Revise -mdisable-fpregs option and add new -msoft-mult option
[official-gcc.git] / gcc / tree-ssa-ccp.c
blob70ce6a4d5b8d1e88e3983ea52aab2944807893c1
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2021 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
110 References:
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "builtins.h"
140 #include "cfgloop.h"
141 #include "stor-layout.h"
142 #include "optabs-query.h"
143 #include "tree-ssa-ccp.h"
144 #include "tree-dfa.h"
145 #include "diagnostic-core.h"
146 #include "stringpool.h"
147 #include "attribs.h"
148 #include "tree-vector-builder.h"
149 #include "cgraph.h"
150 #include "alloc-pool.h"
151 #include "symbol-summary.h"
152 #include "ipa-utils.h"
153 #include "ipa-prop.h"
155 /* Possible lattice values. */
156 typedef enum
158 UNINITIALIZED,
159 UNDEFINED,
160 CONSTANT,
161 VARYING
162 } ccp_lattice_t;
164 class ccp_prop_value_t {
165 public:
166 /* Lattice value. */
167 ccp_lattice_t lattice_val;
169 /* Propagated value. */
170 tree value;
172 /* Mask that applies to the propagated value during CCP. For X
173 with a CONSTANT lattice value X & ~mask == value & ~mask. The
174 zero bits in the mask cover constant values. The ones mean no
175 information. */
176 widest_int mask;
179 class ccp_propagate : public ssa_propagation_engine
181 public:
182 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
183 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
186 /* Array of propagated constant values. After propagation,
187 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
188 the constant is held in an SSA name representing a memory store
189 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
190 memory reference used to store (i.e., the LHS of the assignment
191 doing the store). */
192 static ccp_prop_value_t *const_val;
193 static unsigned n_const_val;
195 static void canonicalize_value (ccp_prop_value_t *);
196 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
198 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
200 static void
201 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
203 switch (val.lattice_val)
205 case UNINITIALIZED:
206 fprintf (outf, "%sUNINITIALIZED", prefix);
207 break;
208 case UNDEFINED:
209 fprintf (outf, "%sUNDEFINED", prefix);
210 break;
211 case VARYING:
212 fprintf (outf, "%sVARYING", prefix);
213 break;
214 case CONSTANT:
215 if (TREE_CODE (val.value) != INTEGER_CST
216 || val.mask == 0)
218 fprintf (outf, "%sCONSTANT ", prefix);
219 print_generic_expr (outf, val.value, dump_flags);
221 else
223 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
224 val.mask);
225 fprintf (outf, "%sCONSTANT ", prefix);
226 print_hex (cval, outf);
227 fprintf (outf, " (");
228 print_hex (val.mask, outf);
229 fprintf (outf, ")");
231 break;
232 default:
233 gcc_unreachable ();
238 /* Print lattice value VAL to stderr. */
240 void debug_lattice_value (ccp_prop_value_t val);
242 DEBUG_FUNCTION void
243 debug_lattice_value (ccp_prop_value_t val)
245 dump_lattice_value (stderr, "", val);
246 fprintf (stderr, "\n");
249 /* Extend NONZERO_BITS to a full mask, based on sgn. */
251 static widest_int
252 extend_mask (const wide_int &nonzero_bits, signop sgn)
254 return widest_int::from (nonzero_bits, sgn);
257 /* Compute a default value for variable VAR and store it in the
258 CONST_VAL array. The following rules are used to get default
259 values:
261 1- Global and static variables that are declared constant are
262 considered CONSTANT.
264 2- Any other value is considered UNDEFINED. This is useful when
265 considering PHI nodes. PHI arguments that are undefined do not
266 change the constant value of the PHI node, which allows for more
267 constants to be propagated.
269 3- Variables defined by statements other than assignments and PHI
270 nodes are considered VARYING.
272 4- Initial values of variables that are not GIMPLE registers are
273 considered VARYING. */
275 static ccp_prop_value_t
276 get_default_value (tree var)
278 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
279 gimple *stmt;
281 stmt = SSA_NAME_DEF_STMT (var);
283 if (gimple_nop_p (stmt))
285 /* Variables defined by an empty statement are those used
286 before being initialized. If VAR is a local variable, we
287 can assume initially that it is UNDEFINED, otherwise we must
288 consider it VARYING. */
289 if (!virtual_operand_p (var)
290 && SSA_NAME_VAR (var)
291 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
292 val.lattice_val = UNDEFINED;
293 else
295 val.lattice_val = VARYING;
296 val.mask = -1;
297 if (flag_tree_bit_ccp)
299 wide_int nonzero_bits = get_nonzero_bits (var);
300 tree value;
301 widest_int mask;
303 if (SSA_NAME_VAR (var)
304 && TREE_CODE (SSA_NAME_VAR (var)) == PARM_DECL
305 && ipcp_get_parm_bits (SSA_NAME_VAR (var), &value, &mask))
307 val.lattice_val = CONSTANT;
308 val.value = value;
309 widest_int ipa_value = wi::to_widest (value);
310 /* Unknown bits from IPA CP must be equal to zero. */
311 gcc_assert (wi::bit_and (ipa_value, mask) == 0);
312 val.mask = mask;
313 if (nonzero_bits != -1)
314 val.mask &= extend_mask (nonzero_bits,
315 TYPE_SIGN (TREE_TYPE (var)));
317 else if (nonzero_bits != -1)
319 val.lattice_val = CONSTANT;
320 val.value = build_zero_cst (TREE_TYPE (var));
321 val.mask = extend_mask (nonzero_bits,
322 TYPE_SIGN (TREE_TYPE (var)));
327 else if (is_gimple_assign (stmt))
329 tree cst;
330 if (gimple_assign_single_p (stmt)
331 && DECL_P (gimple_assign_rhs1 (stmt))
332 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
334 val.lattice_val = CONSTANT;
335 val.value = cst;
337 else
339 /* Any other variable defined by an assignment is considered
340 UNDEFINED. */
341 val.lattice_val = UNDEFINED;
344 else if ((is_gimple_call (stmt)
345 && gimple_call_lhs (stmt) != NULL_TREE)
346 || gimple_code (stmt) == GIMPLE_PHI)
348 /* A variable defined by a call or a PHI node is considered
349 UNDEFINED. */
350 val.lattice_val = UNDEFINED;
352 else
354 /* Otherwise, VAR will never take on a constant value. */
355 val.lattice_val = VARYING;
356 val.mask = -1;
359 return val;
363 /* Get the constant value associated with variable VAR. */
365 static inline ccp_prop_value_t *
366 get_value (tree var)
368 ccp_prop_value_t *val;
370 if (const_val == NULL
371 || SSA_NAME_VERSION (var) >= n_const_val)
372 return NULL;
374 val = &const_val[SSA_NAME_VERSION (var)];
375 if (val->lattice_val == UNINITIALIZED)
376 *val = get_default_value (var);
378 canonicalize_value (val);
380 return val;
383 /* Return the constant tree value associated with VAR. */
385 static inline tree
386 get_constant_value (tree var)
388 ccp_prop_value_t *val;
389 if (TREE_CODE (var) != SSA_NAME)
391 if (is_gimple_min_invariant (var))
392 return var;
393 return NULL_TREE;
395 val = get_value (var);
396 if (val
397 && val->lattice_val == CONSTANT
398 && (TREE_CODE (val->value) != INTEGER_CST
399 || val->mask == 0))
400 return val->value;
401 return NULL_TREE;
404 /* Sets the value associated with VAR to VARYING. */
406 static inline void
407 set_value_varying (tree var)
409 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
411 val->lattice_val = VARYING;
412 val->value = NULL_TREE;
413 val->mask = -1;
416 /* For integer constants, make sure to drop TREE_OVERFLOW. */
418 static void
419 canonicalize_value (ccp_prop_value_t *val)
421 if (val->lattice_val != CONSTANT)
422 return;
424 if (TREE_OVERFLOW_P (val->value))
425 val->value = drop_tree_overflow (val->value);
428 /* Return whether the lattice transition is valid. */
430 static bool
431 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
433 /* Lattice transitions must always be monotonically increasing in
434 value. */
435 if (old_val.lattice_val < new_val.lattice_val)
436 return true;
438 if (old_val.lattice_val != new_val.lattice_val)
439 return false;
441 if (!old_val.value && !new_val.value)
442 return true;
444 /* Now both lattice values are CONSTANT. */
446 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
447 when only a single copy edge is executable. */
448 if (TREE_CODE (old_val.value) == SSA_NAME
449 && TREE_CODE (new_val.value) == SSA_NAME)
450 return true;
452 /* Allow transitioning from a constant to a copy. */
453 if (is_gimple_min_invariant (old_val.value)
454 && TREE_CODE (new_val.value) == SSA_NAME)
455 return true;
457 /* Allow transitioning from PHI <&x, not executable> == &x
458 to PHI <&x, &y> == common alignment. */
459 if (TREE_CODE (old_val.value) != INTEGER_CST
460 && TREE_CODE (new_val.value) == INTEGER_CST)
461 return true;
463 /* Bit-lattices have to agree in the still valid bits. */
464 if (TREE_CODE (old_val.value) == INTEGER_CST
465 && TREE_CODE (new_val.value) == INTEGER_CST)
466 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
467 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
469 /* Otherwise constant values have to agree. */
470 if (operand_equal_p (old_val.value, new_val.value, 0))
471 return true;
473 /* At least the kinds and types should agree now. */
474 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
475 || !types_compatible_p (TREE_TYPE (old_val.value),
476 TREE_TYPE (new_val.value)))
477 return false;
479 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
480 to non-NaN. */
481 tree type = TREE_TYPE (new_val.value);
482 if (SCALAR_FLOAT_TYPE_P (type)
483 && !HONOR_NANS (type))
485 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
486 return true;
488 else if (VECTOR_FLOAT_TYPE_P (type)
489 && !HONOR_NANS (type))
491 unsigned int count
492 = tree_vector_builder::binary_encoded_nelts (old_val.value,
493 new_val.value);
494 for (unsigned int i = 0; i < count; ++i)
495 if (!REAL_VALUE_ISNAN
496 (TREE_REAL_CST (VECTOR_CST_ENCODED_ELT (old_val.value, i)))
497 && !operand_equal_p (VECTOR_CST_ENCODED_ELT (old_val.value, i),
498 VECTOR_CST_ENCODED_ELT (new_val.value, i), 0))
499 return false;
500 return true;
502 else if (COMPLEX_FLOAT_TYPE_P (type)
503 && !HONOR_NANS (type))
505 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
506 && !operand_equal_p (TREE_REALPART (old_val.value),
507 TREE_REALPART (new_val.value), 0))
508 return false;
509 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
510 && !operand_equal_p (TREE_IMAGPART (old_val.value),
511 TREE_IMAGPART (new_val.value), 0))
512 return false;
513 return true;
515 return false;
518 /* Set the value for variable VAR to NEW_VAL. Return true if the new
519 value is different from VAR's previous value. */
521 static bool
522 set_lattice_value (tree var, ccp_prop_value_t *new_val)
524 /* We can deal with old UNINITIALIZED values just fine here. */
525 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
527 canonicalize_value (new_val);
529 /* We have to be careful to not go up the bitwise lattice
530 represented by the mask. Instead of dropping to VARYING
531 use the meet operator to retain a conservative value.
532 Missed optimizations like PR65851 makes this necessary.
533 It also ensures we converge to a stable lattice solution. */
534 if (old_val->lattice_val != UNINITIALIZED)
535 ccp_lattice_meet (new_val, old_val);
537 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
539 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
540 caller that this was a non-transition. */
541 if (old_val->lattice_val != new_val->lattice_val
542 || (new_val->lattice_val == CONSTANT
543 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
544 || (TREE_CODE (new_val->value) == INTEGER_CST
545 && (new_val->mask != old_val->mask
546 || (wi::bit_and_not (wi::to_widest (old_val->value),
547 new_val->mask)
548 != wi::bit_and_not (wi::to_widest (new_val->value),
549 new_val->mask))))
550 || (TREE_CODE (new_val->value) != INTEGER_CST
551 && !operand_equal_p (new_val->value, old_val->value, 0)))))
553 /* ??? We would like to delay creation of INTEGER_CSTs from
554 partially constants here. */
556 if (dump_file && (dump_flags & TDF_DETAILS))
558 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
559 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
562 *old_val = *new_val;
564 gcc_assert (new_val->lattice_val != UNINITIALIZED);
565 return true;
568 return false;
571 static ccp_prop_value_t get_value_for_expr (tree, bool);
572 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
573 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
574 signop, int, const widest_int &, const widest_int &,
575 signop, int, const widest_int &, const widest_int &);
577 /* Return a widest_int that can be used for bitwise simplifications
578 from VAL. */
580 static widest_int
581 value_to_wide_int (ccp_prop_value_t val)
583 if (val.value
584 && TREE_CODE (val.value) == INTEGER_CST)
585 return wi::to_widest (val.value);
587 return 0;
590 /* Return the value for the address expression EXPR based on alignment
591 information. */
593 static ccp_prop_value_t
594 get_value_from_alignment (tree expr)
596 tree type = TREE_TYPE (expr);
597 ccp_prop_value_t val;
598 unsigned HOST_WIDE_INT bitpos;
599 unsigned int align;
601 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
603 get_pointer_alignment_1 (expr, &align, &bitpos);
604 val.mask = wi::bit_and_not
605 (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
606 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
607 : -1,
608 align / BITS_PER_UNIT - 1);
609 val.lattice_val
610 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
611 if (val.lattice_val == CONSTANT)
612 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
613 else
614 val.value = NULL_TREE;
616 return val;
619 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
620 return constant bits extracted from alignment information for
621 invariant addresses. */
623 static ccp_prop_value_t
624 get_value_for_expr (tree expr, bool for_bits_p)
626 ccp_prop_value_t val;
628 if (TREE_CODE (expr) == SSA_NAME)
630 ccp_prop_value_t *val_ = get_value (expr);
631 if (val_)
632 val = *val_;
633 else
635 val.lattice_val = VARYING;
636 val.value = NULL_TREE;
637 val.mask = -1;
639 if (for_bits_p
640 && val.lattice_val == CONSTANT)
642 if (TREE_CODE (val.value) == ADDR_EXPR)
643 val = get_value_from_alignment (val.value);
644 else if (TREE_CODE (val.value) != INTEGER_CST)
646 val.lattice_val = VARYING;
647 val.value = NULL_TREE;
648 val.mask = -1;
651 /* Fall back to a copy value. */
652 if (!for_bits_p
653 && val.lattice_val == VARYING
654 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
656 val.lattice_val = CONSTANT;
657 val.value = expr;
658 val.mask = -1;
661 else if (is_gimple_min_invariant (expr)
662 && (!for_bits_p || TREE_CODE (expr) == INTEGER_CST))
664 val.lattice_val = CONSTANT;
665 val.value = expr;
666 val.mask = 0;
667 canonicalize_value (&val);
669 else if (TREE_CODE (expr) == ADDR_EXPR)
670 val = get_value_from_alignment (expr);
671 else
673 val.lattice_val = VARYING;
674 val.mask = -1;
675 val.value = NULL_TREE;
678 if (val.lattice_val == VARYING
679 && TYPE_UNSIGNED (TREE_TYPE (expr)))
680 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
682 return val;
685 /* Return the likely CCP lattice value for STMT.
687 If STMT has no operands, then return CONSTANT.
689 Else if undefinedness of operands of STMT cause its value to be
690 undefined, then return UNDEFINED.
692 Else if any operands of STMT are constants, then return CONSTANT.
694 Else return VARYING. */
696 static ccp_lattice_t
697 likely_value (gimple *stmt)
699 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
700 bool has_nsa_operand;
701 tree use;
702 ssa_op_iter iter;
703 unsigned i;
705 enum gimple_code code = gimple_code (stmt);
707 /* This function appears to be called only for assignments, calls,
708 conditionals, and switches, due to the logic in visit_stmt. */
709 gcc_assert (code == GIMPLE_ASSIGN
710 || code == GIMPLE_CALL
711 || code == GIMPLE_COND
712 || code == GIMPLE_SWITCH);
714 /* If the statement has volatile operands, it won't fold to a
715 constant value. */
716 if (gimple_has_volatile_ops (stmt))
717 return VARYING;
719 /* Arrive here for more complex cases. */
720 has_constant_operand = false;
721 has_undefined_operand = false;
722 all_undefined_operands = true;
723 has_nsa_operand = false;
724 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
726 ccp_prop_value_t *val = get_value (use);
728 if (val && val->lattice_val == UNDEFINED)
729 has_undefined_operand = true;
730 else
731 all_undefined_operands = false;
733 if (val && val->lattice_val == CONSTANT)
734 has_constant_operand = true;
736 if (SSA_NAME_IS_DEFAULT_DEF (use)
737 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
738 has_nsa_operand = true;
741 /* There may be constants in regular rhs operands. For calls we
742 have to ignore lhs, fndecl and static chain, otherwise only
743 the lhs. */
744 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
745 i < gimple_num_ops (stmt); ++i)
747 tree op = gimple_op (stmt, i);
748 if (!op || TREE_CODE (op) == SSA_NAME)
749 continue;
750 if (is_gimple_min_invariant (op))
751 has_constant_operand = true;
754 if (has_constant_operand)
755 all_undefined_operands = false;
757 if (has_undefined_operand
758 && code == GIMPLE_CALL
759 && gimple_call_internal_p (stmt))
760 switch (gimple_call_internal_fn (stmt))
762 /* These 3 builtins use the first argument just as a magic
763 way how to find out a decl uid. */
764 case IFN_GOMP_SIMD_LANE:
765 case IFN_GOMP_SIMD_VF:
766 case IFN_GOMP_SIMD_LAST_LANE:
767 has_undefined_operand = false;
768 break;
769 default:
770 break;
773 /* If the operation combines operands like COMPLEX_EXPR make sure to
774 not mark the result UNDEFINED if only one part of the result is
775 undefined. */
776 if (has_undefined_operand && all_undefined_operands)
777 return UNDEFINED;
778 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
780 switch (gimple_assign_rhs_code (stmt))
782 /* Unary operators are handled with all_undefined_operands. */
783 case PLUS_EXPR:
784 case MINUS_EXPR:
785 case POINTER_PLUS_EXPR:
786 case BIT_XOR_EXPR:
787 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
788 Not bitwise operators, one VARYING operand may specify the
789 result completely.
790 Not logical operators for the same reason, apart from XOR.
791 Not COMPLEX_EXPR as one VARYING operand makes the result partly
792 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
793 the undefined operand may be promoted. */
794 return UNDEFINED;
796 case ADDR_EXPR:
797 /* If any part of an address is UNDEFINED, like the index
798 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
799 return UNDEFINED;
801 default:
805 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
806 fall back to CONSTANT. During iteration UNDEFINED may still drop
807 to CONSTANT. */
808 if (has_undefined_operand)
809 return CONSTANT;
811 /* We do not consider virtual operands here -- load from read-only
812 memory may have only VARYING virtual operands, but still be
813 constant. Also we can combine the stmt with definitions from
814 operands whose definitions are not simulated again. */
815 if (has_constant_operand
816 || has_nsa_operand
817 || gimple_references_memory_p (stmt))
818 return CONSTANT;
820 return VARYING;
823 /* Returns true if STMT cannot be constant. */
825 static bool
826 surely_varying_stmt_p (gimple *stmt)
828 /* If the statement has operands that we cannot handle, it cannot be
829 constant. */
830 if (gimple_has_volatile_ops (stmt))
831 return true;
833 /* If it is a call and does not return a value or is not a
834 builtin and not an indirect call or a call to function with
835 assume_aligned/alloc_align attribute, it is varying. */
836 if (is_gimple_call (stmt))
838 tree fndecl, fntype = gimple_call_fntype (stmt);
839 if (!gimple_call_lhs (stmt)
840 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
841 && !fndecl_built_in_p (fndecl)
842 && !lookup_attribute ("assume_aligned",
843 TYPE_ATTRIBUTES (fntype))
844 && !lookup_attribute ("alloc_align",
845 TYPE_ATTRIBUTES (fntype))))
846 return true;
849 /* Any other store operation is not interesting. */
850 else if (gimple_vdef (stmt))
851 return true;
853 /* Anything other than assignments and conditional jumps are not
854 interesting for CCP. */
855 if (gimple_code (stmt) != GIMPLE_ASSIGN
856 && gimple_code (stmt) != GIMPLE_COND
857 && gimple_code (stmt) != GIMPLE_SWITCH
858 && gimple_code (stmt) != GIMPLE_CALL)
859 return true;
861 return false;
864 /* Initialize local data structures for CCP. */
866 static void
867 ccp_initialize (void)
869 basic_block bb;
871 n_const_val = num_ssa_names;
872 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
874 /* Initialize simulation flags for PHI nodes and statements. */
875 FOR_EACH_BB_FN (bb, cfun)
877 gimple_stmt_iterator i;
879 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
881 gimple *stmt = gsi_stmt (i);
882 bool is_varying;
884 /* If the statement is a control insn, then we do not
885 want to avoid simulating the statement once. Failure
886 to do so means that those edges will never get added. */
887 if (stmt_ends_bb_p (stmt))
888 is_varying = false;
889 else
890 is_varying = surely_varying_stmt_p (stmt);
892 if (is_varying)
894 tree def;
895 ssa_op_iter iter;
897 /* If the statement will not produce a constant, mark
898 all its outputs VARYING. */
899 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
900 set_value_varying (def);
902 prop_set_simulate_again (stmt, !is_varying);
906 /* Now process PHI nodes. We never clear the simulate_again flag on
907 phi nodes, since we do not know which edges are executable yet,
908 except for phi nodes for virtual operands when we do not do store ccp. */
909 FOR_EACH_BB_FN (bb, cfun)
911 gphi_iterator i;
913 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
915 gphi *phi = i.phi ();
917 if (virtual_operand_p (gimple_phi_result (phi)))
918 prop_set_simulate_again (phi, false);
919 else
920 prop_set_simulate_again (phi, true);
925 /* Debug count support. Reset the values of ssa names
926 VARYING when the total number ssa names analyzed is
927 beyond the debug count specified. */
929 static void
930 do_dbg_cnt (void)
932 unsigned i;
933 for (i = 0; i < num_ssa_names; i++)
935 if (!dbg_cnt (ccp))
937 const_val[i].lattice_val = VARYING;
938 const_val[i].mask = -1;
939 const_val[i].value = NULL_TREE;
945 /* We want to provide our own GET_VALUE and FOLD_STMT virtual methods. */
946 class ccp_folder : public substitute_and_fold_engine
948 public:
949 tree value_of_expr (tree, gimple *) FINAL OVERRIDE;
950 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
953 /* This method just wraps GET_CONSTANT_VALUE for now. Over time
954 naked calls to GET_CONSTANT_VALUE should be eliminated in favor
955 of calling member functions. */
957 tree
958 ccp_folder::value_of_expr (tree op, gimple *)
960 return get_constant_value (op);
963 /* Do final substitution of propagated values, cleanup the flowgraph and
964 free allocated storage. If NONZERO_P, record nonzero bits.
966 Return TRUE when something was optimized. */
968 static bool
969 ccp_finalize (bool nonzero_p)
971 bool something_changed;
972 unsigned i;
973 tree name;
975 do_dbg_cnt ();
977 /* Derive alignment and misalignment information from partially
978 constant pointers in the lattice or nonzero bits from partially
979 constant integers. */
980 FOR_EACH_SSA_NAME (i, name, cfun)
982 ccp_prop_value_t *val;
983 unsigned int tem, align;
985 if (!POINTER_TYPE_P (TREE_TYPE (name))
986 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
987 /* Don't record nonzero bits before IPA to avoid
988 using too much memory. */
989 || !nonzero_p))
990 continue;
992 val = get_value (name);
993 if (val->lattice_val != CONSTANT
994 || TREE_CODE (val->value) != INTEGER_CST
995 || val->mask == 0)
996 continue;
998 if (POINTER_TYPE_P (TREE_TYPE (name)))
1000 /* Trailing mask bits specify the alignment, trailing value
1001 bits the misalignment. */
1002 tem = val->mask.to_uhwi ();
1003 align = least_bit_hwi (tem);
1004 if (align > 1)
1005 set_ptr_info_alignment (get_ptr_info (name), align,
1006 (TREE_INT_CST_LOW (val->value)
1007 & (align - 1)));
1009 else
1011 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
1012 wide_int nonzero_bits
1013 = (wide_int::from (val->mask, precision, UNSIGNED)
1014 | wi::to_wide (val->value));
1015 nonzero_bits &= get_nonzero_bits (name);
1016 set_nonzero_bits (name, nonzero_bits);
1020 /* Perform substitutions based on the known constant values. */
1021 class ccp_folder ccp_folder;
1022 something_changed = ccp_folder.substitute_and_fold ();
1024 free (const_val);
1025 const_val = NULL;
1026 return something_changed;
1030 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
1031 in VAL1.
1033 any M UNDEFINED = any
1034 any M VARYING = VARYING
1035 Ci M Cj = Ci if (i == j)
1036 Ci M Cj = VARYING if (i != j)
1039 static void
1040 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
1042 if (val1->lattice_val == UNDEFINED
1043 /* For UNDEFINED M SSA we can't always SSA because its definition
1044 may not dominate the PHI node. Doing optimistic copy propagation
1045 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
1046 && (val2->lattice_val != CONSTANT
1047 || TREE_CODE (val2->value) != SSA_NAME))
1049 /* UNDEFINED M any = any */
1050 *val1 = *val2;
1052 else if (val2->lattice_val == UNDEFINED
1053 /* See above. */
1054 && (val1->lattice_val != CONSTANT
1055 || TREE_CODE (val1->value) != SSA_NAME))
1057 /* any M UNDEFINED = any
1058 Nothing to do. VAL1 already contains the value we want. */
1061 else if (val1->lattice_val == VARYING
1062 || val2->lattice_val == VARYING)
1064 /* any M VARYING = VARYING. */
1065 val1->lattice_val = VARYING;
1066 val1->mask = -1;
1067 val1->value = NULL_TREE;
1069 else if (val1->lattice_val == CONSTANT
1070 && val2->lattice_val == CONSTANT
1071 && TREE_CODE (val1->value) == INTEGER_CST
1072 && TREE_CODE (val2->value) == INTEGER_CST)
1074 /* Ci M Cj = Ci if (i == j)
1075 Ci M Cj = VARYING if (i != j)
1077 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1078 drop to varying. */
1079 val1->mask = (val1->mask | val2->mask
1080 | (wi::to_widest (val1->value)
1081 ^ wi::to_widest (val2->value)));
1082 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1084 val1->lattice_val = VARYING;
1085 val1->value = NULL_TREE;
1088 else if (val1->lattice_val == CONSTANT
1089 && val2->lattice_val == CONSTANT
1090 && operand_equal_p (val1->value, val2->value, 0))
1092 /* Ci M Cj = Ci if (i == j)
1093 Ci M Cj = VARYING if (i != j)
1095 VAL1 already contains the value we want for equivalent values. */
1097 else if (val1->lattice_val == CONSTANT
1098 && val2->lattice_val == CONSTANT
1099 && (TREE_CODE (val1->value) == ADDR_EXPR
1100 || TREE_CODE (val2->value) == ADDR_EXPR))
1102 /* When not equal addresses are involved try meeting for
1103 alignment. */
1104 ccp_prop_value_t tem = *val2;
1105 if (TREE_CODE (val1->value) == ADDR_EXPR)
1106 *val1 = get_value_for_expr (val1->value, true);
1107 if (TREE_CODE (val2->value) == ADDR_EXPR)
1108 tem = get_value_for_expr (val2->value, true);
1109 ccp_lattice_meet (val1, &tem);
1111 else
1113 /* Any other combination is VARYING. */
1114 val1->lattice_val = VARYING;
1115 val1->mask = -1;
1116 val1->value = NULL_TREE;
1121 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1122 lattice values to determine PHI_NODE's lattice value. The value of a
1123 PHI node is determined calling ccp_lattice_meet with all the arguments
1124 of the PHI node that are incoming via executable edges. */
1126 enum ssa_prop_result
1127 ccp_propagate::visit_phi (gphi *phi)
1129 unsigned i;
1130 ccp_prop_value_t new_val;
1132 if (dump_file && (dump_flags & TDF_DETAILS))
1134 fprintf (dump_file, "\nVisiting PHI node: ");
1135 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1138 new_val.lattice_val = UNDEFINED;
1139 new_val.value = NULL_TREE;
1140 new_val.mask = 0;
1142 bool first = true;
1143 bool non_exec_edge = false;
1144 for (i = 0; i < gimple_phi_num_args (phi); i++)
1146 /* Compute the meet operator over all the PHI arguments flowing
1147 through executable edges. */
1148 edge e = gimple_phi_arg_edge (phi, i);
1150 if (dump_file && (dump_flags & TDF_DETAILS))
1152 fprintf (dump_file,
1153 "\tArgument #%d (%d -> %d %sexecutable)\n",
1154 i, e->src->index, e->dest->index,
1155 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1158 /* If the incoming edge is executable, Compute the meet operator for
1159 the existing value of the PHI node and the current PHI argument. */
1160 if (e->flags & EDGE_EXECUTABLE)
1162 tree arg = gimple_phi_arg (phi, i)->def;
1163 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1165 if (first)
1167 new_val = arg_val;
1168 first = false;
1170 else
1171 ccp_lattice_meet (&new_val, &arg_val);
1173 if (dump_file && (dump_flags & TDF_DETAILS))
1175 fprintf (dump_file, "\t");
1176 print_generic_expr (dump_file, arg, dump_flags);
1177 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1178 fprintf (dump_file, "\n");
1181 if (new_val.lattice_val == VARYING)
1182 break;
1184 else
1185 non_exec_edge = true;
1188 /* In case there were non-executable edges and the value is a copy
1189 make sure its definition dominates the PHI node. */
1190 if (non_exec_edge
1191 && new_val.lattice_val == CONSTANT
1192 && TREE_CODE (new_val.value) == SSA_NAME
1193 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1194 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1195 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1197 new_val.lattice_val = VARYING;
1198 new_val.value = NULL_TREE;
1199 new_val.mask = -1;
1202 if (dump_file && (dump_flags & TDF_DETAILS))
1204 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1205 fprintf (dump_file, "\n\n");
1208 /* Make the transition to the new value. */
1209 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1211 if (new_val.lattice_val == VARYING)
1212 return SSA_PROP_VARYING;
1213 else
1214 return SSA_PROP_INTERESTING;
1216 else
1217 return SSA_PROP_NOT_INTERESTING;
1220 /* Return the constant value for OP or OP otherwise. */
1222 static tree
1223 valueize_op (tree op)
1225 if (TREE_CODE (op) == SSA_NAME)
1227 tree tem = get_constant_value (op);
1228 if (tem)
1229 return tem;
1231 return op;
1234 /* Return the constant value for OP, but signal to not follow SSA
1235 edges if the definition may be simulated again. */
1237 static tree
1238 valueize_op_1 (tree op)
1240 if (TREE_CODE (op) == SSA_NAME)
1242 /* If the definition may be simulated again we cannot follow
1243 this SSA edge as the SSA propagator does not necessarily
1244 re-visit the use. */
1245 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1246 if (!gimple_nop_p (def_stmt)
1247 && prop_simulate_again_p (def_stmt))
1248 return NULL_TREE;
1249 tree tem = get_constant_value (op);
1250 if (tem)
1251 return tem;
1253 return op;
1256 /* CCP specific front-end to the non-destructive constant folding
1257 routines.
1259 Attempt to simplify the RHS of STMT knowing that one or more
1260 operands are constants.
1262 If simplification is possible, return the simplified RHS,
1263 otherwise return the original RHS or NULL_TREE. */
1265 static tree
1266 ccp_fold (gimple *stmt)
1268 location_t loc = gimple_location (stmt);
1269 switch (gimple_code (stmt))
1271 case GIMPLE_COND:
1273 /* Handle comparison operators that can appear in GIMPLE form. */
1274 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1275 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1276 enum tree_code code = gimple_cond_code (stmt);
1277 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1280 case GIMPLE_SWITCH:
1282 /* Return the constant switch index. */
1283 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1286 case GIMPLE_ASSIGN:
1287 case GIMPLE_CALL:
1288 return gimple_fold_stmt_to_constant_1 (stmt,
1289 valueize_op, valueize_op_1);
1291 default:
1292 gcc_unreachable ();
1296 /* Determine the minimum and maximum values, *MIN and *MAX respectively,
1297 represented by the mask pair VAL and MASK with signedness SGN and
1298 precision PRECISION. */
1300 void
1301 value_mask_to_min_max (widest_int *min, widest_int *max,
1302 const widest_int &val, const widest_int &mask,
1303 signop sgn, int precision)
1305 *min = wi::bit_and_not (val, mask);
1306 *max = val | mask;
1307 if (sgn == SIGNED && wi::neg_p (mask))
1309 widest_int sign_bit = wi::lshift (1, precision - 1);
1310 *min ^= sign_bit;
1311 *max ^= sign_bit;
1312 /* MAX is zero extended, and MIN is sign extended. */
1313 *min = wi::ext (*min, precision, sgn);
1314 *max = wi::ext (*max, precision, sgn);
1318 /* Apply the operation CODE in type TYPE to the value, mask pair
1319 RVAL and RMASK representing a value of type RTYPE and set
1320 the value, mask pair *VAL and *MASK to the result. */
1322 void
1323 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1324 widest_int *val, widest_int *mask,
1325 signop rtype_sgn, int rtype_precision,
1326 const widest_int &rval, const widest_int &rmask)
1328 switch (code)
1330 case BIT_NOT_EXPR:
1331 *mask = rmask;
1332 *val = ~rval;
1333 break;
1335 case NEGATE_EXPR:
1337 widest_int temv, temm;
1338 /* Return ~rval + 1. */
1339 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1340 type_sgn, type_precision, rval, rmask);
1341 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1342 type_sgn, type_precision, temv, temm,
1343 type_sgn, type_precision, 1, 0);
1344 break;
1347 CASE_CONVERT:
1349 /* First extend mask and value according to the original type. */
1350 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1351 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1353 /* Then extend mask and value according to the target type. */
1354 *mask = wi::ext (*mask, type_precision, type_sgn);
1355 *val = wi::ext (*val, type_precision, type_sgn);
1356 break;
1359 case ABS_EXPR:
1360 case ABSU_EXPR:
1361 if (wi::sext (rmask, rtype_precision) == -1)
1362 *mask = -1;
1363 else if (wi::neg_p (rmask))
1365 /* Result is either rval or -rval. */
1366 widest_int temv, temm;
1367 bit_value_unop (NEGATE_EXPR, rtype_sgn, rtype_precision, &temv,
1368 &temm, type_sgn, type_precision, rval, rmask);
1369 temm |= (rmask | (rval ^ temv));
1370 /* Extend the result. */
1371 *mask = wi::ext (temm, type_precision, type_sgn);
1372 *val = wi::ext (temv, type_precision, type_sgn);
1374 else if (wi::neg_p (rval))
1376 bit_value_unop (NEGATE_EXPR, type_sgn, type_precision, val, mask,
1377 type_sgn, type_precision, rval, rmask);
1379 else
1381 *mask = rmask;
1382 *val = rval;
1384 break;
1386 default:
1387 *mask = -1;
1388 break;
1392 /* Determine the mask pair *VAL and *MASK from multiplying the
1393 argument mask pair RVAL, RMASK by the unsigned constant C. */
1394 void
1395 bit_value_mult_const (signop sgn, int width,
1396 widest_int *val, widest_int *mask,
1397 const widest_int &rval, const widest_int &rmask,
1398 widest_int c)
1400 widest_int sum_mask = 0;
1402 /* Ensure rval_lo only contains known bits. */
1403 widest_int rval_lo = wi::bit_and_not (rval, rmask);
1405 if (rval_lo != 0)
1407 /* General case (some bits of multiplicand are known set). */
1408 widest_int sum_val = 0;
1409 while (c != 0)
1411 /* Determine the lowest bit set in the multiplier. */
1412 int bitpos = wi::ctz (c);
1413 widest_int term_mask = rmask << bitpos;
1414 widest_int term_val = rval_lo << bitpos;
1416 /* sum += term. */
1417 widest_int lo = sum_val + term_val;
1418 widest_int hi = (sum_val | sum_mask) + (term_val | term_mask);
1419 sum_mask |= term_mask | (lo ^ hi);
1420 sum_val = lo;
1422 /* Clear this bit in the multiplier. */
1423 c ^= wi::lshift (1, bitpos);
1425 /* Correctly extend the result value. */
1426 *val = wi::ext (sum_val, width, sgn);
1428 else
1430 /* Special case (no bits of multiplicand are known set). */
1431 while (c != 0)
1433 /* Determine the lowest bit set in the multiplier. */
1434 int bitpos = wi::ctz (c);
1435 widest_int term_mask = rmask << bitpos;
1437 /* sum += term. */
1438 widest_int hi = sum_mask + term_mask;
1439 sum_mask |= term_mask | hi;
1441 /* Clear this bit in the multiplier. */
1442 c ^= wi::lshift (1, bitpos);
1444 *val = 0;
1447 /* Correctly extend the result mask. */
1448 *mask = wi::ext (sum_mask, width, sgn);
1451 /* Fill up to MAX values in the BITS array with values representing
1452 each of the non-zero bits in the value X. Returns the number of
1453 bits in X (capped at the maximum value MAX). For example, an X
1454 value 11, places 1, 2 and 8 in BITS and returns the value 3. */
1456 unsigned int
1457 get_individual_bits (widest_int *bits, widest_int x, unsigned int max)
1459 unsigned int count = 0;
1460 while (count < max && x != 0)
1462 int bitpos = wi::ctz (x);
1463 bits[count] = wi::lshift (1, bitpos);
1464 x ^= bits[count];
1465 count++;
1467 return count;
1470 /* Array of 2^N - 1 values representing the bits flipped between
1471 consecutive Gray codes. This is used to efficiently enumerate
1472 all permutations on N bits using XOR. */
1473 static const unsigned char gray_code_bit_flips[63] = {
1474 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
1475 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5,
1476 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4,
1477 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0
1480 /* Apply the operation CODE in type TYPE to the value, mask pairs
1481 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1482 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1484 void
1485 bit_value_binop (enum tree_code code, signop sgn, int width,
1486 widest_int *val, widest_int *mask,
1487 signop r1type_sgn, int r1type_precision,
1488 const widest_int &r1val, const widest_int &r1mask,
1489 signop r2type_sgn, int r2type_precision ATTRIBUTE_UNUSED,
1490 const widest_int &r2val, const widest_int &r2mask)
1492 bool swap_p = false;
1494 /* Assume we'll get a constant result. Use an initial non varying
1495 value, we fall back to varying in the end if necessary. */
1496 *mask = -1;
1497 /* Ensure that VAL is initialized (to any value). */
1498 *val = 0;
1500 switch (code)
1502 case BIT_AND_EXPR:
1503 /* The mask is constant where there is a known not
1504 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1505 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1506 *val = r1val & r2val;
1507 break;
1509 case BIT_IOR_EXPR:
1510 /* The mask is constant where there is a known
1511 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1512 *mask = wi::bit_and_not (r1mask | r2mask,
1513 wi::bit_and_not (r1val, r1mask)
1514 | wi::bit_and_not (r2val, r2mask));
1515 *val = r1val | r2val;
1516 break;
1518 case BIT_XOR_EXPR:
1519 /* m1 | m2 */
1520 *mask = r1mask | r2mask;
1521 *val = r1val ^ r2val;
1522 break;
1524 case LROTATE_EXPR:
1525 case RROTATE_EXPR:
1526 if (r2mask == 0)
1528 widest_int shift = r2val;
1529 if (shift == 0)
1531 *mask = r1mask;
1532 *val = r1val;
1534 else
1536 if (wi::neg_p (shift, r2type_sgn))
1538 shift = -shift;
1539 if (code == RROTATE_EXPR)
1540 code = LROTATE_EXPR;
1541 else
1542 code = RROTATE_EXPR;
1544 if (code == RROTATE_EXPR)
1546 *mask = wi::rrotate (r1mask, shift, width);
1547 *val = wi::rrotate (r1val, shift, width);
1549 else
1551 *mask = wi::lrotate (r1mask, shift, width);
1552 *val = wi::lrotate (r1val, shift, width);
1556 else if (wi::ltu_p (r2val | r2mask, width)
1557 && wi::popcount (r2mask) <= 4)
1559 widest_int bits[4];
1560 widest_int res_val, res_mask;
1561 widest_int tmp_val, tmp_mask;
1562 widest_int shift = wi::bit_and_not (r2val, r2mask);
1563 unsigned int bit_count = get_individual_bits (bits, r2mask, 4);
1564 unsigned int count = (1 << bit_count) - 1;
1566 /* Initialize result to rotate by smallest value of shift. */
1567 if (code == RROTATE_EXPR)
1569 res_mask = wi::rrotate (r1mask, shift, width);
1570 res_val = wi::rrotate (r1val, shift, width);
1572 else
1574 res_mask = wi::lrotate (r1mask, shift, width);
1575 res_val = wi::lrotate (r1val, shift, width);
1578 /* Iterate through the remaining values of shift. */
1579 for (unsigned int i=0; i<count; i++)
1581 shift ^= bits[gray_code_bit_flips[i]];
1582 if (code == RROTATE_EXPR)
1584 tmp_mask = wi::rrotate (r1mask, shift, width);
1585 tmp_val = wi::rrotate (r1val, shift, width);
1587 else
1589 tmp_mask = wi::lrotate (r1mask, shift, width);
1590 tmp_val = wi::lrotate (r1val, shift, width);
1592 /* Accumulate the result. */
1593 res_mask |= tmp_mask | (res_val ^ tmp_val);
1595 *val = wi::bit_and_not (res_val, res_mask);
1596 *mask = res_mask;
1598 break;
1600 case LSHIFT_EXPR:
1601 case RSHIFT_EXPR:
1602 /* ??? We can handle partially known shift counts if we know
1603 its sign. That way we can tell that (x << (y | 8)) & 255
1604 is zero. */
1605 if (r2mask == 0)
1607 widest_int shift = r2val;
1608 if (shift == 0)
1610 *mask = r1mask;
1611 *val = r1val;
1613 else
1615 if (wi::neg_p (shift, r2type_sgn))
1616 break;
1617 if (code == RSHIFT_EXPR)
1619 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1620 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1622 else
1624 *mask = wi::ext (r1mask << shift, width, sgn);
1625 *val = wi::ext (r1val << shift, width, sgn);
1629 else if (wi::ltu_p (r2val | r2mask, width))
1631 if (wi::popcount (r2mask) <= 4)
1633 widest_int bits[4];
1634 widest_int arg_val, arg_mask;
1635 widest_int res_val, res_mask;
1636 widest_int tmp_val, tmp_mask;
1637 widest_int shift = wi::bit_and_not (r2val, r2mask);
1638 unsigned int bit_count = get_individual_bits (bits, r2mask, 4);
1639 unsigned int count = (1 << bit_count) - 1;
1641 /* Initialize result to shift by smallest value of shift. */
1642 if (code == RSHIFT_EXPR)
1644 arg_mask = wi::ext (r1mask, width, sgn);
1645 arg_val = wi::ext (r1val, width, sgn);
1646 res_mask = wi::rshift (arg_mask, shift, sgn);
1647 res_val = wi::rshift (arg_val, shift, sgn);
1649 else
1651 arg_mask = r1mask;
1652 arg_val = r1val;
1653 res_mask = arg_mask << shift;
1654 res_val = arg_val << shift;
1657 /* Iterate through the remaining values of shift. */
1658 for (unsigned int i=0; i<count; i++)
1660 shift ^= bits[gray_code_bit_flips[i]];
1661 if (code == RSHIFT_EXPR)
1663 tmp_mask = wi::rshift (arg_mask, shift, sgn);
1664 tmp_val = wi::rshift (arg_val, shift, sgn);
1666 else
1668 tmp_mask = arg_mask << shift;
1669 tmp_val = arg_val << shift;
1671 /* Accumulate the result. */
1672 res_mask |= tmp_mask | (res_val ^ tmp_val);
1674 res_mask = wi::ext (res_mask, width, sgn);
1675 res_val = wi::ext (res_val, width, sgn);
1676 *val = wi::bit_and_not (res_val, res_mask);
1677 *mask = res_mask;
1679 else if ((r1val | r1mask) == 0)
1681 /* Handle shifts of zero to avoid undefined wi::ctz below. */
1682 *mask = 0;
1683 *val = 0;
1685 else if (code == LSHIFT_EXPR)
1687 widest_int tmp = wi::mask <widest_int> (width, false);
1688 tmp <<= wi::ctz (r1val | r1mask);
1689 tmp <<= wi::bit_and_not (r2val, r2mask);
1690 *mask = wi::ext (tmp, width, sgn);
1691 *val = 0;
1693 else if (!wi::neg_p (r1val | r1mask, sgn))
1695 /* Logical right shift, or zero sign bit. */
1696 widest_int arg = r1val | r1mask;
1697 int lzcount = wi::clz (arg);
1698 if (lzcount)
1699 lzcount -= wi::get_precision (arg) - width;
1700 widest_int tmp = wi::mask <widest_int> (width, false);
1701 tmp = wi::lrshift (tmp, lzcount);
1702 tmp = wi::lrshift (tmp, wi::bit_and_not (r2val, r2mask));
1703 *mask = wi::ext (tmp, width, sgn);
1704 *val = 0;
1706 else if (!wi::neg_p (r1mask))
1708 /* Arithmetic right shift with set sign bit. */
1709 widest_int arg = wi::bit_and_not (r1val, r1mask);
1710 int sbcount = wi::clrsb (arg);
1711 sbcount -= wi::get_precision (arg) - width;
1712 widest_int tmp = wi::mask <widest_int> (width, false);
1713 tmp = wi::lrshift (tmp, sbcount);
1714 tmp = wi::lrshift (tmp, wi::bit_and_not (r2val, r2mask));
1715 *mask = wi::sext (tmp, width);
1716 tmp = wi::bit_not (tmp);
1717 *val = wi::sext (tmp, width);
1720 break;
1722 case PLUS_EXPR:
1723 case POINTER_PLUS_EXPR:
1725 /* Do the addition with unknown bits set to zero, to give carry-ins of
1726 zero wherever possible. */
1727 widest_int lo = (wi::bit_and_not (r1val, r1mask)
1728 + wi::bit_and_not (r2val, r2mask));
1729 lo = wi::ext (lo, width, sgn);
1730 /* Do the addition with unknown bits set to one, to give carry-ins of
1731 one wherever possible. */
1732 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1733 hi = wi::ext (hi, width, sgn);
1734 /* Each bit in the result is known if (a) the corresponding bits in
1735 both inputs are known, and (b) the carry-in to that bit position
1736 is known. We can check condition (b) by seeing if we got the same
1737 result with minimised carries as with maximised carries. */
1738 *mask = r1mask | r2mask | (lo ^ hi);
1739 *mask = wi::ext (*mask, width, sgn);
1740 /* It shouldn't matter whether we choose lo or hi here. */
1741 *val = lo;
1742 break;
1745 case MINUS_EXPR:
1746 case POINTER_DIFF_EXPR:
1748 /* Subtraction is derived from the addition algorithm above. */
1749 widest_int lo = wi::bit_and_not (r1val, r1mask) - (r2val | r2mask);
1750 lo = wi::ext (lo, width, sgn);
1751 widest_int hi = (r1val | r1mask) - wi::bit_and_not (r2val, r2mask);
1752 hi = wi::ext (hi, width, sgn);
1753 *mask = r1mask | r2mask | (lo ^ hi);
1754 *mask = wi::ext (*mask, width, sgn);
1755 *val = lo;
1756 break;
1759 case MULT_EXPR:
1760 if (r2mask == 0
1761 && !wi::neg_p (r2val, sgn)
1762 && (flag_expensive_optimizations || wi::popcount (r2val) < 8))
1763 bit_value_mult_const (sgn, width, val, mask, r1val, r1mask, r2val);
1764 else if (r1mask == 0
1765 && !wi::neg_p (r1val, sgn)
1766 && (flag_expensive_optimizations || wi::popcount (r1val) < 8))
1767 bit_value_mult_const (sgn, width, val, mask, r2val, r2mask, r1val);
1768 else
1770 /* Just track trailing zeros in both operands and transfer
1771 them to the other. */
1772 int r1tz = wi::ctz (r1val | r1mask);
1773 int r2tz = wi::ctz (r2val | r2mask);
1774 if (r1tz + r2tz >= width)
1776 *mask = 0;
1777 *val = 0;
1779 else if (r1tz + r2tz > 0)
1781 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1782 width, sgn);
1783 *val = 0;
1786 break;
1788 case EQ_EXPR:
1789 case NE_EXPR:
1791 widest_int m = r1mask | r2mask;
1792 if (wi::bit_and_not (r1val, m) != wi::bit_and_not (r2val, m))
1794 *mask = 0;
1795 *val = ((code == EQ_EXPR) ? 0 : 1);
1797 else
1799 /* We know the result of a comparison is always one or zero. */
1800 *mask = 1;
1801 *val = 0;
1803 break;
1806 case GE_EXPR:
1807 case GT_EXPR:
1808 swap_p = true;
1809 code = swap_tree_comparison (code);
1810 /* Fall through. */
1811 case LT_EXPR:
1812 case LE_EXPR:
1814 widest_int min1, max1, min2, max2;
1815 int minmax, maxmin;
1817 const widest_int &o1val = swap_p ? r2val : r1val;
1818 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1819 const widest_int &o2val = swap_p ? r1val : r2val;
1820 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1822 value_mask_to_min_max (&min1, &max1, o1val, o1mask,
1823 r1type_sgn, r1type_precision);
1824 value_mask_to_min_max (&min2, &max2, o2val, o2mask,
1825 r1type_sgn, r1type_precision);
1827 /* For comparisons the signedness is in the comparison operands. */
1828 /* Do a cross comparison of the max/min pairs. */
1829 maxmin = wi::cmp (max1, min2, r1type_sgn);
1830 minmax = wi::cmp (min1, max2, r1type_sgn);
1831 if (maxmin < (code == LE_EXPR ? 1: 0)) /* o1 < or <= o2. */
1833 *mask = 0;
1834 *val = 1;
1836 else if (minmax > (code == LT_EXPR ? -1 : 0)) /* o1 >= or > o2. */
1838 *mask = 0;
1839 *val = 0;
1841 else if (maxmin == minmax) /* o1 and o2 are equal. */
1843 /* This probably should never happen as we'd have
1844 folded the thing during fully constant value folding. */
1845 *mask = 0;
1846 *val = (code == LE_EXPR ? 1 : 0);
1848 else
1850 /* We know the result of a comparison is always one or zero. */
1851 *mask = 1;
1852 *val = 0;
1854 break;
1857 case MIN_EXPR:
1858 case MAX_EXPR:
1860 widest_int min1, max1, min2, max2;
1862 value_mask_to_min_max (&min1, &max1, r1val, r1mask, sgn, width);
1863 value_mask_to_min_max (&min2, &max2, r2val, r2mask, sgn, width);
1865 if (wi::cmp (max1, min2, sgn) <= 0) /* r1 is less than r2. */
1867 if (code == MIN_EXPR)
1869 *mask = r1mask;
1870 *val = r1val;
1872 else
1874 *mask = r2mask;
1875 *val = r2val;
1878 else if (wi::cmp (min1, max2, sgn) >= 0) /* r2 is less than r1. */
1880 if (code == MIN_EXPR)
1882 *mask = r2mask;
1883 *val = r2val;
1885 else
1887 *mask = r1mask;
1888 *val = r1val;
1891 else
1893 /* The result is either r1 or r2. */
1894 *mask = r1mask | r2mask | (r1val ^ r2val);
1895 *val = r1val;
1897 break;
1900 case TRUNC_MOD_EXPR:
1902 widest_int r1max = r1val | r1mask;
1903 widest_int r2max = r2val | r2mask;
1904 if (sgn == UNSIGNED
1905 || (!wi::neg_p (r1max) && !wi::neg_p (r2max)))
1907 /* Confirm R2 has some bits set, to avoid division by zero. */
1908 widest_int r2min = wi::bit_and_not (r2val, r2mask);
1909 if (r2min != 0)
1911 /* R1 % R2 is R1 if R1 is always less than R2. */
1912 if (wi::ltu_p (r1max, r2min))
1914 *mask = r1mask;
1915 *val = r1val;
1917 else
1919 /* R1 % R2 is always less than the maximum of R2. */
1920 unsigned int lzcount = wi::clz (r2max);
1921 unsigned int bits = wi::get_precision (r2max) - lzcount;
1922 if (r2max == wi::lshift (1, bits))
1923 bits--;
1924 *mask = wi::mask <widest_int> (bits, false);
1925 *val = 0;
1930 break;
1932 case TRUNC_DIV_EXPR:
1934 widest_int r1max = r1val | r1mask;
1935 widest_int r2max = r2val | r2mask;
1936 if (sgn == UNSIGNED
1937 || (!wi::neg_p (r1max) && !wi::neg_p (r2max)))
1939 /* Confirm R2 has some bits set, to avoid division by zero. */
1940 widest_int r2min = wi::bit_and_not (r2val, r2mask);
1941 if (r2min != 0)
1943 /* R1 / R2 is zero if R1 is always less than R2. */
1944 if (wi::ltu_p (r1max, r2min))
1946 *mask = 0;
1947 *val = 0;
1949 else
1951 widest_int upper = wi::udiv_trunc (r1max, r2min);
1952 unsigned int lzcount = wi::clz (upper);
1953 unsigned int bits = wi::get_precision (upper) - lzcount;
1954 *mask = wi::mask <widest_int> (bits, false);
1955 *val = 0;
1960 break;
1962 default:;
1966 /* Return the propagation value when applying the operation CODE to
1967 the value RHS yielding type TYPE. */
1969 static ccp_prop_value_t
1970 bit_value_unop (enum tree_code code, tree type, tree rhs)
1972 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1973 widest_int value, mask;
1974 ccp_prop_value_t val;
1976 if (rval.lattice_val == UNDEFINED)
1977 return rval;
1979 gcc_assert ((rval.lattice_val == CONSTANT
1980 && TREE_CODE (rval.value) == INTEGER_CST)
1981 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1982 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1983 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1984 value_to_wide_int (rval), rval.mask);
1985 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1987 val.lattice_val = CONSTANT;
1988 val.mask = mask;
1989 /* ??? Delay building trees here. */
1990 val.value = wide_int_to_tree (type, value);
1992 else
1994 val.lattice_val = VARYING;
1995 val.value = NULL_TREE;
1996 val.mask = -1;
1998 return val;
2001 /* Return the propagation value when applying the operation CODE to
2002 the values RHS1 and RHS2 yielding type TYPE. */
2004 static ccp_prop_value_t
2005 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
2007 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
2008 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
2009 widest_int value, mask;
2010 ccp_prop_value_t val;
2012 if (r1val.lattice_val == UNDEFINED
2013 || r2val.lattice_val == UNDEFINED)
2015 val.lattice_val = VARYING;
2016 val.value = NULL_TREE;
2017 val.mask = -1;
2018 return val;
2021 gcc_assert ((r1val.lattice_val == CONSTANT
2022 && TREE_CODE (r1val.value) == INTEGER_CST)
2023 || wi::sext (r1val.mask,
2024 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
2025 gcc_assert ((r2val.lattice_val == CONSTANT
2026 && TREE_CODE (r2val.value) == INTEGER_CST)
2027 || wi::sext (r2val.mask,
2028 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
2029 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
2030 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
2031 value_to_wide_int (r1val), r1val.mask,
2032 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
2033 value_to_wide_int (r2val), r2val.mask);
2035 /* (x * x) & 2 == 0. */
2036 if (code == MULT_EXPR && rhs1 == rhs2 && TYPE_PRECISION (type) > 1)
2038 widest_int m = 2;
2039 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
2040 value = wi::bit_and_not (value, m);
2041 else
2042 value = 0;
2043 mask = wi::bit_and_not (mask, m);
2046 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
2048 val.lattice_val = CONSTANT;
2049 val.mask = mask;
2050 /* ??? Delay building trees here. */
2051 val.value = wide_int_to_tree (type, value);
2053 else
2055 val.lattice_val = VARYING;
2056 val.value = NULL_TREE;
2057 val.mask = -1;
2059 return val;
2062 /* Return the propagation value for __builtin_assume_aligned
2063 and functions with assume_aligned or alloc_aligned attribute.
2064 For __builtin_assume_aligned, ATTR is NULL_TREE,
2065 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
2066 is false, for alloc_aligned attribute ATTR is non-NULL and
2067 ALLOC_ALIGNED is true. */
2069 static ccp_prop_value_t
2070 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
2071 bool alloc_aligned)
2073 tree align, misalign = NULL_TREE, type;
2074 unsigned HOST_WIDE_INT aligni, misaligni = 0;
2075 ccp_prop_value_t alignval;
2076 widest_int value, mask;
2077 ccp_prop_value_t val;
2079 if (attr == NULL_TREE)
2081 tree ptr = gimple_call_arg (stmt, 0);
2082 type = TREE_TYPE (ptr);
2083 ptrval = get_value_for_expr (ptr, true);
2085 else
2087 tree lhs = gimple_call_lhs (stmt);
2088 type = TREE_TYPE (lhs);
2091 if (ptrval.lattice_val == UNDEFINED)
2092 return ptrval;
2093 gcc_assert ((ptrval.lattice_val == CONSTANT
2094 && TREE_CODE (ptrval.value) == INTEGER_CST)
2095 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
2096 if (attr == NULL_TREE)
2098 /* Get aligni and misaligni from __builtin_assume_aligned. */
2099 align = gimple_call_arg (stmt, 1);
2100 if (!tree_fits_uhwi_p (align))
2101 return ptrval;
2102 aligni = tree_to_uhwi (align);
2103 if (gimple_call_num_args (stmt) > 2)
2105 misalign = gimple_call_arg (stmt, 2);
2106 if (!tree_fits_uhwi_p (misalign))
2107 return ptrval;
2108 misaligni = tree_to_uhwi (misalign);
2111 else
2113 /* Get aligni and misaligni from assume_aligned or
2114 alloc_align attributes. */
2115 if (TREE_VALUE (attr) == NULL_TREE)
2116 return ptrval;
2117 attr = TREE_VALUE (attr);
2118 align = TREE_VALUE (attr);
2119 if (!tree_fits_uhwi_p (align))
2120 return ptrval;
2121 aligni = tree_to_uhwi (align);
2122 if (alloc_aligned)
2124 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
2125 return ptrval;
2126 align = gimple_call_arg (stmt, aligni - 1);
2127 if (!tree_fits_uhwi_p (align))
2128 return ptrval;
2129 aligni = tree_to_uhwi (align);
2131 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
2133 misalign = TREE_VALUE (TREE_CHAIN (attr));
2134 if (!tree_fits_uhwi_p (misalign))
2135 return ptrval;
2136 misaligni = tree_to_uhwi (misalign);
2139 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
2140 return ptrval;
2142 align = build_int_cst_type (type, -aligni);
2143 alignval = get_value_for_expr (align, true);
2144 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
2145 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
2146 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
2148 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
2150 val.lattice_val = CONSTANT;
2151 val.mask = mask;
2152 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
2153 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
2154 value |= misaligni;
2155 /* ??? Delay building trees here. */
2156 val.value = wide_int_to_tree (type, value);
2158 else
2160 val.lattice_val = VARYING;
2161 val.value = NULL_TREE;
2162 val.mask = -1;
2164 return val;
2167 /* Evaluate statement STMT.
2168 Valid only for assignments, calls, conditionals, and switches. */
2170 static ccp_prop_value_t
2171 evaluate_stmt (gimple *stmt)
2173 ccp_prop_value_t val;
2174 tree simplified = NULL_TREE;
2175 ccp_lattice_t likelyvalue = likely_value (stmt);
2176 bool is_constant = false;
2177 unsigned int align;
2178 bool ignore_return_flags = false;
2180 if (dump_file && (dump_flags & TDF_DETAILS))
2182 fprintf (dump_file, "which is likely ");
2183 switch (likelyvalue)
2185 case CONSTANT:
2186 fprintf (dump_file, "CONSTANT");
2187 break;
2188 case UNDEFINED:
2189 fprintf (dump_file, "UNDEFINED");
2190 break;
2191 case VARYING:
2192 fprintf (dump_file, "VARYING");
2193 break;
2194 default:;
2196 fprintf (dump_file, "\n");
2199 /* If the statement is likely to have a CONSTANT result, then try
2200 to fold the statement to determine the constant value. */
2201 /* FIXME. This is the only place that we call ccp_fold.
2202 Since likely_value never returns CONSTANT for calls, we will
2203 not attempt to fold them, including builtins that may profit. */
2204 if (likelyvalue == CONSTANT)
2206 fold_defer_overflow_warnings ();
2207 simplified = ccp_fold (stmt);
2208 if (simplified
2209 && TREE_CODE (simplified) == SSA_NAME)
2211 /* We may not use values of something that may be simulated again,
2212 see valueize_op_1. */
2213 if (SSA_NAME_IS_DEFAULT_DEF (simplified)
2214 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (simplified)))
2216 ccp_prop_value_t *val = get_value (simplified);
2217 if (val && val->lattice_val != VARYING)
2219 fold_undefer_overflow_warnings (true, stmt, 0);
2220 return *val;
2223 else
2224 /* We may also not place a non-valueized copy in the lattice
2225 as that might become stale if we never re-visit this stmt. */
2226 simplified = NULL_TREE;
2228 is_constant = simplified && is_gimple_min_invariant (simplified);
2229 fold_undefer_overflow_warnings (is_constant, stmt, 0);
2230 if (is_constant)
2232 /* The statement produced a constant value. */
2233 val.lattice_val = CONSTANT;
2234 val.value = simplified;
2235 val.mask = 0;
2236 return val;
2239 /* If the statement is likely to have a VARYING result, then do not
2240 bother folding the statement. */
2241 else if (likelyvalue == VARYING)
2243 enum gimple_code code = gimple_code (stmt);
2244 if (code == GIMPLE_ASSIGN)
2246 enum tree_code subcode = gimple_assign_rhs_code (stmt);
2248 /* Other cases cannot satisfy is_gimple_min_invariant
2249 without folding. */
2250 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
2251 simplified = gimple_assign_rhs1 (stmt);
2253 else if (code == GIMPLE_SWITCH)
2254 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
2255 else
2256 /* These cannot satisfy is_gimple_min_invariant without folding. */
2257 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
2258 is_constant = simplified && is_gimple_min_invariant (simplified);
2259 if (is_constant)
2261 /* The statement produced a constant value. */
2262 val.lattice_val = CONSTANT;
2263 val.value = simplified;
2264 val.mask = 0;
2267 /* If the statement result is likely UNDEFINED, make it so. */
2268 else if (likelyvalue == UNDEFINED)
2270 val.lattice_val = UNDEFINED;
2271 val.value = NULL_TREE;
2272 val.mask = 0;
2273 return val;
2276 /* Resort to simplification for bitwise tracking. */
2277 if (flag_tree_bit_ccp
2278 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
2279 || (gimple_assign_single_p (stmt)
2280 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
2281 && !is_constant)
2283 enum gimple_code code = gimple_code (stmt);
2284 val.lattice_val = VARYING;
2285 val.value = NULL_TREE;
2286 val.mask = -1;
2287 if (code == GIMPLE_ASSIGN)
2289 enum tree_code subcode = gimple_assign_rhs_code (stmt);
2290 tree rhs1 = gimple_assign_rhs1 (stmt);
2291 tree lhs = gimple_assign_lhs (stmt);
2292 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2293 || POINTER_TYPE_P (TREE_TYPE (lhs)))
2294 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2295 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
2296 switch (get_gimple_rhs_class (subcode))
2298 case GIMPLE_SINGLE_RHS:
2299 val = get_value_for_expr (rhs1, true);
2300 break;
2302 case GIMPLE_UNARY_RHS:
2303 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
2304 break;
2306 case GIMPLE_BINARY_RHS:
2307 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
2308 gimple_assign_rhs2 (stmt));
2309 break;
2311 default:;
2314 else if (code == GIMPLE_COND)
2316 enum tree_code code = gimple_cond_code (stmt);
2317 tree rhs1 = gimple_cond_lhs (stmt);
2318 tree rhs2 = gimple_cond_rhs (stmt);
2319 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
2320 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
2321 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
2323 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
2325 tree fndecl = gimple_call_fndecl (stmt);
2326 switch (DECL_FUNCTION_CODE (fndecl))
2328 case BUILT_IN_MALLOC:
2329 case BUILT_IN_REALLOC:
2330 case BUILT_IN_CALLOC:
2331 case BUILT_IN_STRDUP:
2332 case BUILT_IN_STRNDUP:
2333 val.lattice_val = CONSTANT;
2334 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
2335 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
2336 / BITS_PER_UNIT - 1);
2337 break;
2339 CASE_BUILT_IN_ALLOCA:
2340 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA
2341 ? BIGGEST_ALIGNMENT
2342 : TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2343 val.lattice_val = CONSTANT;
2344 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
2345 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
2346 break;
2348 case BUILT_IN_ASSUME_ALIGNED:
2349 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
2350 ignore_return_flags = true;
2351 break;
2353 case BUILT_IN_ALIGNED_ALLOC:
2354 case BUILT_IN_GOMP_ALLOC:
2356 tree align = get_constant_value (gimple_call_arg (stmt, 0));
2357 if (align
2358 && tree_fits_uhwi_p (align))
2360 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
2361 if (aligni > 1
2362 /* align must be power-of-two */
2363 && (aligni & (aligni - 1)) == 0)
2365 val.lattice_val = CONSTANT;
2366 val.value = build_int_cst (ptr_type_node, 0);
2367 val.mask = -aligni;
2370 break;
2373 case BUILT_IN_BSWAP16:
2374 case BUILT_IN_BSWAP32:
2375 case BUILT_IN_BSWAP64:
2376 case BUILT_IN_BSWAP128:
2377 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
2378 if (val.lattice_val == UNDEFINED)
2379 break;
2380 else if (val.lattice_val == CONSTANT
2381 && val.value
2382 && TREE_CODE (val.value) == INTEGER_CST)
2384 tree type = TREE_TYPE (gimple_call_lhs (stmt));
2385 int prec = TYPE_PRECISION (type);
2386 wide_int wval = wi::to_wide (val.value);
2387 val.value
2388 = wide_int_to_tree (type,
2389 wide_int::from (wval, prec,
2390 UNSIGNED).bswap ());
2391 val.mask
2392 = widest_int::from (wide_int::from (val.mask, prec,
2393 UNSIGNED).bswap (),
2394 UNSIGNED);
2395 if (wi::sext (val.mask, prec) != -1)
2396 break;
2398 val.lattice_val = VARYING;
2399 val.value = NULL_TREE;
2400 val.mask = -1;
2401 break;
2403 default:;
2406 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
2408 tree fntype = gimple_call_fntype (stmt);
2409 if (fntype)
2411 tree attrs = lookup_attribute ("assume_aligned",
2412 TYPE_ATTRIBUTES (fntype));
2413 if (attrs)
2414 val = bit_value_assume_aligned (stmt, attrs, val, false);
2415 attrs = lookup_attribute ("alloc_align",
2416 TYPE_ATTRIBUTES (fntype));
2417 if (attrs)
2418 val = bit_value_assume_aligned (stmt, attrs, val, true);
2420 int flags = ignore_return_flags
2421 ? 0 : gimple_call_return_flags (as_a <gcall *> (stmt));
2422 if (flags & ERF_RETURNS_ARG
2423 && (flags & ERF_RETURN_ARG_MASK) < gimple_call_num_args (stmt))
2425 val = get_value_for_expr
2426 (gimple_call_arg (stmt,
2427 flags & ERF_RETURN_ARG_MASK), true);
2430 is_constant = (val.lattice_val == CONSTANT);
2433 if (flag_tree_bit_ccp
2434 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
2435 || !is_constant)
2436 && gimple_get_lhs (stmt)
2437 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
2439 tree lhs = gimple_get_lhs (stmt);
2440 wide_int nonzero_bits = get_nonzero_bits (lhs);
2441 if (nonzero_bits != -1)
2443 if (!is_constant)
2445 val.lattice_val = CONSTANT;
2446 val.value = build_zero_cst (TREE_TYPE (lhs));
2447 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
2448 is_constant = true;
2450 else
2452 if (wi::bit_and_not (wi::to_wide (val.value), nonzero_bits) != 0)
2453 val.value = wide_int_to_tree (TREE_TYPE (lhs),
2454 nonzero_bits
2455 & wi::to_wide (val.value));
2456 if (nonzero_bits == 0)
2457 val.mask = 0;
2458 else
2459 val.mask = val.mask & extend_mask (nonzero_bits,
2460 TYPE_SIGN (TREE_TYPE (lhs)));
2465 /* The statement produced a nonconstant value. */
2466 if (!is_constant)
2468 /* The statement produced a copy. */
2469 if (simplified && TREE_CODE (simplified) == SSA_NAME
2470 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
2472 val.lattice_val = CONSTANT;
2473 val.value = simplified;
2474 val.mask = -1;
2476 /* The statement is VARYING. */
2477 else
2479 val.lattice_val = VARYING;
2480 val.value = NULL_TREE;
2481 val.mask = -1;
2485 return val;
2488 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
2490 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
2491 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
2493 static void
2494 insert_clobber_before_stack_restore (tree saved_val, tree var,
2495 gimple_htab **visited)
2497 gimple *stmt;
2498 gassign *clobber_stmt;
2499 tree clobber;
2500 imm_use_iterator iter;
2501 gimple_stmt_iterator i;
2502 gimple **slot;
2504 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
2505 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2507 clobber = build_clobber (TREE_TYPE (var));
2508 clobber_stmt = gimple_build_assign (var, clobber);
2510 i = gsi_for_stmt (stmt);
2511 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2513 else if (gimple_code (stmt) == GIMPLE_PHI)
2515 if (!*visited)
2516 *visited = new gimple_htab (10);
2518 slot = (*visited)->find_slot (stmt, INSERT);
2519 if (*slot != NULL)
2520 continue;
2522 *slot = stmt;
2523 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2524 visited);
2526 else if (gimple_assign_ssa_name_copy_p (stmt))
2527 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2528 visited);
2531 /* Advance the iterator to the previous non-debug gimple statement in the same
2532 or dominating basic block. */
2534 static inline void
2535 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2537 basic_block dom;
2539 gsi_prev_nondebug (i);
2540 while (gsi_end_p (*i))
2542 dom = get_immediate_dominator (CDI_DOMINATORS, gsi_bb (*i));
2543 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2544 return;
2546 *i = gsi_last_bb (dom);
2550 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2551 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2553 It is possible that BUILT_IN_STACK_SAVE cannot be found in a dominator when
2554 a previous pass (such as DOM) duplicated it along multiple paths to a BB.
2555 In that case the function gives up without inserting the clobbers. */
2557 static void
2558 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2560 gimple *stmt;
2561 tree saved_val;
2562 gimple_htab *visited = NULL;
2564 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2566 stmt = gsi_stmt (i);
2568 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2569 continue;
2571 saved_val = gimple_call_lhs (stmt);
2572 if (saved_val == NULL_TREE)
2573 continue;
2575 insert_clobber_before_stack_restore (saved_val, var, &visited);
2576 break;
2579 delete visited;
2582 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2583 fixed-size array and returns the address, if found, otherwise returns
2584 NULL_TREE. */
2586 static tree
2587 fold_builtin_alloca_with_align (gimple *stmt)
2589 unsigned HOST_WIDE_INT size, threshold, n_elem;
2590 tree lhs, arg, block, var, elem_type, array_type;
2592 /* Get lhs. */
2593 lhs = gimple_call_lhs (stmt);
2594 if (lhs == NULL_TREE)
2595 return NULL_TREE;
2597 /* Detect constant argument. */
2598 arg = get_constant_value (gimple_call_arg (stmt, 0));
2599 if (arg == NULL_TREE
2600 || TREE_CODE (arg) != INTEGER_CST
2601 || !tree_fits_uhwi_p (arg))
2602 return NULL_TREE;
2604 size = tree_to_uhwi (arg);
2606 /* Heuristic: don't fold large allocas. */
2607 threshold = (unsigned HOST_WIDE_INT)param_large_stack_frame;
2608 /* In case the alloca is located at function entry, it has the same lifetime
2609 as a declared array, so we allow a larger size. */
2610 block = gimple_block (stmt);
2611 if (!(cfun->after_inlining
2612 && block
2613 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2614 threshold /= 10;
2615 if (size > threshold)
2616 return NULL_TREE;
2618 /* We have to be able to move points-to info. We used to assert
2619 that we can but IPA PTA might end up with two UIDs here
2620 as it might need to handle more than one instance being
2621 live at the same time. Instead of trying to detect this case
2622 (using the first UID would be OK) just give up for now. */
2623 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2624 unsigned uid = 0;
2625 if (pi != NULL
2626 && !pi->pt.anything
2627 && !pt_solution_singleton_or_null_p (&pi->pt, &uid))
2628 return NULL_TREE;
2630 /* Declare array. */
2631 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2632 n_elem = size * 8 / BITS_PER_UNIT;
2633 array_type = build_array_type_nelts (elem_type, n_elem);
2635 if (tree ssa_name = SSA_NAME_IDENTIFIER (lhs))
2637 /* Give the temporary a name derived from the name of the VLA
2638 declaration so it can be referenced in diagnostics. */
2639 const char *name = IDENTIFIER_POINTER (ssa_name);
2640 var = create_tmp_var (array_type, name);
2642 else
2643 var = create_tmp_var (array_type);
2645 if (gimple *lhsdef = SSA_NAME_DEF_STMT (lhs))
2647 /* Set the temporary's location to that of the VLA declaration
2648 so it can be pointed to in diagnostics. */
2649 location_t loc = gimple_location (lhsdef);
2650 DECL_SOURCE_LOCATION (var) = loc;
2653 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2654 if (uid != 0)
2655 SET_DECL_PT_UID (var, uid);
2657 /* Fold alloca to the address of the array. */
2658 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2661 /* Fold the stmt at *GSI with CCP specific information that propagating
2662 and regular folding does not catch. */
2664 bool
2665 ccp_folder::fold_stmt (gimple_stmt_iterator *gsi)
2667 gimple *stmt = gsi_stmt (*gsi);
2669 switch (gimple_code (stmt))
2671 case GIMPLE_COND:
2673 gcond *cond_stmt = as_a <gcond *> (stmt);
2674 ccp_prop_value_t val;
2675 /* Statement evaluation will handle type mismatches in constants
2676 more gracefully than the final propagation. This allows us to
2677 fold more conditionals here. */
2678 val = evaluate_stmt (stmt);
2679 if (val.lattice_val != CONSTANT
2680 || val.mask != 0)
2681 return false;
2683 if (dump_file)
2685 fprintf (dump_file, "Folding predicate ");
2686 print_gimple_expr (dump_file, stmt, 0);
2687 fprintf (dump_file, " to ");
2688 print_generic_expr (dump_file, val.value);
2689 fprintf (dump_file, "\n");
2692 if (integer_zerop (val.value))
2693 gimple_cond_make_false (cond_stmt);
2694 else
2695 gimple_cond_make_true (cond_stmt);
2697 return true;
2700 case GIMPLE_CALL:
2702 tree lhs = gimple_call_lhs (stmt);
2703 int flags = gimple_call_flags (stmt);
2704 tree val;
2705 tree argt;
2706 bool changed = false;
2707 unsigned i;
2709 /* If the call was folded into a constant make sure it goes
2710 away even if we cannot propagate into all uses because of
2711 type issues. */
2712 if (lhs
2713 && TREE_CODE (lhs) == SSA_NAME
2714 && (val = get_constant_value (lhs))
2715 /* Don't optimize away calls that have side-effects. */
2716 && (flags & (ECF_CONST|ECF_PURE)) != 0
2717 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2719 tree new_rhs = unshare_expr (val);
2720 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2721 TREE_TYPE (new_rhs)))
2722 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2723 gimplify_and_update_call_from_tree (gsi, new_rhs);
2724 return true;
2727 /* Internal calls provide no argument types, so the extra laxity
2728 for normal calls does not apply. */
2729 if (gimple_call_internal_p (stmt))
2730 return false;
2732 /* The heuristic of fold_builtin_alloca_with_align differs before and
2733 after inlining, so we don't require the arg to be changed into a
2734 constant for folding, but just to be constant. */
2735 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN)
2736 || gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX))
2738 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2739 if (new_rhs)
2741 gimplify_and_update_call_from_tree (gsi, new_rhs);
2742 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2743 insert_clobbers_for_var (*gsi, var);
2744 return true;
2748 /* If there's no extra info from an assume_aligned call,
2749 drop it so it doesn't act as otherwise useless dataflow
2750 barrier. */
2751 if (gimple_call_builtin_p (stmt, BUILT_IN_ASSUME_ALIGNED))
2753 tree ptr = gimple_call_arg (stmt, 0);
2754 ccp_prop_value_t ptrval = get_value_for_expr (ptr, true);
2755 if (ptrval.lattice_val == CONSTANT
2756 && TREE_CODE (ptrval.value) == INTEGER_CST
2757 && ptrval.mask != 0)
2759 ccp_prop_value_t val
2760 = bit_value_assume_aligned (stmt, NULL_TREE, ptrval, false);
2761 unsigned int ptralign = least_bit_hwi (ptrval.mask.to_uhwi ());
2762 unsigned int align = least_bit_hwi (val.mask.to_uhwi ());
2763 if (ptralign == align
2764 && ((TREE_INT_CST_LOW (ptrval.value) & (align - 1))
2765 == (TREE_INT_CST_LOW (val.value) & (align - 1))))
2767 replace_call_with_value (gsi, ptr);
2768 return true;
2773 /* Propagate into the call arguments. Compared to replace_uses_in
2774 this can use the argument slot types for type verification
2775 instead of the current argument type. We also can safely
2776 drop qualifiers here as we are dealing with constants anyway. */
2777 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2778 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2779 ++i, argt = TREE_CHAIN (argt))
2781 tree arg = gimple_call_arg (stmt, i);
2782 if (TREE_CODE (arg) == SSA_NAME
2783 && (val = get_constant_value (arg))
2784 && useless_type_conversion_p
2785 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2786 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2788 gimple_call_set_arg (stmt, i, unshare_expr (val));
2789 changed = true;
2793 return changed;
2796 case GIMPLE_ASSIGN:
2798 tree lhs = gimple_assign_lhs (stmt);
2799 tree val;
2801 /* If we have a load that turned out to be constant replace it
2802 as we cannot propagate into all uses in all cases. */
2803 if (gimple_assign_single_p (stmt)
2804 && TREE_CODE (lhs) == SSA_NAME
2805 && (val = get_constant_value (lhs)))
2807 tree rhs = unshare_expr (val);
2808 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2809 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2810 gimple_assign_set_rhs_from_tree (gsi, rhs);
2811 return true;
2814 return false;
2817 default:
2818 return false;
2822 /* Visit the assignment statement STMT. Set the value of its LHS to the
2823 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2824 creates virtual definitions, set the value of each new name to that
2825 of the RHS (if we can derive a constant out of the RHS).
2826 Value-returning call statements also perform an assignment, and
2827 are handled here. */
2829 static enum ssa_prop_result
2830 visit_assignment (gimple *stmt, tree *output_p)
2832 ccp_prop_value_t val;
2833 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2835 tree lhs = gimple_get_lhs (stmt);
2836 if (TREE_CODE (lhs) == SSA_NAME)
2838 /* Evaluate the statement, which could be
2839 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2840 val = evaluate_stmt (stmt);
2842 /* If STMT is an assignment to an SSA_NAME, we only have one
2843 value to set. */
2844 if (set_lattice_value (lhs, &val))
2846 *output_p = lhs;
2847 if (val.lattice_val == VARYING)
2848 retval = SSA_PROP_VARYING;
2849 else
2850 retval = SSA_PROP_INTERESTING;
2854 return retval;
2858 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2859 if it can determine which edge will be taken. Otherwise, return
2860 SSA_PROP_VARYING. */
2862 static enum ssa_prop_result
2863 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2865 ccp_prop_value_t val;
2866 basic_block block;
2868 block = gimple_bb (stmt);
2869 val = evaluate_stmt (stmt);
2870 if (val.lattice_val != CONSTANT
2871 || val.mask != 0)
2872 return SSA_PROP_VARYING;
2874 /* Find which edge out of the conditional block will be taken and add it
2875 to the worklist. If no single edge can be determined statically,
2876 return SSA_PROP_VARYING to feed all the outgoing edges to the
2877 propagation engine. */
2878 *taken_edge_p = find_taken_edge (block, val.value);
2879 if (*taken_edge_p)
2880 return SSA_PROP_INTERESTING;
2881 else
2882 return SSA_PROP_VARYING;
2886 /* Evaluate statement STMT. If the statement produces an output value and
2887 its evaluation changes the lattice value of its output, return
2888 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2889 output value.
2891 If STMT is a conditional branch and we can determine its truth
2892 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2893 value, return SSA_PROP_VARYING. */
2895 enum ssa_prop_result
2896 ccp_propagate::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2898 tree def;
2899 ssa_op_iter iter;
2901 if (dump_file && (dump_flags & TDF_DETAILS))
2903 fprintf (dump_file, "\nVisiting statement:\n");
2904 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2907 switch (gimple_code (stmt))
2909 case GIMPLE_ASSIGN:
2910 /* If the statement is an assignment that produces a single
2911 output value, evaluate its RHS to see if the lattice value of
2912 its output has changed. */
2913 return visit_assignment (stmt, output_p);
2915 case GIMPLE_CALL:
2916 /* A value-returning call also performs an assignment. */
2917 if (gimple_call_lhs (stmt) != NULL_TREE)
2918 return visit_assignment (stmt, output_p);
2919 break;
2921 case GIMPLE_COND:
2922 case GIMPLE_SWITCH:
2923 /* If STMT is a conditional branch, see if we can determine
2924 which branch will be taken. */
2925 /* FIXME. It appears that we should be able to optimize
2926 computed GOTOs here as well. */
2927 return visit_cond_stmt (stmt, taken_edge_p);
2929 default:
2930 break;
2933 /* Any other kind of statement is not interesting for constant
2934 propagation and, therefore, not worth simulating. */
2935 if (dump_file && (dump_flags & TDF_DETAILS))
2936 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2938 /* Definitions made by statements other than assignments to
2939 SSA_NAMEs represent unknown modifications to their outputs.
2940 Mark them VARYING. */
2941 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2942 set_value_varying (def);
2944 return SSA_PROP_VARYING;
2948 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2949 record nonzero bits. */
2951 static unsigned int
2952 do_ssa_ccp (bool nonzero_p)
2954 unsigned int todo = 0;
2955 calculate_dominance_info (CDI_DOMINATORS);
2957 ccp_initialize ();
2958 class ccp_propagate ccp_propagate;
2959 ccp_propagate.ssa_propagate ();
2960 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2962 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2964 /* ccp_finalize does not preserve loop-closed ssa. */
2965 loops_state_clear (LOOP_CLOSED_SSA);
2968 free_dominance_info (CDI_DOMINATORS);
2969 return todo;
2973 namespace {
2975 const pass_data pass_data_ccp =
2977 GIMPLE_PASS, /* type */
2978 "ccp", /* name */
2979 OPTGROUP_NONE, /* optinfo_flags */
2980 TV_TREE_CCP, /* tv_id */
2981 ( PROP_cfg | PROP_ssa ), /* properties_required */
2982 0, /* properties_provided */
2983 0, /* properties_destroyed */
2984 0, /* todo_flags_start */
2985 TODO_update_address_taken, /* todo_flags_finish */
2988 class pass_ccp : public gimple_opt_pass
2990 public:
2991 pass_ccp (gcc::context *ctxt)
2992 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2995 /* opt_pass methods: */
2996 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2997 void set_pass_param (unsigned int n, bool param)
2999 gcc_assert (n == 0);
3000 nonzero_p = param;
3002 virtual bool gate (function *) { return flag_tree_ccp != 0; }
3003 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
3005 private:
3006 /* Determines whether the pass instance records nonzero bits. */
3007 bool nonzero_p;
3008 }; // class pass_ccp
3010 } // anon namespace
3012 gimple_opt_pass *
3013 make_pass_ccp (gcc::context *ctxt)
3015 return new pass_ccp (ctxt);
3020 /* Try to optimize out __builtin_stack_restore. Optimize it out
3021 if there is another __builtin_stack_restore in the same basic
3022 block and no calls or ASM_EXPRs are in between, or if this block's
3023 only outgoing edge is to EXIT_BLOCK and there are no calls or
3024 ASM_EXPRs after this __builtin_stack_restore. */
3026 static tree
3027 optimize_stack_restore (gimple_stmt_iterator i)
3029 tree callee;
3030 gimple *stmt;
3032 basic_block bb = gsi_bb (i);
3033 gimple *call = gsi_stmt (i);
3035 if (gimple_code (call) != GIMPLE_CALL
3036 || gimple_call_num_args (call) != 1
3037 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
3038 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
3039 return NULL_TREE;
3041 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
3043 stmt = gsi_stmt (i);
3044 if (gimple_code (stmt) == GIMPLE_ASM)
3045 return NULL_TREE;
3046 if (gimple_code (stmt) != GIMPLE_CALL)
3047 continue;
3049 callee = gimple_call_fndecl (stmt);
3050 if (!callee
3051 || !fndecl_built_in_p (callee, BUILT_IN_NORMAL)
3052 /* All regular builtins are ok, just obviously not alloca. */
3053 || ALLOCA_FUNCTION_CODE_P (DECL_FUNCTION_CODE (callee)))
3054 return NULL_TREE;
3056 if (fndecl_built_in_p (callee, BUILT_IN_STACK_RESTORE))
3057 goto second_stack_restore;
3060 if (!gsi_end_p (i))
3061 return NULL_TREE;
3063 /* Allow one successor of the exit block, or zero successors. */
3064 switch (EDGE_COUNT (bb->succs))
3066 case 0:
3067 break;
3068 case 1:
3069 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3070 return NULL_TREE;
3071 break;
3072 default:
3073 return NULL_TREE;
3075 second_stack_restore:
3077 /* If there's exactly one use, then zap the call to __builtin_stack_save.
3078 If there are multiple uses, then the last one should remove the call.
3079 In any case, whether the call to __builtin_stack_save can be removed
3080 or not is irrelevant to removing the call to __builtin_stack_restore. */
3081 if (has_single_use (gimple_call_arg (call, 0)))
3083 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
3084 if (is_gimple_call (stack_save))
3086 callee = gimple_call_fndecl (stack_save);
3087 if (callee && fndecl_built_in_p (callee, BUILT_IN_STACK_SAVE))
3089 gimple_stmt_iterator stack_save_gsi;
3090 tree rhs;
3092 stack_save_gsi = gsi_for_stmt (stack_save);
3093 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
3094 replace_call_with_value (&stack_save_gsi, rhs);
3099 /* No effect, so the statement will be deleted. */
3100 return integer_zero_node;
3103 /* If va_list type is a simple pointer and nothing special is needed,
3104 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
3105 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
3106 pointer assignment. */
3108 static tree
3109 optimize_stdarg_builtin (gimple *call)
3111 tree callee, lhs, rhs, cfun_va_list;
3112 bool va_list_simple_ptr;
3113 location_t loc = gimple_location (call);
3115 callee = gimple_call_fndecl (call);
3117 cfun_va_list = targetm.fn_abi_va_list (callee);
3118 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
3119 && (TREE_TYPE (cfun_va_list) == void_type_node
3120 || TREE_TYPE (cfun_va_list) == char_type_node);
3122 switch (DECL_FUNCTION_CODE (callee))
3124 case BUILT_IN_VA_START:
3125 if (!va_list_simple_ptr
3126 || targetm.expand_builtin_va_start != NULL
3127 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
3128 return NULL_TREE;
3130 if (gimple_call_num_args (call) != 2)
3131 return NULL_TREE;
3133 lhs = gimple_call_arg (call, 0);
3134 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
3135 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
3136 != TYPE_MAIN_VARIANT (cfun_va_list))
3137 return NULL_TREE;
3139 lhs = build_fold_indirect_ref_loc (loc, lhs);
3140 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
3141 1, integer_zero_node);
3142 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
3143 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
3145 case BUILT_IN_VA_COPY:
3146 if (!va_list_simple_ptr)
3147 return NULL_TREE;
3149 if (gimple_call_num_args (call) != 2)
3150 return NULL_TREE;
3152 lhs = gimple_call_arg (call, 0);
3153 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
3154 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
3155 != TYPE_MAIN_VARIANT (cfun_va_list))
3156 return NULL_TREE;
3158 lhs = build_fold_indirect_ref_loc (loc, lhs);
3159 rhs = gimple_call_arg (call, 1);
3160 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
3161 != TYPE_MAIN_VARIANT (cfun_va_list))
3162 return NULL_TREE;
3164 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
3165 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
3167 case BUILT_IN_VA_END:
3168 /* No effect, so the statement will be deleted. */
3169 return integer_zero_node;
3171 default:
3172 gcc_unreachable ();
3176 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
3177 the incoming jumps. Return true if at least one jump was changed. */
3179 static bool
3180 optimize_unreachable (gimple_stmt_iterator i)
3182 basic_block bb = gsi_bb (i);
3183 gimple_stmt_iterator gsi;
3184 gimple *stmt;
3185 edge_iterator ei;
3186 edge e;
3187 bool ret;
3189 if (flag_sanitize & SANITIZE_UNREACHABLE)
3190 return false;
3192 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3194 stmt = gsi_stmt (gsi);
3196 if (is_gimple_debug (stmt))
3197 continue;
3199 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
3201 /* Verify we do not need to preserve the label. */
3202 if (FORCED_LABEL (gimple_label_label (label_stmt)))
3203 return false;
3205 continue;
3208 /* Only handle the case that __builtin_unreachable is the first statement
3209 in the block. We rely on DCE to remove stmts without side-effects
3210 before __builtin_unreachable. */
3211 if (gsi_stmt (gsi) != gsi_stmt (i))
3212 return false;
3215 ret = false;
3216 FOR_EACH_EDGE (e, ei, bb->preds)
3218 gsi = gsi_last_bb (e->src);
3219 if (gsi_end_p (gsi))
3220 continue;
3222 stmt = gsi_stmt (gsi);
3223 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
3225 if (e->flags & EDGE_TRUE_VALUE)
3226 gimple_cond_make_false (cond_stmt);
3227 else if (e->flags & EDGE_FALSE_VALUE)
3228 gimple_cond_make_true (cond_stmt);
3229 else
3230 gcc_unreachable ();
3231 update_stmt (cond_stmt);
3233 else
3235 /* Todo: handle other cases. Note that unreachable switch case
3236 statements have already been removed. */
3237 continue;
3240 ret = true;
3243 return ret;
3246 /* Optimize
3247 mask_2 = 1 << cnt_1;
3248 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
3249 _5 = _4 & mask_2;
3251 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
3252 _5 = _4;
3253 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
3254 is passed instead of 0, and the builtin just returns a zero
3255 or 1 value instead of the actual bit.
3256 Similarly for __sync_fetch_and_or_* (without the ", _3" part
3257 in there), and/or if mask_2 is a power of 2 constant.
3258 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
3259 in that case. And similarly for and instead of or, except that
3260 the second argument to the builtin needs to be one's complement
3261 of the mask instead of mask. */
3263 static void
3264 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
3265 enum internal_fn fn, bool has_model_arg,
3266 bool after)
3268 gimple *call = gsi_stmt (*gsip);
3269 tree lhs = gimple_call_lhs (call);
3270 use_operand_p use_p;
3271 gimple *use_stmt;
3272 tree mask, bit;
3273 optab optab;
3275 if (!flag_inline_atomics
3276 || optimize_debug
3277 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
3278 || !lhs
3279 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
3280 || !single_imm_use (lhs, &use_p, &use_stmt)
3281 || !is_gimple_assign (use_stmt)
3282 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
3283 || !gimple_vdef (call))
3284 return;
3286 switch (fn)
3288 case IFN_ATOMIC_BIT_TEST_AND_SET:
3289 optab = atomic_bit_test_and_set_optab;
3290 break;
3291 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
3292 optab = atomic_bit_test_and_complement_optab;
3293 break;
3294 case IFN_ATOMIC_BIT_TEST_AND_RESET:
3295 optab = atomic_bit_test_and_reset_optab;
3296 break;
3297 default:
3298 return;
3301 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
3302 return;
3304 mask = gimple_call_arg (call, 1);
3305 tree use_lhs = gimple_assign_lhs (use_stmt);
3306 if (!use_lhs)
3307 return;
3309 if (TREE_CODE (mask) == INTEGER_CST)
3311 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
3312 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
3313 mask = fold_convert (TREE_TYPE (lhs), mask);
3314 int ibit = tree_log2 (mask);
3315 if (ibit < 0)
3316 return;
3317 bit = build_int_cst (TREE_TYPE (lhs), ibit);
3319 else if (TREE_CODE (mask) == SSA_NAME)
3321 gimple *g = SSA_NAME_DEF_STMT (mask);
3322 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
3324 if (!is_gimple_assign (g)
3325 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
3326 return;
3327 mask = gimple_assign_rhs1 (g);
3328 if (TREE_CODE (mask) != SSA_NAME)
3329 return;
3330 g = SSA_NAME_DEF_STMT (mask);
3332 if (!is_gimple_assign (g)
3333 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
3334 || !integer_onep (gimple_assign_rhs1 (g)))
3335 return;
3336 bit = gimple_assign_rhs2 (g);
3338 else
3339 return;
3341 if (gimple_assign_rhs1 (use_stmt) == lhs)
3343 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
3344 return;
3346 else if (gimple_assign_rhs2 (use_stmt) != lhs
3347 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
3348 return;
3350 bool use_bool = true;
3351 bool has_debug_uses = false;
3352 imm_use_iterator iter;
3353 gimple *g;
3355 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
3356 use_bool = false;
3357 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3359 enum tree_code code = ERROR_MARK;
3360 tree op0 = NULL_TREE, op1 = NULL_TREE;
3361 if (is_gimple_debug (g))
3363 has_debug_uses = true;
3364 continue;
3366 else if (is_gimple_assign (g))
3367 switch (gimple_assign_rhs_code (g))
3369 case COND_EXPR:
3370 op1 = gimple_assign_rhs1 (g);
3371 code = TREE_CODE (op1);
3372 op0 = TREE_OPERAND (op1, 0);
3373 op1 = TREE_OPERAND (op1, 1);
3374 break;
3375 case EQ_EXPR:
3376 case NE_EXPR:
3377 code = gimple_assign_rhs_code (g);
3378 op0 = gimple_assign_rhs1 (g);
3379 op1 = gimple_assign_rhs2 (g);
3380 break;
3381 default:
3382 break;
3384 else if (gimple_code (g) == GIMPLE_COND)
3386 code = gimple_cond_code (g);
3387 op0 = gimple_cond_lhs (g);
3388 op1 = gimple_cond_rhs (g);
3391 if ((code == EQ_EXPR || code == NE_EXPR)
3392 && op0 == use_lhs
3393 && integer_zerop (op1))
3395 use_operand_p use_p;
3396 int n = 0;
3397 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3398 n++;
3399 if (n == 1)
3400 continue;
3403 use_bool = false;
3404 break;
3407 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
3408 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
3409 if (has_model_arg)
3410 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
3411 bit, flag, gimple_call_arg (call, 2));
3412 else
3413 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
3414 bit, flag);
3415 gimple_call_set_lhs (g, new_lhs);
3416 gimple_set_location (g, gimple_location (call));
3417 gimple_move_vops (g, call);
3418 bool throws = stmt_can_throw_internal (cfun, call);
3419 gimple_call_set_nothrow (as_a <gcall *> (g),
3420 gimple_call_nothrow_p (as_a <gcall *> (call)));
3421 gimple_stmt_iterator gsi = *gsip;
3422 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3423 edge e = NULL;
3424 if (throws)
3426 maybe_clean_or_replace_eh_stmt (call, g);
3427 if (after || (use_bool && has_debug_uses))
3428 e = find_fallthru_edge (gsi_bb (gsi)->succs);
3430 if (after)
3432 /* The internal function returns the value of the specified bit
3433 before the atomic operation. If we are interested in the value
3434 of the specified bit after the atomic operation (makes only sense
3435 for xor, otherwise the bit content is compile time known),
3436 we need to invert the bit. */
3437 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
3438 BIT_XOR_EXPR, new_lhs,
3439 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
3440 : mask);
3441 new_lhs = gimple_assign_lhs (g);
3442 if (throws)
3444 gsi_insert_on_edge_immediate (e, g);
3445 gsi = gsi_for_stmt (g);
3447 else
3448 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3450 if (use_bool && has_debug_uses)
3452 tree temp = NULL_TREE;
3453 if (!throws || after || single_pred_p (e->dest))
3455 temp = make_node (DEBUG_EXPR_DECL);
3456 DECL_ARTIFICIAL (temp) = 1;
3457 TREE_TYPE (temp) = TREE_TYPE (lhs);
3458 SET_DECL_MODE (temp, TYPE_MODE (TREE_TYPE (lhs)));
3459 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
3460 g = gimple_build_debug_bind (temp, t, g);
3461 if (throws && !after)
3463 gsi = gsi_after_labels (e->dest);
3464 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
3466 else
3467 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
3469 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
3470 if (is_gimple_debug (g))
3472 use_operand_p use_p;
3473 if (temp == NULL_TREE)
3474 gimple_debug_bind_reset_value (g);
3475 else
3476 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3477 SET_USE (use_p, temp);
3478 update_stmt (g);
3481 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
3482 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
3483 replace_uses_by (use_lhs, new_lhs);
3484 gsi = gsi_for_stmt (use_stmt);
3485 gsi_remove (&gsi, true);
3486 release_defs (use_stmt);
3487 gsi_remove (gsip, true);
3488 release_ssa_name (lhs);
3491 /* Optimize
3492 a = {};
3493 b = a;
3494 into
3495 a = {};
3496 b = {};
3497 Similarly for memset (&a, ..., sizeof (a)); instead of a = {};
3498 and/or memcpy (&b, &a, sizeof (a)); instead of b = a; */
3500 static void
3501 optimize_memcpy (gimple_stmt_iterator *gsip, tree dest, tree src, tree len)
3503 gimple *stmt = gsi_stmt (*gsip);
3504 if (gimple_has_volatile_ops (stmt))
3505 return;
3507 tree vuse = gimple_vuse (stmt);
3508 if (vuse == NULL)
3509 return;
3511 gimple *defstmt = SSA_NAME_DEF_STMT (vuse);
3512 tree src2 = NULL_TREE, len2 = NULL_TREE;
3513 poly_int64 offset, offset2;
3514 tree val = integer_zero_node;
3515 if (gimple_store_p (defstmt)
3516 && gimple_assign_single_p (defstmt)
3517 && TREE_CODE (gimple_assign_rhs1 (defstmt)) == CONSTRUCTOR
3518 && !gimple_clobber_p (defstmt))
3519 src2 = gimple_assign_lhs (defstmt);
3520 else if (gimple_call_builtin_p (defstmt, BUILT_IN_MEMSET)
3521 && TREE_CODE (gimple_call_arg (defstmt, 0)) == ADDR_EXPR
3522 && TREE_CODE (gimple_call_arg (defstmt, 1)) == INTEGER_CST)
3524 src2 = TREE_OPERAND (gimple_call_arg (defstmt, 0), 0);
3525 len2 = gimple_call_arg (defstmt, 2);
3526 val = gimple_call_arg (defstmt, 1);
3527 /* For non-0 val, we'd have to transform stmt from assignment
3528 into memset (only if dest is addressable). */
3529 if (!integer_zerop (val) && is_gimple_assign (stmt))
3530 src2 = NULL_TREE;
3533 if (src2 == NULL_TREE)
3534 return;
3536 if (len == NULL_TREE)
3537 len = (TREE_CODE (src) == COMPONENT_REF
3538 ? DECL_SIZE_UNIT (TREE_OPERAND (src, 1))
3539 : TYPE_SIZE_UNIT (TREE_TYPE (src)));
3540 if (len2 == NULL_TREE)
3541 len2 = (TREE_CODE (src2) == COMPONENT_REF
3542 ? DECL_SIZE_UNIT (TREE_OPERAND (src2, 1))
3543 : TYPE_SIZE_UNIT (TREE_TYPE (src2)));
3544 if (len == NULL_TREE
3545 || !poly_int_tree_p (len)
3546 || len2 == NULL_TREE
3547 || !poly_int_tree_p (len2))
3548 return;
3550 src = get_addr_base_and_unit_offset (src, &offset);
3551 src2 = get_addr_base_and_unit_offset (src2, &offset2);
3552 if (src == NULL_TREE
3553 || src2 == NULL_TREE
3554 || maybe_lt (offset, offset2))
3555 return;
3557 if (!operand_equal_p (src, src2, 0))
3558 return;
3560 /* [ src + offset2, src + offset2 + len2 - 1 ] is set to val.
3561 Make sure that
3562 [ src + offset, src + offset + len - 1 ] is a subset of that. */
3563 if (maybe_gt (wi::to_poly_offset (len) + (offset - offset2),
3564 wi::to_poly_offset (len2)))
3565 return;
3567 if (dump_file && (dump_flags & TDF_DETAILS))
3569 fprintf (dump_file, "Simplified\n ");
3570 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3571 fprintf (dump_file, "after previous\n ");
3572 print_gimple_stmt (dump_file, defstmt, 0, dump_flags);
3575 /* For simplicity, don't change the kind of the stmt,
3576 turn dest = src; into dest = {}; and memcpy (&dest, &src, len);
3577 into memset (&dest, val, len);
3578 In theory we could change dest = src into memset if dest
3579 is addressable (maybe beneficial if val is not 0), or
3580 memcpy (&dest, &src, len) into dest = {} if len is the size
3581 of dest, dest isn't volatile. */
3582 if (is_gimple_assign (stmt))
3584 tree ctor = build_constructor (TREE_TYPE (dest), NULL);
3585 gimple_assign_set_rhs_from_tree (gsip, ctor);
3586 update_stmt (stmt);
3588 else /* If stmt is memcpy, transform it into memset. */
3590 gcall *call = as_a <gcall *> (stmt);
3591 tree fndecl = builtin_decl_implicit (BUILT_IN_MEMSET);
3592 gimple_call_set_fndecl (call, fndecl);
3593 gimple_call_set_fntype (call, TREE_TYPE (fndecl));
3594 gimple_call_set_arg (call, 1, val);
3595 update_stmt (stmt);
3598 if (dump_file && (dump_flags & TDF_DETAILS))
3600 fprintf (dump_file, "into\n ");
3601 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3605 /* A simple pass that attempts to fold all builtin functions. This pass
3606 is run after we've propagated as many constants as we can. */
3608 namespace {
3610 const pass_data pass_data_fold_builtins =
3612 GIMPLE_PASS, /* type */
3613 "fab", /* name */
3614 OPTGROUP_NONE, /* optinfo_flags */
3615 TV_NONE, /* tv_id */
3616 ( PROP_cfg | PROP_ssa ), /* properties_required */
3617 0, /* properties_provided */
3618 0, /* properties_destroyed */
3619 0, /* todo_flags_start */
3620 TODO_update_ssa, /* todo_flags_finish */
3623 class pass_fold_builtins : public gimple_opt_pass
3625 public:
3626 pass_fold_builtins (gcc::context *ctxt)
3627 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
3630 /* opt_pass methods: */
3631 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
3632 virtual unsigned int execute (function *);
3634 }; // class pass_fold_builtins
3636 unsigned int
3637 pass_fold_builtins::execute (function *fun)
3639 bool cfg_changed = false;
3640 basic_block bb;
3641 unsigned int todoflags = 0;
3643 FOR_EACH_BB_FN (bb, fun)
3645 gimple_stmt_iterator i;
3646 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
3648 gimple *stmt, *old_stmt;
3649 tree callee;
3650 enum built_in_function fcode;
3652 stmt = gsi_stmt (i);
3654 if (gimple_code (stmt) != GIMPLE_CALL)
3656 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
3657 after the last GIMPLE DSE they aren't needed and might
3658 unnecessarily keep the SSA_NAMEs live. */
3659 if (gimple_clobber_p (stmt))
3661 tree lhs = gimple_assign_lhs (stmt);
3662 if (TREE_CODE (lhs) == MEM_REF
3663 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
3665 unlink_stmt_vdef (stmt);
3666 gsi_remove (&i, true);
3667 release_defs (stmt);
3668 continue;
3671 else if (gimple_assign_load_p (stmt) && gimple_store_p (stmt))
3672 optimize_memcpy (&i, gimple_assign_lhs (stmt),
3673 gimple_assign_rhs1 (stmt), NULL_TREE);
3674 gsi_next (&i);
3675 continue;
3678 callee = gimple_call_fndecl (stmt);
3679 if (!callee || !fndecl_built_in_p (callee, BUILT_IN_NORMAL))
3681 gsi_next (&i);
3682 continue;
3685 fcode = DECL_FUNCTION_CODE (callee);
3686 if (fold_stmt (&i))
3688 else
3690 tree result = NULL_TREE;
3691 switch (DECL_FUNCTION_CODE (callee))
3693 case BUILT_IN_CONSTANT_P:
3694 /* Resolve __builtin_constant_p. If it hasn't been
3695 folded to integer_one_node by now, it's fairly
3696 certain that the value simply isn't constant. */
3697 result = integer_zero_node;
3698 break;
3700 case BUILT_IN_ASSUME_ALIGNED:
3701 /* Remove __builtin_assume_aligned. */
3702 result = gimple_call_arg (stmt, 0);
3703 break;
3705 case BUILT_IN_STACK_RESTORE:
3706 result = optimize_stack_restore (i);
3707 if (result)
3708 break;
3709 gsi_next (&i);
3710 continue;
3712 case BUILT_IN_UNREACHABLE:
3713 if (optimize_unreachable (i))
3714 cfg_changed = true;
3715 break;
3717 case BUILT_IN_ATOMIC_FETCH_OR_1:
3718 case BUILT_IN_ATOMIC_FETCH_OR_2:
3719 case BUILT_IN_ATOMIC_FETCH_OR_4:
3720 case BUILT_IN_ATOMIC_FETCH_OR_8:
3721 case BUILT_IN_ATOMIC_FETCH_OR_16:
3722 optimize_atomic_bit_test_and (&i,
3723 IFN_ATOMIC_BIT_TEST_AND_SET,
3724 true, false);
3725 break;
3726 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3727 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3728 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3729 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3730 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3731 optimize_atomic_bit_test_and (&i,
3732 IFN_ATOMIC_BIT_TEST_AND_SET,
3733 false, false);
3734 break;
3736 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3737 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3738 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3739 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3740 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3741 optimize_atomic_bit_test_and
3742 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3743 break;
3744 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3745 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3746 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3747 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3748 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3749 optimize_atomic_bit_test_and
3750 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3751 break;
3753 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3754 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3755 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3756 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3757 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3758 optimize_atomic_bit_test_and
3759 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3760 break;
3761 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3762 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3763 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3764 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3765 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3766 optimize_atomic_bit_test_and
3767 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3768 break;
3770 case BUILT_IN_ATOMIC_FETCH_AND_1:
3771 case BUILT_IN_ATOMIC_FETCH_AND_2:
3772 case BUILT_IN_ATOMIC_FETCH_AND_4:
3773 case BUILT_IN_ATOMIC_FETCH_AND_8:
3774 case BUILT_IN_ATOMIC_FETCH_AND_16:
3775 optimize_atomic_bit_test_and (&i,
3776 IFN_ATOMIC_BIT_TEST_AND_RESET,
3777 true, false);
3778 break;
3779 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3780 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3781 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3782 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3783 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3784 optimize_atomic_bit_test_and (&i,
3785 IFN_ATOMIC_BIT_TEST_AND_RESET,
3786 false, false);
3787 break;
3789 case BUILT_IN_MEMCPY:
3790 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL)
3791 && TREE_CODE (gimple_call_arg (stmt, 0)) == ADDR_EXPR
3792 && TREE_CODE (gimple_call_arg (stmt, 1)) == ADDR_EXPR
3793 && TREE_CODE (gimple_call_arg (stmt, 2)) == INTEGER_CST)
3795 tree dest = TREE_OPERAND (gimple_call_arg (stmt, 0), 0);
3796 tree src = TREE_OPERAND (gimple_call_arg (stmt, 1), 0);
3797 tree len = gimple_call_arg (stmt, 2);
3798 optimize_memcpy (&i, dest, src, len);
3800 break;
3802 case BUILT_IN_VA_START:
3803 case BUILT_IN_VA_END:
3804 case BUILT_IN_VA_COPY:
3805 /* These shouldn't be folded before pass_stdarg. */
3806 result = optimize_stdarg_builtin (stmt);
3807 break;
3809 default:;
3812 if (!result)
3814 gsi_next (&i);
3815 continue;
3818 gimplify_and_update_call_from_tree (&i, result);
3821 todoflags |= TODO_update_address_taken;
3823 if (dump_file && (dump_flags & TDF_DETAILS))
3825 fprintf (dump_file, "Simplified\n ");
3826 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3829 old_stmt = stmt;
3830 stmt = gsi_stmt (i);
3831 update_stmt (stmt);
3833 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3834 && gimple_purge_dead_eh_edges (bb))
3835 cfg_changed = true;
3837 if (dump_file && (dump_flags & TDF_DETAILS))
3839 fprintf (dump_file, "to\n ");
3840 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3841 fprintf (dump_file, "\n");
3844 /* Retry the same statement if it changed into another
3845 builtin, there might be new opportunities now. */
3846 if (gimple_code (stmt) != GIMPLE_CALL)
3848 gsi_next (&i);
3849 continue;
3851 callee = gimple_call_fndecl (stmt);
3852 if (!callee
3853 || !fndecl_built_in_p (callee, fcode))
3854 gsi_next (&i);
3858 /* Delete unreachable blocks. */
3859 if (cfg_changed)
3860 todoflags |= TODO_cleanup_cfg;
3862 return todoflags;
3865 } // anon namespace
3867 gimple_opt_pass *
3868 make_pass_fold_builtins (gcc::context *ctxt)
3870 return new pass_fold_builtins (ctxt);
3873 /* A simple pass that emits some warnings post IPA. */
3875 namespace {
3877 const pass_data pass_data_post_ipa_warn =
3879 GIMPLE_PASS, /* type */
3880 "post_ipa_warn", /* name */
3881 OPTGROUP_NONE, /* optinfo_flags */
3882 TV_NONE, /* tv_id */
3883 ( PROP_cfg | PROP_ssa ), /* properties_required */
3884 0, /* properties_provided */
3885 0, /* properties_destroyed */
3886 0, /* todo_flags_start */
3887 0, /* todo_flags_finish */
3890 class pass_post_ipa_warn : public gimple_opt_pass
3892 public:
3893 pass_post_ipa_warn (gcc::context *ctxt)
3894 : gimple_opt_pass (pass_data_post_ipa_warn, ctxt)
3897 /* opt_pass methods: */
3898 opt_pass * clone () { return new pass_post_ipa_warn (m_ctxt); }
3899 virtual bool gate (function *) { return warn_nonnull != 0; }
3900 virtual unsigned int execute (function *);
3902 }; // class pass_fold_builtins
3904 unsigned int
3905 pass_post_ipa_warn::execute (function *fun)
3907 basic_block bb;
3909 FOR_EACH_BB_FN (bb, fun)
3911 gimple_stmt_iterator gsi;
3912 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3914 gimple *stmt = gsi_stmt (gsi);
3915 if (!is_gimple_call (stmt) || warning_suppressed_p (stmt, OPT_Wnonnull))
3916 continue;
3918 tree fntype = gimple_call_fntype (stmt);
3919 bitmap nonnullargs = get_nonnull_args (fntype);
3920 if (!nonnullargs)
3921 continue;
3923 tree fndecl = gimple_call_fndecl (stmt);
3924 const bool closure = fndecl && DECL_LAMBDA_FUNCTION_P (fndecl);
3926 for (unsigned i = 0; i < gimple_call_num_args (stmt); i++)
3928 tree arg = gimple_call_arg (stmt, i);
3929 if (TREE_CODE (TREE_TYPE (arg)) != POINTER_TYPE)
3930 continue;
3931 if (!integer_zerop (arg))
3932 continue;
3933 if (i == 0 && closure)
3934 /* Avoid warning for the first argument to lambda functions. */
3935 continue;
3936 if (!bitmap_empty_p (nonnullargs)
3937 && !bitmap_bit_p (nonnullargs, i))
3938 continue;
3940 /* In C++ non-static member functions argument 0 refers
3941 to the implicit this pointer. Use the same one-based
3942 numbering for ordinary arguments. */
3943 unsigned argno = TREE_CODE (fntype) == METHOD_TYPE ? i : i + 1;
3944 location_t loc = (EXPR_HAS_LOCATION (arg)
3945 ? EXPR_LOCATION (arg)
3946 : gimple_location (stmt));
3947 auto_diagnostic_group d;
3948 if (argno == 0)
3950 if (warning_at (loc, OPT_Wnonnull,
3951 "%qs pointer is null", "this")
3952 && fndecl)
3953 inform (DECL_SOURCE_LOCATION (fndecl),
3954 "in a call to non-static member function %qD",
3955 fndecl);
3956 continue;
3959 if (!warning_at (loc, OPT_Wnonnull,
3960 "argument %u null where non-null "
3961 "expected", argno))
3962 continue;
3964 tree fndecl = gimple_call_fndecl (stmt);
3965 if (fndecl && DECL_IS_UNDECLARED_BUILTIN (fndecl))
3966 inform (loc, "in a call to built-in function %qD",
3967 fndecl);
3968 else if (fndecl)
3969 inform (DECL_SOURCE_LOCATION (fndecl),
3970 "in a call to function %qD declared %qs",
3971 fndecl, "nonnull");
3973 BITMAP_FREE (nonnullargs);
3976 return 0;
3979 } // anon namespace
3981 gimple_opt_pass *
3982 make_pass_post_ipa_warn (gcc::context *ctxt)
3984 return new pass_post_ipa_warn (ctxt);