = 0; i < n_reloads; i++)
3727 if (rld[i].opnum == commutative)
3728 rld[i].opnum = commutative + 1;
3729 else if (rld[i].opnum == commutative + 1)
3730 rld[i].opnum = commutative;
3734 for (i = 0; i < noperands; i++)
3736 operand_reloadnum[i] = -1;
3738 /* If this is an earlyclobber operand, we need to widen the scope.
3739 The reload must remain valid from the start of the insn being
3740 reloaded until after the operand is stored into its destination.
3741 We approximate this with RELOAD_OTHER even though we know that we
3742 do not conflict with RELOAD_FOR_INPUT_ADDRESS reloads.
3744 One special case that is worth checking is when we have an
3745 output that is earlyclobber but isn't used past the insn (typically
3746 a SCRATCH). In this case, we only need have the reload live
3747 through the insn itself, but not for any of our input or output
3748 reloads.
3749 But we must not accidentally narrow the scope of an existing
3750 RELOAD_OTHER reload - leave these alone.
3752 In any case, anything needed to address this operand can remain
3753 however they were previously categorized. */
3755 if (goal_alternative_earlyclobber[i] && operand_type[i] != RELOAD_OTHER)
3756 operand_type[i]
3757 = (find_reg_note (insn, REG_UNUSED, recog_data.operand[i])
3758 ? RELOAD_FOR_INSN : RELOAD_OTHER);
3761 /* Any constants that aren't allowed and can't be reloaded
3762 into registers are here changed into memory references. */
3763 for (i = 0; i < noperands; i++)
3764 if (! goal_alternative_win[i]
3765 && CONST_POOL_OK_P (recog_data.operand[i])
3766 && ((PREFERRED_RELOAD_CLASS (recog_data.operand[i],
3767 (enum reg_class) goal_alternative[i])
3768 == NO_REGS)
3769 || no_input_reloads)
3770 && operand_mode[i] != VOIDmode)
3772 substed_operand[i] = recog_data.operand[i]
3773 = find_reloads_toplev (force_const_mem (operand_mode[i],
3774 recog_data.operand[i]),
3775 i, address_type[i], ind_levels, 0, insn,
3776 NULL);
3777 if (alternative_allows_memconst (recog_data.constraints[i],
3778 goal_alternative_number))
3779 goal_alternative_win[i] = 1;
3782 /* Record the values of the earlyclobber operands for the caller. */
3783 if (goal_earlyclobber)
3784 for (i = 0; i < noperands; i++)
3785 if (goal_alternative_earlyclobber[i])
3786 reload_earlyclobbers[n_earlyclobbers++] = recog_data.operand[i];
3788 /* Now record reloads for all the operands that need them. */
3789 for (i = 0; i < noperands; i++)
3790 if (! goal_alternative_win[i])
3792 /* Operands that match previous ones have already been handled. */
3793 if (goal_alternative_matches[i] >= 0)
3795 /* Handle an operand with a nonoffsettable address
3796 appearing where an offsettable address will do
3797 by reloading the address into a base register.
3799 ??? We can also do this when the operand is a register and
3800 reg_equiv_mem is not offsettable, but this is a bit tricky,
3801 so we don't bother with it. It may not be worth doing. */
3802 else if (goal_alternative_matched[i] == -1
3803 && goal_alternative_offmemok[i]
3804 && GET_CODE (recog_data.operand[i]) == MEM)
3806 operand_reloadnum[i]
3807 = push_reload (XEXP (recog_data.operand[i], 0), NULL_RTX,
3808 &XEXP (recog_data.operand[i], 0), (rtx*) 0,
3809 MODE_BASE_REG_CLASS (VOIDmode),
3810 GET_MODE (XEXP (recog_data.operand[i], 0)),
3811 VOIDmode, 0, 0, i, RELOAD_FOR_INPUT);
3812 rld[operand_reloadnum[i]].inc
3813 = GET_MODE_SIZE (GET_MODE (recog_data.operand[i]));
3815 /* If this operand is an output, we will have made any
3816 reloads for its address as RELOAD_FOR_OUTPUT_ADDRESS, but
3817 now we are treating part of the operand as an input, so
3818 we must change these to RELOAD_FOR_INPUT_ADDRESS. */
3820 if (modified[i] == RELOAD_WRITE)
3822 for (j = 0; j < n_reloads; j++)
3824 if (rld[j].opnum == i)
3826 if (rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS)
3827 rld[j].when_needed = RELOAD_FOR_INPUT_ADDRESS;
3828 else if (rld[j].when_needed
3829 == RELOAD_FOR_OUTADDR_ADDRESS)
3830 rld[j].when_needed = RELOAD_FOR_INPADDR_ADDRESS;
3835 else if (goal_alternative_matched[i] == -1)
3837 operand_reloadnum[i]
3838 = push_reload ((modified[i] != RELOAD_WRITE
3839 ? recog_data.operand[i] : 0),
3840 (modified[i] != RELOAD_READ
3841 ? recog_data.operand[i] : 0),
3842 (modified[i] != RELOAD_WRITE
3843 ? recog_data.operand_loc[i] : 0),
3844 (modified[i] != RELOAD_READ
3845 ? recog_data.operand_loc[i] : 0),
3846 (enum reg_class) goal_alternative[i],
3847 (modified[i] == RELOAD_WRITE
3848 ? VOIDmode : operand_mode[i]),
3849 (modified[i] == RELOAD_READ
3850 ? VOIDmode : operand_mode[i]),
3851 (insn_code_number < 0 ? 0
3852 : insn_data[insn_code_number].operand[i].strict_low),
3853 0, i, operand_type[i]);
3855 /* In a matching pair of operands, one must be input only
3856 and the other must be output only.
3857 Pass the input operand as IN and the other as OUT. */
3858 else if (modified[i] == RELOAD_READ
3859 && modified[goal_alternative_matched[i]] == RELOAD_WRITE)
3861 operand_reloadnum[i]
3862 = push_reload (recog_data.operand[i],
3863 recog_data.operand[goal_alternative_matched[i]],
3864 recog_data.operand_loc[i],
3865 recog_data.operand_loc[goal_alternative_matched[i]],
3866 (enum reg_class) goal_alternative[i],
3867 operand_mode[i],
3868 operand_mode[goal_alternative_matched[i]],
3869 0, 0, i, RELOAD_OTHER);
3870 operand_reloadnum[goal_alternative_matched[i]] = output_reloadnum;
3872 else if (modified[i] == RELOAD_WRITE
3873 && modified[goal_alternative_matched[i]] == RELOAD_READ)
3875 operand_reloadnum[goal_alternative_matched[i]]
3876 = push_reload (recog_data.operand[goal_alternative_matched[i]],
3877 recog_data.operand[i],
3878 recog_data.operand_loc[goal_alternative_matched[i]],
3879 recog_data.operand_loc[i],
3880 (enum reg_class) goal_alternative[i],
3881 operand_mode[goal_alternative_matched[i]],
3882 operand_mode[i],
3883 0, 0, i, RELOAD_OTHER);
3884 operand_reloadnum[i] = output_reloadnum;
3886 else if (insn_code_number >= 0)
3887 abort ();
3888 else
3890 error_for_asm (insn, "inconsistent operand constraints in an `asm'");
3891 /* Avoid further trouble with this insn. */
3892 PATTERN (insn) = gen_rtx_USE (VOIDmode, const0_rtx);
3893 n_reloads = 0;
3894 return 0;
3897 else if (goal_alternative_matched[i] < 0
3898 && goal_alternative_matches[i] < 0
3899 && !address_operand_reloaded[i]
3900 && optimize)
3902 /* For each non-matching operand that's a MEM or a pseudo-register
3903 that didn't get a hard register, make an optional reload.
3904 This may get done even if the insn needs no reloads otherwise. */
3906 rtx operand = recog_data.operand[i];
3908 while (GET_CODE (operand) == SUBREG)
3909 operand = SUBREG_REG (operand);
3910 if ((GET_CODE (operand) == MEM
3911 || (REG_P (operand)
3912 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3913 /* If this is only for an output, the optional reload would not
3914 actually cause us to use a register now, just note that
3915 something is stored here. */
3916 && ((enum reg_class) goal_alternative[i] != NO_REGS
3917 || modified[i] == RELOAD_WRITE)
3918 && ! no_input_reloads
3919 /* An optional output reload might allow to delete INSN later.
3920 We mustn't make in-out reloads on insns that are not permitted
3921 output reloads.
3922 If this is an asm, we can't delete it; we must not even call
3923 push_reload for an optional output reload in this case,
3924 because we can't be sure that the constraint allows a register,
3925 and push_reload verifies the constraints for asms. */
3926 && (modified[i] == RELOAD_READ
3927 || (! no_output_reloads && ! this_insn_is_asm)))
3928 operand_reloadnum[i]
3929 = push_reload ((modified[i] != RELOAD_WRITE
3930 ? recog_data.operand[i] : 0),
3931 (modified[i] != RELOAD_READ
3932 ? recog_data.operand[i] : 0),
3933 (modified[i] != RELOAD_WRITE
3934 ? recog_data.operand_loc[i] : 0),
3935 (modified[i] != RELOAD_READ
3936 ? recog_data.operand_loc[i] : 0),
3937 (enum reg_class) goal_alternative[i],
3938 (modified[i] == RELOAD_WRITE
3939 ? VOIDmode : operand_mode[i]),
3940 (modified[i] == RELOAD_READ
3941 ? VOIDmode : operand_mode[i]),
3942 (insn_code_number < 0 ? 0
3943 : insn_data[insn_code_number].operand[i].strict_low),
3944 1, i, operand_type[i]);
3945 /* If a memory reference remains (either as a MEM or a pseudo that
3946 did not get a hard register), yet we can't make an optional
3947 reload, check if this is actually a pseudo register reference;
3948 we then need to emit a USE and/or a CLOBBER so that reload
3949 inheritance will do the right thing. */
3950 else if (replace
3951 && (GET_CODE (operand) == MEM
3952 || (REG_P (operand)
3953 && REGNO (operand) >= FIRST_PSEUDO_REGISTER
3954 && reg_renumber [REGNO (operand)] < 0)))
3956 operand = *recog_data.operand_loc[i];
3958 while (GET_CODE (operand) == SUBREG)
3959 operand = SUBREG_REG (operand);
3960 if (REG_P (operand))
3962 if (modified[i] != RELOAD_WRITE)
3963 /* We mark the USE with QImode so that we recognize
3964 it as one that can be safely deleted at the end
3965 of reload. */
3966 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, operand),
3967 insn), QImode);
3968 if (modified[i] != RELOAD_READ)
3969 emit_insn_after (gen_rtx_CLOBBER (VOIDmode, operand), insn);
3973 else if (goal_alternative_matches[i] >= 0
3974 && goal_alternative_win[goal_alternative_matches[i]]
3975 && modified[i] == RELOAD_READ
3976 && modified[goal_alternative_matches[i]] == RELOAD_WRITE
3977 && ! no_input_reloads && ! no_output_reloads
3978 && optimize)
3980 /* Similarly, make an optional reload for a pair of matching
3981 objects that are in MEM or a pseudo that didn't get a hard reg. */
3983 rtx operand = recog_data.operand[i];
3985 while (GET_CODE (operand) == SUBREG)
3986 operand = SUBREG_REG (operand);
3987 if ((GET_CODE (operand) == MEM
3988 || (REG_P (operand)
3989 && REGNO (operand) >= FIRST_PSEUDO_REGISTER))
3990 && ((enum reg_class) goal_alternative[goal_alternative_matches[i]]
3991 != NO_REGS))
3992 operand_reloadnum[i] = operand_reloadnum[goal_alternative_matches[i]]
3993 = push_reload (recog_data.operand[goal_alternative_matches[i]],
3994 recog_data.operand[i],
3995 recog_data.operand_loc[goal_alternative_matches[i]],
3996 recog_data.operand_loc[i],
3997 (enum reg_class) goal_alternative[goal_alternative_matches[i]],
3998 operand_mode[goal_alternative_matches[i]],
3999 operand_mode[i],
4000 0, 1, goal_alternative_matches[i], RELOAD_OTHER);
4003 /* Perform whatever substitutions on the operands we are supposed
4004 to make due to commutativity or replacement of registers
4005 with equivalent constants or memory slots. */
4007 for (i = 0; i < noperands; i++)
4009 /* We only do this on the last pass through reload, because it is
4010 possible for some data (like reg_equiv_address) to be changed during
4011 later passes. Moreover, we loose the opportunity to get a useful
4012 reload_{in,out}_reg when we do these replacements. */
4014 if (replace)
4016 rtx substitution = substed_operand[i];
4018 *recog_data.operand_loc[i] = substitution;
4020 /* If we're replacing an operand with a LABEL_REF, we need
4021 to make sure that there's a REG_LABEL note attached to
4022 this instruction. */
4023 if (GET_CODE (insn) != JUMP_INSN
4024 && GET_CODE (substitution) == LABEL_REF
4025 && !find_reg_note (insn, REG_LABEL, XEXP (substitution, 0)))
4026 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
4027 XEXP (substitution, 0),
4028 REG_NOTES (insn));
4030 else
4031 retval |= (substed_operand[i] != *recog_data.operand_loc[i]);
4034 /* If this insn pattern contains any MATCH_DUP's, make sure that
4035 they will be substituted if the operands they match are substituted.
4036 Also do now any substitutions we already did on the operands.
4038 Don't do this if we aren't making replacements because we might be
4039 propagating things allocated by frame pointer elimination into places
4040 it doesn't expect. */
4042 if (insn_code_number >= 0 && replace)
4043 for (i = insn_data[insn_code_number].n_dups - 1; i >= 0; i--)
4045 int opno = recog_data.dup_num[i];
4046 *recog_data.dup_loc[i] = *recog_data.operand_loc[opno];
4047 dup_replacements (recog_data.dup_loc[i], recog_data.operand_loc[opno]);
4050 #if 0
4051 /* This loses because reloading of prior insns can invalidate the equivalence
4052 (or at least find_equiv_reg isn't smart enough to find it any more),
4053 causing this insn to need more reload regs than it needed before.
4054 It may be too late to make the reload regs available.
4055 Now this optimization is done safely in choose_reload_regs. */
4057 /* For each reload of a reg into some other class of reg,
4058 search for an existing equivalent reg (same value now) in the right class.
4059 We can use it as long as we don't need to change its contents. */
4060 for (i = 0; i < n_reloads; i++)
4061 if (rld[i].reg_rtx == 0
4062 && rld[i].in != 0
4063 && REG_P (rld[i].in)
4064 && rld[i].out == 0)
4066 rld[i].reg_rtx
4067 = find_equiv_reg (rld[i].in, insn, rld[i].class, -1,
4068 static_reload_reg_p, 0, rld[i].inmode);
4069 /* Prevent generation of insn to load the value
4070 because the one we found already has the value. */
4071 if (rld[i].reg_rtx)
4072 rld[i].in = rld[i].reg_rtx;
4074 #endif
4076 /* Perhaps an output reload can be combined with another
4077 to reduce needs by one. */
4078 if (!goal_earlyclobber)
4079 combine_reloads ();
4081 /* If we have a pair of reloads for parts of an address, they are reloading
4082 the same object, the operands themselves were not reloaded, and they
4083 are for two operands that are supposed to match, merge the reloads and
4084 change the type of the surviving reload to RELOAD_FOR_OPERAND_ADDRESS. */
4086 for (i = 0; i < n_reloads; i++)
4088 int k;
4090 for (j = i + 1; j < n_reloads; j++)
4091 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4092 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4093 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4094 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4095 && (rld[j].when_needed == RELOAD_FOR_INPUT_ADDRESS
4096 || rld[j].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4097 || rld[j].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4098 || rld[j].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4099 && rtx_equal_p (rld[i].in, rld[j].in)
4100 && (operand_reloadnum[rld[i].opnum] < 0
4101 || rld[operand_reloadnum[rld[i].opnum]].optional)
4102 && (operand_reloadnum[rld[j].opnum] < 0
4103 || rld[operand_reloadnum[rld[j].opnum]].optional)
4104 && (goal_alternative_matches[rld[i].opnum] == rld[j].opnum
4105 || (goal_alternative_matches[rld[j].opnum]
4106 == rld[i].opnum)))
4108 for (k = 0; k < n_replacements; k++)
4109 if (replacements[k].what == j)
4110 replacements[k].what = i;
4112 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4113 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4114 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4115 else
4116 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4117 rld[j].in = 0;
4121 /* Scan all the reloads and update their type.
4122 If a reload is for the address of an operand and we didn't reload
4123 that operand, change the type. Similarly, change the operand number
4124 of a reload when two operands match. If a reload is optional, treat it
4125 as though the operand isn't reloaded.
4127 ??? This latter case is somewhat odd because if we do the optional
4128 reload, it means the object is hanging around. Thus we need only
4129 do the address reload if the optional reload was NOT done.
4131 Change secondary reloads to be the address type of their operand, not
4132 the normal type.
4134 If an operand's reload is now RELOAD_OTHER, change any
4135 RELOAD_FOR_INPUT_ADDRESS reloads of that operand to
4136 RELOAD_FOR_OTHER_ADDRESS. */
4138 for (i = 0; i < n_reloads; i++)
4140 if (rld[i].secondary_p
4141 && rld[i].when_needed == operand_type[rld[i].opnum])
4142 rld[i].when_needed = address_type[rld[i].opnum];
4144 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4145 || rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4146 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4147 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4148 && (operand_reloadnum[rld[i].opnum] < 0
4149 || rld[operand_reloadnum[rld[i].opnum]].optional))
4151 /* If we have a secondary reload to go along with this reload,
4152 change its type to RELOAD_FOR_OPADDR_ADDR. */
4154 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4155 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4156 && rld[i].secondary_in_reload != -1)
4158 int secondary_in_reload = rld[i].secondary_in_reload;
4160 rld[secondary_in_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4162 /* If there's a tertiary reload we have to change it also. */
4163 if (secondary_in_reload > 0
4164 && rld[secondary_in_reload].secondary_in_reload != -1)
4165 rld[rld[secondary_in_reload].secondary_in_reload].when_needed
4166 = RELOAD_FOR_OPADDR_ADDR;
4169 if ((rld[i].when_needed == RELOAD_FOR_OUTPUT_ADDRESS
4170 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4171 && rld[i].secondary_out_reload != -1)
4173 int secondary_out_reload = rld[i].secondary_out_reload;
4175 rld[secondary_out_reload].when_needed = RELOAD_FOR_OPADDR_ADDR;
4177 /* If there's a tertiary reload we have to change it also. */
4178 if (secondary_out_reload
4179 && rld[secondary_out_reload].secondary_out_reload != -1)
4180 rld[rld[secondary_out_reload].secondary_out_reload].when_needed
4181 = RELOAD_FOR_OPADDR_ADDR;
4184 if (rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS
4185 || rld[i].when_needed == RELOAD_FOR_OUTADDR_ADDRESS)
4186 rld[i].when_needed = RELOAD_FOR_OPADDR_ADDR;
4187 else
4188 rld[i].when_needed = RELOAD_FOR_OPERAND_ADDRESS;
4191 if ((rld[i].when_needed == RELOAD_FOR_INPUT_ADDRESS
4192 || rld[i].when_needed == RELOAD_FOR_INPADDR_ADDRESS)
4193 && operand_reloadnum[rld[i].opnum] >= 0
4194 && (rld[operand_reloadnum[rld[i].opnum]].when_needed
4195 == RELOAD_OTHER))
4196 rld[i].when_needed = RELOAD_FOR_OTHER_ADDRESS;
4198 if (goal_alternative_matches[rld[i].opnum] >= 0)
4199 rld[i].opnum = goal_alternative_matches[rld[i].opnum];
4202 /* Scan all the reloads, and check for RELOAD_FOR_OPERAND_ADDRESS reloads.
4203 If we have more than one, then convert all RELOAD_FOR_OPADDR_ADDR
4204 reloads to RELOAD_FOR_OPERAND_ADDRESS reloads.
4206 choose_reload_regs assumes that RELOAD_FOR_OPADDR_ADDR reloads never
4207 conflict with RELOAD_FOR_OPERAND_ADDRESS reloads. This is true for a
4208 single pair of RELOAD_FOR_OPADDR_ADDR/RELOAD_FOR_OPERAND_ADDRESS reloads.
4209 However, if there is more than one RELOAD_FOR_OPERAND_ADDRESS reload,
4210 then a RELOAD_FOR_OPADDR_ADDR reload conflicts with all
4211 RELOAD_FOR_OPERAND_ADDRESS reloads other than the one that uses it.
4212 This is complicated by the fact that a single operand can have more
4213 than one RELOAD_FOR_OPERAND_ADDRESS reload. It is very difficult to fix
4214 choose_reload_regs without affecting code quality, and cases that
4215 actually fail are extremely rare, so it turns out to be better to fix
4216 the problem here by not generating cases that choose_reload_regs will
4217 fail for. */
4218 /* There is a similar problem with RELOAD_FOR_INPUT_ADDRESS /
4219 RELOAD_FOR_OUTPUT_ADDRESS when there is more than one of a kind for
4220 a single operand.
4221 We can reduce the register pressure by exploiting that a
4222 RELOAD_FOR_X_ADDR_ADDR that precedes all RELOAD_FOR_X_ADDRESS reloads
4223 does not conflict with any of them, if it is only used for the first of
4224 the RELOAD_FOR_X_ADDRESS reloads. */
4226 int first_op_addr_num = -2;
4227 int first_inpaddr_num[MAX_RECOG_OPERANDS];
4228 int first_outpaddr_num[MAX_RECOG_OPERANDS];
4229 int need_change = 0;
4230 /* We use last_op_addr_reload and the contents of the above arrays
4231 first as flags - -2 means no instance encountered, -1 means exactly
4232 one instance encountered.
4233 If more than one instance has been encountered, we store the reload
4234 number of the first reload of the kind in question; reload numbers
4235 are known to be non-negative. */
4236 for (i = 0; i < noperands; i++)
4237 first_inpaddr_num[i] = first_outpaddr_num[i] = -2;
4238 for (i = n_reloads - 1; i >= 0; i--)
4240 switch (rld[i].when_needed)
4242 case RELOAD_FOR_OPERAND_ADDRESS:
4243 if (++first_op_addr_num >= 0)
4245 first_op_addr_num = i;
4246 need_change = 1;
4248 break;
4249 case RELOAD_FOR_INPUT_ADDRESS:
4250 if (++first_inpaddr_num[rld[i].opnum] >= 0)
4252 first_inpaddr_num[rld[i].opnum] = i;
4253 need_change = 1;
4255 break;
4256 case RELOAD_FOR_OUTPUT_ADDRESS:
4257 if (++first_outpaddr_num[rld[i].opnum] >= 0)
4259 first_outpaddr_num[rld[i].opnum] = i;
4260 need_change = 1;
4262 break;
4263 default:
4264 break;
4268 if (need_change)
4270 for (i = 0; i < n_reloads; i++)
4272 int first_num;
4273 enum reload_type type;
4275 switch (rld[i].when_needed)
4277 case RELOAD_FOR_OPADDR_ADDR:
4278 first_num = first_op_addr_num;
4279 type = RELOAD_FOR_OPERAND_ADDRESS;
4280 break;
4281 case RELOAD_FOR_INPADDR_ADDRESS:
4282 first_num = first_inpaddr_num[rld[i].opnum];
4283 type = RELOAD_FOR_INPUT_ADDRESS;
4284 break;
4285 case RELOAD_FOR_OUTADDR_ADDRESS:
4286 first_num = first_outpaddr_num[rld[i].opnum];
4287 type = RELOAD_FOR_OUTPUT_ADDRESS;
4288 break;
4289 default:
4290 continue;
4292 if (first_num < 0)
4293 continue;
4294 else if (i > first_num)
4295 rld[i].when_needed = type;
4296 else
4298 /* Check if the only TYPE reload that uses reload I is
4299 reload FIRST_NUM. */
4300 for (j = n_reloads - 1; j > first_num; j--)
4302 if (rld[j].when_needed == type
4303 && (rld[i].secondary_p
4304 ? rld[j].secondary_in_reload == i
4305 : reg_mentioned_p (rld[i].in, rld[j].in)))
4307 rld[i].when_needed = type;
4308 break;
4316 /* See if we have any reloads that are now allowed to be merged
4317 because we've changed when the reload is needed to
4318 RELOAD_FOR_OPERAND_ADDRESS or RELOAD_FOR_OTHER_ADDRESS. Only
4319 check for the most common cases. */
4321 for (i = 0; i < n_reloads; i++)
4322 if (rld[i].in != 0 && rld[i].out == 0
4323 && (rld[i].when_needed == RELOAD_FOR_OPERAND_ADDRESS
4324 || rld[i].when_needed == RELOAD_FOR_OPADDR_ADDR
4325 || rld[i].when_needed == RELOAD_FOR_OTHER_ADDRESS))
4326 for (j = 0; j < n_reloads; j++)
4327 if (i != j && rld[j].in != 0 && rld[j].out == 0
4328 && rld[j].when_needed == rld[i].when_needed
4329 && MATCHES (rld[i].in, rld[j].in)
4330 && rld[i].class == rld[j].class
4331 && !rld[i].nocombine && !rld[j].nocombine
4332 && rld[i].reg_rtx == rld[j].reg_rtx)
4334 rld[i].opnum = MIN (rld[i].opnum, rld[j].opnum);
4335 transfer_replacements (i, j);
4336 rld[j].in = 0;
4339 #ifdef HAVE_cc0
4340 /* If we made any reloads for addresses, see if they violate a
4341 "no input reloads" requirement for this insn. But loads that we
4342 do after the insn (such as for output addresses) are fine. */
4343 if (no_input_reloads)
4344 for (i = 0; i < n_reloads; i++)
4345 if (rld[i].in != 0
4346 && rld[i].when_needed != RELOAD_FOR_OUTADDR_ADDRESS
4347 && rld[i].when_needed != RELOAD_FOR_OUTPUT_ADDRESS)
4348 abort ();
4349 #endif
4351 /* Compute reload_mode and reload_nregs. */
4352 for (i = 0; i < n_reloads; i++)
4354 rld[i].mode
4355 = (rld[i].inmode == VOIDmode
4356 || (GET_MODE_SIZE (rld[i].outmode)
4357 > GET_MODE_SIZE (rld[i].inmode)))
4358 ? rld[i].outmode : rld[i].inmode;
4360 rld[i].nregs = CLASS_MAX_NREGS (rld[i].class, rld[i].mode);
4363 /* Special case a simple move with an input reload and a
4364 destination of a hard reg, if the hard reg is ok, use it. */
4365 for (i = 0; i < n_reloads; i++)
4366 if (rld[i].when_needed == RELOAD_FOR_INPUT
4367 && GET_CODE (PATTERN (insn)) == SET
4368 && REG_P (SET_DEST (PATTERN (insn)))
4369 && SET_SRC (PATTERN (insn)) == rld[i].in)
4371 rtx dest = SET_DEST (PATTERN (insn));
4372 unsigned int regno = REGNO (dest);
4374 if (regno < FIRST_PSEUDO_REGISTER
4375 && TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno)
4376 && HARD_REGNO_MODE_OK (regno, rld[i].mode))
4378 int nr = hard_regno_nregs[regno][rld[i].mode];
4379 int ok = 1, nri;
4381 for (nri = 1; nri < nr; nri ++)
4382 if (! TEST_HARD_REG_BIT (reg_class_contents[rld[i].class], regno + nri))
4383 ok = 0;
4385 if (ok)
4386 rld[i].reg_rtx = dest;
4390 return retval;
4393 /* Return 1 if alternative number ALTNUM in constraint-string CONSTRAINT
4394 accepts a memory operand with constant address. */
4396 static int
4397 alternative_allows_memconst (const char *constraint, int altnum)
4399 int c;
4400 /* Skip alternatives before the one requested. */
4401 while (altnum > 0)
4403 while (*constraint++ != ',');
4404 altnum--;
4406 /* Scan the requested alternative for 'm' or 'o'.
4407 If one of them is present, this alternative accepts memory constants. */
4408 for (; (c = *constraint) && c != ',' && c != '#';
4409 constraint += CONSTRAINT_LEN (c, constraint))
4410 if (c == 'm' || c == 'o' || EXTRA_MEMORY_CONSTRAINT (c, constraint))
4411 return 1;
4412 return 0;
4415 /* Scan X for memory references and scan the addresses for reloading.
4416 Also checks for references to "constant" regs that we want to eliminate
4417 and replaces them with the values they stand for.
4418 We may alter X destructively if it contains a reference to such.
4419 If X is just a constant reg, we return the equivalent value
4420 instead of X.
4422 IND_LEVELS says how many levels of indirect addressing this machine
4423 supports.
4425 OPNUM and TYPE identify the purpose of the reload.
4427 IS_SET_DEST is true if X is the destination of a SET, which is not
4428 appropriate to be replaced by a constant.
4430 INSN, if nonzero, is the insn in which we do the reload. It is used
4431 to determine if we may generate output reloads, and where to put USEs
4432 for pseudos that we have to replace with stack slots.
4434 ADDRESS_RELOADED. If nonzero, is a pointer to where we put the
4435 result of find_reloads_address. */
4437 static rtx
4438 find_reloads_toplev (rtx x, int opnum, enum reload_type type,
4439 int ind_levels, int is_set_dest, rtx insn,
4440 int *address_reloaded)
4442 RTX_CODE code = GET_CODE (x);
4444 const char *fmt = GET_RTX_FORMAT (code);
4445 int i;
4446 int copied;
4448 if (code == REG)
4450 /* This code is duplicated for speed in find_reloads. */
4451 int regno = REGNO (x);
4452 if (reg_equiv_constant[regno] != 0 && !is_set_dest)
4453 x = reg_equiv_constant[regno];
4454 #if 0
4455 /* This creates (subreg (mem...)) which would cause an unnecessary
4456 reload of the mem. */
4457 else if (reg_equiv_mem[regno] != 0)
4458 x = reg_equiv_mem[regno];
4459 #endif
4460 else if (reg_equiv_memory_loc[regno]
4461 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
4463 rtx mem = make_memloc (x, regno);
4464 if (reg_equiv_address[regno]
4465 || ! rtx_equal_p (mem, reg_equiv_mem[regno]))
4467 /* If this is not a toplevel operand, find_reloads doesn't see
4468 this substitution. We have to emit a USE of the pseudo so
4469 that delete_output_reload can see it. */
4470 if (replace_reloads && recog_data.operand[opnum] != x)
4471 /* We mark the USE with QImode so that we recognize it
4472 as one that can be safely deleted at the end of
4473 reload. */
4474 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, x), insn),
4475 QImode);
4476 x = mem;
4477 i = find_reloads_address (GET_MODE (x), &x, XEXP (x, 0), &XEXP (x, 0),
4478 opnum, type, ind_levels, insn);
4479 if (address_reloaded)
4480 *address_reloaded = i;
4483 return x;
4485 if (code == MEM)
4487 rtx tem = x;
4489 i = find_reloads_address (GET_MODE (x), &tem, XEXP (x, 0), &XEXP (x, 0),
4490 opnum, type, ind_levels, insn);
4491 if (address_reloaded)
4492 *address_reloaded = i;
4494 return tem;
4497 if (code == SUBREG && REG_P (SUBREG_REG (x)))
4499 /* Check for SUBREG containing a REG that's equivalent to a constant.
4500 If the constant has a known value, truncate it right now.
4501 Similarly if we are extracting a single-word of a multi-word
4502 constant. If the constant is symbolic, allow it to be substituted
4503 normally. push_reload will strip the subreg later. If the
4504 constant is VOIDmode, abort because we will lose the mode of
4505 the register (this should never happen because one of the cases
4506 above should handle it). */
4508 int regno = REGNO (SUBREG_REG (x));
4509 rtx tem;
4511 if (subreg_lowpart_p (x)
4512 && regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4513 && reg_equiv_constant[regno] != 0
4514 && (tem = gen_lowpart_common (GET_MODE (x),
4515 reg_equiv_constant[regno])) != 0)
4516 return tem;
4518 if (regno >= FIRST_PSEUDO_REGISTER && reg_renumber[regno] < 0
4519 && reg_equiv_constant[regno] != 0)
4521 tem =
4522 simplify_gen_subreg (GET_MODE (x), reg_equiv_constant[regno],
4523 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
4524 if (!tem)
4525 abort ();
4526 return tem;
4529 /* If the subreg contains a reg that will be converted to a mem,
4530 convert the subreg to a narrower memref now.
4531 Otherwise, we would get (subreg (mem ...) ...),
4532 which would force reload of the mem.
4534 We also need to do this if there is an equivalent MEM that is
4535 not offsettable. In that case, alter_subreg would produce an
4536 invalid address on big-endian machines.
4538 For machines that extend byte loads, we must not reload using
4539 a wider mode if we have a paradoxical SUBREG. find_reloads will
4540 force a reload in that case. So we should not do anything here. */
4542 else if (regno >= FIRST_PSEUDO_REGISTER
4543 #ifdef LOAD_EXTEND_OP
4544 && (GET_MODE_SIZE (GET_MODE (x))
4545 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4546 #endif
4547 && (reg_equiv_address[regno] != 0
4548 || (reg_equiv_mem[regno] != 0
4549 && (! strict_memory_address_p (GET_MODE (x),
4550 XEXP (reg_equiv_mem[regno], 0))
4551 || ! offsettable_memref_p (reg_equiv_mem[regno])
4552 || num_not_at_initial_offset))))
4553 x = find_reloads_subreg_address (x, 1, opnum, type, ind_levels,
4554 insn);
4557 for (copied = 0, i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4559 if (fmt[i] == 'e')
4561 rtx new_part = find_reloads_toplev (XEXP (x, i), opnum, type,
4562 ind_levels, is_set_dest, insn,
4563 address_reloaded);
4564 /* If we have replaced a reg with it's equivalent memory loc -
4565 that can still be handled here e.g. if it's in a paradoxical
4566 subreg - we must make the change in a copy, rather than using
4567 a destructive change. This way, find_reloads can still elect
4568 not to do the change. */
4569 if (new_part != XEXP (x, i) && ! CONSTANT_P (new_part) && ! copied)
4571 x = shallow_copy_rtx (x);
4572 copied = 1;
4574 XEXP (x, i) = new_part;
4577 return x;
4580 /* Return a mem ref for the memory equivalent of reg REGNO.
4581 This mem ref is not shared with anything. */
4583 static rtx
4584 make_memloc (rtx ad, int regno)
4586 /* We must rerun eliminate_regs, in case the elimination
4587 offsets have changed. */
4588 rtx tem
4589 = XEXP (eliminate_regs (reg_equiv_memory_loc[regno], 0, NULL_RTX), 0);
4591 /* If TEM might contain a pseudo, we must copy it to avoid
4592 modifying it when we do the substitution for the reload. */
4593 if (rtx_varies_p (tem, 0))
4594 tem = copy_rtx (tem);
4596 tem = replace_equiv_address_nv (reg_equiv_memory_loc[regno], tem);
4597 tem = adjust_address_nv (tem, GET_MODE (ad), 0);
4599 /* Copy the result if it's still the same as the equivalence, to avoid
4600 modifying it when we do the substitution for the reload. */
4601 if (tem == reg_equiv_memory_loc[regno])
4602 tem = copy_rtx (tem);
4603 return tem;
4606 /* Returns true if AD could be turned into a valid memory reference
4607 to mode MODE by reloading the part pointed to by PART into a
4608 register. */
4610 static int
4611 maybe_memory_address_p (enum machine_mode mode, rtx ad, rtx *part)
4613 int retv;
4614 rtx tem = *part;
4615 rtx reg = gen_rtx_REG (GET_MODE (tem), max_reg_num ());
4617 *part = reg;
4618 retv = memory_address_p (mode, ad);
4619 *part = tem;
4621 return retv;
4624 /* Record all reloads needed for handling memory address AD
4625 which appears in *LOC in a memory reference to mode MODE
4626 which itself is found in location *MEMREFLOC.
4627 Note that we take shortcuts assuming that no multi-reg machine mode
4628 occurs as part of an address.
4630 OPNUM and TYPE specify the purpose of this reload.
4632 IND_LEVELS says how many levels of indirect addressing this machine
4633 supports.
4635 INSN, if nonzero, is the insn in which we do the reload. It is used
4636 to determine if we may generate output reloads, and where to put USEs
4637 for pseudos that we have to replace with stack slots.
4639 Value is nonzero if this address is reloaded or replaced as a whole.
4640 This is interesting to the caller if the address is an autoincrement.
4642 Note that there is no verification that the address will be valid after
4643 this routine does its work. Instead, we rely on the fact that the address
4644 was valid when reload started. So we need only undo things that reload
4645 could have broken. These are wrong register types, pseudos not allocated
4646 to a hard register, and frame pointer elimination. */
4648 static int
4649 find_reloads_address (enum machine_mode mode, rtx *memrefloc, rtx ad,
4650 rtx *loc, int opnum, enum reload_type type,
4651 int ind_levels, rtx insn)
4653 int regno;
4654 int removed_and = 0;
4655 rtx tem;
4657 /* If the address is a register, see if it is a legitimate address and
4658 reload if not. We first handle the cases where we need not reload
4659 or where we must reload in a non-standard way. */
4661 if (REG_P (ad))
4663 regno = REGNO (ad);
4665 /* If the register is equivalent to an invariant expression, substitute
4666 the invariant, and eliminate any eliminable register references. */
4667 tem = reg_equiv_constant[regno];
4668 if (tem != 0
4669 && (tem = eliminate_regs (tem, mode, insn))
4670 && strict_memory_address_p (mode, tem))
4672 *loc = ad = tem;
4673 return 0;
4676 tem = reg_equiv_memory_loc[regno];
4677 if (tem != 0)
4679 if (reg_equiv_address[regno] != 0 || num_not_at_initial_offset)
4681 tem = make_memloc (ad, regno);
4682 if (! strict_memory_address_p (GET_MODE (tem), XEXP (tem, 0)))
4684 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
4685 &XEXP (tem, 0), opnum,
4686 ADDR_TYPE (type), ind_levels, insn);
4688 /* We can avoid a reload if the register's equivalent memory
4689 expression is valid as an indirect memory address.
4690 But not all addresses are valid in a mem used as an indirect
4691 address: only reg or reg+constant. */
4693 if (ind_levels > 0
4694 && strict_memory_address_p (mode, tem)
4695 && (REG_P (XEXP (tem, 0))
4696 || (GET_CODE (XEXP (tem, 0)) == PLUS
4697 && REG_P (XEXP (XEXP (tem, 0), 0))
4698 && CONSTANT_P (XEXP (XEXP (tem, 0), 1)))))
4700 /* TEM is not the same as what we'll be replacing the
4701 pseudo with after reload, put a USE in front of INSN
4702 in the final reload pass. */
4703 if (replace_reloads
4704 && num_not_at_initial_offset
4705 && ! rtx_equal_p (tem, reg_equiv_mem[regno]))
4707 *loc = tem;
4708 /* We mark the USE with QImode so that we
4709 recognize it as one that can be safely
4710 deleted at the end of reload. */
4711 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad),
4712 insn), QImode);
4714 /* This doesn't really count as replacing the address
4715 as a whole, since it is still a memory access. */
4717 return 0;
4719 ad = tem;
4723 /* The only remaining case where we can avoid a reload is if this is a
4724 hard register that is valid as a base register and which is not the
4725 subject of a CLOBBER in this insn. */
4727 else if (regno < FIRST_PSEUDO_REGISTER
4728 && REGNO_MODE_OK_FOR_BASE_P (regno, mode)
4729 && ! regno_clobbered_p (regno, this_insn, mode, 0))
4730 return 0;
4732 /* If we do not have one of the cases above, we must do the reload. */
4733 push_reload (ad, NULL_RTX, loc, (rtx*) 0, MODE_BASE_REG_CLASS (mode),
4734 GET_MODE (ad), VOIDmode, 0, 0, opnum, type);
4735 return 1;
4738 if (strict_memory_address_p (mode, ad))
4740 /* The address appears valid, so reloads are not needed.
4741 But the address may contain an eliminable register.
4742 This can happen because a machine with indirect addressing
4743 may consider a pseudo register by itself a valid address even when
4744 it has failed to get a hard reg.
4745 So do a tree-walk to find and eliminate all such regs. */
4747 /* But first quickly dispose of a common case. */
4748 if (GET_CODE (ad) == PLUS
4749 && GET_CODE (XEXP (ad, 1)) == CONST_INT
4750 && REG_P (XEXP (ad, 0))
4751 && reg_equiv_constant[REGNO (XEXP (ad, 0))] == 0)
4752 return 0;
4754 subst_reg_equivs_changed = 0;
4755 *loc = subst_reg_equivs (ad, insn);
4757 if (! subst_reg_equivs_changed)
4758 return 0;
4760 /* Check result for validity after substitution. */
4761 if (strict_memory_address_p (mode, ad))
4762 return 0;
4765 #ifdef LEGITIMIZE_RELOAD_ADDRESS
4768 if (memrefloc)
4770 LEGITIMIZE_RELOAD_ADDRESS (ad, GET_MODE (*memrefloc), opnum, type,
4771 ind_levels, win);
4773 break;
4774 win:
4775 *memrefloc = copy_rtx (*memrefloc);
4776 XEXP (*memrefloc, 0) = ad;
4777 move_replacements (&ad, &XEXP (*memrefloc, 0));
4778 return 1;
4780 while (0);
4781 #endif
4783 /* The address is not valid. We have to figure out why. First see if
4784 we have an outer AND and remove it if so. Then analyze what's inside. */
4786 if (GET_CODE (ad) == AND)
4788 removed_and = 1;
4789 loc = &XEXP (ad, 0);
4790 ad = *loc;
4793 /* One possibility for why the address is invalid is that it is itself
4794 a MEM. This can happen when the frame pointer is being eliminated, a
4795 pseudo is not allocated to a hard register, and the offset between the
4796 frame and stack pointers is not its initial value. In that case the
4797 pseudo will have been replaced by a MEM referring to the
4798 stack pointer. */
4799 if (GET_CODE (ad) == MEM)
4801 /* First ensure that the address in this MEM is valid. Then, unless
4802 indirect addresses are valid, reload the MEM into a register. */
4803 tem = ad;
4804 find_reloads_address (GET_MODE (ad), &tem, XEXP (ad, 0), &XEXP (ad, 0),
4805 opnum, ADDR_TYPE (type),
4806 ind_levels == 0 ? 0 : ind_levels - 1, insn);
4808 /* If tem was changed, then we must create a new memory reference to
4809 hold it and store it back into memrefloc. */
4810 if (tem != ad && memrefloc)
4812 *memrefloc = copy_rtx (*memrefloc);
4813 copy_replacements (tem, XEXP (*memrefloc, 0));
4814 loc = &XEXP (*memrefloc, 0);
4815 if (removed_and)
4816 loc = &XEXP (*loc, 0);
4819 /* Check similar cases as for indirect addresses as above except
4820 that we can allow pseudos and a MEM since they should have been
4821 taken care of above. */
4823 if (ind_levels == 0
4824 || (GET_CODE (XEXP (tem, 0)) == SYMBOL_REF && ! indirect_symref_ok)
4825 || GET_CODE (XEXP (tem, 0)) == MEM
4826 || ! (REG_P (XEXP (tem, 0))
4827 || (GET_CODE (XEXP (tem, 0)) == PLUS
4828 && REG_P (XEXP (XEXP (tem, 0), 0))
4829 && GET_CODE (XEXP (XEXP (tem, 0), 1)) == CONST_INT)))
4831 /* Must use TEM here, not AD, since it is the one that will
4832 have any subexpressions reloaded, if needed. */
4833 push_reload (tem, NULL_RTX, loc, (rtx*) 0,
4834 MODE_BASE_REG_CLASS (mode), GET_MODE (tem),
4835 VOIDmode, 0,
4836 0, opnum, type);
4837 return ! removed_and;
4839 else
4840 return 0;
4843 /* If we have address of a stack slot but it's not valid because the
4844 displacement is too large, compute the sum in a register.
4845 Handle all base registers here, not just fp/ap/sp, because on some
4846 targets (namely SH) we can also get too large displacements from
4847 big-endian corrections. */
4848 else if (GET_CODE (ad) == PLUS
4849 && REG_P (XEXP (ad, 0))
4850 && REGNO (XEXP (ad, 0)) < FIRST_PSEUDO_REGISTER
4851 && REG_MODE_OK_FOR_BASE_P (XEXP (ad, 0), mode)
4852 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
4854 /* Unshare the MEM rtx so we can safely alter it. */
4855 if (memrefloc)
4857 *memrefloc = copy_rtx (*memrefloc);
4858 loc = &XEXP (*memrefloc, 0);
4859 if (removed_and)
4860 loc = &XEXP (*loc, 0);
4863 if (double_reg_address_ok)
4865 /* Unshare the sum as well. */
4866 *loc = ad = copy_rtx (ad);
4868 /* Reload the displacement into an index reg.
4869 We assume the frame pointer or arg pointer is a base reg. */
4870 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4871 INDEX_REG_CLASS, GET_MODE (ad), opnum,
4872 type, ind_levels);
4873 return 0;
4875 else
4877 /* If the sum of two regs is not necessarily valid,
4878 reload the sum into a base reg.
4879 That will at least work. */
4880 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
4881 Pmode, opnum, type, ind_levels);
4883 return ! removed_and;
4886 /* If we have an indexed stack slot, there are three possible reasons why
4887 it might be invalid: The index might need to be reloaded, the address
4888 might have been made by frame pointer elimination and hence have a
4889 constant out of range, or both reasons might apply.
4891 We can easily check for an index needing reload, but even if that is the
4892 case, we might also have an invalid constant. To avoid making the
4893 conservative assumption and requiring two reloads, we see if this address
4894 is valid when not interpreted strictly. If it is, the only problem is
4895 that the index needs a reload and find_reloads_address_1 will take care
4896 of it.
4898 Handle all base registers here, not just fp/ap/sp, because on some
4899 targets (namely SPARC) we can also get invalid addresses from preventive
4900 subreg big-endian corrections made by find_reloads_toplev.
4902 If we decide to do something, it must be that `double_reg_address_ok'
4903 is true. We generate a reload of the base register + constant and
4904 rework the sum so that the reload register will be added to the index.
4905 This is safe because we know the address isn't shared.
4907 We check for the base register as both the first and second operand of
4908 the innermost PLUS. */
4910 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4911 && GET_CODE (XEXP (ad, 0)) == PLUS
4912 && REG_P (XEXP (XEXP (ad, 0), 0))
4913 && REGNO (XEXP (XEXP (ad, 0), 0)) < FIRST_PSEUDO_REGISTER
4914 && (REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 0), mode)
4915 || XEXP (XEXP (ad, 0), 0) == frame_pointer_rtx
4916 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4917 || XEXP (XEXP (ad, 0), 0) == hard_frame_pointer_rtx
4918 #endif
4919 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4920 || XEXP (XEXP (ad, 0), 0) == arg_pointer_rtx
4921 #endif
4922 || XEXP (XEXP (ad, 0), 0) == stack_pointer_rtx)
4923 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 1)))
4925 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4926 plus_constant (XEXP (XEXP (ad, 0), 0),
4927 INTVAL (XEXP (ad, 1))),
4928 XEXP (XEXP (ad, 0), 1));
4929 find_reloads_address_part (XEXP (ad, 0), &XEXP (ad, 0),
4930 MODE_BASE_REG_CLASS (mode),
4931 GET_MODE (ad), opnum, type, ind_levels);
4932 find_reloads_address_1 (mode, XEXP (ad, 1), 1, &XEXP (ad, 1), opnum,
4933 type, 0, insn);
4935 return 0;
4938 else if (GET_CODE (ad) == PLUS && GET_CODE (XEXP (ad, 1)) == CONST_INT
4939 && GET_CODE (XEXP (ad, 0)) == PLUS
4940 && REG_P (XEXP (XEXP (ad, 0), 1))
4941 && REGNO (XEXP (XEXP (ad, 0), 1)) < FIRST_PSEUDO_REGISTER
4942 && (REG_MODE_OK_FOR_BASE_P (XEXP (XEXP (ad, 0), 1), mode)
4943 || XEXP (XEXP (ad, 0), 1) == frame_pointer_rtx
4944 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
4945 || XEXP (XEXP (ad, 0), 1) == hard_frame_pointer_rtx
4946 #endif
4947 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4948 || XEXP (XEXP (ad, 0), 1) == arg_pointer_rtx
4949 #endif
4950 || XEXP (XEXP (ad, 0), 1) == stack_pointer_rtx)
4951 && ! maybe_memory_address_p (mode, ad, &XEXP (XEXP (ad, 0), 0)))
4953 *loc = ad = gen_rtx_PLUS (GET_MODE (ad),
4954 XEXP (XEXP (ad, 0), 0),
4955 plus_constant (XEXP (XEXP (ad, 0), 1),
4956 INTVAL (XEXP (ad, 1))));
4957 find_reloads_address_part (XEXP (ad, 1), &XEXP (ad, 1),
4958 MODE_BASE_REG_CLASS (mode),
4959 GET_MODE (ad), opnum, type, ind_levels);
4960 find_reloads_address_1 (mode, XEXP (ad, 0), 1, &XEXP (ad, 0), opnum,
4961 type, 0, insn);
4963 return 0;
4966 /* See if address becomes valid when an eliminable register
4967 in a sum is replaced. */
4969 tem = ad;
4970 if (GET_CODE (ad) == PLUS)
4971 tem = subst_indexed_address (ad);
4972 if (tem != ad && strict_memory_address_p (mode, tem))
4974 /* Ok, we win that way. Replace any additional eliminable
4975 registers. */
4977 subst_reg_equivs_changed = 0;
4978 tem = subst_reg_equivs (tem, insn);
4980 /* Make sure that didn't make the address invalid again. */
4982 if (! subst_reg_equivs_changed || strict_memory_address_p (mode, tem))
4984 *loc = tem;
4985 return 0;
4989 /* If constants aren't valid addresses, reload the constant address
4990 into a register. */
4991 if (CONSTANT_P (ad) && ! strict_memory_address_p (mode, ad))
4993 /* If AD is an address in the constant pool, the MEM rtx may be shared.
4994 Unshare it so we can safely alter it. */
4995 if (memrefloc && GET_CODE (ad) == SYMBOL_REF
4996 && CONSTANT_POOL_ADDRESS_P (ad))
4998 *memrefloc = copy_rtx (*memrefloc);
4999 loc = &XEXP (*memrefloc, 0);
5000 if (removed_and)
5001 loc = &XEXP (*loc, 0);
5004 find_reloads_address_part (ad, loc, MODE_BASE_REG_CLASS (mode),
5005 Pmode, opnum, type, ind_levels);
5006 return ! removed_and;
5009 return find_reloads_address_1 (mode, ad, 0, loc, opnum, type, ind_levels,
5010 insn);
5013 /* Find all pseudo regs appearing in AD
5014 that are eliminable in favor of equivalent values
5015 and do not have hard regs; replace them by their equivalents.
5016 INSN, if nonzero, is the insn in which we do the reload. We put USEs in
5017 front of it for pseudos that we have to replace with stack slots. */
5019 static rtx
5020 subst_reg_equivs (rtx ad, rtx insn)
5022 RTX_CODE code = GET_CODE (ad);
5023 int i;
5024 const char *fmt;
5026 switch (code)
5028 case HIGH:
5029 case CONST_INT:
5030 case CONST:
5031 case CONST_DOUBLE:
5032 case CONST_VECTOR:
5033 case SYMBOL_REF:
5034 case LABEL_REF:
5035 case PC:
5036 case CC0:
5037 return ad;
5039 case REG:
5041 int regno = REGNO (ad);
5043 if (reg_equiv_constant[regno] != 0)
5045 subst_reg_equivs_changed = 1;
5046 return reg_equiv_constant[regno];
5048 if (reg_equiv_memory_loc[regno] && num_not_at_initial_offset)
5050 rtx mem = make_memloc (ad, regno);
5051 if (! rtx_equal_p (mem, reg_equiv_mem[regno]))
5053 subst_reg_equivs_changed = 1;
5054 /* We mark the USE with QImode so that we recognize it
5055 as one that can be safely deleted at the end of
5056 reload. */
5057 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode, ad), insn),
5058 QImode);
5059 return mem;
5063 return ad;
5065 case PLUS:
5066 /* Quickly dispose of a common case. */
5067 if (XEXP (ad, 0) == frame_pointer_rtx
5068 && GET_CODE (XEXP (ad, 1)) == CONST_INT)
5069 return ad;
5070 break;
5072 default:
5073 break;
5076 fmt = GET_RTX_FORMAT (code);
5077 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5078 if (fmt[i] == 'e')
5079 XEXP (ad, i) = subst_reg_equivs (XEXP (ad, i), insn);
5080 return ad;
5083 /* Compute the sum of X and Y, making canonicalizations assumed in an
5084 address, namely: sum constant integers, surround the sum of two
5085 constants with a CONST, put the constant as the second operand, and
5086 group the constant on the outermost sum.
5088 This routine assumes both inputs are already in canonical form. */
5091 form_sum (rtx x, rtx y)
5093 rtx tem;
5094 enum machine_mode mode = GET_MODE (x);
5096 if (mode == VOIDmode)
5097 mode = GET_MODE (y);
5099 if (mode == VOIDmode)
5100 mode = Pmode;
5102 if (GET_CODE (x) == CONST_INT)
5103 return plus_constant (y, INTVAL (x));
5104 else if (GET_CODE (y) == CONST_INT)
5105 return plus_constant (x, INTVAL (y));
5106 else if (CONSTANT_P (x))
5107 tem = x, x = y, y = tem;
5109 if (GET_CODE (x) == PLUS && CONSTANT_P (XEXP (x, 1)))
5110 return form_sum (XEXP (x, 0), form_sum (XEXP (x, 1), y));
5112 /* Note that if the operands of Y are specified in the opposite
5113 order in the recursive calls below, infinite recursion will occur. */
5114 if (GET_CODE (y) == PLUS && CONSTANT_P (XEXP (y, 1)))
5115 return form_sum (form_sum (x, XEXP (y, 0)), XEXP (y, 1));
5117 /* If both constant, encapsulate sum. Otherwise, just form sum. A
5118 constant will have been placed second. */
5119 if (CONSTANT_P (x) && CONSTANT_P (y))
5121 if (GET_CODE (x) == CONST)
5122 x = XEXP (x, 0);
5123 if (GET_CODE (y) == CONST)
5124 y = XEXP (y, 0);
5126 return gen_rtx_CONST (VOIDmode, gen_rtx_PLUS (mode, x, y));
5129 return gen_rtx_PLUS (mode, x, y);
5132 /* If ADDR is a sum containing a pseudo register that should be
5133 replaced with a constant (from reg_equiv_constant),
5134 return the result of doing so, and also apply the associative
5135 law so that the result is more likely to be a valid address.
5136 (But it is not guaranteed to be one.)
5138 Note that at most one register is replaced, even if more are
5139 replaceable. Also, we try to put the result into a canonical form
5140 so it is more likely to be a valid address.
5142 In all other cases, return ADDR. */
5144 static rtx
5145 subst_indexed_address (rtx addr)
5147 rtx op0 = 0, op1 = 0, op2 = 0;
5148 rtx tem;
5149 int regno;
5151 if (GET_CODE (addr) == PLUS)
5153 /* Try to find a register to replace. */
5154 op0 = XEXP (addr, 0), op1 = XEXP (addr, 1), op2 = 0;
5155 if (REG_P (op0)
5156 && (regno = REGNO (op0)) >= FIRST_PSEUDO_REGISTER
5157 && reg_renumber[regno] < 0
5158 && reg_equiv_constant[regno] != 0)
5159 op0 = reg_equiv_constant[regno];
5160 else if (REG_P (op1)
5161 && (regno = REGNO (op1)) >= FIRST_PSEUDO_REGISTER
5162 && reg_renumber[regno] < 0
5163 && reg_equiv_constant[regno] != 0)
5164 op1 = reg_equiv_constant[regno];
5165 else if (GET_CODE (op0) == PLUS
5166 && (tem = subst_indexed_address (op0)) != op0)
5167 op0 = tem;
5168 else if (GET_CODE (op1) == PLUS
5169 && (tem = subst_indexed_address (op1)) != op1)
5170 op1 = tem;
5171 else
5172 return addr;
5174 /* Pick out up to three things to add. */
5175 if (GET_CODE (op1) == PLUS)
5176 op2 = XEXP (op1, 1), op1 = XEXP (op1, 0);
5177 else if (GET_CODE (op0) == PLUS)
5178 op2 = op1, op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5180 /* Compute the sum. */
5181 if (op2 != 0)
5182 op1 = form_sum (op1, op2);
5183 if (op1 != 0)
5184 op0 = form_sum (op0, op1);
5186 return op0;
5188 return addr;
5191 /* Update the REG_INC notes for an insn. It updates all REG_INC
5192 notes for the instruction which refer to REGNO the to refer
5193 to the reload number.
5195 INSN is the insn for which any REG_INC notes need updating.
5197 REGNO is the register number which has been reloaded.
5199 RELOADNUM is the reload number. */
5201 static void
5202 update_auto_inc_notes (rtx insn ATTRIBUTE_UNUSED, int regno ATTRIBUTE_UNUSED,
5203 int reloadnum ATTRIBUTE_UNUSED)
5205 #ifdef AUTO_INC_DEC
5206 rtx link;
5208 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
5209 if (REG_NOTE_KIND (link) == REG_INC
5210 && (int) REGNO (XEXP (link, 0)) == regno)
5211 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5212 #endif
5215 /* Record the pseudo registers we must reload into hard registers in a
5216 subexpression of a would-be memory address, X referring to a value
5217 in mode MODE. (This function is not called if the address we find
5218 is strictly valid.)
5220 CONTEXT = 1 means we are considering regs as index regs,
5221 = 0 means we are considering them as base regs.
5223 OPNUM and TYPE specify the purpose of any reloads made.
5225 IND_LEVELS says how many levels of indirect addressing are
5226 supported at this point in the address.
5228 INSN, if nonzero, is the insn in which we do the reload. It is used
5229 to determine if we may generate output reloads.
5231 We return nonzero if X, as a whole, is reloaded or replaced. */
5233 /* Note that we take shortcuts assuming that no multi-reg machine mode
5234 occurs as part of an address.
5235 Also, this is not fully machine-customizable; it works for machines
5236 such as VAXen and 68000's and 32000's, but other possible machines
5237 could have addressing modes that this does not handle right. */
5239 static int
5240 find_reloads_address_1 (enum machine_mode mode, rtx x, int context,
5241 rtx *loc, int opnum, enum reload_type type,
5242 int ind_levels, rtx insn)
5244 RTX_CODE code = GET_CODE (x);
5246 switch (code)
5248 case PLUS:
5250 rtx orig_op0 = XEXP (x, 0);
5251 rtx orig_op1 = XEXP (x, 1);
5252 RTX_CODE code0 = GET_CODE (orig_op0);
5253 RTX_CODE code1 = GET_CODE (orig_op1);
5254 rtx op0 = orig_op0;
5255 rtx op1 = orig_op1;
5257 if (GET_CODE (op0) == SUBREG)
5259 op0 = SUBREG_REG (op0);
5260 code0 = GET_CODE (op0);
5261 if (code0 == REG && REGNO (op0) < FIRST_PSEUDO_REGISTER)
5262 op0 = gen_rtx_REG (word_mode,
5263 (REGNO (op0) +
5264 subreg_regno_offset (REGNO (SUBREG_REG (orig_op0)),
5265 GET_MODE (SUBREG_REG (orig_op0)),
5266 SUBREG_BYTE (orig_op0),
5267 GET_MODE (orig_op0))));
5270 if (GET_CODE (op1) == SUBREG)
5272 op1 = SUBREG_REG (op1);
5273 code1 = GET_CODE (op1);
5274 if (code1 == REG && REGNO (op1) < FIRST_PSEUDO_REGISTER)
5275 /* ??? Why is this given op1's mode and above for
5276 ??? op0 SUBREGs we use word_mode? */
5277 op1 = gen_rtx_REG (GET_MODE (op1),
5278 (REGNO (op1) +
5279 subreg_regno_offset (REGNO (SUBREG_REG (orig_op1)),
5280 GET_MODE (SUBREG_REG (orig_op1)),
5281 SUBREG_BYTE (orig_op1),
5282 GET_MODE (orig_op1))));
5284 /* Plus in the index register may be created only as a result of
5285 register remateralization for expression like &localvar*4. Reload it.
5286 It may be possible to combine the displacement on the outer level,
5287 but it is probably not worthwhile to do so. */
5288 if (context)
5290 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5291 opnum, ADDR_TYPE (type), ind_levels, insn);
5292 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5293 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5294 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5295 return 1;
5298 if (code0 == MULT || code0 == SIGN_EXTEND || code0 == TRUNCATE
5299 || code0 == ZERO_EXTEND || code1 == MEM)
5301 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5302 type, ind_levels, insn);
5303 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5304 type, ind_levels, insn);
5307 else if (code1 == MULT || code1 == SIGN_EXTEND || code1 == TRUNCATE
5308 || code1 == ZERO_EXTEND || code0 == MEM)
5310 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5311 type, ind_levels, insn);
5312 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5313 type, ind_levels, insn);
5316 else if (code0 == CONST_INT || code0 == CONST
5317 || code0 == SYMBOL_REF || code0 == LABEL_REF)
5318 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5319 type, ind_levels, insn);
5321 else if (code1 == CONST_INT || code1 == CONST
5322 || code1 == SYMBOL_REF || code1 == LABEL_REF)
5323 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5324 type, ind_levels, insn);
5326 else if (code0 == REG && code1 == REG)
5328 if (REG_OK_FOR_INDEX_P (op0)
5329 && REG_MODE_OK_FOR_BASE_P (op1, mode))
5330 return 0;
5331 else if (REG_OK_FOR_INDEX_P (op1)
5332 && REG_MODE_OK_FOR_BASE_P (op0, mode))
5333 return 0;
5334 else if (REG_MODE_OK_FOR_BASE_P (op1, mode))
5335 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5336 type, ind_levels, insn);
5337 else if (REG_MODE_OK_FOR_BASE_P (op0, mode))
5338 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5339 type, ind_levels, insn);
5340 else if (REG_OK_FOR_INDEX_P (op1))
5341 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5342 type, ind_levels, insn);
5343 else if (REG_OK_FOR_INDEX_P (op0))
5344 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5345 type, ind_levels, insn);
5346 else
5348 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5349 type, ind_levels, insn);
5350 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5351 type, ind_levels, insn);
5355 else if (code0 == REG)
5357 find_reloads_address_1 (mode, orig_op0, 1, &XEXP (x, 0), opnum,
5358 type, ind_levels, insn);
5359 find_reloads_address_1 (mode, orig_op1, 0, &XEXP (x, 1), opnum,
5360 type, ind_levels, insn);
5363 else if (code1 == REG)
5365 find_reloads_address_1 (mode, orig_op1, 1, &XEXP (x, 1), opnum,
5366 type, ind_levels, insn);
5367 find_reloads_address_1 (mode, orig_op0, 0, &XEXP (x, 0), opnum,
5368 type, ind_levels, insn);
5372 return 0;
5374 case POST_MODIFY:
5375 case PRE_MODIFY:
5377 rtx op0 = XEXP (x, 0);
5378 rtx op1 = XEXP (x, 1);
5380 if (GET_CODE (op1) != PLUS && GET_CODE (op1) != MINUS)
5381 return 0;
5383 /* Currently, we only support {PRE,POST}_MODIFY constructs
5384 where a base register is {inc,dec}remented by the contents
5385 of another register or by a constant value. Thus, these
5386 operands must match. */
5387 if (op0 != XEXP (op1, 0))
5388 abort ();
5390 /* Require index register (or constant). Let's just handle the
5391 register case in the meantime... If the target allows
5392 auto-modify by a constant then we could try replacing a pseudo
5393 register with its equivalent constant where applicable. */
5394 if (REG_P (XEXP (op1, 1)))
5395 if (!REGNO_OK_FOR_INDEX_P (REGNO (XEXP (op1, 1))))
5396 find_reloads_address_1 (mode, XEXP (op1, 1), 1, &XEXP (op1, 1),
5397 opnum, type, ind_levels, insn);
5399 if (REG_P (XEXP (op1, 0)))
5401 int regno = REGNO (XEXP (op1, 0));
5402 int reloadnum;
5404 /* A register that is incremented cannot be constant! */
5405 if (regno >= FIRST_PSEUDO_REGISTER
5406 && reg_equiv_constant[regno] != 0)
5407 abort ();
5409 /* Handle a register that is equivalent to a memory location
5410 which cannot be addressed directly. */
5411 if (reg_equiv_memory_loc[regno] != 0
5412 && (reg_equiv_address[regno] != 0
5413 || num_not_at_initial_offset))
5415 rtx tem = make_memloc (XEXP (x, 0), regno);
5417 if (reg_equiv_address[regno]
5418 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5420 /* First reload the memory location's address.
5421 We can't use ADDR_TYPE (type) here, because we need to
5422 write back the value after reading it, hence we actually
5423 need two registers. */
5424 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5425 &XEXP (tem, 0), opnum,
5426 RELOAD_OTHER,
5427 ind_levels, insn);
5429 /* Then reload the memory location into a base
5430 register. */
5431 reloadnum = push_reload (tem, tem, &XEXP (x, 0),
5432 &XEXP (op1, 0),
5433 MODE_BASE_REG_CLASS (mode),
5434 GET_MODE (x), GET_MODE (x), 0,
5435 0, opnum, RELOAD_OTHER);
5437 update_auto_inc_notes (this_insn, regno, reloadnum);
5438 return 0;
5442 if (reg_renumber[regno] >= 0)
5443 regno = reg_renumber[regno];
5445 /* We require a base register here... */
5446 if (!REGNO_MODE_OK_FOR_BASE_P (regno, GET_MODE (x)))
5448 reloadnum = push_reload (XEXP (op1, 0), XEXP (x, 0),
5449 &XEXP (op1, 0), &XEXP (x, 0),
5450 MODE_BASE_REG_CLASS (mode),
5451 GET_MODE (x), GET_MODE (x), 0, 0,
5452 opnum, RELOAD_OTHER);
5454 update_auto_inc_notes (this_insn, regno, reloadnum);
5455 return 0;
5458 else
5459 abort ();
5461 return 0;
5463 case POST_INC:
5464 case POST_DEC:
5465 case PRE_INC:
5466 case PRE_DEC:
5467 if (REG_P (XEXP (x, 0)))
5469 int regno = REGNO (XEXP (x, 0));
5470 int value = 0;
5471 rtx x_orig = x;
5473 /* A register that is incremented cannot be constant! */
5474 if (regno >= FIRST_PSEUDO_REGISTER
5475 && reg_equiv_constant[regno] != 0)
5476 abort ();
5478 /* Handle a register that is equivalent to a memory location
5479 which cannot be addressed directly. */
5480 if (reg_equiv_memory_loc[regno] != 0
5481 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5483 rtx tem = make_memloc (XEXP (x, 0), regno);
5484 if (reg_equiv_address[regno]
5485 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5487 /* First reload the memory location's address.
5488 We can't use ADDR_TYPE (type) here, because we need to
5489 write back the value after reading it, hence we actually
5490 need two registers. */
5491 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5492 &XEXP (tem, 0), opnum, type,
5493 ind_levels, insn);
5494 /* Put this inside a new increment-expression. */
5495 x = gen_rtx_fmt_e (GET_CODE (x), GET_MODE (x), tem);
5496 /* Proceed to reload that, as if it contained a register. */
5500 /* If we have a hard register that is ok as an index,
5501 don't make a reload. If an autoincrement of a nice register
5502 isn't "valid", it must be that no autoincrement is "valid".
5503 If that is true and something made an autoincrement anyway,
5504 this must be a special context where one is allowed.
5505 (For example, a "push" instruction.)
5506 We can't improve this address, so leave it alone. */
5508 /* Otherwise, reload the autoincrement into a suitable hard reg
5509 and record how much to increment by. */
5511 if (reg_renumber[regno] >= 0)
5512 regno = reg_renumber[regno];
5513 if ((regno >= FIRST_PSEUDO_REGISTER
5514 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5515 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5517 int reloadnum;
5519 /* If we can output the register afterwards, do so, this
5520 saves the extra update.
5521 We can do so if we have an INSN - i.e. no JUMP_INSN nor
5522 CALL_INSN - and it does not set CC0.
5523 But don't do this if we cannot directly address the
5524 memory location, since this will make it harder to
5525 reuse address reloads, and increases register pressure.
5526 Also don't do this if we can probably update x directly. */
5527 rtx equiv = (GET_CODE (XEXP (x, 0)) == MEM
5528 ? XEXP (x, 0)
5529 : reg_equiv_mem[regno]);
5530 int icode = (int) add_optab->handlers[(int) Pmode].insn_code;
5531 if (insn && GET_CODE (insn) == INSN && equiv
5532 && memory_operand (equiv, GET_MODE (equiv))
5533 #ifdef HAVE_cc0
5534 && ! sets_cc0_p (PATTERN (insn))
5535 #endif
5536 && ! (icode != CODE_FOR_nothing
5537 && ((*insn_data[icode].operand[0].predicate)
5538 (equiv, Pmode))
5539 && ((*insn_data[icode].operand[1].predicate)
5540 (equiv, Pmode))))
5542 /* We use the original pseudo for loc, so that
5543 emit_reload_insns() knows which pseudo this
5544 reload refers to and updates the pseudo rtx, not
5545 its equivalent memory location, as well as the
5546 corresponding entry in reg_last_reload_reg. */
5547 loc = &XEXP (x_orig, 0);
5548 x = XEXP (x, 0);
5549 reloadnum
5550 = push_reload (x, x, loc, loc,
5551 (context ? INDEX_REG_CLASS :
5552 MODE_BASE_REG_CLASS (mode)),
5553 GET_MODE (x), GET_MODE (x), 0, 0,
5554 opnum, RELOAD_OTHER);
5556 else
5558 reloadnum
5559 = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5560 (context ? INDEX_REG_CLASS :
5561 MODE_BASE_REG_CLASS (mode)),
5562 GET_MODE (x), GET_MODE (x), 0, 0,
5563 opnum, type);
5564 rld[reloadnum].inc
5565 = find_inc_amount (PATTERN (this_insn), XEXP (x_orig, 0));
5567 value = 1;
5570 update_auto_inc_notes (this_insn, REGNO (XEXP (x_orig, 0)),
5571 reloadnum);
5573 return value;
5576 else if (GET_CODE (XEXP (x, 0)) == MEM)
5578 /* This is probably the result of a substitution, by eliminate_regs,
5579 of an equivalent address for a pseudo that was not allocated to a
5580 hard register. Verify that the specified address is valid and
5581 reload it into a register. */
5582 /* Variable `tem' might or might not be used in FIND_REG_INC_NOTE. */
5583 rtx tem ATTRIBUTE_UNUSED = XEXP (x, 0);
5584 rtx link;
5585 int reloadnum;
5587 /* Since we know we are going to reload this item, don't decrement
5588 for the indirection level.
5590 Note that this is actually conservative: it would be slightly
5591 more efficient to use the value of SPILL_INDIRECT_LEVELS from
5592 reload1.c here. */
5593 /* We can't use ADDR_TYPE (type) here, because we need to
5594 write back the value after reading it, hence we actually
5595 need two registers. */
5596 find_reloads_address (GET_MODE (x), &XEXP (x, 0),
5597 XEXP (XEXP (x, 0), 0), &XEXP (XEXP (x, 0), 0),
5598 opnum, type, ind_levels, insn);
5600 reloadnum = push_reload (x, NULL_RTX, loc, (rtx*) 0,
5601 (context ? INDEX_REG_CLASS :
5602 MODE_BASE_REG_CLASS (mode)),
5603 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5604 rld[reloadnum].inc
5605 = find_inc_amount (PATTERN (this_insn), XEXP (x, 0));
5607 link = FIND_REG_INC_NOTE (this_insn, tem);
5608 if (link != 0)
5609 push_replacement (&XEXP (link, 0), reloadnum, VOIDmode);
5611 return 1;
5613 return 0;
5615 case MEM:
5616 /* This is probably the result of a substitution, by eliminate_regs, of
5617 an equivalent address for a pseudo that was not allocated to a hard
5618 register. Verify that the specified address is valid and reload it
5619 into a register.
5621 Since we know we are going to reload this item, don't decrement for
5622 the indirection level.
5624 Note that this is actually conservative: it would be slightly more
5625 efficient to use the value of SPILL_INDIRECT_LEVELS from
5626 reload1.c here. */
5628 find_reloads_address (GET_MODE (x), loc, XEXP (x, 0), &XEXP (x, 0),
5629 opnum, ADDR_TYPE (type), ind_levels, insn);
5630 push_reload (*loc, NULL_RTX, loc, (rtx*) 0,
5631 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5632 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5633 return 1;
5635 case REG:
5637 int regno = REGNO (x);
5639 if (reg_equiv_constant[regno] != 0)
5641 find_reloads_address_part (reg_equiv_constant[regno], loc,
5642 (context ? INDEX_REG_CLASS :
5643 MODE_BASE_REG_CLASS (mode)),
5644 GET_MODE (x), opnum, type, ind_levels);
5645 return 1;
5648 #if 0 /* This might screw code in reload1.c to delete prior output-reload
5649 that feeds this insn. */
5650 if (reg_equiv_mem[regno] != 0)
5652 push_reload (reg_equiv_mem[regno], NULL_RTX, loc, (rtx*) 0,
5653 (context ? INDEX_REG_CLASS :
5654 MODE_BASE_REG_CLASS (mode)),
5655 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5656 return 1;
5658 #endif
5660 if (reg_equiv_memory_loc[regno]
5661 && (reg_equiv_address[regno] != 0 || num_not_at_initial_offset))
5663 rtx tem = make_memloc (x, regno);
5664 if (reg_equiv_address[regno] != 0
5665 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5667 x = tem;
5668 find_reloads_address (GET_MODE (x), &x, XEXP (x, 0),
5669 &XEXP (x, 0), opnum, ADDR_TYPE (type),
5670 ind_levels, insn);
5674 if (reg_renumber[regno] >= 0)
5675 regno = reg_renumber[regno];
5677 if ((regno >= FIRST_PSEUDO_REGISTER
5678 || !(context ? REGNO_OK_FOR_INDEX_P (regno)
5679 : REGNO_MODE_OK_FOR_BASE_P (regno, mode))))
5681 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5682 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5683 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5684 return 1;
5687 /* If a register appearing in an address is the subject of a CLOBBER
5688 in this insn, reload it into some other register to be safe.
5689 The CLOBBER is supposed to make the register unavailable
5690 from before this insn to after it. */
5691 if (regno_clobbered_p (regno, this_insn, GET_MODE (x), 0))
5693 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5694 (context ? INDEX_REG_CLASS : MODE_BASE_REG_CLASS (mode)),
5695 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5696 return 1;
5699 return 0;
5701 case SUBREG:
5702 if (REG_P (SUBREG_REG (x)))
5704 /* If this is a SUBREG of a hard register and the resulting register
5705 is of the wrong class, reload the whole SUBREG. This avoids
5706 needless copies if SUBREG_REG is multi-word. */
5707 if (REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
5709 int regno ATTRIBUTE_UNUSED = subreg_regno (x);
5711 if (! (context ? REGNO_OK_FOR_INDEX_P (regno)
5712 : REGNO_MODE_OK_FOR_BASE_P (regno, mode)))
5714 push_reload (x, NULL_RTX, loc, (rtx*) 0,
5715 (context ? INDEX_REG_CLASS :
5716 MODE_BASE_REG_CLASS (mode)),
5717 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5718 return 1;
5721 /* If this is a SUBREG of a pseudo-register, and the pseudo-register
5722 is larger than the class size, then reload the whole SUBREG. */
5723 else
5725 enum reg_class class = (context ? INDEX_REG_CLASS
5726 : MODE_BASE_REG_CLASS (mode));
5727 if ((unsigned) CLASS_MAX_NREGS (class, GET_MODE (SUBREG_REG (x)))
5728 > reg_class_size[class])
5730 x = find_reloads_subreg_address (x, 0, opnum, type,
5731 ind_levels, insn);
5732 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5733 GET_MODE (x), VOIDmode, 0, 0, opnum, type);
5734 return 1;
5738 break;
5740 default:
5741 break;
5745 const char *fmt = GET_RTX_FORMAT (code);
5746 int i;
5748 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5750 if (fmt[i] == 'e')
5751 find_reloads_address_1 (mode, XEXP (x, i), context, &XEXP (x, i),
5752 opnum, type, ind_levels, insn);
5756 return 0;
5759 /* X, which is found at *LOC, is a part of an address that needs to be
5760 reloaded into a register of class CLASS. If X is a constant, or if
5761 X is a PLUS that contains a constant, check that the constant is a
5762 legitimate operand and that we are supposed to be able to load
5763 it into the register.
5765 If not, force the constant into memory and reload the MEM instead.
5767 MODE is the mode to use, in case X is an integer constant.
5769 OPNUM and TYPE describe the purpose of any reloads made.
5771 IND_LEVELS says how many levels of indirect addressing this machine
5772 supports. */
5774 static void
5775 find_reloads_address_part (rtx x, rtx *loc, enum reg_class class,
5776 enum machine_mode mode, int opnum,
5777 enum reload_type type, int ind_levels)
5779 if (CONSTANT_P (x)
5780 && (! LEGITIMATE_CONSTANT_P (x)
5781 || PREFERRED_RELOAD_CLASS (x, class) == NO_REGS))
5783 rtx tem;
5785 tem = x = force_const_mem (mode, x);
5786 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5787 opnum, type, ind_levels, 0);
5790 else if (GET_CODE (x) == PLUS
5791 && CONSTANT_P (XEXP (x, 1))
5792 && (! LEGITIMATE_CONSTANT_P (XEXP (x, 1))
5793 || PREFERRED_RELOAD_CLASS (XEXP (x, 1), class) == NO_REGS))
5795 rtx tem;
5797 tem = force_const_mem (GET_MODE (x), XEXP (x, 1));
5798 x = gen_rtx_PLUS (GET_MODE (x), XEXP (x, 0), tem);
5799 find_reloads_address (mode, &tem, XEXP (tem, 0), &XEXP (tem, 0),
5800 opnum, type, ind_levels, 0);
5803 push_reload (x, NULL_RTX, loc, (rtx*) 0, class,
5804 mode, VOIDmode, 0, 0, opnum, type);
5807 /* X, a subreg of a pseudo, is a part of an address that needs to be
5808 reloaded.
5810 If the pseudo is equivalent to a memory location that cannot be directly
5811 addressed, make the necessary address reloads.
5813 If address reloads have been necessary, or if the address is changed
5814 by register elimination, return the rtx of the memory location;
5815 otherwise, return X.
5817 If FORCE_REPLACE is nonzero, unconditionally replace the subreg with the
5818 memory location.
5820 OPNUM and TYPE identify the purpose of the reload.
5822 IND_LEVELS says how many levels of indirect addressing are
5823 supported at this point in the address.
5825 INSN, if nonzero, is the insn in which we do the reload. It is used
5826 to determine where to put USEs for pseudos that we have to replace with
5827 stack slots. */
5829 static rtx
5830 find_reloads_subreg_address (rtx x, int force_replace, int opnum,
5831 enum reload_type type, int ind_levels, rtx insn)
5833 int regno = REGNO (SUBREG_REG (x));
5835 if (reg_equiv_memory_loc[regno])
5837 /* If the address is not directly addressable, or if the address is not
5838 offsettable, then it must be replaced. */
5839 if (! force_replace
5840 && (reg_equiv_address[regno]
5841 || ! offsettable_memref_p (reg_equiv_mem[regno])))
5842 force_replace = 1;
5844 if (force_replace || num_not_at_initial_offset)
5846 rtx tem = make_memloc (SUBREG_REG (x), regno);
5848 /* If the address changes because of register elimination, then
5849 it must be replaced. */
5850 if (force_replace
5851 || ! rtx_equal_p (tem, reg_equiv_mem[regno]))
5853 unsigned outer_size = GET_MODE_SIZE (GET_MODE (x));
5854 unsigned inner_size = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
5855 int offset;
5857 /* For big-endian paradoxical subregs, SUBREG_BYTE does not
5858 hold the correct (negative) byte offset. */
5859 if (BYTES_BIG_ENDIAN && outer_size > inner_size)
5860 offset = inner_size - outer_size;
5861 else
5862 offset = SUBREG_BYTE (x);
5864 XEXP (tem, 0) = plus_constant (XEXP (tem, 0), offset);
5865 PUT_MODE (tem, GET_MODE (x));
5867 /* If this was a paradoxical subreg that we replaced, the
5868 resulting memory must be sufficiently aligned to allow
5869 us to widen the mode of the memory. */
5870 if (outer_size > inner_size && STRICT_ALIGNMENT)
5872 rtx base;
5874 base = XEXP (tem, 0);
5875 if (GET_CODE (base) == PLUS)
5877 if (GET_CODE (XEXP (base, 1)) == CONST_INT
5878 && INTVAL (XEXP (base, 1)) % outer_size != 0)
5879 return x;
5880 base = XEXP (base, 0);
5882 if (!REG_P (base)
5883 || (REGNO_POINTER_ALIGN (REGNO (base))
5884 < outer_size * BITS_PER_UNIT))
5885 return x;
5888 find_reloads_address (GET_MODE (tem), &tem, XEXP (tem, 0),
5889 &XEXP (tem, 0), opnum, ADDR_TYPE (type),
5890 ind_levels, insn);
5892 /* If this is not a toplevel operand, find_reloads doesn't see
5893 this substitution. We have to emit a USE of the pseudo so
5894 that delete_output_reload can see it. */
5895 if (replace_reloads && recog_data.operand[opnum] != x)
5896 /* We mark the USE with QImode so that we recognize it
5897 as one that can be safely deleted at the end of
5898 reload. */
5899 PUT_MODE (emit_insn_before (gen_rtx_USE (VOIDmode,
5900 SUBREG_REG (x)),
5901 insn), QImode);
5902 x = tem;
5906 return x;
5909 /* Substitute into the current INSN the registers into which we have reloaded
5910 the things that need reloading. The array `replacements'
5911 contains the locations of all pointers that must be changed
5912 and says what to replace them with.
5914 Return the rtx that X translates into; usually X, but modified. */
5916 void
5917 subst_reloads (rtx insn)
5919 int i;
5921 for (i = 0; i < n_replacements; i++)
5923 struct replacement *r = &replacements[i];
5924 rtx reloadreg = rld[r->what].reg_rtx;
5925 if (reloadreg)
5927 #ifdef ENABLE_CHECKING
5928 /* Internal consistency test. Check that we don't modify
5929 anything in the equivalence arrays. Whenever something from
5930 those arrays needs to be reloaded, it must be unshared before
5931 being substituted into; the equivalence must not be modified.
5932 Otherwise, if the equivalence is used after that, it will
5933 have been modified, and the thing substituted (probably a
5934 register) is likely overwritten and not a usable equivalence. */
5935 int check_regno;
5937 for (check_regno = 0; check_regno < max_regno; check_regno++)
5939 #define CHECK_MODF(ARRAY) \
5940 if (ARRAY[check_regno] \
5941 && loc_mentioned_in_p (r->where, \
5942 ARRAY[check_regno])) \
5943 abort ()
5945 CHECK_MODF (reg_equiv_constant);
5946 CHECK_MODF (reg_equiv_memory_loc);
5947 CHECK_MODF (reg_equiv_address);
5948 CHECK_MODF (reg_equiv_mem);
5949 #undef CHECK_MODF
5951 #endif /* ENABLE_CHECKING */
5953 /* If we're replacing a LABEL_REF with a register, add a
5954 REG_LABEL note to indicate to flow which label this
5955 register refers to. */
5956 if (GET_CODE (*r->where) == LABEL_REF
5957 && GET_CODE (insn) == JUMP_INSN)
5958 REG_NOTES (insn) = gen_rtx_INSN_LIST (REG_LABEL,
5959 XEXP (*r->where, 0),
5960 REG_NOTES (insn));
5962 /* Encapsulate RELOADREG so its machine mode matches what
5963 used to be there. Note that gen_lowpart_common will
5964 do the wrong thing if RELOADREG is multi-word. RELOADREG
5965 will always be a REG here. */
5966 if (GET_MODE (reloadreg) != r->mode && r->mode != VOIDmode)
5967 reloadreg = reload_adjust_reg_for_mode (reloadreg, r->mode);
5969 /* If we are putting this into a SUBREG and RELOADREG is a
5970 SUBREG, we would be making nested SUBREGs, so we have to fix
5971 this up. Note that r->where == &SUBREG_REG (*r->subreg_loc). */
5973 if (r->subreg_loc != 0 && GET_CODE (reloadreg) == SUBREG)
5975 if (GET_MODE (*r->subreg_loc)
5976 == GET_MODE (SUBREG_REG (reloadreg)))
5977 *r->subreg_loc = SUBREG_REG (reloadreg);
5978 else
5980 int final_offset =
5981 SUBREG_BYTE (*r->subreg_loc) + SUBREG_BYTE (reloadreg);
5983 /* When working with SUBREGs the rule is that the byte
5984 offset must be a multiple of the SUBREG's mode. */
5985 final_offset = (final_offset /
5986 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5987 final_offset = (final_offset *
5988 GET_MODE_SIZE (GET_MODE (*r->subreg_loc)));
5990 *r->where = SUBREG_REG (reloadreg);
5991 SUBREG_BYTE (*r->subreg_loc) = final_offset;
5994 else
5995 *r->where = reloadreg;
5997 /* If reload got no reg and isn't optional, something's wrong. */
5998 else if (! rld[r->what].optional)
5999 abort ();
6003 /* Make a copy of any replacements being done into X and move those
6004 copies to locations in Y, a copy of X. */
6006 void
6007 copy_replacements (rtx x, rtx y)
6009 /* We can't support X being a SUBREG because we might then need to know its
6010 location if something inside it was replaced. */
6011 if (GET_CODE (x) == SUBREG)
6012 abort ();
6014 copy_replacements_1 (&x, &y, n_replacements);
6017 static void
6018 copy_replacements_1 (rtx *px, rtx *py, int orig_replacements)
6020 int i, j;
6021 rtx x, y;
6022 struct replacement *r;
6023 enum rtx_code code;
6024 const char *fmt;
6026 for (j = 0; j < orig_replacements; j++)
6028 if (replacements[j].subreg_loc == px)
6030 r = &replacements[n_replacements++];
6031 r->where = replacements[j].where;
6032 r->subreg_loc = py;
6033 r->what = replacements[j].what;
6034 r->mode = replacements[j].mode;
6036 else if (replacements[j].where == px)
6038 r = &replacements[n_replacements++];
6039 r->where = py;
6040 r->subreg_loc = 0;
6041 r->what = replacements[j].what;
6042 r->mode = replacements[j].mode;
6046 x = *px;
6047 y = *py;
6048 code = GET_CODE (x);
6049 fmt = GET_RTX_FORMAT (code);
6051 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6053 if (fmt[i] == 'e')
6054 copy_replacements_1 (&XEXP (x, i), &XEXP (y, i), orig_replacements);
6055 else if (fmt[i] == 'E')
6056 for (j = XVECLEN (x, i); --j >= 0; )
6057 copy_replacements_1 (&XVECEXP (x, i, j), &XVECEXP (y, i, j),
6058 orig_replacements);
6062 /* Change any replacements being done to *X to be done to *Y. */
6064 void
6065 move_replacements (rtx *x, rtx *y)
6067 int i;
6069 for (i = 0; i < n_replacements; i++)
6070 if (replacements[i].subreg_loc == x)
6071 replacements[i].subreg_loc = y;
6072 else if (replacements[i].where == x)
6074 replacements[i].where = y;
6075 replacements[i].subreg_loc = 0;
6079 /* If LOC was scheduled to be replaced by something, return the replacement.
6080 Otherwise, return *LOC. */
6083 find_replacement (rtx *loc)
6085 struct replacement *r;
6087 for (r = &replacements[0]; r < &replacements[n_replacements]; r++)
6089 rtx reloadreg = rld[r->what].reg_rtx;
6091 if (reloadreg && r->where == loc)
6093 if (r->mode != VOIDmode && GET_MODE (reloadreg) != r->mode)
6094 reloadreg = gen_rtx_REG (r->mode, REGNO (reloadreg));
6096 return reloadreg;
6098 else if (reloadreg && r->subreg_loc == loc)
6100 /* RELOADREG must be either a REG or a SUBREG.
6102 ??? Is it actually still ever a SUBREG? If so, why? */
6104 if (REG_P (reloadreg))
6105 return gen_rtx_REG (GET_MODE (*loc),
6106 (REGNO (reloadreg) +
6107 subreg_regno_offset (REGNO (SUBREG_REG (*loc)),
6108 GET_MODE (SUBREG_REG (*loc)),
6109 SUBREG_BYTE (*loc),
6110 GET_MODE (*loc))));
6111 else if (GET_MODE (reloadreg) == GET_MODE (*loc))
6112 return reloadreg;
6113 else
6115 int final_offset = SUBREG_BYTE (reloadreg) + SUBREG_BYTE (*loc);
6117 /* When working with SUBREGs the rule is that the byte
6118 offset must be a multiple of the SUBREG's mode. */
6119 final_offset = (final_offset / GET_MODE_SIZE (GET_MODE (*loc)));
6120 final_offset = (final_offset * GET_MODE_SIZE (GET_MODE (*loc)));
6121 return gen_rtx_SUBREG (GET_MODE (*loc), SUBREG_REG (reloadreg),
6122 final_offset);
6127 /* If *LOC is a PLUS, MINUS, or MULT, see if a replacement is scheduled for
6128 what's inside and make a new rtl if so. */
6129 if (GET_CODE (*loc) == PLUS || GET_CODE (*loc) == MINUS
6130 || GET_CODE (*loc) == MULT)
6132 rtx x = find_replacement (&XEXP (*loc, 0));
6133 rtx y = find_replacement (&XEXP (*loc, 1));
6135 if (x != XEXP (*loc, 0) || y != XEXP (*loc, 1))
6136 return gen_rtx_fmt_ee (GET_CODE (*loc), GET_MODE (*loc), x, y);
6139 return *loc;
6142 /* Return nonzero if register in range [REGNO, ENDREGNO)
6143 appears either explicitly or implicitly in X
6144 other than being stored into (except for earlyclobber operands).
6146 References contained within the substructure at LOC do not count.
6147 LOC may be zero, meaning don't ignore anything.
6149 This is similar to refers_to_regno_p in rtlanal.c except that we
6150 look at equivalences for pseudos that didn't get hard registers. */
6153 refers_to_regno_for_reload_p (unsigned int regno, unsigned int endregno,
6154 rtx x, rtx *loc)
6156 int i;
6157 unsigned int r;
6158 RTX_CODE code;
6159 const char *fmt;
6161 if (x == 0)
6162 return 0;
6164 repeat:
6165 code = GET_CODE (x);
6167 switch (code)
6169 case REG:
6170 r = REGNO (x);
6172 /* If this is a pseudo, a hard register must not have been allocated.
6173 X must therefore either be a constant or be in memory. */
6174 if (r >= FIRST_PSEUDO_REGISTER)
6176 if (reg_equiv_memory_loc[r])
6177 return refers_to_regno_for_reload_p (regno, endregno,
6178 reg_equiv_memory_loc[r],
6179 (rtx*) 0);
6181 if (reg_equiv_constant[r])
6182 return 0;
6184 abort ();
6187 return (endregno > r
6188 && regno < r + (r < FIRST_PSEUDO_REGISTER
6189 ? hard_regno_nregs[r][GET_MODE (x)]
6190 : 1));
6192 case SUBREG:
6193 /* If this is a SUBREG of a hard reg, we can see exactly which
6194 registers are being modified. Otherwise, handle normally. */
6195 if (REG_P (SUBREG_REG (x))
6196 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
6198 unsigned int inner_regno = subreg_regno (x);
6199 unsigned int inner_endregno
6200 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
6201 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
6203 return endregno > inner_regno && regno < inner_endregno;
6205 break;
6207 case CLOBBER:
6208 case SET:
6209 if (&SET_DEST (x) != loc
6210 /* Note setting a SUBREG counts as referring to the REG it is in for
6211 a pseudo but not for hard registers since we can
6212 treat each word individually. */
6213 && ((GET_CODE (SET_DEST (x)) == SUBREG
6214 && loc != &SUBREG_REG (SET_DEST (x))
6215 && REG_P (SUBREG_REG (SET_DEST (x)))
6216 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
6217 && refers_to_regno_for_reload_p (regno, endregno,
6218 SUBREG_REG (SET_DEST (x)),
6219 loc))
6220 /* If the output is an earlyclobber operand, this is
6221 a conflict. */
6222 || ((!REG_P (SET_DEST (x))
6223 || earlyclobber_operand_p (SET_DEST (x)))
6224 && refers_to_regno_for_reload_p (regno, endregno,
6225 SET_DEST (x), loc))))
6226 return 1;
6228 if (code == CLOBBER || loc == &SET_SRC (x))
6229 return 0;
6230 x = SET_SRC (x);
6231 goto repeat;
6233 default:
6234 break;
6237 /* X does not match, so try its subexpressions. */
6239 fmt = GET_RTX_FORMAT (code);
6240 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6242 if (fmt[i] == 'e' && loc != &XEXP (x, i))
6244 if (i == 0)
6246 x = XEXP (x, 0);
6247 goto repeat;
6249 else
6250 if (refers_to_regno_for_reload_p (regno, endregno,
6251 XEXP (x, i), loc))
6252 return 1;
6254 else if (fmt[i] == 'E')
6256 int j;
6257 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6258 if (loc != &XVECEXP (x, i, j)
6259 && refers_to_regno_for_reload_p (regno, endregno,
6260 XVECEXP (x, i, j), loc))
6261 return 1;
6264 return 0;
6267 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
6268 we check if any register number in X conflicts with the relevant register
6269 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
6270 contains a MEM (we don't bother checking for memory addresses that can't
6271 conflict because we expect this to be a rare case.
6273 This function is similar to reg_overlap_mentioned_p in rtlanal.c except
6274 that we look at equivalences for pseudos that didn't get hard registers. */
6277 reg_overlap_mentioned_for_reload_p (rtx x, rtx in)
6279 int regno, endregno;
6281 /* Overly conservative. */
6282 if (GET_CODE (x) == STRICT_LOW_PART
6283 || GET_RTX_CLASS (GET_CODE (x)) == RTX_AUTOINC)
6284 x = XEXP (x, 0);
6286 /* If either argument is a constant, then modifying X can not affect IN. */
6287 if (CONSTANT_P (x) || CONSTANT_P (in))
6288 return 0;
6289 else if (GET_CODE (x) == SUBREG)
6291 regno = REGNO (SUBREG_REG (x));
6292 if (regno < FIRST_PSEUDO_REGISTER)
6293 regno += subreg_regno_offset (REGNO (SUBREG_REG (x)),
6294 GET_MODE (SUBREG_REG (x)),
6295 SUBREG_BYTE (x),
6296 GET_MODE (x));
6298 else if (REG_P (x))
6300 regno = REGNO (x);
6302 /* If this is a pseudo, it must not have been assigned a hard register.
6303 Therefore, it must either be in memory or be a constant. */
6305 if (regno >= FIRST_PSEUDO_REGISTER)
6307 if (reg_equiv_memory_loc[regno])
6308 return refers_to_mem_for_reload_p (in);
6309 else if (reg_equiv_constant[regno])
6310 return 0;
6311 abort ();
6314 else if (GET_CODE (x) == MEM)
6315 return refers_to_mem_for_reload_p (in);
6316 else if (GET_CODE (x) == SCRATCH || GET_CODE (x) == PC
6317 || GET_CODE (x) == CC0)
6318 return reg_mentioned_p (x, in);
6319 else if (GET_CODE (x) == PLUS)
6321 /* We actually want to know if X is mentioned somewhere inside IN.
6322 We must not say that (plus (sp) (const_int 124)) is in
6323 (plus (sp) (const_int 64)), since that can lead to incorrect reload
6324 allocation when spuriously changing a RELOAD_FOR_OUTPUT_ADDRESS
6325 into a RELOAD_OTHER on behalf of another RELOAD_OTHER. */
6326 while (GET_CODE (in) == MEM)
6327 in = XEXP (in, 0);
6328 if (REG_P (in))
6329 return 0;
6330 else if (GET_CODE (in) == PLUS)
6331 return (reg_overlap_mentioned_for_reload_p (x, XEXP (in, 0))
6332 || reg_overlap_mentioned_for_reload_p (x, XEXP (in, 1)));
6333 else return (reg_overlap_mentioned_for_reload_p (XEXP (x, 0), in)
6334 || reg_overlap_mentioned_for_reload_p (XEXP (x, 1), in));
6336 else
6337 abort ();
6339 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
6340 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
6342 return refers_to_regno_for_reload_p (regno, endregno, in, (rtx*) 0);
6345 /* Return nonzero if anything in X contains a MEM. Look also for pseudo
6346 registers. */
6349 refers_to_mem_for_reload_p (rtx x)
6351 const char *fmt;
6352 int i;
6354 if (GET_CODE (x) == MEM)
6355 return 1;
6357 if (REG_P (x))
6358 return (REGNO (x) >= FIRST_PSEUDO_REGISTER
6359 && reg_equiv_memory_loc[REGNO (x)]);
6361 fmt = GET_RTX_FORMAT (GET_CODE (x));
6362 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
6363 if (fmt[i] == 'e'
6364 && (GET_CODE (XEXP (x, i)) == MEM
6365 || refers_to_mem_for_reload_p (XEXP (x, i))))
6366 return 1;
6368 return 0;
6371 /* Check the insns before INSN to see if there is a suitable register
6372 containing the same value as GOAL.
6373 If OTHER is -1, look for a register in class CLASS.
6374 Otherwise, just see if register number OTHER shares GOAL's value.
6376 Return an rtx for the register found, or zero if none is found.
6378 If RELOAD_REG_P is (short *)1,
6379 we reject any hard reg that appears in reload_reg_rtx
6380 because such a hard reg is also needed coming into this insn.
6382 If RELOAD_REG_P is any other nonzero value,
6383 it is a vector indexed by hard reg number
6384 and we reject any hard reg whose element in the vector is nonnegative
6385 as well as any that appears in reload_reg_rtx.
6387 If GOAL is zero, then GOALREG is a register number; we look
6388 for an equivalent for that register.
6390 MODE is the machine mode of the value we want an equivalence for.
6391 If GOAL is nonzero and not VOIDmode, then it must have mode MODE.
6393 This function is used by jump.c as well as in the reload pass.
6395 If GOAL is the sum of the stack pointer and a constant, we treat it
6396 as if it were a constant except that sp is required to be unchanging. */
6399 find_equiv_reg (rtx goal, rtx insn, enum reg_class class, int other,
6400 short *reload_reg_p, int goalreg, enum machine_mode mode)
6402 rtx p = insn;
6403 rtx goaltry, valtry, value, where;
6404 rtx pat;
6405 int regno = -1;
6406 int valueno;
6407 int goal_mem = 0;
6408 int goal_const = 0;
6409 int goal_mem_addr_varies = 0;
6410 int need_stable_sp = 0;
6411 int nregs;
6412 int valuenregs;
6413 int num = 0;
6415 if (goal == 0)
6416 regno = goalreg;
6417 else if (REG_P (goal))
6418 regno = REGNO (goal);
6419 else if (GET_CODE (goal) == MEM)
6421 enum rtx_code code = GET_CODE (XEXP (goal, 0));
6422 if (MEM_VOLATILE_P (goal))
6423 return 0;
6424 if (flag_float_store && GET_MODE_CLASS (GET_MODE (goal)) == MODE_FLOAT)
6425 return 0;
6426 /* An address with side effects must be reexecuted. */
6427 switch (code)
6429 case POST_INC:
6430 case PRE_INC:
6431 case POST_DEC:
6432 case PRE_DEC:
6433 case POST_MODIFY:
6434 case PRE_MODIFY:
6435 return 0;
6436 default:
6437 break;
6439 goal_mem = 1;
6441 else if (CONSTANT_P (goal))
6442 goal_const = 1;
6443 else if (GET_CODE (goal) == PLUS
6444 && XEXP (goal, 0) == stack_pointer_rtx
6445 && CONSTANT_P (XEXP (goal, 1)))
6446 goal_const = need_stable_sp = 1;
6447 else if (GET_CODE (goal) == PLUS
6448 && XEXP (goal, 0) == frame_pointer_rtx
6449 && CONSTANT_P (XEXP (goal, 1)))
6450 goal_const = 1;
6451 else
6452 return 0;
6454 num = 0;
6455 /* Scan insns back from INSN, looking for one that copies
6456 a value into or out of GOAL.
6457 Stop and give up if we reach a label. */
6459 while (1)
6461 p = PREV_INSN (p);
6462 num++;
6463 if (p == 0 || GET_CODE (p) == CODE_LABEL
6464 || num > PARAM_VALUE (PARAM_MAX_RELOAD_SEARCH_INSNS))
6465 return 0;
6467 if (GET_CODE (p) == INSN
6468 /* If we don't want spill regs ... */
6469 && (! (reload_reg_p != 0
6470 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6471 /* ... then ignore insns introduced by reload; they aren't
6472 useful and can cause results in reload_as_needed to be
6473 different from what they were when calculating the need for
6474 spills. If we notice an input-reload insn here, we will
6475 reject it below, but it might hide a usable equivalent.
6476 That makes bad code. It may even abort: perhaps no reg was
6477 spilled for this insn because it was assumed we would find
6478 that equivalent. */
6479 || INSN_UID (p) < reload_first_uid))
6481 rtx tem;
6482 pat = single_set (p);
6484 /* First check for something that sets some reg equal to GOAL. */
6485 if (pat != 0
6486 && ((regno >= 0
6487 && true_regnum (SET_SRC (pat)) == regno
6488 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6490 (regno >= 0
6491 && true_regnum (SET_DEST (pat)) == regno
6492 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0)
6494 (goal_const && rtx_equal_p (SET_SRC (pat), goal)
6495 /* When looking for stack pointer + const,
6496 make sure we don't use a stack adjust. */
6497 && !reg_overlap_mentioned_for_reload_p (SET_DEST (pat), goal)
6498 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0)
6499 || (goal_mem
6500 && (valueno = true_regnum (valtry = SET_DEST (pat))) >= 0
6501 && rtx_renumbered_equal_p (goal, SET_SRC (pat)))
6502 || (goal_mem
6503 && (valueno = true_regnum (valtry = SET_SRC (pat))) >= 0
6504 && rtx_renumbered_equal_p (goal, SET_DEST (pat)))
6505 /* If we are looking for a constant,
6506 and something equivalent to that constant was copied
6507 into a reg, we can use that reg. */
6508 || (goal_const && REG_NOTES (p) != 0
6509 && (tem = find_reg_note (p, REG_EQUIV, NULL_RTX))
6510 && ((rtx_equal_p (XEXP (tem, 0), goal)
6511 && (valueno
6512 = true_regnum (valtry = SET_DEST (pat))) >= 0)
6513 || (REG_P (SET_DEST (pat))
6514 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6515 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6516 == MODE_FLOAT)
6517 && GET_CODE (goal) == CONST_INT
6518 && 0 != (goaltry
6519 = operand_subword (XEXP (tem, 0), 0, 0,
6520 VOIDmode))
6521 && rtx_equal_p (goal, goaltry)
6522 && (valtry
6523 = operand_subword (SET_DEST (pat), 0, 0,
6524 VOIDmode))
6525 && (valueno = true_regnum (valtry)) >= 0)))
6526 || (goal_const && (tem = find_reg_note (p, REG_EQUIV,
6527 NULL_RTX))
6528 && REG_P (SET_DEST (pat))
6529 && GET_CODE (XEXP (tem, 0)) == CONST_DOUBLE
6530 && (GET_MODE_CLASS (GET_MODE (XEXP (tem, 0)))
6531 == MODE_FLOAT)
6532 && GET_CODE (goal) == CONST_INT
6533 && 0 != (goaltry = operand_subword (XEXP (tem, 0), 1, 0,
6534 VOIDmode))
6535 && rtx_equal_p (goal, goaltry)
6536 && (valtry
6537 = operand_subword (SET_DEST (pat), 1, 0, VOIDmode))
6538 && (valueno = true_regnum (valtry)) >= 0)))
6540 if (other >= 0)
6542 if (valueno != other)
6543 continue;
6545 else if ((unsigned) valueno >= FIRST_PSEUDO_REGISTER)
6546 continue;
6547 else
6549 int i;
6551 for (i = hard_regno_nregs[valueno][mode] - 1; i >= 0; i--)
6552 if (! TEST_HARD_REG_BIT (reg_class_contents[(int) class],
6553 valueno + i))
6554 break;
6555 if (i >= 0)
6556 continue;
6558 value = valtry;
6559 where = p;
6560 break;
6565 /* We found a previous insn copying GOAL into a suitable other reg VALUE
6566 (or copying VALUE into GOAL, if GOAL is also a register).
6567 Now verify that VALUE is really valid. */
6569 /* VALUENO is the register number of VALUE; a hard register. */
6571 /* Don't try to re-use something that is killed in this insn. We want
6572 to be able to trust REG_UNUSED notes. */
6573 if (REG_NOTES (where) != 0 && find_reg_note (where, REG_UNUSED, value))
6574 return 0;
6576 /* If we propose to get the value from the stack pointer or if GOAL is
6577 a MEM based on the stack pointer, we need a stable SP. */
6578 if (valueno == STACK_POINTER_REGNUM || regno == STACK_POINTER_REGNUM
6579 || (goal_mem && reg_overlap_mentioned_for_reload_p (stack_pointer_rtx,
6580 goal)))
6581 need_stable_sp = 1;
6583 /* Reject VALUE if the copy-insn moved the wrong sort of datum. */
6584 if (GET_MODE (value) != mode)
6585 return 0;
6587 /* Reject VALUE if it was loaded from GOAL
6588 and is also a register that appears in the address of GOAL. */
6590 if (goal_mem && value == SET_DEST (single_set (where))
6591 && refers_to_regno_for_reload_p (valueno,
6592 (valueno
6593 + hard_regno_nregs[valueno][mode]),
6594 goal, (rtx*) 0))
6595 return 0;
6597 /* Reject registers that overlap GOAL. */
6599 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6600 nregs = hard_regno_nregs[regno][mode];
6601 else
6602 nregs = 1;
6603 valuenregs = hard_regno_nregs[valueno][mode];
6605 if (!goal_mem && !goal_const
6606 && regno + nregs > valueno && regno < valueno + valuenregs)
6607 return 0;
6609 /* Reject VALUE if it is one of the regs reserved for reloads.
6610 Reload1 knows how to reuse them anyway, and it would get
6611 confused if we allocated one without its knowledge.
6612 (Now that insns introduced by reload are ignored above,
6613 this case shouldn't happen, but I'm not positive.) */
6615 if (reload_reg_p != 0 && reload_reg_p != (short *) (HOST_WIDE_INT) 1)
6617 int i;
6618 for (i = 0; i < valuenregs; ++i)
6619 if (reload_reg_p[valueno + i] >= 0)
6620 return 0;
6623 /* Reject VALUE if it is a register being used for an input reload
6624 even if it is not one of those reserved. */
6626 if (reload_reg_p != 0)
6628 int i;
6629 for (i = 0; i < n_reloads; i++)
6630 if (rld[i].reg_rtx != 0 && rld[i].in)
6632 int regno1 = REGNO (rld[i].reg_rtx);
6633 int nregs1 = hard_regno_nregs[regno1]
6634 [GET_MODE (rld[i].reg_rtx)];
6635 if (regno1 < valueno + valuenregs
6636 && regno1 + nregs1 > valueno)
6637 return 0;
6641 if (goal_mem)
6642 /* We must treat frame pointer as varying here,
6643 since it can vary--in a nonlocal goto as generated by expand_goto. */
6644 goal_mem_addr_varies = !CONSTANT_ADDRESS_P (XEXP (goal, 0));
6646 /* Now verify that the values of GOAL and VALUE remain unaltered
6647 until INSN is reached. */
6649 p = insn;
6650 while (1)
6652 p = PREV_INSN (p);
6653 if (p == where)
6654 return value;
6656 /* Don't trust the conversion past a function call
6657 if either of the two is in a call-clobbered register, or memory. */
6658 if (GET_CODE (p) == CALL_INSN)
6660 int i;
6662 if (goal_mem || need_stable_sp)
6663 return 0;
6665 if (regno >= 0 && regno < FIRST_PSEUDO_REGISTER)
6666 for (i = 0; i < nregs; ++i)
6667 if (call_used_regs[regno + i])
6668 return 0;
6670 if (valueno >= 0 && valueno < FIRST_PSEUDO_REGISTER)
6671 for (i = 0; i < valuenregs; ++i)
6672 if (call_used_regs[valueno + i])
6673 return 0;
6674 #ifdef NON_SAVING_SETJMP
6675 if (NON_SAVING_SETJMP && find_reg_note (p, REG_SETJMP, NULL))
6676 return 0;
6677 #endif
6680 if (INSN_P (p))
6682 pat = PATTERN (p);
6684 /* Watch out for unspec_volatile, and volatile asms. */
6685 if (volatile_insn_p (pat))
6686 return 0;
6688 /* If this insn P stores in either GOAL or VALUE, return 0.
6689 If GOAL is a memory ref and this insn writes memory, return 0.
6690 If GOAL is a memory ref and its address is not constant,
6691 and this insn P changes a register used in GOAL, return 0. */
6693 if (GET_CODE (pat) == COND_EXEC)
6694 pat = COND_EXEC_CODE (pat);
6695 if (GET_CODE (pat) == SET || GET_CODE (pat) == CLOBBER)
6697 rtx dest = SET_DEST (pat);
6698 while (GET_CODE (dest) == SUBREG
6699 || GET_CODE (dest) == ZERO_EXTRACT
6700 || GET_CODE (dest) == SIGN_EXTRACT
6701 || GET_CODE (dest) == STRICT_LOW_PART)
6702 dest = XEXP (dest, 0);
6703 if (REG_P (dest))
6705 int xregno = REGNO (dest);
6706 int xnregs;
6707 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6708 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6709 else
6710 xnregs = 1;
6711 if (xregno < regno + nregs && xregno + xnregs > regno)
6712 return 0;
6713 if (xregno < valueno + valuenregs
6714 && xregno + xnregs > valueno)
6715 return 0;
6716 if (goal_mem_addr_varies
6717 && reg_overlap_mentioned_for_reload_p (dest, goal))
6718 return 0;
6719 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6720 return 0;
6722 else if (goal_mem && GET_CODE (dest) == MEM
6723 && ! push_operand (dest, GET_MODE (dest)))
6724 return 0;
6725 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6726 && reg_equiv_memory_loc[regno] != 0)
6727 return 0;
6728 else if (need_stable_sp && push_operand (dest, GET_MODE (dest)))
6729 return 0;
6731 else if (GET_CODE (pat) == PARALLEL)
6733 int i;
6734 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
6736 rtx v1 = XVECEXP (pat, 0, i);
6737 if (GET_CODE (v1) == COND_EXEC)
6738 v1 = COND_EXEC_CODE (v1);
6739 if (GET_CODE (v1) == SET || GET_CODE (v1) == CLOBBER)
6741 rtx dest = SET_DEST (v1);
6742 while (GET_CODE (dest) == SUBREG
6743 || GET_CODE (dest) == ZERO_EXTRACT
6744 || GET_CODE (dest) == SIGN_EXTRACT
6745 || GET_CODE (dest) == STRICT_LOW_PART)
6746 dest = XEXP (dest, 0);
6747 if (REG_P (dest))
6749 int xregno = REGNO (dest);
6750 int xnregs;
6751 if (REGNO (dest) < FIRST_PSEUDO_REGISTER)
6752 xnregs = hard_regno_nregs[xregno][GET_MODE (dest)];
6753 else
6754 xnregs = 1;
6755 if (xregno < regno + nregs
6756 && xregno + xnregs > regno)
6757 return 0;
6758 if (xregno < valueno + valuenregs
6759 && xregno + xnregs > valueno)
6760 return 0;
6761 if (goal_mem_addr_varies
6762 && reg_overlap_mentioned_for_reload_p (dest,
6763 goal))
6764 return 0;
6765 if (xregno == STACK_POINTER_REGNUM && need_stable_sp)
6766 return 0;
6768 else if (goal_mem && GET_CODE (dest) == MEM
6769 && ! push_operand (dest, GET_MODE (dest)))
6770 return 0;
6771 else if (GET_CODE (dest) == MEM && regno >= FIRST_PSEUDO_REGISTER
6772 && reg_equiv_memory_loc[regno] != 0)
6773 return 0;
6774 else if (need_stable_sp
6775 && push_operand (dest, GET_MODE (dest)))
6776 return 0;
6781 if (GET_CODE (p) == CALL_INSN && CALL_INSN_FUNCTION_USAGE (p))
6783 rtx link;
6785 for (link = CALL_INSN_FUNCTION_USAGE (p); XEXP (link, 1) != 0;
6786 link = XEXP (link, 1))
6788 pat = XEXP (link, 0);
6789 if (GET_CODE (pat) == CLOBBER)
6791 rtx dest = SET_DEST (pat);
6793 if (REG_P (dest))
6795 int xregno = REGNO (dest);
6796 int xnregs
6797 = hard_regno_nregs[xregno][GET_MODE (dest)];
6799 if (xregno < regno + nregs
6800 && xregno + xnregs > regno)
6801 return 0;
6802 else if (xregno < valueno + valuenregs
6803 && xregno + xnregs > valueno)
6804 return 0;
6805 else if (goal_mem_addr_varies
6806 && reg_overlap_mentioned_for_reload_p (dest,
6807 goal))
6808 return 0;
6811 else if (goal_mem && GET_CODE (dest) == MEM
6812 && ! push_operand (dest, GET_MODE (dest)))
6813 return 0;
6814 else if (need_stable_sp
6815 && push_operand (dest, GET_MODE (dest)))
6816 return 0;
6821 #ifdef AUTO_INC_DEC
6822 /* If this insn auto-increments or auto-decrements
6823 either regno or valueno, return 0 now.
6824 If GOAL is a memory ref and its address is not constant,
6825 and this insn P increments a register used in GOAL, return 0. */
6827 rtx link;
6829 for (link = REG_NOTES (p); link; link = XEXP (link, 1))
6830 if (REG_NOTE_KIND (link) == REG_INC
6831 && REG_P (XEXP (link, 0)))
6833 int incno = REGNO (XEXP (link, 0));
6834 if (incno < regno + nregs && incno >= regno)
6835 return 0;
6836 if (incno < valueno + valuenregs && incno >= valueno)
6837 return 0;
6838 if (goal_mem_addr_varies
6839 && reg_overlap_mentioned_for_reload_p (XEXP (link, 0),
6840 goal))
6841 return 0;
6844 #endif
6849 /* Find a place where INCED appears in an increment or decrement operator
6850 within X, and return the amount INCED is incremented or decremented by.
6851 The value is always positive. */
6853 static int
6854 find_inc_amount (rtx x, rtx inced)
6856 enum rtx_code code = GET_CODE (x);
6857 const char *fmt;
6858 int i;
6860 if (code == MEM)
6862 rtx addr = XEXP (x, 0);
6863 if ((GET_CODE (addr) == PRE_DEC
6864 || GET_CODE (addr) == POST_DEC
6865 || GET_CODE (addr) == PRE_INC
6866 || GET_CODE (addr) == POST_INC)
6867 && XEXP (addr, 0) == inced)
6868 return GET_MODE_SIZE (GET_MODE (x));
6869 else if ((GET_CODE (addr) == PRE_MODIFY
6870 || GET_CODE (addr) == POST_MODIFY)
6871 && GET_CODE (XEXP (addr, 1)) == PLUS
6872 && XEXP (addr, 0) == XEXP (XEXP (addr, 1), 0)
6873 && XEXP (addr, 0) == inced
6874 && GET_CODE (XEXP (XEXP (addr, 1), 1)) == CONST_INT)
6876 i = INTVAL (XEXP (XEXP (addr, 1), 1));
6877 return i < 0 ? -i : i;
6881 fmt = GET_RTX_FORMAT (code);
6882 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6884 if (fmt[i] == 'e')
6886 int tem = find_inc_amount (XEXP (x, i), inced);
6887 if (tem != 0)
6888 return tem;
6890 if (fmt[i] == 'E')
6892 int j;
6893 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6895 int tem = find_inc_amount (XVECEXP (x, i, j), inced);
6896 if (tem != 0)
6897 return tem;
6902 return 0;
6905 /* Return 1 if register REGNO is the subject of a clobber in insn INSN.
6906 If SETS is nonzero, also consider SETs. */
6909 regno_clobbered_p (unsigned int regno, rtx insn, enum machine_mode mode,
6910 int sets)
6912 unsigned int nregs = hard_regno_nregs[regno][mode];
6913 unsigned int endregno = regno + nregs;
6915 if ((GET_CODE (PATTERN (insn)) == CLOBBER
6916 || (sets && GET_CODE (PATTERN (insn)) == SET))
6917 && REG_P (XEXP (PATTERN (insn), 0)))
6919 unsigned int test = REGNO (XEXP (PATTERN (insn), 0));
6921 return test >= regno && test < endregno;
6924 if (GET_CODE (PATTERN (insn)) == PARALLEL)
6926 int i = XVECLEN (PATTERN (insn), 0) - 1;
6928 for (; i >= 0; i--)
6930 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6931 if ((GET_CODE (elt) == CLOBBER
6932 || (sets && GET_CODE (PATTERN (insn)) == SET))
6933 && REG_P (XEXP (elt, 0)))
6935 unsigned int test = REGNO (XEXP (elt, 0));
6937 if (test >= regno && test < endregno)
6938 return 1;
6943 return 0;
6946 /* Find the low part, with mode MODE, of a hard regno RELOADREG. */
6948 reload_adjust_reg_for_mode (rtx reloadreg, enum machine_mode mode)
6950 int regno;
6952 if (GET_MODE (reloadreg) == mode)
6953 return reloadreg;
6955 regno = REGNO (reloadreg);
6957 if (WORDS_BIG_ENDIAN)
6958 regno += (int) hard_regno_nregs[regno][GET_MODE (reloadreg)]
6959 - (int) hard_regno_nregs[regno][mode];
6961 return gen_rtx_REG (mode, regno);
6964 static const char *const reload_when_needed_name[] =
6966 "RELOAD_FOR_INPUT",
6967 "RELOAD_FOR_OUTPUT",
6968 "RELOAD_FOR_INSN",
6969 "RELOAD_FOR_INPUT_ADDRESS",
6970 "RELOAD_FOR_INPADDR_ADDRESS",
6971 "RELOAD_FOR_OUTPUT_ADDRESS",
6972 "RELOAD_FOR_OUTADDR_ADDRESS",
6973 "RELOAD_FOR_OPERAND_ADDRESS",
6974 "RELOAD_FOR_OPADDR_ADDR",
6975 "RELOAD_OTHER",
6976 "RELOAD_FOR_OTHER_ADDRESS"
6979 static const char * const reg_class_names[] = REG_CLASS_NAMES;
6981 /* These functions are used to print the variables set by 'find_reloads' */
6983 void
6984 debug_reload_to_stream (FILE *f)
6986 int r;
6987 const char *prefix;
6989 if (! f)
6990 f = stderr;
6991 for (r = 0; r < n_reloads; r++)
6993 fprintf (f, "Reload %d: ", r);
6995 if (rld[r].in != 0)
6997 fprintf (f, "reload_in (%s) = ",
6998 GET_MODE_NAME (rld[r].inmode));
6999 print_inline_rtx (f, rld[r].in, 24);
7000 fprintf (f, "\n\t");
7003 if (rld[r].out != 0)
7005 fprintf (f, "reload_out (%s) = ",
7006 GET_MODE_NAME (rld[r].outmode));
7007 print_inline_rtx (f, rld[r].out, 24);
7008 fprintf (f, "\n\t");
7011 fprintf (f, "%s, ", reg_class_names[(int) rld[r].class]);
7013 fprintf (f, "%s (opnum = %d)",
7014 reload_when_needed_name[(int) rld[r].when_needed],
7015 rld[r].opnum);
7017 if (rld[r].optional)
7018 fprintf (f, ", optional");
7020 if (rld[r].nongroup)
7021 fprintf (f, ", nongroup");
7023 if (rld[r].inc != 0)
7024 fprintf (f, ", inc by %d", rld[r].inc);
7026 if (rld[r].nocombine)
7027 fprintf (f, ", can't combine");
7029 if (rld[r].secondary_p)
7030 fprintf (f, ", secondary_reload_p");
7032 if (rld[r].in_reg != 0)
7034 fprintf (f, "\n\treload_in_reg: ");
7035 print_inline_rtx (f, rld[r].in_reg, 24);
7038 if (rld[r].out_reg != 0)
7040 fprintf (f, "\n\treload_out_reg: ");
7041 print_inline_rtx (f, rld[r].out_reg, 24);
7044 if (rld[r].reg_rtx != 0)
7046 fprintf (f, "\n\treload_reg_rtx: ");
7047 print_inline_rtx (f, rld[r].reg_rtx, 24);
7050 prefix = "\n\t";
7051 if (rld[r].secondary_in_reload != -1)
7053 fprintf (f, "%ssecondary_in_reload = %d",
7054 prefix, rld[r].secondary_in_reload);
7055 prefix = ", ";
7058 if (rld[r].secondary_out_reload != -1)
7059 fprintf (f, "%ssecondary_out_reload = %d\n",
7060 prefix, rld[r].secondary_out_reload);
7062 prefix = "\n\t";
7063 if (rld[r].secondary_in_icode != CODE_FOR_nothing)
7065 fprintf (f, "%ssecondary_in_icode = %s", prefix,
7066 insn_data[rld[r].secondary_in_icode].name);
7067 prefix = ", ";
7070 if (rld[r].secondary_out_icode != CODE_FOR_nothing)
7071 fprintf (f, "%ssecondary_out_icode = %s", prefix,
7072 insn_data[rld[r].secondary_out_icode].name);
7074 fprintf (f, "\n");
7078 void
7079 debug_reload (void)
7081 debug_reload_to_stream (stderr);