Revise -mdisable-fpregs option and add new -msoft-mult option
[official-gcc.git] / gcc / final.c
blobac6892d041ca3bf3d656589e2e7ee3c4a00f2b5f
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987-2021 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* This is the final pass of the compiler.
21 It looks at the rtl code for a function and outputs assembler code.
23 Call `final_start_function' to output the assembler code for function entry,
24 `final' to output assembler code for some RTL code,
25 `final_end_function' to output assembler code for function exit.
26 If a function is compiled in several pieces, each piece is
27 output separately with `final'.
29 Some optimizations are also done at this level.
30 Move instructions that were made unnecessary by good register allocation
31 are detected and omitted from the output. (Though most of these
32 are removed by the last jump pass.)
34 Instructions to set the condition codes are omitted when it can be
35 seen that the condition codes already had the desired values.
37 In some cases it is sufficient if the inherited condition codes
38 have related values, but this may require the following insn
39 (the one that tests the condition codes) to be modified.
41 The code for the function prologue and epilogue are generated
42 directly in assembler by the target functions function_prologue and
43 function_epilogue. Those instructions never exist as rtl. */
45 #include "config.h"
46 #define INCLUDE_ALGORITHM /* reverse */
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "tree.h"
53 #include "cfghooks.h"
54 #include "df.h"
55 #include "memmodel.h"
56 #include "tm_p.h"
57 #include "insn-config.h"
58 #include "regs.h"
59 #include "emit-rtl.h"
60 #include "recog.h"
61 #include "cgraph.h"
62 #include "tree-pretty-print.h" /* for dump_function_header */
63 #include "varasm.h"
64 #include "insn-attr.h"
65 #include "conditions.h"
66 #include "flags.h"
67 #include "output.h"
68 #include "except.h"
69 #include "rtl-error.h"
70 #include "toplev.h" /* exact_log2, floor_log2 */
71 #include "reload.h"
72 #include "intl.h"
73 #include "cfgrtl.h"
74 #include "debug.h"
75 #include "tree-pass.h"
76 #include "tree-ssa.h"
77 #include "cfgloop.h"
78 #include "stringpool.h"
79 #include "attribs.h"
80 #include "asan.h"
81 #include "rtl-iter.h"
82 #include "print-rtl.h"
83 #include "function-abi.h"
84 #include "common/common-target.h"
86 #ifdef XCOFF_DEBUGGING_INFO
87 #include "xcoffout.h" /* Needed for external data declarations. */
88 #endif
90 #include "dwarf2out.h"
92 #ifdef DBX_DEBUGGING_INFO
93 #include "dbxout.h"
94 #endif
96 /* Most ports don't need to define CC_STATUS_INIT.
97 So define a null default for it to save conditionalization later. */
98 #ifndef CC_STATUS_INIT
99 #define CC_STATUS_INIT
100 #endif
102 /* Is the given character a logical line separator for the assembler? */
103 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
104 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
105 #endif
107 #ifndef JUMP_TABLES_IN_TEXT_SECTION
108 #define JUMP_TABLES_IN_TEXT_SECTION 0
109 #endif
111 /* Bitflags used by final_scan_insn. */
112 #define SEEN_NOTE 1
113 #define SEEN_EMITTED 2
114 #define SEEN_NEXT_VIEW 4
116 /* Last insn processed by final_scan_insn. */
117 static rtx_insn *debug_insn;
118 rtx_insn *current_output_insn;
120 /* Line number of last NOTE. */
121 static int last_linenum;
123 /* Column number of last NOTE. */
124 static int last_columnnum;
126 /* Discriminator written to assembly. */
127 static int last_discriminator;
129 /* Discriminator to be written to assembly for current instruction.
130 Note: actual usage depends on loc_discriminator_kind setting. */
131 static int discriminator;
132 static inline int compute_discriminator (location_t loc);
134 /* Discriminator identifying current basic block among others sharing
135 the same locus. */
136 static int bb_discriminator;
138 /* Basic block discriminator for previous instruction. */
139 static int last_bb_discriminator;
141 /* Highest line number in current block. */
142 static int high_block_linenum;
144 /* Likewise for function. */
145 static int high_function_linenum;
147 /* Filename of last NOTE. */
148 static const char *last_filename;
150 /* Override filename, line and column number. */
151 static const char *override_filename;
152 static int override_linenum;
153 static int override_columnnum;
154 static int override_discriminator;
156 /* Whether to force emission of a line note before the next insn. */
157 static bool force_source_line = false;
159 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
161 /* Nonzero while outputting an `asm' with operands.
162 This means that inconsistencies are the user's fault, so don't die.
163 The precise value is the insn being output, to pass to error_for_asm. */
164 const rtx_insn *this_is_asm_operands;
166 /* Number of operands of this insn, for an `asm' with operands. */
167 static unsigned int insn_noperands;
169 /* Compare optimization flag. */
171 static rtx last_ignored_compare = 0;
173 /* Assign a unique number to each insn that is output.
174 This can be used to generate unique local labels. */
176 static int insn_counter = 0;
178 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
180 static int block_depth;
182 /* Nonzero if have enabled APP processing of our assembler output. */
184 static int app_on;
186 /* If we are outputting an insn sequence, this contains the sequence rtx.
187 Zero otherwise. */
189 rtx_sequence *final_sequence;
191 #ifdef ASSEMBLER_DIALECT
193 /* Number of the assembler dialect to use, starting at 0. */
194 static int dialect_number;
195 #endif
197 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
198 rtx current_insn_predicate;
200 /* True if printing into -fdump-final-insns= dump. */
201 bool final_insns_dump_p;
203 /* True if profile_function should be called, but hasn't been called yet. */
204 static bool need_profile_function;
206 static int asm_insn_count (rtx);
207 static void profile_function (FILE *);
208 static void profile_after_prologue (FILE *);
209 static bool notice_source_line (rtx_insn *, bool *);
210 static rtx walk_alter_subreg (rtx *, bool *);
211 static void output_asm_name (void);
212 static void output_alternate_entry_point (FILE *, rtx_insn *);
213 static tree get_mem_expr_from_op (rtx, int *);
214 static void output_asm_operand_names (rtx *, int *, int);
215 #ifdef LEAF_REGISTERS
216 static void leaf_renumber_regs (rtx_insn *);
217 #endif
218 static int align_fuzz (rtx, rtx, int, unsigned);
219 static void collect_fn_hard_reg_usage (void);
221 /* Initialize data in final at the beginning of a compilation. */
223 void
224 init_final (const char *filename ATTRIBUTE_UNUSED)
226 app_on = 0;
227 final_sequence = 0;
229 #ifdef ASSEMBLER_DIALECT
230 dialect_number = ASSEMBLER_DIALECT;
231 #endif
234 /* Default target function prologue and epilogue assembler output.
236 If not overridden for epilogue code, then the function body itself
237 contains return instructions wherever needed. */
238 void
239 default_function_pro_epilogue (FILE *)
243 void
244 default_function_switched_text_sections (FILE *file ATTRIBUTE_UNUSED,
245 tree decl ATTRIBUTE_UNUSED,
246 bool new_is_cold ATTRIBUTE_UNUSED)
250 /* Default target hook that outputs nothing to a stream. */
251 void
252 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
256 /* Enable APP processing of subsequent output.
257 Used before the output from an `asm' statement. */
259 void
260 app_enable (void)
262 if (! app_on)
264 fputs (ASM_APP_ON, asm_out_file);
265 app_on = 1;
269 /* Disable APP processing of subsequent output.
270 Called from varasm.c before most kinds of output. */
272 void
273 app_disable (void)
275 if (app_on)
277 fputs (ASM_APP_OFF, asm_out_file);
278 app_on = 0;
282 /* Return the number of slots filled in the current
283 delayed branch sequence (we don't count the insn needing the
284 delay slot). Zero if not in a delayed branch sequence. */
287 dbr_sequence_length (void)
289 if (final_sequence != 0)
290 return XVECLEN (final_sequence, 0) - 1;
291 else
292 return 0;
295 /* The next two pages contain routines used to compute the length of an insn
296 and to shorten branches. */
298 /* Arrays for insn lengths, and addresses. The latter is referenced by
299 `insn_current_length'. */
301 static int *insn_lengths;
303 vec<int> insn_addresses_;
305 /* Max uid for which the above arrays are valid. */
306 static int insn_lengths_max_uid;
308 /* Address of insn being processed. Used by `insn_current_length'. */
309 int insn_current_address;
311 /* Address of insn being processed in previous iteration. */
312 int insn_last_address;
314 /* known invariant alignment of insn being processed. */
315 int insn_current_align;
317 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
318 gives the next following alignment insn that increases the known
319 alignment, or NULL_RTX if there is no such insn.
320 For any alignment obtained this way, we can again index uid_align with
321 its uid to obtain the next following align that in turn increases the
322 alignment, till we reach NULL_RTX; the sequence obtained this way
323 for each insn we'll call the alignment chain of this insn in the following
324 comments. */
326 static rtx *uid_align;
327 static int *uid_shuid;
328 static vec<align_flags> label_align;
330 /* Indicate that branch shortening hasn't yet been done. */
332 void
333 init_insn_lengths (void)
335 if (uid_shuid)
337 free (uid_shuid);
338 uid_shuid = 0;
340 if (insn_lengths)
342 free (insn_lengths);
343 insn_lengths = 0;
344 insn_lengths_max_uid = 0;
346 if (HAVE_ATTR_length)
347 INSN_ADDRESSES_FREE ();
348 if (uid_align)
350 free (uid_align);
351 uid_align = 0;
355 /* Obtain the current length of an insn. If branch shortening has been done,
356 get its actual length. Otherwise, use FALLBACK_FN to calculate the
357 length. */
358 static int
359 get_attr_length_1 (rtx_insn *insn, int (*fallback_fn) (rtx_insn *))
361 rtx body;
362 int i;
363 int length = 0;
365 if (!HAVE_ATTR_length)
366 return 0;
368 if (insn_lengths_max_uid > INSN_UID (insn))
369 return insn_lengths[INSN_UID (insn)];
370 else
371 switch (GET_CODE (insn))
373 case NOTE:
374 case BARRIER:
375 case CODE_LABEL:
376 case DEBUG_INSN:
377 return 0;
379 case CALL_INSN:
380 case JUMP_INSN:
381 length = fallback_fn (insn);
382 break;
384 case INSN:
385 body = PATTERN (insn);
386 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
387 return 0;
389 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
390 length = asm_insn_count (body) * fallback_fn (insn);
391 else if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
392 for (i = 0; i < seq->len (); i++)
393 length += get_attr_length_1 (seq->insn (i), fallback_fn);
394 else
395 length = fallback_fn (insn);
396 break;
398 default:
399 break;
402 #ifdef ADJUST_INSN_LENGTH
403 ADJUST_INSN_LENGTH (insn, length);
404 #endif
405 return length;
408 /* Obtain the current length of an insn. If branch shortening has been done,
409 get its actual length. Otherwise, get its maximum length. */
411 get_attr_length (rtx_insn *insn)
413 return get_attr_length_1 (insn, insn_default_length);
416 /* Obtain the current length of an insn. If branch shortening has been done,
417 get its actual length. Otherwise, get its minimum length. */
419 get_attr_min_length (rtx_insn *insn)
421 return get_attr_length_1 (insn, insn_min_length);
424 /* Code to handle alignment inside shorten_branches. */
426 /* Here is an explanation how the algorithm in align_fuzz can give
427 proper results:
429 Call a sequence of instructions beginning with alignment point X
430 and continuing until the next alignment point `block X'. When `X'
431 is used in an expression, it means the alignment value of the
432 alignment point.
434 Call the distance between the start of the first insn of block X, and
435 the end of the last insn of block X `IX', for the `inner size of X'.
436 This is clearly the sum of the instruction lengths.
438 Likewise with the next alignment-delimited block following X, which we
439 shall call block Y.
441 Call the distance between the start of the first insn of block X, and
442 the start of the first insn of block Y `OX', for the `outer size of X'.
444 The estimated padding is then OX - IX.
446 OX can be safely estimated as
448 if (X >= Y)
449 OX = round_up(IX, Y)
450 else
451 OX = round_up(IX, X) + Y - X
453 Clearly est(IX) >= real(IX), because that only depends on the
454 instruction lengths, and those being overestimated is a given.
456 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
457 we needn't worry about that when thinking about OX.
459 When X >= Y, the alignment provided by Y adds no uncertainty factor
460 for branch ranges starting before X, so we can just round what we have.
461 But when X < Y, we don't know anything about the, so to speak,
462 `middle bits', so we have to assume the worst when aligning up from an
463 address mod X to one mod Y, which is Y - X. */
465 #ifndef LABEL_ALIGN
466 #define LABEL_ALIGN(LABEL) align_labels
467 #endif
469 #ifndef LOOP_ALIGN
470 #define LOOP_ALIGN(LABEL) align_loops
471 #endif
473 #ifndef LABEL_ALIGN_AFTER_BARRIER
474 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
475 #endif
477 #ifndef JUMP_ALIGN
478 #define JUMP_ALIGN(LABEL) align_jumps
479 #endif
481 #ifndef ADDR_VEC_ALIGN
482 static int
483 final_addr_vec_align (rtx_jump_table_data *addr_vec)
485 int align = GET_MODE_SIZE (addr_vec->get_data_mode ());
487 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
488 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
489 return exact_log2 (align);
493 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
494 #endif
496 #ifndef INSN_LENGTH_ALIGNMENT
497 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
498 #endif
500 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
502 static int min_labelno, max_labelno;
504 #define LABEL_TO_ALIGNMENT(LABEL) \
505 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno])
507 /* For the benefit of port specific code do this also as a function. */
509 align_flags
510 label_to_alignment (rtx label)
512 if (CODE_LABEL_NUMBER (label) <= max_labelno)
513 return LABEL_TO_ALIGNMENT (label);
514 return align_flags ();
517 /* The differences in addresses
518 between a branch and its target might grow or shrink depending on
519 the alignment the start insn of the range (the branch for a forward
520 branch or the label for a backward branch) starts out on; if these
521 differences are used naively, they can even oscillate infinitely.
522 We therefore want to compute a 'worst case' address difference that
523 is independent of the alignment the start insn of the range end
524 up on, and that is at least as large as the actual difference.
525 The function align_fuzz calculates the amount we have to add to the
526 naively computed difference, by traversing the part of the alignment
527 chain of the start insn of the range that is in front of the end insn
528 of the range, and considering for each alignment the maximum amount
529 that it might contribute to a size increase.
531 For casesi tables, we also want to know worst case minimum amounts of
532 address difference, in case a machine description wants to introduce
533 some common offset that is added to all offsets in a table.
534 For this purpose, align_fuzz with a growth argument of 0 computes the
535 appropriate adjustment. */
537 /* Compute the maximum delta by which the difference of the addresses of
538 START and END might grow / shrink due to a different address for start
539 which changes the size of alignment insns between START and END.
540 KNOWN_ALIGN_LOG is the alignment known for START.
541 GROWTH should be ~0 if the objective is to compute potential code size
542 increase, and 0 if the objective is to compute potential shrink.
543 The return value is undefined for any other value of GROWTH. */
545 static int
546 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
548 int uid = INSN_UID (start);
549 rtx align_label;
550 int known_align = 1 << known_align_log;
551 int end_shuid = INSN_SHUID (end);
552 int fuzz = 0;
554 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
556 int align_addr, new_align;
558 uid = INSN_UID (align_label);
559 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
560 if (uid_shuid[uid] > end_shuid)
561 break;
562 align_flags alignment = LABEL_TO_ALIGNMENT (align_label);
563 new_align = 1 << alignment.levels[0].log;
564 if (new_align < known_align)
565 continue;
566 fuzz += (-align_addr ^ growth) & (new_align - known_align);
567 known_align = new_align;
569 return fuzz;
572 /* Compute a worst-case reference address of a branch so that it
573 can be safely used in the presence of aligned labels. Since the
574 size of the branch itself is unknown, the size of the branch is
575 not included in the range. I.e. for a forward branch, the reference
576 address is the end address of the branch as known from the previous
577 branch shortening pass, minus a value to account for possible size
578 increase due to alignment. For a backward branch, it is the start
579 address of the branch as known from the current pass, plus a value
580 to account for possible size increase due to alignment.
581 NB.: Therefore, the maximum offset allowed for backward branches needs
582 to exclude the branch size. */
585 insn_current_reference_address (rtx_insn *branch)
587 rtx dest;
588 int seq_uid;
590 if (! INSN_ADDRESSES_SET_P ())
591 return 0;
593 rtx_insn *seq = NEXT_INSN (PREV_INSN (branch));
594 seq_uid = INSN_UID (seq);
595 if (!jump_to_label_p (branch))
596 /* This can happen for example on the PA; the objective is to know the
597 offset to address something in front of the start of the function.
598 Thus, we can treat it like a backward branch.
599 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
600 any alignment we'd encounter, so we skip the call to align_fuzz. */
601 return insn_current_address;
602 dest = JUMP_LABEL (branch);
604 /* BRANCH has no proper alignment chain set, so use SEQ.
605 BRANCH also has no INSN_SHUID. */
606 if (INSN_SHUID (seq) < INSN_SHUID (dest))
608 /* Forward branch. */
609 return (insn_last_address + insn_lengths[seq_uid]
610 - align_fuzz (seq, dest, length_unit_log, ~0));
612 else
614 /* Backward branch. */
615 return (insn_current_address
616 + align_fuzz (dest, seq, length_unit_log, ~0));
620 /* Compute branch alignments based on CFG profile. */
622 unsigned int
623 compute_alignments (void)
625 basic_block bb;
626 align_flags max_alignment;
628 label_align.truncate (0);
630 max_labelno = max_label_num ();
631 min_labelno = get_first_label_num ();
632 label_align.safe_grow_cleared (max_labelno - min_labelno + 1, true);
634 /* If not optimizing or optimizing for size, don't assign any alignments. */
635 if (! optimize || optimize_function_for_size_p (cfun))
636 return 0;
638 if (dump_file)
640 dump_reg_info (dump_file);
641 dump_flow_info (dump_file, TDF_DETAILS);
642 flow_loops_dump (dump_file, NULL, 1);
644 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
645 profile_count count_threshold = cfun->cfg->count_max.apply_scale
646 (1, param_align_threshold);
648 if (dump_file)
650 fprintf (dump_file, "count_max: ");
651 cfun->cfg->count_max.dump (dump_file);
652 fprintf (dump_file, "\n");
654 FOR_EACH_BB_FN (bb, cfun)
656 rtx_insn *label = BB_HEAD (bb);
657 bool has_fallthru = 0;
658 edge e;
659 edge_iterator ei;
661 if (!LABEL_P (label)
662 || optimize_bb_for_size_p (bb))
664 if (dump_file)
665 fprintf (dump_file,
666 "BB %4i loop %2i loop_depth %2i skipped.\n",
667 bb->index,
668 bb->loop_father->num,
669 bb_loop_depth (bb));
670 continue;
672 max_alignment = LABEL_ALIGN (label);
673 profile_count fallthru_count = profile_count::zero ();
674 profile_count branch_count = profile_count::zero ();
676 FOR_EACH_EDGE (e, ei, bb->preds)
678 if (e->flags & EDGE_FALLTHRU)
679 has_fallthru = 1, fallthru_count += e->count ();
680 else
681 branch_count += e->count ();
683 if (dump_file)
685 fprintf (dump_file, "BB %4i loop %2i loop_depth"
686 " %2i fall ",
687 bb->index, bb->loop_father->num,
688 bb_loop_depth (bb));
689 fallthru_count.dump (dump_file);
690 fprintf (dump_file, " branch ");
691 branch_count.dump (dump_file);
692 if (!bb->loop_father->inner && bb->loop_father->num)
693 fprintf (dump_file, " inner_loop");
694 if (bb->loop_father->header == bb)
695 fprintf (dump_file, " loop_header");
696 fprintf (dump_file, "\n");
698 if (!fallthru_count.initialized_p () || !branch_count.initialized_p ())
699 continue;
701 /* There are two purposes to align block with no fallthru incoming edge:
702 1) to avoid fetch stalls when branch destination is near cache boundary
703 2) to improve cache efficiency in case the previous block is not executed
704 (so it does not need to be in the cache).
706 We to catch first case, we align frequently executed blocks.
707 To catch the second, we align blocks that are executed more frequently
708 than the predecessor and the predecessor is likely to not be executed
709 when function is called. */
711 if (!has_fallthru
712 && (branch_count > count_threshold
713 || (bb->count > bb->prev_bb->count.apply_scale (10, 1)
714 && (bb->prev_bb->count
715 <= ENTRY_BLOCK_PTR_FOR_FN (cfun)
716 ->count.apply_scale (1, 2)))))
718 align_flags alignment = JUMP_ALIGN (label);
719 if (dump_file)
720 fprintf (dump_file, " jump alignment added.\n");
721 max_alignment = align_flags::max (max_alignment, alignment);
723 /* In case block is frequent and reached mostly by non-fallthru edge,
724 align it. It is most likely a first block of loop. */
725 if (has_fallthru
726 && !(single_succ_p (bb)
727 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
728 && optimize_bb_for_speed_p (bb)
729 && branch_count + fallthru_count > count_threshold
730 && (branch_count
731 > fallthru_count.apply_scale
732 (param_align_loop_iterations, 1)))
734 align_flags alignment = LOOP_ALIGN (label);
735 if (dump_file)
736 fprintf (dump_file, " internal loop alignment added.\n");
737 max_alignment = align_flags::max (max_alignment, alignment);
739 LABEL_TO_ALIGNMENT (label) = max_alignment;
742 loop_optimizer_finalize ();
743 free_dominance_info (CDI_DOMINATORS);
744 return 0;
747 /* Grow the LABEL_ALIGN array after new labels are created. */
749 static void
750 grow_label_align (void)
752 int old = max_labelno;
753 int n_labels;
754 int n_old_labels;
756 max_labelno = max_label_num ();
758 n_labels = max_labelno - min_labelno + 1;
759 n_old_labels = old - min_labelno + 1;
761 label_align.safe_grow_cleared (n_labels, true);
763 /* Range of labels grows monotonically in the function. Failing here
764 means that the initialization of array got lost. */
765 gcc_assert (n_old_labels <= n_labels);
768 /* Update the already computed alignment information. LABEL_PAIRS is a vector
769 made up of pairs of labels for which the alignment information of the first
770 element will be copied from that of the second element. */
772 void
773 update_alignments (vec<rtx> &label_pairs)
775 unsigned int i = 0;
776 rtx iter, label = NULL_RTX;
778 if (max_labelno != max_label_num ())
779 grow_label_align ();
781 FOR_EACH_VEC_ELT (label_pairs, i, iter)
782 if (i & 1)
783 LABEL_TO_ALIGNMENT (label) = LABEL_TO_ALIGNMENT (iter);
784 else
785 label = iter;
788 namespace {
790 const pass_data pass_data_compute_alignments =
792 RTL_PASS, /* type */
793 "alignments", /* name */
794 OPTGROUP_NONE, /* optinfo_flags */
795 TV_NONE, /* tv_id */
796 0, /* properties_required */
797 0, /* properties_provided */
798 0, /* properties_destroyed */
799 0, /* todo_flags_start */
800 0, /* todo_flags_finish */
803 class pass_compute_alignments : public rtl_opt_pass
805 public:
806 pass_compute_alignments (gcc::context *ctxt)
807 : rtl_opt_pass (pass_data_compute_alignments, ctxt)
810 /* opt_pass methods: */
811 virtual unsigned int execute (function *) { return compute_alignments (); }
813 }; // class pass_compute_alignments
815 } // anon namespace
817 rtl_opt_pass *
818 make_pass_compute_alignments (gcc::context *ctxt)
820 return new pass_compute_alignments (ctxt);
824 /* Make a pass over all insns and compute their actual lengths by shortening
825 any branches of variable length if possible. */
827 /* shorten_branches might be called multiple times: for example, the SH
828 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
829 In order to do this, it needs proper length information, which it obtains
830 by calling shorten_branches. This cannot be collapsed with
831 shorten_branches itself into a single pass unless we also want to integrate
832 reorg.c, since the branch splitting exposes new instructions with delay
833 slots. */
835 void
836 shorten_branches (rtx_insn *first)
838 rtx_insn *insn;
839 int max_uid;
840 int i;
841 rtx_insn *seq;
842 int something_changed = 1;
843 char *varying_length;
844 rtx body;
845 int uid;
846 rtx align_tab[MAX_CODE_ALIGN + 1];
848 /* Compute maximum UID and allocate label_align / uid_shuid. */
849 max_uid = get_max_uid ();
851 /* Free uid_shuid before reallocating it. */
852 free (uid_shuid);
854 uid_shuid = XNEWVEC (int, max_uid);
856 if (max_labelno != max_label_num ())
857 grow_label_align ();
859 /* Initialize label_align and set up uid_shuid to be strictly
860 monotonically rising with insn order. */
861 /* We use alignment here to keep track of the maximum alignment we want to
862 impose on the next CODE_LABEL (or the current one if we are processing
863 the CODE_LABEL itself). */
865 align_flags max_alignment;
867 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
869 INSN_SHUID (insn) = i++;
870 if (INSN_P (insn))
871 continue;
873 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
875 /* Merge in alignments computed by compute_alignments. */
876 align_flags alignment = LABEL_TO_ALIGNMENT (label);
877 max_alignment = align_flags::max (max_alignment, alignment);
879 rtx_jump_table_data *table = jump_table_for_label (label);
880 if (!table)
882 align_flags alignment = LABEL_ALIGN (label);
883 max_alignment = align_flags::max (max_alignment, alignment);
885 /* ADDR_VECs only take room if read-only data goes into the text
886 section. */
887 if ((JUMP_TABLES_IN_TEXT_SECTION
888 || readonly_data_section == text_section)
889 && table)
891 align_flags alignment = align_flags (ADDR_VEC_ALIGN (table));
892 max_alignment = align_flags::max (max_alignment, alignment);
894 LABEL_TO_ALIGNMENT (label) = max_alignment;
895 max_alignment = align_flags ();
897 else if (BARRIER_P (insn))
899 rtx_insn *label;
901 for (label = insn; label && ! INSN_P (label);
902 label = NEXT_INSN (label))
903 if (LABEL_P (label))
905 align_flags alignment
906 = align_flags (LABEL_ALIGN_AFTER_BARRIER (insn));
907 max_alignment = align_flags::max (max_alignment, alignment);
908 break;
912 if (!HAVE_ATTR_length)
913 return;
915 /* Allocate the rest of the arrays. */
916 insn_lengths = XNEWVEC (int, max_uid);
917 insn_lengths_max_uid = max_uid;
918 /* Syntax errors can lead to labels being outside of the main insn stream.
919 Initialize insn_addresses, so that we get reproducible results. */
920 INSN_ADDRESSES_ALLOC (max_uid);
922 varying_length = XCNEWVEC (char, max_uid);
924 /* Initialize uid_align. We scan instructions
925 from end to start, and keep in align_tab[n] the last seen insn
926 that does an alignment of at least n+1, i.e. the successor
927 in the alignment chain for an insn that does / has a known
928 alignment of n. */
929 uid_align = XCNEWVEC (rtx, max_uid);
931 for (i = MAX_CODE_ALIGN + 1; --i >= 0;)
932 align_tab[i] = NULL_RTX;
933 seq = get_last_insn ();
934 for (; seq; seq = PREV_INSN (seq))
936 int uid = INSN_UID (seq);
937 int log;
938 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq).levels[0].log : 0);
939 uid_align[uid] = align_tab[0];
940 if (log)
942 /* Found an alignment label. */
943 gcc_checking_assert (log < MAX_CODE_ALIGN + 1);
944 uid_align[uid] = align_tab[log];
945 for (i = log - 1; i >= 0; i--)
946 align_tab[i] = seq;
950 /* When optimizing, we start assuming minimum length, and keep increasing
951 lengths as we find the need for this, till nothing changes.
952 When not optimizing, we start assuming maximum lengths, and
953 do a single pass to update the lengths. */
954 bool increasing = optimize != 0;
956 #ifdef CASE_VECTOR_SHORTEN_MODE
957 if (optimize)
959 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
960 label fields. */
962 int min_shuid = INSN_SHUID (get_insns ()) - 1;
963 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
964 int rel;
966 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
968 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
969 int len, i, min, max, insn_shuid;
970 int min_align;
971 addr_diff_vec_flags flags;
973 if (! JUMP_TABLE_DATA_P (insn)
974 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
975 continue;
976 pat = PATTERN (insn);
977 len = XVECLEN (pat, 1);
978 gcc_assert (len > 0);
979 min_align = MAX_CODE_ALIGN;
980 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
982 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
983 int shuid = INSN_SHUID (lab);
984 if (shuid < min)
986 min = shuid;
987 min_lab = lab;
989 if (shuid > max)
991 max = shuid;
992 max_lab = lab;
995 int label_alignment = LABEL_TO_ALIGNMENT (lab).levels[0].log;
996 if (min_align > label_alignment)
997 min_align = label_alignment;
999 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1000 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1001 insn_shuid = INSN_SHUID (insn);
1002 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1003 memset (&flags, 0, sizeof (flags));
1004 flags.min_align = min_align;
1005 flags.base_after_vec = rel > insn_shuid;
1006 flags.min_after_vec = min > insn_shuid;
1007 flags.max_after_vec = max > insn_shuid;
1008 flags.min_after_base = min > rel;
1009 flags.max_after_base = max > rel;
1010 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1012 if (increasing)
1013 PUT_MODE (pat, CASE_VECTOR_SHORTEN_MODE (0, 0, pat));
1016 #endif /* CASE_VECTOR_SHORTEN_MODE */
1018 /* Compute initial lengths, addresses, and varying flags for each insn. */
1019 int (*length_fun) (rtx_insn *) = increasing ? insn_min_length : insn_default_length;
1021 for (insn_current_address = 0, insn = first;
1022 insn != 0;
1023 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1025 uid = INSN_UID (insn);
1027 insn_lengths[uid] = 0;
1029 if (LABEL_P (insn))
1031 int log = LABEL_TO_ALIGNMENT (insn).levels[0].log;
1032 if (log)
1034 int align = 1 << log;
1035 int new_address = (insn_current_address + align - 1) & -align;
1036 insn_lengths[uid] = new_address - insn_current_address;
1040 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1042 if (NOTE_P (insn) || BARRIER_P (insn)
1043 || LABEL_P (insn) || DEBUG_INSN_P (insn))
1044 continue;
1045 if (insn->deleted ())
1046 continue;
1048 body = PATTERN (insn);
1049 if (rtx_jump_table_data *table = dyn_cast <rtx_jump_table_data *> (insn))
1051 /* This only takes room if read-only data goes into the text
1052 section. */
1053 if (JUMP_TABLES_IN_TEXT_SECTION
1054 || readonly_data_section == text_section)
1055 insn_lengths[uid] = (XVECLEN (body,
1056 GET_CODE (body) == ADDR_DIFF_VEC)
1057 * GET_MODE_SIZE (table->get_data_mode ()));
1058 /* Alignment is handled by ADDR_VEC_ALIGN. */
1060 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1061 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1062 else if (rtx_sequence *body_seq = dyn_cast <rtx_sequence *> (body))
1064 int i;
1065 int const_delay_slots;
1066 if (DELAY_SLOTS)
1067 const_delay_slots = const_num_delay_slots (body_seq->insn (0));
1068 else
1069 const_delay_slots = 0;
1071 int (*inner_length_fun) (rtx_insn *)
1072 = const_delay_slots ? length_fun : insn_default_length;
1073 /* Inside a delay slot sequence, we do not do any branch shortening
1074 if the shortening could change the number of delay slots
1075 of the branch. */
1076 for (i = 0; i < body_seq->len (); i++)
1078 rtx_insn *inner_insn = body_seq->insn (i);
1079 int inner_uid = INSN_UID (inner_insn);
1080 int inner_length;
1082 if (GET_CODE (PATTERN (inner_insn)) == ASM_INPUT
1083 || asm_noperands (PATTERN (inner_insn)) >= 0)
1084 inner_length = (asm_insn_count (PATTERN (inner_insn))
1085 * insn_default_length (inner_insn));
1086 else
1087 inner_length = inner_length_fun (inner_insn);
1089 insn_lengths[inner_uid] = inner_length;
1090 if (const_delay_slots)
1092 if ((varying_length[inner_uid]
1093 = insn_variable_length_p (inner_insn)) != 0)
1094 varying_length[uid] = 1;
1095 INSN_ADDRESSES (inner_uid) = (insn_current_address
1096 + insn_lengths[uid]);
1098 else
1099 varying_length[inner_uid] = 0;
1100 insn_lengths[uid] += inner_length;
1103 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1105 insn_lengths[uid] = length_fun (insn);
1106 varying_length[uid] = insn_variable_length_p (insn);
1109 /* If needed, do any adjustment. */
1110 #ifdef ADJUST_INSN_LENGTH
1111 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1112 if (insn_lengths[uid] < 0)
1113 fatal_insn ("negative insn length", insn);
1114 #endif
1117 /* Now loop over all the insns finding varying length insns. For each,
1118 get the current insn length. If it has changed, reflect the change.
1119 When nothing changes for a full pass, we are done. */
1121 while (something_changed)
1123 something_changed = 0;
1124 insn_current_align = MAX_CODE_ALIGN - 1;
1125 for (insn_current_address = 0, insn = first;
1126 insn != 0;
1127 insn = NEXT_INSN (insn))
1129 int new_length;
1130 #ifdef ADJUST_INSN_LENGTH
1131 int tmp_length;
1132 #endif
1133 int length_align;
1135 uid = INSN_UID (insn);
1137 if (rtx_code_label *label = dyn_cast <rtx_code_label *> (insn))
1139 int log = LABEL_TO_ALIGNMENT (label).levels[0].log;
1141 #ifdef CASE_VECTOR_SHORTEN_MODE
1142 /* If the mode of a following jump table was changed, we
1143 may need to update the alignment of this label. */
1145 if (JUMP_TABLES_IN_TEXT_SECTION
1146 || readonly_data_section == text_section)
1148 rtx_jump_table_data *table = jump_table_for_label (label);
1149 if (table)
1151 int newlog = ADDR_VEC_ALIGN (table);
1152 if (newlog != log)
1154 log = newlog;
1155 LABEL_TO_ALIGNMENT (insn) = log;
1156 something_changed = 1;
1160 #endif
1162 if (log > insn_current_align)
1164 int align = 1 << log;
1165 int new_address= (insn_current_address + align - 1) & -align;
1166 insn_lengths[uid] = new_address - insn_current_address;
1167 insn_current_align = log;
1168 insn_current_address = new_address;
1170 else
1171 insn_lengths[uid] = 0;
1172 INSN_ADDRESSES (uid) = insn_current_address;
1173 continue;
1176 length_align = INSN_LENGTH_ALIGNMENT (insn);
1177 if (length_align < insn_current_align)
1178 insn_current_align = length_align;
1180 insn_last_address = INSN_ADDRESSES (uid);
1181 INSN_ADDRESSES (uid) = insn_current_address;
1183 #ifdef CASE_VECTOR_SHORTEN_MODE
1184 if (optimize
1185 && JUMP_TABLE_DATA_P (insn)
1186 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1188 rtx_jump_table_data *table = as_a <rtx_jump_table_data *> (insn);
1189 rtx body = PATTERN (insn);
1190 int old_length = insn_lengths[uid];
1191 rtx_insn *rel_lab =
1192 safe_as_a <rtx_insn *> (XEXP (XEXP (body, 0), 0));
1193 rtx min_lab = XEXP (XEXP (body, 2), 0);
1194 rtx max_lab = XEXP (XEXP (body, 3), 0);
1195 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1196 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1197 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1198 rtx_insn *prev;
1199 int rel_align = 0;
1200 addr_diff_vec_flags flags;
1201 scalar_int_mode vec_mode;
1203 /* Avoid automatic aggregate initialization. */
1204 flags = ADDR_DIFF_VEC_FLAGS (body);
1206 /* Try to find a known alignment for rel_lab. */
1207 for (prev = rel_lab;
1208 prev
1209 && ! insn_lengths[INSN_UID (prev)]
1210 && ! (varying_length[INSN_UID (prev)] & 1);
1211 prev = PREV_INSN (prev))
1212 if (varying_length[INSN_UID (prev)] & 2)
1214 rel_align = LABEL_TO_ALIGNMENT (prev).levels[0].log;
1215 break;
1218 /* See the comment on addr_diff_vec_flags in rtl.h for the
1219 meaning of the flags values. base: REL_LAB vec: INSN */
1220 /* Anything after INSN has still addresses from the last
1221 pass; adjust these so that they reflect our current
1222 estimate for this pass. */
1223 if (flags.base_after_vec)
1224 rel_addr += insn_current_address - insn_last_address;
1225 if (flags.min_after_vec)
1226 min_addr += insn_current_address - insn_last_address;
1227 if (flags.max_after_vec)
1228 max_addr += insn_current_address - insn_last_address;
1229 /* We want to know the worst case, i.e. lowest possible value
1230 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1231 its offset is positive, and we have to be wary of code shrink;
1232 otherwise, it is negative, and we have to be vary of code
1233 size increase. */
1234 if (flags.min_after_base)
1236 /* If INSN is between REL_LAB and MIN_LAB, the size
1237 changes we are about to make can change the alignment
1238 within the observed offset, therefore we have to break
1239 it up into two parts that are independent. */
1240 if (! flags.base_after_vec && flags.min_after_vec)
1242 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1243 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1245 else
1246 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1248 else
1250 if (flags.base_after_vec && ! flags.min_after_vec)
1252 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1253 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1255 else
1256 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1258 /* Likewise, determine the highest lowest possible value
1259 for the offset of MAX_LAB. */
1260 if (flags.max_after_base)
1262 if (! flags.base_after_vec && flags.max_after_vec)
1264 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1265 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1267 else
1268 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1270 else
1272 if (flags.base_after_vec && ! flags.max_after_vec)
1274 max_addr += align_fuzz (max_lab, insn, 0, 0);
1275 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1277 else
1278 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1280 vec_mode = CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1281 max_addr - rel_addr, body);
1282 if (!increasing
1283 || (GET_MODE_SIZE (vec_mode)
1284 >= GET_MODE_SIZE (table->get_data_mode ())))
1285 PUT_MODE (body, vec_mode);
1286 if (JUMP_TABLES_IN_TEXT_SECTION
1287 || readonly_data_section == text_section)
1289 insn_lengths[uid]
1290 = (XVECLEN (body, 1)
1291 * GET_MODE_SIZE (table->get_data_mode ()));
1292 insn_current_address += insn_lengths[uid];
1293 if (insn_lengths[uid] != old_length)
1294 something_changed = 1;
1297 continue;
1299 #endif /* CASE_VECTOR_SHORTEN_MODE */
1301 if (! (varying_length[uid]))
1303 if (NONJUMP_INSN_P (insn)
1304 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1306 int i;
1308 body = PATTERN (insn);
1309 for (i = 0; i < XVECLEN (body, 0); i++)
1311 rtx inner_insn = XVECEXP (body, 0, i);
1312 int inner_uid = INSN_UID (inner_insn);
1314 INSN_ADDRESSES (inner_uid) = insn_current_address;
1316 insn_current_address += insn_lengths[inner_uid];
1319 else
1320 insn_current_address += insn_lengths[uid];
1322 continue;
1325 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1327 rtx_sequence *seqn = as_a <rtx_sequence *> (PATTERN (insn));
1328 int i;
1330 body = PATTERN (insn);
1331 new_length = 0;
1332 for (i = 0; i < seqn->len (); i++)
1334 rtx_insn *inner_insn = seqn->insn (i);
1335 int inner_uid = INSN_UID (inner_insn);
1336 int inner_length;
1338 INSN_ADDRESSES (inner_uid) = insn_current_address;
1340 /* insn_current_length returns 0 for insns with a
1341 non-varying length. */
1342 if (! varying_length[inner_uid])
1343 inner_length = insn_lengths[inner_uid];
1344 else
1345 inner_length = insn_current_length (inner_insn);
1347 if (inner_length != insn_lengths[inner_uid])
1349 if (!increasing || inner_length > insn_lengths[inner_uid])
1351 insn_lengths[inner_uid] = inner_length;
1352 something_changed = 1;
1354 else
1355 inner_length = insn_lengths[inner_uid];
1357 insn_current_address += inner_length;
1358 new_length += inner_length;
1361 else
1363 new_length = insn_current_length (insn);
1364 insn_current_address += new_length;
1367 #ifdef ADJUST_INSN_LENGTH
1368 /* If needed, do any adjustment. */
1369 tmp_length = new_length;
1370 ADJUST_INSN_LENGTH (insn, new_length);
1371 insn_current_address += (new_length - tmp_length);
1372 #endif
1374 if (new_length != insn_lengths[uid]
1375 && (!increasing || new_length > insn_lengths[uid]))
1377 insn_lengths[uid] = new_length;
1378 something_changed = 1;
1380 else
1381 insn_current_address += insn_lengths[uid] - new_length;
1383 /* For a non-optimizing compile, do only a single pass. */
1384 if (!increasing)
1385 break;
1387 crtl->max_insn_address = insn_current_address;
1388 free (varying_length);
1391 /* Given the body of an INSN known to be generated by an ASM statement, return
1392 the number of machine instructions likely to be generated for this insn.
1393 This is used to compute its length. */
1395 static int
1396 asm_insn_count (rtx body)
1398 const char *templ;
1400 if (GET_CODE (body) == ASM_INPUT)
1401 templ = XSTR (body, 0);
1402 else
1403 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1405 return asm_str_count (templ);
1408 /* Return the number of machine instructions likely to be generated for the
1409 inline-asm template. */
1411 asm_str_count (const char *templ)
1413 int count = 1;
1415 if (!*templ)
1416 return 0;
1418 for (; *templ; templ++)
1419 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1420 || *templ == '\n')
1421 count++;
1423 return count;
1426 /* Return true if DWARF2 debug info can be emitted for DECL. */
1428 static bool
1429 dwarf2_debug_info_emitted_p (tree decl)
1431 /* When DWARF2 debug info is not generated internally. */
1432 if (!dwarf_debuginfo_p () && !dwarf_based_debuginfo_p ())
1433 return false;
1435 if (DECL_IGNORED_P (decl))
1436 return false;
1438 return true;
1441 /* Return scope resulting from combination of S1 and S2. */
1442 static tree
1443 choose_inner_scope (tree s1, tree s2)
1445 if (!s1)
1446 return s2;
1447 if (!s2)
1448 return s1;
1449 if (BLOCK_NUMBER (s1) > BLOCK_NUMBER (s2))
1450 return s1;
1451 return s2;
1454 /* Emit lexical block notes needed to change scope from S1 to S2. */
1456 static void
1457 change_scope (rtx_insn *orig_insn, tree s1, tree s2)
1459 rtx_insn *insn = orig_insn;
1460 tree com = NULL_TREE;
1461 tree ts1 = s1, ts2 = s2;
1462 tree s;
1464 while (ts1 != ts2)
1466 gcc_assert (ts1 && ts2);
1467 if (BLOCK_NUMBER (ts1) > BLOCK_NUMBER (ts2))
1468 ts1 = BLOCK_SUPERCONTEXT (ts1);
1469 else if (BLOCK_NUMBER (ts1) < BLOCK_NUMBER (ts2))
1470 ts2 = BLOCK_SUPERCONTEXT (ts2);
1471 else
1473 ts1 = BLOCK_SUPERCONTEXT (ts1);
1474 ts2 = BLOCK_SUPERCONTEXT (ts2);
1477 com = ts1;
1479 /* Close scopes. */
1480 s = s1;
1481 while (s != com)
1483 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1484 NOTE_BLOCK (note) = s;
1485 s = BLOCK_SUPERCONTEXT (s);
1488 /* Open scopes. */
1489 s = s2;
1490 while (s != com)
1492 insn = emit_note_before (NOTE_INSN_BLOCK_BEG, insn);
1493 NOTE_BLOCK (insn) = s;
1494 s = BLOCK_SUPERCONTEXT (s);
1498 /* Rebuild all the NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes based
1499 on the scope tree and the newly reordered instructions. */
1501 static void
1502 reemit_insn_block_notes (void)
1504 tree cur_block = DECL_INITIAL (cfun->decl);
1505 rtx_insn *insn;
1507 insn = get_insns ();
1508 for (; insn; insn = NEXT_INSN (insn))
1510 tree this_block;
1512 /* Prevent lexical blocks from straddling section boundaries. */
1513 if (NOTE_P (insn))
1514 switch (NOTE_KIND (insn))
1516 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1518 for (tree s = cur_block; s != DECL_INITIAL (cfun->decl);
1519 s = BLOCK_SUPERCONTEXT (s))
1521 rtx_note *note = emit_note_before (NOTE_INSN_BLOCK_END, insn);
1522 NOTE_BLOCK (note) = s;
1523 note = emit_note_after (NOTE_INSN_BLOCK_BEG, insn);
1524 NOTE_BLOCK (note) = s;
1527 break;
1529 case NOTE_INSN_BEGIN_STMT:
1530 case NOTE_INSN_INLINE_ENTRY:
1531 this_block = LOCATION_BLOCK (NOTE_MARKER_LOCATION (insn));
1532 goto set_cur_block_to_this_block;
1534 default:
1535 continue;
1538 if (!active_insn_p (insn))
1539 continue;
1541 /* Avoid putting scope notes between jump table and its label. */
1542 if (JUMP_TABLE_DATA_P (insn))
1543 continue;
1545 this_block = insn_scope (insn);
1546 /* For sequences compute scope resulting from merging all scopes
1547 of instructions nested inside. */
1548 if (rtx_sequence *body = dyn_cast <rtx_sequence *> (PATTERN (insn)))
1550 int i;
1552 this_block = NULL;
1553 for (i = 0; i < body->len (); i++)
1554 this_block = choose_inner_scope (this_block,
1555 insn_scope (body->insn (i)));
1557 set_cur_block_to_this_block:
1558 if (! this_block)
1560 if (INSN_LOCATION (insn) == UNKNOWN_LOCATION)
1561 continue;
1562 else
1563 this_block = DECL_INITIAL (cfun->decl);
1566 if (this_block != cur_block)
1568 change_scope (insn, cur_block, this_block);
1569 cur_block = this_block;
1573 /* change_scope emits before the insn, not after. */
1574 rtx_note *note = emit_note (NOTE_INSN_DELETED);
1575 change_scope (note, cur_block, DECL_INITIAL (cfun->decl));
1576 delete_insn (note);
1578 reorder_blocks ();
1581 static const char *some_local_dynamic_name;
1583 /* Locate some local-dynamic symbol still in use by this function
1584 so that we can print its name in local-dynamic base patterns.
1585 Return null if there are no local-dynamic references. */
1587 const char *
1588 get_some_local_dynamic_name ()
1590 subrtx_iterator::array_type array;
1591 rtx_insn *insn;
1593 if (some_local_dynamic_name)
1594 return some_local_dynamic_name;
1596 for (insn = get_insns (); insn ; insn = NEXT_INSN (insn))
1597 if (NONDEBUG_INSN_P (insn))
1598 FOR_EACH_SUBRTX (iter, array, PATTERN (insn), ALL)
1600 const_rtx x = *iter;
1601 if (GET_CODE (x) == SYMBOL_REF)
1603 if (SYMBOL_REF_TLS_MODEL (x) == TLS_MODEL_LOCAL_DYNAMIC)
1604 return some_local_dynamic_name = XSTR (x, 0);
1605 if (CONSTANT_POOL_ADDRESS_P (x))
1606 iter.substitute (get_pool_constant (x));
1610 return 0;
1613 /* Arrange for us to emit a source location note before any further
1614 real insns or section changes, by setting the SEEN_NEXT_VIEW bit in
1615 *SEEN, as long as we are keeping track of location views. The bit
1616 indicates we have referenced the next view at the current PC, so we
1617 have to emit it. This should be called next to the var_location
1618 debug hook. */
1620 static inline void
1621 set_next_view_needed (int *seen)
1623 if (debug_variable_location_views)
1624 *seen |= SEEN_NEXT_VIEW;
1627 /* Clear the flag in *SEEN indicating we need to emit the next view.
1628 This should be called next to the source_line debug hook. */
1630 static inline void
1631 clear_next_view_needed (int *seen)
1633 *seen &= ~SEEN_NEXT_VIEW;
1636 /* Test whether we have a pending request to emit the next view in
1637 *SEEN, and emit it if needed, clearing the request bit. */
1639 static inline void
1640 maybe_output_next_view (int *seen)
1642 if ((*seen & SEEN_NEXT_VIEW) != 0)
1644 clear_next_view_needed (seen);
1645 (*debug_hooks->source_line) (last_linenum, last_columnnum,
1646 last_filename, last_discriminator,
1647 false);
1651 /* We want to emit param bindings (before the first begin_stmt) in the
1652 initial view, if we are emitting views. To that end, we may
1653 consume initial notes in the function, processing them in
1654 final_start_function, before signaling the beginning of the
1655 prologue, rather than in final.
1657 We don't test whether the DECLs are PARM_DECLs: the assumption is
1658 that there will be a NOTE_INSN_BEGIN_STMT marker before any
1659 non-parameter NOTE_INSN_VAR_LOCATION. It's ok if the marker is not
1660 there, we'll just have more variable locations bound in the initial
1661 view, which is consistent with their being bound without any code
1662 that would give them a value. */
1664 static inline bool
1665 in_initial_view_p (rtx_insn *insn)
1667 return (!DECL_IGNORED_P (current_function_decl)
1668 && debug_variable_location_views
1669 && insn && GET_CODE (insn) == NOTE
1670 && (NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
1671 || NOTE_KIND (insn) == NOTE_INSN_DELETED));
1674 /* Output assembler code for the start of a function,
1675 and initialize some of the variables in this file
1676 for the new function. The label for the function and associated
1677 assembler pseudo-ops have already been output in `assemble_start_function'.
1679 FIRST is the first insn of the rtl for the function being compiled.
1680 FILE is the file to write assembler code to.
1681 SEEN should be initially set to zero, and it may be updated to
1682 indicate we have references to the next location view, that would
1683 require us to emit it at the current PC.
1684 OPTIMIZE_P is nonzero if we should eliminate redundant
1685 test and compare insns. */
1687 static void
1688 final_start_function_1 (rtx_insn **firstp, FILE *file, int *seen,
1689 int optimize_p ATTRIBUTE_UNUSED)
1691 block_depth = 0;
1693 this_is_asm_operands = 0;
1695 need_profile_function = false;
1697 last_filename = LOCATION_FILE (prologue_location);
1698 last_linenum = LOCATION_LINE (prologue_location);
1699 last_columnnum = LOCATION_COLUMN (prologue_location);
1700 last_discriminator = discriminator = 0;
1701 last_bb_discriminator = bb_discriminator = 0;
1702 force_source_line = false;
1704 high_block_linenum = high_function_linenum = last_linenum;
1706 if (flag_sanitize & SANITIZE_ADDRESS)
1707 asan_function_start ();
1709 rtx_insn *first = *firstp;
1710 if (in_initial_view_p (first))
1714 final_scan_insn (first, file, 0, 0, seen);
1715 first = NEXT_INSN (first);
1717 while (in_initial_view_p (first));
1718 *firstp = first;
1721 if (!DECL_IGNORED_P (current_function_decl))
1722 debug_hooks->begin_prologue (last_linenum, last_columnnum,
1723 last_filename);
1725 if (!dwarf2_debug_info_emitted_p (current_function_decl))
1726 dwarf2out_begin_prologue (0, 0, NULL);
1728 if (DECL_IGNORED_P (current_function_decl) && last_linenum && last_filename)
1729 debug_hooks->set_ignored_loc (last_linenum, last_columnnum, last_filename);
1731 #ifdef LEAF_REG_REMAP
1732 if (crtl->uses_only_leaf_regs)
1733 leaf_renumber_regs (first);
1734 #endif
1736 /* The Sun386i and perhaps other machines don't work right
1737 if the profiling code comes after the prologue. */
1738 if (targetm.profile_before_prologue () && crtl->profile)
1740 if (targetm.asm_out.function_prologue == default_function_pro_epilogue
1741 && targetm.have_prologue ())
1743 rtx_insn *insn;
1744 for (insn = first; insn; insn = NEXT_INSN (insn))
1745 if (!NOTE_P (insn))
1747 insn = NULL;
1748 break;
1750 else if (NOTE_KIND (insn) == NOTE_INSN_BASIC_BLOCK
1751 || NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
1752 break;
1753 else if (NOTE_KIND (insn) == NOTE_INSN_DELETED
1754 || NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION)
1755 continue;
1756 else
1758 insn = NULL;
1759 break;
1762 if (insn)
1763 need_profile_function = true;
1764 else
1765 profile_function (file);
1767 else
1768 profile_function (file);
1771 /* If debugging, assign block numbers to all of the blocks in this
1772 function. */
1773 if (write_symbols)
1775 reemit_insn_block_notes ();
1776 number_blocks (current_function_decl);
1777 /* We never actually put out begin/end notes for the top-level
1778 block in the function. But, conceptually, that block is
1779 always needed. */
1780 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1783 unsigned HOST_WIDE_INT min_frame_size
1784 = constant_lower_bound (get_frame_size ());
1785 if (min_frame_size > (unsigned HOST_WIDE_INT) warn_frame_larger_than_size)
1787 /* Issue a warning */
1788 warning (OPT_Wframe_larger_than_,
1789 "the frame size of %wu bytes is larger than %wu bytes",
1790 min_frame_size, warn_frame_larger_than_size);
1793 /* First output the function prologue: code to set up the stack frame. */
1794 targetm.asm_out.function_prologue (file);
1796 /* If the machine represents the prologue as RTL, the profiling code must
1797 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1798 if (! targetm.have_prologue ())
1799 profile_after_prologue (file);
1802 /* This is an exported final_start_function_1, callable without SEEN. */
1804 void
1805 final_start_function (rtx_insn *first, FILE *file,
1806 int optimize_p ATTRIBUTE_UNUSED)
1808 int seen = 0;
1809 final_start_function_1 (&first, file, &seen, optimize_p);
1810 gcc_assert (seen == 0);
1813 static void
1814 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1816 if (!targetm.profile_before_prologue () && crtl->profile)
1817 profile_function (file);
1820 static void
1821 profile_function (FILE *file ATTRIBUTE_UNUSED)
1823 #ifndef NO_PROFILE_COUNTERS
1824 # define NO_PROFILE_COUNTERS 0
1825 #endif
1826 #ifdef ASM_OUTPUT_REG_PUSH
1827 rtx sval = NULL, chain = NULL;
1829 if (cfun->returns_struct)
1830 sval = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl),
1831 true);
1832 if (cfun->static_chain_decl)
1833 chain = targetm.calls.static_chain (current_function_decl, true);
1834 #endif /* ASM_OUTPUT_REG_PUSH */
1836 if (! NO_PROFILE_COUNTERS)
1838 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1839 switch_to_section (data_section);
1840 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1841 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1842 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1845 switch_to_section (current_function_section ());
1847 #ifdef ASM_OUTPUT_REG_PUSH
1848 if (sval && REG_P (sval))
1849 ASM_OUTPUT_REG_PUSH (file, REGNO (sval));
1850 if (chain && REG_P (chain))
1851 ASM_OUTPUT_REG_PUSH (file, REGNO (chain));
1852 #endif
1854 FUNCTION_PROFILER (file, current_function_funcdef_no);
1856 #ifdef ASM_OUTPUT_REG_PUSH
1857 if (chain && REG_P (chain))
1858 ASM_OUTPUT_REG_POP (file, REGNO (chain));
1859 if (sval && REG_P (sval))
1860 ASM_OUTPUT_REG_POP (file, REGNO (sval));
1861 #endif
1864 /* Output assembler code for the end of a function.
1865 For clarity, args are same as those of `final_start_function'
1866 even though not all of them are needed. */
1868 void
1869 final_end_function (void)
1871 app_disable ();
1873 if (!DECL_IGNORED_P (current_function_decl))
1874 debug_hooks->end_function (high_function_linenum);
1876 /* Finally, output the function epilogue:
1877 code to restore the stack frame and return to the caller. */
1878 targetm.asm_out.function_epilogue (asm_out_file);
1880 /* And debug output. */
1881 if (!DECL_IGNORED_P (current_function_decl))
1882 debug_hooks->end_epilogue (last_linenum, last_filename);
1884 if (!dwarf2_debug_info_emitted_p (current_function_decl)
1885 && dwarf2out_do_frame ())
1886 dwarf2out_end_epilogue (last_linenum, last_filename);
1888 some_local_dynamic_name = 0;
1892 /* Dumper helper for basic block information. FILE is the assembly
1893 output file, and INSN is the instruction being emitted. */
1895 static void
1896 dump_basic_block_info (FILE *file, rtx_insn *insn, basic_block *start_to_bb,
1897 basic_block *end_to_bb, int bb_map_size, int *bb_seqn)
1899 basic_block bb;
1901 if (!flag_debug_asm)
1902 return;
1904 if (INSN_UID (insn) < bb_map_size
1905 && (bb = start_to_bb[INSN_UID (insn)]) != NULL)
1907 edge e;
1908 edge_iterator ei;
1910 fprintf (file, "%s BLOCK %d", ASM_COMMENT_START, bb->index);
1911 if (bb->count.initialized_p ())
1913 fprintf (file, ", count:");
1914 bb->count.dump (file);
1916 fprintf (file, " seq:%d", (*bb_seqn)++);
1917 fprintf (file, "\n%s PRED:", ASM_COMMENT_START);
1918 FOR_EACH_EDGE (e, ei, bb->preds)
1920 dump_edge_info (file, e, TDF_DETAILS, 0);
1922 fprintf (file, "\n");
1924 if (INSN_UID (insn) < bb_map_size
1925 && (bb = end_to_bb[INSN_UID (insn)]) != NULL)
1927 edge e;
1928 edge_iterator ei;
1930 fprintf (asm_out_file, "%s SUCC:", ASM_COMMENT_START);
1931 FOR_EACH_EDGE (e, ei, bb->succs)
1933 dump_edge_info (asm_out_file, e, TDF_DETAILS, 1);
1935 fprintf (file, "\n");
1939 /* Output assembler code for some insns: all or part of a function.
1940 For description of args, see `final_start_function', above. */
1942 static void
1943 final_1 (rtx_insn *first, FILE *file, int seen, int optimize_p)
1945 rtx_insn *insn, *next;
1947 /* Used for -dA dump. */
1948 basic_block *start_to_bb = NULL;
1949 basic_block *end_to_bb = NULL;
1950 int bb_map_size = 0;
1951 int bb_seqn = 0;
1953 last_ignored_compare = 0;
1955 init_recog ();
1957 CC_STATUS_INIT;
1959 if (flag_debug_asm)
1961 basic_block bb;
1963 bb_map_size = get_max_uid () + 1;
1964 start_to_bb = XCNEWVEC (basic_block, bb_map_size);
1965 end_to_bb = XCNEWVEC (basic_block, bb_map_size);
1967 /* There is no cfg for a thunk. */
1968 if (!cfun->is_thunk)
1969 FOR_EACH_BB_REVERSE_FN (bb, cfun)
1971 start_to_bb[INSN_UID (BB_HEAD (bb))] = bb;
1972 end_to_bb[INSN_UID (BB_END (bb))] = bb;
1976 /* Output the insns. */
1977 for (insn = first; insn;)
1979 if (HAVE_ATTR_length)
1981 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1983 /* This can be triggered by bugs elsewhere in the compiler if
1984 new insns are created after init_insn_lengths is called. */
1985 gcc_assert (NOTE_P (insn));
1986 insn_current_address = -1;
1988 else
1989 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1990 /* final can be seen as an iteration of shorten_branches that
1991 does nothing (since a fixed point has already been reached). */
1992 insn_last_address = insn_current_address;
1995 dump_basic_block_info (file, insn, start_to_bb, end_to_bb,
1996 bb_map_size, &bb_seqn);
1997 insn = final_scan_insn (insn, file, optimize_p, 0, &seen);
2000 maybe_output_next_view (&seen);
2002 if (flag_debug_asm)
2004 free (start_to_bb);
2005 free (end_to_bb);
2008 /* Remove CFI notes, to avoid compare-debug failures. */
2009 for (insn = first; insn; insn = next)
2011 next = NEXT_INSN (insn);
2012 if (NOTE_P (insn)
2013 && (NOTE_KIND (insn) == NOTE_INSN_CFI
2014 || NOTE_KIND (insn) == NOTE_INSN_CFI_LABEL))
2015 delete_insn (insn);
2019 /* This is an exported final_1, callable without SEEN. */
2021 void
2022 final (rtx_insn *first, FILE *file, int optimize_p)
2024 /* Those that use the internal final_start_function_1/final_1 API
2025 skip initial debug bind notes in final_start_function_1, and pass
2026 the modified FIRST to final_1. But those that use the public
2027 final_start_function/final APIs, final_start_function can't move
2028 FIRST because it's not passed by reference, so if they were
2029 skipped there, skip them again here. */
2030 while (in_initial_view_p (first))
2031 first = NEXT_INSN (first);
2033 final_1 (first, file, 0, optimize_p);
2036 const char *
2037 get_insn_template (int code, rtx_insn *insn)
2039 switch (insn_data[code].output_format)
2041 case INSN_OUTPUT_FORMAT_SINGLE:
2042 return insn_data[code].output.single;
2043 case INSN_OUTPUT_FORMAT_MULTI:
2044 return insn_data[code].output.multi[which_alternative];
2045 case INSN_OUTPUT_FORMAT_FUNCTION:
2046 gcc_assert (insn);
2047 return (*insn_data[code].output.function) (recog_data.operand, insn);
2049 default:
2050 gcc_unreachable ();
2054 /* Emit the appropriate declaration for an alternate-entry-point
2055 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
2056 LABEL_KIND != LABEL_NORMAL.
2058 The case fall-through in this function is intentional. */
2059 static void
2060 output_alternate_entry_point (FILE *file, rtx_insn *insn)
2062 const char *name = LABEL_NAME (insn);
2064 switch (LABEL_KIND (insn))
2066 case LABEL_WEAK_ENTRY:
2067 #ifdef ASM_WEAKEN_LABEL
2068 ASM_WEAKEN_LABEL (file, name);
2069 gcc_fallthrough ();
2070 #endif
2071 case LABEL_GLOBAL_ENTRY:
2072 targetm.asm_out.globalize_label (file, name);
2073 gcc_fallthrough ();
2074 case LABEL_STATIC_ENTRY:
2075 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
2076 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
2077 #endif
2078 ASM_OUTPUT_LABEL (file, name);
2079 break;
2081 case LABEL_NORMAL:
2082 default:
2083 gcc_unreachable ();
2087 /* Given a CALL_INSN, find and return the nested CALL. */
2088 static rtx
2089 call_from_call_insn (rtx_call_insn *insn)
2091 rtx x;
2092 gcc_assert (CALL_P (insn));
2093 x = PATTERN (insn);
2095 while (GET_CODE (x) != CALL)
2097 switch (GET_CODE (x))
2099 default:
2100 gcc_unreachable ();
2101 case COND_EXEC:
2102 x = COND_EXEC_CODE (x);
2103 break;
2104 case PARALLEL:
2105 x = XVECEXP (x, 0, 0);
2106 break;
2107 case SET:
2108 x = XEXP (x, 1);
2109 break;
2112 return x;
2115 /* Print a comment into the asm showing FILENAME, LINENUM, and the
2116 corresponding source line, if available. */
2118 static void
2119 asm_show_source (const char *filename, int linenum)
2121 if (!filename)
2122 return;
2124 char_span line = location_get_source_line (filename, linenum);
2125 if (!line)
2126 return;
2128 fprintf (asm_out_file, "%s %s:%i: ", ASM_COMMENT_START, filename, linenum);
2129 /* "line" is not 0-terminated, so we must use its length. */
2130 fwrite (line.get_buffer (), 1, line.length (), asm_out_file);
2131 fputc ('\n', asm_out_file);
2134 /* Judge if an absolute jump table is relocatable. */
2136 bool
2137 jumptable_relocatable (void)
2139 bool relocatable = false;
2141 if (!CASE_VECTOR_PC_RELATIVE
2142 && !targetm.asm_out.generate_pic_addr_diff_vec ()
2143 && targetm_common.have_named_sections)
2144 relocatable = targetm.asm_out.reloc_rw_mask ();
2146 return relocatable;
2149 /* The final scan for one insn, INSN.
2150 Args are same as in `final', except that INSN
2151 is the insn being scanned.
2152 Value returned is the next insn to be scanned.
2154 NOPEEPHOLES is the flag to disallow peephole processing (currently
2155 used for within delayed branch sequence output).
2157 SEEN is used to track the end of the prologue, for emitting
2158 debug information. We force the emission of a line note after
2159 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG. */
2161 static rtx_insn *
2162 final_scan_insn_1 (rtx_insn *insn, FILE *file, int optimize_p ATTRIBUTE_UNUSED,
2163 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
2165 rtx_insn *next;
2166 rtx_jump_table_data *table;
2168 insn_counter++;
2170 /* Ignore deleted insns. These can occur when we split insns (due to a
2171 template of "#") while not optimizing. */
2172 if (insn->deleted ())
2173 return NEXT_INSN (insn);
2175 switch (GET_CODE (insn))
2177 case NOTE:
2178 switch (NOTE_KIND (insn))
2180 case NOTE_INSN_DELETED:
2181 case NOTE_INSN_UPDATE_SJLJ_CONTEXT:
2182 break;
2184 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
2185 maybe_output_next_view (seen);
2187 output_function_exception_table (0);
2189 if (targetm.asm_out.unwind_emit)
2190 targetm.asm_out.unwind_emit (asm_out_file, insn);
2192 in_cold_section_p = !in_cold_section_p;
2194 gcc_checking_assert (in_cold_section_p);
2195 if (in_cold_section_p)
2196 cold_function_name
2197 = clone_function_name (current_function_decl, "cold");
2199 if (dwarf2out_do_frame ())
2201 dwarf2out_switch_text_section ();
2202 if (!dwarf2_debug_info_emitted_p (current_function_decl)
2203 && !DECL_IGNORED_P (current_function_decl))
2204 debug_hooks->switch_text_section ();
2206 else if (!DECL_IGNORED_P (current_function_decl))
2207 debug_hooks->switch_text_section ();
2208 if (DECL_IGNORED_P (current_function_decl) && last_linenum
2209 && last_filename)
2210 debug_hooks->set_ignored_loc (last_linenum, last_columnnum,
2211 last_filename);
2213 switch_to_section (current_function_section ());
2214 targetm.asm_out.function_switched_text_sections (asm_out_file,
2215 current_function_decl,
2216 in_cold_section_p);
2217 /* Emit a label for the split cold section. Form label name by
2218 suffixing "cold" to the original function's name. */
2219 if (in_cold_section_p)
2221 #ifdef ASM_DECLARE_COLD_FUNCTION_NAME
2222 ASM_DECLARE_COLD_FUNCTION_NAME (asm_out_file,
2223 IDENTIFIER_POINTER
2224 (cold_function_name),
2225 current_function_decl);
2226 #else
2227 ASM_OUTPUT_LABEL (asm_out_file,
2228 IDENTIFIER_POINTER (cold_function_name));
2229 #endif
2230 if (dwarf2out_do_frame ()
2231 && cfun->fde->dw_fde_second_begin != NULL)
2232 ASM_OUTPUT_LABEL (asm_out_file, cfun->fde->dw_fde_second_begin);
2234 break;
2236 case NOTE_INSN_BASIC_BLOCK:
2237 if (need_profile_function)
2239 profile_function (asm_out_file);
2240 need_profile_function = false;
2243 if (targetm.asm_out.unwind_emit)
2244 targetm.asm_out.unwind_emit (asm_out_file, insn);
2246 bb_discriminator = NOTE_BASIC_BLOCK (insn)->discriminator;
2247 break;
2249 case NOTE_INSN_EH_REGION_BEG:
2250 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
2251 NOTE_EH_HANDLER (insn));
2252 break;
2254 case NOTE_INSN_EH_REGION_END:
2255 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
2256 NOTE_EH_HANDLER (insn));
2257 break;
2259 case NOTE_INSN_PROLOGUE_END:
2260 targetm.asm_out.function_end_prologue (file);
2261 profile_after_prologue (file);
2263 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2265 *seen |= SEEN_EMITTED;
2266 force_source_line = true;
2268 else
2269 *seen |= SEEN_NOTE;
2271 break;
2273 case NOTE_INSN_EPILOGUE_BEG:
2274 if (!DECL_IGNORED_P (current_function_decl))
2275 (*debug_hooks->begin_epilogue) (last_linenum, last_filename);
2276 targetm.asm_out.function_begin_epilogue (file);
2277 break;
2279 case NOTE_INSN_CFI:
2280 dwarf2out_emit_cfi (NOTE_CFI (insn));
2281 break;
2283 case NOTE_INSN_CFI_LABEL:
2284 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LCFI",
2285 NOTE_LABEL_NUMBER (insn));
2286 break;
2288 case NOTE_INSN_FUNCTION_BEG:
2289 if (need_profile_function)
2291 profile_function (asm_out_file);
2292 need_profile_function = false;
2295 app_disable ();
2296 if (!DECL_IGNORED_P (current_function_decl))
2297 debug_hooks->end_prologue (last_linenum, last_filename);
2299 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
2301 *seen |= SEEN_EMITTED;
2302 force_source_line = true;
2304 else
2305 *seen |= SEEN_NOTE;
2307 break;
2309 case NOTE_INSN_BLOCK_BEG:
2310 if (debug_info_level >= DINFO_LEVEL_NORMAL
2311 || dwarf_debuginfo_p ()
2312 || write_symbols == VMS_DEBUG)
2314 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2316 app_disable ();
2317 ++block_depth;
2318 high_block_linenum = last_linenum;
2320 /* Output debugging info about the symbol-block beginning. */
2321 if (!DECL_IGNORED_P (current_function_decl))
2322 debug_hooks->begin_block (last_linenum, n);
2324 /* Mark this block as output. */
2325 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
2326 BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn)) = in_cold_section_p;
2328 if (write_symbols == DBX_DEBUG)
2330 location_t *locus_ptr
2331 = block_nonartificial_location (NOTE_BLOCK (insn));
2333 if (locus_ptr != NULL)
2335 override_filename = LOCATION_FILE (*locus_ptr);
2336 override_linenum = LOCATION_LINE (*locus_ptr);
2337 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2338 override_discriminator = compute_discriminator (*locus_ptr);
2341 break;
2343 case NOTE_INSN_BLOCK_END:
2344 maybe_output_next_view (seen);
2346 if (debug_info_level >= DINFO_LEVEL_NORMAL
2347 || dwarf_debuginfo_p ()
2348 || write_symbols == VMS_DEBUG)
2350 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
2352 app_disable ();
2354 /* End of a symbol-block. */
2355 --block_depth;
2356 gcc_assert (block_depth >= 0);
2358 if (!DECL_IGNORED_P (current_function_decl))
2359 debug_hooks->end_block (high_block_linenum, n);
2360 gcc_assert (BLOCK_IN_COLD_SECTION_P (NOTE_BLOCK (insn))
2361 == in_cold_section_p);
2363 if (write_symbols == DBX_DEBUG)
2365 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
2366 location_t *locus_ptr
2367 = block_nonartificial_location (outer_block);
2369 if (locus_ptr != NULL)
2371 override_filename = LOCATION_FILE (*locus_ptr);
2372 override_linenum = LOCATION_LINE (*locus_ptr);
2373 override_columnnum = LOCATION_COLUMN (*locus_ptr);
2374 override_discriminator = compute_discriminator (*locus_ptr);
2376 else
2378 override_filename = NULL;
2379 override_linenum = 0;
2380 override_columnnum = 0;
2381 override_discriminator = 0;
2384 break;
2386 case NOTE_INSN_DELETED_LABEL:
2387 /* Emit the label. We may have deleted the CODE_LABEL because
2388 the label could be proved to be unreachable, though still
2389 referenced (in the form of having its address taken. */
2390 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
2391 break;
2393 case NOTE_INSN_DELETED_DEBUG_LABEL:
2394 /* Similarly, but need to use different namespace for it. */
2395 if (CODE_LABEL_NUMBER (insn) != -1)
2396 ASM_OUTPUT_DEBUG_LABEL (file, "LDL", CODE_LABEL_NUMBER (insn));
2397 break;
2399 case NOTE_INSN_VAR_LOCATION:
2400 if (!DECL_IGNORED_P (current_function_decl))
2402 debug_hooks->var_location (insn);
2403 set_next_view_needed (seen);
2405 break;
2407 case NOTE_INSN_BEGIN_STMT:
2408 gcc_checking_assert (cfun->debug_nonbind_markers);
2409 if (!DECL_IGNORED_P (current_function_decl)
2410 && notice_source_line (insn, NULL))
2412 output_source_line:
2413 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2414 last_filename, last_discriminator,
2415 true);
2416 clear_next_view_needed (seen);
2418 break;
2420 case NOTE_INSN_INLINE_ENTRY:
2421 gcc_checking_assert (cfun->debug_nonbind_markers);
2422 if (!DECL_IGNORED_P (current_function_decl)
2423 && notice_source_line (insn, NULL))
2425 (*debug_hooks->inline_entry) (LOCATION_BLOCK
2426 (NOTE_MARKER_LOCATION (insn)));
2427 goto output_source_line;
2429 break;
2431 default:
2432 gcc_unreachable ();
2433 break;
2435 break;
2437 case BARRIER:
2438 break;
2440 case CODE_LABEL:
2441 /* The target port might emit labels in the output function for
2442 some insn, e.g. sh.c output_branchy_insn. */
2443 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
2445 align_flags alignment = LABEL_TO_ALIGNMENT (insn);
2446 if (alignment.levels[0].log && NEXT_INSN (insn))
2448 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
2449 /* Output both primary and secondary alignment. */
2450 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[0].log,
2451 alignment.levels[0].maxskip);
2452 ASM_OUTPUT_MAX_SKIP_ALIGN (file, alignment.levels[1].log,
2453 alignment.levels[1].maxskip);
2454 #else
2455 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
2456 ASM_OUTPUT_ALIGN_WITH_NOP (file, alignment.levels[0].log);
2457 #else
2458 ASM_OUTPUT_ALIGN (file, alignment.levels[0].log);
2459 #endif
2460 #endif
2463 CC_STATUS_INIT;
2465 if (!DECL_IGNORED_P (current_function_decl) && LABEL_NAME (insn))
2466 debug_hooks->label (as_a <rtx_code_label *> (insn));
2468 app_disable ();
2470 /* If this label is followed by a jump-table, make sure we put
2471 the label in the read-only section. Also possibly write the
2472 label and jump table together. */
2473 table = jump_table_for_label (as_a <rtx_code_label *> (insn));
2474 if (table)
2476 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2477 /* In this case, the case vector is being moved by the
2478 target, so don't output the label at all. Leave that
2479 to the back end macros. */
2480 #else
2481 if (! JUMP_TABLES_IN_TEXT_SECTION)
2483 int log_align;
2485 switch_to_section (targetm.asm_out.function_rodata_section
2486 (current_function_decl,
2487 jumptable_relocatable ()));
2489 #ifdef ADDR_VEC_ALIGN
2490 log_align = ADDR_VEC_ALIGN (table);
2491 #else
2492 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2493 #endif
2494 ASM_OUTPUT_ALIGN (file, log_align);
2496 else
2497 switch_to_section (current_function_section ());
2499 #ifdef ASM_OUTPUT_CASE_LABEL
2500 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn), table);
2501 #else
2502 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2503 #endif
2504 #endif
2505 break;
2507 if (LABEL_ALT_ENTRY_P (insn))
2508 output_alternate_entry_point (file, insn);
2509 else
2510 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2511 break;
2513 default:
2515 rtx body = PATTERN (insn);
2516 int insn_code_number;
2517 const char *templ;
2518 bool is_stmt, *is_stmt_p;
2520 if (MAY_HAVE_DEBUG_MARKER_INSNS && cfun->debug_nonbind_markers)
2522 is_stmt = false;
2523 is_stmt_p = NULL;
2525 else
2526 is_stmt_p = &is_stmt;
2528 /* Reset this early so it is correct for ASM statements. */
2529 current_insn_predicate = NULL_RTX;
2531 /* An INSN, JUMP_INSN or CALL_INSN.
2532 First check for special kinds that recog doesn't recognize. */
2534 if (GET_CODE (body) == USE /* These are just declarations. */
2535 || GET_CODE (body) == CLOBBER)
2536 break;
2538 /* Detect insns that are really jump-tables
2539 and output them as such. */
2541 if (JUMP_TABLE_DATA_P (insn))
2543 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2544 int vlen, idx;
2545 #endif
2547 if (! JUMP_TABLES_IN_TEXT_SECTION)
2548 switch_to_section (targetm.asm_out.function_rodata_section
2549 (current_function_decl,
2550 jumptable_relocatable ()));
2551 else
2552 switch_to_section (current_function_section ());
2554 app_disable ();
2556 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2557 if (GET_CODE (body) == ADDR_VEC)
2559 #ifdef ASM_OUTPUT_ADDR_VEC
2560 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2561 #else
2562 gcc_unreachable ();
2563 #endif
2565 else
2567 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2568 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2569 #else
2570 gcc_unreachable ();
2571 #endif
2573 #else
2574 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2575 for (idx = 0; idx < vlen; idx++)
2577 if (GET_CODE (body) == ADDR_VEC)
2579 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2580 ASM_OUTPUT_ADDR_VEC_ELT
2581 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2582 #else
2583 gcc_unreachable ();
2584 #endif
2586 else
2588 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2589 ASM_OUTPUT_ADDR_DIFF_ELT
2590 (file,
2591 body,
2592 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2593 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2594 #else
2595 gcc_unreachable ();
2596 #endif
2599 #ifdef ASM_OUTPUT_CASE_END
2600 ASM_OUTPUT_CASE_END (file,
2601 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2602 insn);
2603 #endif
2604 #endif
2606 switch_to_section (current_function_section ());
2608 if (debug_variable_location_views
2609 && !DECL_IGNORED_P (current_function_decl))
2610 debug_hooks->var_location (insn);
2612 break;
2614 /* Output this line note if it is the first or the last line
2615 note in a row. */
2616 if (!DECL_IGNORED_P (current_function_decl)
2617 && notice_source_line (insn, is_stmt_p))
2619 if (flag_verbose_asm)
2620 asm_show_source (last_filename, last_linenum);
2621 (*debug_hooks->source_line) (last_linenum, last_columnnum,
2622 last_filename, last_discriminator,
2623 is_stmt);
2624 clear_next_view_needed (seen);
2626 else
2627 maybe_output_next_view (seen);
2629 gcc_checking_assert (!DEBUG_INSN_P (insn));
2631 if (GET_CODE (body) == PARALLEL
2632 && GET_CODE (XVECEXP (body, 0, 0)) == ASM_INPUT)
2633 body = XVECEXP (body, 0, 0);
2635 if (GET_CODE (body) == ASM_INPUT)
2637 const char *string = XSTR (body, 0);
2639 /* There's no telling what that did to the condition codes. */
2640 CC_STATUS_INIT;
2642 if (string[0])
2644 expanded_location loc;
2646 app_enable ();
2647 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2648 if (*loc.file && loc.line)
2649 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2650 ASM_COMMENT_START, loc.line, loc.file);
2651 fprintf (asm_out_file, "\t%s\n", string);
2652 #if HAVE_AS_LINE_ZERO
2653 if (*loc.file && loc.line)
2654 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2655 #endif
2657 break;
2660 /* Detect `asm' construct with operands. */
2661 if (asm_noperands (body) >= 0)
2663 unsigned int noperands = asm_noperands (body);
2664 rtx *ops = XALLOCAVEC (rtx, noperands);
2665 const char *string;
2666 location_t loc;
2667 expanded_location expanded;
2669 /* There's no telling what that did to the condition codes. */
2670 CC_STATUS_INIT;
2672 /* Get out the operand values. */
2673 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2674 /* Inhibit dying on what would otherwise be compiler bugs. */
2675 insn_noperands = noperands;
2676 this_is_asm_operands = insn;
2677 expanded = expand_location (loc);
2679 #ifdef FINAL_PRESCAN_INSN
2680 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2681 #endif
2683 /* Output the insn using them. */
2684 if (string[0])
2686 app_enable ();
2687 if (expanded.file && expanded.line)
2688 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2689 ASM_COMMENT_START, expanded.line, expanded.file);
2690 output_asm_insn (string, ops);
2691 #if HAVE_AS_LINE_ZERO
2692 if (expanded.file && expanded.line)
2693 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2694 #endif
2697 if (targetm.asm_out.final_postscan_insn)
2698 targetm.asm_out.final_postscan_insn (file, insn, ops,
2699 insn_noperands);
2701 this_is_asm_operands = 0;
2702 break;
2705 app_disable ();
2707 if (rtx_sequence *seq = dyn_cast <rtx_sequence *> (body))
2709 /* A delayed-branch sequence */
2710 int i;
2712 final_sequence = seq;
2714 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2715 force the restoration of a comparison that was previously
2716 thought unnecessary. If that happens, cancel this sequence
2717 and cause that insn to be restored. */
2719 next = final_scan_insn (seq->insn (0), file, 0, 1, seen);
2720 if (next != seq->insn (1))
2722 final_sequence = 0;
2723 return next;
2726 for (i = 1; i < seq->len (); i++)
2728 rtx_insn *insn = seq->insn (i);
2729 rtx_insn *next = NEXT_INSN (insn);
2730 /* We loop in case any instruction in a delay slot gets
2731 split. */
2733 insn = final_scan_insn (insn, file, 0, 1, seen);
2734 while (insn != next);
2736 #ifdef DBR_OUTPUT_SEQEND
2737 DBR_OUTPUT_SEQEND (file);
2738 #endif
2739 final_sequence = 0;
2741 /* If the insn requiring the delay slot was a CALL_INSN, the
2742 insns in the delay slot are actually executed before the
2743 called function. Hence we don't preserve any CC-setting
2744 actions in these insns and the CC must be marked as being
2745 clobbered by the function. */
2746 if (CALL_P (seq->insn (0)))
2748 CC_STATUS_INIT;
2750 break;
2753 /* We have a real machine instruction as rtl. */
2755 body = PATTERN (insn);
2757 /* Do machine-specific peephole optimizations if desired. */
2759 if (HAVE_peephole && optimize_p && !flag_no_peephole && !nopeepholes)
2761 rtx_insn *next = peephole (insn);
2762 /* When peepholing, if there were notes within the peephole,
2763 emit them before the peephole. */
2764 if (next != 0 && next != NEXT_INSN (insn))
2766 rtx_insn *note, *prev = PREV_INSN (insn);
2768 for (note = NEXT_INSN (insn); note != next;
2769 note = NEXT_INSN (note))
2770 final_scan_insn (note, file, optimize_p, nopeepholes, seen);
2772 /* Put the notes in the proper position for a later
2773 rescan. For example, the SH target can do this
2774 when generating a far jump in a delayed branch
2775 sequence. */
2776 note = NEXT_INSN (insn);
2777 SET_PREV_INSN (note) = prev;
2778 SET_NEXT_INSN (prev) = note;
2779 SET_NEXT_INSN (PREV_INSN (next)) = insn;
2780 SET_PREV_INSN (insn) = PREV_INSN (next);
2781 SET_NEXT_INSN (insn) = next;
2782 SET_PREV_INSN (next) = insn;
2785 /* PEEPHOLE might have changed this. */
2786 body = PATTERN (insn);
2789 /* Try to recognize the instruction.
2790 If successful, verify that the operands satisfy the
2791 constraints for the instruction. Crash if they don't,
2792 since `reload' should have changed them so that they do. */
2794 insn_code_number = recog_memoized (insn);
2795 cleanup_subreg_operands (insn);
2797 /* Dump the insn in the assembly for debugging (-dAP).
2798 If the final dump is requested as slim RTL, dump slim
2799 RTL to the assembly file also. */
2800 if (flag_dump_rtl_in_asm)
2802 print_rtx_head = ASM_COMMENT_START;
2803 if (! (dump_flags & TDF_SLIM))
2804 print_rtl_single (asm_out_file, insn);
2805 else
2806 dump_insn_slim (asm_out_file, insn);
2807 print_rtx_head = "";
2810 if (! constrain_operands_cached (insn, 1))
2811 fatal_insn_not_found (insn);
2813 /* Some target machines need to prescan each insn before
2814 it is output. */
2816 #ifdef FINAL_PRESCAN_INSN
2817 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2818 #endif
2820 if (targetm.have_conditional_execution ()
2821 && GET_CODE (PATTERN (insn)) == COND_EXEC)
2822 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2824 current_output_insn = debug_insn = insn;
2826 /* Find the proper template for this insn. */
2827 templ = get_insn_template (insn_code_number, insn);
2829 /* If the C code returns 0, it means that it is a jump insn
2830 which follows a deleted test insn, and that test insn
2831 needs to be reinserted. */
2832 if (templ == 0)
2834 rtx_insn *prev;
2836 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2838 /* We have already processed the notes between the setter and
2839 the user. Make sure we don't process them again, this is
2840 particularly important if one of the notes is a block
2841 scope note or an EH note. */
2842 for (prev = insn;
2843 prev != last_ignored_compare;
2844 prev = PREV_INSN (prev))
2846 if (NOTE_P (prev))
2847 delete_insn (prev); /* Use delete_note. */
2850 return prev;
2853 /* If the template is the string "#", it means that this insn must
2854 be split. */
2855 if (templ[0] == '#' && templ[1] == '\0')
2857 rtx_insn *new_rtx = try_split (body, insn, 0);
2859 /* If we didn't split the insn, go away. */
2860 if (new_rtx == insn && PATTERN (new_rtx) == body)
2861 fatal_insn ("could not split insn", insn);
2863 /* If we have a length attribute, this instruction should have
2864 been split in shorten_branches, to ensure that we would have
2865 valid length info for the splitees. */
2866 gcc_assert (!HAVE_ATTR_length);
2868 return new_rtx;
2871 /* ??? This will put the directives in the wrong place if
2872 get_insn_template outputs assembly directly. However calling it
2873 before get_insn_template breaks if the insns is split. */
2874 if (targetm.asm_out.unwind_emit_before_insn
2875 && targetm.asm_out.unwind_emit)
2876 targetm.asm_out.unwind_emit (asm_out_file, insn);
2878 rtx_call_insn *call_insn = dyn_cast <rtx_call_insn *> (insn);
2879 if (call_insn != NULL)
2881 rtx x = call_from_call_insn (call_insn);
2882 x = XEXP (x, 0);
2883 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2885 tree t;
2886 x = XEXP (x, 0);
2887 t = SYMBOL_REF_DECL (x);
2888 if (t)
2889 assemble_external (t);
2893 /* Output assembler code from the template. */
2894 output_asm_insn (templ, recog_data.operand);
2896 /* Some target machines need to postscan each insn after
2897 it is output. */
2898 if (targetm.asm_out.final_postscan_insn)
2899 targetm.asm_out.final_postscan_insn (file, insn, recog_data.operand,
2900 recog_data.n_operands);
2902 if (!targetm.asm_out.unwind_emit_before_insn
2903 && targetm.asm_out.unwind_emit)
2904 targetm.asm_out.unwind_emit (asm_out_file, insn);
2906 /* Let the debug info back-end know about this call. We do this only
2907 after the instruction has been emitted because labels that may be
2908 created to reference the call instruction must appear after it. */
2909 if ((debug_variable_location_views || call_insn != NULL)
2910 && !DECL_IGNORED_P (current_function_decl))
2911 debug_hooks->var_location (insn);
2913 current_output_insn = debug_insn = 0;
2916 return NEXT_INSN (insn);
2919 /* This is a wrapper around final_scan_insn_1 that allows ports to
2920 call it recursively without a known value for SEEN. The value is
2921 saved at the outermost call, and recovered for recursive calls.
2922 Recursive calls MUST pass NULL, or the same pointer if they can
2923 otherwise get to it. */
2925 rtx_insn *
2926 final_scan_insn (rtx_insn *insn, FILE *file, int optimize_p,
2927 int nopeepholes, int *seen)
2929 static int *enclosing_seen;
2930 static int recursion_counter;
2932 gcc_assert (seen || recursion_counter);
2933 gcc_assert (!recursion_counter || !seen || seen == enclosing_seen);
2935 if (!recursion_counter++)
2936 enclosing_seen = seen;
2937 else if (!seen)
2938 seen = enclosing_seen;
2940 rtx_insn *ret = final_scan_insn_1 (insn, file, optimize_p, nopeepholes, seen);
2942 if (!--recursion_counter)
2943 enclosing_seen = NULL;
2945 return ret;
2950 /* Map DECLs to instance discriminators. This is allocated and
2951 defined in ada/gcc-interfaces/trans.c, when compiling with -gnateS.
2952 Mappings from this table are saved and restored for LTO, so
2953 link-time compilation will have this map set, at least in
2954 partitions containing at least one DECL with an associated instance
2955 discriminator. */
2957 decl_to_instance_map_t *decl_to_instance_map;
2959 /* Return the instance number assigned to DECL. */
2961 static inline int
2962 map_decl_to_instance (const_tree decl)
2964 int *inst;
2966 if (!decl_to_instance_map || !decl || !DECL_P (decl))
2967 return 0;
2969 inst = decl_to_instance_map->get (decl);
2971 if (!inst)
2972 return 0;
2974 return *inst;
2977 /* Set DISCRIMINATOR to the appropriate value, possibly derived from LOC. */
2979 static inline int
2980 compute_discriminator (location_t loc)
2982 int discriminator;
2984 if (!decl_to_instance_map)
2985 discriminator = bb_discriminator;
2986 else
2988 tree block = LOCATION_BLOCK (loc);
2990 while (block && TREE_CODE (block) == BLOCK
2991 && !inlined_function_outer_scope_p (block))
2992 block = BLOCK_SUPERCONTEXT (block);
2994 tree decl;
2996 if (!block)
2997 decl = current_function_decl;
2998 else if (DECL_P (block))
2999 decl = block;
3000 else
3001 decl = block_ultimate_origin (block);
3003 discriminator = map_decl_to_instance (decl);
3006 return discriminator;
3009 /* Return whether a source line note needs to be emitted before INSN.
3010 Sets IS_STMT to TRUE if the line should be marked as a possible
3011 breakpoint location. */
3013 static bool
3014 notice_source_line (rtx_insn *insn, bool *is_stmt)
3016 const char *filename;
3017 int linenum, columnnum;
3019 if (NOTE_MARKER_P (insn))
3021 location_t loc = NOTE_MARKER_LOCATION (insn);
3022 expanded_location xloc = expand_location (loc);
3023 if (xloc.line == 0
3024 && (LOCATION_LOCUS (loc) == UNKNOWN_LOCATION
3025 || LOCATION_LOCUS (loc) == BUILTINS_LOCATION))
3026 return false;
3028 filename = xloc.file;
3029 linenum = xloc.line;
3030 columnnum = xloc.column;
3031 discriminator = compute_discriminator (loc);
3032 force_source_line = true;
3034 else if (override_filename)
3036 filename = override_filename;
3037 linenum = override_linenum;
3038 columnnum = override_columnnum;
3039 discriminator = override_discriminator;
3041 else if (INSN_HAS_LOCATION (insn))
3043 expanded_location xloc = insn_location (insn);
3044 filename = xloc.file;
3045 linenum = xloc.line;
3046 columnnum = xloc.column;
3047 discriminator = compute_discriminator (INSN_LOCATION (insn));
3049 else
3051 filename = NULL;
3052 linenum = 0;
3053 columnnum = 0;
3054 discriminator = 0;
3057 if (filename == NULL)
3058 return false;
3060 if (force_source_line
3061 || filename != last_filename
3062 || last_linenum != linenum
3063 || (debug_column_info && last_columnnum != columnnum))
3065 force_source_line = false;
3066 last_filename = filename;
3067 last_linenum = linenum;
3068 last_columnnum = columnnum;
3069 last_discriminator = discriminator;
3070 if (is_stmt)
3071 *is_stmt = true;
3072 high_block_linenum = MAX (last_linenum, high_block_linenum);
3073 high_function_linenum = MAX (last_linenum, high_function_linenum);
3074 return true;
3077 if (SUPPORTS_DISCRIMINATOR && last_discriminator != discriminator)
3079 /* If the discriminator changed, but the line number did not,
3080 output the line table entry with is_stmt false so the
3081 debugger does not treat this as a breakpoint location. */
3082 last_discriminator = discriminator;
3083 if (is_stmt)
3084 *is_stmt = false;
3085 return true;
3088 return false;
3091 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
3092 directly to the desired hard register. */
3094 void
3095 cleanup_subreg_operands (rtx_insn *insn)
3097 int i;
3098 bool changed = false;
3099 extract_insn_cached (insn);
3100 for (i = 0; i < recog_data.n_operands; i++)
3102 /* The following test cannot use recog_data.operand when testing
3103 for a SUBREG: the underlying object might have been changed
3104 already if we are inside a match_operator expression that
3105 matches the else clause. Instead we test the underlying
3106 expression directly. */
3107 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
3109 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i], true);
3110 changed = true;
3112 else if (GET_CODE (recog_data.operand[i]) == PLUS
3113 || GET_CODE (recog_data.operand[i]) == MULT
3114 || MEM_P (recog_data.operand[i]))
3115 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
3118 for (i = 0; i < recog_data.n_dups; i++)
3120 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
3122 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i], true);
3123 changed = true;
3125 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
3126 || GET_CODE (*recog_data.dup_loc[i]) == MULT
3127 || MEM_P (*recog_data.dup_loc[i]))
3128 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
3130 if (changed)
3131 df_insn_rescan (insn);
3134 /* If X is a SUBREG, try to replace it with a REG or a MEM, based on
3135 the thing it is a subreg of. Do it anyway if FINAL_P. */
3138 alter_subreg (rtx *xp, bool final_p)
3140 rtx x = *xp;
3141 rtx y = SUBREG_REG (x);
3143 /* simplify_subreg does not remove subreg from volatile references.
3144 We are required to. */
3145 if (MEM_P (y))
3147 poly_int64 offset = SUBREG_BYTE (x);
3149 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
3150 contains 0 instead of the proper offset. See simplify_subreg. */
3151 if (paradoxical_subreg_p (x))
3152 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3154 if (final_p)
3155 *xp = adjust_address (y, GET_MODE (x), offset);
3156 else
3157 *xp = adjust_address_nv (y, GET_MODE (x), offset);
3159 else if (REG_P (y) && HARD_REGISTER_P (y))
3161 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
3162 SUBREG_BYTE (x));
3164 if (new_rtx != 0)
3165 *xp = new_rtx;
3166 else if (final_p && REG_P (y))
3168 /* Simplify_subreg can't handle some REG cases, but we have to. */
3169 unsigned int regno;
3170 poly_int64 offset;
3172 regno = subreg_regno (x);
3173 if (subreg_lowpart_p (x))
3174 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
3175 else
3176 offset = SUBREG_BYTE (x);
3177 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
3181 return *xp;
3184 /* Do alter_subreg on all the SUBREGs contained in X. */
3186 static rtx
3187 walk_alter_subreg (rtx *xp, bool *changed)
3189 rtx x = *xp;
3190 switch (GET_CODE (x))
3192 case PLUS:
3193 case MULT:
3194 case AND:
3195 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3196 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
3197 break;
3199 case MEM:
3200 case ZERO_EXTEND:
3201 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
3202 break;
3204 case SUBREG:
3205 *changed = true;
3206 return alter_subreg (xp, true);
3208 default:
3209 break;
3212 return *xp;
3215 /* Report inconsistency between the assembler template and the operands.
3216 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
3218 void
3219 output_operand_lossage (const char *cmsgid, ...)
3221 char *fmt_string;
3222 char *new_message;
3223 const char *pfx_str;
3224 va_list ap;
3226 va_start (ap, cmsgid);
3228 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
3229 fmt_string = xasprintf ("%s%s", pfx_str, _(cmsgid));
3230 new_message = xvasprintf (fmt_string, ap);
3232 if (this_is_asm_operands)
3233 error_for_asm (this_is_asm_operands, "%s", new_message);
3234 else
3235 internal_error ("%s", new_message);
3237 free (fmt_string);
3238 free (new_message);
3239 va_end (ap);
3242 /* Output of assembler code from a template, and its subroutines. */
3244 /* Annotate the assembly with a comment describing the pattern and
3245 alternative used. */
3247 static void
3248 output_asm_name (void)
3250 if (debug_insn)
3252 fprintf (asm_out_file, "\t%s %d\t",
3253 ASM_COMMENT_START, INSN_UID (debug_insn));
3255 fprintf (asm_out_file, "[c=%d",
3256 insn_cost (debug_insn, optimize_insn_for_speed_p ()));
3257 if (HAVE_ATTR_length)
3258 fprintf (asm_out_file, " l=%d",
3259 get_attr_length (debug_insn));
3260 fprintf (asm_out_file, "] ");
3262 int num = INSN_CODE (debug_insn);
3263 fprintf (asm_out_file, "%s", insn_data[num].name);
3264 if (insn_data[num].n_alternatives > 1)
3265 fprintf (asm_out_file, "/%d", which_alternative);
3267 /* Clear this so only the first assembler insn
3268 of any rtl insn will get the special comment for -dp. */
3269 debug_insn = 0;
3273 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3274 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3275 corresponds to the address of the object and 0 if to the object. */
3277 static tree
3278 get_mem_expr_from_op (rtx op, int *paddressp)
3280 tree expr;
3281 int inner_addressp;
3283 *paddressp = 0;
3285 if (REG_P (op))
3286 return REG_EXPR (op);
3287 else if (!MEM_P (op))
3288 return 0;
3290 if (MEM_EXPR (op) != 0)
3291 return MEM_EXPR (op);
3293 /* Otherwise we have an address, so indicate it and look at the address. */
3294 *paddressp = 1;
3295 op = XEXP (op, 0);
3297 /* First check if we have a decl for the address, then look at the right side
3298 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3299 But don't allow the address to itself be indirect. */
3300 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3301 return expr;
3302 else if (GET_CODE (op) == PLUS
3303 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3304 return expr;
3306 while (UNARY_P (op)
3307 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3308 op = XEXP (op, 0);
3310 expr = get_mem_expr_from_op (op, &inner_addressp);
3311 return inner_addressp ? 0 : expr;
3314 /* Output operand names for assembler instructions. OPERANDS is the
3315 operand vector, OPORDER is the order to write the operands, and NOPS
3316 is the number of operands to write. */
3318 static void
3319 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3321 int wrote = 0;
3322 int i;
3324 for (i = 0; i < nops; i++)
3326 int addressp;
3327 rtx op = operands[oporder[i]];
3328 tree expr = get_mem_expr_from_op (op, &addressp);
3330 fprintf (asm_out_file, "%c%s",
3331 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3332 wrote = 1;
3333 if (expr)
3335 fprintf (asm_out_file, "%s",
3336 addressp ? "*" : "");
3337 print_mem_expr (asm_out_file, expr);
3338 wrote = 1;
3340 else if (REG_P (op) && ORIGINAL_REGNO (op)
3341 && ORIGINAL_REGNO (op) != REGNO (op))
3342 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3346 #ifdef ASSEMBLER_DIALECT
3347 /* Helper function to parse assembler dialects in the asm string.
3348 This is called from output_asm_insn and asm_fprintf. */
3349 static const char *
3350 do_assembler_dialects (const char *p, int *dialect)
3352 char c = *(p - 1);
3354 switch (c)
3356 case '{':
3358 int i;
3360 if (*dialect)
3361 output_operand_lossage ("nested assembly dialect alternatives");
3362 else
3363 *dialect = 1;
3365 /* If we want the first dialect, do nothing. Otherwise, skip
3366 DIALECT_NUMBER of strings ending with '|'. */
3367 for (i = 0; i < dialect_number; i++)
3369 while (*p && *p != '}')
3371 if (*p == '|')
3373 p++;
3374 break;
3377 /* Skip over any character after a percent sign. */
3378 if (*p == '%')
3379 p++;
3380 if (*p)
3381 p++;
3384 if (*p == '}')
3385 break;
3388 if (*p == '\0')
3389 output_operand_lossage ("unterminated assembly dialect alternative");
3391 break;
3393 case '|':
3394 if (*dialect)
3396 /* Skip to close brace. */
3399 if (*p == '\0')
3401 output_operand_lossage ("unterminated assembly dialect alternative");
3402 break;
3405 /* Skip over any character after a percent sign. */
3406 if (*p == '%' && p[1])
3408 p += 2;
3409 continue;
3412 if (*p++ == '}')
3413 break;
3415 while (1);
3417 *dialect = 0;
3419 else
3420 putc (c, asm_out_file);
3421 break;
3423 case '}':
3424 if (! *dialect)
3425 putc (c, asm_out_file);
3426 *dialect = 0;
3427 break;
3428 default:
3429 gcc_unreachable ();
3432 return p;
3434 #endif
3436 /* Output text from TEMPLATE to the assembler output file,
3437 obeying %-directions to substitute operands taken from
3438 the vector OPERANDS.
3440 %N (for N a digit) means print operand N in usual manner.
3441 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3442 and print the label name with no punctuation.
3443 %cN means require operand N to be a constant
3444 and print the constant expression with no punctuation.
3445 %aN means expect operand N to be a memory address
3446 (not a memory reference!) and print a reference
3447 to that address.
3448 %nN means expect operand N to be a constant
3449 and print a constant expression for minus the value
3450 of the operand, with no other punctuation. */
3452 void
3453 output_asm_insn (const char *templ, rtx *operands)
3455 const char *p;
3456 int c;
3457 #ifdef ASSEMBLER_DIALECT
3458 int dialect = 0;
3459 #endif
3460 int oporder[MAX_RECOG_OPERANDS];
3461 char opoutput[MAX_RECOG_OPERANDS];
3462 int ops = 0;
3464 /* An insn may return a null string template
3465 in a case where no assembler code is needed. */
3466 if (*templ == 0)
3467 return;
3469 memset (opoutput, 0, sizeof opoutput);
3470 p = templ;
3471 putc ('\t', asm_out_file);
3473 #ifdef ASM_OUTPUT_OPCODE
3474 ASM_OUTPUT_OPCODE (asm_out_file, p);
3475 #endif
3477 while ((c = *p++))
3478 switch (c)
3480 case '\n':
3481 if (flag_verbose_asm)
3482 output_asm_operand_names (operands, oporder, ops);
3483 if (flag_print_asm_name)
3484 output_asm_name ();
3486 ops = 0;
3487 memset (opoutput, 0, sizeof opoutput);
3489 putc (c, asm_out_file);
3490 #ifdef ASM_OUTPUT_OPCODE
3491 while ((c = *p) == '\t')
3493 putc (c, asm_out_file);
3494 p++;
3496 ASM_OUTPUT_OPCODE (asm_out_file, p);
3497 #endif
3498 break;
3500 #ifdef ASSEMBLER_DIALECT
3501 case '{':
3502 case '}':
3503 case '|':
3504 p = do_assembler_dialects (p, &dialect);
3505 break;
3506 #endif
3508 case '%':
3509 /* %% outputs a single %. %{, %} and %| print {, } and | respectively
3510 if ASSEMBLER_DIALECT defined and these characters have a special
3511 meaning as dialect delimiters.*/
3512 if (*p == '%'
3513 #ifdef ASSEMBLER_DIALECT
3514 || *p == '{' || *p == '}' || *p == '|'
3515 #endif
3518 putc (*p, asm_out_file);
3519 p++;
3521 /* %= outputs a number which is unique to each insn in the entire
3522 compilation. This is useful for making local labels that are
3523 referred to more than once in a given insn. */
3524 else if (*p == '=')
3526 p++;
3527 fprintf (asm_out_file, "%d", insn_counter);
3529 /* % followed by a letter and some digits
3530 outputs an operand in a special way depending on the letter.
3531 Letters `acln' are implemented directly.
3532 Other letters are passed to `output_operand' so that
3533 the TARGET_PRINT_OPERAND hook can define them. */
3534 else if (ISALPHA (*p))
3536 int letter = *p++;
3537 unsigned long opnum;
3538 char *endptr;
3540 opnum = strtoul (p, &endptr, 10);
3542 if (endptr == p)
3543 output_operand_lossage ("operand number missing "
3544 "after %%-letter");
3545 else if (this_is_asm_operands && opnum >= insn_noperands)
3546 output_operand_lossage ("operand number out of range");
3547 else if (letter == 'l')
3548 output_asm_label (operands[opnum]);
3549 else if (letter == 'a')
3550 output_address (VOIDmode, operands[opnum]);
3551 else if (letter == 'c')
3553 if (CONSTANT_ADDRESS_P (operands[opnum]))
3554 output_addr_const (asm_out_file, operands[opnum]);
3555 else
3556 output_operand (operands[opnum], 'c');
3558 else if (letter == 'n')
3560 if (CONST_INT_P (operands[opnum]))
3561 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3562 - INTVAL (operands[opnum]));
3563 else
3565 putc ('-', asm_out_file);
3566 output_addr_const (asm_out_file, operands[opnum]);
3569 else
3570 output_operand (operands[opnum], letter);
3572 if (!opoutput[opnum])
3573 oporder[ops++] = opnum;
3574 opoutput[opnum] = 1;
3576 p = endptr;
3577 c = *p;
3579 /* % followed by a digit outputs an operand the default way. */
3580 else if (ISDIGIT (*p))
3582 unsigned long opnum;
3583 char *endptr;
3585 opnum = strtoul (p, &endptr, 10);
3586 if (this_is_asm_operands && opnum >= insn_noperands)
3587 output_operand_lossage ("operand number out of range");
3588 else
3589 output_operand (operands[opnum], 0);
3591 if (!opoutput[opnum])
3592 oporder[ops++] = opnum;
3593 opoutput[opnum] = 1;
3595 p = endptr;
3596 c = *p;
3598 /* % followed by punctuation: output something for that
3599 punctuation character alone, with no operand. The
3600 TARGET_PRINT_OPERAND hook decides what is actually done. */
3601 else if (targetm.asm_out.print_operand_punct_valid_p ((unsigned char) *p))
3602 output_operand (NULL_RTX, *p++);
3603 else
3604 output_operand_lossage ("invalid %%-code");
3605 break;
3607 default:
3608 putc (c, asm_out_file);
3611 /* Try to keep the asm a bit more readable. */
3612 if ((flag_verbose_asm || flag_print_asm_name) && strlen (templ) < 9)
3613 putc ('\t', asm_out_file);
3615 /* Write out the variable names for operands, if we know them. */
3616 if (flag_verbose_asm)
3617 output_asm_operand_names (operands, oporder, ops);
3618 if (flag_print_asm_name)
3619 output_asm_name ();
3621 putc ('\n', asm_out_file);
3624 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3626 void
3627 output_asm_label (rtx x)
3629 char buf[256];
3631 if (GET_CODE (x) == LABEL_REF)
3632 x = label_ref_label (x);
3633 if (LABEL_P (x)
3634 || (NOTE_P (x)
3635 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3636 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3637 else
3638 output_operand_lossage ("'%%l' operand isn't a label");
3640 assemble_name (asm_out_file, buf);
3643 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3645 void
3646 mark_symbol_refs_as_used (rtx x)
3648 subrtx_iterator::array_type array;
3649 FOR_EACH_SUBRTX (iter, array, x, ALL)
3651 const_rtx x = *iter;
3652 if (GET_CODE (x) == SYMBOL_REF)
3653 if (tree t = SYMBOL_REF_DECL (x))
3654 assemble_external (t);
3658 /* Print operand X using machine-dependent assembler syntax.
3659 CODE is a non-digit that preceded the operand-number in the % spec,
3660 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3661 between the % and the digits.
3662 When CODE is a non-letter, X is 0.
3664 The meanings of the letters are machine-dependent and controlled
3665 by TARGET_PRINT_OPERAND. */
3667 void
3668 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3670 if (x && GET_CODE (x) == SUBREG)
3671 x = alter_subreg (&x, true);
3673 /* X must not be a pseudo reg. */
3674 if (!targetm.no_register_allocation)
3675 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3677 targetm.asm_out.print_operand (asm_out_file, x, code);
3679 if (x == NULL_RTX)
3680 return;
3682 mark_symbol_refs_as_used (x);
3685 /* Print a memory reference operand for address X using
3686 machine-dependent assembler syntax. */
3688 void
3689 output_address (machine_mode mode, rtx x)
3691 bool changed = false;
3692 walk_alter_subreg (&x, &changed);
3693 targetm.asm_out.print_operand_address (asm_out_file, mode, x);
3696 /* Print an integer constant expression in assembler syntax.
3697 Addition and subtraction are the only arithmetic
3698 that may appear in these expressions. */
3700 void
3701 output_addr_const (FILE *file, rtx x)
3703 char buf[256];
3705 restart:
3706 switch (GET_CODE (x))
3708 case PC:
3709 putc ('.', file);
3710 break;
3712 case SYMBOL_REF:
3713 if (SYMBOL_REF_DECL (x))
3714 assemble_external (SYMBOL_REF_DECL (x));
3715 #ifdef ASM_OUTPUT_SYMBOL_REF
3716 ASM_OUTPUT_SYMBOL_REF (file, x);
3717 #else
3718 assemble_name (file, XSTR (x, 0));
3719 #endif
3720 break;
3722 case LABEL_REF:
3723 x = label_ref_label (x);
3724 /* Fall through. */
3725 case CODE_LABEL:
3726 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3727 #ifdef ASM_OUTPUT_LABEL_REF
3728 ASM_OUTPUT_LABEL_REF (file, buf);
3729 #else
3730 assemble_name (file, buf);
3731 #endif
3732 break;
3734 case CONST_INT:
3735 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3736 break;
3738 case CONST:
3739 /* This used to output parentheses around the expression,
3740 but that does not work on the 386 (either ATT or BSD assembler). */
3741 output_addr_const (file, XEXP (x, 0));
3742 break;
3744 case CONST_WIDE_INT:
3745 /* We do not know the mode here so we have to use a round about
3746 way to build a wide-int to get it printed properly. */
3748 wide_int w = wide_int::from_array (&CONST_WIDE_INT_ELT (x, 0),
3749 CONST_WIDE_INT_NUNITS (x),
3750 CONST_WIDE_INT_NUNITS (x)
3751 * HOST_BITS_PER_WIDE_INT,
3752 false);
3753 print_decs (w, file);
3755 break;
3757 case CONST_DOUBLE:
3758 if (CONST_DOUBLE_AS_INT_P (x))
3760 /* We can use %d if the number is one word and positive. */
3761 if (CONST_DOUBLE_HIGH (x))
3762 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3763 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3764 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3765 else if (CONST_DOUBLE_LOW (x) < 0)
3766 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3767 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3768 else
3769 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3771 else
3772 /* We can't handle floating point constants;
3773 PRINT_OPERAND must handle them. */
3774 output_operand_lossage ("floating constant misused");
3775 break;
3777 case CONST_FIXED:
3778 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_FIXED_VALUE_LOW (x));
3779 break;
3781 case PLUS:
3782 /* Some assemblers need integer constants to appear last (eg masm). */
3783 if (CONST_INT_P (XEXP (x, 0)))
3785 output_addr_const (file, XEXP (x, 1));
3786 if (INTVAL (XEXP (x, 0)) >= 0)
3787 fprintf (file, "+");
3788 output_addr_const (file, XEXP (x, 0));
3790 else
3792 output_addr_const (file, XEXP (x, 0));
3793 if (!CONST_INT_P (XEXP (x, 1))
3794 || INTVAL (XEXP (x, 1)) >= 0)
3795 fprintf (file, "+");
3796 output_addr_const (file, XEXP (x, 1));
3798 break;
3800 case MINUS:
3801 /* Avoid outputting things like x-x or x+5-x,
3802 since some assemblers can't handle that. */
3803 x = simplify_subtraction (x);
3804 if (GET_CODE (x) != MINUS)
3805 goto restart;
3807 output_addr_const (file, XEXP (x, 0));
3808 fprintf (file, "-");
3809 if ((CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0)
3810 || GET_CODE (XEXP (x, 1)) == PC
3811 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3812 output_addr_const (file, XEXP (x, 1));
3813 else
3815 fputs (targetm.asm_out.open_paren, file);
3816 output_addr_const (file, XEXP (x, 1));
3817 fputs (targetm.asm_out.close_paren, file);
3819 break;
3821 case ZERO_EXTEND:
3822 case SIGN_EXTEND:
3823 case SUBREG:
3824 case TRUNCATE:
3825 output_addr_const (file, XEXP (x, 0));
3826 break;
3828 default:
3829 if (targetm.asm_out.output_addr_const_extra (file, x))
3830 break;
3832 output_operand_lossage ("invalid expression as operand");
3836 /* Output a quoted string. */
3838 void
3839 output_quoted_string (FILE *asm_file, const char *string)
3841 #ifdef OUTPUT_QUOTED_STRING
3842 OUTPUT_QUOTED_STRING (asm_file, string);
3843 #else
3844 char c;
3846 putc ('\"', asm_file);
3847 while ((c = *string++) != 0)
3849 if (ISPRINT (c))
3851 if (c == '\"' || c == '\\')
3852 putc ('\\', asm_file);
3853 putc (c, asm_file);
3855 else
3856 fprintf (asm_file, "\\%03o", (unsigned char) c);
3858 putc ('\"', asm_file);
3859 #endif
3862 /* Write a HOST_WIDE_INT number in hex form 0x1234, fast. */
3864 void
3865 fprint_whex (FILE *f, unsigned HOST_WIDE_INT value)
3867 char buf[2 + CHAR_BIT * sizeof (value) / 4];
3868 if (value == 0)
3869 putc ('0', f);
3870 else
3872 char *p = buf + sizeof (buf);
3874 *--p = "0123456789abcdef"[value % 16];
3875 while ((value /= 16) != 0);
3876 *--p = 'x';
3877 *--p = '0';
3878 fwrite (p, 1, buf + sizeof (buf) - p, f);
3882 /* Internal function that prints an unsigned long in decimal in reverse.
3883 The output string IS NOT null-terminated. */
3885 static int
3886 sprint_ul_rev (char *s, unsigned long value)
3888 int i = 0;
3891 s[i] = "0123456789"[value % 10];
3892 value /= 10;
3893 i++;
3894 /* alternate version, without modulo */
3895 /* oldval = value; */
3896 /* value /= 10; */
3897 /* s[i] = "0123456789" [oldval - 10*value]; */
3898 /* i++ */
3900 while (value != 0);
3901 return i;
3904 /* Write an unsigned long as decimal to a file, fast. */
3906 void
3907 fprint_ul (FILE *f, unsigned long value)
3909 /* python says: len(str(2**64)) == 20 */
3910 char s[20];
3911 int i;
3913 i = sprint_ul_rev (s, value);
3915 /* It's probably too small to bother with string reversal and fputs. */
3918 i--;
3919 putc (s[i], f);
3921 while (i != 0);
3924 /* Write an unsigned long as decimal to a string, fast.
3925 s must be wide enough to not overflow, at least 21 chars.
3926 Returns the length of the string (without terminating '\0'). */
3929 sprint_ul (char *s, unsigned long value)
3931 int len = sprint_ul_rev (s, value);
3932 s[len] = '\0';
3934 std::reverse (s, s + len);
3935 return len;
3938 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3939 %R prints the value of REGISTER_PREFIX.
3940 %L prints the value of LOCAL_LABEL_PREFIX.
3941 %U prints the value of USER_LABEL_PREFIX.
3942 %I prints the value of IMMEDIATE_PREFIX.
3943 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3944 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3946 We handle alternate assembler dialects here, just like output_asm_insn. */
3948 void
3949 asm_fprintf (FILE *file, const char *p, ...)
3951 char buf[10];
3952 char *q, c;
3953 #ifdef ASSEMBLER_DIALECT
3954 int dialect = 0;
3955 #endif
3956 va_list argptr;
3958 va_start (argptr, p);
3960 buf[0] = '%';
3962 while ((c = *p++))
3963 switch (c)
3965 #ifdef ASSEMBLER_DIALECT
3966 case '{':
3967 case '}':
3968 case '|':
3969 p = do_assembler_dialects (p, &dialect);
3970 break;
3971 #endif
3973 case '%':
3974 c = *p++;
3975 q = &buf[1];
3976 while (strchr ("-+ #0", c))
3978 *q++ = c;
3979 c = *p++;
3981 while (ISDIGIT (c) || c == '.')
3983 *q++ = c;
3984 c = *p++;
3986 switch (c)
3988 case '%':
3989 putc ('%', file);
3990 break;
3992 case 'd': case 'i': case 'u':
3993 case 'x': case 'X': case 'o':
3994 case 'c':
3995 *q++ = c;
3996 *q = 0;
3997 fprintf (file, buf, va_arg (argptr, int));
3998 break;
4000 case 'w':
4001 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
4002 'o' cases, but we do not check for those cases. It
4003 means that the value is a HOST_WIDE_INT, which may be
4004 either `long' or `long long'. */
4005 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
4006 q += strlen (HOST_WIDE_INT_PRINT);
4007 *q++ = *p++;
4008 *q = 0;
4009 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
4010 break;
4012 case 'l':
4013 *q++ = c;
4014 #ifdef HAVE_LONG_LONG
4015 if (*p == 'l')
4017 *q++ = *p++;
4018 *q++ = *p++;
4019 *q = 0;
4020 fprintf (file, buf, va_arg (argptr, long long));
4022 else
4023 #endif
4025 *q++ = *p++;
4026 *q = 0;
4027 fprintf (file, buf, va_arg (argptr, long));
4030 break;
4032 case 's':
4033 *q++ = c;
4034 *q = 0;
4035 fprintf (file, buf, va_arg (argptr, char *));
4036 break;
4038 case 'O':
4039 #ifdef ASM_OUTPUT_OPCODE
4040 ASM_OUTPUT_OPCODE (asm_out_file, p);
4041 #endif
4042 break;
4044 case 'R':
4045 #ifdef REGISTER_PREFIX
4046 fprintf (file, "%s", REGISTER_PREFIX);
4047 #endif
4048 break;
4050 case 'I':
4051 #ifdef IMMEDIATE_PREFIX
4052 fprintf (file, "%s", IMMEDIATE_PREFIX);
4053 #endif
4054 break;
4056 case 'L':
4057 #ifdef LOCAL_LABEL_PREFIX
4058 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
4059 #endif
4060 break;
4062 case 'U':
4063 fputs (user_label_prefix, file);
4064 break;
4066 #ifdef ASM_FPRINTF_EXTENSIONS
4067 /* Uppercase letters are reserved for general use by asm_fprintf
4068 and so are not available to target specific code. In order to
4069 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
4070 they are defined here. As they get turned into real extensions
4071 to asm_fprintf they should be removed from this list. */
4072 case 'A': case 'B': case 'C': case 'D': case 'E':
4073 case 'F': case 'G': case 'H': case 'J': case 'K':
4074 case 'M': case 'N': case 'P': case 'Q': case 'S':
4075 case 'T': case 'V': case 'W': case 'Y': case 'Z':
4076 break;
4078 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
4079 #endif
4080 default:
4081 gcc_unreachable ();
4083 break;
4085 default:
4086 putc (c, file);
4088 va_end (argptr);
4091 /* Return nonzero if this function has no function calls. */
4094 leaf_function_p (void)
4096 rtx_insn *insn;
4098 /* Ensure we walk the entire function body. */
4099 gcc_assert (!in_sequence_p ());
4101 /* Some back-ends (e.g. s390) want leaf functions to stay leaf
4102 functions even if they call mcount. */
4103 if (crtl->profile && !targetm.keep_leaf_when_profiled ())
4104 return 0;
4106 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4108 if (CALL_P (insn)
4109 && ! SIBLING_CALL_P (insn)
4110 && ! FAKE_CALL_P (insn))
4111 return 0;
4112 if (NONJUMP_INSN_P (insn)
4113 && GET_CODE (PATTERN (insn)) == SEQUENCE
4114 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
4115 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
4116 return 0;
4119 return 1;
4122 /* Return 1 if branch is a forward branch.
4123 Uses insn_shuid array, so it works only in the final pass. May be used by
4124 output templates to customary add branch prediction hints.
4127 final_forward_branch_p (rtx_insn *insn)
4129 int insn_id, label_id;
4131 gcc_assert (uid_shuid);
4132 insn_id = INSN_SHUID (insn);
4133 label_id = INSN_SHUID (JUMP_LABEL (insn));
4134 /* We've hit some insns that does not have id information available. */
4135 gcc_assert (insn_id && label_id);
4136 return insn_id < label_id;
4139 /* On some machines, a function with no call insns
4140 can run faster if it doesn't create its own register window.
4141 When output, the leaf function should use only the "output"
4142 registers. Ordinarily, the function would be compiled to use
4143 the "input" registers to find its arguments; it is a candidate
4144 for leaf treatment if it uses only the "input" registers.
4145 Leaf function treatment means renumbering so the function
4146 uses the "output" registers instead. */
4148 #ifdef LEAF_REGISTERS
4150 /* Return 1 if this function uses only the registers that can be
4151 safely renumbered. */
4154 only_leaf_regs_used (void)
4156 int i;
4157 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
4159 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4160 if ((df_regs_ever_live_p (i) || global_regs[i])
4161 && ! permitted_reg_in_leaf_functions[i])
4162 return 0;
4164 if (crtl->uses_pic_offset_table
4165 && pic_offset_table_rtx != 0
4166 && REG_P (pic_offset_table_rtx)
4167 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
4168 return 0;
4170 return 1;
4173 /* Scan all instructions and renumber all registers into those
4174 available in leaf functions. */
4176 static void
4177 leaf_renumber_regs (rtx_insn *first)
4179 rtx_insn *insn;
4181 /* Renumber only the actual patterns.
4182 The reg-notes can contain frame pointer refs,
4183 and renumbering them could crash, and should not be needed. */
4184 for (insn = first; insn; insn = NEXT_INSN (insn))
4185 if (INSN_P (insn))
4186 leaf_renumber_regs_insn (PATTERN (insn));
4189 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
4190 available in leaf functions. */
4192 void
4193 leaf_renumber_regs_insn (rtx in_rtx)
4195 int i, j;
4196 const char *format_ptr;
4198 if (in_rtx == 0)
4199 return;
4201 /* Renumber all input-registers into output-registers.
4202 renumbered_regs would be 1 for an output-register;
4203 they */
4205 if (REG_P (in_rtx))
4207 int newreg;
4209 /* Don't renumber the same reg twice. */
4210 if (in_rtx->used)
4211 return;
4213 newreg = REGNO (in_rtx);
4214 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4215 to reach here as part of a REG_NOTE. */
4216 if (newreg >= FIRST_PSEUDO_REGISTER)
4218 in_rtx->used = 1;
4219 return;
4221 newreg = LEAF_REG_REMAP (newreg);
4222 gcc_assert (newreg >= 0);
4223 df_set_regs_ever_live (REGNO (in_rtx), false);
4224 df_set_regs_ever_live (newreg, true);
4225 SET_REGNO (in_rtx, newreg);
4226 in_rtx->used = 1;
4227 return;
4230 if (INSN_P (in_rtx))
4232 /* Inside a SEQUENCE, we find insns.
4233 Renumber just the patterns of these insns,
4234 just as we do for the top-level insns. */
4235 leaf_renumber_regs_insn (PATTERN (in_rtx));
4236 return;
4239 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4241 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4242 switch (*format_ptr++)
4244 case 'e':
4245 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4246 break;
4248 case 'E':
4249 if (XVEC (in_rtx, i) != NULL)
4250 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4251 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4252 break;
4254 case 'S':
4255 case 's':
4256 case '0':
4257 case 'i':
4258 case 'w':
4259 case 'p':
4260 case 'n':
4261 case 'u':
4262 break;
4264 default:
4265 gcc_unreachable ();
4268 #endif
4270 /* Turn the RTL into assembly. */
4271 static unsigned int
4272 rest_of_handle_final (void)
4274 const char *fnname = get_fnname_from_decl (current_function_decl);
4276 /* Turn debug markers into notes if the var-tracking pass has not
4277 been invoked. */
4278 if (!flag_var_tracking && MAY_HAVE_DEBUG_MARKER_INSNS)
4279 delete_vta_debug_insns (false);
4281 assemble_start_function (current_function_decl, fnname);
4282 rtx_insn *first = get_insns ();
4283 int seen = 0;
4284 final_start_function_1 (&first, asm_out_file, &seen, optimize);
4285 final_1 (first, asm_out_file, seen, optimize);
4286 if (flag_ipa_ra
4287 && !lookup_attribute ("noipa", DECL_ATTRIBUTES (current_function_decl))
4288 /* Functions with naked attributes are supported only with basic asm
4289 statements in the body, thus for supported use cases the information
4290 on clobbered registers is not available. */
4291 && !lookup_attribute ("naked", DECL_ATTRIBUTES (current_function_decl)))
4292 collect_fn_hard_reg_usage ();
4293 final_end_function ();
4295 /* The IA-64 ".handlerdata" directive must be issued before the ".endp"
4296 directive that closes the procedure descriptor. Similarly, for x64 SEH.
4297 Otherwise it's not strictly necessary, but it doesn't hurt either. */
4298 output_function_exception_table (crtl->has_bb_partition ? 1 : 0);
4300 assemble_end_function (current_function_decl, fnname);
4302 /* Free up reg info memory. */
4303 free_reg_info ();
4305 if (! quiet_flag)
4306 fflush (asm_out_file);
4308 /* Write DBX symbols if requested. */
4310 /* Note that for those inline functions where we don't initially
4311 know for certain that we will be generating an out-of-line copy,
4312 the first invocation of this routine (rest_of_compilation) will
4313 skip over this code by doing a `goto exit_rest_of_compilation;'.
4314 Later on, wrapup_global_declarations will (indirectly) call
4315 rest_of_compilation again for those inline functions that need
4316 to have out-of-line copies generated. During that call, we
4317 *will* be routed past here. */
4319 timevar_push (TV_SYMOUT);
4320 if (!DECL_IGNORED_P (current_function_decl))
4321 debug_hooks->function_decl (current_function_decl);
4322 timevar_pop (TV_SYMOUT);
4324 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4325 DECL_INITIAL (current_function_decl) = error_mark_node;
4327 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4328 && targetm.have_ctors_dtors)
4329 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4330 decl_init_priority_lookup
4331 (current_function_decl));
4332 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4333 && targetm.have_ctors_dtors)
4334 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4335 decl_fini_priority_lookup
4336 (current_function_decl));
4337 return 0;
4340 namespace {
4342 const pass_data pass_data_final =
4344 RTL_PASS, /* type */
4345 "final", /* name */
4346 OPTGROUP_NONE, /* optinfo_flags */
4347 TV_FINAL, /* tv_id */
4348 0, /* properties_required */
4349 0, /* properties_provided */
4350 0, /* properties_destroyed */
4351 0, /* todo_flags_start */
4352 0, /* todo_flags_finish */
4355 class pass_final : public rtl_opt_pass
4357 public:
4358 pass_final (gcc::context *ctxt)
4359 : rtl_opt_pass (pass_data_final, ctxt)
4362 /* opt_pass methods: */
4363 virtual unsigned int execute (function *) { return rest_of_handle_final (); }
4365 }; // class pass_final
4367 } // anon namespace
4369 rtl_opt_pass *
4370 make_pass_final (gcc::context *ctxt)
4372 return new pass_final (ctxt);
4376 static unsigned int
4377 rest_of_handle_shorten_branches (void)
4379 /* Shorten branches. */
4380 shorten_branches (get_insns ());
4381 return 0;
4384 namespace {
4386 const pass_data pass_data_shorten_branches =
4388 RTL_PASS, /* type */
4389 "shorten", /* name */
4390 OPTGROUP_NONE, /* optinfo_flags */
4391 TV_SHORTEN_BRANCH, /* tv_id */
4392 0, /* properties_required */
4393 0, /* properties_provided */
4394 0, /* properties_destroyed */
4395 0, /* todo_flags_start */
4396 0, /* todo_flags_finish */
4399 class pass_shorten_branches : public rtl_opt_pass
4401 public:
4402 pass_shorten_branches (gcc::context *ctxt)
4403 : rtl_opt_pass (pass_data_shorten_branches, ctxt)
4406 /* opt_pass methods: */
4407 virtual unsigned int execute (function *)
4409 return rest_of_handle_shorten_branches ();
4412 }; // class pass_shorten_branches
4414 } // anon namespace
4416 rtl_opt_pass *
4417 make_pass_shorten_branches (gcc::context *ctxt)
4419 return new pass_shorten_branches (ctxt);
4423 static unsigned int
4424 rest_of_clean_state (void)
4426 rtx_insn *insn, *next;
4427 FILE *final_output = NULL;
4428 int save_unnumbered = flag_dump_unnumbered;
4429 int save_noaddr = flag_dump_noaddr;
4431 if (flag_dump_final_insns)
4433 final_output = fopen (flag_dump_final_insns, "a");
4434 if (!final_output)
4436 error ("could not open final insn dump file %qs: %m",
4437 flag_dump_final_insns);
4438 flag_dump_final_insns = NULL;
4440 else
4442 flag_dump_noaddr = flag_dump_unnumbered = 1;
4443 if (flag_compare_debug_opt || flag_compare_debug)
4444 dump_flags |= TDF_NOUID | TDF_COMPARE_DEBUG;
4445 dump_function_header (final_output, current_function_decl,
4446 dump_flags);
4447 final_insns_dump_p = true;
4449 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
4450 if (LABEL_P (insn))
4451 INSN_UID (insn) = CODE_LABEL_NUMBER (insn);
4452 else
4454 if (NOTE_P (insn))
4455 set_block_for_insn (insn, NULL);
4456 INSN_UID (insn) = 0;
4461 /* It is very important to decompose the RTL instruction chain here:
4462 debug information keeps pointing into CODE_LABEL insns inside the function
4463 body. If these remain pointing to the other insns, we end up preserving
4464 whole RTL chain and attached detailed debug info in memory. */
4465 for (insn = get_insns (); insn; insn = next)
4467 next = NEXT_INSN (insn);
4468 SET_NEXT_INSN (insn) = NULL;
4469 SET_PREV_INSN (insn) = NULL;
4471 rtx_insn *call_insn = insn;
4472 if (NONJUMP_INSN_P (call_insn)
4473 && GET_CODE (PATTERN (call_insn)) == SEQUENCE)
4475 rtx_sequence *seq = as_a <rtx_sequence *> (PATTERN (call_insn));
4476 call_insn = seq->insn (0);
4478 if (CALL_P (call_insn))
4480 rtx note
4481 = find_reg_note (call_insn, REG_CALL_ARG_LOCATION, NULL_RTX);
4482 if (note)
4483 remove_note (call_insn, note);
4486 if (final_output
4487 && (!NOTE_P (insn)
4488 || (NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION
4489 && NOTE_KIND (insn) != NOTE_INSN_BEGIN_STMT
4490 && NOTE_KIND (insn) != NOTE_INSN_INLINE_ENTRY
4491 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_BEG
4492 && NOTE_KIND (insn) != NOTE_INSN_BLOCK_END
4493 && NOTE_KIND (insn) != NOTE_INSN_DELETED_DEBUG_LABEL)))
4494 print_rtl_single (final_output, insn);
4497 if (final_output)
4499 flag_dump_noaddr = save_noaddr;
4500 flag_dump_unnumbered = save_unnumbered;
4501 final_insns_dump_p = false;
4503 if (fclose (final_output))
4505 error ("could not close final insn dump file %qs: %m",
4506 flag_dump_final_insns);
4507 flag_dump_final_insns = NULL;
4511 flag_rerun_cse_after_global_opts = 0;
4512 reload_completed = 0;
4513 epilogue_completed = 0;
4514 #ifdef STACK_REGS
4515 regstack_completed = 0;
4516 #endif
4518 /* Clear out the insn_length contents now that they are no
4519 longer valid. */
4520 init_insn_lengths ();
4522 /* Show no temporary slots allocated. */
4523 init_temp_slots ();
4525 free_bb_for_insn ();
4527 if (cfun->gimple_df)
4528 delete_tree_ssa (cfun);
4530 /* We can reduce stack alignment on call site only when we are sure that
4531 the function body just produced will be actually used in the final
4532 executable. */
4533 if (flag_ipa_stack_alignment
4534 && decl_binds_to_current_def_p (current_function_decl))
4536 unsigned int pref = crtl->preferred_stack_boundary;
4537 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4538 pref = crtl->stack_alignment_needed;
4539 cgraph_node::rtl_info (current_function_decl)
4540 ->preferred_incoming_stack_boundary = pref;
4543 /* Make sure volatile mem refs aren't considered valid operands for
4544 arithmetic insns. We must call this here if this is a nested inline
4545 function, since the above code leaves us in the init_recog state,
4546 and the function context push/pop code does not save/restore volatile_ok.
4548 ??? Maybe it isn't necessary for expand_start_function to call this
4549 anymore if we do it here? */
4551 init_recog_no_volatile ();
4553 /* We're done with this function. Free up memory if we can. */
4554 free_after_parsing (cfun);
4555 free_after_compilation (cfun);
4556 return 0;
4559 namespace {
4561 const pass_data pass_data_clean_state =
4563 RTL_PASS, /* type */
4564 "*clean_state", /* name */
4565 OPTGROUP_NONE, /* optinfo_flags */
4566 TV_FINAL, /* tv_id */
4567 0, /* properties_required */
4568 0, /* properties_provided */
4569 PROP_rtl, /* properties_destroyed */
4570 0, /* todo_flags_start */
4571 0, /* todo_flags_finish */
4574 class pass_clean_state : public rtl_opt_pass
4576 public:
4577 pass_clean_state (gcc::context *ctxt)
4578 : rtl_opt_pass (pass_data_clean_state, ctxt)
4581 /* opt_pass methods: */
4582 virtual unsigned int execute (function *)
4584 return rest_of_clean_state ();
4587 }; // class pass_clean_state
4589 } // anon namespace
4591 rtl_opt_pass *
4592 make_pass_clean_state (gcc::context *ctxt)
4594 return new pass_clean_state (ctxt);
4597 /* Return true if INSN is a call to the current function. */
4599 static bool
4600 self_recursive_call_p (rtx_insn *insn)
4602 tree fndecl = get_call_fndecl (insn);
4603 return (fndecl == current_function_decl
4604 && decl_binds_to_current_def_p (fndecl));
4607 /* Collect hard register usage for the current function. */
4609 static void
4610 collect_fn_hard_reg_usage (void)
4612 rtx_insn *insn;
4613 #ifdef STACK_REGS
4614 int i;
4615 #endif
4616 struct cgraph_rtl_info *node;
4617 HARD_REG_SET function_used_regs;
4619 /* ??? To be removed when all the ports have been fixed. */
4620 if (!targetm.call_fusage_contains_non_callee_clobbers)
4621 return;
4623 /* Be conservative - mark fixed and global registers as used. */
4624 function_used_regs = fixed_reg_set;
4626 #ifdef STACK_REGS
4627 /* Handle STACK_REGS conservatively, since the df-framework does not
4628 provide accurate information for them. */
4630 for (i = FIRST_STACK_REG; i <= LAST_STACK_REG; i++)
4631 SET_HARD_REG_BIT (function_used_regs, i);
4632 #endif
4634 for (insn = get_insns (); insn != NULL_RTX; insn = next_insn (insn))
4636 HARD_REG_SET insn_used_regs;
4638 if (!NONDEBUG_INSN_P (insn))
4639 continue;
4641 if (CALL_P (insn)
4642 && !self_recursive_call_p (insn))
4643 function_used_regs
4644 |= insn_callee_abi (insn).full_and_partial_reg_clobbers ();
4646 find_all_hard_reg_sets (insn, &insn_used_regs, false);
4647 function_used_regs |= insn_used_regs;
4649 if (hard_reg_set_subset_p (crtl->abi->full_and_partial_reg_clobbers (),
4650 function_used_regs))
4651 return;
4654 /* Mask out fully-saved registers, so that they don't affect equality
4655 comparisons between function_abis. */
4656 function_used_regs &= crtl->abi->full_and_partial_reg_clobbers ();
4658 node = cgraph_node::rtl_info (current_function_decl);
4659 gcc_assert (node != NULL);
4661 node->function_used_regs = function_used_regs;