[ARM] Complete legend for ARM register allocation in arm.h
[official-gcc.git] / gcc / config / arm / arm.h
blobf9e4356756a02dae9925a876ed841f72cf4f087f
1 /* Definitions of target machine for GNU compiler, for ARM.
2 Copyright (C) 1991-2017 Free Software Foundation, Inc.
3 Contributed by Pieter `Tiggr' Schoenmakers (rcpieter@win.tue.nl)
4 and Martin Simmons (@harleqn.co.uk).
5 More major hacks by Richard Earnshaw (rearnsha@arm.com)
6 Minor hacks by Nick Clifton (nickc@cygnus.com)
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published
12 by the Free Software Foundation; either version 3, or (at your
13 option) any later version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
18 License for more details.
20 Under Section 7 of GPL version 3, you are granted additional
21 permissions described in the GCC Runtime Library Exception, version
22 3.1, as published by the Free Software Foundation.
24 You should have received a copy of the GNU General Public License and
25 a copy of the GCC Runtime Library Exception along with this program;
26 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
27 <http://www.gnu.org/licenses/>. */
29 #ifndef GCC_ARM_H
30 #define GCC_ARM_H
32 /* We can't use machine_mode inside a generator file because it
33 hasn't been created yet; we shouldn't be using any code that
34 needs the real definition though, so this ought to be safe. */
35 #ifdef GENERATOR_FILE
36 #define MACHMODE int
37 #else
38 #include "insn-modes.h"
39 #define MACHMODE machine_mode
40 #endif
42 #include "config/vxworks-dummy.h"
44 /* The architecture define. */
45 extern char arm_arch_name[];
47 /* Target CPU builtins. */
48 #define TARGET_CPU_CPP_BUILTINS() arm_cpu_cpp_builtins (pfile)
50 #include "config/arm/arm-opts.h"
52 /* The processor for which instructions should be scheduled. */
53 extern enum processor_type arm_tune;
55 typedef enum arm_cond_code
57 ARM_EQ = 0, ARM_NE, ARM_CS, ARM_CC, ARM_MI, ARM_PL, ARM_VS, ARM_VC,
58 ARM_HI, ARM_LS, ARM_GE, ARM_LT, ARM_GT, ARM_LE, ARM_AL, ARM_NV
60 arm_cc;
62 extern arm_cc arm_current_cc;
64 #define ARM_INVERSE_CONDITION_CODE(X) ((arm_cc) (((int)X) ^ 1))
66 /* The maximum number of instructions that is beneficial to
67 conditionally execute. */
68 #undef MAX_CONDITIONAL_EXECUTE
69 #define MAX_CONDITIONAL_EXECUTE arm_max_conditional_execute ()
71 extern int arm_target_label;
72 extern int arm_ccfsm_state;
73 extern GTY(()) rtx arm_target_insn;
74 /* Callback to output language specific object attributes. */
75 extern void (*arm_lang_output_object_attributes_hook)(void);
77 /* This type is the user-visible __fp16. We need it in a few places in
78 the backend. Defined in arm-builtins.c. */
79 extern tree arm_fp16_type_node;
82 #undef CPP_SPEC
83 #define CPP_SPEC "%(subtarget_cpp_spec) \
84 %{mfloat-abi=soft:%{mfloat-abi=hard: \
85 %e-mfloat-abi=soft and -mfloat-abi=hard may not be used together}} \
86 %{mbig-endian:%{mlittle-endian: \
87 %e-mbig-endian and -mlittle-endian may not be used together}}"
89 #ifndef CC1_SPEC
90 #define CC1_SPEC ""
91 #endif
93 /* This macro defines names of additional specifications to put in the specs
94 that can be used in various specifications like CC1_SPEC. Its definition
95 is an initializer with a subgrouping for each command option.
97 Each subgrouping contains a string constant, that defines the
98 specification name, and a string constant that used by the GCC driver
99 program.
101 Do not define this macro if it does not need to do anything. */
102 #define EXTRA_SPECS \
103 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }, \
104 { "asm_cpu_spec", ASM_CPU_SPEC }, \
105 SUBTARGET_EXTRA_SPECS
107 #ifndef SUBTARGET_EXTRA_SPECS
108 #define SUBTARGET_EXTRA_SPECS
109 #endif
111 #ifndef SUBTARGET_CPP_SPEC
112 #define SUBTARGET_CPP_SPEC ""
113 #endif
115 /* Tree Target Specification. */
116 #define TARGET_ARM_P(flags) (!TARGET_THUMB_P (flags))
117 #define TARGET_THUMB1_P(flags) (TARGET_THUMB_P (flags) && !arm_arch_thumb2)
118 #define TARGET_THUMB2_P(flags) (TARGET_THUMB_P (flags) && arm_arch_thumb2)
119 #define TARGET_32BIT_P(flags) (TARGET_ARM_P (flags) || TARGET_THUMB2_P (flags))
121 /* Run-time Target Specification. */
122 #define TARGET_SOFT_FLOAT (arm_float_abi == ARM_FLOAT_ABI_SOFT)
123 /* Use hardware floating point instructions. */
124 #define TARGET_HARD_FLOAT (arm_float_abi != ARM_FLOAT_ABI_SOFT)
125 /* Use hardware floating point calling convention. */
126 #define TARGET_HARD_FLOAT_ABI (arm_float_abi == ARM_FLOAT_ABI_HARD)
127 #define TARGET_IWMMXT (arm_arch_iwmmxt)
128 #define TARGET_IWMMXT2 (arm_arch_iwmmxt2)
129 #define TARGET_REALLY_IWMMXT (TARGET_IWMMXT && TARGET_32BIT)
130 #define TARGET_REALLY_IWMMXT2 (TARGET_IWMMXT2 && TARGET_32BIT)
131 #define TARGET_IWMMXT_ABI (TARGET_32BIT && arm_abi == ARM_ABI_IWMMXT)
132 #define TARGET_ARM (! TARGET_THUMB)
133 #define TARGET_EITHER 1 /* (TARGET_ARM | TARGET_THUMB) */
134 #define TARGET_BACKTRACE (crtl->is_leaf \
135 ? TARGET_TPCS_LEAF_FRAME \
136 : TARGET_TPCS_FRAME)
137 #define TARGET_AAPCS_BASED \
138 (arm_abi != ARM_ABI_APCS && arm_abi != ARM_ABI_ATPCS)
140 #define TARGET_HARD_TP (target_thread_pointer == TP_CP15)
141 #define TARGET_SOFT_TP (target_thread_pointer == TP_SOFT)
142 #define TARGET_GNU2_TLS (target_tls_dialect == TLS_GNU2)
144 /* Only 16-bit thumb code. */
145 #define TARGET_THUMB1 (TARGET_THUMB && !arm_arch_thumb2)
146 /* Arm or Thumb-2 32-bit code. */
147 #define TARGET_32BIT (TARGET_ARM || arm_arch_thumb2)
148 /* 32-bit Thumb-2 code. */
149 #define TARGET_THUMB2 (TARGET_THUMB && arm_arch_thumb2)
150 /* Thumb-1 only. */
151 #define TARGET_THUMB1_ONLY (TARGET_THUMB1 && !arm_arch_notm)
153 #define TARGET_LDRD (arm_arch5e && ARM_DOUBLEWORD_ALIGN \
154 && !TARGET_THUMB1)
156 #define TARGET_CRC32 (arm_arch_crc)
158 /* The following two macros concern the ability to execute coprocessor
159 instructions for VFPv3 or NEON. TARGET_VFP3/TARGET_VFPD32 are currently
160 only ever tested when we know we are generating for VFP hardware; we need
161 to be more careful with TARGET_NEON as noted below. */
163 /* FPU is has the full VFPv3/NEON register file of 32 D registers. */
164 #define TARGET_VFPD32 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_d32))
166 /* FPU supports VFPv3 instructions. */
167 #define TARGET_VFP3 (bitmap_bit_p (arm_active_target.isa, isa_bit_VFPv3))
169 /* FPU supports FPv5 instructions. */
170 #define TARGET_VFP5 (bitmap_bit_p (arm_active_target.isa, isa_bit_FPv5))
172 /* FPU only supports VFP single-precision instructions. */
173 #define TARGET_VFP_SINGLE (!TARGET_VFP_DOUBLE)
175 /* FPU supports VFP double-precision instructions. */
176 #define TARGET_VFP_DOUBLE (bitmap_bit_p (arm_active_target.isa, isa_bit_fp_dbl))
178 /* FPU supports half-precision floating-point with NEON element load/store. */
179 #define TARGET_NEON_FP16 \
180 (bitmap_bit_p (arm_active_target.isa, isa_bit_neon) \
181 && bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
183 /* FPU supports VFP half-precision floating-point conversions. */
184 #define TARGET_FP16 (bitmap_bit_p (arm_active_target.isa, isa_bit_fp16conv))
186 /* FPU supports converting between HFmode and DFmode in a single hardware
187 step. */
188 #define TARGET_FP16_TO_DOUBLE \
189 (TARGET_HARD_FLOAT && (TARGET_FP16 && TARGET_VFP5))
191 /* FPU supports fused-multiply-add operations. */
192 #define TARGET_FMA (bitmap_bit_p (arm_active_target.isa, isa_bit_VFPv4))
194 /* FPU is ARMv8 compatible. */
195 #define TARGET_FPU_ARMV8 \
196 (bitmap_bit_p (arm_active_target.isa, isa_bit_FP_ARMv8))
198 /* FPU supports Crypto extensions. */
199 #define TARGET_CRYPTO (bitmap_bit_p (arm_active_target.isa, isa_bit_crypto))
201 /* FPU supports Neon instructions. The setting of this macro gets
202 revealed via __ARM_NEON__ so we add extra guards upon TARGET_32BIT
203 and TARGET_HARD_FLOAT to ensure that NEON instructions are
204 available. */
205 #define TARGET_NEON \
206 (TARGET_32BIT && TARGET_HARD_FLOAT \
207 && bitmap_bit_p (arm_active_target.isa, isa_bit_neon))
209 /* FPU supports ARMv8.1 Adv.SIMD extensions. */
210 #define TARGET_NEON_RDMA (TARGET_NEON && arm_arch8_1)
212 /* FPU supports the floating point FP16 instructions for ARMv8.2 and later. */
213 #define TARGET_VFP_FP16INST \
214 (TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FPU_ARMV8 && arm_fp16_inst)
216 /* FPU supports the AdvSIMD FP16 instructions for ARMv8.2 and later. */
217 #define TARGET_NEON_FP16INST (TARGET_VFP_FP16INST && TARGET_NEON_RDMA)
219 /* Q-bit is present. */
220 #define TARGET_ARM_QBIT \
221 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7))
222 /* Saturation operation, e.g. SSAT. */
223 #define TARGET_ARM_SAT \
224 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7))
225 /* "DSP" multiply instructions, eg. SMULxy. */
226 #define TARGET_DSP_MULTIPLY \
227 (TARGET_32BIT && arm_arch5e && (arm_arch_notm || arm_arch7em))
228 /* Integer SIMD instructions, and extend-accumulate instructions. */
229 #define TARGET_INT_SIMD \
230 (TARGET_32BIT && arm_arch6 && (arm_arch_notm || arm_arch7em))
232 /* Should MOVW/MOVT be used in preference to a constant pool. */
233 #define TARGET_USE_MOVT \
234 (TARGET_HAVE_MOVT \
235 && (arm_disable_literal_pool \
236 || (!optimize_size && !current_tune->prefer_constant_pool)))
238 /* Nonzero if this chip provides the DMB instruction. */
239 #define TARGET_HAVE_DMB (arm_arch6m || arm_arch7)
241 /* Nonzero if this chip implements a memory barrier via CP15. */
242 #define TARGET_HAVE_DMB_MCR (arm_arch6 && ! TARGET_HAVE_DMB \
243 && ! TARGET_THUMB1)
245 /* Nonzero if this chip implements a memory barrier instruction. */
246 #define TARGET_HAVE_MEMORY_BARRIER (TARGET_HAVE_DMB || TARGET_HAVE_DMB_MCR)
248 /* Nonzero if this chip supports ldrex and strex */
249 #define TARGET_HAVE_LDREX ((arm_arch6 && TARGET_ARM) \
250 || arm_arch7 \
251 || (arm_arch8 && !arm_arch_notm))
253 /* Nonzero if this chip supports LPAE. */
254 #define TARGET_HAVE_LPAE (arm_arch_lpae)
256 /* Nonzero if this chip supports ldrex{bh} and strex{bh}. */
257 #define TARGET_HAVE_LDREXBH ((arm_arch6k && TARGET_ARM) \
258 || arm_arch7 \
259 || (arm_arch8 && !arm_arch_notm))
261 /* Nonzero if this chip supports ldrexd and strexd. */
262 #define TARGET_HAVE_LDREXD (((arm_arch6k && TARGET_ARM) \
263 || arm_arch7) && arm_arch_notm)
265 /* Nonzero if this chip supports load-acquire and store-release. */
266 #define TARGET_HAVE_LDACQ (TARGET_ARM_ARCH >= 8)
268 /* Nonzero if this chip supports LDAEXD and STLEXD. */
269 #define TARGET_HAVE_LDACQEXD (TARGET_ARM_ARCH >= 8 \
270 && TARGET_32BIT \
271 && arm_arch_notm)
273 /* Nonzero if this chip provides the MOVW and MOVT instructions. */
274 #define TARGET_HAVE_MOVT (arm_arch_thumb2 || arm_arch8)
276 /* Nonzero if this chip provides the CBZ and CBNZ instructions. */
277 #define TARGET_HAVE_CBZ (arm_arch_thumb2 || arm_arch8)
279 /* Nonzero if integer division instructions supported. */
280 #define TARGET_IDIV ((TARGET_ARM && arm_arch_arm_hwdiv) \
281 || (TARGET_THUMB && arm_arch_thumb_hwdiv))
283 /* Nonzero if disallow volatile memory access in IT block. */
284 #define TARGET_NO_VOLATILE_CE (arm_arch_no_volatile_ce)
286 /* Should NEON be used for 64-bits bitops. */
287 #define TARGET_PREFER_NEON_64BITS (prefer_neon_for_64bits)
289 /* Should constant I be slplit for OP. */
290 #define DONT_EARLY_SPLIT_CONSTANT(i, op) \
291 ((optimize >= 2) \
292 && can_create_pseudo_p () \
293 && !const_ok_for_op (i, op))
295 /* True iff the full BPABI is being used. If TARGET_BPABI is true,
296 then TARGET_AAPCS_BASED must be true -- but the converse does not
297 hold. TARGET_BPABI implies the use of the BPABI runtime library,
298 etc., in addition to just the AAPCS calling conventions. */
299 #ifndef TARGET_BPABI
300 #define TARGET_BPABI false
301 #endif
303 /* Transform lane numbers on big endian targets. This is used to allow for the
304 endianness difference between NEON architectural lane numbers and those
305 used in RTL */
306 #define NEON_ENDIAN_LANE_N(mode, n) \
307 (BYTES_BIG_ENDIAN ? GET_MODE_NUNITS (mode) - 1 - n : n)
309 /* Support for a compile-time default CPU, et cetera. The rules are:
310 --with-arch is ignored if -march or -mcpu are specified.
311 --with-cpu is ignored if -march or -mcpu are specified, and is overridden
312 by --with-arch.
313 --with-tune is ignored if -mtune or -mcpu are specified (but not affected
314 by -march).
315 --with-float is ignored if -mfloat-abi is specified.
316 --with-fpu is ignored if -mfpu is specified.
317 --with-abi is ignored if -mabi is specified.
318 --with-tls is ignored if -mtls-dialect is specified. */
319 #define OPTION_DEFAULT_SPECS \
320 {"arch", "%{!march=*:%{!mcpu=*:-march=%(VALUE)}}" }, \
321 {"cpu", "%{!march=*:%{!mcpu=*:-mcpu=%(VALUE)}}" }, \
322 {"tune", "%{!mcpu=*:%{!mtune=*:-mtune=%(VALUE)}}" }, \
323 {"float", "%{!mfloat-abi=*:-mfloat-abi=%(VALUE)}" }, \
324 {"fpu", "%{!mfpu=*:-mfpu=%(VALUE)}"}, \
325 {"abi", "%{!mabi=*:-mabi=%(VALUE)}"}, \
326 {"mode", "%{!marm:%{!mthumb:-m%(VALUE)}}"}, \
327 {"tls", "%{!mtls-dialect=*:-mtls-dialect=%(VALUE)}"},
329 extern const struct arm_fpu_desc
331 const char *name;
332 enum isa_feature isa_bits[isa_num_bits];
333 } all_fpus[];
335 /* Which floating point hardware to schedule for. */
336 extern int arm_fpu_attr;
338 #ifndef TARGET_DEFAULT_FLOAT_ABI
339 #define TARGET_DEFAULT_FLOAT_ABI ARM_FLOAT_ABI_SOFT
340 #endif
342 #ifndef ARM_DEFAULT_ABI
343 #define ARM_DEFAULT_ABI ARM_ABI_APCS
344 #endif
346 /* AAPCS based ABIs use short enums by default. */
347 #ifndef ARM_DEFAULT_SHORT_ENUMS
348 #define ARM_DEFAULT_SHORT_ENUMS \
349 (TARGET_AAPCS_BASED && arm_abi != ARM_ABI_AAPCS_LINUX)
350 #endif
352 /* Map each of the micro-architecture variants to their corresponding
353 major architecture revision. */
355 enum base_architecture
357 BASE_ARCH_0 = 0,
358 BASE_ARCH_2 = 2,
359 BASE_ARCH_3 = 3,
360 BASE_ARCH_3M = 3,
361 BASE_ARCH_4 = 4,
362 BASE_ARCH_4T = 4,
363 BASE_ARCH_5 = 5,
364 BASE_ARCH_5E = 5,
365 BASE_ARCH_5T = 5,
366 BASE_ARCH_5TE = 5,
367 BASE_ARCH_5TEJ = 5,
368 BASE_ARCH_6 = 6,
369 BASE_ARCH_6J = 6,
370 BASE_ARCH_6KZ = 6,
371 BASE_ARCH_6K = 6,
372 BASE_ARCH_6T2 = 6,
373 BASE_ARCH_6M = 6,
374 BASE_ARCH_6Z = 6,
375 BASE_ARCH_7 = 7,
376 BASE_ARCH_7A = 7,
377 BASE_ARCH_7R = 7,
378 BASE_ARCH_7M = 7,
379 BASE_ARCH_7EM = 7,
380 BASE_ARCH_8A = 8,
381 BASE_ARCH_8M_BASE = 8,
382 BASE_ARCH_8M_MAIN = 8
385 /* The major revision number of the ARM Architecture implemented by the target. */
386 extern enum base_architecture arm_base_arch;
388 /* Nonzero if this chip supports the ARM Architecture 3M extensions. */
389 extern int arm_arch3m;
391 /* Nonzero if this chip supports the ARM Architecture 4 extensions. */
392 extern int arm_arch4;
394 /* Nonzero if this chip supports the ARM Architecture 4T extensions. */
395 extern int arm_arch4t;
397 /* Nonzero if this chip supports the ARM Architecture 5 extensions. */
398 extern int arm_arch5;
400 /* Nonzero if this chip supports the ARM Architecture 5E extensions. */
401 extern int arm_arch5e;
403 /* Nonzero if this chip supports the ARM Architecture 6 extensions. */
404 extern int arm_arch6;
406 /* Nonzero if this chip supports the ARM Architecture 6k extensions. */
407 extern int arm_arch6k;
409 /* Nonzero if instructions present in ARMv6-M can be used. */
410 extern int arm_arch6m;
412 /* Nonzero if this chip supports the ARM Architecture 7 extensions. */
413 extern int arm_arch7;
415 /* Nonzero if instructions not present in the 'M' profile can be used. */
416 extern int arm_arch_notm;
418 /* Nonzero if instructions present in ARMv7E-M can be used. */
419 extern int arm_arch7em;
421 /* Nonzero if this chip supports the ARM Architecture 8 extensions. */
422 extern int arm_arch8;
424 /* Nonzero if this chip supports the ARM Architecture 8.1 extensions. */
425 extern int arm_arch8_1;
427 /* Nonzero if this chip supports the ARM Architecture 8.2 extensions. */
428 extern int arm_arch8_2;
430 /* Nonzero if this chip supports the FP16 instructions extension of ARM
431 Architecture 8.2. */
432 extern int arm_fp16_inst;
434 /* Nonzero if this chip can benefit from load scheduling. */
435 extern int arm_ld_sched;
437 /* Nonzero if this chip is a StrongARM. */
438 extern int arm_tune_strongarm;
440 /* Nonzero if this chip supports Intel XScale with Wireless MMX technology. */
441 extern int arm_arch_iwmmxt;
443 /* Nonzero if this chip supports Intel Wireless MMX2 technology. */
444 extern int arm_arch_iwmmxt2;
446 /* Nonzero if this chip is an XScale. */
447 extern int arm_arch_xscale;
449 /* Nonzero if tuning for XScale. */
450 extern int arm_tune_xscale;
452 /* Nonzero if tuning for stores via the write buffer. */
453 extern int arm_tune_wbuf;
455 /* Nonzero if tuning for Cortex-A9. */
456 extern int arm_tune_cortex_a9;
458 /* Nonzero if we should define __THUMB_INTERWORK__ in the
459 preprocessor.
460 XXX This is a bit of a hack, it's intended to help work around
461 problems in GLD which doesn't understand that armv5t code is
462 interworking clean. */
463 extern int arm_cpp_interwork;
465 /* Nonzero if chip supports Thumb 1. */
466 extern int arm_arch_thumb1;
468 /* Nonzero if chip supports Thumb 2. */
469 extern int arm_arch_thumb2;
471 /* Nonzero if chip supports integer division instruction in ARM mode. */
472 extern int arm_arch_arm_hwdiv;
474 /* Nonzero if chip supports integer division instruction in Thumb mode. */
475 extern int arm_arch_thumb_hwdiv;
477 /* Nonzero if chip disallows volatile memory access in IT block. */
478 extern int arm_arch_no_volatile_ce;
480 /* Nonzero if we should use Neon to handle 64-bits operations rather
481 than core registers. */
482 extern int prefer_neon_for_64bits;
484 /* Nonzero if we shouldn't use literal pools. */
485 #ifndef USED_FOR_TARGET
486 extern bool arm_disable_literal_pool;
487 #endif
489 /* Nonzero if chip supports the ARMv8 CRC instructions. */
490 extern int arm_arch_crc;
492 /* Nonzero if chip supports the ARMv8-M Security Extensions. */
493 extern int arm_arch_cmse;
495 #ifndef TARGET_DEFAULT
496 #define TARGET_DEFAULT (MASK_APCS_FRAME)
497 #endif
499 /* Nonzero if PIC code requires explicit qualifiers to generate
500 PLT and GOT relocs rather than the assembler doing so implicitly.
501 Subtargets can override these if required. */
502 #ifndef NEED_GOT_RELOC
503 #define NEED_GOT_RELOC 0
504 #endif
505 #ifndef NEED_PLT_RELOC
506 #define NEED_PLT_RELOC 0
507 #endif
509 #ifndef TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE
510 #define TARGET_DEFAULT_PIC_DATA_IS_TEXT_RELATIVE 1
511 #endif
513 /* Nonzero if we need to refer to the GOT with a PC-relative
514 offset. In other words, generate
516 .word _GLOBAL_OFFSET_TABLE_ - [. - (.Lxx + 8)]
518 rather than
520 .word _GLOBAL_OFFSET_TABLE_ - (.Lxx + 8)
522 The default is true, which matches NetBSD. Subtargets can
523 override this if required. */
524 #ifndef GOT_PCREL
525 #define GOT_PCREL 1
526 #endif
528 /* Target machine storage Layout. */
531 /* Define this macro if it is advisable to hold scalars in registers
532 in a wider mode than that declared by the program. In such cases,
533 the value is constrained to be within the bounds of the declared
534 type, but kept valid in the wider mode. The signedness of the
535 extension may differ from that of the type. */
537 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
538 if (GET_MODE_CLASS (MODE) == MODE_INT \
539 && GET_MODE_SIZE (MODE) < 4) \
541 (MODE) = SImode; \
544 /* Define this if most significant bit is lowest numbered
545 in instructions that operate on numbered bit-fields. */
546 #define BITS_BIG_ENDIAN 0
548 /* Define this if most significant byte of a word is the lowest numbered.
549 Most ARM processors are run in little endian mode, so that is the default.
550 If you want to have it run-time selectable, change the definition in a
551 cover file to be TARGET_BIG_ENDIAN. */
552 #define BYTES_BIG_ENDIAN (TARGET_BIG_END != 0)
554 /* Define this if most significant word of a multiword number is the lowest
555 numbered. */
556 #define WORDS_BIG_ENDIAN (BYTES_BIG_ENDIAN)
558 #define UNITS_PER_WORD 4
560 /* True if natural alignment is used for doubleword types. */
561 #define ARM_DOUBLEWORD_ALIGN TARGET_AAPCS_BASED
563 #define DOUBLEWORD_ALIGNMENT 64
565 #define PARM_BOUNDARY 32
567 #define STACK_BOUNDARY (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
569 #define PREFERRED_STACK_BOUNDARY \
570 (arm_abi == ARM_ABI_ATPCS ? 64 : STACK_BOUNDARY)
572 #define FUNCTION_BOUNDARY_P(flags) (TARGET_THUMB_P (flags) ? 16 : 32)
573 #define FUNCTION_BOUNDARY (FUNCTION_BOUNDARY_P (target_flags))
575 /* The lowest bit is used to indicate Thumb-mode functions, so the
576 vbit must go into the delta field of pointers to member
577 functions. */
578 #define TARGET_PTRMEMFUNC_VBIT_LOCATION ptrmemfunc_vbit_in_delta
580 #define EMPTY_FIELD_BOUNDARY 32
582 #define BIGGEST_ALIGNMENT (ARM_DOUBLEWORD_ALIGN ? DOUBLEWORD_ALIGNMENT : 32)
584 #define MALLOC_ABI_ALIGNMENT BIGGEST_ALIGNMENT
586 /* XXX Blah -- this macro is used directly by libobjc. Since it
587 supports no vector modes, cut out the complexity and fall back
588 on BIGGEST_FIELD_ALIGNMENT. */
589 #ifdef IN_TARGET_LIBS
590 #define BIGGEST_FIELD_ALIGNMENT 64
591 #endif
593 /* Make strings word-aligned so strcpy from constants will be faster. */
594 #define CONSTANT_ALIGNMENT_FACTOR (TARGET_THUMB || ! arm_tune_xscale ? 1 : 2)
596 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
597 ((TREE_CODE (EXP) == STRING_CST \
598 && !optimize_size \
599 && (ALIGN) < BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR) \
600 ? BITS_PER_WORD * CONSTANT_ALIGNMENT_FACTOR : (ALIGN))
602 /* Align definitions of arrays, unions and structures so that
603 initializations and copies can be made more efficient. This is not
604 ABI-changing, so it only affects places where we can see the
605 definition. Increasing the alignment tends to introduce padding,
606 so don't do this when optimizing for size/conserving stack space. */
607 #define ARM_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \
608 (((COND) && ((ALIGN) < BITS_PER_WORD) \
609 && (TREE_CODE (EXP) == ARRAY_TYPE \
610 || TREE_CODE (EXP) == UNION_TYPE \
611 || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
613 /* Align global data. */
614 #define DATA_ALIGNMENT(EXP, ALIGN) \
615 ARM_EXPAND_ALIGNMENT(!optimize_size, EXP, ALIGN)
617 /* Similarly, make sure that objects on the stack are sensibly aligned. */
618 #define LOCAL_ALIGNMENT(EXP, ALIGN) \
619 ARM_EXPAND_ALIGNMENT(!flag_conserve_stack, EXP, ALIGN)
621 /* Setting STRUCTURE_SIZE_BOUNDARY to 32 produces more efficient code, but the
622 value set in previous versions of this toolchain was 8, which produces more
623 compact structures. The command line option -mstructure_size_boundary=<n>
624 can be used to change this value. For compatibility with the ARM SDK
625 however the value should be left at 32. ARM SDT Reference Manual (ARM DUI
626 0020D) page 2-20 says "Structures are aligned on word boundaries".
627 The AAPCS specifies a value of 8. */
628 #define STRUCTURE_SIZE_BOUNDARY arm_structure_size_boundary
630 /* This is the value used to initialize arm_structure_size_boundary. If a
631 particular arm target wants to change the default value it should change
632 the definition of this macro, not STRUCTURE_SIZE_BOUNDARY. See netbsd.h
633 for an example of this. */
634 #ifndef DEFAULT_STRUCTURE_SIZE_BOUNDARY
635 #define DEFAULT_STRUCTURE_SIZE_BOUNDARY 32
636 #endif
638 /* Nonzero if move instructions will actually fail to work
639 when given unaligned data. */
640 #define STRICT_ALIGNMENT 1
642 /* wchar_t is unsigned under the AAPCS. */
643 #ifndef WCHAR_TYPE
644 #define WCHAR_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "int")
646 #define WCHAR_TYPE_SIZE BITS_PER_WORD
647 #endif
649 /* Sized for fixed-point types. */
651 #define SHORT_FRACT_TYPE_SIZE 8
652 #define FRACT_TYPE_SIZE 16
653 #define LONG_FRACT_TYPE_SIZE 32
654 #define LONG_LONG_FRACT_TYPE_SIZE 64
656 #define SHORT_ACCUM_TYPE_SIZE 16
657 #define ACCUM_TYPE_SIZE 32
658 #define LONG_ACCUM_TYPE_SIZE 64
659 #define LONG_LONG_ACCUM_TYPE_SIZE 64
661 #define MAX_FIXED_MODE_SIZE 64
663 #ifndef SIZE_TYPE
664 #define SIZE_TYPE (TARGET_AAPCS_BASED ? "unsigned int" : "long unsigned int")
665 #endif
667 #ifndef PTRDIFF_TYPE
668 #define PTRDIFF_TYPE (TARGET_AAPCS_BASED ? "int" : "long int")
669 #endif
671 /* AAPCS requires that structure alignment is affected by bitfields. */
672 #ifndef PCC_BITFIELD_TYPE_MATTERS
673 #define PCC_BITFIELD_TYPE_MATTERS TARGET_AAPCS_BASED
674 #endif
676 /* The maximum size of the sync library functions supported. */
677 #ifndef MAX_SYNC_LIBFUNC_SIZE
678 #define MAX_SYNC_LIBFUNC_SIZE (2 * UNITS_PER_WORD)
679 #endif
682 /* Standard register usage. */
684 /* Register allocation in ARM Procedure Call Standard
685 (S - saved over call, F - Frame-related).
687 r0 * argument word/integer result
688 r1-r3 argument word
690 r4-r8 S register variable
691 r9 S (rfp) register variable (real frame pointer)
693 r10 F S (sl) stack limit (used by -mapcs-stack-check)
694 r11 F S (fp) argument pointer
695 r12 (ip) temp workspace
696 r13 F S (sp) lower end of current stack frame
697 r14 (lr) link address/workspace
698 r15 F (pc) program counter
700 cc This is NOT a real register, but is used internally
701 to represent things that use or set the condition
702 codes.
703 sfp This isn't either. It is used during rtl generation
704 since the offset between the frame pointer and the
705 auto's isn't known until after register allocation.
706 afp Nor this, we only need this because of non-local
707 goto. Without it fp appears to be used and the
708 elimination code won't get rid of sfp. It tracks
709 fp exactly at all times.
711 *: See TARGET_CONDITIONAL_REGISTER_USAGE */
713 /* s0-s15 VFP scratch (aka d0-d7).
714 s16-s31 S VFP variable (aka d8-d15).
715 vfpcc Not a real register. Represents the VFP condition
716 code flags. */
718 /* The stack backtrace structure is as follows:
719 fp points to here: | save code pointer | [fp]
720 | return link value | [fp, #-4]
721 | return sp value | [fp, #-8]
722 | return fp value | [fp, #-12]
723 [| saved r10 value |]
724 [| saved r9 value |]
725 [| saved r8 value |]
726 [| saved r7 value |]
727 [| saved r6 value |]
728 [| saved r5 value |]
729 [| saved r4 value |]
730 [| saved r3 value |]
731 [| saved r2 value |]
732 [| saved r1 value |]
733 [| saved r0 value |]
734 r0-r3 are not normally saved in a C function. */
736 /* 1 for registers that have pervasive standard uses
737 and are not available for the register allocator. */
738 #define FIXED_REGISTERS \
740 /* Core regs. */ \
741 0,0,0,0,0,0,0,0, \
742 0,0,0,0,0,1,0,1, \
743 /* VFP regs. */ \
744 1,1,1,1,1,1,1,1, \
745 1,1,1,1,1,1,1,1, \
746 1,1,1,1,1,1,1,1, \
747 1,1,1,1,1,1,1,1, \
748 1,1,1,1,1,1,1,1, \
749 1,1,1,1,1,1,1,1, \
750 1,1,1,1,1,1,1,1, \
751 1,1,1,1,1,1,1,1, \
752 /* IWMMXT regs. */ \
753 1,1,1,1,1,1,1,1, \
754 1,1,1,1,1,1,1,1, \
755 1,1,1,1, \
756 /* Specials. */ \
757 1,1,1,1 \
760 /* 1 for registers not available across function calls.
761 These must include the FIXED_REGISTERS and also any
762 registers that can be used without being saved.
763 The latter must include the registers where values are returned
764 and the register where structure-value addresses are passed.
765 Aside from that, you can include as many other registers as you like.
766 The CC is not preserved over function calls on the ARM 6, so it is
767 easier to assume this for all. SFP is preserved, since FP is. */
768 #define CALL_USED_REGISTERS \
770 /* Core regs. */ \
771 1,1,1,1,0,0,0,0, \
772 0,0,0,0,1,1,1,1, \
773 /* VFP Regs. */ \
774 1,1,1,1,1,1,1,1, \
775 1,1,1,1,1,1,1,1, \
776 1,1,1,1,1,1,1,1, \
777 1,1,1,1,1,1,1,1, \
778 1,1,1,1,1,1,1,1, \
779 1,1,1,1,1,1,1,1, \
780 1,1,1,1,1,1,1,1, \
781 1,1,1,1,1,1,1,1, \
782 /* IWMMXT regs. */ \
783 1,1,1,1,1,1,1,1, \
784 1,1,1,1,1,1,1,1, \
785 1,1,1,1, \
786 /* Specials. */ \
787 1,1,1,1 \
790 #ifndef SUBTARGET_CONDITIONAL_REGISTER_USAGE
791 #define SUBTARGET_CONDITIONAL_REGISTER_USAGE
792 #endif
794 /* These are a couple of extensions to the formats accepted
795 by asm_fprintf:
796 %@ prints out ASM_COMMENT_START
797 %r prints out REGISTER_PREFIX reg_names[arg] */
798 #define ASM_FPRINTF_EXTENSIONS(FILE, ARGS, P) \
799 case '@': \
800 fputs (ASM_COMMENT_START, FILE); \
801 break; \
803 case 'r': \
804 fputs (REGISTER_PREFIX, FILE); \
805 fputs (reg_names [va_arg (ARGS, int)], FILE); \
806 break;
808 /* Round X up to the nearest word. */
809 #define ROUND_UP_WORD(X) (((X) + 3) & ~3)
811 /* Convert fron bytes to ints. */
812 #define ARM_NUM_INTS(X) (((X) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
814 /* The number of (integer) registers required to hold a quantity of type MODE.
815 Also used for VFP registers. */
816 #define ARM_NUM_REGS(MODE) \
817 ARM_NUM_INTS (GET_MODE_SIZE (MODE))
819 /* The number of (integer) registers required to hold a quantity of TYPE MODE. */
820 #define ARM_NUM_REGS2(MODE, TYPE) \
821 ARM_NUM_INTS ((MODE) == BLKmode ? \
822 int_size_in_bytes (TYPE) : GET_MODE_SIZE (MODE))
824 /* The number of (integer) argument register available. */
825 #define NUM_ARG_REGS 4
827 /* And similarly for the VFP. */
828 #define NUM_VFP_ARG_REGS 16
830 /* Return the register number of the N'th (integer) argument. */
831 #define ARG_REGISTER(N) (N - 1)
833 /* Specify the registers used for certain standard purposes.
834 The values of these macros are register numbers. */
836 /* The number of the last argument register. */
837 #define LAST_ARG_REGNUM ARG_REGISTER (NUM_ARG_REGS)
839 /* The numbers of the Thumb register ranges. */
840 #define FIRST_LO_REGNUM 0
841 #define LAST_LO_REGNUM 7
842 #define FIRST_HI_REGNUM 8
843 #define LAST_HI_REGNUM 11
845 /* Overridden by config/arm/bpabi.h. */
846 #ifndef ARM_UNWIND_INFO
847 #define ARM_UNWIND_INFO 0
848 #endif
850 /* Use r0 and r1 to pass exception handling information. */
851 #define EH_RETURN_DATA_REGNO(N) (((N) < 2) ? N : INVALID_REGNUM)
853 /* The register that holds the return address in exception handlers. */
854 #define ARM_EH_STACKADJ_REGNUM 2
855 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, ARM_EH_STACKADJ_REGNUM)
857 #ifndef ARM_TARGET2_DWARF_FORMAT
858 #define ARM_TARGET2_DWARF_FORMAT DW_EH_PE_pcrel
859 #endif
861 /* ttype entries (the only interesting data references used)
862 use TARGET2 relocations. */
863 #define ASM_PREFERRED_EH_DATA_FORMAT(code, data) \
864 (((code) == 0 && (data) == 1 && ARM_UNWIND_INFO) ? ARM_TARGET2_DWARF_FORMAT \
865 : DW_EH_PE_absptr)
867 /* The native (Norcroft) Pascal compiler for the ARM passes the static chain
868 as an invisible last argument (possible since varargs don't exist in
869 Pascal), so the following is not true. */
870 #define STATIC_CHAIN_REGNUM 12
872 /* Define this to be where the real frame pointer is if it is not possible to
873 work out the offset between the frame pointer and the automatic variables
874 until after register allocation has taken place. FRAME_POINTER_REGNUM
875 should point to a special register that we will make sure is eliminated.
877 For the Thumb we have another problem. The TPCS defines the frame pointer
878 as r11, and GCC believes that it is always possible to use the frame pointer
879 as base register for addressing purposes. (See comments in
880 find_reloads_address()). But - the Thumb does not allow high registers,
881 including r11, to be used as base address registers. Hence our problem.
883 The solution used here, and in the old thumb port is to use r7 instead of
884 r11 as the hard frame pointer and to have special code to generate
885 backtrace structures on the stack (if required to do so via a command line
886 option) using r11. This is the only 'user visible' use of r11 as a frame
887 pointer. */
888 #define ARM_HARD_FRAME_POINTER_REGNUM 11
889 #define THUMB_HARD_FRAME_POINTER_REGNUM 7
891 #define HARD_FRAME_POINTER_REGNUM \
892 (TARGET_ARM \
893 ? ARM_HARD_FRAME_POINTER_REGNUM \
894 : THUMB_HARD_FRAME_POINTER_REGNUM)
896 #define HARD_FRAME_POINTER_IS_FRAME_POINTER 0
897 #define HARD_FRAME_POINTER_IS_ARG_POINTER 0
899 #define FP_REGNUM HARD_FRAME_POINTER_REGNUM
901 /* Register to use for pushing function arguments. */
902 #define STACK_POINTER_REGNUM SP_REGNUM
904 #define FIRST_IWMMXT_REGNUM (LAST_HI_VFP_REGNUM + 1)
905 #define LAST_IWMMXT_REGNUM (FIRST_IWMMXT_REGNUM + 15)
907 /* Need to sync with WCGR in iwmmxt.md. */
908 #define FIRST_IWMMXT_GR_REGNUM (LAST_IWMMXT_REGNUM + 1)
909 #define LAST_IWMMXT_GR_REGNUM (FIRST_IWMMXT_GR_REGNUM + 3)
911 #define IS_IWMMXT_REGNUM(REGNUM) \
912 (((REGNUM) >= FIRST_IWMMXT_REGNUM) && ((REGNUM) <= LAST_IWMMXT_REGNUM))
913 #define IS_IWMMXT_GR_REGNUM(REGNUM) \
914 (((REGNUM) >= FIRST_IWMMXT_GR_REGNUM) && ((REGNUM) <= LAST_IWMMXT_GR_REGNUM))
916 /* Base register for access to local variables of the function. */
917 #define FRAME_POINTER_REGNUM 102
919 /* Base register for access to arguments of the function. */
920 #define ARG_POINTER_REGNUM 103
922 #define FIRST_VFP_REGNUM 16
923 #define D7_VFP_REGNUM (FIRST_VFP_REGNUM + 15)
924 #define LAST_VFP_REGNUM \
925 (TARGET_VFPD32 ? LAST_HI_VFP_REGNUM : LAST_LO_VFP_REGNUM)
927 #define IS_VFP_REGNUM(REGNUM) \
928 (((REGNUM) >= FIRST_VFP_REGNUM) && ((REGNUM) <= LAST_VFP_REGNUM))
930 /* VFP registers are split into two types: those defined by VFP versions < 3
931 have D registers overlaid on consecutive pairs of S registers. VFP version 3
932 defines 16 new D registers (d16-d31) which, for simplicity and correctness
933 in various parts of the backend, we implement as "fake" single-precision
934 registers (which would be S32-S63, but cannot be used in that way). The
935 following macros define these ranges of registers. */
936 #define LAST_LO_VFP_REGNUM (FIRST_VFP_REGNUM + 31)
937 #define FIRST_HI_VFP_REGNUM (LAST_LO_VFP_REGNUM + 1)
938 #define LAST_HI_VFP_REGNUM (FIRST_HI_VFP_REGNUM + 31)
940 #define VFP_REGNO_OK_FOR_SINGLE(REGNUM) \
941 ((REGNUM) <= LAST_LO_VFP_REGNUM)
943 /* DFmode values are only valid in even register pairs. */
944 #define VFP_REGNO_OK_FOR_DOUBLE(REGNUM) \
945 ((((REGNUM) - FIRST_VFP_REGNUM) & 1) == 0)
947 /* Neon Quad values must start at a multiple of four registers. */
948 #define NEON_REGNO_OK_FOR_QUAD(REGNUM) \
949 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0)
951 /* Neon structures of vectors must be in even register pairs and there
952 must be enough registers available. Because of various patterns
953 requiring quad registers, we require them to start at a multiple of
954 four. */
955 #define NEON_REGNO_OK_FOR_NREGS(REGNUM, N) \
956 ((((REGNUM) - FIRST_VFP_REGNUM) & 3) == 0 \
957 && (LAST_VFP_REGNUM - (REGNUM) >= 2 * (N) - 1))
959 /* The number of hard registers is 16 ARM + 1 CC + 1 SFP + 1 AFP. */
960 /* Intel Wireless MMX Technology registers add 16 + 4 more. */
961 /* VFP (VFP3) adds 32 (64) + 1 VFPCC. */
962 #define FIRST_PSEUDO_REGISTER 104
964 #define DBX_REGISTER_NUMBER(REGNO) arm_dbx_register_number (REGNO)
966 /* Value should be nonzero if functions must have frame pointers.
967 Zero means the frame pointer need not be set up (and parms may be accessed
968 via the stack pointer) in functions that seem suitable.
969 If we have to have a frame pointer we might as well make use of it.
970 APCS says that the frame pointer does not need to be pushed in leaf
971 functions, or simple tail call functions. */
973 #ifndef SUBTARGET_FRAME_POINTER_REQUIRED
974 #define SUBTARGET_FRAME_POINTER_REQUIRED 0
975 #endif
977 /* Return number of consecutive hard regs needed starting at reg REGNO
978 to hold something of mode MODE.
979 This is ordinarily the length in words of a value of mode MODE
980 but can be less for certain modes in special long registers.
982 On the ARM core regs are UNITS_PER_WORD bits wide. */
983 #define HARD_REGNO_NREGS(REGNO, MODE) \
984 ((TARGET_32BIT \
985 && REGNO > PC_REGNUM \
986 && REGNO != FRAME_POINTER_REGNUM \
987 && REGNO != ARG_POINTER_REGNUM) \
988 && !IS_VFP_REGNUM (REGNO) \
989 ? 1 : ARM_NUM_REGS (MODE))
991 /* Return true if REGNO is suitable for holding a quantity of type MODE. */
992 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
993 arm_hard_regno_mode_ok ((REGNO), (MODE))
995 #define MODES_TIEABLE_P(MODE1, MODE2) arm_modes_tieable_p (MODE1, MODE2)
997 #define VALID_IWMMXT_REG_MODE(MODE) \
998 (arm_vector_mode_supported_p (MODE) || (MODE) == DImode)
1000 /* Modes valid for Neon D registers. */
1001 #define VALID_NEON_DREG_MODE(MODE) \
1002 ((MODE) == V2SImode || (MODE) == V4HImode || (MODE) == V8QImode \
1003 || (MODE) == V4HFmode || (MODE) == V2SFmode || (MODE) == DImode)
1005 /* Modes valid for Neon Q registers. */
1006 #define VALID_NEON_QREG_MODE(MODE) \
1007 ((MODE) == V4SImode || (MODE) == V8HImode || (MODE) == V16QImode \
1008 || (MODE) == V8HFmode || (MODE) == V4SFmode || (MODE) == V2DImode)
1010 /* Structure modes valid for Neon registers. */
1011 #define VALID_NEON_STRUCT_MODE(MODE) \
1012 ((MODE) == TImode || (MODE) == EImode || (MODE) == OImode \
1013 || (MODE) == CImode || (MODE) == XImode)
1015 /* The register numbers in sequence, for passing to arm_gen_load_multiple. */
1016 extern int arm_regs_in_sequence[];
1018 /* The order in which register should be allocated. It is good to use ip
1019 since no saving is required (though calls clobber it) and it never contains
1020 function parameters. It is quite good to use lr since other calls may
1021 clobber it anyway. Allocate r0 through r3 in reverse order since r3 is
1022 least likely to contain a function parameter; in addition results are
1023 returned in r0.
1024 For VFP/VFPv3, allocate D16-D31 first, then caller-saved registers (D0-D7),
1025 then D8-D15. The reason for doing this is to attempt to reduce register
1026 pressure when both single- and double-precision registers are used in a
1027 function. */
1029 #define VREG(X) (FIRST_VFP_REGNUM + (X))
1030 #define WREG(X) (FIRST_IWMMXT_REGNUM + (X))
1031 #define WGREG(X) (FIRST_IWMMXT_GR_REGNUM + (X))
1033 #define REG_ALLOC_ORDER \
1035 /* General registers. */ \
1036 3, 2, 1, 0, 12, 14, 4, 5, \
1037 6, 7, 8, 9, 10, 11, \
1038 /* High VFP registers. */ \
1039 VREG(32), VREG(33), VREG(34), VREG(35), \
1040 VREG(36), VREG(37), VREG(38), VREG(39), \
1041 VREG(40), VREG(41), VREG(42), VREG(43), \
1042 VREG(44), VREG(45), VREG(46), VREG(47), \
1043 VREG(48), VREG(49), VREG(50), VREG(51), \
1044 VREG(52), VREG(53), VREG(54), VREG(55), \
1045 VREG(56), VREG(57), VREG(58), VREG(59), \
1046 VREG(60), VREG(61), VREG(62), VREG(63), \
1047 /* VFP argument registers. */ \
1048 VREG(15), VREG(14), VREG(13), VREG(12), \
1049 VREG(11), VREG(10), VREG(9), VREG(8), \
1050 VREG(7), VREG(6), VREG(5), VREG(4), \
1051 VREG(3), VREG(2), VREG(1), VREG(0), \
1052 /* VFP call-saved registers. */ \
1053 VREG(16), VREG(17), VREG(18), VREG(19), \
1054 VREG(20), VREG(21), VREG(22), VREG(23), \
1055 VREG(24), VREG(25), VREG(26), VREG(27), \
1056 VREG(28), VREG(29), VREG(30), VREG(31), \
1057 /* IWMMX registers. */ \
1058 WREG(0), WREG(1), WREG(2), WREG(3), \
1059 WREG(4), WREG(5), WREG(6), WREG(7), \
1060 WREG(8), WREG(9), WREG(10), WREG(11), \
1061 WREG(12), WREG(13), WREG(14), WREG(15), \
1062 WGREG(0), WGREG(1), WGREG(2), WGREG(3), \
1063 /* Registers not for general use. */ \
1064 CC_REGNUM, VFPCC_REGNUM, \
1065 FRAME_POINTER_REGNUM, ARG_POINTER_REGNUM, \
1066 SP_REGNUM, PC_REGNUM \
1069 /* Use different register alloc ordering for Thumb. */
1070 #define ADJUST_REG_ALLOC_ORDER arm_order_regs_for_local_alloc ()
1072 /* Tell IRA to use the order we define rather than messing it up with its
1073 own cost calculations. */
1074 #define HONOR_REG_ALLOC_ORDER 1
1076 /* Interrupt functions can only use registers that have already been
1077 saved by the prologue, even if they would normally be
1078 call-clobbered. */
1079 #define HARD_REGNO_RENAME_OK(SRC, DST) \
1080 (! IS_INTERRUPT (cfun->machine->func_type) || \
1081 df_regs_ever_live_p (DST))
1083 /* Register and constant classes. */
1085 /* Register classes. */
1086 enum reg_class
1088 NO_REGS,
1089 LO_REGS,
1090 STACK_REG,
1091 BASE_REGS,
1092 HI_REGS,
1093 CALLER_SAVE_REGS,
1094 GENERAL_REGS,
1095 CORE_REGS,
1096 VFP_D0_D7_REGS,
1097 VFP_LO_REGS,
1098 VFP_HI_REGS,
1099 VFP_REGS,
1100 IWMMXT_REGS,
1101 IWMMXT_GR_REGS,
1102 CC_REG,
1103 VFPCC_REG,
1104 SFP_REG,
1105 AFP_REG,
1106 ALL_REGS,
1107 LIM_REG_CLASSES
1110 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1112 /* Give names of register classes as strings for dump file. */
1113 #define REG_CLASS_NAMES \
1115 "NO_REGS", \
1116 "LO_REGS", \
1117 "STACK_REG", \
1118 "BASE_REGS", \
1119 "HI_REGS", \
1120 "CALLER_SAVE_REGS", \
1121 "GENERAL_REGS", \
1122 "CORE_REGS", \
1123 "VFP_D0_D7_REGS", \
1124 "VFP_LO_REGS", \
1125 "VFP_HI_REGS", \
1126 "VFP_REGS", \
1127 "IWMMXT_REGS", \
1128 "IWMMXT_GR_REGS", \
1129 "CC_REG", \
1130 "VFPCC_REG", \
1131 "SFP_REG", \
1132 "AFP_REG", \
1133 "ALL_REGS" \
1136 /* Define which registers fit in which classes.
1137 This is an initializer for a vector of HARD_REG_SET
1138 of length N_REG_CLASSES. */
1139 #define REG_CLASS_CONTENTS \
1141 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1142 { 0x000000FF, 0x00000000, 0x00000000, 0x00000000 }, /* LO_REGS */ \
1143 { 0x00002000, 0x00000000, 0x00000000, 0x00000000 }, /* STACK_REG */ \
1144 { 0x000020FF, 0x00000000, 0x00000000, 0x00000000 }, /* BASE_REGS */ \
1145 { 0x00005F00, 0x00000000, 0x00000000, 0x00000000 }, /* HI_REGS */ \
1146 { 0x0000100F, 0x00000000, 0x00000000, 0x00000000 }, /* CALLER_SAVE_REGS */ \
1147 { 0x00005FFF, 0x00000000, 0x00000000, 0x00000000 }, /* GENERAL_REGS */ \
1148 { 0x00007FFF, 0x00000000, 0x00000000, 0x00000000 }, /* CORE_REGS */ \
1149 { 0xFFFF0000, 0x00000000, 0x00000000, 0x00000000 }, /* VFP_D0_D7_REGS */ \
1150 { 0xFFFF0000, 0x0000FFFF, 0x00000000, 0x00000000 }, /* VFP_LO_REGS */ \
1151 { 0x00000000, 0xFFFF0000, 0x0000FFFF, 0x00000000 }, /* VFP_HI_REGS */ \
1152 { 0xFFFF0000, 0xFFFFFFFF, 0x0000FFFF, 0x00000000 }, /* VFP_REGS */ \
1153 { 0x00000000, 0x00000000, 0xFFFF0000, 0x00000000 }, /* IWMMXT_REGS */ \
1154 { 0x00000000, 0x00000000, 0x00000000, 0x0000000F }, /* IWMMXT_GR_REGS */ \
1155 { 0x00000000, 0x00000000, 0x00000000, 0x00000010 }, /* CC_REG */ \
1156 { 0x00000000, 0x00000000, 0x00000000, 0x00000020 }, /* VFPCC_REG */ \
1157 { 0x00000000, 0x00000000, 0x00000000, 0x00000040 }, /* SFP_REG */ \
1158 { 0x00000000, 0x00000000, 0x00000000, 0x00000080 }, /* AFP_REG */ \
1159 { 0xFFFF7FFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x0000000F } /* ALL_REGS */ \
1162 /* Any of the VFP register classes. */
1163 #define IS_VFP_CLASS(X) \
1164 ((X) == VFP_D0_D7_REGS || (X) == VFP_LO_REGS \
1165 || (X) == VFP_HI_REGS || (X) == VFP_REGS)
1167 /* The same information, inverted:
1168 Return the class number of the smallest class containing
1169 reg number REGNO. This could be a conditional expression
1170 or could index an array. */
1171 #define REGNO_REG_CLASS(REGNO) arm_regno_class (REGNO)
1173 /* In VFPv1, VFP registers could only be accessed in the mode they
1174 were set, so subregs would be invalid there. However, we don't
1175 support VFPv1 at the moment, and the restriction was lifted in
1176 VFPv2.
1177 In big-endian mode, modes greater than word size (i.e. DFmode) are stored in
1178 VFP registers in little-endian order. We can't describe that accurately to
1179 GCC, so avoid taking subregs of such values.
1180 The only exception is going from a 128-bit to a 64-bit type. In that case
1181 the data layout happens to be consistent for big-endian, so we explicitly allow
1182 that case. */
1183 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1184 (TARGET_BIG_END \
1185 && !(GET_MODE_SIZE (FROM) == 16 && GET_MODE_SIZE (TO) == 8) \
1186 && (GET_MODE_SIZE (FROM) > UNITS_PER_WORD \
1187 || GET_MODE_SIZE (TO) > UNITS_PER_WORD) \
1188 && reg_classes_intersect_p (VFP_REGS, (CLASS)))
1190 /* The class value for index registers, and the one for base regs. */
1191 #define INDEX_REG_CLASS (TARGET_THUMB1 ? LO_REGS : GENERAL_REGS)
1192 #define BASE_REG_CLASS (TARGET_THUMB1 ? LO_REGS : CORE_REGS)
1194 /* For the Thumb the high registers cannot be used as base registers
1195 when addressing quantities in QI or HI mode; if we don't know the
1196 mode, then we must be conservative. */
1197 #define MODE_BASE_REG_CLASS(MODE) \
1198 (TARGET_32BIT ? CORE_REGS \
1199 : GET_MODE_SIZE (MODE) >= 4 ? BASE_REGS \
1200 : LO_REGS)
1202 /* For Thumb we can not support SP+reg addressing, so we return LO_REGS
1203 instead of BASE_REGS. */
1204 #define MODE_BASE_REG_REG_CLASS(MODE) BASE_REG_CLASS
1206 /* When this hook returns true for MODE, the compiler allows
1207 registers explicitly used in the rtl to be used as spill registers
1208 but prevents the compiler from extending the lifetime of these
1209 registers. */
1210 #define TARGET_SMALL_REGISTER_CLASSES_FOR_MODE_P \
1211 arm_small_register_classes_for_mode_p
1213 /* Must leave BASE_REGS reloads alone */
1214 #define THUMB_SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1215 (lra_in_progress ? NO_REGS \
1216 : ((CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1217 ? ((true_regnum (X) == -1 ? LO_REGS \
1218 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1219 : NO_REGS)) \
1220 : NO_REGS))
1222 #define THUMB_SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1223 (lra_in_progress ? NO_REGS \
1224 : (CLASS) != LO_REGS && (CLASS) != BASE_REGS \
1225 ? ((true_regnum (X) == -1 ? LO_REGS \
1226 : (true_regnum (X) + HARD_REGNO_NREGS (0, MODE) > 8) ? LO_REGS \
1227 : NO_REGS)) \
1228 : NO_REGS)
1230 /* Return the register class of a scratch register needed to copy IN into
1231 or out of a register in CLASS in MODE. If it can be done directly,
1232 NO_REGS is returned. */
1233 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1234 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1235 ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
1236 ? coproc_secondary_reload_class (MODE, X, FALSE) \
1237 : (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) \
1238 ? coproc_secondary_reload_class (MODE, X, TRUE) \
1239 : TARGET_32BIT \
1240 ? (((MODE) == HImode && ! arm_arch4 && true_regnum (X) == -1) \
1241 ? GENERAL_REGS : NO_REGS) \
1242 : THUMB_SECONDARY_OUTPUT_RELOAD_CLASS (CLASS, MODE, X))
1244 /* If we need to load shorts byte-at-a-time, then we need a scratch. */
1245 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1246 /* Restrict which direct reloads are allowed for VFP/iWMMXt regs. */ \
1247 ((TARGET_HARD_FLOAT && IS_VFP_CLASS (CLASS)) \
1248 ? coproc_secondary_reload_class (MODE, X, FALSE) : \
1249 (TARGET_IWMMXT && (CLASS) == IWMMXT_REGS) ? \
1250 coproc_secondary_reload_class (MODE, X, TRUE) : \
1251 (TARGET_32BIT ? \
1252 (((CLASS) == IWMMXT_REGS || (CLASS) == IWMMXT_GR_REGS) \
1253 && CONSTANT_P (X)) \
1254 ? GENERAL_REGS : \
1255 (((MODE) == HImode && ! arm_arch4 \
1256 && (MEM_P (X) \
1257 || ((REG_P (X) || GET_CODE (X) == SUBREG) \
1258 && true_regnum (X) == -1))) \
1259 ? GENERAL_REGS : NO_REGS) \
1260 : THUMB_SECONDARY_INPUT_RELOAD_CLASS (CLASS, MODE, X)))
1262 /* Return the maximum number of consecutive registers
1263 needed to represent mode MODE in a register of class CLASS.
1264 ARM regs are UNITS_PER_WORD bits.
1265 FIXME: Is this true for iWMMX? */
1266 #define CLASS_MAX_NREGS(CLASS, MODE) \
1267 (ARM_NUM_REGS (MODE))
1269 /* If defined, gives a class of registers that cannot be used as the
1270 operand of a SUBREG that changes the mode of the object illegally. */
1272 /* Stack layout; function entry, exit and calling. */
1274 /* Define this if pushing a word on the stack
1275 makes the stack pointer a smaller address. */
1276 #define STACK_GROWS_DOWNWARD 1
1278 /* Define this to nonzero if the nominal address of the stack frame
1279 is at the high-address end of the local variables;
1280 that is, each additional local variable allocated
1281 goes at a more negative offset in the frame. */
1282 #define FRAME_GROWS_DOWNWARD 1
1284 /* The amount of scratch space needed by _interwork_{r7,r11}_call_via_rN().
1285 When present, it is one word in size, and sits at the top of the frame,
1286 between the soft frame pointer and either r7 or r11.
1288 We only need _interwork_rM_call_via_rN() for -mcaller-super-interworking,
1289 and only then if some outgoing arguments are passed on the stack. It would
1290 be tempting to also check whether the stack arguments are passed by indirect
1291 calls, but there seems to be no reason in principle why a post-reload pass
1292 couldn't convert a direct call into an indirect one. */
1293 #define CALLER_INTERWORKING_SLOT_SIZE \
1294 (TARGET_CALLER_INTERWORKING \
1295 && crtl->outgoing_args_size != 0 \
1296 ? UNITS_PER_WORD : 0)
1298 /* Offset within stack frame to start allocating local variables at.
1299 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1300 first local allocated. Otherwise, it is the offset to the BEGINNING
1301 of the first local allocated. */
1302 #define STARTING_FRAME_OFFSET 0
1304 /* If we generate an insn to push BYTES bytes,
1305 this says how many the stack pointer really advances by. */
1306 /* The push insns do not do this rounding implicitly.
1307 So don't define this. */
1308 /* #define PUSH_ROUNDING(NPUSHED) ROUND_UP_WORD (NPUSHED) */
1310 /* Define this if the maximum size of all the outgoing args is to be
1311 accumulated and pushed during the prologue. The amount can be
1312 found in the variable crtl->outgoing_args_size. */
1313 #define ACCUMULATE_OUTGOING_ARGS 1
1315 /* Offset of first parameter from the argument pointer register value. */
1316 #define FIRST_PARM_OFFSET(FNDECL) (TARGET_ARM ? 4 : 0)
1318 /* Amount of memory needed for an untyped call to save all possible return
1319 registers. */
1320 #define APPLY_RESULT_SIZE arm_apply_result_size()
1322 /* Define DEFAULT_PCC_STRUCT_RETURN to 1 if all structure and union return
1323 values must be in memory. On the ARM, they need only do so if larger
1324 than a word, or if they contain elements offset from zero in the struct. */
1325 #define DEFAULT_PCC_STRUCT_RETURN 0
1327 /* These bits describe the different types of function supported
1328 by the ARM backend. They are exclusive. i.e. a function cannot be both a
1329 normal function and an interworked function, for example. Knowing the
1330 type of a function is important for determining its prologue and
1331 epilogue sequences.
1332 Note value 7 is currently unassigned. Also note that the interrupt
1333 function types all have bit 2 set, so that they can be tested for easily.
1334 Note that 0 is deliberately chosen for ARM_FT_UNKNOWN so that when the
1335 machine_function structure is initialized (to zero) func_type will
1336 default to unknown. This will force the first use of arm_current_func_type
1337 to call arm_compute_func_type. */
1338 #define ARM_FT_UNKNOWN 0 /* Type has not yet been determined. */
1339 #define ARM_FT_NORMAL 1 /* Your normal, straightforward function. */
1340 #define ARM_FT_INTERWORKED 2 /* A function that supports interworking. */
1341 #define ARM_FT_ISR 4 /* An interrupt service routine. */
1342 #define ARM_FT_FIQ 5 /* A fast interrupt service routine. */
1343 #define ARM_FT_EXCEPTION 6 /* An ARM exception handler (subcase of ISR). */
1345 #define ARM_FT_TYPE_MASK ((1 << 3) - 1)
1347 /* In addition functions can have several type modifiers,
1348 outlined by these bit masks: */
1349 #define ARM_FT_INTERRUPT (1 << 2) /* Note overlap with FT_ISR and above. */
1350 #define ARM_FT_NAKED (1 << 3) /* No prologue or epilogue. */
1351 #define ARM_FT_VOLATILE (1 << 4) /* Does not return. */
1352 #define ARM_FT_NESTED (1 << 5) /* Embedded inside another func. */
1353 #define ARM_FT_STACKALIGN (1 << 6) /* Called with misaligned stack. */
1354 #define ARM_FT_CMSE_ENTRY (1 << 7) /* ARMv8-M non-secure entry function. */
1356 /* Some macros to test these flags. */
1357 #define ARM_FUNC_TYPE(t) (t & ARM_FT_TYPE_MASK)
1358 #define IS_INTERRUPT(t) (t & ARM_FT_INTERRUPT)
1359 #define IS_VOLATILE(t) (t & ARM_FT_VOLATILE)
1360 #define IS_NAKED(t) (t & ARM_FT_NAKED)
1361 #define IS_NESTED(t) (t & ARM_FT_NESTED)
1362 #define IS_STACKALIGN(t) (t & ARM_FT_STACKALIGN)
1363 #define IS_CMSE_ENTRY(t) (t & ARM_FT_CMSE_ENTRY)
1366 /* Structure used to hold the function stack frame layout. Offsets are
1367 relative to the stack pointer on function entry. Positive offsets are
1368 in the direction of stack growth.
1369 Only soft_frame is used in thumb mode. */
1371 typedef struct GTY(()) arm_stack_offsets
1373 int saved_args; /* ARG_POINTER_REGNUM. */
1374 int frame; /* ARM_HARD_FRAME_POINTER_REGNUM. */
1375 int saved_regs;
1376 int soft_frame; /* FRAME_POINTER_REGNUM. */
1377 int locals_base; /* THUMB_HARD_FRAME_POINTER_REGNUM. */
1378 int outgoing_args; /* STACK_POINTER_REGNUM. */
1379 unsigned int saved_regs_mask;
1381 arm_stack_offsets;
1383 #if !defined(GENERATOR_FILE) && !defined (USED_FOR_TARGET)
1384 /* A C structure for machine-specific, per-function data.
1385 This is added to the cfun structure. */
1386 typedef struct GTY(()) machine_function
1388 /* Additional stack adjustment in __builtin_eh_throw. */
1389 rtx eh_epilogue_sp_ofs;
1390 /* Records if LR has to be saved for far jumps. */
1391 int far_jump_used;
1392 /* Records if ARG_POINTER was ever live. */
1393 int arg_pointer_live;
1394 /* Records if the save of LR has been eliminated. */
1395 int lr_save_eliminated;
1396 /* The size of the stack frame. Only valid after reload. */
1397 arm_stack_offsets stack_offsets;
1398 /* Records the type of the current function. */
1399 unsigned long func_type;
1400 /* Record if the function has a variable argument list. */
1401 int uses_anonymous_args;
1402 /* Records if sibcalls are blocked because an argument
1403 register is needed to preserve stack alignment. */
1404 int sibcall_blocked;
1405 /* The PIC register for this function. This might be a pseudo. */
1406 rtx pic_reg;
1407 /* Labels for per-function Thumb call-via stubs. One per potential calling
1408 register. We can never call via LR or PC. We can call via SP if a
1409 trampoline happens to be on the top of the stack. */
1410 rtx call_via[14];
1411 /* Set to 1 when a return insn is output, this means that the epilogue
1412 is not needed. */
1413 int return_used_this_function;
1414 /* When outputting Thumb-1 code, record the last insn that provides
1415 information about condition codes, and the comparison operands. */
1416 rtx thumb1_cc_insn;
1417 rtx thumb1_cc_op0;
1418 rtx thumb1_cc_op1;
1419 /* Also record the CC mode that is supported. */
1420 machine_mode thumb1_cc_mode;
1421 /* Set to 1 after arm_reorg has started. */
1422 int after_arm_reorg;
1424 machine_function;
1425 #endif
1427 /* As in the machine_function, a global set of call-via labels, for code
1428 that is in text_section. */
1429 extern GTY(()) rtx thumb_call_via_label[14];
1431 /* The number of potential ways of assigning to a co-processor. */
1432 #define ARM_NUM_COPROC_SLOTS 1
1434 /* Enumeration of procedure calling standard variants. We don't really
1435 support all of these yet. */
1436 enum arm_pcs
1438 ARM_PCS_AAPCS, /* Base standard AAPCS. */
1439 ARM_PCS_AAPCS_VFP, /* Use VFP registers for floating point values. */
1440 ARM_PCS_AAPCS_IWMMXT, /* Use iWMMXT registers for vectors. */
1441 /* This must be the last AAPCS variant. */
1442 ARM_PCS_AAPCS_LOCAL, /* Private call within this compilation unit. */
1443 ARM_PCS_ATPCS, /* ATPCS. */
1444 ARM_PCS_APCS, /* APCS (legacy Linux etc). */
1445 ARM_PCS_UNKNOWN
1448 /* Default procedure calling standard of current compilation unit. */
1449 extern enum arm_pcs arm_pcs_default;
1451 #if !defined (USED_FOR_TARGET)
1452 /* A C type for declaring a variable that is used as the first argument of
1453 `FUNCTION_ARG' and other related values. */
1454 typedef struct
1456 /* This is the number of registers of arguments scanned so far. */
1457 int nregs;
1458 /* This is the number of iWMMXt register arguments scanned so far. */
1459 int iwmmxt_nregs;
1460 int named_count;
1461 int nargs;
1462 /* Which procedure call variant to use for this call. */
1463 enum arm_pcs pcs_variant;
1465 /* AAPCS related state tracking. */
1466 int aapcs_arg_processed; /* No need to lay out this argument again. */
1467 int aapcs_cprc_slot; /* Index of co-processor rules to handle
1468 this argument, or -1 if using core
1469 registers. */
1470 int aapcs_ncrn;
1471 int aapcs_next_ncrn;
1472 rtx aapcs_reg; /* Register assigned to this argument. */
1473 int aapcs_partial; /* How many bytes are passed in regs (if
1474 split between core regs and stack.
1475 Zero otherwise. */
1476 int aapcs_cprc_failed[ARM_NUM_COPROC_SLOTS];
1477 int can_split; /* Argument can be split between core regs
1478 and the stack. */
1479 /* Private data for tracking VFP register allocation */
1480 unsigned aapcs_vfp_regs_free;
1481 unsigned aapcs_vfp_reg_alloc;
1482 int aapcs_vfp_rcount;
1483 MACHMODE aapcs_vfp_rmode;
1484 } CUMULATIVE_ARGS;
1485 #endif
1487 #define FUNCTION_ARG_PADDING(MODE, TYPE) \
1488 (arm_pad_arg_upward (MODE, TYPE) ? upward : downward)
1490 #define BLOCK_REG_PADDING(MODE, TYPE, FIRST) \
1491 (arm_pad_reg_upward (MODE, TYPE, FIRST) ? upward : downward)
1493 /* For AAPCS, padding should never be below the argument. For other ABIs,
1494 * mimic the default. */
1495 #define PAD_VARARGS_DOWN \
1496 ((TARGET_AAPCS_BASED) ? 0 : BYTES_BIG_ENDIAN)
1498 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1499 for a call to a function whose data type is FNTYPE.
1500 For a library call, FNTYPE is 0.
1501 On the ARM, the offset starts at 0. */
1502 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1503 arm_init_cumulative_args (&(CUM), (FNTYPE), (LIBNAME), (FNDECL))
1505 /* 1 if N is a possible register number for function argument passing.
1506 On the ARM, r0-r3 are used to pass args. */
1507 #define FUNCTION_ARG_REGNO_P(REGNO) \
1508 (IN_RANGE ((REGNO), 0, 3) \
1509 || (TARGET_AAPCS_BASED && TARGET_HARD_FLOAT \
1510 && IN_RANGE ((REGNO), FIRST_VFP_REGNUM, FIRST_VFP_REGNUM + 15)) \
1511 || (TARGET_IWMMXT_ABI \
1512 && IN_RANGE ((REGNO), FIRST_IWMMXT_REGNUM, FIRST_IWMMXT_REGNUM + 9)))
1515 /* If your target environment doesn't prefix user functions with an
1516 underscore, you may wish to re-define this to prevent any conflicts. */
1517 #ifndef ARM_MCOUNT_NAME
1518 #define ARM_MCOUNT_NAME "*mcount"
1519 #endif
1521 /* Call the function profiler with a given profile label. The Acorn
1522 compiler puts this BEFORE the prolog but gcc puts it afterwards.
1523 On the ARM the full profile code will look like:
1524 .data
1526 .word 0
1527 .text
1528 mov ip, lr
1529 bl mcount
1530 .word LP1
1532 profile_function() in final.c outputs the .data section, FUNCTION_PROFILER
1533 will output the .text section.
1535 The ``mov ip,lr'' seems like a good idea to stick with cc convention.
1536 ``prof'' doesn't seem to mind about this!
1538 Note - this version of the code is designed to work in both ARM and
1539 Thumb modes. */
1540 #ifndef ARM_FUNCTION_PROFILER
1541 #define ARM_FUNCTION_PROFILER(STREAM, LABELNO) \
1543 char temp[20]; \
1544 rtx sym; \
1546 asm_fprintf (STREAM, "\tmov\t%r, %r\n\tbl\t", \
1547 IP_REGNUM, LR_REGNUM); \
1548 assemble_name (STREAM, ARM_MCOUNT_NAME); \
1549 fputc ('\n', STREAM); \
1550 ASM_GENERATE_INTERNAL_LABEL (temp, "LP", LABELNO); \
1551 sym = gen_rtx_SYMBOL_REF (Pmode, temp); \
1552 assemble_aligned_integer (UNITS_PER_WORD, sym); \
1554 #endif
1556 #ifdef THUMB_FUNCTION_PROFILER
1557 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1558 if (TARGET_ARM) \
1559 ARM_FUNCTION_PROFILER (STREAM, LABELNO) \
1560 else \
1561 THUMB_FUNCTION_PROFILER (STREAM, LABELNO)
1562 #else
1563 #define FUNCTION_PROFILER(STREAM, LABELNO) \
1564 ARM_FUNCTION_PROFILER (STREAM, LABELNO)
1565 #endif
1567 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1568 the stack pointer does not matter. The value is tested only in
1569 functions that have frame pointers.
1570 No definition is equivalent to always zero.
1572 On the ARM, the function epilogue recovers the stack pointer from the
1573 frame. */
1574 #define EXIT_IGNORE_STACK 1
1576 #define EPILOGUE_USES(REGNO) (epilogue_completed && (REGNO) == LR_REGNUM)
1578 /* Determine if the epilogue should be output as RTL.
1579 You should override this if you define FUNCTION_EXTRA_EPILOGUE. */
1580 #define USE_RETURN_INSN(ISCOND) \
1581 (TARGET_32BIT ? use_return_insn (ISCOND, NULL) : 0)
1583 /* Definitions for register eliminations.
1585 This is an array of structures. Each structure initializes one pair
1586 of eliminable registers. The "from" register number is given first,
1587 followed by "to". Eliminations of the same "from" register are listed
1588 in order of preference.
1590 We have two registers that can be eliminated on the ARM. First, the
1591 arg pointer register can often be eliminated in favor of the stack
1592 pointer register. Secondly, the pseudo frame pointer register can always
1593 be eliminated; it is replaced with either the stack or the real frame
1594 pointer. Note we have to use {ARM|THUMB}_HARD_FRAME_POINTER_REGNUM
1595 because the definition of HARD_FRAME_POINTER_REGNUM is not a constant. */
1597 #define ELIMINABLE_REGS \
1598 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1599 { ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM },\
1600 { ARG_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1601 { ARG_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM },\
1602 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM },\
1603 { FRAME_POINTER_REGNUM, ARM_HARD_FRAME_POINTER_REGNUM },\
1604 { FRAME_POINTER_REGNUM, THUMB_HARD_FRAME_POINTER_REGNUM }}
1606 /* Define the offset between two registers, one to be eliminated, and the
1607 other its replacement, at the start of a routine. */
1608 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1609 if (TARGET_ARM) \
1610 (OFFSET) = arm_compute_initial_elimination_offset (FROM, TO); \
1611 else \
1612 (OFFSET) = thumb_compute_initial_elimination_offset (FROM, TO)
1614 /* Special case handling of the location of arguments passed on the stack. */
1615 #define DEBUGGER_ARG_OFFSET(value, addr) value ? value : arm_debugger_arg_offset (value, addr)
1617 /* Initialize data used by insn expanders. This is called from insn_emit,
1618 once for every function before code is generated. */
1619 #define INIT_EXPANDERS arm_init_expanders ()
1621 /* Length in units of the trampoline for entering a nested function. */
1622 #define TRAMPOLINE_SIZE (TARGET_32BIT ? 16 : 20)
1624 /* Alignment required for a trampoline in bits. */
1625 #define TRAMPOLINE_ALIGNMENT 32
1627 /* Addressing modes, and classification of registers for them. */
1628 #define HAVE_POST_INCREMENT 1
1629 #define HAVE_PRE_INCREMENT TARGET_32BIT
1630 #define HAVE_POST_DECREMENT TARGET_32BIT
1631 #define HAVE_PRE_DECREMENT TARGET_32BIT
1632 #define HAVE_PRE_MODIFY_DISP TARGET_32BIT
1633 #define HAVE_POST_MODIFY_DISP TARGET_32BIT
1634 #define HAVE_PRE_MODIFY_REG TARGET_32BIT
1635 #define HAVE_POST_MODIFY_REG TARGET_32BIT
1637 enum arm_auto_incmodes
1639 ARM_POST_INC,
1640 ARM_PRE_INC,
1641 ARM_POST_DEC,
1642 ARM_PRE_DEC
1645 #define ARM_AUTOINC_VALID_FOR_MODE_P(mode, code) \
1646 (TARGET_32BIT && arm_autoinc_modes_ok_p (mode, code))
1647 #define USE_LOAD_POST_INCREMENT(mode) \
1648 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_INC)
1649 #define USE_LOAD_PRE_INCREMENT(mode) \
1650 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_INC)
1651 #define USE_LOAD_POST_DECREMENT(mode) \
1652 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_POST_DEC)
1653 #define USE_LOAD_PRE_DECREMENT(mode) \
1654 ARM_AUTOINC_VALID_FOR_MODE_P(mode, ARM_PRE_DEC)
1656 #define USE_STORE_PRE_DECREMENT(mode) USE_LOAD_PRE_DECREMENT(mode)
1657 #define USE_STORE_PRE_INCREMENT(mode) USE_LOAD_PRE_INCREMENT(mode)
1658 #define USE_STORE_POST_DECREMENT(mode) USE_LOAD_POST_DECREMENT(mode)
1659 #define USE_STORE_POST_INCREMENT(mode) USE_LOAD_POST_INCREMENT(mode)
1661 /* Macros to check register numbers against specific register classes. */
1663 /* These assume that REGNO is a hard or pseudo reg number.
1664 They give nonzero only if REGNO is a hard reg of the suitable class
1665 or a pseudo reg currently allocated to a suitable hard reg.
1666 Since they use reg_renumber, they are safe only once reg_renumber
1667 has been allocated, which happens in reginfo.c during register
1668 allocation. */
1669 #define TEST_REGNO(R, TEST, VALUE) \
1670 ((R TEST VALUE) || ((unsigned) reg_renumber[R] TEST VALUE))
1672 /* Don't allow the pc to be used. */
1673 #define ARM_REGNO_OK_FOR_BASE_P(REGNO) \
1674 (TEST_REGNO (REGNO, <, PC_REGNUM) \
1675 || TEST_REGNO (REGNO, ==, FRAME_POINTER_REGNUM) \
1676 || TEST_REGNO (REGNO, ==, ARG_POINTER_REGNUM))
1678 #define THUMB1_REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1679 (TEST_REGNO (REGNO, <=, LAST_LO_REGNUM) \
1680 || (GET_MODE_SIZE (MODE) >= 4 \
1681 && TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM)))
1683 #define REGNO_MODE_OK_FOR_BASE_P(REGNO, MODE) \
1684 (TARGET_THUMB1 \
1685 ? THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO, MODE) \
1686 : ARM_REGNO_OK_FOR_BASE_P (REGNO))
1688 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1689 For Thumb, we can not use SP + reg, so reject SP. */
1690 #define REGNO_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1691 REGNO_MODE_OK_FOR_BASE_P (X, QImode)
1693 /* For ARM code, we don't care about the mode, but for Thumb, the index
1694 must be suitable for use in a QImode load. */
1695 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1696 (REGNO_MODE_OK_FOR_BASE_P (REGNO, QImode) \
1697 && !TEST_REGNO (REGNO, ==, STACK_POINTER_REGNUM))
1699 /* Maximum number of registers that can appear in a valid memory address.
1700 Shifts in addresses can't be by a register. */
1701 #define MAX_REGS_PER_ADDRESS 2
1703 /* Recognize any constant value that is a valid address. */
1704 /* XXX We can address any constant, eventually... */
1705 /* ??? Should the TARGET_ARM here also apply to thumb2? */
1706 #define CONSTANT_ADDRESS_P(X) \
1707 (GET_CODE (X) == SYMBOL_REF \
1708 && (CONSTANT_POOL_ADDRESS_P (X) \
1709 || (TARGET_ARM && optimize > 0 && SYMBOL_REF_FLAG (X))))
1711 /* True if SYMBOL + OFFSET constants must refer to something within
1712 SYMBOL's section. */
1713 #define ARM_OFFSETS_MUST_BE_WITHIN_SECTIONS_P 0
1715 /* Nonzero if all target requires all absolute relocations be R_ARM_ABS32. */
1716 #ifndef TARGET_DEFAULT_WORD_RELOCATIONS
1717 #define TARGET_DEFAULT_WORD_RELOCATIONS 0
1718 #endif
1720 #ifndef SUBTARGET_NAME_ENCODING_LENGTHS
1721 #define SUBTARGET_NAME_ENCODING_LENGTHS
1722 #endif
1724 /* This is a C fragment for the inside of a switch statement.
1725 Each case label should return the number of characters to
1726 be stripped from the start of a function's name, if that
1727 name starts with the indicated character. */
1728 #define ARM_NAME_ENCODING_LENGTHS \
1729 case '*': return 1; \
1730 SUBTARGET_NAME_ENCODING_LENGTHS
1732 /* This is how to output a reference to a user-level label named NAME.
1733 `assemble_name' uses this. */
1734 #undef ASM_OUTPUT_LABELREF
1735 #define ASM_OUTPUT_LABELREF(FILE, NAME) \
1736 arm_asm_output_labelref (FILE, NAME)
1738 /* Output IT instructions for conditionally executed Thumb-2 instructions. */
1739 #define ASM_OUTPUT_OPCODE(STREAM, PTR) \
1740 if (TARGET_THUMB2) \
1741 thumb2_asm_output_opcode (STREAM);
1743 /* The EABI specifies that constructors should go in .init_array.
1744 Other targets use .ctors for compatibility. */
1745 #ifndef ARM_EABI_CTORS_SECTION_OP
1746 #define ARM_EABI_CTORS_SECTION_OP \
1747 "\t.section\t.init_array,\"aw\",%init_array"
1748 #endif
1749 #ifndef ARM_EABI_DTORS_SECTION_OP
1750 #define ARM_EABI_DTORS_SECTION_OP \
1751 "\t.section\t.fini_array,\"aw\",%fini_array"
1752 #endif
1753 #define ARM_CTORS_SECTION_OP \
1754 "\t.section\t.ctors,\"aw\",%progbits"
1755 #define ARM_DTORS_SECTION_OP \
1756 "\t.section\t.dtors,\"aw\",%progbits"
1758 /* Define CTORS_SECTION_ASM_OP. */
1759 #undef CTORS_SECTION_ASM_OP
1760 #undef DTORS_SECTION_ASM_OP
1761 #ifndef IN_LIBGCC2
1762 # define CTORS_SECTION_ASM_OP \
1763 (TARGET_AAPCS_BASED ? ARM_EABI_CTORS_SECTION_OP : ARM_CTORS_SECTION_OP)
1764 # define DTORS_SECTION_ASM_OP \
1765 (TARGET_AAPCS_BASED ? ARM_EABI_DTORS_SECTION_OP : ARM_DTORS_SECTION_OP)
1766 #else /* !defined (IN_LIBGCC2) */
1767 /* In libgcc, CTORS_SECTION_ASM_OP must be a compile-time constant,
1768 so we cannot use the definition above. */
1769 # ifdef __ARM_EABI__
1770 /* The .ctors section is not part of the EABI, so we do not define
1771 CTORS_SECTION_ASM_OP when in libgcc; that prevents crtstuff
1772 from trying to use it. We do define it when doing normal
1773 compilation, as .init_array can be used instead of .ctors. */
1774 /* There is no need to emit begin or end markers when using
1775 init_array; the dynamic linker will compute the size of the
1776 array itself based on special symbols created by the static
1777 linker. However, we do need to arrange to set up
1778 exception-handling here. */
1779 # define CTOR_LIST_BEGIN asm (ARM_EABI_CTORS_SECTION_OP)
1780 # define CTOR_LIST_END /* empty */
1781 # define DTOR_LIST_BEGIN asm (ARM_EABI_DTORS_SECTION_OP)
1782 # define DTOR_LIST_END /* empty */
1783 # else /* !defined (__ARM_EABI__) */
1784 # define CTORS_SECTION_ASM_OP ARM_CTORS_SECTION_OP
1785 # define DTORS_SECTION_ASM_OP ARM_DTORS_SECTION_OP
1786 # endif /* !defined (__ARM_EABI__) */
1787 #endif /* !defined (IN_LIBCC2) */
1789 /* True if the operating system can merge entities with vague linkage
1790 (e.g., symbols in COMDAT group) during dynamic linking. */
1791 #ifndef TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P
1792 #define TARGET_ARM_DYNAMIC_VAGUE_LINKAGE_P true
1793 #endif
1795 #define ARM_OUTPUT_FN_UNWIND(F, PROLOGUE) arm_output_fn_unwind (F, PROLOGUE)
1797 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1798 and check its validity for a certain class.
1799 We have two alternate definitions for each of them.
1800 The usual definition accepts all pseudo regs; the other rejects
1801 them unless they have been allocated suitable hard regs.
1802 The symbol REG_OK_STRICT causes the latter definition to be used.
1803 Thumb-2 has the same restrictions as arm. */
1804 #ifndef REG_OK_STRICT
1806 #define ARM_REG_OK_FOR_BASE_P(X) \
1807 (REGNO (X) <= LAST_ARM_REGNUM \
1808 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1809 || REGNO (X) == FRAME_POINTER_REGNUM \
1810 || REGNO (X) == ARG_POINTER_REGNUM)
1812 #define ARM_REG_OK_FOR_INDEX_P(X) \
1813 ((REGNO (X) <= LAST_ARM_REGNUM \
1814 && REGNO (X) != STACK_POINTER_REGNUM) \
1815 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1816 || REGNO (X) == FRAME_POINTER_REGNUM \
1817 || REGNO (X) == ARG_POINTER_REGNUM)
1819 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1820 (REGNO (X) <= LAST_LO_REGNUM \
1821 || REGNO (X) >= FIRST_PSEUDO_REGISTER \
1822 || (GET_MODE_SIZE (MODE) >= 4 \
1823 && (REGNO (X) == STACK_POINTER_REGNUM \
1824 || (X) == hard_frame_pointer_rtx \
1825 || (X) == arg_pointer_rtx)))
1827 #define REG_STRICT_P 0
1829 #else /* REG_OK_STRICT */
1831 #define ARM_REG_OK_FOR_BASE_P(X) \
1832 ARM_REGNO_OK_FOR_BASE_P (REGNO (X))
1834 #define ARM_REG_OK_FOR_INDEX_P(X) \
1835 ARM_REGNO_OK_FOR_INDEX_P (REGNO (X))
1837 #define THUMB1_REG_MODE_OK_FOR_BASE_P(X, MODE) \
1838 THUMB1_REGNO_MODE_OK_FOR_BASE_P (REGNO (X), MODE)
1840 #define REG_STRICT_P 1
1842 #endif /* REG_OK_STRICT */
1844 /* Now define some helpers in terms of the above. */
1846 #define REG_MODE_OK_FOR_BASE_P(X, MODE) \
1847 (TARGET_THUMB1 \
1848 ? THUMB1_REG_MODE_OK_FOR_BASE_P (X, MODE) \
1849 : ARM_REG_OK_FOR_BASE_P (X))
1851 /* For 16-bit Thumb, a valid index register is anything that can be used in
1852 a byte load instruction. */
1853 #define THUMB1_REG_OK_FOR_INDEX_P(X) \
1854 THUMB1_REG_MODE_OK_FOR_BASE_P (X, QImode)
1856 /* Nonzero if X is a hard reg that can be used as an index
1857 or if it is a pseudo reg. On the Thumb, the stack pointer
1858 is not suitable. */
1859 #define REG_OK_FOR_INDEX_P(X) \
1860 (TARGET_THUMB1 \
1861 ? THUMB1_REG_OK_FOR_INDEX_P (X) \
1862 : ARM_REG_OK_FOR_INDEX_P (X))
1864 /* Nonzero if X can be the base register in a reg+reg addressing mode.
1865 For Thumb, we can not use SP + reg, so reject SP. */
1866 #define REG_MODE_OK_FOR_REG_BASE_P(X, MODE) \
1867 REG_OK_FOR_INDEX_P (X)
1869 #define ARM_BASE_REGISTER_RTX_P(X) \
1870 (REG_P (X) && ARM_REG_OK_FOR_BASE_P (X))
1872 #define ARM_INDEX_REGISTER_RTX_P(X) \
1873 (REG_P (X) && ARM_REG_OK_FOR_INDEX_P (X))
1875 /* Specify the machine mode that this machine uses
1876 for the index in the tablejump instruction. */
1877 #define CASE_VECTOR_MODE Pmode
1879 #define CASE_VECTOR_PC_RELATIVE (TARGET_THUMB2 \
1880 || (TARGET_THUMB1 \
1881 && (optimize_size || flag_pic)))
1883 #define CASE_VECTOR_SHORTEN_MODE(min, max, body) \
1884 (TARGET_THUMB1 \
1885 ? (min >= 0 && max < 512 \
1886 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, QImode) \
1887 : min >= -256 && max < 256 \
1888 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, QImode) \
1889 : min >= 0 && max < 8192 \
1890 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 1, HImode) \
1891 : min >= -4096 && max < 4096 \
1892 ? (ADDR_DIFF_VEC_FLAGS (body).offset_unsigned = 0, HImode) \
1893 : SImode) \
1894 : ((min < 0 || max >= 0x20000 || !TARGET_THUMB2) ? SImode \
1895 : (max >= 0x200) ? HImode \
1896 : QImode))
1898 /* signed 'char' is most compatible, but RISC OS wants it unsigned.
1899 unsigned is probably best, but may break some code. */
1900 #ifndef DEFAULT_SIGNED_CHAR
1901 #define DEFAULT_SIGNED_CHAR 0
1902 #endif
1904 /* Max number of bytes we can move from memory to memory
1905 in one reasonably fast instruction. */
1906 #define MOVE_MAX 4
1908 #undef MOVE_RATIO
1909 #define MOVE_RATIO(speed) (arm_tune_xscale ? 4 : 2)
1911 /* Define if operations between registers always perform the operation
1912 on the full register even if a narrower mode is specified. */
1913 #define WORD_REGISTER_OPERATIONS 1
1915 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1916 will either zero-extend or sign-extend. The value of this macro should
1917 be the code that says which one of the two operations is implicitly
1918 done, UNKNOWN if none. */
1919 #define LOAD_EXTEND_OP(MODE) \
1920 (TARGET_THUMB ? ZERO_EXTEND : \
1921 ((arm_arch4 || (MODE) == QImode) ? ZERO_EXTEND \
1922 : ((BYTES_BIG_ENDIAN && (MODE) == HImode) ? SIGN_EXTEND : UNKNOWN)))
1924 /* Nonzero if access to memory by bytes is slow and undesirable. */
1925 #define SLOW_BYTE_ACCESS 0
1927 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) 1
1929 /* Immediate shift counts are truncated by the output routines (or was it
1930 the assembler?). Shift counts in a register are truncated by ARM. Note
1931 that the native compiler puts too large (> 32) immediate shift counts
1932 into a register and shifts by the register, letting the ARM decide what
1933 to do instead of doing that itself. */
1934 /* This is all wrong. Defining SHIFT_COUNT_TRUNCATED tells combine that
1935 code like (X << (Y % 32)) for register X, Y is equivalent to (X << Y).
1936 On the arm, Y in a register is used modulo 256 for the shift. Only for
1937 rotates is modulo 32 used. */
1938 /* #define SHIFT_COUNT_TRUNCATED 1 */
1940 /* All integers have the same format so truncation is easy. */
1941 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1943 /* Calling from registers is a massive pain. */
1944 #define NO_FUNCTION_CSE 1
1946 /* The machine modes of pointers and functions */
1947 #define Pmode SImode
1948 #define FUNCTION_MODE Pmode
1950 #define ARM_FRAME_RTX(X) \
1951 ( (X) == frame_pointer_rtx || (X) == stack_pointer_rtx \
1952 || (X) == arg_pointer_rtx)
1954 /* Try to generate sequences that don't involve branches, we can then use
1955 conditional instructions. */
1956 #define BRANCH_COST(speed_p, predictable_p) \
1957 (current_tune->branch_cost (speed_p, predictable_p))
1959 /* False if short circuit operation is preferred. */
1960 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
1961 ((optimize_size) \
1962 ? (TARGET_THUMB ? false : true) \
1963 : TARGET_THUMB ? static_cast<bool> (current_tune->logical_op_non_short_circuit_thumb) \
1964 : static_cast<bool> (current_tune->logical_op_non_short_circuit_arm))
1967 /* Position Independent Code. */
1968 /* We decide which register to use based on the compilation options and
1969 the assembler in use; this is more general than the APCS restriction of
1970 using sb (r9) all the time. */
1971 extern unsigned arm_pic_register;
1973 /* The register number of the register used to address a table of static
1974 data addresses in memory. */
1975 #define PIC_OFFSET_TABLE_REGNUM arm_pic_register
1977 /* We can't directly access anything that contains a symbol,
1978 nor can we indirect via the constant pool. One exception is
1979 UNSPEC_TLS, which is always PIC. */
1980 #define LEGITIMATE_PIC_OPERAND_P(X) \
1981 (!(symbol_mentioned_p (X) \
1982 || label_mentioned_p (X) \
1983 || (GET_CODE (X) == SYMBOL_REF \
1984 && CONSTANT_POOL_ADDRESS_P (X) \
1985 && (symbol_mentioned_p (get_pool_constant (X)) \
1986 || label_mentioned_p (get_pool_constant (X))))) \
1987 || tls_mentioned_p (X))
1989 /* We need to know when we are making a constant pool; this determines
1990 whether data needs to be in the GOT or can be referenced via a GOT
1991 offset. */
1992 extern int making_const_table;
1994 /* Handle pragmas for compatibility with Intel's compilers. */
1995 /* Also abuse this to register additional C specific EABI attributes. */
1996 #define REGISTER_TARGET_PRAGMAS() do { \
1997 c_register_pragma (0, "long_calls", arm_pr_long_calls); \
1998 c_register_pragma (0, "no_long_calls", arm_pr_no_long_calls); \
1999 c_register_pragma (0, "long_calls_off", arm_pr_long_calls_off); \
2000 arm_lang_object_attributes_init(); \
2001 arm_register_target_pragmas(); \
2002 } while (0)
2004 /* Condition code information. */
2005 /* Given a comparison code (EQ, NE, etc.) and the first operand of a COMPARE,
2006 return the mode to be used for the comparison. */
2008 #define SELECT_CC_MODE(OP, X, Y) arm_select_cc_mode (OP, X, Y)
2010 #define REVERSIBLE_CC_MODE(MODE) 1
2012 #define REVERSE_CONDITION(CODE,MODE) \
2013 (((MODE) == CCFPmode || (MODE) == CCFPEmode) \
2014 ? reverse_condition_maybe_unordered (code) \
2015 : reverse_condition (code))
2017 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2018 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2019 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
2020 ((VALUE) = GET_MODE_UNIT_BITSIZE (MODE), 2)
2022 #define CC_STATUS_INIT \
2023 do { cfun->machine->thumb1_cc_insn = NULL_RTX; } while (0)
2025 #undef ASM_APP_ON
2026 #define ASM_APP_ON (inline_asm_unified ? "\t.syntax unified\n" : \
2027 "\t.syntax divided\n")
2029 #undef ASM_APP_OFF
2030 #define ASM_APP_OFF (TARGET_ARM ? "\t.arm\n\t.syntax unified\n" : \
2031 "\t.thumb\n\t.syntax unified\n")
2033 /* Output a push or a pop instruction (only used when profiling).
2034 We can't push STATIC_CHAIN_REGNUM (r12) directly with Thumb-1. We know
2035 that ASM_OUTPUT_REG_PUSH will be matched with ASM_OUTPUT_REG_POP, and
2036 that r7 isn't used by the function profiler, so we can use it as a
2037 scratch reg. WARNING: This isn't safe in the general case! It may be
2038 sensitive to future changes in final.c:profile_function. */
2039 #define ASM_OUTPUT_REG_PUSH(STREAM, REGNO) \
2040 do \
2042 if (TARGET_THUMB1 \
2043 && (REGNO) == STATIC_CHAIN_REGNUM) \
2045 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2046 asm_fprintf (STREAM, "\tmov\tr7, %r\n", REGNO);\
2047 asm_fprintf (STREAM, "\tpush\t{r7}\n"); \
2049 else \
2050 asm_fprintf (STREAM, "\tpush {%r}\n", REGNO); \
2051 } while (0)
2054 /* See comment for ASM_OUTPUT_REG_PUSH concerning Thumb-1 issue. */
2055 #define ASM_OUTPUT_REG_POP(STREAM, REGNO) \
2056 do \
2058 if (TARGET_THUMB1 \
2059 && (REGNO) == STATIC_CHAIN_REGNUM) \
2061 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2062 asm_fprintf (STREAM, "\tmov\t%r, r7\n", REGNO);\
2063 asm_fprintf (STREAM, "\tpop\t{r7}\n"); \
2065 else \
2066 asm_fprintf (STREAM, "\tpop {%r}\n", REGNO); \
2067 } while (0)
2069 #define ADDR_VEC_ALIGN(JUMPTABLE) \
2070 ((TARGET_THUMB && GET_MODE (PATTERN (JUMPTABLE)) == SImode) ? 2 : 0)
2072 /* Alignment for case labels comes from ADDR_VEC_ALIGN; avoid the
2073 default alignment from elfos.h. */
2074 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
2075 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE, PREFIX, NUM, TABLE) /* Empty. */
2077 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) \
2078 (GET_CODE (PATTERN (prev_active_insn (LABEL))) == ADDR_DIFF_VEC \
2079 ? 1 : 0)
2081 #define ARM_DECLARE_FUNCTION_NAME(STREAM, NAME, DECL) \
2082 arm_declare_function_name ((STREAM), (NAME), (DECL));
2084 /* For aliases of functions we use .thumb_set instead. */
2085 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL1, DECL2) \
2086 do \
2088 const char *const LABEL1 = XSTR (XEXP (DECL_RTL (decl), 0), 0); \
2089 const char *const LABEL2 = IDENTIFIER_POINTER (DECL2); \
2091 if (TARGET_THUMB && TREE_CODE (DECL1) == FUNCTION_DECL) \
2093 fprintf (FILE, "\t.thumb_set "); \
2094 assemble_name (FILE, LABEL1); \
2095 fprintf (FILE, ","); \
2096 assemble_name (FILE, LABEL2); \
2097 fprintf (FILE, "\n"); \
2099 else \
2100 ASM_OUTPUT_DEF (FILE, LABEL1, LABEL2); \
2102 while (0)
2104 #ifdef HAVE_GAS_MAX_SKIP_P2ALIGN
2105 /* To support -falign-* switches we need to use .p2align so
2106 that alignment directives in code sections will be padded
2107 with no-op instructions, rather than zeroes. */
2108 #define ASM_OUTPUT_MAX_SKIP_ALIGN(FILE, LOG, MAX_SKIP) \
2109 if ((LOG) != 0) \
2111 if ((MAX_SKIP) == 0) \
2112 fprintf ((FILE), "\t.p2align %d\n", (int) (LOG)); \
2113 else \
2114 fprintf ((FILE), "\t.p2align %d,,%d\n", \
2115 (int) (LOG), (int) (MAX_SKIP)); \
2117 #endif
2119 /* Add two bytes to the length of conditionally executed Thumb-2
2120 instructions for the IT instruction. */
2121 #define ADJUST_INSN_LENGTH(insn, length) \
2122 if (TARGET_THUMB2 && GET_CODE (PATTERN (insn)) == COND_EXEC) \
2123 length += 2;
2125 /* Only perform branch elimination (by making instructions conditional) if
2126 we're optimizing. For Thumb-2 check if any IT instructions need
2127 outputting. */
2128 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS) \
2129 if (TARGET_ARM && optimize) \
2130 arm_final_prescan_insn (INSN); \
2131 else if (TARGET_THUMB2) \
2132 thumb2_final_prescan_insn (INSN); \
2133 else if (TARGET_THUMB1) \
2134 thumb1_final_prescan_insn (INSN)
2136 #define ARM_SIGN_EXTEND(x) ((HOST_WIDE_INT) \
2137 (HOST_BITS_PER_WIDE_INT <= 32 ? (unsigned HOST_WIDE_INT) (x) \
2138 : ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0xffffffff) |\
2139 ((((unsigned HOST_WIDE_INT)(x)) & (unsigned HOST_WIDE_INT) 0x80000000) \
2140 ? ((~ (unsigned HOST_WIDE_INT) 0) \
2141 & ~ (unsigned HOST_WIDE_INT) 0xffffffff) \
2142 : 0))))
2144 /* A C expression whose value is RTL representing the value of the return
2145 address for the frame COUNT steps up from the current frame. */
2147 #define RETURN_ADDR_RTX(COUNT, FRAME) \
2148 arm_return_addr (COUNT, FRAME)
2150 /* Mask of the bits in the PC that contain the real return address
2151 when running in 26-bit mode. */
2152 #define RETURN_ADDR_MASK26 (0x03fffffc)
2154 /* Pick up the return address upon entry to a procedure. Used for
2155 dwarf2 unwind information. This also enables the table driven
2156 mechanism. */
2157 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNUM)
2158 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNUM)
2160 /* Used to mask out junk bits from the return address, such as
2161 processor state, interrupt status, condition codes and the like. */
2162 #define MASK_RETURN_ADDR \
2163 /* If we are generating code for an ARM2/ARM3 machine or for an ARM6 \
2164 in 26 bit mode, the condition codes must be masked out of the \
2165 return address. This does not apply to ARM6 and later processors \
2166 when running in 32 bit mode. */ \
2167 ((arm_arch4 || TARGET_THUMB) \
2168 ? (gen_int_mode ((unsigned long)0xffffffff, Pmode)) \
2169 : arm_gen_return_addr_mask ())
2172 /* Do not emit .note.GNU-stack by default. */
2173 #ifndef NEED_INDICATE_EXEC_STACK
2174 #define NEED_INDICATE_EXEC_STACK 0
2175 #endif
2177 #define TARGET_ARM_ARCH \
2178 (arm_base_arch) \
2180 /* The highest Thumb instruction set version supported by the chip. */
2181 #define TARGET_ARM_ARCH_ISA_THUMB \
2182 (arm_arch_thumb2 ? 2 : (arm_arch_thumb1 ? 1 : 0))
2184 /* Expands to an upper-case char of the target's architectural
2185 profile. */
2186 #define TARGET_ARM_ARCH_PROFILE \
2187 (!arm_arch_notm \
2188 ? 'M' \
2189 : (arm_arch7 \
2190 ? (strlen (arm_arch_name) >=3 \
2191 ? (arm_arch_name[strlen (arm_arch_name) - 3]) \
2192 : 0) \
2193 : 0))
2195 /* Bit-field indicating what size LDREX/STREX loads/stores are available.
2196 Bit 0 for bytes, up to bit 3 for double-words. */
2197 #define TARGET_ARM_FEATURE_LDREX \
2198 ((TARGET_HAVE_LDREX ? 4 : 0) \
2199 | (TARGET_HAVE_LDREXBH ? 3 : 0) \
2200 | (TARGET_HAVE_LDREXD ? 8 : 0))
2202 /* Set as a bit mask indicating the available widths of hardware floating
2203 point types. Where bit 1 indicates 16-bit support, bit 2 indicates
2204 32-bit support, bit 3 indicates 64-bit support. */
2205 #define TARGET_ARM_FP \
2206 (!TARGET_SOFT_FLOAT ? (TARGET_VFP_SINGLE ? 4 \
2207 : (TARGET_VFP_DOUBLE ? (TARGET_FP16 ? 14 : 12) : 0)) \
2208 : 0)
2211 /* Set as a bit mask indicating the available widths of floating point
2212 types for hardware NEON floating point. This is the same as
2213 TARGET_ARM_FP without the 64-bit bit set. */
2214 #define TARGET_NEON_FP \
2215 (TARGET_NEON ? (TARGET_ARM_FP & (0xff ^ 0x08)) \
2216 : 0)
2218 /* The maximum number of parallel loads or stores we support in an ldm/stm
2219 instruction. */
2220 #define MAX_LDM_STM_OPS 4
2222 #define BIG_LITTLE_SPEC \
2223 " %{mcpu=*:-mcpu=%:rewrite_mcpu(%{mcpu=*:%*})}"
2225 extern const char *arm_rewrite_mcpu (int argc, const char **argv);
2226 #define BIG_LITTLE_CPU_SPEC_FUNCTIONS \
2227 { "rewrite_mcpu", arm_rewrite_mcpu },
2229 #define ASM_CPU_SPEC \
2230 " %{mcpu=generic-*:-march=%*;" \
2231 " :%{march=*:-march=%*}}" \
2232 BIG_LITTLE_SPEC
2234 extern const char *arm_target_thumb_only (int argc, const char **argv);
2235 #define TARGET_MODE_SPEC_FUNCTIONS \
2236 { "target_mode_check", arm_target_thumb_only },
2238 /* -mcpu=native handling only makes sense with compiler running on
2239 an ARM chip. */
2240 #if defined(__arm__)
2241 extern const char *host_detect_local_cpu (int argc, const char **argv);
2242 # define EXTRA_SPEC_FUNCTIONS \
2243 { "local_cpu_detect", host_detect_local_cpu }, \
2244 BIG_LITTLE_CPU_SPEC_FUNCTIONS \
2245 TARGET_MODE_SPEC_FUNCTIONS
2247 # define MCPU_MTUNE_NATIVE_SPECS \
2248 " %{march=native:%<march=native %:local_cpu_detect(arch)}" \
2249 " %{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)}" \
2250 " %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
2251 #else
2252 # define MCPU_MTUNE_NATIVE_SPECS ""
2253 # define EXTRA_SPEC_FUNCTIONS \
2254 BIG_LITTLE_CPU_SPEC_FUNCTIONS \
2255 TARGET_MODE_SPEC_FUNCTIONS
2256 #endif
2258 /* Automatically add -mthumb for Thumb-only targets if mode isn't specified
2259 via the configuration option --with-mode or via the command line. The
2260 function target_mode_check is called to do the check with either:
2261 - an array of -march values if any is given;
2262 - an array of -mcpu values if any is given;
2263 - an empty array. */
2264 #define TARGET_MODE_SPECS \
2265 " %{!marm:%{!mthumb:%:target_mode_check(%{march=*:%*;mcpu=*:%*;:})}}"
2267 #define DRIVER_SELF_SPECS MCPU_MTUNE_NATIVE_SPECS TARGET_MODE_SPECS
2268 #define TARGET_SUPPORTS_WIDE_INT 1
2270 /* For switching between functions with different target attributes. */
2271 #define SWITCHABLE_TARGET 1
2273 /* Define SECTION_ARM_PURECODE as the ARM specific section attribute
2274 representation for SHF_ARM_PURECODE in GCC. */
2275 #define SECTION_ARM_PURECODE SECTION_MACH_DEP
2277 #endif /* ! GCC_ARM_H */