* gcc-interface/trans.c (process_freeze_entity): Be prepared for a
[official-gcc.git] / gcc / tree-cfg.c
blob9a4e3e206a1515ecc7af70900e83160d3666837a
1 /* Control flow functions for trees.
2 Copyright (C) 2001-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "cgraph.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "trans-mem.h"
37 #include "stor-layout.h"
38 #include "print-tree.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimplify-me.h"
44 #include "gimple-walk.h"
45 #include "tree-cfg.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-into-ssa.h"
49 #include "tree-dfa.h"
50 #include "tree-ssa.h"
51 #include "except.h"
52 #include "cfgloop.h"
53 #include "tree-ssa-propagate.h"
54 #include "value-prof.h"
55 #include "tree-inline.h"
56 #include "tree-ssa-live.h"
57 #include "omp-general.h"
58 #include "omp-expand.h"
59 #include "tree-cfgcleanup.h"
60 #include "gimplify.h"
61 #include "attribs.h"
62 #include "selftest.h"
63 #include "opts.h"
64 #include "asan.h"
66 /* This file contains functions for building the Control Flow Graph (CFG)
67 for a function tree. */
69 /* Local declarations. */
71 /* Initial capacity for the basic block array. */
72 static const int initial_cfg_capacity = 20;
74 /* This hash table allows us to efficiently lookup all CASE_LABEL_EXPRs
75 which use a particular edge. The CASE_LABEL_EXPRs are chained together
76 via their CASE_CHAIN field, which we clear after we're done with the
77 hash table to prevent problems with duplication of GIMPLE_SWITCHes.
79 Access to this list of CASE_LABEL_EXPRs allows us to efficiently
80 update the case vector in response to edge redirections.
82 Right now this table is set up and torn down at key points in the
83 compilation process. It would be nice if we could make the table
84 more persistent. The key is getting notification of changes to
85 the CFG (particularly edge removal, creation and redirection). */
87 static hash_map<edge, tree> *edge_to_cases;
89 /* If we record edge_to_cases, this bitmap will hold indexes
90 of basic blocks that end in a GIMPLE_SWITCH which we touched
91 due to edge manipulations. */
93 static bitmap touched_switch_bbs;
95 /* CFG statistics. */
96 struct cfg_stats_d
98 long num_merged_labels;
101 static struct cfg_stats_d cfg_stats;
103 /* Data to pass to replace_block_vars_by_duplicates_1. */
104 struct replace_decls_d
106 hash_map<tree, tree> *vars_map;
107 tree to_context;
110 /* Hash table to store last discriminator assigned for each locus. */
111 struct locus_discrim_map
113 location_t locus;
114 int discriminator;
117 /* Hashtable helpers. */
119 struct locus_discrim_hasher : free_ptr_hash <locus_discrim_map>
121 static inline hashval_t hash (const locus_discrim_map *);
122 static inline bool equal (const locus_discrim_map *,
123 const locus_discrim_map *);
126 /* Trivial hash function for a location_t. ITEM is a pointer to
127 a hash table entry that maps a location_t to a discriminator. */
129 inline hashval_t
130 locus_discrim_hasher::hash (const locus_discrim_map *item)
132 return LOCATION_LINE (item->locus);
135 /* Equality function for the locus-to-discriminator map. A and B
136 point to the two hash table entries to compare. */
138 inline bool
139 locus_discrim_hasher::equal (const locus_discrim_map *a,
140 const locus_discrim_map *b)
142 return LOCATION_LINE (a->locus) == LOCATION_LINE (b->locus);
145 static hash_table<locus_discrim_hasher> *discriminator_per_locus;
147 /* Basic blocks and flowgraphs. */
148 static void make_blocks (gimple_seq);
150 /* Edges. */
151 static void make_edges (void);
152 static void assign_discriminators (void);
153 static void make_cond_expr_edges (basic_block);
154 static void make_gimple_switch_edges (gswitch *, basic_block);
155 static bool make_goto_expr_edges (basic_block);
156 static void make_gimple_asm_edges (basic_block);
157 static edge gimple_redirect_edge_and_branch (edge, basic_block);
158 static edge gimple_try_redirect_by_replacing_jump (edge, basic_block);
160 /* Various helpers. */
161 static inline bool stmt_starts_bb_p (gimple *, gimple *);
162 static int gimple_verify_flow_info (void);
163 static void gimple_make_forwarder_block (edge);
164 static gimple *first_non_label_stmt (basic_block);
165 static bool verify_gimple_transaction (gtransaction *);
166 static bool call_can_make_abnormal_goto (gimple *);
168 /* Flowgraph optimization and cleanup. */
169 static void gimple_merge_blocks (basic_block, basic_block);
170 static bool gimple_can_merge_blocks_p (basic_block, basic_block);
171 static void remove_bb (basic_block);
172 static edge find_taken_edge_computed_goto (basic_block, tree);
173 static edge find_taken_edge_cond_expr (basic_block, tree);
174 static edge find_taken_edge_switch_expr (gswitch *, basic_block, tree);
175 static tree find_case_label_for_value (gswitch *, tree);
176 static void lower_phi_internal_fn ();
178 void
179 init_empty_tree_cfg_for_function (struct function *fn)
181 /* Initialize the basic block array. */
182 init_flow (fn);
183 profile_status_for_fn (fn) = PROFILE_ABSENT;
184 n_basic_blocks_for_fn (fn) = NUM_FIXED_BLOCKS;
185 last_basic_block_for_fn (fn) = NUM_FIXED_BLOCKS;
186 vec_alloc (basic_block_info_for_fn (fn), initial_cfg_capacity);
187 vec_safe_grow_cleared (basic_block_info_for_fn (fn),
188 initial_cfg_capacity);
190 /* Build a mapping of labels to their associated blocks. */
191 vec_alloc (label_to_block_map_for_fn (fn), initial_cfg_capacity);
192 vec_safe_grow_cleared (label_to_block_map_for_fn (fn),
193 initial_cfg_capacity);
195 SET_BASIC_BLOCK_FOR_FN (fn, ENTRY_BLOCK, ENTRY_BLOCK_PTR_FOR_FN (fn));
196 SET_BASIC_BLOCK_FOR_FN (fn, EXIT_BLOCK, EXIT_BLOCK_PTR_FOR_FN (fn));
198 ENTRY_BLOCK_PTR_FOR_FN (fn)->next_bb
199 = EXIT_BLOCK_PTR_FOR_FN (fn);
200 EXIT_BLOCK_PTR_FOR_FN (fn)->prev_bb
201 = ENTRY_BLOCK_PTR_FOR_FN (fn);
204 void
205 init_empty_tree_cfg (void)
207 init_empty_tree_cfg_for_function (cfun);
210 /*---------------------------------------------------------------------------
211 Create basic blocks
212 ---------------------------------------------------------------------------*/
214 /* Entry point to the CFG builder for trees. SEQ is the sequence of
215 statements to be added to the flowgraph. */
217 static void
218 build_gimple_cfg (gimple_seq seq)
220 /* Register specific gimple functions. */
221 gimple_register_cfg_hooks ();
223 memset ((void *) &cfg_stats, 0, sizeof (cfg_stats));
225 init_empty_tree_cfg ();
227 make_blocks (seq);
229 /* Make sure there is always at least one block, even if it's empty. */
230 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
231 create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (cfun));
233 /* Adjust the size of the array. */
234 if (basic_block_info_for_fn (cfun)->length ()
235 < (size_t) n_basic_blocks_for_fn (cfun))
236 vec_safe_grow_cleared (basic_block_info_for_fn (cfun),
237 n_basic_blocks_for_fn (cfun));
239 /* To speed up statement iterator walks, we first purge dead labels. */
240 cleanup_dead_labels ();
242 /* Group case nodes to reduce the number of edges.
243 We do this after cleaning up dead labels because otherwise we miss
244 a lot of obvious case merging opportunities. */
245 group_case_labels ();
247 /* Create the edges of the flowgraph. */
248 discriminator_per_locus = new hash_table<locus_discrim_hasher> (13);
249 make_edges ();
250 assign_discriminators ();
251 lower_phi_internal_fn ();
252 cleanup_dead_labels ();
253 delete discriminator_per_locus;
254 discriminator_per_locus = NULL;
257 /* Look for ANNOTATE calls with loop annotation kind in BB; if found, remove
258 them and propagate the information to LOOP. We assume that the annotations
259 come immediately before the condition in BB, if any. */
261 static void
262 replace_loop_annotate_in_block (basic_block bb, struct loop *loop)
264 gimple_stmt_iterator gsi = gsi_last_bb (bb);
265 gimple *stmt = gsi_stmt (gsi);
267 if (!(stmt && gimple_code (stmt) == GIMPLE_COND))
268 return;
270 for (gsi_prev_nondebug (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
272 stmt = gsi_stmt (gsi);
273 if (gimple_code (stmt) != GIMPLE_CALL)
274 break;
275 if (!gimple_call_internal_p (stmt)
276 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
277 break;
279 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
281 case annot_expr_ivdep_kind:
282 loop->safelen = INT_MAX;
283 break;
284 case annot_expr_unroll_kind:
285 loop->unroll
286 = (unsigned short) tree_to_shwi (gimple_call_arg (stmt, 2));
287 cfun->has_unroll = true;
288 break;
289 case annot_expr_no_vector_kind:
290 loop->dont_vectorize = true;
291 break;
292 case annot_expr_vector_kind:
293 loop->force_vectorize = true;
294 cfun->has_force_vectorize_loops = true;
295 break;
296 case annot_expr_parallel_kind:
297 loop->can_be_parallel = true;
298 loop->safelen = INT_MAX;
299 break;
300 default:
301 gcc_unreachable ();
304 stmt = gimple_build_assign (gimple_call_lhs (stmt),
305 gimple_call_arg (stmt, 0));
306 gsi_replace (&gsi, stmt, true);
310 /* Look for ANNOTATE calls with loop annotation kind; if found, remove
311 them and propagate the information to the loop. We assume that the
312 annotations come immediately before the condition of the loop. */
314 static void
315 replace_loop_annotate (void)
317 struct loop *loop;
318 basic_block bb;
319 gimple_stmt_iterator gsi;
320 gimple *stmt;
322 FOR_EACH_LOOP (loop, 0)
324 /* First look into the header. */
325 replace_loop_annotate_in_block (loop->header, loop);
327 /* Then look into the latch, if any. */
328 if (loop->latch)
329 replace_loop_annotate_in_block (loop->latch, loop);
332 /* Remove IFN_ANNOTATE. Safeguard for the case loop->latch == NULL. */
333 FOR_EACH_BB_FN (bb, cfun)
335 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
337 stmt = gsi_stmt (gsi);
338 if (gimple_code (stmt) != GIMPLE_CALL)
339 continue;
340 if (!gimple_call_internal_p (stmt)
341 || gimple_call_internal_fn (stmt) != IFN_ANNOTATE)
342 continue;
344 switch ((annot_expr_kind) tree_to_shwi (gimple_call_arg (stmt, 1)))
346 case annot_expr_ivdep_kind:
347 case annot_expr_unroll_kind:
348 case annot_expr_no_vector_kind:
349 case annot_expr_vector_kind:
350 break;
351 default:
352 gcc_unreachable ();
355 warning_at (gimple_location (stmt), 0, "ignoring loop annotation");
356 stmt = gimple_build_assign (gimple_call_lhs (stmt),
357 gimple_call_arg (stmt, 0));
358 gsi_replace (&gsi, stmt, true);
363 /* Lower internal PHI function from GIMPLE FE. */
365 static void
366 lower_phi_internal_fn ()
368 basic_block bb, pred = NULL;
369 gimple_stmt_iterator gsi;
370 tree lhs;
371 gphi *phi_node;
372 gimple *stmt;
374 /* After edge creation, handle __PHI function from GIMPLE FE. */
375 FOR_EACH_BB_FN (bb, cfun)
377 for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);)
379 stmt = gsi_stmt (gsi);
380 if (! gimple_call_internal_p (stmt, IFN_PHI))
381 break;
383 lhs = gimple_call_lhs (stmt);
384 phi_node = create_phi_node (lhs, bb);
386 /* Add arguments to the PHI node. */
387 for (unsigned i = 0; i < gimple_call_num_args (stmt); ++i)
389 tree arg = gimple_call_arg (stmt, i);
390 if (TREE_CODE (arg) == LABEL_DECL)
391 pred = label_to_block (arg);
392 else
394 edge e = find_edge (pred, bb);
395 add_phi_arg (phi_node, arg, e, UNKNOWN_LOCATION);
399 gsi_remove (&gsi, true);
404 static unsigned int
405 execute_build_cfg (void)
407 gimple_seq body = gimple_body (current_function_decl);
409 build_gimple_cfg (body);
410 gimple_set_body (current_function_decl, NULL);
411 if (dump_file && (dump_flags & TDF_DETAILS))
413 fprintf (dump_file, "Scope blocks:\n");
414 dump_scope_blocks (dump_file, dump_flags);
416 cleanup_tree_cfg ();
417 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
418 replace_loop_annotate ();
419 return 0;
422 namespace {
424 const pass_data pass_data_build_cfg =
426 GIMPLE_PASS, /* type */
427 "cfg", /* name */
428 OPTGROUP_NONE, /* optinfo_flags */
429 TV_TREE_CFG, /* tv_id */
430 PROP_gimple_leh, /* properties_required */
431 ( PROP_cfg | PROP_loops ), /* properties_provided */
432 0, /* properties_destroyed */
433 0, /* todo_flags_start */
434 0, /* todo_flags_finish */
437 class pass_build_cfg : public gimple_opt_pass
439 public:
440 pass_build_cfg (gcc::context *ctxt)
441 : gimple_opt_pass (pass_data_build_cfg, ctxt)
444 /* opt_pass methods: */
445 virtual unsigned int execute (function *) { return execute_build_cfg (); }
447 }; // class pass_build_cfg
449 } // anon namespace
451 gimple_opt_pass *
452 make_pass_build_cfg (gcc::context *ctxt)
454 return new pass_build_cfg (ctxt);
458 /* Return true if T is a computed goto. */
460 bool
461 computed_goto_p (gimple *t)
463 return (gimple_code (t) == GIMPLE_GOTO
464 && TREE_CODE (gimple_goto_dest (t)) != LABEL_DECL);
467 /* Returns true if the sequence of statements STMTS only contains
468 a call to __builtin_unreachable (). */
470 bool
471 gimple_seq_unreachable_p (gimple_seq stmts)
473 if (stmts == NULL
474 /* Return false if -fsanitize=unreachable, we don't want to
475 optimize away those calls, but rather turn them into
476 __ubsan_handle_builtin_unreachable () or __builtin_trap ()
477 later. */
478 || sanitize_flags_p (SANITIZE_UNREACHABLE))
479 return false;
481 gimple_stmt_iterator gsi = gsi_last (stmts);
483 if (!gimple_call_builtin_p (gsi_stmt (gsi), BUILT_IN_UNREACHABLE))
484 return false;
486 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
488 gimple *stmt = gsi_stmt (gsi);
489 if (gimple_code (stmt) != GIMPLE_LABEL
490 && !is_gimple_debug (stmt)
491 && !gimple_clobber_p (stmt))
492 return false;
494 return true;
497 /* Returns true for edge E where e->src ends with a GIMPLE_COND and
498 the other edge points to a bb with just __builtin_unreachable ().
499 I.e. return true for C->M edge in:
500 <bb C>:
502 if (something)
503 goto <bb N>;
504 else
505 goto <bb M>;
506 <bb N>:
507 __builtin_unreachable ();
508 <bb M>: */
510 bool
511 assert_unreachable_fallthru_edge_p (edge e)
513 basic_block pred_bb = e->src;
514 gimple *last = last_stmt (pred_bb);
515 if (last && gimple_code (last) == GIMPLE_COND)
517 basic_block other_bb = EDGE_SUCC (pred_bb, 0)->dest;
518 if (other_bb == e->dest)
519 other_bb = EDGE_SUCC (pred_bb, 1)->dest;
520 if (EDGE_COUNT (other_bb->succs) == 0)
521 return gimple_seq_unreachable_p (bb_seq (other_bb));
523 return false;
527 /* Initialize GF_CALL_CTRL_ALTERING flag, which indicates the call
528 could alter control flow except via eh. We initialize the flag at
529 CFG build time and only ever clear it later. */
531 static void
532 gimple_call_initialize_ctrl_altering (gimple *stmt)
534 int flags = gimple_call_flags (stmt);
536 /* A call alters control flow if it can make an abnormal goto. */
537 if (call_can_make_abnormal_goto (stmt)
538 /* A call also alters control flow if it does not return. */
539 || flags & ECF_NORETURN
540 /* TM ending statements have backedges out of the transaction.
541 Return true so we split the basic block containing them.
542 Note that the TM_BUILTIN test is merely an optimization. */
543 || ((flags & ECF_TM_BUILTIN)
544 && is_tm_ending_fndecl (gimple_call_fndecl (stmt)))
545 /* BUILT_IN_RETURN call is same as return statement. */
546 || gimple_call_builtin_p (stmt, BUILT_IN_RETURN)
547 /* IFN_UNIQUE should be the last insn, to make checking for it
548 as cheap as possible. */
549 || (gimple_call_internal_p (stmt)
550 && gimple_call_internal_unique_p (stmt)))
551 gimple_call_set_ctrl_altering (stmt, true);
552 else
553 gimple_call_set_ctrl_altering (stmt, false);
557 /* Insert SEQ after BB and build a flowgraph. */
559 static basic_block
560 make_blocks_1 (gimple_seq seq, basic_block bb)
562 gimple_stmt_iterator i = gsi_start (seq);
563 gimple *stmt = NULL;
564 gimple *prev_stmt = NULL;
565 bool start_new_block = true;
566 bool first_stmt_of_seq = true;
568 while (!gsi_end_p (i))
570 /* PREV_STMT should only be set to a debug stmt if the debug
571 stmt is before nondebug stmts. Once stmt reaches a nondebug
572 nonlabel, prev_stmt will be set to it, so that
573 stmt_starts_bb_p will know to start a new block if a label is
574 found. However, if stmt was a label after debug stmts only,
575 keep the label in prev_stmt even if we find further debug
576 stmts, for there may be other labels after them, and they
577 should land in the same block. */
578 if (!prev_stmt || !stmt || !is_gimple_debug (stmt))
579 prev_stmt = stmt;
580 stmt = gsi_stmt (i);
582 if (stmt && is_gimple_call (stmt))
583 gimple_call_initialize_ctrl_altering (stmt);
585 /* If the statement starts a new basic block or if we have determined
586 in a previous pass that we need to create a new block for STMT, do
587 so now. */
588 if (start_new_block || stmt_starts_bb_p (stmt, prev_stmt))
590 if (!first_stmt_of_seq)
591 gsi_split_seq_before (&i, &seq);
592 bb = create_basic_block (seq, bb);
593 start_new_block = false;
594 prev_stmt = NULL;
597 /* Now add STMT to BB and create the subgraphs for special statement
598 codes. */
599 gimple_set_bb (stmt, bb);
601 /* If STMT is a basic block terminator, set START_NEW_BLOCK for the
602 next iteration. */
603 if (stmt_ends_bb_p (stmt))
605 /* If the stmt can make abnormal goto use a new temporary
606 for the assignment to the LHS. This makes sure the old value
607 of the LHS is available on the abnormal edge. Otherwise
608 we will end up with overlapping life-ranges for abnormal
609 SSA names. */
610 if (gimple_has_lhs (stmt)
611 && stmt_can_make_abnormal_goto (stmt)
612 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
614 tree lhs = gimple_get_lhs (stmt);
615 tree tmp = create_tmp_var (TREE_TYPE (lhs));
616 gimple *s = gimple_build_assign (lhs, tmp);
617 gimple_set_location (s, gimple_location (stmt));
618 gimple_set_block (s, gimple_block (stmt));
619 gimple_set_lhs (stmt, tmp);
620 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
621 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
622 DECL_GIMPLE_REG_P (tmp) = 1;
623 gsi_insert_after (&i, s, GSI_SAME_STMT);
625 start_new_block = true;
628 gsi_next (&i);
629 first_stmt_of_seq = false;
631 return bb;
634 /* Build a flowgraph for the sequence of stmts SEQ. */
636 static void
637 make_blocks (gimple_seq seq)
639 make_blocks_1 (seq, ENTRY_BLOCK_PTR_FOR_FN (cfun));
642 /* Create and return a new empty basic block after bb AFTER. */
644 static basic_block
645 create_bb (void *h, void *e, basic_block after)
647 basic_block bb;
649 gcc_assert (!e);
651 /* Create and initialize a new basic block. Since alloc_block uses
652 GC allocation that clears memory to allocate a basic block, we do
653 not have to clear the newly allocated basic block here. */
654 bb = alloc_block ();
656 bb->index = last_basic_block_for_fn (cfun);
657 bb->flags = BB_NEW;
658 set_bb_seq (bb, h ? (gimple_seq) h : NULL);
660 /* Add the new block to the linked list of blocks. */
661 link_block (bb, after);
663 /* Grow the basic block array if needed. */
664 if ((size_t) last_basic_block_for_fn (cfun)
665 == basic_block_info_for_fn (cfun)->length ())
667 size_t new_size =
668 (last_basic_block_for_fn (cfun)
669 + (last_basic_block_for_fn (cfun) + 3) / 4);
670 vec_safe_grow_cleared (basic_block_info_for_fn (cfun), new_size);
673 /* Add the newly created block to the array. */
674 SET_BASIC_BLOCK_FOR_FN (cfun, last_basic_block_for_fn (cfun), bb);
676 n_basic_blocks_for_fn (cfun)++;
677 last_basic_block_for_fn (cfun)++;
679 return bb;
683 /*---------------------------------------------------------------------------
684 Edge creation
685 ---------------------------------------------------------------------------*/
687 /* If basic block BB has an abnormal edge to a basic block
688 containing IFN_ABNORMAL_DISPATCHER internal call, return
689 that the dispatcher's basic block, otherwise return NULL. */
691 basic_block
692 get_abnormal_succ_dispatcher (basic_block bb)
694 edge e;
695 edge_iterator ei;
697 FOR_EACH_EDGE (e, ei, bb->succs)
698 if ((e->flags & (EDGE_ABNORMAL | EDGE_EH)) == EDGE_ABNORMAL)
700 gimple_stmt_iterator gsi
701 = gsi_start_nondebug_after_labels_bb (e->dest);
702 gimple *g = gsi_stmt (gsi);
703 if (g && gimple_call_internal_p (g, IFN_ABNORMAL_DISPATCHER))
704 return e->dest;
706 return NULL;
709 /* Helper function for make_edges. Create a basic block with
710 with ABNORMAL_DISPATCHER internal call in it if needed, and
711 create abnormal edges from BBS to it and from it to FOR_BB
712 if COMPUTED_GOTO is false, otherwise factor the computed gotos. */
714 static void
715 handle_abnormal_edges (basic_block *dispatcher_bbs,
716 basic_block for_bb, int *bb_to_omp_idx,
717 auto_vec<basic_block> *bbs, bool computed_goto)
719 basic_block *dispatcher = dispatcher_bbs + (computed_goto ? 1 : 0);
720 unsigned int idx = 0;
721 basic_block bb;
722 bool inner = false;
724 if (bb_to_omp_idx)
726 dispatcher = dispatcher_bbs + 2 * bb_to_omp_idx[for_bb->index];
727 if (bb_to_omp_idx[for_bb->index] != 0)
728 inner = true;
731 /* If the dispatcher has been created already, then there are basic
732 blocks with abnormal edges to it, so just make a new edge to
733 for_bb. */
734 if (*dispatcher == NULL)
736 /* Check if there are any basic blocks that need to have
737 abnormal edges to this dispatcher. If there are none, return
738 early. */
739 if (bb_to_omp_idx == NULL)
741 if (bbs->is_empty ())
742 return;
744 else
746 FOR_EACH_VEC_ELT (*bbs, idx, bb)
747 if (bb_to_omp_idx[bb->index] == bb_to_omp_idx[for_bb->index])
748 break;
749 if (bb == NULL)
750 return;
753 /* Create the dispatcher bb. */
754 *dispatcher = create_basic_block (NULL, for_bb);
755 if (computed_goto)
757 /* Factor computed gotos into a common computed goto site. Also
758 record the location of that site so that we can un-factor the
759 gotos after we have converted back to normal form. */
760 gimple_stmt_iterator gsi = gsi_start_bb (*dispatcher);
762 /* Create the destination of the factored goto. Each original
763 computed goto will put its desired destination into this
764 variable and jump to the label we create immediately below. */
765 tree var = create_tmp_var (ptr_type_node, "gotovar");
767 /* Build a label for the new block which will contain the
768 factored computed goto. */
769 tree factored_label_decl
770 = create_artificial_label (UNKNOWN_LOCATION);
771 gimple *factored_computed_goto_label
772 = gimple_build_label (factored_label_decl);
773 gsi_insert_after (&gsi, factored_computed_goto_label, GSI_NEW_STMT);
775 /* Build our new computed goto. */
776 gimple *factored_computed_goto = gimple_build_goto (var);
777 gsi_insert_after (&gsi, factored_computed_goto, GSI_NEW_STMT);
779 FOR_EACH_VEC_ELT (*bbs, idx, bb)
781 if (bb_to_omp_idx
782 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
783 continue;
785 gsi = gsi_last_bb (bb);
786 gimple *last = gsi_stmt (gsi);
788 gcc_assert (computed_goto_p (last));
790 /* Copy the original computed goto's destination into VAR. */
791 gimple *assignment
792 = gimple_build_assign (var, gimple_goto_dest (last));
793 gsi_insert_before (&gsi, assignment, GSI_SAME_STMT);
795 edge e = make_edge (bb, *dispatcher, EDGE_FALLTHRU);
796 e->goto_locus = gimple_location (last);
797 gsi_remove (&gsi, true);
800 else
802 tree arg = inner ? boolean_true_node : boolean_false_node;
803 gimple *g = gimple_build_call_internal (IFN_ABNORMAL_DISPATCHER,
804 1, arg);
805 gimple_stmt_iterator gsi = gsi_after_labels (*dispatcher);
806 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
808 /* Create predecessor edges of the dispatcher. */
809 FOR_EACH_VEC_ELT (*bbs, idx, bb)
811 if (bb_to_omp_idx
812 && bb_to_omp_idx[bb->index] != bb_to_omp_idx[for_bb->index])
813 continue;
814 make_edge (bb, *dispatcher, EDGE_ABNORMAL);
819 make_edge (*dispatcher, for_bb, EDGE_ABNORMAL);
822 /* Creates outgoing edges for BB. Returns 1 when it ends with an
823 computed goto, returns 2 when it ends with a statement that
824 might return to this function via an nonlocal goto, otherwise
825 return 0. Updates *PCUR_REGION with the OMP region this BB is in. */
827 static int
828 make_edges_bb (basic_block bb, struct omp_region **pcur_region, int *pomp_index)
830 gimple *last = last_stmt (bb);
831 bool fallthru = false;
832 int ret = 0;
834 if (!last)
835 return ret;
837 switch (gimple_code (last))
839 case GIMPLE_GOTO:
840 if (make_goto_expr_edges (bb))
841 ret = 1;
842 fallthru = false;
843 break;
844 case GIMPLE_RETURN:
846 edge e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
847 e->goto_locus = gimple_location (last);
848 fallthru = false;
850 break;
851 case GIMPLE_COND:
852 make_cond_expr_edges (bb);
853 fallthru = false;
854 break;
855 case GIMPLE_SWITCH:
856 make_gimple_switch_edges (as_a <gswitch *> (last), bb);
857 fallthru = false;
858 break;
859 case GIMPLE_RESX:
860 make_eh_edges (last);
861 fallthru = false;
862 break;
863 case GIMPLE_EH_DISPATCH:
864 fallthru = make_eh_dispatch_edges (as_a <geh_dispatch *> (last));
865 break;
867 case GIMPLE_CALL:
868 /* If this function receives a nonlocal goto, then we need to
869 make edges from this call site to all the nonlocal goto
870 handlers. */
871 if (stmt_can_make_abnormal_goto (last))
872 ret = 2;
874 /* If this statement has reachable exception handlers, then
875 create abnormal edges to them. */
876 make_eh_edges (last);
878 /* BUILTIN_RETURN is really a return statement. */
879 if (gimple_call_builtin_p (last, BUILT_IN_RETURN))
881 make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
882 fallthru = false;
884 /* Some calls are known not to return. */
885 else
886 fallthru = !gimple_call_noreturn_p (last);
887 break;
889 case GIMPLE_ASSIGN:
890 /* A GIMPLE_ASSIGN may throw internally and thus be considered
891 control-altering. */
892 if (is_ctrl_altering_stmt (last))
893 make_eh_edges (last);
894 fallthru = true;
895 break;
897 case GIMPLE_ASM:
898 make_gimple_asm_edges (bb);
899 fallthru = true;
900 break;
902 CASE_GIMPLE_OMP:
903 fallthru = omp_make_gimple_edges (bb, pcur_region, pomp_index);
904 break;
906 case GIMPLE_TRANSACTION:
908 gtransaction *txn = as_a <gtransaction *> (last);
909 tree label1 = gimple_transaction_label_norm (txn);
910 tree label2 = gimple_transaction_label_uninst (txn);
912 if (label1)
913 make_edge (bb, label_to_block (label1), EDGE_FALLTHRU);
914 if (label2)
915 make_edge (bb, label_to_block (label2),
916 EDGE_TM_UNINSTRUMENTED | (label1 ? 0 : EDGE_FALLTHRU));
918 tree label3 = gimple_transaction_label_over (txn);
919 if (gimple_transaction_subcode (txn)
920 & (GTMA_HAVE_ABORT | GTMA_IS_OUTER))
921 make_edge (bb, label_to_block (label3), EDGE_TM_ABORT);
923 fallthru = false;
925 break;
927 default:
928 gcc_assert (!stmt_ends_bb_p (last));
929 fallthru = true;
930 break;
933 if (fallthru)
934 make_edge (bb, bb->next_bb, EDGE_FALLTHRU);
936 return ret;
939 /* Join all the blocks in the flowgraph. */
941 static void
942 make_edges (void)
944 basic_block bb;
945 struct omp_region *cur_region = NULL;
946 auto_vec<basic_block> ab_edge_goto;
947 auto_vec<basic_block> ab_edge_call;
948 int *bb_to_omp_idx = NULL;
949 int cur_omp_region_idx = 0;
951 /* Create an edge from entry to the first block with executable
952 statements in it. */
953 make_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun),
954 BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS),
955 EDGE_FALLTHRU);
957 /* Traverse the basic block array placing edges. */
958 FOR_EACH_BB_FN (bb, cfun)
960 int mer;
962 if (bb_to_omp_idx)
963 bb_to_omp_idx[bb->index] = cur_omp_region_idx;
965 mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
966 if (mer == 1)
967 ab_edge_goto.safe_push (bb);
968 else if (mer == 2)
969 ab_edge_call.safe_push (bb);
971 if (cur_region && bb_to_omp_idx == NULL)
972 bb_to_omp_idx = XCNEWVEC (int, n_basic_blocks_for_fn (cfun));
975 /* Computed gotos are hell to deal with, especially if there are
976 lots of them with a large number of destinations. So we factor
977 them to a common computed goto location before we build the
978 edge list. After we convert back to normal form, we will un-factor
979 the computed gotos since factoring introduces an unwanted jump.
980 For non-local gotos and abnormal edges from calls to calls that return
981 twice or forced labels, factor the abnormal edges too, by having all
982 abnormal edges from the calls go to a common artificial basic block
983 with ABNORMAL_DISPATCHER internal call and abnormal edges from that
984 basic block to all forced labels and calls returning twice.
985 We do this per-OpenMP structured block, because those regions
986 are guaranteed to be single entry single exit by the standard,
987 so it is not allowed to enter or exit such regions abnormally this way,
988 thus all computed gotos, non-local gotos and setjmp/longjmp calls
989 must not transfer control across SESE region boundaries. */
990 if (!ab_edge_goto.is_empty () || !ab_edge_call.is_empty ())
992 gimple_stmt_iterator gsi;
993 basic_block dispatcher_bb_array[2] = { NULL, NULL };
994 basic_block *dispatcher_bbs = dispatcher_bb_array;
995 int count = n_basic_blocks_for_fn (cfun);
997 if (bb_to_omp_idx)
998 dispatcher_bbs = XCNEWVEC (basic_block, 2 * count);
1000 FOR_EACH_BB_FN (bb, cfun)
1002 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1004 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1005 tree target;
1007 if (!label_stmt)
1009 if (is_gimple_debug (gsi_stmt (gsi)))
1010 continue;
1011 break;
1014 target = gimple_label_label (label_stmt);
1016 /* Make an edge to every label block that has been marked as a
1017 potential target for a computed goto or a non-local goto. */
1018 if (FORCED_LABEL (target))
1019 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1020 &ab_edge_goto, true);
1021 if (DECL_NONLOCAL (target))
1023 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1024 &ab_edge_call, false);
1025 break;
1029 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
1030 gsi_next_nondebug (&gsi);
1031 if (!gsi_end_p (gsi))
1033 /* Make an edge to every setjmp-like call. */
1034 gimple *call_stmt = gsi_stmt (gsi);
1035 if (is_gimple_call (call_stmt)
1036 && ((gimple_call_flags (call_stmt) & ECF_RETURNS_TWICE)
1037 || gimple_call_builtin_p (call_stmt,
1038 BUILT_IN_SETJMP_RECEIVER)))
1039 handle_abnormal_edges (dispatcher_bbs, bb, bb_to_omp_idx,
1040 &ab_edge_call, false);
1044 if (bb_to_omp_idx)
1045 XDELETE (dispatcher_bbs);
1048 XDELETE (bb_to_omp_idx);
1050 omp_free_regions ();
1053 /* Add SEQ after GSI. Start new bb after GSI, and created further bbs as
1054 needed. Returns true if new bbs were created.
1055 Note: This is transitional code, and should not be used for new code. We
1056 should be able to get rid of this by rewriting all target va-arg
1057 gimplification hooks to use an interface gimple_build_cond_value as described
1058 in https://gcc.gnu.org/ml/gcc-patches/2015-02/msg01194.html. */
1060 bool
1061 gimple_find_sub_bbs (gimple_seq seq, gimple_stmt_iterator *gsi)
1063 gimple *stmt = gsi_stmt (*gsi);
1064 basic_block bb = gimple_bb (stmt);
1065 basic_block lastbb, afterbb;
1066 int old_num_bbs = n_basic_blocks_for_fn (cfun);
1067 edge e;
1068 lastbb = make_blocks_1 (seq, bb);
1069 if (old_num_bbs == n_basic_blocks_for_fn (cfun))
1070 return false;
1071 e = split_block (bb, stmt);
1072 /* Move e->dest to come after the new basic blocks. */
1073 afterbb = e->dest;
1074 unlink_block (afterbb);
1075 link_block (afterbb, lastbb);
1076 redirect_edge_succ (e, bb->next_bb);
1077 bb = bb->next_bb;
1078 while (bb != afterbb)
1080 struct omp_region *cur_region = NULL;
1081 profile_count cnt = profile_count::zero ();
1082 bool all = true;
1084 int cur_omp_region_idx = 0;
1085 int mer = make_edges_bb (bb, &cur_region, &cur_omp_region_idx);
1086 gcc_assert (!mer && !cur_region);
1087 add_bb_to_loop (bb, afterbb->loop_father);
1089 edge e;
1090 edge_iterator ei;
1091 FOR_EACH_EDGE (e, ei, bb->preds)
1093 if (e->count ().initialized_p ())
1094 cnt += e->count ();
1095 else
1096 all = false;
1098 tree_guess_outgoing_edge_probabilities (bb);
1099 if (all || profile_status_for_fn (cfun) == PROFILE_READ)
1100 bb->count = cnt;
1102 bb = bb->next_bb;
1104 return true;
1107 /* Find the next available discriminator value for LOCUS. The
1108 discriminator distinguishes among several basic blocks that
1109 share a common locus, allowing for more accurate sample-based
1110 profiling. */
1112 static int
1113 next_discriminator_for_locus (location_t locus)
1115 struct locus_discrim_map item;
1116 struct locus_discrim_map **slot;
1118 item.locus = locus;
1119 item.discriminator = 0;
1120 slot = discriminator_per_locus->find_slot_with_hash (
1121 &item, LOCATION_LINE (locus), INSERT);
1122 gcc_assert (slot);
1123 if (*slot == HTAB_EMPTY_ENTRY)
1125 *slot = XNEW (struct locus_discrim_map);
1126 gcc_assert (*slot);
1127 (*slot)->locus = locus;
1128 (*slot)->discriminator = 0;
1130 (*slot)->discriminator++;
1131 return (*slot)->discriminator;
1134 /* Return TRUE if LOCUS1 and LOCUS2 refer to the same source line. */
1136 static bool
1137 same_line_p (location_t locus1, location_t locus2)
1139 expanded_location from, to;
1141 if (locus1 == locus2)
1142 return true;
1144 from = expand_location (locus1);
1145 to = expand_location (locus2);
1147 if (from.line != to.line)
1148 return false;
1149 if (from.file == to.file)
1150 return true;
1151 return (from.file != NULL
1152 && to.file != NULL
1153 && filename_cmp (from.file, to.file) == 0);
1156 /* Assign discriminators to each basic block. */
1158 static void
1159 assign_discriminators (void)
1161 basic_block bb;
1163 FOR_EACH_BB_FN (bb, cfun)
1165 edge e;
1166 edge_iterator ei;
1167 gimple *last = last_stmt (bb);
1168 location_t locus = last ? gimple_location (last) : UNKNOWN_LOCATION;
1170 if (locus == UNKNOWN_LOCATION)
1171 continue;
1173 FOR_EACH_EDGE (e, ei, bb->succs)
1175 gimple *first = first_non_label_stmt (e->dest);
1176 gimple *last = last_stmt (e->dest);
1177 if ((first && same_line_p (locus, gimple_location (first)))
1178 || (last && same_line_p (locus, gimple_location (last))))
1180 if (e->dest->discriminator != 0 && bb->discriminator == 0)
1181 bb->discriminator = next_discriminator_for_locus (locus);
1182 else
1183 e->dest->discriminator = next_discriminator_for_locus (locus);
1189 /* Create the edges for a GIMPLE_COND starting at block BB. */
1191 static void
1192 make_cond_expr_edges (basic_block bb)
1194 gcond *entry = as_a <gcond *> (last_stmt (bb));
1195 gimple *then_stmt, *else_stmt;
1196 basic_block then_bb, else_bb;
1197 tree then_label, else_label;
1198 edge e;
1200 gcc_assert (entry);
1201 gcc_assert (gimple_code (entry) == GIMPLE_COND);
1203 /* Entry basic blocks for each component. */
1204 then_label = gimple_cond_true_label (entry);
1205 else_label = gimple_cond_false_label (entry);
1206 then_bb = label_to_block (then_label);
1207 else_bb = label_to_block (else_label);
1208 then_stmt = first_stmt (then_bb);
1209 else_stmt = first_stmt (else_bb);
1211 e = make_edge (bb, then_bb, EDGE_TRUE_VALUE);
1212 e->goto_locus = gimple_location (then_stmt);
1213 e = make_edge (bb, else_bb, EDGE_FALSE_VALUE);
1214 if (e)
1215 e->goto_locus = gimple_location (else_stmt);
1217 /* We do not need the labels anymore. */
1218 gimple_cond_set_true_label (entry, NULL_TREE);
1219 gimple_cond_set_false_label (entry, NULL_TREE);
1223 /* Called for each element in the hash table (P) as we delete the
1224 edge to cases hash table.
1226 Clear all the CASE_CHAINs to prevent problems with copying of
1227 SWITCH_EXPRs and structure sharing rules, then free the hash table
1228 element. */
1230 bool
1231 edge_to_cases_cleanup (edge const &, tree const &value, void *)
1233 tree t, next;
1235 for (t = value; t; t = next)
1237 next = CASE_CHAIN (t);
1238 CASE_CHAIN (t) = NULL;
1241 return true;
1244 /* Start recording information mapping edges to case labels. */
1246 void
1247 start_recording_case_labels (void)
1249 gcc_assert (edge_to_cases == NULL);
1250 edge_to_cases = new hash_map<edge, tree>;
1251 touched_switch_bbs = BITMAP_ALLOC (NULL);
1254 /* Return nonzero if we are recording information for case labels. */
1256 static bool
1257 recording_case_labels_p (void)
1259 return (edge_to_cases != NULL);
1262 /* Stop recording information mapping edges to case labels and
1263 remove any information we have recorded. */
1264 void
1265 end_recording_case_labels (void)
1267 bitmap_iterator bi;
1268 unsigned i;
1269 edge_to_cases->traverse<void *, edge_to_cases_cleanup> (NULL);
1270 delete edge_to_cases;
1271 edge_to_cases = NULL;
1272 EXECUTE_IF_SET_IN_BITMAP (touched_switch_bbs, 0, i, bi)
1274 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
1275 if (bb)
1277 gimple *stmt = last_stmt (bb);
1278 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1279 group_case_labels_stmt (as_a <gswitch *> (stmt));
1282 BITMAP_FREE (touched_switch_bbs);
1285 /* If we are inside a {start,end}_recording_cases block, then return
1286 a chain of CASE_LABEL_EXPRs from T which reference E.
1288 Otherwise return NULL. */
1290 static tree
1291 get_cases_for_edge (edge e, gswitch *t)
1293 tree *slot;
1294 size_t i, n;
1296 /* If we are not recording cases, then we do not have CASE_LABEL_EXPR
1297 chains available. Return NULL so the caller can detect this case. */
1298 if (!recording_case_labels_p ())
1299 return NULL;
1301 slot = edge_to_cases->get (e);
1302 if (slot)
1303 return *slot;
1305 /* If we did not find E in the hash table, then this must be the first
1306 time we have been queried for information about E & T. Add all the
1307 elements from T to the hash table then perform the query again. */
1309 n = gimple_switch_num_labels (t);
1310 for (i = 0; i < n; i++)
1312 tree elt = gimple_switch_label (t, i);
1313 tree lab = CASE_LABEL (elt);
1314 basic_block label_bb = label_to_block (lab);
1315 edge this_edge = find_edge (e->src, label_bb);
1317 /* Add it to the chain of CASE_LABEL_EXPRs referencing E, or create
1318 a new chain. */
1319 tree &s = edge_to_cases->get_or_insert (this_edge);
1320 CASE_CHAIN (elt) = s;
1321 s = elt;
1324 return *edge_to_cases->get (e);
1327 /* Create the edges for a GIMPLE_SWITCH starting at block BB. */
1329 static void
1330 make_gimple_switch_edges (gswitch *entry, basic_block bb)
1332 size_t i, n;
1334 n = gimple_switch_num_labels (entry);
1336 for (i = 0; i < n; ++i)
1338 tree lab = CASE_LABEL (gimple_switch_label (entry, i));
1339 basic_block label_bb = label_to_block (lab);
1340 make_edge (bb, label_bb, 0);
1345 /* Return the basic block holding label DEST. */
1347 basic_block
1348 label_to_block_fn (struct function *ifun, tree dest)
1350 int uid = LABEL_DECL_UID (dest);
1352 /* We would die hard when faced by an undefined label. Emit a label to
1353 the very first basic block. This will hopefully make even the dataflow
1354 and undefined variable warnings quite right. */
1355 if (seen_error () && uid < 0)
1357 gimple_stmt_iterator gsi =
1358 gsi_start_bb (BASIC_BLOCK_FOR_FN (cfun, NUM_FIXED_BLOCKS));
1359 gimple *stmt;
1361 stmt = gimple_build_label (dest);
1362 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1363 uid = LABEL_DECL_UID (dest);
1365 if (vec_safe_length (ifun->cfg->x_label_to_block_map) <= (unsigned int) uid)
1366 return NULL;
1367 return (*ifun->cfg->x_label_to_block_map)[uid];
1370 /* Create edges for a goto statement at block BB. Returns true
1371 if abnormal edges should be created. */
1373 static bool
1374 make_goto_expr_edges (basic_block bb)
1376 gimple_stmt_iterator last = gsi_last_bb (bb);
1377 gimple *goto_t = gsi_stmt (last);
1379 /* A simple GOTO creates normal edges. */
1380 if (simple_goto_p (goto_t))
1382 tree dest = gimple_goto_dest (goto_t);
1383 basic_block label_bb = label_to_block (dest);
1384 edge e = make_edge (bb, label_bb, EDGE_FALLTHRU);
1385 e->goto_locus = gimple_location (goto_t);
1386 gsi_remove (&last, true);
1387 return false;
1390 /* A computed GOTO creates abnormal edges. */
1391 return true;
1394 /* Create edges for an asm statement with labels at block BB. */
1396 static void
1397 make_gimple_asm_edges (basic_block bb)
1399 gasm *stmt = as_a <gasm *> (last_stmt (bb));
1400 int i, n = gimple_asm_nlabels (stmt);
1402 for (i = 0; i < n; ++i)
1404 tree label = TREE_VALUE (gimple_asm_label_op (stmt, i));
1405 basic_block label_bb = label_to_block (label);
1406 make_edge (bb, label_bb, 0);
1410 /*---------------------------------------------------------------------------
1411 Flowgraph analysis
1412 ---------------------------------------------------------------------------*/
1414 /* Cleanup useless labels in basic blocks. This is something we wish
1415 to do early because it allows us to group case labels before creating
1416 the edges for the CFG, and it speeds up block statement iterators in
1417 all passes later on.
1418 We rerun this pass after CFG is created, to get rid of the labels that
1419 are no longer referenced. After then we do not run it any more, since
1420 (almost) no new labels should be created. */
1422 /* A map from basic block index to the leading label of that block. */
1423 static struct label_record
1425 /* The label. */
1426 tree label;
1428 /* True if the label is referenced from somewhere. */
1429 bool used;
1430 } *label_for_bb;
1432 /* Given LABEL return the first label in the same basic block. */
1434 static tree
1435 main_block_label (tree label)
1437 basic_block bb = label_to_block (label);
1438 tree main_label = label_for_bb[bb->index].label;
1440 /* label_to_block possibly inserted undefined label into the chain. */
1441 if (!main_label)
1443 label_for_bb[bb->index].label = label;
1444 main_label = label;
1447 label_for_bb[bb->index].used = true;
1448 return main_label;
1451 /* Clean up redundant labels within the exception tree. */
1453 static void
1454 cleanup_dead_labels_eh (void)
1456 eh_landing_pad lp;
1457 eh_region r;
1458 tree lab;
1459 int i;
1461 if (cfun->eh == NULL)
1462 return;
1464 for (i = 1; vec_safe_iterate (cfun->eh->lp_array, i, &lp); ++i)
1465 if (lp && lp->post_landing_pad)
1467 lab = main_block_label (lp->post_landing_pad);
1468 if (lab != lp->post_landing_pad)
1470 EH_LANDING_PAD_NR (lp->post_landing_pad) = 0;
1471 EH_LANDING_PAD_NR (lab) = lp->index;
1475 FOR_ALL_EH_REGION (r)
1476 switch (r->type)
1478 case ERT_CLEANUP:
1479 case ERT_MUST_NOT_THROW:
1480 break;
1482 case ERT_TRY:
1484 eh_catch c;
1485 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
1487 lab = c->label;
1488 if (lab)
1489 c->label = main_block_label (lab);
1492 break;
1494 case ERT_ALLOWED_EXCEPTIONS:
1495 lab = r->u.allowed.label;
1496 if (lab)
1497 r->u.allowed.label = main_block_label (lab);
1498 break;
1503 /* Cleanup redundant labels. This is a three-step process:
1504 1) Find the leading label for each block.
1505 2) Redirect all references to labels to the leading labels.
1506 3) Cleanup all useless labels. */
1508 void
1509 cleanup_dead_labels (void)
1511 basic_block bb;
1512 label_for_bb = XCNEWVEC (struct label_record, last_basic_block_for_fn (cfun));
1514 /* Find a suitable label for each block. We use the first user-defined
1515 label if there is one, or otherwise just the first label we see. */
1516 FOR_EACH_BB_FN (bb, cfun)
1518 gimple_stmt_iterator i;
1520 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
1522 if (is_gimple_debug (gsi_stmt (i)))
1523 continue;
1525 tree label;
1526 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1528 if (!label_stmt)
1529 break;
1531 label = gimple_label_label (label_stmt);
1533 /* If we have not yet seen a label for the current block,
1534 remember this one and see if there are more labels. */
1535 if (!label_for_bb[bb->index].label)
1537 label_for_bb[bb->index].label = label;
1538 continue;
1541 /* If we did see a label for the current block already, but it
1542 is an artificially created label, replace it if the current
1543 label is a user defined label. */
1544 if (!DECL_ARTIFICIAL (label)
1545 && DECL_ARTIFICIAL (label_for_bb[bb->index].label))
1547 label_for_bb[bb->index].label = label;
1548 break;
1553 /* Now redirect all jumps/branches to the selected label.
1554 First do so for each block ending in a control statement. */
1555 FOR_EACH_BB_FN (bb, cfun)
1557 gimple *stmt = last_stmt (bb);
1558 tree label, new_label;
1560 if (!stmt)
1561 continue;
1563 switch (gimple_code (stmt))
1565 case GIMPLE_COND:
1567 gcond *cond_stmt = as_a <gcond *> (stmt);
1568 label = gimple_cond_true_label (cond_stmt);
1569 if (label)
1571 new_label = main_block_label (label);
1572 if (new_label != label)
1573 gimple_cond_set_true_label (cond_stmt, new_label);
1576 label = gimple_cond_false_label (cond_stmt);
1577 if (label)
1579 new_label = main_block_label (label);
1580 if (new_label != label)
1581 gimple_cond_set_false_label (cond_stmt, new_label);
1584 break;
1586 case GIMPLE_SWITCH:
1588 gswitch *switch_stmt = as_a <gswitch *> (stmt);
1589 size_t i, n = gimple_switch_num_labels (switch_stmt);
1591 /* Replace all destination labels. */
1592 for (i = 0; i < n; ++i)
1594 tree case_label = gimple_switch_label (switch_stmt, i);
1595 label = CASE_LABEL (case_label);
1596 new_label = main_block_label (label);
1597 if (new_label != label)
1598 CASE_LABEL (case_label) = new_label;
1600 break;
1603 case GIMPLE_ASM:
1605 gasm *asm_stmt = as_a <gasm *> (stmt);
1606 int i, n = gimple_asm_nlabels (asm_stmt);
1608 for (i = 0; i < n; ++i)
1610 tree cons = gimple_asm_label_op (asm_stmt, i);
1611 tree label = main_block_label (TREE_VALUE (cons));
1612 TREE_VALUE (cons) = label;
1614 break;
1617 /* We have to handle gotos until they're removed, and we don't
1618 remove them until after we've created the CFG edges. */
1619 case GIMPLE_GOTO:
1620 if (!computed_goto_p (stmt))
1622 ggoto *goto_stmt = as_a <ggoto *> (stmt);
1623 label = gimple_goto_dest (goto_stmt);
1624 new_label = main_block_label (label);
1625 if (new_label != label)
1626 gimple_goto_set_dest (goto_stmt, new_label);
1628 break;
1630 case GIMPLE_TRANSACTION:
1632 gtransaction *txn = as_a <gtransaction *> (stmt);
1634 label = gimple_transaction_label_norm (txn);
1635 if (label)
1637 new_label = main_block_label (label);
1638 if (new_label != label)
1639 gimple_transaction_set_label_norm (txn, new_label);
1642 label = gimple_transaction_label_uninst (txn);
1643 if (label)
1645 new_label = main_block_label (label);
1646 if (new_label != label)
1647 gimple_transaction_set_label_uninst (txn, new_label);
1650 label = gimple_transaction_label_over (txn);
1651 if (label)
1653 new_label = main_block_label (label);
1654 if (new_label != label)
1655 gimple_transaction_set_label_over (txn, new_label);
1658 break;
1660 default:
1661 break;
1665 /* Do the same for the exception region tree labels. */
1666 cleanup_dead_labels_eh ();
1668 /* Finally, purge dead labels. All user-defined labels and labels that
1669 can be the target of non-local gotos and labels which have their
1670 address taken are preserved. */
1671 FOR_EACH_BB_FN (bb, cfun)
1673 gimple_stmt_iterator i;
1674 tree label_for_this_bb = label_for_bb[bb->index].label;
1676 if (!label_for_this_bb)
1677 continue;
1679 /* If the main label of the block is unused, we may still remove it. */
1680 if (!label_for_bb[bb->index].used)
1681 label_for_this_bb = NULL;
1683 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
1685 if (is_gimple_debug (gsi_stmt (i)))
1687 gsi_next (&i);
1688 continue;
1691 tree label;
1692 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (i));
1694 if (!label_stmt)
1695 break;
1697 label = gimple_label_label (label_stmt);
1699 if (label == label_for_this_bb
1700 || !DECL_ARTIFICIAL (label)
1701 || DECL_NONLOCAL (label)
1702 || FORCED_LABEL (label))
1703 gsi_next (&i);
1704 else
1705 gsi_remove (&i, true);
1709 free (label_for_bb);
1712 /* Scan the sorted vector of cases in STMT (a GIMPLE_SWITCH) and combine
1713 the ones jumping to the same label.
1714 Eg. three separate entries 1: 2: 3: become one entry 1..3: */
1716 bool
1717 group_case_labels_stmt (gswitch *stmt)
1719 int old_size = gimple_switch_num_labels (stmt);
1720 int i, next_index, new_size;
1721 basic_block default_bb = NULL;
1723 default_bb = label_to_block (CASE_LABEL (gimple_switch_default_label (stmt)));
1725 /* Look for possible opportunities to merge cases. */
1726 new_size = i = 1;
1727 while (i < old_size)
1729 tree base_case, base_high;
1730 basic_block base_bb;
1732 base_case = gimple_switch_label (stmt, i);
1734 gcc_assert (base_case);
1735 base_bb = label_to_block (CASE_LABEL (base_case));
1737 /* Discard cases that have the same destination as the default case or
1738 whose destiniation blocks have already been removed as unreachable. */
1739 if (base_bb == NULL || base_bb == default_bb)
1741 i++;
1742 continue;
1745 base_high = CASE_HIGH (base_case)
1746 ? CASE_HIGH (base_case)
1747 : CASE_LOW (base_case);
1748 next_index = i + 1;
1750 /* Try to merge case labels. Break out when we reach the end
1751 of the label vector or when we cannot merge the next case
1752 label with the current one. */
1753 while (next_index < old_size)
1755 tree merge_case = gimple_switch_label (stmt, next_index);
1756 basic_block merge_bb = label_to_block (CASE_LABEL (merge_case));
1757 wide_int bhp1 = wi::to_wide (base_high) + 1;
1759 /* Merge the cases if they jump to the same place,
1760 and their ranges are consecutive. */
1761 if (merge_bb == base_bb
1762 && wi::to_wide (CASE_LOW (merge_case)) == bhp1)
1764 base_high = CASE_HIGH (merge_case) ?
1765 CASE_HIGH (merge_case) : CASE_LOW (merge_case);
1766 CASE_HIGH (base_case) = base_high;
1767 next_index++;
1769 else
1770 break;
1773 /* Discard cases that have an unreachable destination block. */
1774 if (EDGE_COUNT (base_bb->succs) == 0
1775 && gimple_seq_unreachable_p (bb_seq (base_bb))
1776 /* Don't optimize this if __builtin_unreachable () is the
1777 implicitly added one by the C++ FE too early, before
1778 -Wreturn-type can be diagnosed. We'll optimize it later
1779 during switchconv pass or any other cfg cleanup. */
1780 && (gimple_in_ssa_p (cfun)
1781 || (LOCATION_LOCUS (gimple_location (last_stmt (base_bb)))
1782 != BUILTINS_LOCATION)))
1784 edge base_edge = find_edge (gimple_bb (stmt), base_bb);
1785 if (base_edge != NULL)
1786 remove_edge_and_dominated_blocks (base_edge);
1787 i = next_index;
1788 continue;
1791 if (new_size < i)
1792 gimple_switch_set_label (stmt, new_size,
1793 gimple_switch_label (stmt, i));
1794 i = next_index;
1795 new_size++;
1798 gcc_assert (new_size <= old_size);
1800 if (new_size < old_size)
1801 gimple_switch_set_num_labels (stmt, new_size);
1803 return new_size < old_size;
1806 /* Look for blocks ending in a multiway branch (a GIMPLE_SWITCH),
1807 and scan the sorted vector of cases. Combine the ones jumping to the
1808 same label. */
1810 bool
1811 group_case_labels (void)
1813 basic_block bb;
1814 bool changed = false;
1816 FOR_EACH_BB_FN (bb, cfun)
1818 gimple *stmt = last_stmt (bb);
1819 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1820 changed |= group_case_labels_stmt (as_a <gswitch *> (stmt));
1823 return changed;
1826 /* Checks whether we can merge block B into block A. */
1828 static bool
1829 gimple_can_merge_blocks_p (basic_block a, basic_block b)
1831 gimple *stmt;
1833 if (!single_succ_p (a))
1834 return false;
1836 if (single_succ_edge (a)->flags & EDGE_COMPLEX)
1837 return false;
1839 if (single_succ (a) != b)
1840 return false;
1842 if (!single_pred_p (b))
1843 return false;
1845 if (a == ENTRY_BLOCK_PTR_FOR_FN (cfun)
1846 || b == EXIT_BLOCK_PTR_FOR_FN (cfun))
1847 return false;
1849 /* If A ends by a statement causing exceptions or something similar, we
1850 cannot merge the blocks. */
1851 stmt = last_stmt (a);
1852 if (stmt && stmt_ends_bb_p (stmt))
1853 return false;
1855 /* Do not allow a block with only a non-local label to be merged. */
1856 if (stmt)
1857 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
1858 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
1859 return false;
1861 /* Examine the labels at the beginning of B. */
1862 for (gimple_stmt_iterator gsi = gsi_start_bb (b); !gsi_end_p (gsi);
1863 gsi_next (&gsi))
1865 tree lab;
1866 if (is_gimple_debug (gsi_stmt (gsi)))
1867 continue;
1868 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gsi));
1869 if (!label_stmt)
1870 break;
1871 lab = gimple_label_label (label_stmt);
1873 /* Do not remove user forced labels or for -O0 any user labels. */
1874 if (!DECL_ARTIFICIAL (lab) && (!optimize || FORCED_LABEL (lab)))
1875 return false;
1878 /* Protect simple loop latches. We only want to avoid merging
1879 the latch with the loop header or with a block in another
1880 loop in this case. */
1881 if (current_loops
1882 && b->loop_father->latch == b
1883 && loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES)
1884 && (b->loop_father->header == a
1885 || b->loop_father != a->loop_father))
1886 return false;
1888 /* It must be possible to eliminate all phi nodes in B. If ssa form
1889 is not up-to-date and a name-mapping is registered, we cannot eliminate
1890 any phis. Symbols marked for renaming are never a problem though. */
1891 for (gphi_iterator gsi = gsi_start_phis (b); !gsi_end_p (gsi);
1892 gsi_next (&gsi))
1894 gphi *phi = gsi.phi ();
1895 /* Technically only new names matter. */
1896 if (name_registered_for_update_p (PHI_RESULT (phi)))
1897 return false;
1900 /* When not optimizing, don't merge if we'd lose goto_locus. */
1901 if (!optimize
1902 && single_succ_edge (a)->goto_locus != UNKNOWN_LOCATION)
1904 location_t goto_locus = single_succ_edge (a)->goto_locus;
1905 gimple_stmt_iterator prev, next;
1906 prev = gsi_last_nondebug_bb (a);
1907 next = gsi_after_labels (b);
1908 if (!gsi_end_p (next) && is_gimple_debug (gsi_stmt (next)))
1909 gsi_next_nondebug (&next);
1910 if ((gsi_end_p (prev)
1911 || gimple_location (gsi_stmt (prev)) != goto_locus)
1912 && (gsi_end_p (next)
1913 || gimple_location (gsi_stmt (next)) != goto_locus))
1914 return false;
1917 return true;
1920 /* Replaces all uses of NAME by VAL. */
1922 void
1923 replace_uses_by (tree name, tree val)
1925 imm_use_iterator imm_iter;
1926 use_operand_p use;
1927 gimple *stmt;
1928 edge e;
1930 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, name)
1932 /* Mark the block if we change the last stmt in it. */
1933 if (cfgcleanup_altered_bbs
1934 && stmt_ends_bb_p (stmt))
1935 bitmap_set_bit (cfgcleanup_altered_bbs, gimple_bb (stmt)->index);
1937 FOR_EACH_IMM_USE_ON_STMT (use, imm_iter)
1939 replace_exp (use, val);
1941 if (gimple_code (stmt) == GIMPLE_PHI)
1943 e = gimple_phi_arg_edge (as_a <gphi *> (stmt),
1944 PHI_ARG_INDEX_FROM_USE (use));
1945 if (e->flags & EDGE_ABNORMAL
1946 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val))
1948 /* This can only occur for virtual operands, since
1949 for the real ones SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
1950 would prevent replacement. */
1951 gcc_checking_assert (virtual_operand_p (name));
1952 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (val) = 1;
1957 if (gimple_code (stmt) != GIMPLE_PHI)
1959 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1960 gimple *orig_stmt = stmt;
1961 size_t i;
1963 /* FIXME. It shouldn't be required to keep TREE_CONSTANT
1964 on ADDR_EXPRs up-to-date on GIMPLE. Propagation will
1965 only change sth from non-invariant to invariant, and only
1966 when propagating constants. */
1967 if (is_gimple_min_invariant (val))
1968 for (i = 0; i < gimple_num_ops (stmt); i++)
1970 tree op = gimple_op (stmt, i);
1971 /* Operands may be empty here. For example, the labels
1972 of a GIMPLE_COND are nulled out following the creation
1973 of the corresponding CFG edges. */
1974 if (op && TREE_CODE (op) == ADDR_EXPR)
1975 recompute_tree_invariant_for_addr_expr (op);
1978 if (fold_stmt (&gsi))
1979 stmt = gsi_stmt (gsi);
1981 if (maybe_clean_or_replace_eh_stmt (orig_stmt, stmt))
1982 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1984 update_stmt (stmt);
1988 gcc_checking_assert (has_zero_uses (name));
1990 /* Also update the trees stored in loop structures. */
1991 if (current_loops)
1993 struct loop *loop;
1995 FOR_EACH_LOOP (loop, 0)
1997 substitute_in_loop_info (loop, name, val);
2002 /* Merge block B into block A. */
2004 static void
2005 gimple_merge_blocks (basic_block a, basic_block b)
2007 gimple_stmt_iterator last, gsi;
2008 gphi_iterator psi;
2010 if (dump_file)
2011 fprintf (dump_file, "Merging blocks %d and %d\n", a->index, b->index);
2013 /* Remove all single-valued PHI nodes from block B of the form
2014 V_i = PHI <V_j> by propagating V_j to all the uses of V_i. */
2015 gsi = gsi_last_bb (a);
2016 for (psi = gsi_start_phis (b); !gsi_end_p (psi); )
2018 gimple *phi = gsi_stmt (psi);
2019 tree def = gimple_phi_result (phi), use = gimple_phi_arg_def (phi, 0);
2020 gimple *copy;
2021 bool may_replace_uses = (virtual_operand_p (def)
2022 || may_propagate_copy (def, use));
2024 /* In case we maintain loop closed ssa form, do not propagate arguments
2025 of loop exit phi nodes. */
2026 if (current_loops
2027 && loops_state_satisfies_p (LOOP_CLOSED_SSA)
2028 && !virtual_operand_p (def)
2029 && TREE_CODE (use) == SSA_NAME
2030 && a->loop_father != b->loop_father)
2031 may_replace_uses = false;
2033 if (!may_replace_uses)
2035 gcc_assert (!virtual_operand_p (def));
2037 /* Note that just emitting the copies is fine -- there is no problem
2038 with ordering of phi nodes. This is because A is the single
2039 predecessor of B, therefore results of the phi nodes cannot
2040 appear as arguments of the phi nodes. */
2041 copy = gimple_build_assign (def, use);
2042 gsi_insert_after (&gsi, copy, GSI_NEW_STMT);
2043 remove_phi_node (&psi, false);
2045 else
2047 /* If we deal with a PHI for virtual operands, we can simply
2048 propagate these without fussing with folding or updating
2049 the stmt. */
2050 if (virtual_operand_p (def))
2052 imm_use_iterator iter;
2053 use_operand_p use_p;
2054 gimple *stmt;
2056 FOR_EACH_IMM_USE_STMT (stmt, iter, def)
2057 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2058 SET_USE (use_p, use);
2060 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def))
2061 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use) = 1;
2063 else
2064 replace_uses_by (def, use);
2066 remove_phi_node (&psi, true);
2070 /* Ensure that B follows A. */
2071 move_block_after (b, a);
2073 gcc_assert (single_succ_edge (a)->flags & EDGE_FALLTHRU);
2074 gcc_assert (!last_stmt (a) || !stmt_ends_bb_p (last_stmt (a)));
2076 /* Remove labels from B and set gimple_bb to A for other statements. */
2077 for (gsi = gsi_start_bb (b); !gsi_end_p (gsi);)
2079 gimple *stmt = gsi_stmt (gsi);
2080 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2082 tree label = gimple_label_label (label_stmt);
2083 int lp_nr;
2085 gsi_remove (&gsi, false);
2087 /* Now that we can thread computed gotos, we might have
2088 a situation where we have a forced label in block B
2089 However, the label at the start of block B might still be
2090 used in other ways (think about the runtime checking for
2091 Fortran assigned gotos). So we can not just delete the
2092 label. Instead we move the label to the start of block A. */
2093 if (FORCED_LABEL (label))
2095 gimple_stmt_iterator dest_gsi = gsi_start_bb (a);
2096 gsi_insert_before (&dest_gsi, stmt, GSI_NEW_STMT);
2098 /* Other user labels keep around in a form of a debug stmt. */
2099 else if (!DECL_ARTIFICIAL (label) && MAY_HAVE_DEBUG_BIND_STMTS)
2101 gimple *dbg = gimple_build_debug_bind (label,
2102 integer_zero_node,
2103 stmt);
2104 gimple_debug_bind_reset_value (dbg);
2105 gsi_insert_before (&gsi, dbg, GSI_SAME_STMT);
2108 lp_nr = EH_LANDING_PAD_NR (label);
2109 if (lp_nr)
2111 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
2112 lp->post_landing_pad = NULL;
2115 else
2117 gimple_set_bb (stmt, a);
2118 gsi_next (&gsi);
2122 /* When merging two BBs, if their counts are different, the larger count
2123 is selected as the new bb count. This is to handle inconsistent
2124 profiles. */
2125 if (a->loop_father == b->loop_father)
2127 a->count = a->count.merge (b->count);
2130 /* Merge the sequences. */
2131 last = gsi_last_bb (a);
2132 gsi_insert_seq_after (&last, bb_seq (b), GSI_NEW_STMT);
2133 set_bb_seq (b, NULL);
2135 if (cfgcleanup_altered_bbs)
2136 bitmap_set_bit (cfgcleanup_altered_bbs, a->index);
2140 /* Return the one of two successors of BB that is not reachable by a
2141 complex edge, if there is one. Else, return BB. We use
2142 this in optimizations that use post-dominators for their heuristics,
2143 to catch the cases in C++ where function calls are involved. */
2145 basic_block
2146 single_noncomplex_succ (basic_block bb)
2148 edge e0, e1;
2149 if (EDGE_COUNT (bb->succs) != 2)
2150 return bb;
2152 e0 = EDGE_SUCC (bb, 0);
2153 e1 = EDGE_SUCC (bb, 1);
2154 if (e0->flags & EDGE_COMPLEX)
2155 return e1->dest;
2156 if (e1->flags & EDGE_COMPLEX)
2157 return e0->dest;
2159 return bb;
2162 /* T is CALL_EXPR. Set current_function_calls_* flags. */
2164 void
2165 notice_special_calls (gcall *call)
2167 int flags = gimple_call_flags (call);
2169 if (flags & ECF_MAY_BE_ALLOCA)
2170 cfun->calls_alloca = true;
2171 if (flags & ECF_RETURNS_TWICE)
2172 cfun->calls_setjmp = true;
2176 /* Clear flags set by notice_special_calls. Used by dead code removal
2177 to update the flags. */
2179 void
2180 clear_special_calls (void)
2182 cfun->calls_alloca = false;
2183 cfun->calls_setjmp = false;
2186 /* Remove PHI nodes associated with basic block BB and all edges out of BB. */
2188 static void
2189 remove_phi_nodes_and_edges_for_unreachable_block (basic_block bb)
2191 /* Since this block is no longer reachable, we can just delete all
2192 of its PHI nodes. */
2193 remove_phi_nodes (bb);
2195 /* Remove edges to BB's successors. */
2196 while (EDGE_COUNT (bb->succs) > 0)
2197 remove_edge (EDGE_SUCC (bb, 0));
2201 /* Remove statements of basic block BB. */
2203 static void
2204 remove_bb (basic_block bb)
2206 gimple_stmt_iterator i;
2208 if (dump_file)
2210 fprintf (dump_file, "Removing basic block %d\n", bb->index);
2211 if (dump_flags & TDF_DETAILS)
2213 dump_bb (dump_file, bb, 0, TDF_BLOCKS);
2214 fprintf (dump_file, "\n");
2218 if (current_loops)
2220 struct loop *loop = bb->loop_father;
2222 /* If a loop gets removed, clean up the information associated
2223 with it. */
2224 if (loop->latch == bb
2225 || loop->header == bb)
2226 free_numbers_of_iterations_estimates (loop);
2229 /* Remove all the instructions in the block. */
2230 if (bb_seq (bb) != NULL)
2232 /* Walk backwards so as to get a chance to substitute all
2233 released DEFs into debug stmts. See
2234 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
2235 details. */
2236 for (i = gsi_last_bb (bb); !gsi_end_p (i);)
2238 gimple *stmt = gsi_stmt (i);
2239 glabel *label_stmt = dyn_cast <glabel *> (stmt);
2240 if (label_stmt
2241 && (FORCED_LABEL (gimple_label_label (label_stmt))
2242 || DECL_NONLOCAL (gimple_label_label (label_stmt))))
2244 basic_block new_bb;
2245 gimple_stmt_iterator new_gsi;
2247 /* A non-reachable non-local label may still be referenced.
2248 But it no longer needs to carry the extra semantics of
2249 non-locality. */
2250 if (DECL_NONLOCAL (gimple_label_label (label_stmt)))
2252 DECL_NONLOCAL (gimple_label_label (label_stmt)) = 0;
2253 FORCED_LABEL (gimple_label_label (label_stmt)) = 1;
2256 new_bb = bb->prev_bb;
2257 new_gsi = gsi_start_bb (new_bb);
2258 gsi_remove (&i, false);
2259 gsi_insert_before (&new_gsi, stmt, GSI_NEW_STMT);
2261 else
2263 /* Release SSA definitions. */
2264 release_defs (stmt);
2265 gsi_remove (&i, true);
2268 if (gsi_end_p (i))
2269 i = gsi_last_bb (bb);
2270 else
2271 gsi_prev (&i);
2275 remove_phi_nodes_and_edges_for_unreachable_block (bb);
2276 bb->il.gimple.seq = NULL;
2277 bb->il.gimple.phi_nodes = NULL;
2281 /* Given a basic block BB ending with COND_EXPR or SWITCH_EXPR, and a
2282 predicate VAL, return the edge that will be taken out of the block.
2283 If VAL does not match a unique edge, NULL is returned. */
2285 edge
2286 find_taken_edge (basic_block bb, tree val)
2288 gimple *stmt;
2290 stmt = last_stmt (bb);
2292 gcc_assert (is_ctrl_stmt (stmt));
2294 if (gimple_code (stmt) == GIMPLE_COND)
2295 return find_taken_edge_cond_expr (bb, val);
2297 if (gimple_code (stmt) == GIMPLE_SWITCH)
2298 return find_taken_edge_switch_expr (as_a <gswitch *> (stmt), bb, val);
2300 if (computed_goto_p (stmt))
2302 /* Only optimize if the argument is a label, if the argument is
2303 not a label then we can not construct a proper CFG.
2305 It may be the case that we only need to allow the LABEL_REF to
2306 appear inside an ADDR_EXPR, but we also allow the LABEL_REF to
2307 appear inside a LABEL_EXPR just to be safe. */
2308 if (val
2309 && (TREE_CODE (val) == ADDR_EXPR || TREE_CODE (val) == LABEL_EXPR)
2310 && TREE_CODE (TREE_OPERAND (val, 0)) == LABEL_DECL)
2311 return find_taken_edge_computed_goto (bb, TREE_OPERAND (val, 0));
2312 return NULL;
2315 gcc_unreachable ();
2318 /* Given a constant value VAL and the entry block BB to a GOTO_EXPR
2319 statement, determine which of the outgoing edges will be taken out of the
2320 block. Return NULL if either edge may be taken. */
2322 static edge
2323 find_taken_edge_computed_goto (basic_block bb, tree val)
2325 basic_block dest;
2326 edge e = NULL;
2328 dest = label_to_block (val);
2329 if (dest)
2331 e = find_edge (bb, dest);
2332 gcc_assert (e != NULL);
2335 return e;
2338 /* Given a constant value VAL and the entry block BB to a COND_EXPR
2339 statement, determine which of the two edges will be taken out of the
2340 block. Return NULL if either edge may be taken. */
2342 static edge
2343 find_taken_edge_cond_expr (basic_block bb, tree val)
2345 edge true_edge, false_edge;
2347 if (val == NULL
2348 || TREE_CODE (val) != INTEGER_CST)
2349 return NULL;
2351 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
2353 return (integer_zerop (val) ? false_edge : true_edge);
2356 /* Given an INTEGER_CST VAL and the entry block BB to a SWITCH_EXPR
2357 statement, determine which edge will be taken out of the block. Return
2358 NULL if any edge may be taken. */
2360 static edge
2361 find_taken_edge_switch_expr (gswitch *switch_stmt, basic_block bb,
2362 tree val)
2364 basic_block dest_bb;
2365 edge e;
2366 tree taken_case;
2368 if (gimple_switch_num_labels (switch_stmt) == 1)
2369 taken_case = gimple_switch_default_label (switch_stmt);
2370 else if (! val || TREE_CODE (val) != INTEGER_CST)
2371 return NULL;
2372 else
2373 taken_case = find_case_label_for_value (switch_stmt, val);
2374 dest_bb = label_to_block (CASE_LABEL (taken_case));
2376 e = find_edge (bb, dest_bb);
2377 gcc_assert (e);
2378 return e;
2382 /* Return the CASE_LABEL_EXPR that SWITCH_STMT will take for VAL.
2383 We can make optimal use here of the fact that the case labels are
2384 sorted: We can do a binary search for a case matching VAL. */
2386 static tree
2387 find_case_label_for_value (gswitch *switch_stmt, tree val)
2389 size_t low, high, n = gimple_switch_num_labels (switch_stmt);
2390 tree default_case = gimple_switch_default_label (switch_stmt);
2392 for (low = 0, high = n; high - low > 1; )
2394 size_t i = (high + low) / 2;
2395 tree t = gimple_switch_label (switch_stmt, i);
2396 int cmp;
2398 /* Cache the result of comparing CASE_LOW and val. */
2399 cmp = tree_int_cst_compare (CASE_LOW (t), val);
2401 if (cmp > 0)
2402 high = i;
2403 else
2404 low = i;
2406 if (CASE_HIGH (t) == NULL)
2408 /* A singe-valued case label. */
2409 if (cmp == 0)
2410 return t;
2412 else
2414 /* A case range. We can only handle integer ranges. */
2415 if (cmp <= 0 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
2416 return t;
2420 return default_case;
2424 /* Dump a basic block on stderr. */
2426 void
2427 gimple_debug_bb (basic_block bb)
2429 dump_bb (stderr, bb, 0, TDF_VOPS|TDF_MEMSYMS|TDF_BLOCKS);
2433 /* Dump basic block with index N on stderr. */
2435 basic_block
2436 gimple_debug_bb_n (int n)
2438 gimple_debug_bb (BASIC_BLOCK_FOR_FN (cfun, n));
2439 return BASIC_BLOCK_FOR_FN (cfun, n);
2443 /* Dump the CFG on stderr.
2445 FLAGS are the same used by the tree dumping functions
2446 (see TDF_* in dumpfile.h). */
2448 void
2449 gimple_debug_cfg (dump_flags_t flags)
2451 gimple_dump_cfg (stderr, flags);
2455 /* Dump the program showing basic block boundaries on the given FILE.
2457 FLAGS are the same used by the tree dumping functions (see TDF_* in
2458 tree.h). */
2460 void
2461 gimple_dump_cfg (FILE *file, dump_flags_t flags)
2463 if (flags & TDF_DETAILS)
2465 dump_function_header (file, current_function_decl, flags);
2466 fprintf (file, ";; \n%d basic blocks, %d edges, last basic block %d.\n\n",
2467 n_basic_blocks_for_fn (cfun), n_edges_for_fn (cfun),
2468 last_basic_block_for_fn (cfun));
2470 brief_dump_cfg (file, flags);
2471 fprintf (file, "\n");
2474 if (flags & TDF_STATS)
2475 dump_cfg_stats (file);
2477 dump_function_to_file (current_function_decl, file, flags | TDF_BLOCKS);
2481 /* Dump CFG statistics on FILE. */
2483 void
2484 dump_cfg_stats (FILE *file)
2486 static long max_num_merged_labels = 0;
2487 unsigned long size, total = 0;
2488 long num_edges;
2489 basic_block bb;
2490 const char * const fmt_str = "%-30s%-13s%12s\n";
2491 const char * const fmt_str_1 = "%-30s%13d%11lu%c\n";
2492 const char * const fmt_str_2 = "%-30s%13ld%11lu%c\n";
2493 const char * const fmt_str_3 = "%-43s%11lu%c\n";
2494 const char *funcname = current_function_name ();
2496 fprintf (file, "\nCFG Statistics for %s\n\n", funcname);
2498 fprintf (file, "---------------------------------------------------------\n");
2499 fprintf (file, fmt_str, "", " Number of ", "Memory");
2500 fprintf (file, fmt_str, "", " instances ", "used ");
2501 fprintf (file, "---------------------------------------------------------\n");
2503 size = n_basic_blocks_for_fn (cfun) * sizeof (struct basic_block_def);
2504 total += size;
2505 fprintf (file, fmt_str_1, "Basic blocks", n_basic_blocks_for_fn (cfun),
2506 SCALE (size), LABEL (size));
2508 num_edges = 0;
2509 FOR_EACH_BB_FN (bb, cfun)
2510 num_edges += EDGE_COUNT (bb->succs);
2511 size = num_edges * sizeof (struct edge_def);
2512 total += size;
2513 fprintf (file, fmt_str_2, "Edges", num_edges, SCALE (size), LABEL (size));
2515 fprintf (file, "---------------------------------------------------------\n");
2516 fprintf (file, fmt_str_3, "Total memory used by CFG data", SCALE (total),
2517 LABEL (total));
2518 fprintf (file, "---------------------------------------------------------\n");
2519 fprintf (file, "\n");
2521 if (cfg_stats.num_merged_labels > max_num_merged_labels)
2522 max_num_merged_labels = cfg_stats.num_merged_labels;
2524 fprintf (file, "Coalesced label blocks: %ld (Max so far: %ld)\n",
2525 cfg_stats.num_merged_labels, max_num_merged_labels);
2527 fprintf (file, "\n");
2531 /* Dump CFG statistics on stderr. Keep extern so that it's always
2532 linked in the final executable. */
2534 DEBUG_FUNCTION void
2535 debug_cfg_stats (void)
2537 dump_cfg_stats (stderr);
2540 /*---------------------------------------------------------------------------
2541 Miscellaneous helpers
2542 ---------------------------------------------------------------------------*/
2544 /* Return true if T, a GIMPLE_CALL, can make an abnormal transfer of control
2545 flow. Transfers of control flow associated with EH are excluded. */
2547 static bool
2548 call_can_make_abnormal_goto (gimple *t)
2550 /* If the function has no non-local labels, then a call cannot make an
2551 abnormal transfer of control. */
2552 if (!cfun->has_nonlocal_label
2553 && !cfun->calls_setjmp)
2554 return false;
2556 /* Likewise if the call has no side effects. */
2557 if (!gimple_has_side_effects (t))
2558 return false;
2560 /* Likewise if the called function is leaf. */
2561 if (gimple_call_flags (t) & ECF_LEAF)
2562 return false;
2564 return true;
2568 /* Return true if T can make an abnormal transfer of control flow.
2569 Transfers of control flow associated with EH are excluded. */
2571 bool
2572 stmt_can_make_abnormal_goto (gimple *t)
2574 if (computed_goto_p (t))
2575 return true;
2576 if (is_gimple_call (t))
2577 return call_can_make_abnormal_goto (t);
2578 return false;
2582 /* Return true if T represents a stmt that always transfers control. */
2584 bool
2585 is_ctrl_stmt (gimple *t)
2587 switch (gimple_code (t))
2589 case GIMPLE_COND:
2590 case GIMPLE_SWITCH:
2591 case GIMPLE_GOTO:
2592 case GIMPLE_RETURN:
2593 case GIMPLE_RESX:
2594 return true;
2595 default:
2596 return false;
2601 /* Return true if T is a statement that may alter the flow of control
2602 (e.g., a call to a non-returning function). */
2604 bool
2605 is_ctrl_altering_stmt (gimple *t)
2607 gcc_assert (t);
2609 switch (gimple_code (t))
2611 case GIMPLE_CALL:
2612 /* Per stmt call flag indicates whether the call could alter
2613 controlflow. */
2614 if (gimple_call_ctrl_altering_p (t))
2615 return true;
2616 break;
2618 case GIMPLE_EH_DISPATCH:
2619 /* EH_DISPATCH branches to the individual catch handlers at
2620 this level of a try or allowed-exceptions region. It can
2621 fallthru to the next statement as well. */
2622 return true;
2624 case GIMPLE_ASM:
2625 if (gimple_asm_nlabels (as_a <gasm *> (t)) > 0)
2626 return true;
2627 break;
2629 CASE_GIMPLE_OMP:
2630 /* OpenMP directives alter control flow. */
2631 return true;
2633 case GIMPLE_TRANSACTION:
2634 /* A transaction start alters control flow. */
2635 return true;
2637 default:
2638 break;
2641 /* If a statement can throw, it alters control flow. */
2642 return stmt_can_throw_internal (t);
2646 /* Return true if T is a simple local goto. */
2648 bool
2649 simple_goto_p (gimple *t)
2651 return (gimple_code (t) == GIMPLE_GOTO
2652 && TREE_CODE (gimple_goto_dest (t)) == LABEL_DECL);
2656 /* Return true if STMT should start a new basic block. PREV_STMT is
2657 the statement preceding STMT. It is used when STMT is a label or a
2658 case label. Labels should only start a new basic block if their
2659 previous statement wasn't a label. Otherwise, sequence of labels
2660 would generate unnecessary basic blocks that only contain a single
2661 label. */
2663 static inline bool
2664 stmt_starts_bb_p (gimple *stmt, gimple *prev_stmt)
2666 if (stmt == NULL)
2667 return false;
2669 /* PREV_STMT is only set to a debug stmt if the debug stmt is before
2670 any nondebug stmts in the block. We don't want to start another
2671 block in this case: the debug stmt will already have started the
2672 one STMT would start if we weren't outputting debug stmts. */
2673 if (prev_stmt && is_gimple_debug (prev_stmt))
2674 return false;
2676 /* Labels start a new basic block only if the preceding statement
2677 wasn't a label of the same type. This prevents the creation of
2678 consecutive blocks that have nothing but a single label. */
2679 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2681 /* Nonlocal and computed GOTO targets always start a new block. */
2682 if (DECL_NONLOCAL (gimple_label_label (label_stmt))
2683 || FORCED_LABEL (gimple_label_label (label_stmt)))
2684 return true;
2686 if (prev_stmt && gimple_code (prev_stmt) == GIMPLE_LABEL)
2688 if (DECL_NONLOCAL (gimple_label_label (
2689 as_a <glabel *> (prev_stmt))))
2690 return true;
2692 cfg_stats.num_merged_labels++;
2693 return false;
2695 else
2696 return true;
2698 else if (gimple_code (stmt) == GIMPLE_CALL)
2700 if (gimple_call_flags (stmt) & ECF_RETURNS_TWICE)
2701 /* setjmp acts similar to a nonlocal GOTO target and thus should
2702 start a new block. */
2703 return true;
2704 if (gimple_call_internal_p (stmt, IFN_PHI)
2705 && prev_stmt
2706 && gimple_code (prev_stmt) != GIMPLE_LABEL
2707 && (gimple_code (prev_stmt) != GIMPLE_CALL
2708 || ! gimple_call_internal_p (prev_stmt, IFN_PHI)))
2709 /* PHI nodes start a new block unless preceeded by a label
2710 or another PHI. */
2711 return true;
2714 return false;
2718 /* Return true if T should end a basic block. */
2720 bool
2721 stmt_ends_bb_p (gimple *t)
2723 return is_ctrl_stmt (t) || is_ctrl_altering_stmt (t);
2726 /* Remove block annotations and other data structures. */
2728 void
2729 delete_tree_cfg_annotations (struct function *fn)
2731 vec_free (label_to_block_map_for_fn (fn));
2734 /* Return the virtual phi in BB. */
2736 gphi *
2737 get_virtual_phi (basic_block bb)
2739 for (gphi_iterator gsi = gsi_start_phis (bb);
2740 !gsi_end_p (gsi);
2741 gsi_next (&gsi))
2743 gphi *phi = gsi.phi ();
2745 if (virtual_operand_p (PHI_RESULT (phi)))
2746 return phi;
2749 return NULL;
2752 /* Return the first statement in basic block BB. */
2754 gimple *
2755 first_stmt (basic_block bb)
2757 gimple_stmt_iterator i = gsi_start_bb (bb);
2758 gimple *stmt = NULL;
2760 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2762 gsi_next (&i);
2763 stmt = NULL;
2765 return stmt;
2768 /* Return the first non-label statement in basic block BB. */
2770 static gimple *
2771 first_non_label_stmt (basic_block bb)
2773 gimple_stmt_iterator i = gsi_start_bb (bb);
2774 while (!gsi_end_p (i) && gimple_code (gsi_stmt (i)) == GIMPLE_LABEL)
2775 gsi_next (&i);
2776 return !gsi_end_p (i) ? gsi_stmt (i) : NULL;
2779 /* Return the last statement in basic block BB. */
2781 gimple *
2782 last_stmt (basic_block bb)
2784 gimple_stmt_iterator i = gsi_last_bb (bb);
2785 gimple *stmt = NULL;
2787 while (!gsi_end_p (i) && is_gimple_debug ((stmt = gsi_stmt (i))))
2789 gsi_prev (&i);
2790 stmt = NULL;
2792 return stmt;
2795 /* Return the last statement of an otherwise empty block. Return NULL
2796 if the block is totally empty, or if it contains more than one
2797 statement. */
2799 gimple *
2800 last_and_only_stmt (basic_block bb)
2802 gimple_stmt_iterator i = gsi_last_nondebug_bb (bb);
2803 gimple *last, *prev;
2805 if (gsi_end_p (i))
2806 return NULL;
2808 last = gsi_stmt (i);
2809 gsi_prev_nondebug (&i);
2810 if (gsi_end_p (i))
2811 return last;
2813 /* Empty statements should no longer appear in the instruction stream.
2814 Everything that might have appeared before should be deleted by
2815 remove_useless_stmts, and the optimizers should just gsi_remove
2816 instead of smashing with build_empty_stmt.
2818 Thus the only thing that should appear here in a block containing
2819 one executable statement is a label. */
2820 prev = gsi_stmt (i);
2821 if (gimple_code (prev) == GIMPLE_LABEL)
2822 return last;
2823 else
2824 return NULL;
2827 /* Reinstall those PHI arguments queued in OLD_EDGE to NEW_EDGE. */
2829 static void
2830 reinstall_phi_args (edge new_edge, edge old_edge)
2832 edge_var_map *vm;
2833 int i;
2834 gphi_iterator phis;
2836 vec<edge_var_map> *v = redirect_edge_var_map_vector (old_edge);
2837 if (!v)
2838 return;
2840 for (i = 0, phis = gsi_start_phis (new_edge->dest);
2841 v->iterate (i, &vm) && !gsi_end_p (phis);
2842 i++, gsi_next (&phis))
2844 gphi *phi = phis.phi ();
2845 tree result = redirect_edge_var_map_result (vm);
2846 tree arg = redirect_edge_var_map_def (vm);
2848 gcc_assert (result == gimple_phi_result (phi));
2850 add_phi_arg (phi, arg, new_edge, redirect_edge_var_map_location (vm));
2853 redirect_edge_var_map_clear (old_edge);
2856 /* Returns the basic block after which the new basic block created
2857 by splitting edge EDGE_IN should be placed. Tries to keep the new block
2858 near its "logical" location. This is of most help to humans looking
2859 at debugging dumps. */
2861 basic_block
2862 split_edge_bb_loc (edge edge_in)
2864 basic_block dest = edge_in->dest;
2865 basic_block dest_prev = dest->prev_bb;
2867 if (dest_prev)
2869 edge e = find_edge (dest_prev, dest);
2870 if (e && !(e->flags & EDGE_COMPLEX))
2871 return edge_in->src;
2873 return dest_prev;
2876 /* Split a (typically critical) edge EDGE_IN. Return the new block.
2877 Abort on abnormal edges. */
2879 static basic_block
2880 gimple_split_edge (edge edge_in)
2882 basic_block new_bb, after_bb, dest;
2883 edge new_edge, e;
2885 /* Abnormal edges cannot be split. */
2886 gcc_assert (!(edge_in->flags & EDGE_ABNORMAL));
2888 dest = edge_in->dest;
2890 after_bb = split_edge_bb_loc (edge_in);
2892 new_bb = create_empty_bb (after_bb);
2893 new_bb->count = edge_in->count ();
2895 e = redirect_edge_and_branch (edge_in, new_bb);
2896 gcc_assert (e == edge_in);
2898 new_edge = make_single_succ_edge (new_bb, dest, EDGE_FALLTHRU);
2899 reinstall_phi_args (new_edge, e);
2901 return new_bb;
2905 /* Verify properties of the address expression T with base object BASE. */
2907 static tree
2908 verify_address (tree t, tree base)
2910 bool old_constant;
2911 bool old_side_effects;
2912 bool new_constant;
2913 bool new_side_effects;
2915 old_constant = TREE_CONSTANT (t);
2916 old_side_effects = TREE_SIDE_EFFECTS (t);
2918 recompute_tree_invariant_for_addr_expr (t);
2919 new_side_effects = TREE_SIDE_EFFECTS (t);
2920 new_constant = TREE_CONSTANT (t);
2922 if (old_constant != new_constant)
2924 error ("constant not recomputed when ADDR_EXPR changed");
2925 return t;
2927 if (old_side_effects != new_side_effects)
2929 error ("side effects not recomputed when ADDR_EXPR changed");
2930 return t;
2933 if (!(VAR_P (base)
2934 || TREE_CODE (base) == PARM_DECL
2935 || TREE_CODE (base) == RESULT_DECL))
2936 return NULL_TREE;
2938 if (DECL_GIMPLE_REG_P (base))
2940 error ("DECL_GIMPLE_REG_P set on a variable with address taken");
2941 return base;
2944 return NULL_TREE;
2947 /* Callback for walk_tree, check that all elements with address taken are
2948 properly noticed as such. The DATA is an int* that is 1 if TP was seen
2949 inside a PHI node. */
2951 static tree
2952 verify_expr (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
2954 tree t = *tp, x;
2956 if (TYPE_P (t))
2957 *walk_subtrees = 0;
2959 /* Check operand N for being valid GIMPLE and give error MSG if not. */
2960 #define CHECK_OP(N, MSG) \
2961 do { if (!is_gimple_val (TREE_OPERAND (t, N))) \
2962 { error (MSG); return TREE_OPERAND (t, N); }} while (0)
2964 switch (TREE_CODE (t))
2966 case SSA_NAME:
2967 if (SSA_NAME_IN_FREE_LIST (t))
2969 error ("SSA name in freelist but still referenced");
2970 return *tp;
2972 break;
2974 case PARM_DECL:
2975 case VAR_DECL:
2976 case RESULT_DECL:
2978 tree context = decl_function_context (t);
2979 if (context != cfun->decl
2980 && !SCOPE_FILE_SCOPE_P (context)
2981 && !TREE_STATIC (t)
2982 && !DECL_EXTERNAL (t))
2984 error ("Local declaration from a different function");
2985 return t;
2988 break;
2990 case INDIRECT_REF:
2991 error ("INDIRECT_REF in gimple IL");
2992 return t;
2994 case MEM_REF:
2995 x = TREE_OPERAND (t, 0);
2996 if (!POINTER_TYPE_P (TREE_TYPE (x))
2997 || !is_gimple_mem_ref_addr (x))
2999 error ("invalid first operand of MEM_REF");
3000 return x;
3002 if (TREE_CODE (TREE_OPERAND (t, 1)) != INTEGER_CST
3003 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3005 error ("invalid offset operand of MEM_REF");
3006 return TREE_OPERAND (t, 1);
3008 if (TREE_CODE (x) == ADDR_EXPR)
3010 tree va = verify_address (x, TREE_OPERAND (x, 0));
3011 if (va)
3012 return va;
3013 x = TREE_OPERAND (x, 0);
3015 walk_tree (&x, verify_expr, data, NULL);
3016 *walk_subtrees = 0;
3017 break;
3019 case ASSERT_EXPR:
3020 x = fold (ASSERT_EXPR_COND (t));
3021 if (x == boolean_false_node)
3023 error ("ASSERT_EXPR with an always-false condition");
3024 return *tp;
3026 break;
3028 case MODIFY_EXPR:
3029 error ("MODIFY_EXPR not expected while having tuples");
3030 return *tp;
3032 case ADDR_EXPR:
3034 tree tem;
3036 gcc_assert (is_gimple_address (t));
3038 /* Skip any references (they will be checked when we recurse down the
3039 tree) and ensure that any variable used as a prefix is marked
3040 addressable. */
3041 for (x = TREE_OPERAND (t, 0);
3042 handled_component_p (x);
3043 x = TREE_OPERAND (x, 0))
3046 if ((tem = verify_address (t, x)))
3047 return tem;
3049 if (!(VAR_P (x)
3050 || TREE_CODE (x) == PARM_DECL
3051 || TREE_CODE (x) == RESULT_DECL))
3052 return NULL;
3054 if (!TREE_ADDRESSABLE (x))
3056 error ("address taken, but ADDRESSABLE bit not set");
3057 return x;
3060 break;
3063 case COND_EXPR:
3064 x = COND_EXPR_COND (t);
3065 if (!INTEGRAL_TYPE_P (TREE_TYPE (x)))
3067 error ("non-integral used in condition");
3068 return x;
3070 if (!is_gimple_condexpr (x))
3072 error ("invalid conditional operand");
3073 return x;
3075 break;
3077 case NON_LVALUE_EXPR:
3078 case TRUTH_NOT_EXPR:
3079 gcc_unreachable ();
3081 CASE_CONVERT:
3082 case FIX_TRUNC_EXPR:
3083 case FLOAT_EXPR:
3084 case NEGATE_EXPR:
3085 case ABS_EXPR:
3086 case BIT_NOT_EXPR:
3087 CHECK_OP (0, "invalid operand to unary operator");
3088 break;
3090 case REALPART_EXPR:
3091 case IMAGPART_EXPR:
3092 case BIT_FIELD_REF:
3093 if (!is_gimple_reg_type (TREE_TYPE (t)))
3095 error ("non-scalar BIT_FIELD_REF, IMAGPART_EXPR or REALPART_EXPR");
3096 return t;
3099 if (TREE_CODE (t) == BIT_FIELD_REF)
3101 tree t0 = TREE_OPERAND (t, 0);
3102 tree t1 = TREE_OPERAND (t, 1);
3103 tree t2 = TREE_OPERAND (t, 2);
3104 if (!tree_fits_uhwi_p (t1)
3105 || !tree_fits_uhwi_p (t2)
3106 || !types_compatible_p (bitsizetype, TREE_TYPE (t1))
3107 || !types_compatible_p (bitsizetype, TREE_TYPE (t2)))
3109 error ("invalid position or size operand to BIT_FIELD_REF");
3110 return t;
3112 if (INTEGRAL_TYPE_P (TREE_TYPE (t))
3113 && (TYPE_PRECISION (TREE_TYPE (t))
3114 != tree_to_uhwi (t1)))
3116 error ("integral result type precision does not match "
3117 "field size of BIT_FIELD_REF");
3118 return t;
3120 else if (!INTEGRAL_TYPE_P (TREE_TYPE (t))
3121 && TYPE_MODE (TREE_TYPE (t)) != BLKmode
3122 && (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t)))
3123 != tree_to_uhwi (t1)))
3125 error ("mode size of non-integral result does not "
3126 "match field size of BIT_FIELD_REF");
3127 return t;
3129 if (!AGGREGATE_TYPE_P (TREE_TYPE (t0))
3130 && (tree_to_uhwi (t1) + tree_to_uhwi (t2)
3131 > tree_to_uhwi (TYPE_SIZE (TREE_TYPE (t0)))))
3133 error ("position plus size exceeds size of referenced object in "
3134 "BIT_FIELD_REF");
3135 return t;
3138 t = TREE_OPERAND (t, 0);
3140 /* Fall-through. */
3141 case COMPONENT_REF:
3142 case ARRAY_REF:
3143 case ARRAY_RANGE_REF:
3144 case VIEW_CONVERT_EXPR:
3145 /* We have a nest of references. Verify that each of the operands
3146 that determine where to reference is either a constant or a variable,
3147 verify that the base is valid, and then show we've already checked
3148 the subtrees. */
3149 while (handled_component_p (t))
3151 if (TREE_CODE (t) == COMPONENT_REF && TREE_OPERAND (t, 2))
3152 CHECK_OP (2, "invalid COMPONENT_REF offset operator");
3153 else if (TREE_CODE (t) == ARRAY_REF
3154 || TREE_CODE (t) == ARRAY_RANGE_REF)
3156 CHECK_OP (1, "invalid array index");
3157 if (TREE_OPERAND (t, 2))
3158 CHECK_OP (2, "invalid array lower bound");
3159 if (TREE_OPERAND (t, 3))
3160 CHECK_OP (3, "invalid array stride");
3162 else if (TREE_CODE (t) == BIT_FIELD_REF
3163 || TREE_CODE (t) == REALPART_EXPR
3164 || TREE_CODE (t) == IMAGPART_EXPR)
3166 error ("non-top-level BIT_FIELD_REF, IMAGPART_EXPR or "
3167 "REALPART_EXPR");
3168 return t;
3171 t = TREE_OPERAND (t, 0);
3174 if (!is_gimple_min_invariant (t) && !is_gimple_lvalue (t))
3176 error ("invalid reference prefix");
3177 return t;
3179 walk_tree (&t, verify_expr, data, NULL);
3180 *walk_subtrees = 0;
3181 break;
3182 case PLUS_EXPR:
3183 case MINUS_EXPR:
3184 /* PLUS_EXPR and MINUS_EXPR don't work on pointers, they should be done using
3185 POINTER_PLUS_EXPR. */
3186 if (POINTER_TYPE_P (TREE_TYPE (t)))
3188 error ("invalid operand to plus/minus, type is a pointer");
3189 return t;
3191 CHECK_OP (0, "invalid operand to binary operator");
3192 CHECK_OP (1, "invalid operand to binary operator");
3193 break;
3195 case POINTER_DIFF_EXPR:
3196 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0)))
3197 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 1))))
3199 error ("invalid operand to pointer diff, operand is not a pointer");
3200 return t;
3202 if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE
3203 || TYPE_UNSIGNED (TREE_TYPE (t))
3204 || (TYPE_PRECISION (TREE_TYPE (t))
3205 != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (t, 0)))))
3207 error ("invalid type for pointer diff");
3208 return t;
3210 CHECK_OP (0, "invalid operand to pointer diff");
3211 CHECK_OP (1, "invalid operand to pointer diff");
3212 break;
3214 case POINTER_PLUS_EXPR:
3215 /* Check to make sure the first operand is a pointer or reference type. */
3216 if (!POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (t, 0))))
3218 error ("invalid operand to pointer plus, first operand is not a pointer");
3219 return t;
3221 /* Check to make sure the second operand is a ptrofftype. */
3222 if (!ptrofftype_p (TREE_TYPE (TREE_OPERAND (t, 1))))
3224 error ("invalid operand to pointer plus, second operand is not an "
3225 "integer type of appropriate width");
3226 return t;
3228 /* FALLTHROUGH */
3229 case LT_EXPR:
3230 case LE_EXPR:
3231 case GT_EXPR:
3232 case GE_EXPR:
3233 case EQ_EXPR:
3234 case NE_EXPR:
3235 case UNORDERED_EXPR:
3236 case ORDERED_EXPR:
3237 case UNLT_EXPR:
3238 case UNLE_EXPR:
3239 case UNGT_EXPR:
3240 case UNGE_EXPR:
3241 case UNEQ_EXPR:
3242 case LTGT_EXPR:
3243 case MULT_EXPR:
3244 case TRUNC_DIV_EXPR:
3245 case CEIL_DIV_EXPR:
3246 case FLOOR_DIV_EXPR:
3247 case ROUND_DIV_EXPR:
3248 case TRUNC_MOD_EXPR:
3249 case CEIL_MOD_EXPR:
3250 case FLOOR_MOD_EXPR:
3251 case ROUND_MOD_EXPR:
3252 case RDIV_EXPR:
3253 case EXACT_DIV_EXPR:
3254 case MIN_EXPR:
3255 case MAX_EXPR:
3256 case LSHIFT_EXPR:
3257 case RSHIFT_EXPR:
3258 case LROTATE_EXPR:
3259 case RROTATE_EXPR:
3260 case BIT_IOR_EXPR:
3261 case BIT_XOR_EXPR:
3262 case BIT_AND_EXPR:
3263 CHECK_OP (0, "invalid operand to binary operator");
3264 CHECK_OP (1, "invalid operand to binary operator");
3265 break;
3267 case CONSTRUCTOR:
3268 if (TREE_CONSTANT (t) && TREE_CODE (TREE_TYPE (t)) == VECTOR_TYPE)
3269 *walk_subtrees = 0;
3270 break;
3272 case CASE_LABEL_EXPR:
3273 if (CASE_CHAIN (t))
3275 error ("invalid CASE_CHAIN");
3276 return t;
3278 break;
3280 default:
3281 break;
3283 return NULL;
3285 #undef CHECK_OP
3289 /* Verify if EXPR is either a GIMPLE ID or a GIMPLE indirect reference.
3290 Returns true if there is an error, otherwise false. */
3292 static bool
3293 verify_types_in_gimple_min_lval (tree expr)
3295 tree op;
3297 if (is_gimple_id (expr))
3298 return false;
3300 if (TREE_CODE (expr) != TARGET_MEM_REF
3301 && TREE_CODE (expr) != MEM_REF)
3303 error ("invalid expression for min lvalue");
3304 return true;
3307 /* TARGET_MEM_REFs are strange beasts. */
3308 if (TREE_CODE (expr) == TARGET_MEM_REF)
3309 return false;
3311 op = TREE_OPERAND (expr, 0);
3312 if (!is_gimple_val (op))
3314 error ("invalid operand in indirect reference");
3315 debug_generic_stmt (op);
3316 return true;
3318 /* Memory references now generally can involve a value conversion. */
3320 return false;
3323 /* Verify if EXPR is a valid GIMPLE reference expression. If
3324 REQUIRE_LVALUE is true verifies it is an lvalue. Returns true
3325 if there is an error, otherwise false. */
3327 static bool
3328 verify_types_in_gimple_reference (tree expr, bool require_lvalue)
3330 while (handled_component_p (expr))
3332 tree op = TREE_OPERAND (expr, 0);
3334 if (TREE_CODE (expr) == ARRAY_REF
3335 || TREE_CODE (expr) == ARRAY_RANGE_REF)
3337 if (!is_gimple_val (TREE_OPERAND (expr, 1))
3338 || (TREE_OPERAND (expr, 2)
3339 && !is_gimple_val (TREE_OPERAND (expr, 2)))
3340 || (TREE_OPERAND (expr, 3)
3341 && !is_gimple_val (TREE_OPERAND (expr, 3))))
3343 error ("invalid operands to array reference");
3344 debug_generic_stmt (expr);
3345 return true;
3349 /* Verify if the reference array element types are compatible. */
3350 if (TREE_CODE (expr) == ARRAY_REF
3351 && !useless_type_conversion_p (TREE_TYPE (expr),
3352 TREE_TYPE (TREE_TYPE (op))))
3354 error ("type mismatch in array reference");
3355 debug_generic_stmt (TREE_TYPE (expr));
3356 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3357 return true;
3359 if (TREE_CODE (expr) == ARRAY_RANGE_REF
3360 && !useless_type_conversion_p (TREE_TYPE (TREE_TYPE (expr)),
3361 TREE_TYPE (TREE_TYPE (op))))
3363 error ("type mismatch in array range reference");
3364 debug_generic_stmt (TREE_TYPE (TREE_TYPE (expr)));
3365 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3366 return true;
3369 if ((TREE_CODE (expr) == REALPART_EXPR
3370 || TREE_CODE (expr) == IMAGPART_EXPR)
3371 && !useless_type_conversion_p (TREE_TYPE (expr),
3372 TREE_TYPE (TREE_TYPE (op))))
3374 error ("type mismatch in real/imagpart reference");
3375 debug_generic_stmt (TREE_TYPE (expr));
3376 debug_generic_stmt (TREE_TYPE (TREE_TYPE (op)));
3377 return true;
3380 if (TREE_CODE (expr) == COMPONENT_REF
3381 && !useless_type_conversion_p (TREE_TYPE (expr),
3382 TREE_TYPE (TREE_OPERAND (expr, 1))))
3384 error ("type mismatch in component reference");
3385 debug_generic_stmt (TREE_TYPE (expr));
3386 debug_generic_stmt (TREE_TYPE (TREE_OPERAND (expr, 1)));
3387 return true;
3390 if (TREE_CODE (expr) == VIEW_CONVERT_EXPR)
3392 /* For VIEW_CONVERT_EXPRs which are allowed here too, we only check
3393 that their operand is not an SSA name or an invariant when
3394 requiring an lvalue (this usually means there is a SRA or IPA-SRA
3395 bug). Otherwise there is nothing to verify, gross mismatches at
3396 most invoke undefined behavior. */
3397 if (require_lvalue
3398 && (TREE_CODE (op) == SSA_NAME
3399 || is_gimple_min_invariant (op)))
3401 error ("conversion of an SSA_NAME on the left hand side");
3402 debug_generic_stmt (expr);
3403 return true;
3405 else if (TREE_CODE (op) == SSA_NAME
3406 && TYPE_SIZE (TREE_TYPE (expr)) != TYPE_SIZE (TREE_TYPE (op)))
3408 error ("conversion of register to a different size");
3409 debug_generic_stmt (expr);
3410 return true;
3412 else if (!handled_component_p (op))
3413 return false;
3416 expr = op;
3419 if (TREE_CODE (expr) == MEM_REF)
3421 if (!is_gimple_mem_ref_addr (TREE_OPERAND (expr, 0)))
3423 error ("invalid address operand in MEM_REF");
3424 debug_generic_stmt (expr);
3425 return true;
3427 if (TREE_CODE (TREE_OPERAND (expr, 1)) != INTEGER_CST
3428 || !POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1))))
3430 error ("invalid offset operand in MEM_REF");
3431 debug_generic_stmt (expr);
3432 return true;
3435 else if (TREE_CODE (expr) == TARGET_MEM_REF)
3437 if (!TMR_BASE (expr)
3438 || !is_gimple_mem_ref_addr (TMR_BASE (expr)))
3440 error ("invalid address operand in TARGET_MEM_REF");
3441 return true;
3443 if (!TMR_OFFSET (expr)
3444 || TREE_CODE (TMR_OFFSET (expr)) != INTEGER_CST
3445 || !POINTER_TYPE_P (TREE_TYPE (TMR_OFFSET (expr))))
3447 error ("invalid offset operand in TARGET_MEM_REF");
3448 debug_generic_stmt (expr);
3449 return true;
3453 return ((require_lvalue || !is_gimple_min_invariant (expr))
3454 && verify_types_in_gimple_min_lval (expr));
3457 /* Returns true if there is one pointer type in TYPE_POINTER_TO (SRC_OBJ)
3458 list of pointer-to types that is trivially convertible to DEST. */
3460 static bool
3461 one_pointer_to_useless_type_conversion_p (tree dest, tree src_obj)
3463 tree src;
3465 if (!TYPE_POINTER_TO (src_obj))
3466 return true;
3468 for (src = TYPE_POINTER_TO (src_obj); src; src = TYPE_NEXT_PTR_TO (src))
3469 if (useless_type_conversion_p (dest, src))
3470 return true;
3472 return false;
3475 /* Return true if TYPE1 is a fixed-point type and if conversions to and
3476 from TYPE2 can be handled by FIXED_CONVERT_EXPR. */
3478 static bool
3479 valid_fixed_convert_types_p (tree type1, tree type2)
3481 return (FIXED_POINT_TYPE_P (type1)
3482 && (INTEGRAL_TYPE_P (type2)
3483 || SCALAR_FLOAT_TYPE_P (type2)
3484 || FIXED_POINT_TYPE_P (type2)));
3487 /* Verify the contents of a GIMPLE_CALL STMT. Returns true when there
3488 is a problem, otherwise false. */
3490 static bool
3491 verify_gimple_call (gcall *stmt)
3493 tree fn = gimple_call_fn (stmt);
3494 tree fntype, fndecl;
3495 unsigned i;
3497 if (gimple_call_internal_p (stmt))
3499 if (fn)
3501 error ("gimple call has two targets");
3502 debug_generic_stmt (fn);
3503 return true;
3505 /* FIXME : for passing label as arg in internal fn PHI from GIMPLE FE*/
3506 else if (gimple_call_internal_fn (stmt) == IFN_PHI)
3508 return false;
3511 else
3513 if (!fn)
3515 error ("gimple call has no target");
3516 return true;
3520 if (fn && !is_gimple_call_addr (fn))
3522 error ("invalid function in gimple call");
3523 debug_generic_stmt (fn);
3524 return true;
3527 if (fn
3528 && (!POINTER_TYPE_P (TREE_TYPE (fn))
3529 || (TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != FUNCTION_TYPE
3530 && TREE_CODE (TREE_TYPE (TREE_TYPE (fn))) != METHOD_TYPE)))
3532 error ("non-function in gimple call");
3533 return true;
3536 fndecl = gimple_call_fndecl (stmt);
3537 if (fndecl
3538 && TREE_CODE (fndecl) == FUNCTION_DECL
3539 && DECL_LOOPING_CONST_OR_PURE_P (fndecl)
3540 && !DECL_PURE_P (fndecl)
3541 && !TREE_READONLY (fndecl))
3543 error ("invalid pure const state for function");
3544 return true;
3547 tree lhs = gimple_call_lhs (stmt);
3548 if (lhs
3549 && (!is_gimple_lvalue (lhs)
3550 || verify_types_in_gimple_reference (lhs, true)))
3552 error ("invalid LHS in gimple call");
3553 return true;
3556 if (gimple_call_ctrl_altering_p (stmt)
3557 && gimple_call_noreturn_p (stmt)
3558 && should_remove_lhs_p (lhs))
3560 error ("LHS in noreturn call");
3561 return true;
3564 fntype = gimple_call_fntype (stmt);
3565 if (fntype
3566 && lhs
3567 && !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (fntype))
3568 /* ??? At least C++ misses conversions at assignments from
3569 void * call results.
3570 For now simply allow arbitrary pointer type conversions. */
3571 && !(POINTER_TYPE_P (TREE_TYPE (lhs))
3572 && POINTER_TYPE_P (TREE_TYPE (fntype))))
3574 error ("invalid conversion in gimple call");
3575 debug_generic_stmt (TREE_TYPE (lhs));
3576 debug_generic_stmt (TREE_TYPE (fntype));
3577 return true;
3580 if (gimple_call_chain (stmt)
3581 && !is_gimple_val (gimple_call_chain (stmt)))
3583 error ("invalid static chain in gimple call");
3584 debug_generic_stmt (gimple_call_chain (stmt));
3585 return true;
3588 /* If there is a static chain argument, the call should either be
3589 indirect, or the decl should have DECL_STATIC_CHAIN set. */
3590 if (gimple_call_chain (stmt)
3591 && fndecl
3592 && !DECL_STATIC_CHAIN (fndecl))
3594 error ("static chain with function that doesn%'t use one");
3595 return true;
3598 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
3600 switch (DECL_FUNCTION_CODE (fndecl))
3602 case BUILT_IN_UNREACHABLE:
3603 case BUILT_IN_TRAP:
3604 if (gimple_call_num_args (stmt) > 0)
3606 /* Built-in unreachable with parameters might not be caught by
3607 undefined behavior sanitizer. Front-ends do check users do not
3608 call them that way but we also produce calls to
3609 __builtin_unreachable internally, for example when IPA figures
3610 out a call cannot happen in a legal program. In such cases,
3611 we must make sure arguments are stripped off. */
3612 error ("__builtin_unreachable or __builtin_trap call with "
3613 "arguments");
3614 return true;
3616 break;
3617 default:
3618 break;
3622 /* ??? The C frontend passes unpromoted arguments in case it
3623 didn't see a function declaration before the call. So for now
3624 leave the call arguments mostly unverified. Once we gimplify
3625 unit-at-a-time we have a chance to fix this. */
3627 for (i = 0; i < gimple_call_num_args (stmt); ++i)
3629 tree arg = gimple_call_arg (stmt, i);
3630 if ((is_gimple_reg_type (TREE_TYPE (arg))
3631 && !is_gimple_val (arg))
3632 || (!is_gimple_reg_type (TREE_TYPE (arg))
3633 && !is_gimple_lvalue (arg)))
3635 error ("invalid argument to gimple call");
3636 debug_generic_expr (arg);
3637 return true;
3641 return false;
3644 /* Verifies the gimple comparison with the result type TYPE and
3645 the operands OP0 and OP1, comparison code is CODE. */
3647 static bool
3648 verify_gimple_comparison (tree type, tree op0, tree op1, enum tree_code code)
3650 tree op0_type = TREE_TYPE (op0);
3651 tree op1_type = TREE_TYPE (op1);
3653 if (!is_gimple_val (op0) || !is_gimple_val (op1))
3655 error ("invalid operands in gimple comparison");
3656 return true;
3659 /* For comparisons we do not have the operations type as the
3660 effective type the comparison is carried out in. Instead
3661 we require that either the first operand is trivially
3662 convertible into the second, or the other way around.
3663 Because we special-case pointers to void we allow
3664 comparisons of pointers with the same mode as well. */
3665 if (!useless_type_conversion_p (op0_type, op1_type)
3666 && !useless_type_conversion_p (op1_type, op0_type)
3667 && (!POINTER_TYPE_P (op0_type)
3668 || !POINTER_TYPE_P (op1_type)
3669 || TYPE_MODE (op0_type) != TYPE_MODE (op1_type)))
3671 error ("mismatching comparison operand types");
3672 debug_generic_expr (op0_type);
3673 debug_generic_expr (op1_type);
3674 return true;
3677 /* The resulting type of a comparison may be an effective boolean type. */
3678 if (INTEGRAL_TYPE_P (type)
3679 && (TREE_CODE (type) == BOOLEAN_TYPE
3680 || TYPE_PRECISION (type) == 1))
3682 if ((TREE_CODE (op0_type) == VECTOR_TYPE
3683 || TREE_CODE (op1_type) == VECTOR_TYPE)
3684 && code != EQ_EXPR && code != NE_EXPR
3685 && !VECTOR_BOOLEAN_TYPE_P (op0_type)
3686 && !VECTOR_INTEGER_TYPE_P (op0_type))
3688 error ("unsupported operation or type for vector comparison"
3689 " returning a boolean");
3690 debug_generic_expr (op0_type);
3691 debug_generic_expr (op1_type);
3692 return true;
3695 /* Or a boolean vector type with the same element count
3696 as the comparison operand types. */
3697 else if (TREE_CODE (type) == VECTOR_TYPE
3698 && TREE_CODE (TREE_TYPE (type)) == BOOLEAN_TYPE)
3700 if (TREE_CODE (op0_type) != VECTOR_TYPE
3701 || TREE_CODE (op1_type) != VECTOR_TYPE)
3703 error ("non-vector operands in vector comparison");
3704 debug_generic_expr (op0_type);
3705 debug_generic_expr (op1_type);
3706 return true;
3709 if (TYPE_VECTOR_SUBPARTS (type) != TYPE_VECTOR_SUBPARTS (op0_type))
3711 error ("invalid vector comparison resulting type");
3712 debug_generic_expr (type);
3713 return true;
3716 else
3718 error ("bogus comparison result type");
3719 debug_generic_expr (type);
3720 return true;
3723 return false;
3726 /* Verify a gimple assignment statement STMT with an unary rhs.
3727 Returns true if anything is wrong. */
3729 static bool
3730 verify_gimple_assign_unary (gassign *stmt)
3732 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3733 tree lhs = gimple_assign_lhs (stmt);
3734 tree lhs_type = TREE_TYPE (lhs);
3735 tree rhs1 = gimple_assign_rhs1 (stmt);
3736 tree rhs1_type = TREE_TYPE (rhs1);
3738 if (!is_gimple_reg (lhs))
3740 error ("non-register as LHS of unary operation");
3741 return true;
3744 if (!is_gimple_val (rhs1))
3746 error ("invalid operand in unary operation");
3747 return true;
3750 /* First handle conversions. */
3751 switch (rhs_code)
3753 CASE_CONVERT:
3755 /* Allow conversions from pointer type to integral type only if
3756 there is no sign or zero extension involved.
3757 For targets were the precision of ptrofftype doesn't match that
3758 of pointers we need to allow arbitrary conversions to ptrofftype. */
3759 if ((POINTER_TYPE_P (lhs_type)
3760 && INTEGRAL_TYPE_P (rhs1_type))
3761 || (POINTER_TYPE_P (rhs1_type)
3762 && INTEGRAL_TYPE_P (lhs_type)
3763 && (TYPE_PRECISION (rhs1_type) >= TYPE_PRECISION (lhs_type)
3764 || ptrofftype_p (sizetype))))
3765 return false;
3767 /* Allow conversion from integral to offset type and vice versa. */
3768 if ((TREE_CODE (lhs_type) == OFFSET_TYPE
3769 && INTEGRAL_TYPE_P (rhs1_type))
3770 || (INTEGRAL_TYPE_P (lhs_type)
3771 && TREE_CODE (rhs1_type) == OFFSET_TYPE))
3772 return false;
3774 /* Otherwise assert we are converting between types of the
3775 same kind. */
3776 if (INTEGRAL_TYPE_P (lhs_type) != INTEGRAL_TYPE_P (rhs1_type))
3778 error ("invalid types in nop conversion");
3779 debug_generic_expr (lhs_type);
3780 debug_generic_expr (rhs1_type);
3781 return true;
3784 return false;
3787 case ADDR_SPACE_CONVERT_EXPR:
3789 if (!POINTER_TYPE_P (rhs1_type) || !POINTER_TYPE_P (lhs_type)
3790 || (TYPE_ADDR_SPACE (TREE_TYPE (rhs1_type))
3791 == TYPE_ADDR_SPACE (TREE_TYPE (lhs_type))))
3793 error ("invalid types in address space conversion");
3794 debug_generic_expr (lhs_type);
3795 debug_generic_expr (rhs1_type);
3796 return true;
3799 return false;
3802 case FIXED_CONVERT_EXPR:
3804 if (!valid_fixed_convert_types_p (lhs_type, rhs1_type)
3805 && !valid_fixed_convert_types_p (rhs1_type, lhs_type))
3807 error ("invalid types in fixed-point conversion");
3808 debug_generic_expr (lhs_type);
3809 debug_generic_expr (rhs1_type);
3810 return true;
3813 return false;
3816 case FLOAT_EXPR:
3818 if ((!INTEGRAL_TYPE_P (rhs1_type) || !SCALAR_FLOAT_TYPE_P (lhs_type))
3819 && (!VECTOR_INTEGER_TYPE_P (rhs1_type)
3820 || !VECTOR_FLOAT_TYPE_P (lhs_type)))
3822 error ("invalid types in conversion to floating point");
3823 debug_generic_expr (lhs_type);
3824 debug_generic_expr (rhs1_type);
3825 return true;
3828 return false;
3831 case FIX_TRUNC_EXPR:
3833 if ((!INTEGRAL_TYPE_P (lhs_type) || !SCALAR_FLOAT_TYPE_P (rhs1_type))
3834 && (!VECTOR_INTEGER_TYPE_P (lhs_type)
3835 || !VECTOR_FLOAT_TYPE_P (rhs1_type)))
3837 error ("invalid types in conversion to integer");
3838 debug_generic_expr (lhs_type);
3839 debug_generic_expr (rhs1_type);
3840 return true;
3843 return false;
3846 case VEC_UNPACK_HI_EXPR:
3847 case VEC_UNPACK_LO_EXPR:
3848 case VEC_UNPACK_FLOAT_HI_EXPR:
3849 case VEC_UNPACK_FLOAT_LO_EXPR:
3850 /* FIXME. */
3851 return false;
3853 case NEGATE_EXPR:
3854 case ABS_EXPR:
3855 case BIT_NOT_EXPR:
3856 case PAREN_EXPR:
3857 case CONJ_EXPR:
3858 break;
3860 default:
3861 gcc_unreachable ();
3864 /* For the remaining codes assert there is no conversion involved. */
3865 if (!useless_type_conversion_p (lhs_type, rhs1_type))
3867 error ("non-trivial conversion in unary operation");
3868 debug_generic_expr (lhs_type);
3869 debug_generic_expr (rhs1_type);
3870 return true;
3873 return false;
3876 /* Verify a gimple assignment statement STMT with a binary rhs.
3877 Returns true if anything is wrong. */
3879 static bool
3880 verify_gimple_assign_binary (gassign *stmt)
3882 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
3883 tree lhs = gimple_assign_lhs (stmt);
3884 tree lhs_type = TREE_TYPE (lhs);
3885 tree rhs1 = gimple_assign_rhs1 (stmt);
3886 tree rhs1_type = TREE_TYPE (rhs1);
3887 tree rhs2 = gimple_assign_rhs2 (stmt);
3888 tree rhs2_type = TREE_TYPE (rhs2);
3890 if (!is_gimple_reg (lhs))
3892 error ("non-register as LHS of binary operation");
3893 return true;
3896 if (!is_gimple_val (rhs1)
3897 || !is_gimple_val (rhs2))
3899 error ("invalid operands in binary operation");
3900 return true;
3903 /* First handle operations that involve different types. */
3904 switch (rhs_code)
3906 case COMPLEX_EXPR:
3908 if (TREE_CODE (lhs_type) != COMPLEX_TYPE
3909 || !(INTEGRAL_TYPE_P (rhs1_type)
3910 || SCALAR_FLOAT_TYPE_P (rhs1_type))
3911 || !(INTEGRAL_TYPE_P (rhs2_type)
3912 || SCALAR_FLOAT_TYPE_P (rhs2_type)))
3914 error ("type mismatch in complex expression");
3915 debug_generic_expr (lhs_type);
3916 debug_generic_expr (rhs1_type);
3917 debug_generic_expr (rhs2_type);
3918 return true;
3921 return false;
3924 case LSHIFT_EXPR:
3925 case RSHIFT_EXPR:
3926 case LROTATE_EXPR:
3927 case RROTATE_EXPR:
3929 /* Shifts and rotates are ok on integral types, fixed point
3930 types and integer vector types. */
3931 if ((!INTEGRAL_TYPE_P (rhs1_type)
3932 && !FIXED_POINT_TYPE_P (rhs1_type)
3933 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3934 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))))
3935 || (!INTEGRAL_TYPE_P (rhs2_type)
3936 /* Vector shifts of vectors are also ok. */
3937 && !(TREE_CODE (rhs1_type) == VECTOR_TYPE
3938 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3939 && TREE_CODE (rhs2_type) == VECTOR_TYPE
3940 && INTEGRAL_TYPE_P (TREE_TYPE (rhs2_type))))
3941 || !useless_type_conversion_p (lhs_type, rhs1_type))
3943 error ("type mismatch in shift expression");
3944 debug_generic_expr (lhs_type);
3945 debug_generic_expr (rhs1_type);
3946 debug_generic_expr (rhs2_type);
3947 return true;
3950 return false;
3953 case WIDEN_LSHIFT_EXPR:
3955 if (!INTEGRAL_TYPE_P (lhs_type)
3956 || !INTEGRAL_TYPE_P (rhs1_type)
3957 || TREE_CODE (rhs2) != INTEGER_CST
3958 || (2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)))
3960 error ("type mismatch in widening vector shift expression");
3961 debug_generic_expr (lhs_type);
3962 debug_generic_expr (rhs1_type);
3963 debug_generic_expr (rhs2_type);
3964 return true;
3967 return false;
3970 case VEC_WIDEN_LSHIFT_HI_EXPR:
3971 case VEC_WIDEN_LSHIFT_LO_EXPR:
3973 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
3974 || TREE_CODE (lhs_type) != VECTOR_TYPE
3975 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
3976 || !INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))
3977 || TREE_CODE (rhs2) != INTEGER_CST
3978 || (2 * TYPE_PRECISION (TREE_TYPE (rhs1_type))
3979 > TYPE_PRECISION (TREE_TYPE (lhs_type))))
3981 error ("type mismatch in widening vector shift expression");
3982 debug_generic_expr (lhs_type);
3983 debug_generic_expr (rhs1_type);
3984 debug_generic_expr (rhs2_type);
3985 return true;
3988 return false;
3991 case PLUS_EXPR:
3992 case MINUS_EXPR:
3994 tree lhs_etype = lhs_type;
3995 tree rhs1_etype = rhs1_type;
3996 tree rhs2_etype = rhs2_type;
3997 if (TREE_CODE (lhs_type) == VECTOR_TYPE)
3999 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4000 || TREE_CODE (rhs2_type) != VECTOR_TYPE)
4002 error ("invalid non-vector operands to vector valued plus");
4003 return true;
4005 lhs_etype = TREE_TYPE (lhs_type);
4006 rhs1_etype = TREE_TYPE (rhs1_type);
4007 rhs2_etype = TREE_TYPE (rhs2_type);
4009 if (POINTER_TYPE_P (lhs_etype)
4010 || POINTER_TYPE_P (rhs1_etype)
4011 || POINTER_TYPE_P (rhs2_etype))
4013 error ("invalid (pointer) operands to plus/minus");
4014 return true;
4017 /* Continue with generic binary expression handling. */
4018 break;
4021 case POINTER_PLUS_EXPR:
4023 if (!POINTER_TYPE_P (rhs1_type)
4024 || !useless_type_conversion_p (lhs_type, rhs1_type)
4025 || !ptrofftype_p (rhs2_type))
4027 error ("type mismatch in pointer plus expression");
4028 debug_generic_stmt (lhs_type);
4029 debug_generic_stmt (rhs1_type);
4030 debug_generic_stmt (rhs2_type);
4031 return true;
4034 return false;
4037 case POINTER_DIFF_EXPR:
4039 if (!POINTER_TYPE_P (rhs1_type)
4040 || !POINTER_TYPE_P (rhs2_type)
4041 /* Because we special-case pointers to void we allow difference
4042 of arbitrary pointers with the same mode. */
4043 || TYPE_MODE (rhs1_type) != TYPE_MODE (rhs2_type)
4044 || TREE_CODE (lhs_type) != INTEGER_TYPE
4045 || TYPE_UNSIGNED (lhs_type)
4046 || TYPE_PRECISION (lhs_type) != TYPE_PRECISION (rhs1_type))
4048 error ("type mismatch in pointer diff expression");
4049 debug_generic_stmt (lhs_type);
4050 debug_generic_stmt (rhs1_type);
4051 debug_generic_stmt (rhs2_type);
4052 return true;
4055 return false;
4058 case TRUTH_ANDIF_EXPR:
4059 case TRUTH_ORIF_EXPR:
4060 case TRUTH_AND_EXPR:
4061 case TRUTH_OR_EXPR:
4062 case TRUTH_XOR_EXPR:
4064 gcc_unreachable ();
4066 case LT_EXPR:
4067 case LE_EXPR:
4068 case GT_EXPR:
4069 case GE_EXPR:
4070 case EQ_EXPR:
4071 case NE_EXPR:
4072 case UNORDERED_EXPR:
4073 case ORDERED_EXPR:
4074 case UNLT_EXPR:
4075 case UNLE_EXPR:
4076 case UNGT_EXPR:
4077 case UNGE_EXPR:
4078 case UNEQ_EXPR:
4079 case LTGT_EXPR:
4080 /* Comparisons are also binary, but the result type is not
4081 connected to the operand types. */
4082 return verify_gimple_comparison (lhs_type, rhs1, rhs2, rhs_code);
4084 case WIDEN_MULT_EXPR:
4085 if (TREE_CODE (lhs_type) != INTEGER_TYPE)
4086 return true;
4087 return ((2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type))
4088 || (TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type)));
4090 case WIDEN_SUM_EXPR:
4092 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4093 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4094 && ((!INTEGRAL_TYPE_P (rhs1_type)
4095 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4096 || (!INTEGRAL_TYPE_P (lhs_type)
4097 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4098 || !useless_type_conversion_p (lhs_type, rhs2_type)
4099 || (GET_MODE_SIZE (element_mode (rhs2_type))
4100 < 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4102 error ("type mismatch in widening sum reduction");
4103 debug_generic_expr (lhs_type);
4104 debug_generic_expr (rhs1_type);
4105 debug_generic_expr (rhs2_type);
4106 return true;
4108 return false;
4111 case VEC_WIDEN_MULT_HI_EXPR:
4112 case VEC_WIDEN_MULT_LO_EXPR:
4113 case VEC_WIDEN_MULT_EVEN_EXPR:
4114 case VEC_WIDEN_MULT_ODD_EXPR:
4116 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4117 || TREE_CODE (lhs_type) != VECTOR_TYPE
4118 || !types_compatible_p (rhs1_type, rhs2_type)
4119 || (GET_MODE_SIZE (element_mode (lhs_type))
4120 != 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4122 error ("type mismatch in vector widening multiplication");
4123 debug_generic_expr (lhs_type);
4124 debug_generic_expr (rhs1_type);
4125 debug_generic_expr (rhs2_type);
4126 return true;
4128 return false;
4131 case VEC_PACK_TRUNC_EXPR:
4132 /* ??? We currently use VEC_PACK_TRUNC_EXPR to simply concat
4133 vector boolean types. */
4134 if (VECTOR_BOOLEAN_TYPE_P (lhs_type)
4135 && VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4136 && types_compatible_p (rhs1_type, rhs2_type)
4137 && (TYPE_VECTOR_SUBPARTS (lhs_type)
4138 == 2 * TYPE_VECTOR_SUBPARTS (rhs1_type)))
4139 return false;
4141 /* Fallthru. */
4142 case VEC_PACK_SAT_EXPR:
4143 case VEC_PACK_FIX_TRUNC_EXPR:
4145 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4146 || TREE_CODE (lhs_type) != VECTOR_TYPE
4147 || !((rhs_code == VEC_PACK_FIX_TRUNC_EXPR
4148 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (rhs1_type))
4149 && INTEGRAL_TYPE_P (TREE_TYPE (lhs_type)))
4150 || (INTEGRAL_TYPE_P (TREE_TYPE (rhs1_type))
4151 == INTEGRAL_TYPE_P (TREE_TYPE (lhs_type))))
4152 || !types_compatible_p (rhs1_type, rhs2_type)
4153 || (GET_MODE_SIZE (element_mode (rhs1_type))
4154 != 2 * GET_MODE_SIZE (element_mode (lhs_type))))
4156 error ("type mismatch in vector pack expression");
4157 debug_generic_expr (lhs_type);
4158 debug_generic_expr (rhs1_type);
4159 debug_generic_expr (rhs2_type);
4160 return true;
4163 return false;
4166 case MULT_EXPR:
4167 case MULT_HIGHPART_EXPR:
4168 case TRUNC_DIV_EXPR:
4169 case CEIL_DIV_EXPR:
4170 case FLOOR_DIV_EXPR:
4171 case ROUND_DIV_EXPR:
4172 case TRUNC_MOD_EXPR:
4173 case CEIL_MOD_EXPR:
4174 case FLOOR_MOD_EXPR:
4175 case ROUND_MOD_EXPR:
4176 case RDIV_EXPR:
4177 case EXACT_DIV_EXPR:
4178 case MIN_EXPR:
4179 case MAX_EXPR:
4180 case BIT_IOR_EXPR:
4181 case BIT_XOR_EXPR:
4182 case BIT_AND_EXPR:
4183 /* Continue with generic binary expression handling. */
4184 break;
4186 default:
4187 gcc_unreachable ();
4190 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4191 || !useless_type_conversion_p (lhs_type, rhs2_type))
4193 error ("type mismatch in binary expression");
4194 debug_generic_stmt (lhs_type);
4195 debug_generic_stmt (rhs1_type);
4196 debug_generic_stmt (rhs2_type);
4197 return true;
4200 return false;
4203 /* Verify a gimple assignment statement STMT with a ternary rhs.
4204 Returns true if anything is wrong. */
4206 static bool
4207 verify_gimple_assign_ternary (gassign *stmt)
4209 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4210 tree lhs = gimple_assign_lhs (stmt);
4211 tree lhs_type = TREE_TYPE (lhs);
4212 tree rhs1 = gimple_assign_rhs1 (stmt);
4213 tree rhs1_type = TREE_TYPE (rhs1);
4214 tree rhs2 = gimple_assign_rhs2 (stmt);
4215 tree rhs2_type = TREE_TYPE (rhs2);
4216 tree rhs3 = gimple_assign_rhs3 (stmt);
4217 tree rhs3_type = TREE_TYPE (rhs3);
4219 if (!is_gimple_reg (lhs))
4221 error ("non-register as LHS of ternary operation");
4222 return true;
4225 if (((rhs_code == VEC_COND_EXPR || rhs_code == COND_EXPR)
4226 ? !is_gimple_condexpr (rhs1) : !is_gimple_val (rhs1))
4227 || !is_gimple_val (rhs2)
4228 || !is_gimple_val (rhs3))
4230 error ("invalid operands in ternary operation");
4231 return true;
4234 /* First handle operations that involve different types. */
4235 switch (rhs_code)
4237 case WIDEN_MULT_PLUS_EXPR:
4238 case WIDEN_MULT_MINUS_EXPR:
4239 if ((!INTEGRAL_TYPE_P (rhs1_type)
4240 && !FIXED_POINT_TYPE_P (rhs1_type))
4241 || !useless_type_conversion_p (rhs1_type, rhs2_type)
4242 || !useless_type_conversion_p (lhs_type, rhs3_type)
4243 || 2 * TYPE_PRECISION (rhs1_type) > TYPE_PRECISION (lhs_type)
4244 || TYPE_PRECISION (rhs1_type) != TYPE_PRECISION (rhs2_type))
4246 error ("type mismatch in widening multiply-accumulate expression");
4247 debug_generic_expr (lhs_type);
4248 debug_generic_expr (rhs1_type);
4249 debug_generic_expr (rhs2_type);
4250 debug_generic_expr (rhs3_type);
4251 return true;
4253 break;
4255 case FMA_EXPR:
4256 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4257 || !useless_type_conversion_p (lhs_type, rhs2_type)
4258 || !useless_type_conversion_p (lhs_type, rhs3_type))
4260 error ("type mismatch in fused multiply-add expression");
4261 debug_generic_expr (lhs_type);
4262 debug_generic_expr (rhs1_type);
4263 debug_generic_expr (rhs2_type);
4264 debug_generic_expr (rhs3_type);
4265 return true;
4267 break;
4269 case VEC_COND_EXPR:
4270 if (!VECTOR_BOOLEAN_TYPE_P (rhs1_type)
4271 || TYPE_VECTOR_SUBPARTS (rhs1_type)
4272 != TYPE_VECTOR_SUBPARTS (lhs_type))
4274 error ("the first argument of a VEC_COND_EXPR must be of a "
4275 "boolean vector type of the same number of elements "
4276 "as the result");
4277 debug_generic_expr (lhs_type);
4278 debug_generic_expr (rhs1_type);
4279 return true;
4281 /* Fallthrough. */
4282 case COND_EXPR:
4283 if (!useless_type_conversion_p (lhs_type, rhs2_type)
4284 || !useless_type_conversion_p (lhs_type, rhs3_type))
4286 error ("type mismatch in conditional expression");
4287 debug_generic_expr (lhs_type);
4288 debug_generic_expr (rhs2_type);
4289 debug_generic_expr (rhs3_type);
4290 return true;
4292 break;
4294 case VEC_PERM_EXPR:
4295 if (!useless_type_conversion_p (lhs_type, rhs1_type)
4296 || !useless_type_conversion_p (lhs_type, rhs2_type))
4298 error ("type mismatch in vector permute expression");
4299 debug_generic_expr (lhs_type);
4300 debug_generic_expr (rhs1_type);
4301 debug_generic_expr (rhs2_type);
4302 debug_generic_expr (rhs3_type);
4303 return true;
4306 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4307 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4308 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4310 error ("vector types expected in vector permute expression");
4311 debug_generic_expr (lhs_type);
4312 debug_generic_expr (rhs1_type);
4313 debug_generic_expr (rhs2_type);
4314 debug_generic_expr (rhs3_type);
4315 return true;
4318 if (TYPE_VECTOR_SUBPARTS (rhs1_type) != TYPE_VECTOR_SUBPARTS (rhs2_type)
4319 || TYPE_VECTOR_SUBPARTS (rhs2_type)
4320 != TYPE_VECTOR_SUBPARTS (rhs3_type)
4321 || TYPE_VECTOR_SUBPARTS (rhs3_type)
4322 != TYPE_VECTOR_SUBPARTS (lhs_type))
4324 error ("vectors with different element number found "
4325 "in vector permute expression");
4326 debug_generic_expr (lhs_type);
4327 debug_generic_expr (rhs1_type);
4328 debug_generic_expr (rhs2_type);
4329 debug_generic_expr (rhs3_type);
4330 return true;
4333 if (TREE_CODE (TREE_TYPE (rhs3_type)) != INTEGER_TYPE
4334 || GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (TREE_TYPE (rhs3_type)))
4335 != GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (rhs1_type))))
4337 error ("invalid mask type in vector permute expression");
4338 debug_generic_expr (lhs_type);
4339 debug_generic_expr (rhs1_type);
4340 debug_generic_expr (rhs2_type);
4341 debug_generic_expr (rhs3_type);
4342 return true;
4345 return false;
4347 case SAD_EXPR:
4348 if (!useless_type_conversion_p (rhs1_type, rhs2_type)
4349 || !useless_type_conversion_p (lhs_type, rhs3_type)
4350 || 2 * GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (rhs1_type)))
4351 > GET_MODE_UNIT_BITSIZE (TYPE_MODE (TREE_TYPE (lhs_type))))
4353 error ("type mismatch in sad expression");
4354 debug_generic_expr (lhs_type);
4355 debug_generic_expr (rhs1_type);
4356 debug_generic_expr (rhs2_type);
4357 debug_generic_expr (rhs3_type);
4358 return true;
4361 if (TREE_CODE (rhs1_type) != VECTOR_TYPE
4362 || TREE_CODE (rhs2_type) != VECTOR_TYPE
4363 || TREE_CODE (rhs3_type) != VECTOR_TYPE)
4365 error ("vector types expected in sad expression");
4366 debug_generic_expr (lhs_type);
4367 debug_generic_expr (rhs1_type);
4368 debug_generic_expr (rhs2_type);
4369 debug_generic_expr (rhs3_type);
4370 return true;
4373 return false;
4375 case BIT_INSERT_EXPR:
4376 if (! useless_type_conversion_p (lhs_type, rhs1_type))
4378 error ("type mismatch in BIT_INSERT_EXPR");
4379 debug_generic_expr (lhs_type);
4380 debug_generic_expr (rhs1_type);
4381 return true;
4383 if (! ((INTEGRAL_TYPE_P (rhs1_type)
4384 && INTEGRAL_TYPE_P (rhs2_type))
4385 || (VECTOR_TYPE_P (rhs1_type)
4386 && types_compatible_p (TREE_TYPE (rhs1_type), rhs2_type))))
4388 error ("not allowed type combination in BIT_INSERT_EXPR");
4389 debug_generic_expr (rhs1_type);
4390 debug_generic_expr (rhs2_type);
4391 return true;
4393 if (! tree_fits_uhwi_p (rhs3)
4394 || ! types_compatible_p (bitsizetype, TREE_TYPE (rhs3))
4395 || ! tree_fits_uhwi_p (TYPE_SIZE (rhs2_type)))
4397 error ("invalid position or size in BIT_INSERT_EXPR");
4398 return true;
4400 if (INTEGRAL_TYPE_P (rhs1_type))
4402 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4403 if (bitpos >= TYPE_PRECISION (rhs1_type)
4404 || (bitpos + TYPE_PRECISION (rhs2_type)
4405 > TYPE_PRECISION (rhs1_type)))
4407 error ("insertion out of range in BIT_INSERT_EXPR");
4408 return true;
4411 else if (VECTOR_TYPE_P (rhs1_type))
4413 unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (rhs3);
4414 unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (TYPE_SIZE (rhs2_type));
4415 if (bitpos % bitsize != 0)
4417 error ("vector insertion not at element boundary");
4418 return true;
4421 return false;
4423 case DOT_PROD_EXPR:
4425 if (((TREE_CODE (rhs1_type) != VECTOR_TYPE
4426 || TREE_CODE (lhs_type) != VECTOR_TYPE)
4427 && ((!INTEGRAL_TYPE_P (rhs1_type)
4428 && !SCALAR_FLOAT_TYPE_P (rhs1_type))
4429 || (!INTEGRAL_TYPE_P (lhs_type)
4430 && !SCALAR_FLOAT_TYPE_P (lhs_type))))
4431 || !types_compatible_p (rhs1_type, rhs2_type)
4432 || !useless_type_conversion_p (lhs_type, rhs3_type)
4433 || (GET_MODE_SIZE (element_mode (rhs3_type))
4434 < 2 * GET_MODE_SIZE (element_mode (rhs1_type))))
4436 error ("type mismatch in dot product reduction");
4437 debug_generic_expr (lhs_type);
4438 debug_generic_expr (rhs1_type);
4439 debug_generic_expr (rhs2_type);
4440 return true;
4442 return false;
4445 case REALIGN_LOAD_EXPR:
4446 /* FIXME. */
4447 return false;
4449 default:
4450 gcc_unreachable ();
4452 return false;
4455 /* Verify a gimple assignment statement STMT with a single rhs.
4456 Returns true if anything is wrong. */
4458 static bool
4459 verify_gimple_assign_single (gassign *stmt)
4461 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
4462 tree lhs = gimple_assign_lhs (stmt);
4463 tree lhs_type = TREE_TYPE (lhs);
4464 tree rhs1 = gimple_assign_rhs1 (stmt);
4465 tree rhs1_type = TREE_TYPE (rhs1);
4466 bool res = false;
4468 if (!useless_type_conversion_p (lhs_type, rhs1_type))
4470 error ("non-trivial conversion at assignment");
4471 debug_generic_expr (lhs_type);
4472 debug_generic_expr (rhs1_type);
4473 return true;
4476 if (gimple_clobber_p (stmt)
4477 && !(DECL_P (lhs) || TREE_CODE (lhs) == MEM_REF))
4479 error ("non-decl/MEM_REF LHS in clobber statement");
4480 debug_generic_expr (lhs);
4481 return true;
4484 if (handled_component_p (lhs)
4485 || TREE_CODE (lhs) == MEM_REF
4486 || TREE_CODE (lhs) == TARGET_MEM_REF)
4487 res |= verify_types_in_gimple_reference (lhs, true);
4489 /* Special codes we cannot handle via their class. */
4490 switch (rhs_code)
4492 case ADDR_EXPR:
4494 tree op = TREE_OPERAND (rhs1, 0);
4495 if (!is_gimple_addressable (op))
4497 error ("invalid operand in unary expression");
4498 return true;
4501 /* Technically there is no longer a need for matching types, but
4502 gimple hygiene asks for this check. In LTO we can end up
4503 combining incompatible units and thus end up with addresses
4504 of globals that change their type to a common one. */
4505 if (!in_lto_p
4506 && !types_compatible_p (TREE_TYPE (op),
4507 TREE_TYPE (TREE_TYPE (rhs1)))
4508 && !one_pointer_to_useless_type_conversion_p (TREE_TYPE (rhs1),
4509 TREE_TYPE (op)))
4511 error ("type mismatch in address expression");
4512 debug_generic_stmt (TREE_TYPE (rhs1));
4513 debug_generic_stmt (TREE_TYPE (op));
4514 return true;
4517 return verify_types_in_gimple_reference (op, true);
4520 /* tcc_reference */
4521 case INDIRECT_REF:
4522 error ("INDIRECT_REF in gimple IL");
4523 return true;
4525 case COMPONENT_REF:
4526 case BIT_FIELD_REF:
4527 case ARRAY_REF:
4528 case ARRAY_RANGE_REF:
4529 case VIEW_CONVERT_EXPR:
4530 case REALPART_EXPR:
4531 case IMAGPART_EXPR:
4532 case TARGET_MEM_REF:
4533 case MEM_REF:
4534 if (!is_gimple_reg (lhs)
4535 && is_gimple_reg_type (TREE_TYPE (lhs)))
4537 error ("invalid rhs for gimple memory store");
4538 debug_generic_stmt (lhs);
4539 debug_generic_stmt (rhs1);
4540 return true;
4542 return res || verify_types_in_gimple_reference (rhs1, false);
4544 /* tcc_constant */
4545 case SSA_NAME:
4546 case INTEGER_CST:
4547 case REAL_CST:
4548 case FIXED_CST:
4549 case COMPLEX_CST:
4550 case VECTOR_CST:
4551 case STRING_CST:
4552 return res;
4554 /* tcc_declaration */
4555 case CONST_DECL:
4556 return res;
4557 case VAR_DECL:
4558 case PARM_DECL:
4559 if (!is_gimple_reg (lhs)
4560 && !is_gimple_reg (rhs1)
4561 && is_gimple_reg_type (TREE_TYPE (lhs)))
4563 error ("invalid rhs for gimple memory store");
4564 debug_generic_stmt (lhs);
4565 debug_generic_stmt (rhs1);
4566 return true;
4568 return res;
4570 case CONSTRUCTOR:
4571 if (TREE_CODE (rhs1_type) == VECTOR_TYPE)
4573 unsigned int i;
4574 tree elt_i, elt_v, elt_t = NULL_TREE;
4576 if (CONSTRUCTOR_NELTS (rhs1) == 0)
4577 return res;
4578 /* For vector CONSTRUCTORs we require that either it is empty
4579 CONSTRUCTOR, or it is a CONSTRUCTOR of smaller vector elements
4580 (then the element count must be correct to cover the whole
4581 outer vector and index must be NULL on all elements, or it is
4582 a CONSTRUCTOR of scalar elements, where we as an exception allow
4583 smaller number of elements (assuming zero filling) and
4584 consecutive indexes as compared to NULL indexes (such
4585 CONSTRUCTORs can appear in the IL from FEs). */
4586 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (rhs1), i, elt_i, elt_v)
4588 if (elt_t == NULL_TREE)
4590 elt_t = TREE_TYPE (elt_v);
4591 if (TREE_CODE (elt_t) == VECTOR_TYPE)
4593 tree elt_t = TREE_TYPE (elt_v);
4594 if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4595 TREE_TYPE (elt_t)))
4597 error ("incorrect type of vector CONSTRUCTOR"
4598 " elements");
4599 debug_generic_stmt (rhs1);
4600 return true;
4602 else if (CONSTRUCTOR_NELTS (rhs1)
4603 * TYPE_VECTOR_SUBPARTS (elt_t)
4604 != TYPE_VECTOR_SUBPARTS (rhs1_type))
4606 error ("incorrect number of vector CONSTRUCTOR"
4607 " elements");
4608 debug_generic_stmt (rhs1);
4609 return true;
4612 else if (!useless_type_conversion_p (TREE_TYPE (rhs1_type),
4613 elt_t))
4615 error ("incorrect type of vector CONSTRUCTOR elements");
4616 debug_generic_stmt (rhs1);
4617 return true;
4619 else if (CONSTRUCTOR_NELTS (rhs1)
4620 > TYPE_VECTOR_SUBPARTS (rhs1_type))
4622 error ("incorrect number of vector CONSTRUCTOR elements");
4623 debug_generic_stmt (rhs1);
4624 return true;
4627 else if (!useless_type_conversion_p (elt_t, TREE_TYPE (elt_v)))
4629 error ("incorrect type of vector CONSTRUCTOR elements");
4630 debug_generic_stmt (rhs1);
4631 return true;
4633 if (elt_i != NULL_TREE
4634 && (TREE_CODE (elt_t) == VECTOR_TYPE
4635 || TREE_CODE (elt_i) != INTEGER_CST
4636 || compare_tree_int (elt_i, i) != 0))
4638 error ("vector CONSTRUCTOR with non-NULL element index");
4639 debug_generic_stmt (rhs1);
4640 return true;
4642 if (!is_gimple_val (elt_v))
4644 error ("vector CONSTRUCTOR element is not a GIMPLE value");
4645 debug_generic_stmt (rhs1);
4646 return true;
4650 else if (CONSTRUCTOR_NELTS (rhs1) != 0)
4652 error ("non-vector CONSTRUCTOR with elements");
4653 debug_generic_stmt (rhs1);
4654 return true;
4656 return res;
4657 case OBJ_TYPE_REF:
4658 case ASSERT_EXPR:
4659 case WITH_SIZE_EXPR:
4660 /* FIXME. */
4661 return res;
4663 default:;
4666 return res;
4669 /* Verify the contents of a GIMPLE_ASSIGN STMT. Returns true when there
4670 is a problem, otherwise false. */
4672 static bool
4673 verify_gimple_assign (gassign *stmt)
4675 switch (gimple_assign_rhs_class (stmt))
4677 case GIMPLE_SINGLE_RHS:
4678 return verify_gimple_assign_single (stmt);
4680 case GIMPLE_UNARY_RHS:
4681 return verify_gimple_assign_unary (stmt);
4683 case GIMPLE_BINARY_RHS:
4684 return verify_gimple_assign_binary (stmt);
4686 case GIMPLE_TERNARY_RHS:
4687 return verify_gimple_assign_ternary (stmt);
4689 default:
4690 gcc_unreachable ();
4694 /* Verify the contents of a GIMPLE_RETURN STMT. Returns true when there
4695 is a problem, otherwise false. */
4697 static bool
4698 verify_gimple_return (greturn *stmt)
4700 tree op = gimple_return_retval (stmt);
4701 tree restype = TREE_TYPE (TREE_TYPE (cfun->decl));
4703 /* We cannot test for present return values as we do not fix up missing
4704 return values from the original source. */
4705 if (op == NULL)
4706 return false;
4708 if (!is_gimple_val (op)
4709 && TREE_CODE (op) != RESULT_DECL)
4711 error ("invalid operand in return statement");
4712 debug_generic_stmt (op);
4713 return true;
4716 if ((TREE_CODE (op) == RESULT_DECL
4717 && DECL_BY_REFERENCE (op))
4718 || (TREE_CODE (op) == SSA_NAME
4719 && SSA_NAME_VAR (op)
4720 && TREE_CODE (SSA_NAME_VAR (op)) == RESULT_DECL
4721 && DECL_BY_REFERENCE (SSA_NAME_VAR (op))))
4722 op = TREE_TYPE (op);
4724 if (!useless_type_conversion_p (restype, TREE_TYPE (op)))
4726 error ("invalid conversion in return statement");
4727 debug_generic_stmt (restype);
4728 debug_generic_stmt (TREE_TYPE (op));
4729 return true;
4732 return false;
4736 /* Verify the contents of a GIMPLE_GOTO STMT. Returns true when there
4737 is a problem, otherwise false. */
4739 static bool
4740 verify_gimple_goto (ggoto *stmt)
4742 tree dest = gimple_goto_dest (stmt);
4744 /* ??? We have two canonical forms of direct goto destinations, a
4745 bare LABEL_DECL and an ADDR_EXPR of a LABEL_DECL. */
4746 if (TREE_CODE (dest) != LABEL_DECL
4747 && (!is_gimple_val (dest)
4748 || !POINTER_TYPE_P (TREE_TYPE (dest))))
4750 error ("goto destination is neither a label nor a pointer");
4751 return true;
4754 return false;
4757 /* Verify the contents of a GIMPLE_SWITCH STMT. Returns true when there
4758 is a problem, otherwise false. */
4760 static bool
4761 verify_gimple_switch (gswitch *stmt)
4763 unsigned int i, n;
4764 tree elt, prev_upper_bound = NULL_TREE;
4765 tree index_type, elt_type = NULL_TREE;
4767 if (!is_gimple_val (gimple_switch_index (stmt)))
4769 error ("invalid operand to switch statement");
4770 debug_generic_stmt (gimple_switch_index (stmt));
4771 return true;
4774 index_type = TREE_TYPE (gimple_switch_index (stmt));
4775 if (! INTEGRAL_TYPE_P (index_type))
4777 error ("non-integral type switch statement");
4778 debug_generic_expr (index_type);
4779 return true;
4782 elt = gimple_switch_label (stmt, 0);
4783 if (CASE_LOW (elt) != NULL_TREE || CASE_HIGH (elt) != NULL_TREE)
4785 error ("invalid default case label in switch statement");
4786 debug_generic_expr (elt);
4787 return true;
4790 n = gimple_switch_num_labels (stmt);
4791 for (i = 1; i < n; i++)
4793 elt = gimple_switch_label (stmt, i);
4795 if (! CASE_LOW (elt))
4797 error ("invalid case label in switch statement");
4798 debug_generic_expr (elt);
4799 return true;
4801 if (CASE_HIGH (elt)
4802 && ! tree_int_cst_lt (CASE_LOW (elt), CASE_HIGH (elt)))
4804 error ("invalid case range in switch statement");
4805 debug_generic_expr (elt);
4806 return true;
4809 if (elt_type)
4811 if (TREE_TYPE (CASE_LOW (elt)) != elt_type
4812 || (CASE_HIGH (elt) && TREE_TYPE (CASE_HIGH (elt)) != elt_type))
4814 error ("type mismatch for case label in switch statement");
4815 debug_generic_expr (elt);
4816 return true;
4819 else
4821 elt_type = TREE_TYPE (CASE_LOW (elt));
4822 if (TYPE_PRECISION (index_type) < TYPE_PRECISION (elt_type))
4824 error ("type precision mismatch in switch statement");
4825 return true;
4829 if (prev_upper_bound)
4831 if (! tree_int_cst_lt (prev_upper_bound, CASE_LOW (elt)))
4833 error ("case labels not sorted in switch statement");
4834 return true;
4838 prev_upper_bound = CASE_HIGH (elt);
4839 if (! prev_upper_bound)
4840 prev_upper_bound = CASE_LOW (elt);
4843 return false;
4846 /* Verify a gimple debug statement STMT.
4847 Returns true if anything is wrong. */
4849 static bool
4850 verify_gimple_debug (gimple *stmt ATTRIBUTE_UNUSED)
4852 /* There isn't much that could be wrong in a gimple debug stmt. A
4853 gimple debug bind stmt, for example, maps a tree, that's usually
4854 a VAR_DECL or a PARM_DECL, but that could also be some scalarized
4855 component or member of an aggregate type, to another tree, that
4856 can be an arbitrary expression. These stmts expand into debug
4857 insns, and are converted to debug notes by var-tracking.c. */
4858 return false;
4861 /* Verify a gimple label statement STMT.
4862 Returns true if anything is wrong. */
4864 static bool
4865 verify_gimple_label (glabel *stmt)
4867 tree decl = gimple_label_label (stmt);
4868 int uid;
4869 bool err = false;
4871 if (TREE_CODE (decl) != LABEL_DECL)
4872 return true;
4873 if (!DECL_NONLOCAL (decl) && !FORCED_LABEL (decl)
4874 && DECL_CONTEXT (decl) != current_function_decl)
4876 error ("label's context is not the current function decl");
4877 err |= true;
4880 uid = LABEL_DECL_UID (decl);
4881 if (cfun->cfg
4882 && (uid == -1
4883 || (*label_to_block_map_for_fn (cfun))[uid] != gimple_bb (stmt)))
4885 error ("incorrect entry in label_to_block_map");
4886 err |= true;
4889 uid = EH_LANDING_PAD_NR (decl);
4890 if (uid)
4892 eh_landing_pad lp = get_eh_landing_pad_from_number (uid);
4893 if (decl != lp->post_landing_pad)
4895 error ("incorrect setting of landing pad number");
4896 err |= true;
4900 return err;
4903 /* Verify a gimple cond statement STMT.
4904 Returns true if anything is wrong. */
4906 static bool
4907 verify_gimple_cond (gcond *stmt)
4909 if (TREE_CODE_CLASS (gimple_cond_code (stmt)) != tcc_comparison)
4911 error ("invalid comparison code in gimple cond");
4912 return true;
4914 if (!(!gimple_cond_true_label (stmt)
4915 || TREE_CODE (gimple_cond_true_label (stmt)) == LABEL_DECL)
4916 || !(!gimple_cond_false_label (stmt)
4917 || TREE_CODE (gimple_cond_false_label (stmt)) == LABEL_DECL))
4919 error ("invalid labels in gimple cond");
4920 return true;
4923 return verify_gimple_comparison (boolean_type_node,
4924 gimple_cond_lhs (stmt),
4925 gimple_cond_rhs (stmt),
4926 gimple_cond_code (stmt));
4929 /* Verify the GIMPLE statement STMT. Returns true if there is an
4930 error, otherwise false. */
4932 static bool
4933 verify_gimple_stmt (gimple *stmt)
4935 switch (gimple_code (stmt))
4937 case GIMPLE_ASSIGN:
4938 return verify_gimple_assign (as_a <gassign *> (stmt));
4940 case GIMPLE_LABEL:
4941 return verify_gimple_label (as_a <glabel *> (stmt));
4943 case GIMPLE_CALL:
4944 return verify_gimple_call (as_a <gcall *> (stmt));
4946 case GIMPLE_COND:
4947 return verify_gimple_cond (as_a <gcond *> (stmt));
4949 case GIMPLE_GOTO:
4950 return verify_gimple_goto (as_a <ggoto *> (stmt));
4952 case GIMPLE_SWITCH:
4953 return verify_gimple_switch (as_a <gswitch *> (stmt));
4955 case GIMPLE_RETURN:
4956 return verify_gimple_return (as_a <greturn *> (stmt));
4958 case GIMPLE_ASM:
4959 return false;
4961 case GIMPLE_TRANSACTION:
4962 return verify_gimple_transaction (as_a <gtransaction *> (stmt));
4964 /* Tuples that do not have tree operands. */
4965 case GIMPLE_NOP:
4966 case GIMPLE_PREDICT:
4967 case GIMPLE_RESX:
4968 case GIMPLE_EH_DISPATCH:
4969 case GIMPLE_EH_MUST_NOT_THROW:
4970 return false;
4972 CASE_GIMPLE_OMP:
4973 /* OpenMP directives are validated by the FE and never operated
4974 on by the optimizers. Furthermore, GIMPLE_OMP_FOR may contain
4975 non-gimple expressions when the main index variable has had
4976 its address taken. This does not affect the loop itself
4977 because the header of an GIMPLE_OMP_FOR is merely used to determine
4978 how to setup the parallel iteration. */
4979 return false;
4981 case GIMPLE_DEBUG:
4982 return verify_gimple_debug (stmt);
4984 default:
4985 gcc_unreachable ();
4989 /* Verify the contents of a GIMPLE_PHI. Returns true if there is a problem,
4990 and false otherwise. */
4992 static bool
4993 verify_gimple_phi (gimple *phi)
4995 bool err = false;
4996 unsigned i;
4997 tree phi_result = gimple_phi_result (phi);
4998 bool virtual_p;
5000 if (!phi_result)
5002 error ("invalid PHI result");
5003 return true;
5006 virtual_p = virtual_operand_p (phi_result);
5007 if (TREE_CODE (phi_result) != SSA_NAME
5008 || (virtual_p
5009 && SSA_NAME_VAR (phi_result) != gimple_vop (cfun)))
5011 error ("invalid PHI result");
5012 err = true;
5015 for (i = 0; i < gimple_phi_num_args (phi); i++)
5017 tree t = gimple_phi_arg_def (phi, i);
5019 if (!t)
5021 error ("missing PHI def");
5022 err |= true;
5023 continue;
5025 /* Addressable variables do have SSA_NAMEs but they
5026 are not considered gimple values. */
5027 else if ((TREE_CODE (t) == SSA_NAME
5028 && virtual_p != virtual_operand_p (t))
5029 || (virtual_p
5030 && (TREE_CODE (t) != SSA_NAME
5031 || SSA_NAME_VAR (t) != gimple_vop (cfun)))
5032 || (!virtual_p
5033 && !is_gimple_val (t)))
5035 error ("invalid PHI argument");
5036 debug_generic_expr (t);
5037 err |= true;
5039 #ifdef ENABLE_TYPES_CHECKING
5040 if (!useless_type_conversion_p (TREE_TYPE (phi_result), TREE_TYPE (t)))
5042 error ("incompatible types in PHI argument %u", i);
5043 debug_generic_stmt (TREE_TYPE (phi_result));
5044 debug_generic_stmt (TREE_TYPE (t));
5045 err |= true;
5047 #endif
5050 return err;
5053 /* Verify the GIMPLE statements inside the sequence STMTS. */
5055 static bool
5056 verify_gimple_in_seq_2 (gimple_seq stmts)
5058 gimple_stmt_iterator ittr;
5059 bool err = false;
5061 for (ittr = gsi_start (stmts); !gsi_end_p (ittr); gsi_next (&ittr))
5063 gimple *stmt = gsi_stmt (ittr);
5065 switch (gimple_code (stmt))
5067 case GIMPLE_BIND:
5068 err |= verify_gimple_in_seq_2 (
5069 gimple_bind_body (as_a <gbind *> (stmt)));
5070 break;
5072 case GIMPLE_TRY:
5073 err |= verify_gimple_in_seq_2 (gimple_try_eval (stmt));
5074 err |= verify_gimple_in_seq_2 (gimple_try_cleanup (stmt));
5075 break;
5077 case GIMPLE_EH_FILTER:
5078 err |= verify_gimple_in_seq_2 (gimple_eh_filter_failure (stmt));
5079 break;
5081 case GIMPLE_EH_ELSE:
5083 geh_else *eh_else = as_a <geh_else *> (stmt);
5084 err |= verify_gimple_in_seq_2 (gimple_eh_else_n_body (eh_else));
5085 err |= verify_gimple_in_seq_2 (gimple_eh_else_e_body (eh_else));
5087 break;
5089 case GIMPLE_CATCH:
5090 err |= verify_gimple_in_seq_2 (gimple_catch_handler (
5091 as_a <gcatch *> (stmt)));
5092 break;
5094 case GIMPLE_TRANSACTION:
5095 err |= verify_gimple_transaction (as_a <gtransaction *> (stmt));
5096 break;
5098 default:
5100 bool err2 = verify_gimple_stmt (stmt);
5101 if (err2)
5102 debug_gimple_stmt (stmt);
5103 err |= err2;
5108 return err;
5111 /* Verify the contents of a GIMPLE_TRANSACTION. Returns true if there
5112 is a problem, otherwise false. */
5114 static bool
5115 verify_gimple_transaction (gtransaction *stmt)
5117 tree lab;
5119 lab = gimple_transaction_label_norm (stmt);
5120 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5121 return true;
5122 lab = gimple_transaction_label_uninst (stmt);
5123 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5124 return true;
5125 lab = gimple_transaction_label_over (stmt);
5126 if (lab != NULL && TREE_CODE (lab) != LABEL_DECL)
5127 return true;
5129 return verify_gimple_in_seq_2 (gimple_transaction_body (stmt));
5133 /* Verify the GIMPLE statements inside the statement list STMTS. */
5135 DEBUG_FUNCTION void
5136 verify_gimple_in_seq (gimple_seq stmts)
5138 timevar_push (TV_TREE_STMT_VERIFY);
5139 if (verify_gimple_in_seq_2 (stmts))
5140 internal_error ("verify_gimple failed");
5141 timevar_pop (TV_TREE_STMT_VERIFY);
5144 /* Return true when the T can be shared. */
5146 static bool
5147 tree_node_can_be_shared (tree t)
5149 if (IS_TYPE_OR_DECL_P (t)
5150 || is_gimple_min_invariant (t)
5151 || TREE_CODE (t) == SSA_NAME
5152 || t == error_mark_node
5153 || TREE_CODE (t) == IDENTIFIER_NODE)
5154 return true;
5156 if (TREE_CODE (t) == CASE_LABEL_EXPR)
5157 return true;
5159 if (DECL_P (t))
5160 return true;
5162 return false;
5165 /* Called via walk_tree. Verify tree sharing. */
5167 static tree
5168 verify_node_sharing_1 (tree *tp, int *walk_subtrees, void *data)
5170 hash_set<void *> *visited = (hash_set<void *> *) data;
5172 if (tree_node_can_be_shared (*tp))
5174 *walk_subtrees = false;
5175 return NULL;
5178 if (visited->add (*tp))
5179 return *tp;
5181 return NULL;
5184 /* Called via walk_gimple_stmt. Verify tree sharing. */
5186 static tree
5187 verify_node_sharing (tree *tp, int *walk_subtrees, void *data)
5189 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5190 return verify_node_sharing_1 (tp, walk_subtrees, wi->info);
5193 static bool eh_error_found;
5194 bool
5195 verify_eh_throw_stmt_node (gimple *const &stmt, const int &,
5196 hash_set<gimple *> *visited)
5198 if (!visited->contains (stmt))
5200 error ("dead STMT in EH table");
5201 debug_gimple_stmt (stmt);
5202 eh_error_found = true;
5204 return true;
5207 /* Verify if the location LOCs block is in BLOCKS. */
5209 static bool
5210 verify_location (hash_set<tree> *blocks, location_t loc)
5212 tree block = LOCATION_BLOCK (loc);
5213 if (block != NULL_TREE
5214 && !blocks->contains (block))
5216 error ("location references block not in block tree");
5217 return true;
5219 if (block != NULL_TREE)
5220 return verify_location (blocks, BLOCK_SOURCE_LOCATION (block));
5221 return false;
5224 /* Called via walk_tree. Verify that expressions have no blocks. */
5226 static tree
5227 verify_expr_no_block (tree *tp, int *walk_subtrees, void *)
5229 if (!EXPR_P (*tp))
5231 *walk_subtrees = false;
5232 return NULL;
5235 location_t loc = EXPR_LOCATION (*tp);
5236 if (LOCATION_BLOCK (loc) != NULL)
5237 return *tp;
5239 return NULL;
5242 /* Called via walk_tree. Verify locations of expressions. */
5244 static tree
5245 verify_expr_location_1 (tree *tp, int *walk_subtrees, void *data)
5247 hash_set<tree> *blocks = (hash_set<tree> *) data;
5249 if (VAR_P (*tp) && DECL_HAS_DEBUG_EXPR_P (*tp))
5251 tree t = DECL_DEBUG_EXPR (*tp);
5252 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5253 if (addr)
5254 return addr;
5256 if ((VAR_P (*tp)
5257 || TREE_CODE (*tp) == PARM_DECL
5258 || TREE_CODE (*tp) == RESULT_DECL)
5259 && DECL_HAS_VALUE_EXPR_P (*tp))
5261 tree t = DECL_VALUE_EXPR (*tp);
5262 tree addr = walk_tree (&t, verify_expr_no_block, NULL, NULL);
5263 if (addr)
5264 return addr;
5267 if (!EXPR_P (*tp))
5269 *walk_subtrees = false;
5270 return NULL;
5273 location_t loc = EXPR_LOCATION (*tp);
5274 if (verify_location (blocks, loc))
5275 return *tp;
5277 return NULL;
5280 /* Called via walk_gimple_op. Verify locations of expressions. */
5282 static tree
5283 verify_expr_location (tree *tp, int *walk_subtrees, void *data)
5285 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5286 return verify_expr_location_1 (tp, walk_subtrees, wi->info);
5289 /* Insert all subblocks of BLOCK into BLOCKS and recurse. */
5291 static void
5292 collect_subblocks (hash_set<tree> *blocks, tree block)
5294 tree t;
5295 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
5297 blocks->add (t);
5298 collect_subblocks (blocks, t);
5302 /* Verify the GIMPLE statements in the CFG of FN. */
5304 DEBUG_FUNCTION void
5305 verify_gimple_in_cfg (struct function *fn, bool verify_nothrow)
5307 basic_block bb;
5308 bool err = false;
5310 timevar_push (TV_TREE_STMT_VERIFY);
5311 hash_set<void *> visited;
5312 hash_set<gimple *> visited_stmts;
5314 /* Collect all BLOCKs referenced by the BLOCK tree of FN. */
5315 hash_set<tree> blocks;
5316 if (DECL_INITIAL (fn->decl))
5318 blocks.add (DECL_INITIAL (fn->decl));
5319 collect_subblocks (&blocks, DECL_INITIAL (fn->decl));
5322 FOR_EACH_BB_FN (bb, fn)
5324 gimple_stmt_iterator gsi;
5326 for (gphi_iterator gpi = gsi_start_phis (bb);
5327 !gsi_end_p (gpi);
5328 gsi_next (&gpi))
5330 gphi *phi = gpi.phi ();
5331 bool err2 = false;
5332 unsigned i;
5334 visited_stmts.add (phi);
5336 if (gimple_bb (phi) != bb)
5338 error ("gimple_bb (phi) is set to a wrong basic block");
5339 err2 = true;
5342 err2 |= verify_gimple_phi (phi);
5344 /* Only PHI arguments have locations. */
5345 if (gimple_location (phi) != UNKNOWN_LOCATION)
5347 error ("PHI node with location");
5348 err2 = true;
5351 for (i = 0; i < gimple_phi_num_args (phi); i++)
5353 tree arg = gimple_phi_arg_def (phi, i);
5354 tree addr = walk_tree (&arg, verify_node_sharing_1,
5355 &visited, NULL);
5356 if (addr)
5358 error ("incorrect sharing of tree nodes");
5359 debug_generic_expr (addr);
5360 err2 |= true;
5362 location_t loc = gimple_phi_arg_location (phi, i);
5363 if (virtual_operand_p (gimple_phi_result (phi))
5364 && loc != UNKNOWN_LOCATION)
5366 error ("virtual PHI with argument locations");
5367 err2 = true;
5369 addr = walk_tree (&arg, verify_expr_location_1, &blocks, NULL);
5370 if (addr)
5372 debug_generic_expr (addr);
5373 err2 = true;
5375 err2 |= verify_location (&blocks, loc);
5378 if (err2)
5379 debug_gimple_stmt (phi);
5380 err |= err2;
5383 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5385 gimple *stmt = gsi_stmt (gsi);
5386 bool err2 = false;
5387 struct walk_stmt_info wi;
5388 tree addr;
5389 int lp_nr;
5391 visited_stmts.add (stmt);
5393 if (gimple_bb (stmt) != bb)
5395 error ("gimple_bb (stmt) is set to a wrong basic block");
5396 err2 = true;
5399 err2 |= verify_gimple_stmt (stmt);
5400 err2 |= verify_location (&blocks, gimple_location (stmt));
5402 memset (&wi, 0, sizeof (wi));
5403 wi.info = (void *) &visited;
5404 addr = walk_gimple_op (stmt, verify_node_sharing, &wi);
5405 if (addr)
5407 error ("incorrect sharing of tree nodes");
5408 debug_generic_expr (addr);
5409 err2 |= true;
5412 memset (&wi, 0, sizeof (wi));
5413 wi.info = (void *) &blocks;
5414 addr = walk_gimple_op (stmt, verify_expr_location, &wi);
5415 if (addr)
5417 debug_generic_expr (addr);
5418 err2 |= true;
5421 /* ??? Instead of not checking these stmts at all the walker
5422 should know its context via wi. */
5423 if (!is_gimple_debug (stmt)
5424 && !is_gimple_omp (stmt))
5426 memset (&wi, 0, sizeof (wi));
5427 addr = walk_gimple_op (stmt, verify_expr, &wi);
5428 if (addr)
5430 debug_generic_expr (addr);
5431 inform (gimple_location (stmt), "in statement");
5432 err2 |= true;
5436 /* If the statement is marked as part of an EH region, then it is
5437 expected that the statement could throw. Verify that when we
5438 have optimizations that simplify statements such that we prove
5439 that they cannot throw, that we update other data structures
5440 to match. */
5441 lp_nr = lookup_stmt_eh_lp (stmt);
5442 if (lp_nr > 0)
5444 if (!stmt_could_throw_p (stmt))
5446 if (verify_nothrow)
5448 error ("statement marked for throw, but doesn%'t");
5449 err2 |= true;
5452 else if (!gsi_one_before_end_p (gsi))
5454 error ("statement marked for throw in middle of block");
5455 err2 |= true;
5459 if (err2)
5460 debug_gimple_stmt (stmt);
5461 err |= err2;
5465 eh_error_found = false;
5466 hash_map<gimple *, int> *eh_table = get_eh_throw_stmt_table (cfun);
5467 if (eh_table)
5468 eh_table->traverse<hash_set<gimple *> *, verify_eh_throw_stmt_node>
5469 (&visited_stmts);
5471 if (err || eh_error_found)
5472 internal_error ("verify_gimple failed");
5474 verify_histograms ();
5475 timevar_pop (TV_TREE_STMT_VERIFY);
5479 /* Verifies that the flow information is OK. */
5481 static int
5482 gimple_verify_flow_info (void)
5484 int err = 0;
5485 basic_block bb;
5486 gimple_stmt_iterator gsi;
5487 gimple *stmt;
5488 edge e;
5489 edge_iterator ei;
5491 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5492 || ENTRY_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5494 error ("ENTRY_BLOCK has IL associated with it");
5495 err = 1;
5498 if (EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.seq
5499 || EXIT_BLOCK_PTR_FOR_FN (cfun)->il.gimple.phi_nodes)
5501 error ("EXIT_BLOCK has IL associated with it");
5502 err = 1;
5505 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
5506 if (e->flags & EDGE_FALLTHRU)
5508 error ("fallthru to exit from bb %d", e->src->index);
5509 err = 1;
5512 FOR_EACH_BB_FN (bb, cfun)
5514 bool found_ctrl_stmt = false;
5516 stmt = NULL;
5518 /* Skip labels on the start of basic block. */
5519 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5521 tree label;
5523 if (is_gimple_debug (gsi_stmt (gsi)))
5524 continue;
5526 gimple *prev_stmt = stmt;
5528 stmt = gsi_stmt (gsi);
5530 if (gimple_code (stmt) != GIMPLE_LABEL)
5531 break;
5533 label = gimple_label_label (as_a <glabel *> (stmt));
5534 if (prev_stmt && DECL_NONLOCAL (label))
5536 error ("nonlocal label ");
5537 print_generic_expr (stderr, label);
5538 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5539 bb->index);
5540 err = 1;
5543 if (prev_stmt && EH_LANDING_PAD_NR (label) != 0)
5545 error ("EH landing pad label ");
5546 print_generic_expr (stderr, label);
5547 fprintf (stderr, " is not first in a sequence of labels in bb %d",
5548 bb->index);
5549 err = 1;
5552 if (label_to_block (label) != bb)
5554 error ("label ");
5555 print_generic_expr (stderr, label);
5556 fprintf (stderr, " to block does not match in bb %d",
5557 bb->index);
5558 err = 1;
5561 if (decl_function_context (label) != current_function_decl)
5563 error ("label ");
5564 print_generic_expr (stderr, label);
5565 fprintf (stderr, " has incorrect context in bb %d",
5566 bb->index);
5567 err = 1;
5571 /* Verify that body of basic block BB is free of control flow. */
5572 for (; !gsi_end_p (gsi); gsi_next (&gsi))
5574 gimple *stmt = gsi_stmt (gsi);
5576 if (found_ctrl_stmt)
5578 error ("control flow in the middle of basic block %d",
5579 bb->index);
5580 err = 1;
5583 if (stmt_ends_bb_p (stmt))
5584 found_ctrl_stmt = true;
5586 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
5588 error ("label ");
5589 print_generic_expr (stderr, gimple_label_label (label_stmt));
5590 fprintf (stderr, " in the middle of basic block %d", bb->index);
5591 err = 1;
5595 gsi = gsi_last_nondebug_bb (bb);
5596 if (gsi_end_p (gsi))
5597 continue;
5599 stmt = gsi_stmt (gsi);
5601 if (gimple_code (stmt) == GIMPLE_LABEL)
5602 continue;
5604 err |= verify_eh_edges (stmt);
5606 if (is_ctrl_stmt (stmt))
5608 FOR_EACH_EDGE (e, ei, bb->succs)
5609 if (e->flags & EDGE_FALLTHRU)
5611 error ("fallthru edge after a control statement in bb %d",
5612 bb->index);
5613 err = 1;
5617 if (gimple_code (stmt) != GIMPLE_COND)
5619 /* Verify that there are no edges with EDGE_TRUE/FALSE_FLAG set
5620 after anything else but if statement. */
5621 FOR_EACH_EDGE (e, ei, bb->succs)
5622 if (e->flags & (EDGE_TRUE_VALUE | EDGE_FALSE_VALUE))
5624 error ("true/false edge after a non-GIMPLE_COND in bb %d",
5625 bb->index);
5626 err = 1;
5630 switch (gimple_code (stmt))
5632 case GIMPLE_COND:
5634 edge true_edge;
5635 edge false_edge;
5637 extract_true_false_edges_from_block (bb, &true_edge, &false_edge);
5639 if (!true_edge
5640 || !false_edge
5641 || !(true_edge->flags & EDGE_TRUE_VALUE)
5642 || !(false_edge->flags & EDGE_FALSE_VALUE)
5643 || (true_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5644 || (false_edge->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL))
5645 || EDGE_COUNT (bb->succs) >= 3)
5647 error ("wrong outgoing edge flags at end of bb %d",
5648 bb->index);
5649 err = 1;
5652 break;
5654 case GIMPLE_GOTO:
5655 if (simple_goto_p (stmt))
5657 error ("explicit goto at end of bb %d", bb->index);
5658 err = 1;
5660 else
5662 /* FIXME. We should double check that the labels in the
5663 destination blocks have their address taken. */
5664 FOR_EACH_EDGE (e, ei, bb->succs)
5665 if ((e->flags & (EDGE_FALLTHRU | EDGE_TRUE_VALUE
5666 | EDGE_FALSE_VALUE))
5667 || !(e->flags & EDGE_ABNORMAL))
5669 error ("wrong outgoing edge flags at end of bb %d",
5670 bb->index);
5671 err = 1;
5674 break;
5676 case GIMPLE_CALL:
5677 if (!gimple_call_builtin_p (stmt, BUILT_IN_RETURN))
5678 break;
5679 /* fallthru */
5680 case GIMPLE_RETURN:
5681 if (!single_succ_p (bb)
5682 || (single_succ_edge (bb)->flags
5683 & (EDGE_FALLTHRU | EDGE_ABNORMAL
5684 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5686 error ("wrong outgoing edge flags at end of bb %d", bb->index);
5687 err = 1;
5689 if (single_succ (bb) != EXIT_BLOCK_PTR_FOR_FN (cfun))
5691 error ("return edge does not point to exit in bb %d",
5692 bb->index);
5693 err = 1;
5695 break;
5697 case GIMPLE_SWITCH:
5699 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5700 tree prev;
5701 edge e;
5702 size_t i, n;
5704 n = gimple_switch_num_labels (switch_stmt);
5706 /* Mark all the destination basic blocks. */
5707 for (i = 0; i < n; ++i)
5709 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5710 basic_block label_bb = label_to_block (lab);
5711 gcc_assert (!label_bb->aux || label_bb->aux == (void *)1);
5712 label_bb->aux = (void *)1;
5715 /* Verify that the case labels are sorted. */
5716 prev = gimple_switch_label (switch_stmt, 0);
5717 for (i = 1; i < n; ++i)
5719 tree c = gimple_switch_label (switch_stmt, i);
5720 if (!CASE_LOW (c))
5722 error ("found default case not at the start of "
5723 "case vector");
5724 err = 1;
5725 continue;
5727 if (CASE_LOW (prev)
5728 && !tree_int_cst_lt (CASE_LOW (prev), CASE_LOW (c)))
5730 error ("case labels not sorted: ");
5731 print_generic_expr (stderr, prev);
5732 fprintf (stderr," is greater than ");
5733 print_generic_expr (stderr, c);
5734 fprintf (stderr," but comes before it.\n");
5735 err = 1;
5737 prev = c;
5739 /* VRP will remove the default case if it can prove it will
5740 never be executed. So do not verify there always exists
5741 a default case here. */
5743 FOR_EACH_EDGE (e, ei, bb->succs)
5745 if (!e->dest->aux)
5747 error ("extra outgoing edge %d->%d",
5748 bb->index, e->dest->index);
5749 err = 1;
5752 e->dest->aux = (void *)2;
5753 if ((e->flags & (EDGE_FALLTHRU | EDGE_ABNORMAL
5754 | EDGE_TRUE_VALUE | EDGE_FALSE_VALUE)))
5756 error ("wrong outgoing edge flags at end of bb %d",
5757 bb->index);
5758 err = 1;
5762 /* Check that we have all of them. */
5763 for (i = 0; i < n; ++i)
5765 tree lab = CASE_LABEL (gimple_switch_label (switch_stmt, i));
5766 basic_block label_bb = label_to_block (lab);
5768 if (label_bb->aux != (void *)2)
5770 error ("missing edge %i->%i", bb->index, label_bb->index);
5771 err = 1;
5775 FOR_EACH_EDGE (e, ei, bb->succs)
5776 e->dest->aux = (void *)0;
5778 break;
5780 case GIMPLE_EH_DISPATCH:
5781 err |= verify_eh_dispatch_edge (as_a <geh_dispatch *> (stmt));
5782 break;
5784 default:
5785 break;
5789 if (dom_info_state (CDI_DOMINATORS) >= DOM_NO_FAST_QUERY)
5790 verify_dominators (CDI_DOMINATORS);
5792 return err;
5796 /* Updates phi nodes after creating a forwarder block joined
5797 by edge FALLTHRU. */
5799 static void
5800 gimple_make_forwarder_block (edge fallthru)
5802 edge e;
5803 edge_iterator ei;
5804 basic_block dummy, bb;
5805 tree var;
5806 gphi_iterator gsi;
5808 dummy = fallthru->src;
5809 bb = fallthru->dest;
5811 if (single_pred_p (bb))
5812 return;
5814 /* If we redirected a branch we must create new PHI nodes at the
5815 start of BB. */
5816 for (gsi = gsi_start_phis (dummy); !gsi_end_p (gsi); gsi_next (&gsi))
5818 gphi *phi, *new_phi;
5820 phi = gsi.phi ();
5821 var = gimple_phi_result (phi);
5822 new_phi = create_phi_node (var, bb);
5823 gimple_phi_set_result (phi, copy_ssa_name (var, phi));
5824 add_phi_arg (new_phi, gimple_phi_result (phi), fallthru,
5825 UNKNOWN_LOCATION);
5828 /* Add the arguments we have stored on edges. */
5829 FOR_EACH_EDGE (e, ei, bb->preds)
5831 if (e == fallthru)
5832 continue;
5834 flush_pending_stmts (e);
5839 /* Return a non-special label in the head of basic block BLOCK.
5840 Create one if it doesn't exist. */
5842 tree
5843 gimple_block_label (basic_block bb)
5845 gimple_stmt_iterator i, s = gsi_start_bb (bb);
5846 bool first = true;
5847 tree label;
5848 glabel *stmt;
5850 for (i = s; !gsi_end_p (i); gsi_next (&i))
5852 if (is_gimple_debug (gsi_stmt (i)))
5853 continue;
5854 stmt = dyn_cast <glabel *> (gsi_stmt (i));
5855 if (!stmt)
5856 break;
5857 label = gimple_label_label (stmt);
5858 if (!DECL_NONLOCAL (label))
5860 if (!first)
5861 gsi_move_before (&i, &s);
5862 return label;
5864 first = false;
5867 label = create_artificial_label (UNKNOWN_LOCATION);
5868 stmt = gimple_build_label (label);
5869 gsi_insert_before (&s, stmt, GSI_NEW_STMT);
5870 return label;
5874 /* Attempt to perform edge redirection by replacing a possibly complex
5875 jump instruction by a goto or by removing the jump completely.
5876 This can apply only if all edges now point to the same block. The
5877 parameters and return values are equivalent to
5878 redirect_edge_and_branch. */
5880 static edge
5881 gimple_try_redirect_by_replacing_jump (edge e, basic_block target)
5883 basic_block src = e->src;
5884 gimple_stmt_iterator i;
5885 gimple *stmt;
5887 /* We can replace or remove a complex jump only when we have exactly
5888 two edges. */
5889 if (EDGE_COUNT (src->succs) != 2
5890 /* Verify that all targets will be TARGET. Specifically, the
5891 edge that is not E must also go to TARGET. */
5892 || EDGE_SUCC (src, EDGE_SUCC (src, 0) == e)->dest != target)
5893 return NULL;
5895 i = gsi_last_bb (src);
5896 if (gsi_end_p (i))
5897 return NULL;
5899 stmt = gsi_stmt (i);
5901 if (gimple_code (stmt) == GIMPLE_COND || gimple_code (stmt) == GIMPLE_SWITCH)
5903 gsi_remove (&i, true);
5904 e = ssa_redirect_edge (e, target);
5905 e->flags = EDGE_FALLTHRU;
5906 return e;
5909 return NULL;
5913 /* Redirect E to DEST. Return NULL on failure. Otherwise, return the
5914 edge representing the redirected branch. */
5916 static edge
5917 gimple_redirect_edge_and_branch (edge e, basic_block dest)
5919 basic_block bb = e->src;
5920 gimple_stmt_iterator gsi;
5921 edge ret;
5922 gimple *stmt;
5924 if (e->flags & EDGE_ABNORMAL)
5925 return NULL;
5927 if (e->dest == dest)
5928 return NULL;
5930 if (e->flags & EDGE_EH)
5931 return redirect_eh_edge (e, dest);
5933 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun))
5935 ret = gimple_try_redirect_by_replacing_jump (e, dest);
5936 if (ret)
5937 return ret;
5940 gsi = gsi_last_nondebug_bb (bb);
5941 stmt = gsi_end_p (gsi) ? NULL : gsi_stmt (gsi);
5943 switch (stmt ? gimple_code (stmt) : GIMPLE_ERROR_MARK)
5945 case GIMPLE_COND:
5946 /* For COND_EXPR, we only need to redirect the edge. */
5947 break;
5949 case GIMPLE_GOTO:
5950 /* No non-abnormal edges should lead from a non-simple goto, and
5951 simple ones should be represented implicitly. */
5952 gcc_unreachable ();
5954 case GIMPLE_SWITCH:
5956 gswitch *switch_stmt = as_a <gswitch *> (stmt);
5957 tree label = gimple_block_label (dest);
5958 tree cases = get_cases_for_edge (e, switch_stmt);
5960 /* If we have a list of cases associated with E, then use it
5961 as it's a lot faster than walking the entire case vector. */
5962 if (cases)
5964 edge e2 = find_edge (e->src, dest);
5965 tree last, first;
5967 first = cases;
5968 while (cases)
5970 last = cases;
5971 CASE_LABEL (cases) = label;
5972 cases = CASE_CHAIN (cases);
5975 /* If there was already an edge in the CFG, then we need
5976 to move all the cases associated with E to E2. */
5977 if (e2)
5979 tree cases2 = get_cases_for_edge (e2, switch_stmt);
5981 CASE_CHAIN (last) = CASE_CHAIN (cases2);
5982 CASE_CHAIN (cases2) = first;
5984 bitmap_set_bit (touched_switch_bbs, gimple_bb (stmt)->index);
5986 else
5988 size_t i, n = gimple_switch_num_labels (switch_stmt);
5990 for (i = 0; i < n; i++)
5992 tree elt = gimple_switch_label (switch_stmt, i);
5993 if (label_to_block (CASE_LABEL (elt)) == e->dest)
5994 CASE_LABEL (elt) = label;
5998 break;
6000 case GIMPLE_ASM:
6002 gasm *asm_stmt = as_a <gasm *> (stmt);
6003 int i, n = gimple_asm_nlabels (asm_stmt);
6004 tree label = NULL;
6006 for (i = 0; i < n; ++i)
6008 tree cons = gimple_asm_label_op (asm_stmt, i);
6009 if (label_to_block (TREE_VALUE (cons)) == e->dest)
6011 if (!label)
6012 label = gimple_block_label (dest);
6013 TREE_VALUE (cons) = label;
6017 /* If we didn't find any label matching the former edge in the
6018 asm labels, we must be redirecting the fallthrough
6019 edge. */
6020 gcc_assert (label || (e->flags & EDGE_FALLTHRU));
6022 break;
6024 case GIMPLE_RETURN:
6025 gsi_remove (&gsi, true);
6026 e->flags |= EDGE_FALLTHRU;
6027 break;
6029 case GIMPLE_OMP_RETURN:
6030 case GIMPLE_OMP_CONTINUE:
6031 case GIMPLE_OMP_SECTIONS_SWITCH:
6032 case GIMPLE_OMP_FOR:
6033 /* The edges from OMP constructs can be simply redirected. */
6034 break;
6036 case GIMPLE_EH_DISPATCH:
6037 if (!(e->flags & EDGE_FALLTHRU))
6038 redirect_eh_dispatch_edge (as_a <geh_dispatch *> (stmt), e, dest);
6039 break;
6041 case GIMPLE_TRANSACTION:
6042 if (e->flags & EDGE_TM_ABORT)
6043 gimple_transaction_set_label_over (as_a <gtransaction *> (stmt),
6044 gimple_block_label (dest));
6045 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
6046 gimple_transaction_set_label_uninst (as_a <gtransaction *> (stmt),
6047 gimple_block_label (dest));
6048 else
6049 gimple_transaction_set_label_norm (as_a <gtransaction *> (stmt),
6050 gimple_block_label (dest));
6051 break;
6053 default:
6054 /* Otherwise it must be a fallthru edge, and we don't need to
6055 do anything besides redirecting it. */
6056 gcc_assert (e->flags & EDGE_FALLTHRU);
6057 break;
6060 /* Update/insert PHI nodes as necessary. */
6062 /* Now update the edges in the CFG. */
6063 e = ssa_redirect_edge (e, dest);
6065 return e;
6068 /* Returns true if it is possible to remove edge E by redirecting
6069 it to the destination of the other edge from E->src. */
6071 static bool
6072 gimple_can_remove_branch_p (const_edge e)
6074 if (e->flags & (EDGE_ABNORMAL | EDGE_EH))
6075 return false;
6077 return true;
6080 /* Simple wrapper, as we can always redirect fallthru edges. */
6082 static basic_block
6083 gimple_redirect_edge_and_branch_force (edge e, basic_block dest)
6085 e = gimple_redirect_edge_and_branch (e, dest);
6086 gcc_assert (e);
6088 return NULL;
6092 /* Splits basic block BB after statement STMT (but at least after the
6093 labels). If STMT is NULL, BB is split just after the labels. */
6095 static basic_block
6096 gimple_split_block (basic_block bb, void *stmt)
6098 gimple_stmt_iterator gsi;
6099 gimple_stmt_iterator gsi_tgt;
6100 gimple_seq list;
6101 basic_block new_bb;
6102 edge e;
6103 edge_iterator ei;
6105 new_bb = create_empty_bb (bb);
6107 /* Redirect the outgoing edges. */
6108 new_bb->succs = bb->succs;
6109 bb->succs = NULL;
6110 FOR_EACH_EDGE (e, ei, new_bb->succs)
6111 e->src = new_bb;
6113 /* Get a stmt iterator pointing to the first stmt to move. */
6114 if (!stmt || gimple_code ((gimple *) stmt) == GIMPLE_LABEL)
6115 gsi = gsi_after_labels (bb);
6116 else
6118 gsi = gsi_for_stmt ((gimple *) stmt);
6119 gsi_next (&gsi);
6122 /* Move everything from GSI to the new basic block. */
6123 if (gsi_end_p (gsi))
6124 return new_bb;
6126 /* Split the statement list - avoid re-creating new containers as this
6127 brings ugly quadratic memory consumption in the inliner.
6128 (We are still quadratic since we need to update stmt BB pointers,
6129 sadly.) */
6130 gsi_split_seq_before (&gsi, &list);
6131 set_bb_seq (new_bb, list);
6132 for (gsi_tgt = gsi_start (list);
6133 !gsi_end_p (gsi_tgt); gsi_next (&gsi_tgt))
6134 gimple_set_bb (gsi_stmt (gsi_tgt), new_bb);
6136 return new_bb;
6140 /* Moves basic block BB after block AFTER. */
6142 static bool
6143 gimple_move_block_after (basic_block bb, basic_block after)
6145 if (bb->prev_bb == after)
6146 return true;
6148 unlink_block (bb);
6149 link_block (bb, after);
6151 return true;
6155 /* Return TRUE if block BB has no executable statements, otherwise return
6156 FALSE. */
6158 static bool
6159 gimple_empty_block_p (basic_block bb)
6161 /* BB must have no executable statements. */
6162 gimple_stmt_iterator gsi = gsi_after_labels (bb);
6163 if (phi_nodes (bb))
6164 return false;
6165 if (gsi_end_p (gsi))
6166 return true;
6167 if (is_gimple_debug (gsi_stmt (gsi)))
6168 gsi_next_nondebug (&gsi);
6169 return gsi_end_p (gsi);
6173 /* Split a basic block if it ends with a conditional branch and if the
6174 other part of the block is not empty. */
6176 static basic_block
6177 gimple_split_block_before_cond_jump (basic_block bb)
6179 gimple *last, *split_point;
6180 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
6181 if (gsi_end_p (gsi))
6182 return NULL;
6183 last = gsi_stmt (gsi);
6184 if (gimple_code (last) != GIMPLE_COND
6185 && gimple_code (last) != GIMPLE_SWITCH)
6186 return NULL;
6187 gsi_prev (&gsi);
6188 split_point = gsi_stmt (gsi);
6189 return split_block (bb, split_point)->dest;
6193 /* Return true if basic_block can be duplicated. */
6195 static bool
6196 gimple_can_duplicate_bb_p (const_basic_block bb ATTRIBUTE_UNUSED)
6198 return true;
6201 /* Create a duplicate of the basic block BB. NOTE: This does not
6202 preserve SSA form. */
6204 static basic_block
6205 gimple_duplicate_bb (basic_block bb)
6207 basic_block new_bb;
6208 gimple_stmt_iterator gsi_tgt;
6210 new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
6212 /* Copy the PHI nodes. We ignore PHI node arguments here because
6213 the incoming edges have not been setup yet. */
6214 for (gphi_iterator gpi = gsi_start_phis (bb);
6215 !gsi_end_p (gpi);
6216 gsi_next (&gpi))
6218 gphi *phi, *copy;
6219 phi = gpi.phi ();
6220 copy = create_phi_node (NULL_TREE, new_bb);
6221 create_new_def_for (gimple_phi_result (phi), copy,
6222 gimple_phi_result_ptr (copy));
6223 gimple_set_uid (copy, gimple_uid (phi));
6226 gsi_tgt = gsi_start_bb (new_bb);
6227 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
6228 !gsi_end_p (gsi);
6229 gsi_next (&gsi))
6231 def_operand_p def_p;
6232 ssa_op_iter op_iter;
6233 tree lhs;
6234 gimple *stmt, *copy;
6236 stmt = gsi_stmt (gsi);
6237 if (gimple_code (stmt) == GIMPLE_LABEL)
6238 continue;
6240 /* Don't duplicate label debug stmts. */
6241 if (gimple_debug_bind_p (stmt)
6242 && TREE_CODE (gimple_debug_bind_get_var (stmt))
6243 == LABEL_DECL)
6244 continue;
6246 /* Create a new copy of STMT and duplicate STMT's virtual
6247 operands. */
6248 copy = gimple_copy (stmt);
6249 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
6251 maybe_duplicate_eh_stmt (copy, stmt);
6252 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
6254 /* When copying around a stmt writing into a local non-user
6255 aggregate, make sure it won't share stack slot with other
6256 vars. */
6257 lhs = gimple_get_lhs (stmt);
6258 if (lhs && TREE_CODE (lhs) != SSA_NAME)
6260 tree base = get_base_address (lhs);
6261 if (base
6262 && (VAR_P (base) || TREE_CODE (base) == RESULT_DECL)
6263 && DECL_IGNORED_P (base)
6264 && !TREE_STATIC (base)
6265 && !DECL_EXTERNAL (base)
6266 && (!VAR_P (base) || !DECL_HAS_VALUE_EXPR_P (base)))
6267 DECL_NONSHAREABLE (base) = 1;
6270 /* Create new names for all the definitions created by COPY and
6271 add replacement mappings for each new name. */
6272 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
6273 create_new_def_for (DEF_FROM_PTR (def_p), copy, def_p);
6276 return new_bb;
6279 /* Adds phi node arguments for edge E_COPY after basic block duplication. */
6281 static void
6282 add_phi_args_after_copy_edge (edge e_copy)
6284 basic_block bb, bb_copy = e_copy->src, dest;
6285 edge e;
6286 edge_iterator ei;
6287 gphi *phi, *phi_copy;
6288 tree def;
6289 gphi_iterator psi, psi_copy;
6291 if (gimple_seq_empty_p (phi_nodes (e_copy->dest)))
6292 return;
6294 bb = bb_copy->flags & BB_DUPLICATED ? get_bb_original (bb_copy) : bb_copy;
6296 if (e_copy->dest->flags & BB_DUPLICATED)
6297 dest = get_bb_original (e_copy->dest);
6298 else
6299 dest = e_copy->dest;
6301 e = find_edge (bb, dest);
6302 if (!e)
6304 /* During loop unrolling the target of the latch edge is copied.
6305 In this case we are not looking for edge to dest, but to
6306 duplicated block whose original was dest. */
6307 FOR_EACH_EDGE (e, ei, bb->succs)
6309 if ((e->dest->flags & BB_DUPLICATED)
6310 && get_bb_original (e->dest) == dest)
6311 break;
6314 gcc_assert (e != NULL);
6317 for (psi = gsi_start_phis (e->dest),
6318 psi_copy = gsi_start_phis (e_copy->dest);
6319 !gsi_end_p (psi);
6320 gsi_next (&psi), gsi_next (&psi_copy))
6322 phi = psi.phi ();
6323 phi_copy = psi_copy.phi ();
6324 def = PHI_ARG_DEF_FROM_EDGE (phi, e);
6325 add_phi_arg (phi_copy, def, e_copy,
6326 gimple_phi_arg_location_from_edge (phi, e));
6331 /* Basic block BB_COPY was created by code duplication. Add phi node
6332 arguments for edges going out of BB_COPY. The blocks that were
6333 duplicated have BB_DUPLICATED set. */
6335 void
6336 add_phi_args_after_copy_bb (basic_block bb_copy)
6338 edge e_copy;
6339 edge_iterator ei;
6341 FOR_EACH_EDGE (e_copy, ei, bb_copy->succs)
6343 add_phi_args_after_copy_edge (e_copy);
6347 /* Blocks in REGION_COPY array of length N_REGION were created by
6348 duplication of basic blocks. Add phi node arguments for edges
6349 going from these blocks. If E_COPY is not NULL, also add
6350 phi node arguments for its destination.*/
6352 void
6353 add_phi_args_after_copy (basic_block *region_copy, unsigned n_region,
6354 edge e_copy)
6356 unsigned i;
6358 for (i = 0; i < n_region; i++)
6359 region_copy[i]->flags |= BB_DUPLICATED;
6361 for (i = 0; i < n_region; i++)
6362 add_phi_args_after_copy_bb (region_copy[i]);
6363 if (e_copy)
6364 add_phi_args_after_copy_edge (e_copy);
6366 for (i = 0; i < n_region; i++)
6367 region_copy[i]->flags &= ~BB_DUPLICATED;
6370 /* Duplicates a REGION (set of N_REGION basic blocks) with just a single
6371 important exit edge EXIT. By important we mean that no SSA name defined
6372 inside region is live over the other exit edges of the region. All entry
6373 edges to the region must go to ENTRY->dest. The edge ENTRY is redirected
6374 to the duplicate of the region. Dominance and loop information is
6375 updated if UPDATE_DOMINANCE is true, but not the SSA web. If
6376 UPDATE_DOMINANCE is false then we assume that the caller will update the
6377 dominance information after calling this function. The new basic
6378 blocks are stored to REGION_COPY in the same order as they had in REGION,
6379 provided that REGION_COPY is not NULL.
6380 The function returns false if it is unable to copy the region,
6381 true otherwise. */
6383 bool
6384 gimple_duplicate_sese_region (edge entry, edge exit,
6385 basic_block *region, unsigned n_region,
6386 basic_block *region_copy,
6387 bool update_dominance)
6389 unsigned i;
6390 bool free_region_copy = false, copying_header = false;
6391 struct loop *loop = entry->dest->loop_father;
6392 edge exit_copy;
6393 vec<basic_block> doms = vNULL;
6394 edge redirected;
6395 profile_count total_count = profile_count::uninitialized ();
6396 profile_count entry_count = profile_count::uninitialized ();
6398 if (!can_copy_bbs_p (region, n_region))
6399 return false;
6401 /* Some sanity checking. Note that we do not check for all possible
6402 missuses of the functions. I.e. if you ask to copy something weird,
6403 it will work, but the state of structures probably will not be
6404 correct. */
6405 for (i = 0; i < n_region; i++)
6407 /* We do not handle subloops, i.e. all the blocks must belong to the
6408 same loop. */
6409 if (region[i]->loop_father != loop)
6410 return false;
6412 if (region[i] != entry->dest
6413 && region[i] == loop->header)
6414 return false;
6417 /* In case the function is used for loop header copying (which is the primary
6418 use), ensure that EXIT and its copy will be new latch and entry edges. */
6419 if (loop->header == entry->dest)
6421 copying_header = true;
6423 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, exit->src))
6424 return false;
6426 for (i = 0; i < n_region; i++)
6427 if (region[i] != exit->src
6428 && dominated_by_p (CDI_DOMINATORS, region[i], exit->src))
6429 return false;
6432 initialize_original_copy_tables ();
6434 if (copying_header)
6435 set_loop_copy (loop, loop_outer (loop));
6436 else
6437 set_loop_copy (loop, loop);
6439 if (!region_copy)
6441 region_copy = XNEWVEC (basic_block, n_region);
6442 free_region_copy = true;
6445 /* Record blocks outside the region that are dominated by something
6446 inside. */
6447 if (update_dominance)
6449 doms.create (0);
6450 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6453 if (entry->dest->count.initialized_p ())
6455 total_count = entry->dest->count;
6456 entry_count = entry->count ();
6457 /* Fix up corner cases, to avoid division by zero or creation of negative
6458 frequencies. */
6459 if (entry_count > total_count)
6460 entry_count = total_count;
6463 copy_bbs (region, n_region, region_copy, &exit, 1, &exit_copy, loop,
6464 split_edge_bb_loc (entry), update_dominance);
6465 if (total_count.initialized_p () && entry_count.initialized_p ())
6467 scale_bbs_frequencies_profile_count (region, n_region,
6468 total_count - entry_count,
6469 total_count);
6470 scale_bbs_frequencies_profile_count (region_copy, n_region, entry_count,
6471 total_count);
6474 if (copying_header)
6476 loop->header = exit->dest;
6477 loop->latch = exit->src;
6480 /* Redirect the entry and add the phi node arguments. */
6481 redirected = redirect_edge_and_branch (entry, get_bb_copy (entry->dest));
6482 gcc_assert (redirected != NULL);
6483 flush_pending_stmts (entry);
6485 /* Concerning updating of dominators: We must recount dominators
6486 for entry block and its copy. Anything that is outside of the
6487 region, but was dominated by something inside needs recounting as
6488 well. */
6489 if (update_dominance)
6491 set_immediate_dominator (CDI_DOMINATORS, entry->dest, entry->src);
6492 doms.safe_push (get_bb_original (entry->dest));
6493 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6494 doms.release ();
6497 /* Add the other PHI node arguments. */
6498 add_phi_args_after_copy (region_copy, n_region, NULL);
6500 if (free_region_copy)
6501 free (region_copy);
6503 free_original_copy_tables ();
6504 return true;
6507 /* Checks if BB is part of the region defined by N_REGION BBS. */
6508 static bool
6509 bb_part_of_region_p (basic_block bb, basic_block* bbs, unsigned n_region)
6511 unsigned int n;
6513 for (n = 0; n < n_region; n++)
6515 if (bb == bbs[n])
6516 return true;
6518 return false;
6521 /* Duplicates REGION consisting of N_REGION blocks. The new blocks
6522 are stored to REGION_COPY in the same order in that they appear
6523 in REGION, if REGION_COPY is not NULL. ENTRY is the entry to
6524 the region, EXIT an exit from it. The condition guarding EXIT
6525 is moved to ENTRY. Returns true if duplication succeeds, false
6526 otherwise.
6528 For example,
6530 some_code;
6531 if (cond)
6533 else
6536 is transformed to
6538 if (cond)
6540 some_code;
6543 else
6545 some_code;
6550 bool
6551 gimple_duplicate_sese_tail (edge entry, edge exit,
6552 basic_block *region, unsigned n_region,
6553 basic_block *region_copy)
6555 unsigned i;
6556 bool free_region_copy = false;
6557 struct loop *loop = exit->dest->loop_father;
6558 struct loop *orig_loop = entry->dest->loop_father;
6559 basic_block switch_bb, entry_bb, nentry_bb;
6560 vec<basic_block> doms;
6561 profile_count total_count = profile_count::uninitialized (),
6562 exit_count = profile_count::uninitialized ();
6563 edge exits[2], nexits[2], e;
6564 gimple_stmt_iterator gsi;
6565 gimple *cond_stmt;
6566 edge sorig, snew;
6567 basic_block exit_bb;
6568 gphi_iterator psi;
6569 gphi *phi;
6570 tree def;
6571 struct loop *target, *aloop, *cloop;
6573 gcc_assert (EDGE_COUNT (exit->src->succs) == 2);
6574 exits[0] = exit;
6575 exits[1] = EDGE_SUCC (exit->src, EDGE_SUCC (exit->src, 0) == exit);
6577 if (!can_copy_bbs_p (region, n_region))
6578 return false;
6580 initialize_original_copy_tables ();
6581 set_loop_copy (orig_loop, loop);
6583 target= loop;
6584 for (aloop = orig_loop->inner; aloop; aloop = aloop->next)
6586 if (bb_part_of_region_p (aloop->header, region, n_region))
6588 cloop = duplicate_loop (aloop, target);
6589 duplicate_subloops (aloop, cloop);
6593 if (!region_copy)
6595 region_copy = XNEWVEC (basic_block, n_region);
6596 free_region_copy = true;
6599 gcc_assert (!need_ssa_update_p (cfun));
6601 /* Record blocks outside the region that are dominated by something
6602 inside. */
6603 doms = get_dominated_by_region (CDI_DOMINATORS, region, n_region);
6605 total_count = exit->src->count;
6606 exit_count = exit->count ();
6607 /* Fix up corner cases, to avoid division by zero or creation of negative
6608 frequencies. */
6609 if (exit_count > total_count)
6610 exit_count = total_count;
6612 copy_bbs (region, n_region, region_copy, exits, 2, nexits, orig_loop,
6613 split_edge_bb_loc (exit), true);
6614 if (total_count.initialized_p () && exit_count.initialized_p ())
6616 scale_bbs_frequencies_profile_count (region, n_region,
6617 total_count - exit_count,
6618 total_count);
6619 scale_bbs_frequencies_profile_count (region_copy, n_region, exit_count,
6620 total_count);
6623 /* Create the switch block, and put the exit condition to it. */
6624 entry_bb = entry->dest;
6625 nentry_bb = get_bb_copy (entry_bb);
6626 if (!last_stmt (entry->src)
6627 || !stmt_ends_bb_p (last_stmt (entry->src)))
6628 switch_bb = entry->src;
6629 else
6630 switch_bb = split_edge (entry);
6631 set_immediate_dominator (CDI_DOMINATORS, nentry_bb, switch_bb);
6633 gsi = gsi_last_bb (switch_bb);
6634 cond_stmt = last_stmt (exit->src);
6635 gcc_assert (gimple_code (cond_stmt) == GIMPLE_COND);
6636 cond_stmt = gimple_copy (cond_stmt);
6638 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
6640 sorig = single_succ_edge (switch_bb);
6641 sorig->flags = exits[1]->flags;
6642 sorig->probability = exits[1]->probability;
6643 snew = make_edge (switch_bb, nentry_bb, exits[0]->flags);
6644 snew->probability = exits[0]->probability;
6647 /* Register the new edge from SWITCH_BB in loop exit lists. */
6648 rescan_loop_exit (snew, true, false);
6650 /* Add the PHI node arguments. */
6651 add_phi_args_after_copy (region_copy, n_region, snew);
6653 /* Get rid of now superfluous conditions and associated edges (and phi node
6654 arguments). */
6655 exit_bb = exit->dest;
6657 e = redirect_edge_and_branch (exits[0], exits[1]->dest);
6658 PENDING_STMT (e) = NULL;
6660 /* The latch of ORIG_LOOP was copied, and so was the backedge
6661 to the original header. We redirect this backedge to EXIT_BB. */
6662 for (i = 0; i < n_region; i++)
6663 if (get_bb_original (region_copy[i]) == orig_loop->latch)
6665 gcc_assert (single_succ_edge (region_copy[i]));
6666 e = redirect_edge_and_branch (single_succ_edge (region_copy[i]), exit_bb);
6667 PENDING_STMT (e) = NULL;
6668 for (psi = gsi_start_phis (exit_bb);
6669 !gsi_end_p (psi);
6670 gsi_next (&psi))
6672 phi = psi.phi ();
6673 def = PHI_ARG_DEF (phi, nexits[0]->dest_idx);
6674 add_phi_arg (phi, def, e, gimple_phi_arg_location_from_edge (phi, e));
6677 e = redirect_edge_and_branch (nexits[1], nexits[0]->dest);
6678 PENDING_STMT (e) = NULL;
6680 /* Anything that is outside of the region, but was dominated by something
6681 inside needs to update dominance info. */
6682 iterate_fix_dominators (CDI_DOMINATORS, doms, false);
6683 doms.release ();
6684 /* Update the SSA web. */
6685 update_ssa (TODO_update_ssa);
6687 if (free_region_copy)
6688 free (region_copy);
6690 free_original_copy_tables ();
6691 return true;
6694 /* Add all the blocks dominated by ENTRY to the array BBS_P. Stop
6695 adding blocks when the dominator traversal reaches EXIT. This
6696 function silently assumes that ENTRY strictly dominates EXIT. */
6698 void
6699 gather_blocks_in_sese_region (basic_block entry, basic_block exit,
6700 vec<basic_block> *bbs_p)
6702 basic_block son;
6704 for (son = first_dom_son (CDI_DOMINATORS, entry);
6705 son;
6706 son = next_dom_son (CDI_DOMINATORS, son))
6708 bbs_p->safe_push (son);
6709 if (son != exit)
6710 gather_blocks_in_sese_region (son, exit, bbs_p);
6714 /* Replaces *TP with a duplicate (belonging to function TO_CONTEXT).
6715 The duplicates are recorded in VARS_MAP. */
6717 static void
6718 replace_by_duplicate_decl (tree *tp, hash_map<tree, tree> *vars_map,
6719 tree to_context)
6721 tree t = *tp, new_t;
6722 struct function *f = DECL_STRUCT_FUNCTION (to_context);
6724 if (DECL_CONTEXT (t) == to_context)
6725 return;
6727 bool existed;
6728 tree &loc = vars_map->get_or_insert (t, &existed);
6730 if (!existed)
6732 if (SSA_VAR_P (t))
6734 new_t = copy_var_decl (t, DECL_NAME (t), TREE_TYPE (t));
6735 add_local_decl (f, new_t);
6737 else
6739 gcc_assert (TREE_CODE (t) == CONST_DECL);
6740 new_t = copy_node (t);
6742 DECL_CONTEXT (new_t) = to_context;
6744 loc = new_t;
6746 else
6747 new_t = loc;
6749 *tp = new_t;
6753 /* Creates an ssa name in TO_CONTEXT equivalent to NAME.
6754 VARS_MAP maps old ssa names and var_decls to the new ones. */
6756 static tree
6757 replace_ssa_name (tree name, hash_map<tree, tree> *vars_map,
6758 tree to_context)
6760 tree new_name;
6762 gcc_assert (!virtual_operand_p (name));
6764 tree *loc = vars_map->get (name);
6766 if (!loc)
6768 tree decl = SSA_NAME_VAR (name);
6769 if (decl)
6771 gcc_assert (!SSA_NAME_IS_DEFAULT_DEF (name));
6772 replace_by_duplicate_decl (&decl, vars_map, to_context);
6773 new_name = make_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6774 decl, SSA_NAME_DEF_STMT (name));
6776 else
6777 new_name = copy_ssa_name_fn (DECL_STRUCT_FUNCTION (to_context),
6778 name, SSA_NAME_DEF_STMT (name));
6780 /* Now that we've used the def stmt to define new_name, make sure it
6781 doesn't define name anymore. */
6782 SSA_NAME_DEF_STMT (name) = NULL;
6784 vars_map->put (name, new_name);
6786 else
6787 new_name = *loc;
6789 return new_name;
6792 struct move_stmt_d
6794 tree orig_block;
6795 tree new_block;
6796 tree from_context;
6797 tree to_context;
6798 hash_map<tree, tree> *vars_map;
6799 htab_t new_label_map;
6800 hash_map<void *, void *> *eh_map;
6801 bool remap_decls_p;
6804 /* Helper for move_block_to_fn. Set TREE_BLOCK in every expression
6805 contained in *TP if it has been ORIG_BLOCK previously and change the
6806 DECL_CONTEXT of every local variable referenced in *TP. */
6808 static tree
6809 move_stmt_op (tree *tp, int *walk_subtrees, void *data)
6811 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6812 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6813 tree t = *tp;
6815 if (EXPR_P (t))
6817 tree block = TREE_BLOCK (t);
6818 if (block == NULL_TREE)
6820 else if (block == p->orig_block
6821 || p->orig_block == NULL_TREE)
6822 TREE_SET_BLOCK (t, p->new_block);
6823 else if (flag_checking)
6825 while (block && TREE_CODE (block) == BLOCK && block != p->orig_block)
6826 block = BLOCK_SUPERCONTEXT (block);
6827 gcc_assert (block == p->orig_block);
6830 else if (DECL_P (t) || TREE_CODE (t) == SSA_NAME)
6832 if (TREE_CODE (t) == SSA_NAME)
6833 *tp = replace_ssa_name (t, p->vars_map, p->to_context);
6834 else if (TREE_CODE (t) == PARM_DECL
6835 && gimple_in_ssa_p (cfun))
6836 *tp = *(p->vars_map->get (t));
6837 else if (TREE_CODE (t) == LABEL_DECL)
6839 if (p->new_label_map)
6841 struct tree_map in, *out;
6842 in.base.from = t;
6843 out = (struct tree_map *)
6844 htab_find_with_hash (p->new_label_map, &in, DECL_UID (t));
6845 if (out)
6846 *tp = t = out->to;
6849 /* For FORCED_LABELs we can end up with references from other
6850 functions if some SESE regions are outlined. It is UB to
6851 jump in between them, but they could be used just for printing
6852 addresses etc. In that case, DECL_CONTEXT on the label should
6853 be the function containing the glabel stmt with that LABEL_DECL,
6854 rather than whatever function a reference to the label was seen
6855 last time. */
6856 if (!FORCED_LABEL (t) && !DECL_NONLOCAL (t))
6857 DECL_CONTEXT (t) = p->to_context;
6859 else if (p->remap_decls_p)
6861 /* Replace T with its duplicate. T should no longer appear in the
6862 parent function, so this looks wasteful; however, it may appear
6863 in referenced_vars, and more importantly, as virtual operands of
6864 statements, and in alias lists of other variables. It would be
6865 quite difficult to expunge it from all those places. ??? It might
6866 suffice to do this for addressable variables. */
6867 if ((VAR_P (t) && !is_global_var (t))
6868 || TREE_CODE (t) == CONST_DECL)
6869 replace_by_duplicate_decl (tp, p->vars_map, p->to_context);
6871 *walk_subtrees = 0;
6873 else if (TYPE_P (t))
6874 *walk_subtrees = 0;
6876 return NULL_TREE;
6879 /* Helper for move_stmt_r. Given an EH region number for the source
6880 function, map that to the duplicate EH regio number in the dest. */
6882 static int
6883 move_stmt_eh_region_nr (int old_nr, struct move_stmt_d *p)
6885 eh_region old_r, new_r;
6887 old_r = get_eh_region_from_number (old_nr);
6888 new_r = static_cast<eh_region> (*p->eh_map->get (old_r));
6890 return new_r->index;
6893 /* Similar, but operate on INTEGER_CSTs. */
6895 static tree
6896 move_stmt_eh_region_tree_nr (tree old_t_nr, struct move_stmt_d *p)
6898 int old_nr, new_nr;
6900 old_nr = tree_to_shwi (old_t_nr);
6901 new_nr = move_stmt_eh_region_nr (old_nr, p);
6903 return build_int_cst (integer_type_node, new_nr);
6906 /* Like move_stmt_op, but for gimple statements.
6908 Helper for move_block_to_fn. Set GIMPLE_BLOCK in every expression
6909 contained in the current statement in *GSI_P and change the
6910 DECL_CONTEXT of every local variable referenced in the current
6911 statement. */
6913 static tree
6914 move_stmt_r (gimple_stmt_iterator *gsi_p, bool *handled_ops_p,
6915 struct walk_stmt_info *wi)
6917 struct move_stmt_d *p = (struct move_stmt_d *) wi->info;
6918 gimple *stmt = gsi_stmt (*gsi_p);
6919 tree block = gimple_block (stmt);
6921 if (block == p->orig_block
6922 || (p->orig_block == NULL_TREE
6923 && block != NULL_TREE))
6924 gimple_set_block (stmt, p->new_block);
6926 switch (gimple_code (stmt))
6928 case GIMPLE_CALL:
6929 /* Remap the region numbers for __builtin_eh_{pointer,filter}. */
6931 tree r, fndecl = gimple_call_fndecl (stmt);
6932 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
6933 switch (DECL_FUNCTION_CODE (fndecl))
6935 case BUILT_IN_EH_COPY_VALUES:
6936 r = gimple_call_arg (stmt, 1);
6937 r = move_stmt_eh_region_tree_nr (r, p);
6938 gimple_call_set_arg (stmt, 1, r);
6939 /* FALLTHRU */
6941 case BUILT_IN_EH_POINTER:
6942 case BUILT_IN_EH_FILTER:
6943 r = gimple_call_arg (stmt, 0);
6944 r = move_stmt_eh_region_tree_nr (r, p);
6945 gimple_call_set_arg (stmt, 0, r);
6946 break;
6948 default:
6949 break;
6952 break;
6954 case GIMPLE_RESX:
6956 gresx *resx_stmt = as_a <gresx *> (stmt);
6957 int r = gimple_resx_region (resx_stmt);
6958 r = move_stmt_eh_region_nr (r, p);
6959 gimple_resx_set_region (resx_stmt, r);
6961 break;
6963 case GIMPLE_EH_DISPATCH:
6965 geh_dispatch *eh_dispatch_stmt = as_a <geh_dispatch *> (stmt);
6966 int r = gimple_eh_dispatch_region (eh_dispatch_stmt);
6967 r = move_stmt_eh_region_nr (r, p);
6968 gimple_eh_dispatch_set_region (eh_dispatch_stmt, r);
6970 break;
6972 case GIMPLE_OMP_RETURN:
6973 case GIMPLE_OMP_CONTINUE:
6974 break;
6976 case GIMPLE_LABEL:
6978 /* For FORCED_LABEL, move_stmt_op doesn't adjust DECL_CONTEXT,
6979 so that such labels can be referenced from other regions.
6980 Make sure to update it when seeing a GIMPLE_LABEL though,
6981 that is the owner of the label. */
6982 walk_gimple_op (stmt, move_stmt_op, wi);
6983 *handled_ops_p = true;
6984 tree label = gimple_label_label (as_a <glabel *> (stmt));
6985 if (FORCED_LABEL (label) || DECL_NONLOCAL (label))
6986 DECL_CONTEXT (label) = p->to_context;
6988 break;
6990 default:
6991 if (is_gimple_omp (stmt))
6993 /* Do not remap variables inside OMP directives. Variables
6994 referenced in clauses and directive header belong to the
6995 parent function and should not be moved into the child
6996 function. */
6997 bool save_remap_decls_p = p->remap_decls_p;
6998 p->remap_decls_p = false;
6999 *handled_ops_p = true;
7001 walk_gimple_seq_mod (gimple_omp_body_ptr (stmt), move_stmt_r,
7002 move_stmt_op, wi);
7004 p->remap_decls_p = save_remap_decls_p;
7006 break;
7009 return NULL_TREE;
7012 /* Move basic block BB from function CFUN to function DEST_FN. The
7013 block is moved out of the original linked list and placed after
7014 block AFTER in the new list. Also, the block is removed from the
7015 original array of blocks and placed in DEST_FN's array of blocks.
7016 If UPDATE_EDGE_COUNT_P is true, the edge counts on both CFGs is
7017 updated to reflect the moved edges.
7019 The local variables are remapped to new instances, VARS_MAP is used
7020 to record the mapping. */
7022 static void
7023 move_block_to_fn (struct function *dest_cfun, basic_block bb,
7024 basic_block after, bool update_edge_count_p,
7025 struct move_stmt_d *d)
7027 struct control_flow_graph *cfg;
7028 edge_iterator ei;
7029 edge e;
7030 gimple_stmt_iterator si;
7031 unsigned old_len, new_len;
7033 /* Remove BB from dominance structures. */
7034 delete_from_dominance_info (CDI_DOMINATORS, bb);
7036 /* Move BB from its current loop to the copy in the new function. */
7037 if (current_loops)
7039 struct loop *new_loop = (struct loop *)bb->loop_father->aux;
7040 if (new_loop)
7041 bb->loop_father = new_loop;
7044 /* Link BB to the new linked list. */
7045 move_block_after (bb, after);
7047 /* Update the edge count in the corresponding flowgraphs. */
7048 if (update_edge_count_p)
7049 FOR_EACH_EDGE (e, ei, bb->succs)
7051 cfun->cfg->x_n_edges--;
7052 dest_cfun->cfg->x_n_edges++;
7055 /* Remove BB from the original basic block array. */
7056 (*cfun->cfg->x_basic_block_info)[bb->index] = NULL;
7057 cfun->cfg->x_n_basic_blocks--;
7059 /* Grow DEST_CFUN's basic block array if needed. */
7060 cfg = dest_cfun->cfg;
7061 cfg->x_n_basic_blocks++;
7062 if (bb->index >= cfg->x_last_basic_block)
7063 cfg->x_last_basic_block = bb->index + 1;
7065 old_len = vec_safe_length (cfg->x_basic_block_info);
7066 if ((unsigned) cfg->x_last_basic_block >= old_len)
7068 new_len = cfg->x_last_basic_block + (cfg->x_last_basic_block + 3) / 4;
7069 vec_safe_grow_cleared (cfg->x_basic_block_info, new_len);
7072 (*cfg->x_basic_block_info)[bb->index] = bb;
7074 /* Remap the variables in phi nodes. */
7075 for (gphi_iterator psi = gsi_start_phis (bb);
7076 !gsi_end_p (psi); )
7078 gphi *phi = psi.phi ();
7079 use_operand_p use;
7080 tree op = PHI_RESULT (phi);
7081 ssa_op_iter oi;
7082 unsigned i;
7084 if (virtual_operand_p (op))
7086 /* Remove the phi nodes for virtual operands (alias analysis will be
7087 run for the new function, anyway). */
7088 remove_phi_node (&psi, true);
7089 continue;
7092 SET_PHI_RESULT (phi,
7093 replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7094 FOR_EACH_PHI_ARG (use, phi, oi, SSA_OP_USE)
7096 op = USE_FROM_PTR (use);
7097 if (TREE_CODE (op) == SSA_NAME)
7098 SET_USE (use, replace_ssa_name (op, d->vars_map, dest_cfun->decl));
7101 for (i = 0; i < EDGE_COUNT (bb->preds); i++)
7103 location_t locus = gimple_phi_arg_location (phi, i);
7104 tree block = LOCATION_BLOCK (locus);
7106 if (locus == UNKNOWN_LOCATION)
7107 continue;
7108 if (d->orig_block == NULL_TREE || block == d->orig_block)
7110 locus = set_block (locus, d->new_block);
7111 gimple_phi_arg_set_location (phi, i, locus);
7115 gsi_next (&psi);
7118 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7120 gimple *stmt = gsi_stmt (si);
7121 struct walk_stmt_info wi;
7123 memset (&wi, 0, sizeof (wi));
7124 wi.info = d;
7125 walk_gimple_stmt (&si, move_stmt_r, move_stmt_op, &wi);
7127 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
7129 tree label = gimple_label_label (label_stmt);
7130 int uid = LABEL_DECL_UID (label);
7132 gcc_assert (uid > -1);
7134 old_len = vec_safe_length (cfg->x_label_to_block_map);
7135 if (old_len <= (unsigned) uid)
7137 new_len = 3 * uid / 2 + 1;
7138 vec_safe_grow_cleared (cfg->x_label_to_block_map, new_len);
7141 (*cfg->x_label_to_block_map)[uid] = bb;
7142 (*cfun->cfg->x_label_to_block_map)[uid] = NULL;
7144 gcc_assert (DECL_CONTEXT (label) == dest_cfun->decl);
7146 if (uid >= dest_cfun->cfg->last_label_uid)
7147 dest_cfun->cfg->last_label_uid = uid + 1;
7150 maybe_duplicate_eh_stmt_fn (dest_cfun, stmt, cfun, stmt, d->eh_map, 0);
7151 remove_stmt_from_eh_lp_fn (cfun, stmt);
7153 gimple_duplicate_stmt_histograms (dest_cfun, stmt, cfun, stmt);
7154 gimple_remove_stmt_histograms (cfun, stmt);
7156 /* We cannot leave any operands allocated from the operand caches of
7157 the current function. */
7158 free_stmt_operands (cfun, stmt);
7159 push_cfun (dest_cfun);
7160 update_stmt (stmt);
7161 pop_cfun ();
7164 FOR_EACH_EDGE (e, ei, bb->succs)
7165 if (e->goto_locus != UNKNOWN_LOCATION)
7167 tree block = LOCATION_BLOCK (e->goto_locus);
7168 if (d->orig_block == NULL_TREE
7169 || block == d->orig_block)
7170 e->goto_locus = set_block (e->goto_locus, d->new_block);
7174 /* Examine the statements in BB (which is in SRC_CFUN); find and return
7175 the outermost EH region. Use REGION as the incoming base EH region. */
7177 static eh_region
7178 find_outermost_region_in_block (struct function *src_cfun,
7179 basic_block bb, eh_region region)
7181 gimple_stmt_iterator si;
7183 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
7185 gimple *stmt = gsi_stmt (si);
7186 eh_region stmt_region;
7187 int lp_nr;
7189 lp_nr = lookup_stmt_eh_lp_fn (src_cfun, stmt);
7190 stmt_region = get_eh_region_from_lp_number_fn (src_cfun, lp_nr);
7191 if (stmt_region)
7193 if (region == NULL)
7194 region = stmt_region;
7195 else if (stmt_region != region)
7197 region = eh_region_outermost (src_cfun, stmt_region, region);
7198 gcc_assert (region != NULL);
7203 return region;
7206 static tree
7207 new_label_mapper (tree decl, void *data)
7209 htab_t hash = (htab_t) data;
7210 struct tree_map *m;
7211 void **slot;
7213 gcc_assert (TREE_CODE (decl) == LABEL_DECL);
7215 m = XNEW (struct tree_map);
7216 m->hash = DECL_UID (decl);
7217 m->base.from = decl;
7218 m->to = create_artificial_label (UNKNOWN_LOCATION);
7219 LABEL_DECL_UID (m->to) = LABEL_DECL_UID (decl);
7220 if (LABEL_DECL_UID (m->to) >= cfun->cfg->last_label_uid)
7221 cfun->cfg->last_label_uid = LABEL_DECL_UID (m->to) + 1;
7223 slot = htab_find_slot_with_hash (hash, m, m->hash, INSERT);
7224 gcc_assert (*slot == NULL);
7226 *slot = m;
7228 return m->to;
7231 /* Tree walker to replace the decls used inside value expressions by
7232 duplicates. */
7234 static tree
7235 replace_block_vars_by_duplicates_1 (tree *tp, int *walk_subtrees, void *data)
7237 struct replace_decls_d *rd = (struct replace_decls_d *)data;
7239 switch (TREE_CODE (*tp))
7241 case VAR_DECL:
7242 case PARM_DECL:
7243 case RESULT_DECL:
7244 replace_by_duplicate_decl (tp, rd->vars_map, rd->to_context);
7245 break;
7246 default:
7247 break;
7250 if (IS_TYPE_OR_DECL_P (*tp))
7251 *walk_subtrees = false;
7253 return NULL;
7256 /* Change DECL_CONTEXT of all BLOCK_VARS in block, including
7257 subblocks. */
7259 static void
7260 replace_block_vars_by_duplicates (tree block, hash_map<tree, tree> *vars_map,
7261 tree to_context)
7263 tree *tp, t;
7265 for (tp = &BLOCK_VARS (block); *tp; tp = &DECL_CHAIN (*tp))
7267 t = *tp;
7268 if (!VAR_P (t) && TREE_CODE (t) != CONST_DECL)
7269 continue;
7270 replace_by_duplicate_decl (&t, vars_map, to_context);
7271 if (t != *tp)
7273 if (VAR_P (*tp) && DECL_HAS_VALUE_EXPR_P (*tp))
7275 tree x = DECL_VALUE_EXPR (*tp);
7276 struct replace_decls_d rd = { vars_map, to_context };
7277 unshare_expr (x);
7278 walk_tree (&x, replace_block_vars_by_duplicates_1, &rd, NULL);
7279 SET_DECL_VALUE_EXPR (t, x);
7280 DECL_HAS_VALUE_EXPR_P (t) = 1;
7282 DECL_CHAIN (t) = DECL_CHAIN (*tp);
7283 *tp = t;
7287 for (block = BLOCK_SUBBLOCKS (block); block; block = BLOCK_CHAIN (block))
7288 replace_block_vars_by_duplicates (block, vars_map, to_context);
7291 /* Fixup the loop arrays and numbers after moving LOOP and its subloops
7292 from FN1 to FN2. */
7294 static void
7295 fixup_loop_arrays_after_move (struct function *fn1, struct function *fn2,
7296 struct loop *loop)
7298 /* Discard it from the old loop array. */
7299 (*get_loops (fn1))[loop->num] = NULL;
7301 /* Place it in the new loop array, assigning it a new number. */
7302 loop->num = number_of_loops (fn2);
7303 vec_safe_push (loops_for_fn (fn2)->larray, loop);
7305 /* Recurse to children. */
7306 for (loop = loop->inner; loop; loop = loop->next)
7307 fixup_loop_arrays_after_move (fn1, fn2, loop);
7310 /* Verify that the blocks in BBS_P are a single-entry, single-exit region
7311 delimited by ENTRY_BB and EXIT_BB, possibly containing noreturn blocks. */
7313 DEBUG_FUNCTION void
7314 verify_sese (basic_block entry, basic_block exit, vec<basic_block> *bbs_p)
7316 basic_block bb;
7317 edge_iterator ei;
7318 edge e;
7319 bitmap bbs = BITMAP_ALLOC (NULL);
7320 int i;
7322 gcc_assert (entry != NULL);
7323 gcc_assert (entry != exit);
7324 gcc_assert (bbs_p != NULL);
7326 gcc_assert (bbs_p->length () > 0);
7328 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7329 bitmap_set_bit (bbs, bb->index);
7331 gcc_assert (bitmap_bit_p (bbs, entry->index));
7332 gcc_assert (exit == NULL || bitmap_bit_p (bbs, exit->index));
7334 FOR_EACH_VEC_ELT (*bbs_p, i, bb)
7336 if (bb == entry)
7338 gcc_assert (single_pred_p (entry));
7339 gcc_assert (!bitmap_bit_p (bbs, single_pred (entry)->index));
7341 else
7342 for (ei = ei_start (bb->preds); !ei_end_p (ei); ei_next (&ei))
7344 e = ei_edge (ei);
7345 gcc_assert (bitmap_bit_p (bbs, e->src->index));
7348 if (bb == exit)
7350 gcc_assert (single_succ_p (exit));
7351 gcc_assert (!bitmap_bit_p (bbs, single_succ (exit)->index));
7353 else
7354 for (ei = ei_start (bb->succs); !ei_end_p (ei); ei_next (&ei))
7356 e = ei_edge (ei);
7357 gcc_assert (bitmap_bit_p (bbs, e->dest->index));
7361 BITMAP_FREE (bbs);
7364 /* If FROM is an SSA_NAME, mark the version in bitmap DATA. */
7366 bool
7367 gather_ssa_name_hash_map_from (tree const &from, tree const &, void *data)
7369 bitmap release_names = (bitmap)data;
7371 if (TREE_CODE (from) != SSA_NAME)
7372 return true;
7374 bitmap_set_bit (release_names, SSA_NAME_VERSION (from));
7375 return true;
7378 /* Return LOOP_DIST_ALIAS call if present in BB. */
7380 static gimple *
7381 find_loop_dist_alias (basic_block bb)
7383 gimple *g = last_stmt (bb);
7384 if (g == NULL || gimple_code (g) != GIMPLE_COND)
7385 return NULL;
7387 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7388 gsi_prev (&gsi);
7389 if (gsi_end_p (gsi))
7390 return NULL;
7392 g = gsi_stmt (gsi);
7393 if (gimple_call_internal_p (g, IFN_LOOP_DIST_ALIAS))
7394 return g;
7395 return NULL;
7398 /* Fold loop internal call G like IFN_LOOP_VECTORIZED/IFN_LOOP_DIST_ALIAS
7399 to VALUE and update any immediate uses of it's LHS. */
7401 void
7402 fold_loop_internal_call (gimple *g, tree value)
7404 tree lhs = gimple_call_lhs (g);
7405 use_operand_p use_p;
7406 imm_use_iterator iter;
7407 gimple *use_stmt;
7408 gimple_stmt_iterator gsi = gsi_for_stmt (g);
7410 update_call_from_tree (&gsi, value);
7411 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7413 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7414 SET_USE (use_p, value);
7415 update_stmt (use_stmt);
7419 /* Move a single-entry, single-exit region delimited by ENTRY_BB and
7420 EXIT_BB to function DEST_CFUN. The whole region is replaced by a
7421 single basic block in the original CFG and the new basic block is
7422 returned. DEST_CFUN must not have a CFG yet.
7424 Note that the region need not be a pure SESE region. Blocks inside
7425 the region may contain calls to abort/exit. The only restriction
7426 is that ENTRY_BB should be the only entry point and it must
7427 dominate EXIT_BB.
7429 Change TREE_BLOCK of all statements in ORIG_BLOCK to the new
7430 functions outermost BLOCK, move all subblocks of ORIG_BLOCK
7431 to the new function.
7433 All local variables referenced in the region are assumed to be in
7434 the corresponding BLOCK_VARS and unexpanded variable lists
7435 associated with DEST_CFUN.
7437 TODO: investigate whether we can reuse gimple_duplicate_sese_region to
7438 reimplement move_sese_region_to_fn by duplicating the region rather than
7439 moving it. */
7441 basic_block
7442 move_sese_region_to_fn (struct function *dest_cfun, basic_block entry_bb,
7443 basic_block exit_bb, tree orig_block)
7445 vec<basic_block> bbs, dom_bbs;
7446 basic_block dom_entry = get_immediate_dominator (CDI_DOMINATORS, entry_bb);
7447 basic_block after, bb, *entry_pred, *exit_succ, abb;
7448 struct function *saved_cfun = cfun;
7449 int *entry_flag, *exit_flag;
7450 profile_probability *entry_prob, *exit_prob;
7451 unsigned i, num_entry_edges, num_exit_edges, num_nodes;
7452 edge e;
7453 edge_iterator ei;
7454 htab_t new_label_map;
7455 hash_map<void *, void *> *eh_map;
7456 struct loop *loop = entry_bb->loop_father;
7457 struct loop *loop0 = get_loop (saved_cfun, 0);
7458 struct move_stmt_d d;
7460 /* If ENTRY does not strictly dominate EXIT, this cannot be an SESE
7461 region. */
7462 gcc_assert (entry_bb != exit_bb
7463 && (!exit_bb
7464 || dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb)));
7466 /* Collect all the blocks in the region. Manually add ENTRY_BB
7467 because it won't be added by dfs_enumerate_from. */
7468 bbs.create (0);
7469 bbs.safe_push (entry_bb);
7470 gather_blocks_in_sese_region (entry_bb, exit_bb, &bbs);
7472 if (flag_checking)
7473 verify_sese (entry_bb, exit_bb, &bbs);
7475 /* The blocks that used to be dominated by something in BBS will now be
7476 dominated by the new block. */
7477 dom_bbs = get_dominated_by_region (CDI_DOMINATORS,
7478 bbs.address (),
7479 bbs.length ());
7481 /* Detach ENTRY_BB and EXIT_BB from CFUN->CFG. We need to remember
7482 the predecessor edges to ENTRY_BB and the successor edges to
7483 EXIT_BB so that we can re-attach them to the new basic block that
7484 will replace the region. */
7485 num_entry_edges = EDGE_COUNT (entry_bb->preds);
7486 entry_pred = XNEWVEC (basic_block, num_entry_edges);
7487 entry_flag = XNEWVEC (int, num_entry_edges);
7488 entry_prob = XNEWVEC (profile_probability, num_entry_edges);
7489 i = 0;
7490 for (ei = ei_start (entry_bb->preds); (e = ei_safe_edge (ei)) != NULL;)
7492 entry_prob[i] = e->probability;
7493 entry_flag[i] = e->flags;
7494 entry_pred[i++] = e->src;
7495 remove_edge (e);
7498 if (exit_bb)
7500 num_exit_edges = EDGE_COUNT (exit_bb->succs);
7501 exit_succ = XNEWVEC (basic_block, num_exit_edges);
7502 exit_flag = XNEWVEC (int, num_exit_edges);
7503 exit_prob = XNEWVEC (profile_probability, num_exit_edges);
7504 i = 0;
7505 for (ei = ei_start (exit_bb->succs); (e = ei_safe_edge (ei)) != NULL;)
7507 exit_prob[i] = e->probability;
7508 exit_flag[i] = e->flags;
7509 exit_succ[i++] = e->dest;
7510 remove_edge (e);
7513 else
7515 num_exit_edges = 0;
7516 exit_succ = NULL;
7517 exit_flag = NULL;
7518 exit_prob = NULL;
7521 /* Switch context to the child function to initialize DEST_FN's CFG. */
7522 gcc_assert (dest_cfun->cfg == NULL);
7523 push_cfun (dest_cfun);
7525 init_empty_tree_cfg ();
7527 /* Initialize EH information for the new function. */
7528 eh_map = NULL;
7529 new_label_map = NULL;
7530 if (saved_cfun->eh)
7532 eh_region region = NULL;
7534 FOR_EACH_VEC_ELT (bbs, i, bb)
7535 region = find_outermost_region_in_block (saved_cfun, bb, region);
7537 init_eh_for_function ();
7538 if (region != NULL)
7540 new_label_map = htab_create (17, tree_map_hash, tree_map_eq, free);
7541 eh_map = duplicate_eh_regions (saved_cfun, region, 0,
7542 new_label_mapper, new_label_map);
7546 /* Initialize an empty loop tree. */
7547 struct loops *loops = ggc_cleared_alloc<struct loops> ();
7548 init_loops_structure (dest_cfun, loops, 1);
7549 loops->state = LOOPS_MAY_HAVE_MULTIPLE_LATCHES;
7550 set_loops_for_fn (dest_cfun, loops);
7552 vec<loop_p, va_gc> *larray = get_loops (saved_cfun)->copy ();
7554 /* Move the outlined loop tree part. */
7555 num_nodes = bbs.length ();
7556 FOR_EACH_VEC_ELT (bbs, i, bb)
7558 if (bb->loop_father->header == bb)
7560 struct loop *this_loop = bb->loop_father;
7561 struct loop *outer = loop_outer (this_loop);
7562 if (outer == loop
7563 /* If the SESE region contains some bbs ending with
7564 a noreturn call, those are considered to belong
7565 to the outermost loop in saved_cfun, rather than
7566 the entry_bb's loop_father. */
7567 || outer == loop0)
7569 if (outer != loop)
7570 num_nodes -= this_loop->num_nodes;
7571 flow_loop_tree_node_remove (bb->loop_father);
7572 flow_loop_tree_node_add (get_loop (dest_cfun, 0), this_loop);
7573 fixup_loop_arrays_after_move (saved_cfun, cfun, this_loop);
7576 else if (bb->loop_father == loop0 && loop0 != loop)
7577 num_nodes--;
7579 /* Remove loop exits from the outlined region. */
7580 if (loops_for_fn (saved_cfun)->exits)
7581 FOR_EACH_EDGE (e, ei, bb->succs)
7583 struct loops *l = loops_for_fn (saved_cfun);
7584 loop_exit **slot
7585 = l->exits->find_slot_with_hash (e, htab_hash_pointer (e),
7586 NO_INSERT);
7587 if (slot)
7588 l->exits->clear_slot (slot);
7592 /* Adjust the number of blocks in the tree root of the outlined part. */
7593 get_loop (dest_cfun, 0)->num_nodes = bbs.length () + 2;
7595 /* Setup a mapping to be used by move_block_to_fn. */
7596 loop->aux = current_loops->tree_root;
7597 loop0->aux = current_loops->tree_root;
7599 /* Fix up orig_loop_num. If the block referenced in it has been moved
7600 to dest_cfun, update orig_loop_num field, otherwise clear it. */
7601 struct loop *dloop;
7602 signed char *moved_orig_loop_num = NULL;
7603 FOR_EACH_LOOP_FN (dest_cfun, dloop, 0)
7604 if (dloop->orig_loop_num)
7606 if (moved_orig_loop_num == NULL)
7607 moved_orig_loop_num
7608 = XCNEWVEC (signed char, vec_safe_length (larray));
7609 if ((*larray)[dloop->orig_loop_num] != NULL
7610 && get_loop (saved_cfun, dloop->orig_loop_num) == NULL)
7612 if (moved_orig_loop_num[dloop->orig_loop_num] >= 0
7613 && moved_orig_loop_num[dloop->orig_loop_num] < 2)
7614 moved_orig_loop_num[dloop->orig_loop_num]++;
7615 dloop->orig_loop_num = (*larray)[dloop->orig_loop_num]->num;
7617 else
7619 moved_orig_loop_num[dloop->orig_loop_num] = -1;
7620 dloop->orig_loop_num = 0;
7623 pop_cfun ();
7625 if (moved_orig_loop_num)
7627 FOR_EACH_VEC_ELT (bbs, i, bb)
7629 gimple *g = find_loop_dist_alias (bb);
7630 if (g == NULL)
7631 continue;
7633 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7634 gcc_assert (orig_loop_num
7635 && (unsigned) orig_loop_num < vec_safe_length (larray));
7636 if (moved_orig_loop_num[orig_loop_num] == 2)
7638 /* If we have moved both loops with this orig_loop_num into
7639 dest_cfun and the LOOP_DIST_ALIAS call is being moved there
7640 too, update the first argument. */
7641 gcc_assert ((*larray)[dloop->orig_loop_num] != NULL
7642 && (get_loop (saved_cfun, dloop->orig_loop_num)
7643 == NULL));
7644 tree t = build_int_cst (integer_type_node,
7645 (*larray)[dloop->orig_loop_num]->num);
7646 gimple_call_set_arg (g, 0, t);
7647 update_stmt (g);
7648 /* Make sure the following loop will not update it. */
7649 moved_orig_loop_num[orig_loop_num] = 0;
7651 else
7652 /* Otherwise at least one of the loops stayed in saved_cfun.
7653 Remove the LOOP_DIST_ALIAS call. */
7654 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7656 FOR_EACH_BB_FN (bb, saved_cfun)
7658 gimple *g = find_loop_dist_alias (bb);
7659 if (g == NULL)
7660 continue;
7661 int orig_loop_num = tree_to_shwi (gimple_call_arg (g, 0));
7662 gcc_assert (orig_loop_num
7663 && (unsigned) orig_loop_num < vec_safe_length (larray));
7664 if (moved_orig_loop_num[orig_loop_num])
7665 /* LOOP_DIST_ALIAS call remained in saved_cfun, if at least one
7666 of the corresponding loops was moved, remove it. */
7667 fold_loop_internal_call (g, gimple_call_arg (g, 1));
7669 XDELETEVEC (moved_orig_loop_num);
7671 ggc_free (larray);
7673 /* Move blocks from BBS into DEST_CFUN. */
7674 gcc_assert (bbs.length () >= 2);
7675 after = dest_cfun->cfg->x_entry_block_ptr;
7676 hash_map<tree, tree> vars_map;
7678 memset (&d, 0, sizeof (d));
7679 d.orig_block = orig_block;
7680 d.new_block = DECL_INITIAL (dest_cfun->decl);
7681 d.from_context = cfun->decl;
7682 d.to_context = dest_cfun->decl;
7683 d.vars_map = &vars_map;
7684 d.new_label_map = new_label_map;
7685 d.eh_map = eh_map;
7686 d.remap_decls_p = true;
7688 if (gimple_in_ssa_p (cfun))
7689 for (tree arg = DECL_ARGUMENTS (d.to_context); arg; arg = DECL_CHAIN (arg))
7691 tree narg = make_ssa_name_fn (dest_cfun, arg, gimple_build_nop ());
7692 set_ssa_default_def (dest_cfun, arg, narg);
7693 vars_map.put (arg, narg);
7696 FOR_EACH_VEC_ELT (bbs, i, bb)
7698 /* No need to update edge counts on the last block. It has
7699 already been updated earlier when we detached the region from
7700 the original CFG. */
7701 move_block_to_fn (dest_cfun, bb, after, bb != exit_bb, &d);
7702 after = bb;
7705 loop->aux = NULL;
7706 loop0->aux = NULL;
7707 /* Loop sizes are no longer correct, fix them up. */
7708 loop->num_nodes -= num_nodes;
7709 for (struct loop *outer = loop_outer (loop);
7710 outer; outer = loop_outer (outer))
7711 outer->num_nodes -= num_nodes;
7712 loop0->num_nodes -= bbs.length () - num_nodes;
7714 if (saved_cfun->has_simduid_loops || saved_cfun->has_force_vectorize_loops)
7716 struct loop *aloop;
7717 for (i = 0; vec_safe_iterate (loops->larray, i, &aloop); i++)
7718 if (aloop != NULL)
7720 if (aloop->simduid)
7722 replace_by_duplicate_decl (&aloop->simduid, d.vars_map,
7723 d.to_context);
7724 dest_cfun->has_simduid_loops = true;
7726 if (aloop->force_vectorize)
7727 dest_cfun->has_force_vectorize_loops = true;
7731 /* Rewire BLOCK_SUBBLOCKS of orig_block. */
7732 if (orig_block)
7734 tree block;
7735 gcc_assert (BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7736 == NULL_TREE);
7737 BLOCK_SUBBLOCKS (DECL_INITIAL (dest_cfun->decl))
7738 = BLOCK_SUBBLOCKS (orig_block);
7739 for (block = BLOCK_SUBBLOCKS (orig_block);
7740 block; block = BLOCK_CHAIN (block))
7741 BLOCK_SUPERCONTEXT (block) = DECL_INITIAL (dest_cfun->decl);
7742 BLOCK_SUBBLOCKS (orig_block) = NULL_TREE;
7745 replace_block_vars_by_duplicates (DECL_INITIAL (dest_cfun->decl),
7746 &vars_map, dest_cfun->decl);
7748 if (new_label_map)
7749 htab_delete (new_label_map);
7750 if (eh_map)
7751 delete eh_map;
7753 if (gimple_in_ssa_p (cfun))
7755 /* We need to release ssa-names in a defined order, so first find them,
7756 and then iterate in ascending version order. */
7757 bitmap release_names = BITMAP_ALLOC (NULL);
7758 vars_map.traverse<void *, gather_ssa_name_hash_map_from> (release_names);
7759 bitmap_iterator bi;
7760 unsigned i;
7761 EXECUTE_IF_SET_IN_BITMAP (release_names, 0, i, bi)
7762 release_ssa_name (ssa_name (i));
7763 BITMAP_FREE (release_names);
7766 /* Rewire the entry and exit blocks. The successor to the entry
7767 block turns into the successor of DEST_FN's ENTRY_BLOCK_PTR in
7768 the child function. Similarly, the predecessor of DEST_FN's
7769 EXIT_BLOCK_PTR turns into the predecessor of EXIT_BLOCK_PTR. We
7770 need to switch CFUN between DEST_CFUN and SAVED_CFUN so that the
7771 various CFG manipulation function get to the right CFG.
7773 FIXME, this is silly. The CFG ought to become a parameter to
7774 these helpers. */
7775 push_cfun (dest_cfun);
7776 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = entry_bb->count;
7777 make_single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), entry_bb, EDGE_FALLTHRU);
7778 if (exit_bb)
7780 make_single_succ_edge (exit_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
7781 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = exit_bb->count;
7783 else
7784 EXIT_BLOCK_PTR_FOR_FN (cfun)->count = profile_count::zero ();
7785 pop_cfun ();
7787 /* Back in the original function, the SESE region has disappeared,
7788 create a new basic block in its place. */
7789 bb = create_empty_bb (entry_pred[0]);
7790 if (current_loops)
7791 add_bb_to_loop (bb, loop);
7792 for (i = 0; i < num_entry_edges; i++)
7794 e = make_edge (entry_pred[i], bb, entry_flag[i]);
7795 e->probability = entry_prob[i];
7798 for (i = 0; i < num_exit_edges; i++)
7800 e = make_edge (bb, exit_succ[i], exit_flag[i]);
7801 e->probability = exit_prob[i];
7804 set_immediate_dominator (CDI_DOMINATORS, bb, dom_entry);
7805 FOR_EACH_VEC_ELT (dom_bbs, i, abb)
7806 set_immediate_dominator (CDI_DOMINATORS, abb, bb);
7807 dom_bbs.release ();
7809 if (exit_bb)
7811 free (exit_prob);
7812 free (exit_flag);
7813 free (exit_succ);
7815 free (entry_prob);
7816 free (entry_flag);
7817 free (entry_pred);
7818 bbs.release ();
7820 return bb;
7823 /* Dump default def DEF to file FILE using FLAGS and indentation
7824 SPC. */
7826 static void
7827 dump_default_def (FILE *file, tree def, int spc, dump_flags_t flags)
7829 for (int i = 0; i < spc; ++i)
7830 fprintf (file, " ");
7831 dump_ssaname_info_to_file (file, def, spc);
7833 print_generic_expr (file, TREE_TYPE (def), flags);
7834 fprintf (file, " ");
7835 print_generic_expr (file, def, flags);
7836 fprintf (file, " = ");
7837 print_generic_expr (file, SSA_NAME_VAR (def), flags);
7838 fprintf (file, ";\n");
7841 /* Print no_sanitize attribute to FILE for a given attribute VALUE. */
7843 static void
7844 print_no_sanitize_attr_value (FILE *file, tree value)
7846 unsigned int flags = tree_to_uhwi (value);
7847 bool first = true;
7848 for (int i = 0; sanitizer_opts[i].name != NULL; ++i)
7850 if ((sanitizer_opts[i].flag & flags) == sanitizer_opts[i].flag)
7852 if (!first)
7853 fprintf (file, " | ");
7854 fprintf (file, "%s", sanitizer_opts[i].name);
7855 first = false;
7860 /* Dump FUNCTION_DECL FN to file FILE using FLAGS (see TDF_* in dumpfile.h)
7863 void
7864 dump_function_to_file (tree fndecl, FILE *file, dump_flags_t flags)
7866 tree arg, var, old_current_fndecl = current_function_decl;
7867 struct function *dsf;
7868 bool ignore_topmost_bind = false, any_var = false;
7869 basic_block bb;
7870 tree chain;
7871 bool tmclone = (TREE_CODE (fndecl) == FUNCTION_DECL
7872 && decl_is_tm_clone (fndecl));
7873 struct function *fun = DECL_STRUCT_FUNCTION (fndecl);
7875 if (DECL_ATTRIBUTES (fndecl) != NULL_TREE)
7877 fprintf (file, "__attribute__((");
7879 bool first = true;
7880 tree chain;
7881 for (chain = DECL_ATTRIBUTES (fndecl); chain;
7882 first = false, chain = TREE_CHAIN (chain))
7884 if (!first)
7885 fprintf (file, ", ");
7887 tree name = get_attribute_name (chain);
7888 print_generic_expr (file, name, dump_flags);
7889 if (TREE_VALUE (chain) != NULL_TREE)
7891 fprintf (file, " (");
7893 if (strstr (IDENTIFIER_POINTER (name), "no_sanitize"))
7894 print_no_sanitize_attr_value (file, TREE_VALUE (chain));
7895 else
7896 print_generic_expr (file, TREE_VALUE (chain), dump_flags);
7897 fprintf (file, ")");
7901 fprintf (file, "))\n");
7904 current_function_decl = fndecl;
7905 if (flags & TDF_GIMPLE)
7907 print_generic_expr (file, TREE_TYPE (TREE_TYPE (fndecl)),
7908 dump_flags | TDF_SLIM);
7909 fprintf (file, " __GIMPLE ()\n%s (", function_name (fun));
7911 else
7912 fprintf (file, "%s %s(", function_name (fun), tmclone ? "[tm-clone] " : "");
7914 arg = DECL_ARGUMENTS (fndecl);
7915 while (arg)
7917 print_generic_expr (file, TREE_TYPE (arg), dump_flags);
7918 fprintf (file, " ");
7919 print_generic_expr (file, arg, dump_flags);
7920 if (DECL_CHAIN (arg))
7921 fprintf (file, ", ");
7922 arg = DECL_CHAIN (arg);
7924 fprintf (file, ")\n");
7926 dsf = DECL_STRUCT_FUNCTION (fndecl);
7927 if (dsf && (flags & TDF_EH))
7928 dump_eh_tree (file, dsf);
7930 if (flags & TDF_RAW && !gimple_has_body_p (fndecl))
7932 dump_node (fndecl, TDF_SLIM | flags, file);
7933 current_function_decl = old_current_fndecl;
7934 return;
7937 /* When GIMPLE is lowered, the variables are no longer available in
7938 BIND_EXPRs, so display them separately. */
7939 if (fun && fun->decl == fndecl && (fun->curr_properties & PROP_gimple_lcf))
7941 unsigned ix;
7942 ignore_topmost_bind = true;
7944 fprintf (file, "{\n");
7945 if (gimple_in_ssa_p (fun)
7946 && (flags & TDF_ALIAS))
7948 for (arg = DECL_ARGUMENTS (fndecl); arg != NULL;
7949 arg = DECL_CHAIN (arg))
7951 tree def = ssa_default_def (fun, arg);
7952 if (def)
7953 dump_default_def (file, def, 2, flags);
7956 tree res = DECL_RESULT (fun->decl);
7957 if (res != NULL_TREE
7958 && DECL_BY_REFERENCE (res))
7960 tree def = ssa_default_def (fun, res);
7961 if (def)
7962 dump_default_def (file, def, 2, flags);
7965 tree static_chain = fun->static_chain_decl;
7966 if (static_chain != NULL_TREE)
7968 tree def = ssa_default_def (fun, static_chain);
7969 if (def)
7970 dump_default_def (file, def, 2, flags);
7974 if (!vec_safe_is_empty (fun->local_decls))
7975 FOR_EACH_LOCAL_DECL (fun, ix, var)
7977 print_generic_decl (file, var, flags);
7978 fprintf (file, "\n");
7980 any_var = true;
7983 tree name;
7985 if (gimple_in_ssa_p (cfun))
7986 FOR_EACH_SSA_NAME (ix, name, cfun)
7988 if (!SSA_NAME_VAR (name))
7990 fprintf (file, " ");
7991 print_generic_expr (file, TREE_TYPE (name), flags);
7992 fprintf (file, " ");
7993 print_generic_expr (file, name, flags);
7994 fprintf (file, ";\n");
7996 any_var = true;
8001 if (fun && fun->decl == fndecl
8002 && fun->cfg
8003 && basic_block_info_for_fn (fun))
8005 /* If the CFG has been built, emit a CFG-based dump. */
8006 if (!ignore_topmost_bind)
8007 fprintf (file, "{\n");
8009 if (any_var && n_basic_blocks_for_fn (fun))
8010 fprintf (file, "\n");
8012 FOR_EACH_BB_FN (bb, fun)
8013 dump_bb (file, bb, 2, flags);
8015 fprintf (file, "}\n");
8017 else if (fun->curr_properties & PROP_gimple_any)
8019 /* The function is now in GIMPLE form but the CFG has not been
8020 built yet. Emit the single sequence of GIMPLE statements
8021 that make up its body. */
8022 gimple_seq body = gimple_body (fndecl);
8024 if (gimple_seq_first_stmt (body)
8025 && gimple_seq_first_stmt (body) == gimple_seq_last_stmt (body)
8026 && gimple_code (gimple_seq_first_stmt (body)) == GIMPLE_BIND)
8027 print_gimple_seq (file, body, 0, flags);
8028 else
8030 if (!ignore_topmost_bind)
8031 fprintf (file, "{\n");
8033 if (any_var)
8034 fprintf (file, "\n");
8036 print_gimple_seq (file, body, 2, flags);
8037 fprintf (file, "}\n");
8040 else
8042 int indent;
8044 /* Make a tree based dump. */
8045 chain = DECL_SAVED_TREE (fndecl);
8046 if (chain && TREE_CODE (chain) == BIND_EXPR)
8048 if (ignore_topmost_bind)
8050 chain = BIND_EXPR_BODY (chain);
8051 indent = 2;
8053 else
8054 indent = 0;
8056 else
8058 if (!ignore_topmost_bind)
8060 fprintf (file, "{\n");
8061 /* No topmost bind, pretend it's ignored for later. */
8062 ignore_topmost_bind = true;
8064 indent = 2;
8067 if (any_var)
8068 fprintf (file, "\n");
8070 print_generic_stmt_indented (file, chain, flags, indent);
8071 if (ignore_topmost_bind)
8072 fprintf (file, "}\n");
8075 if (flags & TDF_ENUMERATE_LOCALS)
8076 dump_enumerated_decls (file, flags);
8077 fprintf (file, "\n\n");
8079 current_function_decl = old_current_fndecl;
8082 /* Dump FUNCTION_DECL FN to stderr using FLAGS (see TDF_* in tree.h) */
8084 DEBUG_FUNCTION void
8085 debug_function (tree fn, dump_flags_t flags)
8087 dump_function_to_file (fn, stderr, flags);
8091 /* Print on FILE the indexes for the predecessors of basic_block BB. */
8093 static void
8094 print_pred_bbs (FILE *file, basic_block bb)
8096 edge e;
8097 edge_iterator ei;
8099 FOR_EACH_EDGE (e, ei, bb->preds)
8100 fprintf (file, "bb_%d ", e->src->index);
8104 /* Print on FILE the indexes for the successors of basic_block BB. */
8106 static void
8107 print_succ_bbs (FILE *file, basic_block bb)
8109 edge e;
8110 edge_iterator ei;
8112 FOR_EACH_EDGE (e, ei, bb->succs)
8113 fprintf (file, "bb_%d ", e->dest->index);
8116 /* Print to FILE the basic block BB following the VERBOSITY level. */
8118 void
8119 print_loops_bb (FILE *file, basic_block bb, int indent, int verbosity)
8121 char *s_indent = (char *) alloca ((size_t) indent + 1);
8122 memset ((void *) s_indent, ' ', (size_t) indent);
8123 s_indent[indent] = '\0';
8125 /* Print basic_block's header. */
8126 if (verbosity >= 2)
8128 fprintf (file, "%s bb_%d (preds = {", s_indent, bb->index);
8129 print_pred_bbs (file, bb);
8130 fprintf (file, "}, succs = {");
8131 print_succ_bbs (file, bb);
8132 fprintf (file, "})\n");
8135 /* Print basic_block's body. */
8136 if (verbosity >= 3)
8138 fprintf (file, "%s {\n", s_indent);
8139 dump_bb (file, bb, indent + 4, TDF_VOPS|TDF_MEMSYMS);
8140 fprintf (file, "%s }\n", s_indent);
8144 static void print_loop_and_siblings (FILE *, struct loop *, int, int);
8146 /* Pretty print LOOP on FILE, indented INDENT spaces. Following
8147 VERBOSITY level this outputs the contents of the loop, or just its
8148 structure. */
8150 static void
8151 print_loop (FILE *file, struct loop *loop, int indent, int verbosity)
8153 char *s_indent;
8154 basic_block bb;
8156 if (loop == NULL)
8157 return;
8159 s_indent = (char *) alloca ((size_t) indent + 1);
8160 memset ((void *) s_indent, ' ', (size_t) indent);
8161 s_indent[indent] = '\0';
8163 /* Print loop's header. */
8164 fprintf (file, "%sloop_%d (", s_indent, loop->num);
8165 if (loop->header)
8166 fprintf (file, "header = %d", loop->header->index);
8167 else
8169 fprintf (file, "deleted)\n");
8170 return;
8172 if (loop->latch)
8173 fprintf (file, ", latch = %d", loop->latch->index);
8174 else
8175 fprintf (file, ", multiple latches");
8176 fprintf (file, ", niter = ");
8177 print_generic_expr (file, loop->nb_iterations);
8179 if (loop->any_upper_bound)
8181 fprintf (file, ", upper_bound = ");
8182 print_decu (loop->nb_iterations_upper_bound, file);
8184 if (loop->any_likely_upper_bound)
8186 fprintf (file, ", likely_upper_bound = ");
8187 print_decu (loop->nb_iterations_likely_upper_bound, file);
8190 if (loop->any_estimate)
8192 fprintf (file, ", estimate = ");
8193 print_decu (loop->nb_iterations_estimate, file);
8195 if (loop->unroll)
8196 fprintf (file, ", unroll = %d", loop->unroll);
8197 fprintf (file, ")\n");
8199 /* Print loop's body. */
8200 if (verbosity >= 1)
8202 fprintf (file, "%s{\n", s_indent);
8203 FOR_EACH_BB_FN (bb, cfun)
8204 if (bb->loop_father == loop)
8205 print_loops_bb (file, bb, indent, verbosity);
8207 print_loop_and_siblings (file, loop->inner, indent + 2, verbosity);
8208 fprintf (file, "%s}\n", s_indent);
8212 /* Print the LOOP and its sibling loops on FILE, indented INDENT
8213 spaces. Following VERBOSITY level this outputs the contents of the
8214 loop, or just its structure. */
8216 static void
8217 print_loop_and_siblings (FILE *file, struct loop *loop, int indent,
8218 int verbosity)
8220 if (loop == NULL)
8221 return;
8223 print_loop (file, loop, indent, verbosity);
8224 print_loop_and_siblings (file, loop->next, indent, verbosity);
8227 /* Follow a CFG edge from the entry point of the program, and on entry
8228 of a loop, pretty print the loop structure on FILE. */
8230 void
8231 print_loops (FILE *file, int verbosity)
8233 basic_block bb;
8235 bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
8236 fprintf (file, "\nLoops in function: %s\n", current_function_name ());
8237 if (bb && bb->loop_father)
8238 print_loop_and_siblings (file, bb->loop_father, 0, verbosity);
8241 /* Dump a loop. */
8243 DEBUG_FUNCTION void
8244 debug (struct loop &ref)
8246 print_loop (stderr, &ref, 0, /*verbosity*/0);
8249 DEBUG_FUNCTION void
8250 debug (struct loop *ptr)
8252 if (ptr)
8253 debug (*ptr);
8254 else
8255 fprintf (stderr, "<nil>\n");
8258 /* Dump a loop verbosely. */
8260 DEBUG_FUNCTION void
8261 debug_verbose (struct loop &ref)
8263 print_loop (stderr, &ref, 0, /*verbosity*/3);
8266 DEBUG_FUNCTION void
8267 debug_verbose (struct loop *ptr)
8269 if (ptr)
8270 debug (*ptr);
8271 else
8272 fprintf (stderr, "<nil>\n");
8276 /* Debugging loops structure at tree level, at some VERBOSITY level. */
8278 DEBUG_FUNCTION void
8279 debug_loops (int verbosity)
8281 print_loops (stderr, verbosity);
8284 /* Print on stderr the code of LOOP, at some VERBOSITY level. */
8286 DEBUG_FUNCTION void
8287 debug_loop (struct loop *loop, int verbosity)
8289 print_loop (stderr, loop, 0, verbosity);
8292 /* Print on stderr the code of loop number NUM, at some VERBOSITY
8293 level. */
8295 DEBUG_FUNCTION void
8296 debug_loop_num (unsigned num, int verbosity)
8298 debug_loop (get_loop (cfun, num), verbosity);
8301 /* Return true if BB ends with a call, possibly followed by some
8302 instructions that must stay with the call. Return false,
8303 otherwise. */
8305 static bool
8306 gimple_block_ends_with_call_p (basic_block bb)
8308 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8309 return !gsi_end_p (gsi) && is_gimple_call (gsi_stmt (gsi));
8313 /* Return true if BB ends with a conditional branch. Return false,
8314 otherwise. */
8316 static bool
8317 gimple_block_ends_with_condjump_p (const_basic_block bb)
8319 gimple *stmt = last_stmt (CONST_CAST_BB (bb));
8320 return (stmt && gimple_code (stmt) == GIMPLE_COND);
8324 /* Return true if statement T may terminate execution of BB in ways not
8325 explicitly represtented in the CFG. */
8327 bool
8328 stmt_can_terminate_bb_p (gimple *t)
8330 tree fndecl = NULL_TREE;
8331 int call_flags = 0;
8333 /* Eh exception not handled internally terminates execution of the whole
8334 function. */
8335 if (stmt_can_throw_external (t))
8336 return true;
8338 /* NORETURN and LONGJMP calls already have an edge to exit.
8339 CONST and PURE calls do not need one.
8340 We don't currently check for CONST and PURE here, although
8341 it would be a good idea, because those attributes are
8342 figured out from the RTL in mark_constant_function, and
8343 the counter incrementation code from -fprofile-arcs
8344 leads to different results from -fbranch-probabilities. */
8345 if (is_gimple_call (t))
8347 fndecl = gimple_call_fndecl (t);
8348 call_flags = gimple_call_flags (t);
8351 if (is_gimple_call (t)
8352 && fndecl
8353 && DECL_BUILT_IN (fndecl)
8354 && (call_flags & ECF_NOTHROW)
8355 && !(call_flags & ECF_RETURNS_TWICE)
8356 /* fork() doesn't really return twice, but the effect of
8357 wrapping it in __gcov_fork() which calls __gcov_flush()
8358 and clears the counters before forking has the same
8359 effect as returning twice. Force a fake edge. */
8360 && !(DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
8361 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_FORK))
8362 return false;
8364 if (is_gimple_call (t))
8366 edge_iterator ei;
8367 edge e;
8368 basic_block bb;
8370 if (call_flags & (ECF_PURE | ECF_CONST)
8371 && !(call_flags & ECF_LOOPING_CONST_OR_PURE))
8372 return false;
8374 /* Function call may do longjmp, terminate program or do other things.
8375 Special case noreturn that have non-abnormal edges out as in this case
8376 the fact is sufficiently represented by lack of edges out of T. */
8377 if (!(call_flags & ECF_NORETURN))
8378 return true;
8380 bb = gimple_bb (t);
8381 FOR_EACH_EDGE (e, ei, bb->succs)
8382 if ((e->flags & EDGE_FAKE) == 0)
8383 return true;
8386 if (gasm *asm_stmt = dyn_cast <gasm *> (t))
8387 if (gimple_asm_volatile_p (asm_stmt) || gimple_asm_input_p (asm_stmt))
8388 return true;
8390 return false;
8394 /* Add fake edges to the function exit for any non constant and non
8395 noreturn calls (or noreturn calls with EH/abnormal edges),
8396 volatile inline assembly in the bitmap of blocks specified by BLOCKS
8397 or to the whole CFG if BLOCKS is zero. Return the number of blocks
8398 that were split.
8400 The goal is to expose cases in which entering a basic block does
8401 not imply that all subsequent instructions must be executed. */
8403 static int
8404 gimple_flow_call_edges_add (sbitmap blocks)
8406 int i;
8407 int blocks_split = 0;
8408 int last_bb = last_basic_block_for_fn (cfun);
8409 bool check_last_block = false;
8411 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
8412 return 0;
8414 if (! blocks)
8415 check_last_block = true;
8416 else
8417 check_last_block = bitmap_bit_p (blocks,
8418 EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb->index);
8420 /* In the last basic block, before epilogue generation, there will be
8421 a fallthru edge to EXIT. Special care is required if the last insn
8422 of the last basic block is a call because make_edge folds duplicate
8423 edges, which would result in the fallthru edge also being marked
8424 fake, which would result in the fallthru edge being removed by
8425 remove_fake_edges, which would result in an invalid CFG.
8427 Moreover, we can't elide the outgoing fake edge, since the block
8428 profiler needs to take this into account in order to solve the minimal
8429 spanning tree in the case that the call doesn't return.
8431 Handle this by adding a dummy instruction in a new last basic block. */
8432 if (check_last_block)
8434 basic_block bb = EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb;
8435 gimple_stmt_iterator gsi = gsi_last_nondebug_bb (bb);
8436 gimple *t = NULL;
8438 if (!gsi_end_p (gsi))
8439 t = gsi_stmt (gsi);
8441 if (t && stmt_can_terminate_bb_p (t))
8443 edge e;
8445 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8446 if (e)
8448 gsi_insert_on_edge (e, gimple_build_nop ());
8449 gsi_commit_edge_inserts ();
8454 /* Now add fake edges to the function exit for any non constant
8455 calls since there is no way that we can determine if they will
8456 return or not... */
8457 for (i = 0; i < last_bb; i++)
8459 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8460 gimple_stmt_iterator gsi;
8461 gimple *stmt, *last_stmt;
8463 if (!bb)
8464 continue;
8466 if (blocks && !bitmap_bit_p (blocks, i))
8467 continue;
8469 gsi = gsi_last_nondebug_bb (bb);
8470 if (!gsi_end_p (gsi))
8472 last_stmt = gsi_stmt (gsi);
8475 stmt = gsi_stmt (gsi);
8476 if (stmt_can_terminate_bb_p (stmt))
8478 edge e;
8480 /* The handling above of the final block before the
8481 epilogue should be enough to verify that there is
8482 no edge to the exit block in CFG already.
8483 Calling make_edge in such case would cause us to
8484 mark that edge as fake and remove it later. */
8485 if (flag_checking && stmt == last_stmt)
8487 e = find_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun));
8488 gcc_assert (e == NULL);
8491 /* Note that the following may create a new basic block
8492 and renumber the existing basic blocks. */
8493 if (stmt != last_stmt)
8495 e = split_block (bb, stmt);
8496 if (e)
8497 blocks_split++;
8499 e = make_edge (bb, EXIT_BLOCK_PTR_FOR_FN (cfun), EDGE_FAKE);
8500 e->probability = profile_probability::guessed_never ();
8502 gsi_prev (&gsi);
8504 while (!gsi_end_p (gsi));
8508 if (blocks_split)
8509 checking_verify_flow_info ();
8511 return blocks_split;
8514 /* Removes edge E and all the blocks dominated by it, and updates dominance
8515 information. The IL in E->src needs to be updated separately.
8516 If dominance info is not available, only the edge E is removed.*/
8518 void
8519 remove_edge_and_dominated_blocks (edge e)
8521 vec<basic_block> bbs_to_remove = vNULL;
8522 vec<basic_block> bbs_to_fix_dom = vNULL;
8523 edge f;
8524 edge_iterator ei;
8525 bool none_removed = false;
8526 unsigned i;
8527 basic_block bb, dbb;
8528 bitmap_iterator bi;
8530 /* If we are removing a path inside a non-root loop that may change
8531 loop ownership of blocks or remove loops. Mark loops for fixup. */
8532 if (current_loops
8533 && loop_outer (e->src->loop_father) != NULL
8534 && e->src->loop_father == e->dest->loop_father)
8535 loops_state_set (LOOPS_NEED_FIXUP);
8537 if (!dom_info_available_p (CDI_DOMINATORS))
8539 remove_edge (e);
8540 return;
8543 /* No updating is needed for edges to exit. */
8544 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8546 if (cfgcleanup_altered_bbs)
8547 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8548 remove_edge (e);
8549 return;
8552 /* First, we find the basic blocks to remove. If E->dest has a predecessor
8553 that is not dominated by E->dest, then this set is empty. Otherwise,
8554 all the basic blocks dominated by E->dest are removed.
8556 Also, to DF_IDOM we store the immediate dominators of the blocks in
8557 the dominance frontier of E (i.e., of the successors of the
8558 removed blocks, if there are any, and of E->dest otherwise). */
8559 FOR_EACH_EDGE (f, ei, e->dest->preds)
8561 if (f == e)
8562 continue;
8564 if (!dominated_by_p (CDI_DOMINATORS, f->src, e->dest))
8566 none_removed = true;
8567 break;
8571 auto_bitmap df, df_idom;
8572 if (none_removed)
8573 bitmap_set_bit (df_idom,
8574 get_immediate_dominator (CDI_DOMINATORS, e->dest)->index);
8575 else
8577 bbs_to_remove = get_all_dominated_blocks (CDI_DOMINATORS, e->dest);
8578 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8580 FOR_EACH_EDGE (f, ei, bb->succs)
8582 if (f->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
8583 bitmap_set_bit (df, f->dest->index);
8586 FOR_EACH_VEC_ELT (bbs_to_remove, i, bb)
8587 bitmap_clear_bit (df, bb->index);
8589 EXECUTE_IF_SET_IN_BITMAP (df, 0, i, bi)
8591 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8592 bitmap_set_bit (df_idom,
8593 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
8597 if (cfgcleanup_altered_bbs)
8599 /* Record the set of the altered basic blocks. */
8600 bitmap_set_bit (cfgcleanup_altered_bbs, e->src->index);
8601 bitmap_ior_into (cfgcleanup_altered_bbs, df);
8604 /* Remove E and the cancelled blocks. */
8605 if (none_removed)
8606 remove_edge (e);
8607 else
8609 /* Walk backwards so as to get a chance to substitute all
8610 released DEFs into debug stmts. See
8611 eliminate_unnecessary_stmts() in tree-ssa-dce.c for more
8612 details. */
8613 for (i = bbs_to_remove.length (); i-- > 0; )
8614 delete_basic_block (bbs_to_remove[i]);
8617 /* Update the dominance information. The immediate dominator may change only
8618 for blocks whose immediate dominator belongs to DF_IDOM:
8620 Suppose that idom(X) = Y before removal of E and idom(X) != Y after the
8621 removal. Let Z the arbitrary block such that idom(Z) = Y and
8622 Z dominates X after the removal. Before removal, there exists a path P
8623 from Y to X that avoids Z. Let F be the last edge on P that is
8624 removed, and let W = F->dest. Before removal, idom(W) = Y (since Y
8625 dominates W, and because of P, Z does not dominate W), and W belongs to
8626 the dominance frontier of E. Therefore, Y belongs to DF_IDOM. */
8627 EXECUTE_IF_SET_IN_BITMAP (df_idom, 0, i, bi)
8629 bb = BASIC_BLOCK_FOR_FN (cfun, i);
8630 for (dbb = first_dom_son (CDI_DOMINATORS, bb);
8631 dbb;
8632 dbb = next_dom_son (CDI_DOMINATORS, dbb))
8633 bbs_to_fix_dom.safe_push (dbb);
8636 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
8638 bbs_to_remove.release ();
8639 bbs_to_fix_dom.release ();
8642 /* Purge dead EH edges from basic block BB. */
8644 bool
8645 gimple_purge_dead_eh_edges (basic_block bb)
8647 bool changed = false;
8648 edge e;
8649 edge_iterator ei;
8650 gimple *stmt = last_stmt (bb);
8652 if (stmt && stmt_can_throw_internal (stmt))
8653 return false;
8655 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8657 if (e->flags & EDGE_EH)
8659 remove_edge_and_dominated_blocks (e);
8660 changed = true;
8662 else
8663 ei_next (&ei);
8666 return changed;
8669 /* Purge dead EH edges from basic block listed in BLOCKS. */
8671 bool
8672 gimple_purge_all_dead_eh_edges (const_bitmap blocks)
8674 bool changed = false;
8675 unsigned i;
8676 bitmap_iterator bi;
8678 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8680 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8682 /* Earlier gimple_purge_dead_eh_edges could have removed
8683 this basic block already. */
8684 gcc_assert (bb || changed);
8685 if (bb != NULL)
8686 changed |= gimple_purge_dead_eh_edges (bb);
8689 return changed;
8692 /* Purge dead abnormal call edges from basic block BB. */
8694 bool
8695 gimple_purge_dead_abnormal_call_edges (basic_block bb)
8697 bool changed = false;
8698 edge e;
8699 edge_iterator ei;
8700 gimple *stmt = last_stmt (bb);
8702 if (!cfun->has_nonlocal_label
8703 && !cfun->calls_setjmp)
8704 return false;
8706 if (stmt && stmt_can_make_abnormal_goto (stmt))
8707 return false;
8709 for (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); )
8711 if (e->flags & EDGE_ABNORMAL)
8713 if (e->flags & EDGE_FALLTHRU)
8714 e->flags &= ~EDGE_ABNORMAL;
8715 else
8716 remove_edge_and_dominated_blocks (e);
8717 changed = true;
8719 else
8720 ei_next (&ei);
8723 return changed;
8726 /* Purge dead abnormal call edges from basic block listed in BLOCKS. */
8728 bool
8729 gimple_purge_all_dead_abnormal_call_edges (const_bitmap blocks)
8731 bool changed = false;
8732 unsigned i;
8733 bitmap_iterator bi;
8735 EXECUTE_IF_SET_IN_BITMAP (blocks, 0, i, bi)
8737 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, i);
8739 /* Earlier gimple_purge_dead_abnormal_call_edges could have removed
8740 this basic block already. */
8741 gcc_assert (bb || changed);
8742 if (bb != NULL)
8743 changed |= gimple_purge_dead_abnormal_call_edges (bb);
8746 return changed;
8749 /* This function is called whenever a new edge is created or
8750 redirected. */
8752 static void
8753 gimple_execute_on_growing_pred (edge e)
8755 basic_block bb = e->dest;
8757 if (!gimple_seq_empty_p (phi_nodes (bb)))
8758 reserve_phi_args_for_new_edge (bb);
8761 /* This function is called immediately before edge E is removed from
8762 the edge vector E->dest->preds. */
8764 static void
8765 gimple_execute_on_shrinking_pred (edge e)
8767 if (!gimple_seq_empty_p (phi_nodes (e->dest)))
8768 remove_phi_args (e);
8771 /*---------------------------------------------------------------------------
8772 Helper functions for Loop versioning
8773 ---------------------------------------------------------------------------*/
8775 /* Adjust phi nodes for 'first' basic block. 'second' basic block is a copy
8776 of 'first'. Both of them are dominated by 'new_head' basic block. When
8777 'new_head' was created by 'second's incoming edge it received phi arguments
8778 on the edge by split_edge(). Later, additional edge 'e' was created to
8779 connect 'new_head' and 'first'. Now this routine adds phi args on this
8780 additional edge 'e' that new_head to second edge received as part of edge
8781 splitting. */
8783 static void
8784 gimple_lv_adjust_loop_header_phi (basic_block first, basic_block second,
8785 basic_block new_head, edge e)
8787 gphi *phi1, *phi2;
8788 gphi_iterator psi1, psi2;
8789 tree def;
8790 edge e2 = find_edge (new_head, second);
8792 /* Because NEW_HEAD has been created by splitting SECOND's incoming
8793 edge, we should always have an edge from NEW_HEAD to SECOND. */
8794 gcc_assert (e2 != NULL);
8796 /* Browse all 'second' basic block phi nodes and add phi args to
8797 edge 'e' for 'first' head. PHI args are always in correct order. */
8799 for (psi2 = gsi_start_phis (second),
8800 psi1 = gsi_start_phis (first);
8801 !gsi_end_p (psi2) && !gsi_end_p (psi1);
8802 gsi_next (&psi2), gsi_next (&psi1))
8804 phi1 = psi1.phi ();
8805 phi2 = psi2.phi ();
8806 def = PHI_ARG_DEF (phi2, e2->dest_idx);
8807 add_phi_arg (phi1, def, e, gimple_phi_arg_location_from_edge (phi2, e2));
8812 /* Adds a if else statement to COND_BB with condition COND_EXPR.
8813 SECOND_HEAD is the destination of the THEN and FIRST_HEAD is
8814 the destination of the ELSE part. */
8816 static void
8817 gimple_lv_add_condition_to_bb (basic_block first_head ATTRIBUTE_UNUSED,
8818 basic_block second_head ATTRIBUTE_UNUSED,
8819 basic_block cond_bb, void *cond_e)
8821 gimple_stmt_iterator gsi;
8822 gimple *new_cond_expr;
8823 tree cond_expr = (tree) cond_e;
8824 edge e0;
8826 /* Build new conditional expr */
8827 new_cond_expr = gimple_build_cond_from_tree (cond_expr,
8828 NULL_TREE, NULL_TREE);
8830 /* Add new cond in cond_bb. */
8831 gsi = gsi_last_bb (cond_bb);
8832 gsi_insert_after (&gsi, new_cond_expr, GSI_NEW_STMT);
8834 /* Adjust edges appropriately to connect new head with first head
8835 as well as second head. */
8836 e0 = single_succ_edge (cond_bb);
8837 e0->flags &= ~EDGE_FALLTHRU;
8838 e0->flags |= EDGE_FALSE_VALUE;
8842 /* Do book-keeping of basic block BB for the profile consistency checker.
8843 If AFTER_PASS is 0, do pre-pass accounting, or if AFTER_PASS is 1
8844 then do post-pass accounting. Store the counting in RECORD. */
8845 static void
8846 gimple_account_profile_record (basic_block bb, int after_pass,
8847 struct profile_record *record)
8849 gimple_stmt_iterator i;
8850 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
8852 record->size[after_pass]
8853 += estimate_num_insns (gsi_stmt (i), &eni_size_weights);
8854 if (bb->count.initialized_p ())
8855 record->time[after_pass]
8856 += estimate_num_insns (gsi_stmt (i),
8857 &eni_time_weights) * bb->count.to_gcov_type ();
8858 else if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
8859 record->time[after_pass]
8860 += estimate_num_insns (gsi_stmt (i),
8861 &eni_time_weights) * bb->count.to_frequency (cfun);
8865 struct cfg_hooks gimple_cfg_hooks = {
8866 "gimple",
8867 gimple_verify_flow_info,
8868 gimple_dump_bb, /* dump_bb */
8869 gimple_dump_bb_for_graph, /* dump_bb_for_graph */
8870 create_bb, /* create_basic_block */
8871 gimple_redirect_edge_and_branch, /* redirect_edge_and_branch */
8872 gimple_redirect_edge_and_branch_force, /* redirect_edge_and_branch_force */
8873 gimple_can_remove_branch_p, /* can_remove_branch_p */
8874 remove_bb, /* delete_basic_block */
8875 gimple_split_block, /* split_block */
8876 gimple_move_block_after, /* move_block_after */
8877 gimple_can_merge_blocks_p, /* can_merge_blocks_p */
8878 gimple_merge_blocks, /* merge_blocks */
8879 gimple_predict_edge, /* predict_edge */
8880 gimple_predicted_by_p, /* predicted_by_p */
8881 gimple_can_duplicate_bb_p, /* can_duplicate_block_p */
8882 gimple_duplicate_bb, /* duplicate_block */
8883 gimple_split_edge, /* split_edge */
8884 gimple_make_forwarder_block, /* make_forward_block */
8885 NULL, /* tidy_fallthru_edge */
8886 NULL, /* force_nonfallthru */
8887 gimple_block_ends_with_call_p,/* block_ends_with_call_p */
8888 gimple_block_ends_with_condjump_p, /* block_ends_with_condjump_p */
8889 gimple_flow_call_edges_add, /* flow_call_edges_add */
8890 gimple_execute_on_growing_pred, /* execute_on_growing_pred */
8891 gimple_execute_on_shrinking_pred, /* execute_on_shrinking_pred */
8892 gimple_duplicate_loop_to_header_edge, /* duplicate loop for trees */
8893 gimple_lv_add_condition_to_bb, /* lv_add_condition_to_bb */
8894 gimple_lv_adjust_loop_header_phi, /* lv_adjust_loop_header_phi*/
8895 extract_true_false_edges_from_block, /* extract_cond_bb_edges */
8896 flush_pending_stmts, /* flush_pending_stmts */
8897 gimple_empty_block_p, /* block_empty_p */
8898 gimple_split_block_before_cond_jump, /* split_block_before_cond_jump */
8899 gimple_account_profile_record,
8903 /* Split all critical edges. */
8905 unsigned int
8906 split_critical_edges (void)
8908 basic_block bb;
8909 edge e;
8910 edge_iterator ei;
8912 /* split_edge can redirect edges out of SWITCH_EXPRs, which can get
8913 expensive. So we want to enable recording of edge to CASE_LABEL_EXPR
8914 mappings around the calls to split_edge. */
8915 start_recording_case_labels ();
8916 FOR_ALL_BB_FN (bb, cfun)
8918 FOR_EACH_EDGE (e, ei, bb->succs)
8920 if (EDGE_CRITICAL_P (e) && !(e->flags & EDGE_ABNORMAL))
8921 split_edge (e);
8922 /* PRE inserts statements to edges and expects that
8923 since split_critical_edges was done beforehand, committing edge
8924 insertions will not split more edges. In addition to critical
8925 edges we must split edges that have multiple successors and
8926 end by control flow statements, such as RESX.
8927 Go ahead and split them too. This matches the logic in
8928 gimple_find_edge_insert_loc. */
8929 else if ((!single_pred_p (e->dest)
8930 || !gimple_seq_empty_p (phi_nodes (e->dest))
8931 || e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
8932 && e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
8933 && !(e->flags & EDGE_ABNORMAL))
8935 gimple_stmt_iterator gsi;
8937 gsi = gsi_last_bb (e->src);
8938 if (!gsi_end_p (gsi)
8939 && stmt_ends_bb_p (gsi_stmt (gsi))
8940 && (gimple_code (gsi_stmt (gsi)) != GIMPLE_RETURN
8941 && !gimple_call_builtin_p (gsi_stmt (gsi),
8942 BUILT_IN_RETURN)))
8943 split_edge (e);
8947 end_recording_case_labels ();
8948 return 0;
8951 namespace {
8953 const pass_data pass_data_split_crit_edges =
8955 GIMPLE_PASS, /* type */
8956 "crited", /* name */
8957 OPTGROUP_NONE, /* optinfo_flags */
8958 TV_TREE_SPLIT_EDGES, /* tv_id */
8959 PROP_cfg, /* properties_required */
8960 PROP_no_crit_edges, /* properties_provided */
8961 0, /* properties_destroyed */
8962 0, /* todo_flags_start */
8963 0, /* todo_flags_finish */
8966 class pass_split_crit_edges : public gimple_opt_pass
8968 public:
8969 pass_split_crit_edges (gcc::context *ctxt)
8970 : gimple_opt_pass (pass_data_split_crit_edges, ctxt)
8973 /* opt_pass methods: */
8974 virtual unsigned int execute (function *) { return split_critical_edges (); }
8976 opt_pass * clone () { return new pass_split_crit_edges (m_ctxt); }
8977 }; // class pass_split_crit_edges
8979 } // anon namespace
8981 gimple_opt_pass *
8982 make_pass_split_crit_edges (gcc::context *ctxt)
8984 return new pass_split_crit_edges (ctxt);
8988 /* Insert COND expression which is GIMPLE_COND after STMT
8989 in basic block BB with appropriate basic block split
8990 and creation of a new conditionally executed basic block.
8991 Update profile so the new bb is visited with probability PROB.
8992 Return created basic block. */
8993 basic_block
8994 insert_cond_bb (basic_block bb, gimple *stmt, gimple *cond,
8995 profile_probability prob)
8997 edge fall = split_block (bb, stmt);
8998 gimple_stmt_iterator iter = gsi_last_bb (bb);
8999 basic_block new_bb;
9001 /* Insert cond statement. */
9002 gcc_assert (gimple_code (cond) == GIMPLE_COND);
9003 if (gsi_end_p (iter))
9004 gsi_insert_before (&iter, cond, GSI_CONTINUE_LINKING);
9005 else
9006 gsi_insert_after (&iter, cond, GSI_CONTINUE_LINKING);
9008 /* Create conditionally executed block. */
9009 new_bb = create_empty_bb (bb);
9010 edge e = make_edge (bb, new_bb, EDGE_TRUE_VALUE);
9011 e->probability = prob;
9012 new_bb->count = e->count ();
9013 make_single_succ_edge (new_bb, fall->dest, EDGE_FALLTHRU);
9015 /* Fix edge for split bb. */
9016 fall->flags = EDGE_FALSE_VALUE;
9017 fall->probability -= e->probability;
9019 /* Update dominance info. */
9020 if (dom_info_available_p (CDI_DOMINATORS))
9022 set_immediate_dominator (CDI_DOMINATORS, new_bb, bb);
9023 set_immediate_dominator (CDI_DOMINATORS, fall->dest, bb);
9026 /* Update loop info. */
9027 if (current_loops)
9028 add_bb_to_loop (new_bb, bb->loop_father);
9030 return new_bb;
9033 /* Build a ternary operation and gimplify it. Emit code before GSI.
9034 Return the gimple_val holding the result. */
9036 tree
9037 gimplify_build3 (gimple_stmt_iterator *gsi, enum tree_code code,
9038 tree type, tree a, tree b, tree c)
9040 tree ret;
9041 location_t loc = gimple_location (gsi_stmt (*gsi));
9043 ret = fold_build3_loc (loc, code, type, a, b, c);
9044 STRIP_NOPS (ret);
9046 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9047 GSI_SAME_STMT);
9050 /* Build a binary operation and gimplify it. Emit code before GSI.
9051 Return the gimple_val holding the result. */
9053 tree
9054 gimplify_build2 (gimple_stmt_iterator *gsi, enum tree_code code,
9055 tree type, tree a, tree b)
9057 tree ret;
9059 ret = fold_build2_loc (gimple_location (gsi_stmt (*gsi)), code, type, a, b);
9060 STRIP_NOPS (ret);
9062 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9063 GSI_SAME_STMT);
9066 /* Build a unary operation and gimplify it. Emit code before GSI.
9067 Return the gimple_val holding the result. */
9069 tree
9070 gimplify_build1 (gimple_stmt_iterator *gsi, enum tree_code code, tree type,
9071 tree a)
9073 tree ret;
9075 ret = fold_build1_loc (gimple_location (gsi_stmt (*gsi)), code, type, a);
9076 STRIP_NOPS (ret);
9078 return force_gimple_operand_gsi (gsi, ret, true, NULL, true,
9079 GSI_SAME_STMT);
9084 /* Given a basic block B which ends with a conditional and has
9085 precisely two successors, determine which of the edges is taken if
9086 the conditional is true and which is taken if the conditional is
9087 false. Set TRUE_EDGE and FALSE_EDGE appropriately. */
9089 void
9090 extract_true_false_edges_from_block (basic_block b,
9091 edge *true_edge,
9092 edge *false_edge)
9094 edge e = EDGE_SUCC (b, 0);
9096 if (e->flags & EDGE_TRUE_VALUE)
9098 *true_edge = e;
9099 *false_edge = EDGE_SUCC (b, 1);
9101 else
9103 *false_edge = e;
9104 *true_edge = EDGE_SUCC (b, 1);
9109 /* From a controlling predicate in the immediate dominator DOM of
9110 PHIBLOCK determine the edges into PHIBLOCK that are chosen if the
9111 predicate evaluates to true and false and store them to
9112 *TRUE_CONTROLLED_EDGE and *FALSE_CONTROLLED_EDGE if
9113 they are non-NULL. Returns true if the edges can be determined,
9114 else return false. */
9116 bool
9117 extract_true_false_controlled_edges (basic_block dom, basic_block phiblock,
9118 edge *true_controlled_edge,
9119 edge *false_controlled_edge)
9121 basic_block bb = phiblock;
9122 edge true_edge, false_edge, tem;
9123 edge e0 = NULL, e1 = NULL;
9125 /* We have to verify that one edge into the PHI node is dominated
9126 by the true edge of the predicate block and the other edge
9127 dominated by the false edge. This ensures that the PHI argument
9128 we are going to take is completely determined by the path we
9129 take from the predicate block.
9130 We can only use BB dominance checks below if the destination of
9131 the true/false edges are dominated by their edge, thus only
9132 have a single predecessor. */
9133 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
9134 tem = EDGE_PRED (bb, 0);
9135 if (tem == true_edge
9136 || (single_pred_p (true_edge->dest)
9137 && (tem->src == true_edge->dest
9138 || dominated_by_p (CDI_DOMINATORS,
9139 tem->src, true_edge->dest))))
9140 e0 = tem;
9141 else if (tem == false_edge
9142 || (single_pred_p (false_edge->dest)
9143 && (tem->src == false_edge->dest
9144 || dominated_by_p (CDI_DOMINATORS,
9145 tem->src, false_edge->dest))))
9146 e1 = tem;
9147 else
9148 return false;
9149 tem = EDGE_PRED (bb, 1);
9150 if (tem == true_edge
9151 || (single_pred_p (true_edge->dest)
9152 && (tem->src == true_edge->dest
9153 || dominated_by_p (CDI_DOMINATORS,
9154 tem->src, true_edge->dest))))
9155 e0 = tem;
9156 else if (tem == false_edge
9157 || (single_pred_p (false_edge->dest)
9158 && (tem->src == false_edge->dest
9159 || dominated_by_p (CDI_DOMINATORS,
9160 tem->src, false_edge->dest))))
9161 e1 = tem;
9162 else
9163 return false;
9164 if (!e0 || !e1)
9165 return false;
9167 if (true_controlled_edge)
9168 *true_controlled_edge = e0;
9169 if (false_controlled_edge)
9170 *false_controlled_edge = e1;
9172 return true;
9175 /* Generate a range test LHS CODE RHS that determines whether INDEX is in the
9176 range [low, high]. Place associated stmts before *GSI. */
9178 void
9179 generate_range_test (basic_block bb, tree index, tree low, tree high,
9180 tree *lhs, tree *rhs)
9182 tree type = TREE_TYPE (index);
9183 tree utype = unsigned_type_for (type);
9185 low = fold_convert (type, low);
9186 high = fold_convert (type, high);
9188 tree tmp = make_ssa_name (type);
9189 gassign *sub1
9190 = gimple_build_assign (tmp, MINUS_EXPR, index, low);
9192 *lhs = make_ssa_name (utype);
9193 gassign *a = gimple_build_assign (*lhs, NOP_EXPR, tmp);
9195 *rhs = fold_build2 (MINUS_EXPR, utype, high, low);
9196 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9197 gsi_insert_before (&gsi, sub1, GSI_SAME_STMT);
9198 gsi_insert_before (&gsi, a, GSI_SAME_STMT);
9201 /* Emit return warnings. */
9203 namespace {
9205 const pass_data pass_data_warn_function_return =
9207 GIMPLE_PASS, /* type */
9208 "*warn_function_return", /* name */
9209 OPTGROUP_NONE, /* optinfo_flags */
9210 TV_NONE, /* tv_id */
9211 PROP_cfg, /* properties_required */
9212 0, /* properties_provided */
9213 0, /* properties_destroyed */
9214 0, /* todo_flags_start */
9215 0, /* todo_flags_finish */
9218 class pass_warn_function_return : public gimple_opt_pass
9220 public:
9221 pass_warn_function_return (gcc::context *ctxt)
9222 : gimple_opt_pass (pass_data_warn_function_return, ctxt)
9225 /* opt_pass methods: */
9226 virtual unsigned int execute (function *);
9228 }; // class pass_warn_function_return
9230 unsigned int
9231 pass_warn_function_return::execute (function *fun)
9233 source_location location;
9234 gimple *last;
9235 edge e;
9236 edge_iterator ei;
9238 if (!targetm.warn_func_return (fun->decl))
9239 return 0;
9241 /* If we have a path to EXIT, then we do return. */
9242 if (TREE_THIS_VOLATILE (fun->decl)
9243 && EDGE_COUNT (EXIT_BLOCK_PTR_FOR_FN (fun)->preds) > 0)
9245 location = UNKNOWN_LOCATION;
9246 for (ei = ei_start (EXIT_BLOCK_PTR_FOR_FN (fun)->preds);
9247 (e = ei_safe_edge (ei)); )
9249 last = last_stmt (e->src);
9250 if ((gimple_code (last) == GIMPLE_RETURN
9251 || gimple_call_builtin_p (last, BUILT_IN_RETURN))
9252 && location == UNKNOWN_LOCATION
9253 && ((location = LOCATION_LOCUS (gimple_location (last)))
9254 != UNKNOWN_LOCATION)
9255 && !optimize)
9256 break;
9257 /* When optimizing, replace return stmts in noreturn functions
9258 with __builtin_unreachable () call. */
9259 if (optimize && gimple_code (last) == GIMPLE_RETURN)
9261 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9262 gimple *new_stmt = gimple_build_call (fndecl, 0);
9263 gimple_set_location (new_stmt, gimple_location (last));
9264 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9265 gsi_replace (&gsi, new_stmt, true);
9266 remove_edge (e);
9268 else
9269 ei_next (&ei);
9271 if (location == UNKNOWN_LOCATION)
9272 location = cfun->function_end_locus;
9273 warning_at (location, 0, "%<noreturn%> function does return");
9276 /* If we see "return;" in some basic block, then we do reach the end
9277 without returning a value. */
9278 else if (warn_return_type > 0
9279 && !TREE_NO_WARNING (fun->decl)
9280 && !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (fun->decl))))
9282 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (fun)->preds)
9284 gimple *last = last_stmt (e->src);
9285 greturn *return_stmt = dyn_cast <greturn *> (last);
9286 if (return_stmt
9287 && gimple_return_retval (return_stmt) == NULL
9288 && !gimple_no_warning_p (last))
9290 location = gimple_location (last);
9291 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9292 location = fun->function_end_locus;
9293 warning_at (location, OPT_Wreturn_type,
9294 "control reaches end of non-void function");
9295 TREE_NO_WARNING (fun->decl) = 1;
9296 break;
9299 /* The C++ FE turns fallthrough from the end of non-void function
9300 into __builtin_unreachable () call with BUILTINS_LOCATION.
9301 Recognize those too. */
9302 basic_block bb;
9303 if (!TREE_NO_WARNING (fun->decl))
9304 FOR_EACH_BB_FN (bb, fun)
9305 if (EDGE_COUNT (bb->succs) == 0)
9307 gimple *last = last_stmt (bb);
9308 const enum built_in_function ubsan_missing_ret
9309 = BUILT_IN_UBSAN_HANDLE_MISSING_RETURN;
9310 if (last
9311 && ((LOCATION_LOCUS (gimple_location (last))
9312 == BUILTINS_LOCATION
9313 && gimple_call_builtin_p (last, BUILT_IN_UNREACHABLE))
9314 || gimple_call_builtin_p (last, ubsan_missing_ret)))
9316 gimple_stmt_iterator gsi = gsi_for_stmt (last);
9317 gsi_prev_nondebug (&gsi);
9318 gimple *prev = gsi_stmt (gsi);
9319 if (prev == NULL)
9320 location = UNKNOWN_LOCATION;
9321 else
9322 location = gimple_location (prev);
9323 if (LOCATION_LOCUS (location) == UNKNOWN_LOCATION)
9324 location = fun->function_end_locus;
9325 warning_at (location, OPT_Wreturn_type,
9326 "control reaches end of non-void function");
9327 TREE_NO_WARNING (fun->decl) = 1;
9328 break;
9332 return 0;
9335 } // anon namespace
9337 gimple_opt_pass *
9338 make_pass_warn_function_return (gcc::context *ctxt)
9340 return new pass_warn_function_return (ctxt);
9343 /* Walk a gimplified function and warn for functions whose return value is
9344 ignored and attribute((warn_unused_result)) is set. This is done before
9345 inlining, so we don't have to worry about that. */
9347 static void
9348 do_warn_unused_result (gimple_seq seq)
9350 tree fdecl, ftype;
9351 gimple_stmt_iterator i;
9353 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
9355 gimple *g = gsi_stmt (i);
9357 switch (gimple_code (g))
9359 case GIMPLE_BIND:
9360 do_warn_unused_result (gimple_bind_body (as_a <gbind *>(g)));
9361 break;
9362 case GIMPLE_TRY:
9363 do_warn_unused_result (gimple_try_eval (g));
9364 do_warn_unused_result (gimple_try_cleanup (g));
9365 break;
9366 case GIMPLE_CATCH:
9367 do_warn_unused_result (gimple_catch_handler (
9368 as_a <gcatch *> (g)));
9369 break;
9370 case GIMPLE_EH_FILTER:
9371 do_warn_unused_result (gimple_eh_filter_failure (g));
9372 break;
9374 case GIMPLE_CALL:
9375 if (gimple_call_lhs (g))
9376 break;
9377 if (gimple_call_internal_p (g))
9378 break;
9380 /* This is a naked call, as opposed to a GIMPLE_CALL with an
9381 LHS. All calls whose value is ignored should be
9382 represented like this. Look for the attribute. */
9383 fdecl = gimple_call_fndecl (g);
9384 ftype = gimple_call_fntype (g);
9386 if (lookup_attribute ("warn_unused_result", TYPE_ATTRIBUTES (ftype)))
9388 location_t loc = gimple_location (g);
9390 if (fdecl)
9391 warning_at (loc, OPT_Wunused_result,
9392 "ignoring return value of %qD, "
9393 "declared with attribute warn_unused_result",
9394 fdecl);
9395 else
9396 warning_at (loc, OPT_Wunused_result,
9397 "ignoring return value of function "
9398 "declared with attribute warn_unused_result");
9400 break;
9402 default:
9403 /* Not a container, not a call, or a call whose value is used. */
9404 break;
9409 namespace {
9411 const pass_data pass_data_warn_unused_result =
9413 GIMPLE_PASS, /* type */
9414 "*warn_unused_result", /* name */
9415 OPTGROUP_NONE, /* optinfo_flags */
9416 TV_NONE, /* tv_id */
9417 PROP_gimple_any, /* properties_required */
9418 0, /* properties_provided */
9419 0, /* properties_destroyed */
9420 0, /* todo_flags_start */
9421 0, /* todo_flags_finish */
9424 class pass_warn_unused_result : public gimple_opt_pass
9426 public:
9427 pass_warn_unused_result (gcc::context *ctxt)
9428 : gimple_opt_pass (pass_data_warn_unused_result, ctxt)
9431 /* opt_pass methods: */
9432 virtual bool gate (function *) { return flag_warn_unused_result; }
9433 virtual unsigned int execute (function *)
9435 do_warn_unused_result (gimple_body (current_function_decl));
9436 return 0;
9439 }; // class pass_warn_unused_result
9441 } // anon namespace
9443 gimple_opt_pass *
9444 make_pass_warn_unused_result (gcc::context *ctxt)
9446 return new pass_warn_unused_result (ctxt);
9449 /* IPA passes, compilation of earlier functions or inlining
9450 might have changed some properties, such as marked functions nothrow,
9451 pure, const or noreturn.
9452 Remove redundant edges and basic blocks, and create new ones if necessary.
9454 This pass can't be executed as stand alone pass from pass manager, because
9455 in between inlining and this fixup the verify_flow_info would fail. */
9457 unsigned int
9458 execute_fixup_cfg (void)
9460 basic_block bb;
9461 gimple_stmt_iterator gsi;
9462 int todo = 0;
9463 cgraph_node *node = cgraph_node::get (current_function_decl);
9464 profile_count num = node->count;
9465 profile_count den = ENTRY_BLOCK_PTR_FOR_FN (cfun)->count;
9466 bool scale = num.initialized_p () && !(num == den);
9468 if (scale)
9470 profile_count::adjust_for_ipa_scaling (&num, &den);
9471 ENTRY_BLOCK_PTR_FOR_FN (cfun)->count = node->count;
9472 EXIT_BLOCK_PTR_FOR_FN (cfun)->count
9473 = EXIT_BLOCK_PTR_FOR_FN (cfun)->count.apply_scale (num, den);
9476 FOR_EACH_BB_FN (bb, cfun)
9478 if (scale)
9479 bb->count = bb->count.apply_scale (num, den);
9480 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
9482 gimple *stmt = gsi_stmt (gsi);
9483 tree decl = is_gimple_call (stmt)
9484 ? gimple_call_fndecl (stmt)
9485 : NULL;
9486 if (decl)
9488 int flags = gimple_call_flags (stmt);
9489 if (flags & (ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE))
9491 if (gimple_purge_dead_abnormal_call_edges (bb))
9492 todo |= TODO_cleanup_cfg;
9494 if (gimple_in_ssa_p (cfun))
9496 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9497 update_stmt (stmt);
9501 if (flags & ECF_NORETURN
9502 && fixup_noreturn_call (stmt))
9503 todo |= TODO_cleanup_cfg;
9506 /* Remove stores to variables we marked write-only.
9507 Keep access when store has side effect, i.e. in case when source
9508 is volatile. */
9509 if (gimple_store_p (stmt)
9510 && !gimple_has_side_effects (stmt))
9512 tree lhs = get_base_address (gimple_get_lhs (stmt));
9514 if (VAR_P (lhs)
9515 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9516 && varpool_node::get (lhs)->writeonly)
9518 unlink_stmt_vdef (stmt);
9519 gsi_remove (&gsi, true);
9520 release_defs (stmt);
9521 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9522 continue;
9525 /* For calls we can simply remove LHS when it is known
9526 to be write-only. */
9527 if (is_gimple_call (stmt)
9528 && gimple_get_lhs (stmt))
9530 tree lhs = get_base_address (gimple_get_lhs (stmt));
9532 if (VAR_P (lhs)
9533 && (TREE_STATIC (lhs) || DECL_EXTERNAL (lhs))
9534 && varpool_node::get (lhs)->writeonly)
9536 gimple_call_set_lhs (stmt, NULL);
9537 update_stmt (stmt);
9538 todo |= TODO_update_ssa | TODO_cleanup_cfg;
9542 if (maybe_clean_eh_stmt (stmt)
9543 && gimple_purge_dead_eh_edges (bb))
9544 todo |= TODO_cleanup_cfg;
9545 gsi_next (&gsi);
9548 /* If we have a basic block with no successors that does not
9549 end with a control statement or a noreturn call end it with
9550 a call to __builtin_unreachable. This situation can occur
9551 when inlining a noreturn call that does in fact return. */
9552 if (EDGE_COUNT (bb->succs) == 0)
9554 gimple *stmt = last_stmt (bb);
9555 if (!stmt
9556 || (!is_ctrl_stmt (stmt)
9557 && (!is_gimple_call (stmt)
9558 || !gimple_call_noreturn_p (stmt))))
9560 if (stmt && is_gimple_call (stmt))
9561 gimple_call_set_ctrl_altering (stmt, false);
9562 tree fndecl = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
9563 stmt = gimple_build_call (fndecl, 0);
9564 gimple_stmt_iterator gsi = gsi_last_bb (bb);
9565 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
9566 if (!cfun->after_inlining)
9568 gcall *call_stmt = dyn_cast <gcall *> (stmt);
9569 node->create_edge (cgraph_node::get_create (fndecl),
9570 call_stmt, bb->count);
9575 if (scale)
9576 compute_function_frequency ();
9578 if (current_loops
9579 && (todo & TODO_cleanup_cfg))
9580 loops_state_set (LOOPS_NEED_FIXUP);
9582 return todo;
9585 namespace {
9587 const pass_data pass_data_fixup_cfg =
9589 GIMPLE_PASS, /* type */
9590 "fixup_cfg", /* name */
9591 OPTGROUP_NONE, /* optinfo_flags */
9592 TV_NONE, /* tv_id */
9593 PROP_cfg, /* properties_required */
9594 0, /* properties_provided */
9595 0, /* properties_destroyed */
9596 0, /* todo_flags_start */
9597 0, /* todo_flags_finish */
9600 class pass_fixup_cfg : public gimple_opt_pass
9602 public:
9603 pass_fixup_cfg (gcc::context *ctxt)
9604 : gimple_opt_pass (pass_data_fixup_cfg, ctxt)
9607 /* opt_pass methods: */
9608 opt_pass * clone () { return new pass_fixup_cfg (m_ctxt); }
9609 virtual unsigned int execute (function *) { return execute_fixup_cfg (); }
9611 }; // class pass_fixup_cfg
9613 } // anon namespace
9615 gimple_opt_pass *
9616 make_pass_fixup_cfg (gcc::context *ctxt)
9618 return new pass_fixup_cfg (ctxt);
9621 /* Garbage collection support for edge_def. */
9623 extern void gt_ggc_mx (tree&);
9624 extern void gt_ggc_mx (gimple *&);
9625 extern void gt_ggc_mx (rtx&);
9626 extern void gt_ggc_mx (basic_block&);
9628 static void
9629 gt_ggc_mx (rtx_insn *& x)
9631 if (x)
9632 gt_ggc_mx_rtx_def ((void *) x);
9635 void
9636 gt_ggc_mx (edge_def *e)
9638 tree block = LOCATION_BLOCK (e->goto_locus);
9639 gt_ggc_mx (e->src);
9640 gt_ggc_mx (e->dest);
9641 if (current_ir_type () == IR_GIMPLE)
9642 gt_ggc_mx (e->insns.g);
9643 else
9644 gt_ggc_mx (e->insns.r);
9645 gt_ggc_mx (block);
9648 /* PCH support for edge_def. */
9650 extern void gt_pch_nx (tree&);
9651 extern void gt_pch_nx (gimple *&);
9652 extern void gt_pch_nx (rtx&);
9653 extern void gt_pch_nx (basic_block&);
9655 static void
9656 gt_pch_nx (rtx_insn *& x)
9658 if (x)
9659 gt_pch_nx_rtx_def ((void *) x);
9662 void
9663 gt_pch_nx (edge_def *e)
9665 tree block = LOCATION_BLOCK (e->goto_locus);
9666 gt_pch_nx (e->src);
9667 gt_pch_nx (e->dest);
9668 if (current_ir_type () == IR_GIMPLE)
9669 gt_pch_nx (e->insns.g);
9670 else
9671 gt_pch_nx (e->insns.r);
9672 gt_pch_nx (block);
9675 void
9676 gt_pch_nx (edge_def *e, gt_pointer_operator op, void *cookie)
9678 tree block = LOCATION_BLOCK (e->goto_locus);
9679 op (&(e->src), cookie);
9680 op (&(e->dest), cookie);
9681 if (current_ir_type () == IR_GIMPLE)
9682 op (&(e->insns.g), cookie);
9683 else
9684 op (&(e->insns.r), cookie);
9685 op (&(block), cookie);
9688 #if CHECKING_P
9690 namespace selftest {
9692 /* Helper function for CFG selftests: create a dummy function decl
9693 and push it as cfun. */
9695 static tree
9696 push_fndecl (const char *name)
9698 tree fn_type = build_function_type_array (integer_type_node, 0, NULL);
9699 /* FIXME: this uses input_location: */
9700 tree fndecl = build_fn_decl (name, fn_type);
9701 tree retval = build_decl (UNKNOWN_LOCATION, RESULT_DECL,
9702 NULL_TREE, integer_type_node);
9703 DECL_RESULT (fndecl) = retval;
9704 push_struct_function (fndecl);
9705 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9706 ASSERT_TRUE (fun != NULL);
9707 init_empty_tree_cfg_for_function (fun);
9708 ASSERT_EQ (2, n_basic_blocks_for_fn (fun));
9709 ASSERT_EQ (0, n_edges_for_fn (fun));
9710 return fndecl;
9713 /* These tests directly create CFGs.
9714 Compare with the static fns within tree-cfg.c:
9715 - build_gimple_cfg
9716 - make_blocks: calls create_basic_block (seq, bb);
9717 - make_edges. */
9719 /* Verify a simple cfg of the form:
9720 ENTRY -> A -> B -> C -> EXIT. */
9722 static void
9723 test_linear_chain ()
9725 gimple_register_cfg_hooks ();
9727 tree fndecl = push_fndecl ("cfg_test_linear_chain");
9728 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9730 /* Create some empty blocks. */
9731 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9732 basic_block bb_b = create_empty_bb (bb_a);
9733 basic_block bb_c = create_empty_bb (bb_b);
9735 ASSERT_EQ (5, n_basic_blocks_for_fn (fun));
9736 ASSERT_EQ (0, n_edges_for_fn (fun));
9738 /* Create some edges: a simple linear chain of BBs. */
9739 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9740 make_edge (bb_a, bb_b, 0);
9741 make_edge (bb_b, bb_c, 0);
9742 make_edge (bb_c, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9744 /* Verify the edges. */
9745 ASSERT_EQ (4, n_edges_for_fn (fun));
9746 ASSERT_EQ (NULL, ENTRY_BLOCK_PTR_FOR_FN (fun)->preds);
9747 ASSERT_EQ (1, ENTRY_BLOCK_PTR_FOR_FN (fun)->succs->length ());
9748 ASSERT_EQ (1, bb_a->preds->length ());
9749 ASSERT_EQ (1, bb_a->succs->length ());
9750 ASSERT_EQ (1, bb_b->preds->length ());
9751 ASSERT_EQ (1, bb_b->succs->length ());
9752 ASSERT_EQ (1, bb_c->preds->length ());
9753 ASSERT_EQ (1, bb_c->succs->length ());
9754 ASSERT_EQ (1, EXIT_BLOCK_PTR_FOR_FN (fun)->preds->length ());
9755 ASSERT_EQ (NULL, EXIT_BLOCK_PTR_FOR_FN (fun)->succs);
9757 /* Verify the dominance information
9758 Each BB in our simple chain should be dominated by the one before
9759 it. */
9760 calculate_dominance_info (CDI_DOMINATORS);
9761 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9762 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9763 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9764 ASSERT_EQ (1, dom_by_b.length ());
9765 ASSERT_EQ (bb_c, dom_by_b[0]);
9766 free_dominance_info (CDI_DOMINATORS);
9767 dom_by_b.release ();
9769 /* Similarly for post-dominance: each BB in our chain is post-dominated
9770 by the one after it. */
9771 calculate_dominance_info (CDI_POST_DOMINATORS);
9772 ASSERT_EQ (bb_b, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9773 ASSERT_EQ (bb_c, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9774 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9775 ASSERT_EQ (1, postdom_by_b.length ());
9776 ASSERT_EQ (bb_a, postdom_by_b[0]);
9777 free_dominance_info (CDI_POST_DOMINATORS);
9778 postdom_by_b.release ();
9780 pop_cfun ();
9783 /* Verify a simple CFG of the form:
9784 ENTRY
9788 /t \f
9794 EXIT. */
9796 static void
9797 test_diamond ()
9799 gimple_register_cfg_hooks ();
9801 tree fndecl = push_fndecl ("cfg_test_diamond");
9802 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9804 /* Create some empty blocks. */
9805 basic_block bb_a = create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun));
9806 basic_block bb_b = create_empty_bb (bb_a);
9807 basic_block bb_c = create_empty_bb (bb_a);
9808 basic_block bb_d = create_empty_bb (bb_b);
9810 ASSERT_EQ (6, n_basic_blocks_for_fn (fun));
9811 ASSERT_EQ (0, n_edges_for_fn (fun));
9813 /* Create the edges. */
9814 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), bb_a, EDGE_FALLTHRU);
9815 make_edge (bb_a, bb_b, EDGE_TRUE_VALUE);
9816 make_edge (bb_a, bb_c, EDGE_FALSE_VALUE);
9817 make_edge (bb_b, bb_d, 0);
9818 make_edge (bb_c, bb_d, 0);
9819 make_edge (bb_d, EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9821 /* Verify the edges. */
9822 ASSERT_EQ (6, n_edges_for_fn (fun));
9823 ASSERT_EQ (1, bb_a->preds->length ());
9824 ASSERT_EQ (2, bb_a->succs->length ());
9825 ASSERT_EQ (1, bb_b->preds->length ());
9826 ASSERT_EQ (1, bb_b->succs->length ());
9827 ASSERT_EQ (1, bb_c->preds->length ());
9828 ASSERT_EQ (1, bb_c->succs->length ());
9829 ASSERT_EQ (2, bb_d->preds->length ());
9830 ASSERT_EQ (1, bb_d->succs->length ());
9832 /* Verify the dominance information. */
9833 calculate_dominance_info (CDI_DOMINATORS);
9834 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_b));
9835 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_c));
9836 ASSERT_EQ (bb_a, get_immediate_dominator (CDI_DOMINATORS, bb_d));
9837 vec<basic_block> dom_by_a = get_dominated_by (CDI_DOMINATORS, bb_a);
9838 ASSERT_EQ (3, dom_by_a.length ()); /* B, C, D, in some order. */
9839 dom_by_a.release ();
9840 vec<basic_block> dom_by_b = get_dominated_by (CDI_DOMINATORS, bb_b);
9841 ASSERT_EQ (0, dom_by_b.length ());
9842 dom_by_b.release ();
9843 free_dominance_info (CDI_DOMINATORS);
9845 /* Similarly for post-dominance. */
9846 calculate_dominance_info (CDI_POST_DOMINATORS);
9847 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_a));
9848 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_b));
9849 ASSERT_EQ (bb_d, get_immediate_dominator (CDI_POST_DOMINATORS, bb_c));
9850 vec<basic_block> postdom_by_d = get_dominated_by (CDI_POST_DOMINATORS, bb_d);
9851 ASSERT_EQ (3, postdom_by_d.length ()); /* A, B, C in some order. */
9852 postdom_by_d.release ();
9853 vec<basic_block> postdom_by_b = get_dominated_by (CDI_POST_DOMINATORS, bb_b);
9854 ASSERT_EQ (0, postdom_by_b.length ());
9855 postdom_by_b.release ();
9856 free_dominance_info (CDI_POST_DOMINATORS);
9858 pop_cfun ();
9861 /* Verify that we can handle a CFG containing a "complete" aka
9862 fully-connected subgraph (where A B C D below all have edges
9863 pointing to each other node, also to themselves).
9864 e.g.:
9865 ENTRY EXIT
9871 A<--->B
9872 ^^ ^^
9873 | \ / |
9874 | X |
9875 | / \ |
9876 VV VV
9877 C<--->D
9880 static void
9881 test_fully_connected ()
9883 gimple_register_cfg_hooks ();
9885 tree fndecl = push_fndecl ("cfg_fully_connected");
9886 function *fun = DECL_STRUCT_FUNCTION (fndecl);
9888 const int n = 4;
9890 /* Create some empty blocks. */
9891 auto_vec <basic_block> subgraph_nodes;
9892 for (int i = 0; i < n; i++)
9893 subgraph_nodes.safe_push (create_empty_bb (ENTRY_BLOCK_PTR_FOR_FN (fun)));
9895 ASSERT_EQ (n + 2, n_basic_blocks_for_fn (fun));
9896 ASSERT_EQ (0, n_edges_for_fn (fun));
9898 /* Create the edges. */
9899 make_edge (ENTRY_BLOCK_PTR_FOR_FN (fun), subgraph_nodes[0], EDGE_FALLTHRU);
9900 make_edge (subgraph_nodes[0], EXIT_BLOCK_PTR_FOR_FN (fun), 0);
9901 for (int i = 0; i < n; i++)
9902 for (int j = 0; j < n; j++)
9903 make_edge (subgraph_nodes[i], subgraph_nodes[j], 0);
9905 /* Verify the edges. */
9906 ASSERT_EQ (2 + (n * n), n_edges_for_fn (fun));
9907 /* The first one is linked to ENTRY/EXIT as well as itself and
9908 everything else. */
9909 ASSERT_EQ (n + 1, subgraph_nodes[0]->preds->length ());
9910 ASSERT_EQ (n + 1, subgraph_nodes[0]->succs->length ());
9911 /* The other ones in the subgraph are linked to everything in
9912 the subgraph (including themselves). */
9913 for (int i = 1; i < n; i++)
9915 ASSERT_EQ (n, subgraph_nodes[i]->preds->length ());
9916 ASSERT_EQ (n, subgraph_nodes[i]->succs->length ());
9919 /* Verify the dominance information. */
9920 calculate_dominance_info (CDI_DOMINATORS);
9921 /* The initial block in the subgraph should be dominated by ENTRY. */
9922 ASSERT_EQ (ENTRY_BLOCK_PTR_FOR_FN (fun),
9923 get_immediate_dominator (CDI_DOMINATORS,
9924 subgraph_nodes[0]));
9925 /* Every other block in the subgraph should be dominated by the
9926 initial block. */
9927 for (int i = 1; i < n; i++)
9928 ASSERT_EQ (subgraph_nodes[0],
9929 get_immediate_dominator (CDI_DOMINATORS,
9930 subgraph_nodes[i]));
9931 free_dominance_info (CDI_DOMINATORS);
9933 /* Similarly for post-dominance. */
9934 calculate_dominance_info (CDI_POST_DOMINATORS);
9935 /* The initial block in the subgraph should be postdominated by EXIT. */
9936 ASSERT_EQ (EXIT_BLOCK_PTR_FOR_FN (fun),
9937 get_immediate_dominator (CDI_POST_DOMINATORS,
9938 subgraph_nodes[0]));
9939 /* Every other block in the subgraph should be postdominated by the
9940 initial block, since that leads to EXIT. */
9941 for (int i = 1; i < n; i++)
9942 ASSERT_EQ (subgraph_nodes[0],
9943 get_immediate_dominator (CDI_POST_DOMINATORS,
9944 subgraph_nodes[i]));
9945 free_dominance_info (CDI_POST_DOMINATORS);
9947 pop_cfun ();
9950 /* Run all of the selftests within this file. */
9952 void
9953 tree_cfg_c_tests ()
9955 test_linear_chain ();
9956 test_diamond ();
9957 test_fully_connected ();
9960 } // namespace selftest
9962 /* TODO: test the dominator/postdominator logic with various graphs/nodes:
9963 - loop
9964 - nested loops
9965 - switch statement (a block with many out-edges)
9966 - something that jumps to itself
9967 - etc */
9969 #endif /* CHECKING_P */