2015-05-05 Yvan Roux <yvan.roux@linaro.org>
[official-gcc.git] / gcc / ada / sem_attr.adb
blob68901b1adf5b716f783484a4fc31bd43c0040f7a
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ A T T R --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Ada.Characters.Latin_1; use Ada.Characters.Latin_1;
28 with Atree; use Atree;
29 with Casing; use Casing;
30 with Checks; use Checks;
31 with Debug; use Debug;
32 with Einfo; use Einfo;
33 with Elists; use Elists;
34 with Errout; use Errout;
35 with Eval_Fat;
36 with Exp_Dist; use Exp_Dist;
37 with Exp_Util; use Exp_Util;
38 with Expander; use Expander;
39 with Freeze; use Freeze;
40 with Gnatvsn; use Gnatvsn;
41 with Itypes; use Itypes;
42 with Lib; use Lib;
43 with Lib.Xref; use Lib.Xref;
44 with Nlists; use Nlists;
45 with Nmake; use Nmake;
46 with Opt; use Opt;
47 with Restrict; use Restrict;
48 with Rident; use Rident;
49 with Rtsfind; use Rtsfind;
50 with Sdefault; use Sdefault;
51 with Sem; use Sem;
52 with Sem_Aux; use Sem_Aux;
53 with Sem_Cat; use Sem_Cat;
54 with Sem_Ch6; use Sem_Ch6;
55 with Sem_Ch8; use Sem_Ch8;
56 with Sem_Ch10; use Sem_Ch10;
57 with Sem_Dim; use Sem_Dim;
58 with Sem_Dist; use Sem_Dist;
59 with Sem_Elab; use Sem_Elab;
60 with Sem_Elim; use Sem_Elim;
61 with Sem_Eval; use Sem_Eval;
62 with Sem_Prag; use Sem_Prag;
63 with Sem_Res; use Sem_Res;
64 with Sem_Type; use Sem_Type;
65 with Sem_Util; use Sem_Util;
66 with Sem_Warn;
67 with Stand; use Stand;
68 with Sinfo; use Sinfo;
69 with Sinput; use Sinput;
70 with System;
71 with Stringt; use Stringt;
72 with Style;
73 with Stylesw; use Stylesw;
74 with Targparm; use Targparm;
75 with Ttypes; use Ttypes;
76 with Tbuild; use Tbuild;
77 with Uintp; use Uintp;
78 with Uname; use Uname;
79 with Urealp; use Urealp;
81 package body Sem_Attr is
83 True_Value : constant Uint := Uint_1;
84 False_Value : constant Uint := Uint_0;
85 -- Synonyms to be used when these constants are used as Boolean values
87 Bad_Attribute : exception;
88 -- Exception raised if an error is detected during attribute processing,
89 -- used so that we can abandon the processing so we don't run into
90 -- trouble with cascaded errors.
92 -- The following array is the list of attributes defined in the Ada 83 RM.
93 -- In Ada 83 mode, these are the only recognized attributes. In other Ada
94 -- modes all these attributes are recognized, even if removed in Ada 95.
96 Attribute_83 : constant Attribute_Class_Array := Attribute_Class_Array'(
97 Attribute_Address |
98 Attribute_Aft |
99 Attribute_Alignment |
100 Attribute_Base |
101 Attribute_Callable |
102 Attribute_Constrained |
103 Attribute_Count |
104 Attribute_Delta |
105 Attribute_Digits |
106 Attribute_Emax |
107 Attribute_Epsilon |
108 Attribute_First |
109 Attribute_First_Bit |
110 Attribute_Fore |
111 Attribute_Image |
112 Attribute_Large |
113 Attribute_Last |
114 Attribute_Last_Bit |
115 Attribute_Leading_Part |
116 Attribute_Length |
117 Attribute_Machine_Emax |
118 Attribute_Machine_Emin |
119 Attribute_Machine_Mantissa |
120 Attribute_Machine_Overflows |
121 Attribute_Machine_Radix |
122 Attribute_Machine_Rounds |
123 Attribute_Mantissa |
124 Attribute_Pos |
125 Attribute_Position |
126 Attribute_Pred |
127 Attribute_Range |
128 Attribute_Safe_Emax |
129 Attribute_Safe_Large |
130 Attribute_Safe_Small |
131 Attribute_Size |
132 Attribute_Small |
133 Attribute_Storage_Size |
134 Attribute_Succ |
135 Attribute_Terminated |
136 Attribute_Val |
137 Attribute_Value |
138 Attribute_Width => True,
139 others => False);
141 -- The following array is the list of attributes defined in the Ada 2005
142 -- RM which are not defined in Ada 95. These are recognized in Ada 95 mode,
143 -- but in Ada 95 they are considered to be implementation defined.
145 Attribute_05 : constant Attribute_Class_Array := Attribute_Class_Array'(
146 Attribute_Machine_Rounding |
147 Attribute_Mod |
148 Attribute_Priority |
149 Attribute_Stream_Size |
150 Attribute_Wide_Wide_Width => True,
151 others => False);
153 -- The following array is the list of attributes defined in the Ada 2012
154 -- RM which are not defined in Ada 2005. These are recognized in Ada 95
155 -- and Ada 2005 modes, but are considered to be implementation defined.
157 Attribute_12 : constant Attribute_Class_Array := Attribute_Class_Array'(
158 Attribute_First_Valid |
159 Attribute_Has_Same_Storage |
160 Attribute_Last_Valid |
161 Attribute_Max_Alignment_For_Allocation => True,
162 others => False);
164 -- The following array contains all attributes that imply a modification
165 -- of their prefixes or result in an access value. Such prefixes can be
166 -- considered as lvalues.
168 Attribute_Name_Implies_Lvalue_Prefix : constant Attribute_Class_Array :=
169 Attribute_Class_Array'(
170 Attribute_Access |
171 Attribute_Address |
172 Attribute_Input |
173 Attribute_Read |
174 Attribute_Unchecked_Access |
175 Attribute_Unrestricted_Access => True,
176 others => False);
178 -----------------------
179 -- Local_Subprograms --
180 -----------------------
182 procedure Eval_Attribute (N : Node_Id);
183 -- Performs compile time evaluation of attributes where possible, leaving
184 -- the Is_Static_Expression/Raises_Constraint_Error flags appropriately
185 -- set, and replacing the node with a literal node if the value can be
186 -- computed at compile time. All static attribute references are folded,
187 -- as well as a number of cases of non-static attributes that can always
188 -- be computed at compile time (e.g. floating-point model attributes that
189 -- are applied to non-static subtypes). Of course in such cases, the
190 -- Is_Static_Expression flag will not be set on the resulting literal.
191 -- Note that the only required action of this procedure is to catch the
192 -- static expression cases as described in the RM. Folding of other cases
193 -- is done where convenient, but some additional non-static folding is in
194 -- Expand_N_Attribute_Reference in cases where this is more convenient.
196 function Is_Anonymous_Tagged_Base
197 (Anon : Entity_Id;
198 Typ : Entity_Id) return Boolean;
199 -- For derived tagged types that constrain parent discriminants we build
200 -- an anonymous unconstrained base type. We need to recognize the relation
201 -- between the two when analyzing an access attribute for a constrained
202 -- component, before the full declaration for Typ has been analyzed, and
203 -- where therefore the prefix of the attribute does not match the enclosing
204 -- scope.
206 procedure Set_Boolean_Result (N : Node_Id; B : Boolean);
207 -- Rewrites node N with an occurrence of either Standard_False or
208 -- Standard_True, depending on the value of the parameter B. The
209 -- result is marked as a static expression.
211 -----------------------
212 -- Analyze_Attribute --
213 -----------------------
215 procedure Analyze_Attribute (N : Node_Id) is
216 Loc : constant Source_Ptr := Sloc (N);
217 Aname : constant Name_Id := Attribute_Name (N);
218 P : constant Node_Id := Prefix (N);
219 Exprs : constant List_Id := Expressions (N);
220 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
221 E1 : Node_Id;
222 E2 : Node_Id;
224 P_Type : Entity_Id;
225 -- Type of prefix after analysis
227 P_Base_Type : Entity_Id;
228 -- Base type of prefix after analysis
230 -----------------------
231 -- Local Subprograms --
232 -----------------------
234 procedure Address_Checks;
235 -- Semantic checks for valid use of Address attribute. This was made
236 -- a separate routine with the idea of using it for unrestricted access
237 -- which seems like it should follow the same rules, but that turned
238 -- out to be impractical. So now this is only used for Address.
240 procedure Analyze_Access_Attribute;
241 -- Used for Access, Unchecked_Access, Unrestricted_Access attributes.
242 -- Internally, Id distinguishes which of the three cases is involved.
244 procedure Analyze_Attribute_Old_Result
245 (Legal : out Boolean;
246 Spec_Id : out Entity_Id);
247 -- Common processing for attributes 'Old and 'Result. The routine checks
248 -- that the attribute appears in a postcondition-like aspect or pragma
249 -- associated with a suitable subprogram or a body. Flag Legal is set
250 -- when the above criteria are met. Spec_Id denotes the entity of the
251 -- subprogram [body] or Empty if the attribute is illegal.
253 procedure Bad_Attribute_For_Predicate;
254 -- Output error message for use of a predicate (First, Last, Range) not
255 -- allowed with a type that has predicates. If the type is a generic
256 -- actual, then the message is a warning, and we generate code to raise
257 -- program error with an appropriate reason. No error message is given
258 -- for internally generated uses of the attributes. This legality rule
259 -- only applies to scalar types.
261 procedure Check_Array_Or_Scalar_Type;
262 -- Common procedure used by First, Last, Range attribute to check
263 -- that the prefix is a constrained array or scalar type, or a name
264 -- of an array object, and that an argument appears only if appropriate
265 -- (i.e. only in the array case).
267 procedure Check_Array_Type;
268 -- Common semantic checks for all array attributes. Checks that the
269 -- prefix is a constrained array type or the name of an array object.
270 -- The error message for non-arrays is specialized appropriately.
272 procedure Check_Asm_Attribute;
273 -- Common semantic checks for Asm_Input and Asm_Output attributes
275 procedure Check_Component;
276 -- Common processing for Bit_Position, First_Bit, Last_Bit, and
277 -- Position. Checks prefix is an appropriate selected component.
279 procedure Check_Decimal_Fixed_Point_Type;
280 -- Check that prefix of attribute N is a decimal fixed-point type
282 procedure Check_Dereference;
283 -- If the prefix of attribute is an object of an access type, then
284 -- introduce an explicit dereference, and adjust P_Type accordingly.
286 procedure Check_Discrete_Type;
287 -- Verify that prefix of attribute N is a discrete type
289 procedure Check_E0;
290 -- Check that no attribute arguments are present
292 procedure Check_Either_E0_Or_E1;
293 -- Check that there are zero or one attribute arguments present
295 procedure Check_E1;
296 -- Check that exactly one attribute argument is present
298 procedure Check_E2;
299 -- Check that two attribute arguments are present
301 procedure Check_Enum_Image;
302 -- If the prefix type of 'Image is an enumeration type, set all its
303 -- literals as referenced, since the image function could possibly end
304 -- up referencing any of the literals indirectly. Same for Enum_Val.
305 -- Set the flag only if the reference is in the main code unit. Same
306 -- restriction when resolving 'Value; otherwise an improperly set
307 -- reference when analyzing an inlined body will lose a proper
308 -- warning on a useless with_clause.
310 procedure Check_First_Last_Valid;
311 -- Perform all checks for First_Valid and Last_Valid attributes
313 procedure Check_Fixed_Point_Type;
314 -- Verify that prefix of attribute N is a fixed type
316 procedure Check_Fixed_Point_Type_0;
317 -- Verify that prefix of attribute N is a fixed type and that
318 -- no attribute expressions are present
320 procedure Check_Floating_Point_Type;
321 -- Verify that prefix of attribute N is a float type
323 procedure Check_Floating_Point_Type_0;
324 -- Verify that prefix of attribute N is a float type and that
325 -- no attribute expressions are present
327 procedure Check_Floating_Point_Type_1;
328 -- Verify that prefix of attribute N is a float type and that
329 -- exactly one attribute expression is present
331 procedure Check_Floating_Point_Type_2;
332 -- Verify that prefix of attribute N is a float type and that
333 -- two attribute expressions are present
335 procedure Check_SPARK_05_Restriction_On_Attribute;
336 -- Issue an error in formal mode because attribute N is allowed
338 procedure Check_Integer_Type;
339 -- Verify that prefix of attribute N is an integer type
341 procedure Check_Modular_Integer_Type;
342 -- Verify that prefix of attribute N is a modular integer type
344 procedure Check_Not_CPP_Type;
345 -- Check that P (the prefix of the attribute) is not an CPP type
346 -- for which no Ada predefined primitive is available.
348 procedure Check_Not_Incomplete_Type;
349 -- Check that P (the prefix of the attribute) is not an incomplete
350 -- type or a private type for which no full view has been given.
352 procedure Check_Object_Reference (P : Node_Id);
353 -- Check that P is an object reference
355 procedure Check_PolyORB_Attribute;
356 -- Validity checking for PolyORB/DSA attribute
358 procedure Check_Program_Unit;
359 -- Verify that prefix of attribute N is a program unit
361 procedure Check_Real_Type;
362 -- Verify that prefix of attribute N is fixed or float type
364 procedure Check_Scalar_Type;
365 -- Verify that prefix of attribute N is a scalar type
367 procedure Check_Standard_Prefix;
368 -- Verify that prefix of attribute N is package Standard. Also checks
369 -- that there are no arguments.
371 procedure Check_Stream_Attribute (Nam : TSS_Name_Type);
372 -- Validity checking for stream attribute. Nam is the TSS name of the
373 -- corresponding possible defined attribute function (e.g. for the
374 -- Read attribute, Nam will be TSS_Stream_Read).
376 procedure Check_System_Prefix;
377 -- Verify that prefix of attribute N is package System
379 procedure Check_Task_Prefix;
380 -- Verify that prefix of attribute N is a task or task type
382 procedure Check_Type;
383 -- Verify that the prefix of attribute N is a type
385 procedure Check_Unit_Name (Nod : Node_Id);
386 -- Check that Nod is of the form of a library unit name, i.e that
387 -- it is an identifier, or a selected component whose prefix is
388 -- itself of the form of a library unit name. Note that this is
389 -- quite different from Check_Program_Unit, since it only checks
390 -- the syntactic form of the name, not the semantic identity. This
391 -- is because it is used with attributes (Elab_Body, Elab_Spec,
392 -- UET_Address and Elaborated) which can refer to non-visible unit.
394 procedure Error_Attr (Msg : String; Error_Node : Node_Id);
395 pragma No_Return (Error_Attr);
396 procedure Error_Attr;
397 pragma No_Return (Error_Attr);
398 -- Posts error using Error_Msg_N at given node, sets type of attribute
399 -- node to Any_Type, and then raises Bad_Attribute to avoid any further
400 -- semantic processing. The message typically contains a % insertion
401 -- character which is replaced by the attribute name. The call with
402 -- no arguments is used when the caller has already generated the
403 -- required error messages.
405 procedure Error_Attr_P (Msg : String);
406 pragma No_Return (Error_Attr);
407 -- Like Error_Attr, but error is posted at the start of the prefix
409 procedure Legal_Formal_Attribute;
410 -- Common processing for attributes Definite and Has_Discriminants.
411 -- Checks that prefix is generic indefinite formal type.
413 procedure Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
414 -- Common processing for attributes Max_Alignment_For_Allocation and
415 -- Max_Size_In_Storage_Elements.
417 procedure Min_Max;
418 -- Common processing for attributes Max and Min
420 procedure Standard_Attribute (Val : Int);
421 -- Used to process attributes whose prefix is package Standard which
422 -- yield values of type Universal_Integer. The attribute reference
423 -- node is rewritten with an integer literal of the given value which
424 -- is marked as static.
426 procedure Uneval_Old_Msg;
427 -- Called when Loop_Entry or Old is used in a potentially unevaluated
428 -- expression. Generates appropriate message or warning depending on
429 -- the setting of Opt.Uneval_Old (or flags in an N_Aspect_Specification
430 -- node in the aspect case).
432 procedure Unexpected_Argument (En : Node_Id);
433 -- Signal unexpected attribute argument (En is the argument)
435 procedure Validate_Non_Static_Attribute_Function_Call;
436 -- Called when processing an attribute that is a function call to a
437 -- non-static function, i.e. an attribute function that either takes
438 -- non-scalar arguments or returns a non-scalar result. Verifies that
439 -- such a call does not appear in a preelaborable context.
441 --------------------
442 -- Address_Checks --
443 --------------------
445 procedure Address_Checks is
446 begin
447 -- An Address attribute created by expansion is legal even when it
448 -- applies to other entity-denoting expressions.
450 if not Comes_From_Source (N) then
451 return;
453 -- Address attribute on a protected object self reference is legal
455 elsif Is_Protected_Self_Reference (P) then
456 return;
458 -- Address applied to an entity
460 elsif Is_Entity_Name (P) then
461 declare
462 Ent : constant Entity_Id := Entity (P);
464 begin
465 if Is_Subprogram (Ent) then
466 Set_Address_Taken (Ent);
467 Kill_Current_Values (Ent);
469 -- An Address attribute is accepted when generated by the
470 -- compiler for dispatching operation, and an error is
471 -- issued once the subprogram is frozen (to avoid confusing
472 -- errors about implicit uses of Address in the dispatch
473 -- table initialization).
475 if Has_Pragma_Inline_Always (Entity (P))
476 and then Comes_From_Source (P)
477 then
478 Error_Attr_P
479 ("prefix of % attribute cannot be Inline_Always "
480 & "subprogram");
482 -- It is illegal to apply 'Address to an intrinsic
483 -- subprogram. This is now formalized in AI05-0095.
484 -- In an instance, an attempt to obtain 'Address of an
485 -- intrinsic subprogram (e.g the renaming of a predefined
486 -- operator that is an actual) raises Program_Error.
488 elsif Convention (Ent) = Convention_Intrinsic then
489 if In_Instance then
490 Rewrite (N,
491 Make_Raise_Program_Error (Loc,
492 Reason => PE_Address_Of_Intrinsic));
494 else
495 Error_Msg_Name_1 := Aname;
496 Error_Msg_N
497 ("cannot take % of intrinsic subprogram", N);
498 end if;
500 -- Issue an error if prefix denotes an eliminated subprogram
502 else
503 Check_For_Eliminated_Subprogram (P, Ent);
504 end if;
506 -- Object or label reference
508 elsif Is_Object (Ent) or else Ekind (Ent) = E_Label then
509 Set_Address_Taken (Ent);
511 -- Deal with No_Implicit_Aliasing restriction
513 if Restriction_Check_Required (No_Implicit_Aliasing) then
514 if not Is_Aliased_View (P) then
515 Check_Restriction (No_Implicit_Aliasing, P);
516 else
517 Check_No_Implicit_Aliasing (P);
518 end if;
519 end if;
521 -- If we have an address of an object, and the attribute
522 -- comes from source, then set the object as potentially
523 -- source modified. We do this because the resulting address
524 -- can potentially be used to modify the variable and we
525 -- might not detect this, leading to some junk warnings.
527 Set_Never_Set_In_Source (Ent, False);
529 -- Allow Address to be applied to task or protected type,
530 -- returning null address (what is that about???)
532 elsif (Is_Concurrent_Type (Etype (Ent))
533 and then Etype (Ent) = Base_Type (Ent))
534 or else Ekind (Ent) = E_Package
535 or else Is_Generic_Unit (Ent)
536 then
537 Rewrite (N,
538 New_Occurrence_Of (RTE (RE_Null_Address), Sloc (N)));
540 -- Anything else is illegal
542 else
543 Error_Attr ("invalid prefix for % attribute", P);
544 end if;
545 end;
547 -- Object is OK
549 elsif Is_Object_Reference (P) then
550 return;
552 -- Subprogram called using dot notation
554 elsif Nkind (P) = N_Selected_Component
555 and then Is_Subprogram (Entity (Selector_Name (P)))
556 then
557 return;
559 -- What exactly are we allowing here ??? and is this properly
560 -- documented in the sinfo documentation for this node ???
562 elsif Relaxed_RM_Semantics
563 and then Nkind (P) = N_Attribute_Reference
564 then
565 return;
567 -- All other non-entity name cases are illegal
569 else
570 Error_Attr ("invalid prefix for % attribute", P);
571 end if;
572 end Address_Checks;
574 ------------------------------
575 -- Analyze_Access_Attribute --
576 ------------------------------
578 procedure Analyze_Access_Attribute is
579 Acc_Type : Entity_Id;
581 Scop : Entity_Id;
582 Typ : Entity_Id;
584 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id;
585 -- Build an access-to-object type whose designated type is DT,
586 -- and whose Ekind is appropriate to the attribute type. The
587 -- type that is constructed is returned as the result.
589 procedure Build_Access_Subprogram_Type (P : Node_Id);
590 -- Build an access to subprogram whose designated type is the type of
591 -- the prefix. If prefix is overloaded, so is the node itself. The
592 -- result is stored in Acc_Type.
594 function OK_Self_Reference return Boolean;
595 -- An access reference whose prefix is a type can legally appear
596 -- within an aggregate, where it is obtained by expansion of
597 -- a defaulted aggregate. The enclosing aggregate that contains
598 -- the self-referenced is flagged so that the self-reference can
599 -- be expanded into a reference to the target object (see exp_aggr).
601 ------------------------------
602 -- Build_Access_Object_Type --
603 ------------------------------
605 function Build_Access_Object_Type (DT : Entity_Id) return Entity_Id is
606 Typ : constant Entity_Id :=
607 New_Internal_Entity
608 (E_Access_Attribute_Type, Current_Scope, Loc, 'A');
609 begin
610 Set_Etype (Typ, Typ);
611 Set_Is_Itype (Typ);
612 Set_Associated_Node_For_Itype (Typ, N);
613 Set_Directly_Designated_Type (Typ, DT);
614 return Typ;
615 end Build_Access_Object_Type;
617 ----------------------------------
618 -- Build_Access_Subprogram_Type --
619 ----------------------------------
621 procedure Build_Access_Subprogram_Type (P : Node_Id) is
622 Index : Interp_Index;
623 It : Interp;
625 procedure Check_Local_Access (E : Entity_Id);
626 -- Deal with possible access to local subprogram. If we have such
627 -- an access, we set a flag to kill all tracked values on any call
628 -- because this access value may be passed around, and any called
629 -- code might use it to access a local procedure which clobbers a
630 -- tracked value. If the scope is a loop or block, indicate that
631 -- value tracking is disabled for the enclosing subprogram.
633 function Get_Kind (E : Entity_Id) return Entity_Kind;
634 -- Distinguish between access to regular/protected subprograms
636 ------------------------
637 -- Check_Local_Access --
638 ------------------------
640 procedure Check_Local_Access (E : Entity_Id) is
641 begin
642 if not Is_Library_Level_Entity (E) then
643 Set_Suppress_Value_Tracking_On_Call (Current_Scope);
644 Set_Suppress_Value_Tracking_On_Call
645 (Nearest_Dynamic_Scope (Current_Scope));
646 end if;
647 end Check_Local_Access;
649 --------------
650 -- Get_Kind --
651 --------------
653 function Get_Kind (E : Entity_Id) return Entity_Kind is
654 begin
655 if Convention (E) = Convention_Protected then
656 return E_Access_Protected_Subprogram_Type;
657 else
658 return E_Access_Subprogram_Type;
659 end if;
660 end Get_Kind;
662 -- Start of processing for Build_Access_Subprogram_Type
664 begin
665 -- In the case of an access to subprogram, use the name of the
666 -- subprogram itself as the designated type. Type-checking in
667 -- this case compares the signatures of the designated types.
669 -- Note: This fragment of the tree is temporarily malformed
670 -- because the correct tree requires an E_Subprogram_Type entity
671 -- as the designated type. In most cases this designated type is
672 -- later overridden by the semantics with the type imposed by the
673 -- context during the resolution phase. In the specific case of
674 -- the expression Address!(Prim'Unrestricted_Access), used to
675 -- initialize slots of dispatch tables, this work will be done by
676 -- the expander (see Exp_Aggr).
678 -- The reason to temporarily add this kind of node to the tree
679 -- instead of a proper E_Subprogram_Type itype, is the following:
680 -- in case of errors found in the source file we report better
681 -- error messages. For example, instead of generating the
682 -- following error:
684 -- "expected access to subprogram with profile
685 -- defined at line X"
687 -- we currently generate:
689 -- "expected access to function Z defined at line X"
691 Set_Etype (N, Any_Type);
693 if not Is_Overloaded (P) then
694 Check_Local_Access (Entity (P));
696 if not Is_Intrinsic_Subprogram (Entity (P)) then
697 Acc_Type := Create_Itype (Get_Kind (Entity (P)), N);
698 Set_Is_Public (Acc_Type, False);
699 Set_Etype (Acc_Type, Acc_Type);
700 Set_Convention (Acc_Type, Convention (Entity (P)));
701 Set_Directly_Designated_Type (Acc_Type, Entity (P));
702 Set_Etype (N, Acc_Type);
703 Freeze_Before (N, Acc_Type);
704 end if;
706 else
707 Get_First_Interp (P, Index, It);
708 while Present (It.Nam) loop
709 Check_Local_Access (It.Nam);
711 if not Is_Intrinsic_Subprogram (It.Nam) then
712 Acc_Type := Create_Itype (Get_Kind (It.Nam), N);
713 Set_Is_Public (Acc_Type, False);
714 Set_Etype (Acc_Type, Acc_Type);
715 Set_Convention (Acc_Type, Convention (It.Nam));
716 Set_Directly_Designated_Type (Acc_Type, It.Nam);
717 Add_One_Interp (N, Acc_Type, Acc_Type);
718 Freeze_Before (N, Acc_Type);
719 end if;
721 Get_Next_Interp (Index, It);
722 end loop;
723 end if;
725 -- Cannot be applied to intrinsic. Looking at the tests above,
726 -- the only way Etype (N) can still be set to Any_Type is if
727 -- Is_Intrinsic_Subprogram was True for some referenced entity.
729 if Etype (N) = Any_Type then
730 Error_Attr_P ("prefix of % attribute cannot be intrinsic");
731 end if;
732 end Build_Access_Subprogram_Type;
734 ----------------------
735 -- OK_Self_Reference --
736 ----------------------
738 function OK_Self_Reference return Boolean is
739 Par : Node_Id;
741 begin
742 Par := Parent (N);
743 while Present (Par)
744 and then
745 (Nkind (Par) = N_Component_Association
746 or else Nkind (Par) in N_Subexpr)
747 loop
748 if Nkind_In (Par, N_Aggregate, N_Extension_Aggregate) then
749 if Etype (Par) = Typ then
750 Set_Has_Self_Reference (Par);
751 return True;
752 end if;
753 end if;
755 Par := Parent (Par);
756 end loop;
758 -- No enclosing aggregate, or not a self-reference
760 return False;
761 end OK_Self_Reference;
763 -- Start of processing for Analyze_Access_Attribute
765 begin
766 Check_SPARK_05_Restriction_On_Attribute;
767 Check_E0;
769 if Nkind (P) = N_Character_Literal then
770 Error_Attr_P
771 ("prefix of % attribute cannot be enumeration literal");
772 end if;
774 -- Case of access to subprogram
776 if Is_Entity_Name (P) and then Is_Overloadable (Entity (P)) then
777 if Has_Pragma_Inline_Always (Entity (P)) then
778 Error_Attr_P
779 ("prefix of % attribute cannot be Inline_Always subprogram");
781 elsif Aname = Name_Unchecked_Access then
782 Error_Attr ("attribute% cannot be applied to a subprogram", P);
783 end if;
785 -- Issue an error if the prefix denotes an eliminated subprogram
787 Check_For_Eliminated_Subprogram (P, Entity (P));
789 -- Check for obsolescent subprogram reference
791 Check_Obsolescent_2005_Entity (Entity (P), P);
793 -- Build the appropriate subprogram type
795 Build_Access_Subprogram_Type (P);
797 -- For P'Access or P'Unrestricted_Access, where P is a nested
798 -- subprogram, we might be passing P to another subprogram (but we
799 -- don't check that here), which might call P. P could modify
800 -- local variables, so we need to kill current values. It is
801 -- important not to do this for library-level subprograms, because
802 -- Kill_Current_Values is very inefficient in the case of library
803 -- level packages with lots of tagged types.
805 if Is_Library_Level_Entity (Entity (Prefix (N))) then
806 null;
808 -- Do not kill values on nodes initializing dispatch tables
809 -- slots. The construct Prim_Ptr!(Prim'Unrestricted_Access)
810 -- is currently generated by the expander only for this
811 -- purpose. Done to keep the quality of warnings currently
812 -- generated by the compiler (otherwise any declaration of
813 -- a tagged type cleans constant indications from its scope).
815 elsif Nkind (Parent (N)) = N_Unchecked_Type_Conversion
816 and then (Etype (Parent (N)) = RTE (RE_Prim_Ptr)
817 or else
818 Etype (Parent (N)) = RTE (RE_Size_Ptr))
819 and then Is_Dispatching_Operation
820 (Directly_Designated_Type (Etype (N)))
821 then
822 null;
824 else
825 Kill_Current_Values;
826 end if;
828 -- In the static elaboration model, treat the attribute reference
829 -- as a call for elaboration purposes. Suppress this treatment
830 -- under debug flag. In any case, we are all done.
832 if not Dynamic_Elaboration_Checks and not Debug_Flag_Dot_UU then
833 Check_Elab_Call (N);
834 end if;
836 return;
838 -- Component is an operation of a protected type
840 elsif Nkind (P) = N_Selected_Component
841 and then Is_Overloadable (Entity (Selector_Name (P)))
842 then
843 if Ekind (Entity (Selector_Name (P))) = E_Entry then
844 Error_Attr_P ("prefix of % attribute must be subprogram");
845 end if;
847 Build_Access_Subprogram_Type (Selector_Name (P));
848 return;
849 end if;
851 -- Deal with incorrect reference to a type, but note that some
852 -- accesses are allowed: references to the current type instance,
853 -- or in Ada 2005 self-referential pointer in a default-initialized
854 -- aggregate.
856 if Is_Entity_Name (P) then
857 Typ := Entity (P);
859 -- The reference may appear in an aggregate that has been expanded
860 -- into a loop. Locate scope of type definition, if any.
862 Scop := Current_Scope;
863 while Ekind (Scop) = E_Loop loop
864 Scop := Scope (Scop);
865 end loop;
867 if Is_Type (Typ) then
869 -- OK if we are within the scope of a limited type
870 -- let's mark the component as having per object constraint
872 if Is_Anonymous_Tagged_Base (Scop, Typ) then
873 Typ := Scop;
874 Set_Entity (P, Typ);
875 Set_Etype (P, Typ);
876 end if;
878 if Typ = Scop then
879 declare
880 Q : Node_Id := Parent (N);
882 begin
883 while Present (Q)
884 and then Nkind (Q) /= N_Component_Declaration
885 loop
886 Q := Parent (Q);
887 end loop;
889 if Present (Q) then
890 Set_Has_Per_Object_Constraint
891 (Defining_Identifier (Q), True);
892 end if;
893 end;
895 if Nkind (P) = N_Expanded_Name then
896 Error_Msg_F
897 ("current instance prefix must be a direct name", P);
898 end if;
900 -- If a current instance attribute appears in a component
901 -- constraint it must appear alone; other contexts (spec-
902 -- expressions, within a task body) are not subject to this
903 -- restriction.
905 if not In_Spec_Expression
906 and then not Has_Completion (Scop)
907 and then not
908 Nkind_In (Parent (N), N_Discriminant_Association,
909 N_Index_Or_Discriminant_Constraint)
910 then
911 Error_Msg_N
912 ("current instance attribute must appear alone", N);
913 end if;
915 if Is_CPP_Class (Root_Type (Typ)) then
916 Error_Msg_N
917 ("??current instance unsupported for derivations of "
918 & "'C'P'P types", N);
919 end if;
921 -- OK if we are in initialization procedure for the type
922 -- in question, in which case the reference to the type
923 -- is rewritten as a reference to the current object.
925 elsif Ekind (Scop) = E_Procedure
926 and then Is_Init_Proc (Scop)
927 and then Etype (First_Formal (Scop)) = Typ
928 then
929 Rewrite (N,
930 Make_Attribute_Reference (Loc,
931 Prefix => Make_Identifier (Loc, Name_uInit),
932 Attribute_Name => Name_Unrestricted_Access));
933 Analyze (N);
934 return;
936 -- OK if a task type, this test needs sharpening up ???
938 elsif Is_Task_Type (Typ) then
939 null;
941 -- OK if self-reference in an aggregate in Ada 2005, and
942 -- the reference comes from a copied default expression.
944 -- Note that we check legality of self-reference even if the
945 -- expression comes from source, e.g. when a single component
946 -- association in an aggregate has a box association.
948 elsif Ada_Version >= Ada_2005
949 and then OK_Self_Reference
950 then
951 null;
953 -- OK if reference to current instance of a protected object
955 elsif Is_Protected_Self_Reference (P) then
956 null;
958 -- Otherwise we have an error case
960 else
961 Error_Attr ("% attribute cannot be applied to type", P);
962 return;
963 end if;
964 end if;
965 end if;
967 -- If we fall through, we have a normal access to object case
969 -- Unrestricted_Access is (for now) legal wherever an allocator would
970 -- be legal, so its Etype is set to E_Allocator. The expected type
971 -- of the other attributes is a general access type, and therefore
972 -- we label them with E_Access_Attribute_Type.
974 if not Is_Overloaded (P) then
975 Acc_Type := Build_Access_Object_Type (P_Type);
976 Set_Etype (N, Acc_Type);
978 else
979 declare
980 Index : Interp_Index;
981 It : Interp;
982 begin
983 Set_Etype (N, Any_Type);
984 Get_First_Interp (P, Index, It);
985 while Present (It.Typ) loop
986 Acc_Type := Build_Access_Object_Type (It.Typ);
987 Add_One_Interp (N, Acc_Type, Acc_Type);
988 Get_Next_Interp (Index, It);
989 end loop;
990 end;
991 end if;
993 -- Special cases when we can find a prefix that is an entity name
995 declare
996 PP : Node_Id;
997 Ent : Entity_Id;
999 begin
1000 PP := P;
1001 loop
1002 if Is_Entity_Name (PP) then
1003 Ent := Entity (PP);
1005 -- If we have an access to an object, and the attribute
1006 -- comes from source, then set the object as potentially
1007 -- source modified. We do this because the resulting access
1008 -- pointer can be used to modify the variable, and we might
1009 -- not detect this, leading to some junk warnings.
1011 -- We only do this for source references, since otherwise
1012 -- we can suppress warnings, e.g. from the unrestricted
1013 -- access generated for validity checks in -gnatVa mode.
1015 if Comes_From_Source (N) then
1016 Set_Never_Set_In_Source (Ent, False);
1017 end if;
1019 -- Mark entity as address taken, and kill current values
1021 Set_Address_Taken (Ent);
1022 Kill_Current_Values (Ent);
1023 exit;
1025 elsif Nkind_In (PP, N_Selected_Component,
1026 N_Indexed_Component)
1027 then
1028 PP := Prefix (PP);
1030 else
1031 exit;
1032 end if;
1033 end loop;
1034 end;
1036 -- Check for aliased view.. We allow a nonaliased prefix when within
1037 -- an instance because the prefix may have been a tagged formal
1038 -- object, which is defined to be aliased even when the actual
1039 -- might not be (other instance cases will have been caught in the
1040 -- generic). Similarly, within an inlined body we know that the
1041 -- attribute is legal in the original subprogram, and therefore
1042 -- legal in the expansion.
1044 if not Is_Aliased_View (P)
1045 and then not In_Instance
1046 and then not In_Inlined_Body
1047 and then Comes_From_Source (N)
1048 then
1049 -- Here we have a non-aliased view. This is illegal unless we
1050 -- have the case of Unrestricted_Access, where for now we allow
1051 -- this (we will reject later if expected type is access to an
1052 -- unconstrained array with a thin pointer).
1054 -- No need for an error message on a generated access reference
1055 -- for the controlling argument in a dispatching call: error will
1056 -- be reported when resolving the call.
1058 if Aname /= Name_Unrestricted_Access then
1059 Error_Attr_P ("prefix of % attribute must be aliased");
1060 Check_No_Implicit_Aliasing (P);
1062 -- For Unrestricted_Access, record that prefix is not aliased
1063 -- to simplify legality check later on.
1065 else
1066 Set_Non_Aliased_Prefix (N);
1067 end if;
1069 -- If we have an aliased view, and we have Unrestricted_Access, then
1070 -- output a warning that Unchecked_Access would have been fine, and
1071 -- change the node to be Unchecked_Access.
1073 else
1074 -- For now, hold off on this change ???
1076 null;
1077 end if;
1078 end Analyze_Access_Attribute;
1080 ----------------------------------
1081 -- Analyze_Attribute_Old_Result --
1082 ----------------------------------
1084 procedure Analyze_Attribute_Old_Result
1085 (Legal : out Boolean;
1086 Spec_Id : out Entity_Id)
1088 procedure Check_Placement_In_Check (Prag : Node_Id);
1089 -- Verify that the attribute appears within pragma Check that mimics
1090 -- a postcondition.
1092 procedure Check_Placement_In_Contract_Cases (Prag : Node_Id);
1093 -- Verify that the attribute appears within a consequence of aspect
1094 -- or pragma Contract_Cases denoted by Prag.
1096 procedure Check_Placement_In_Test_Case (Prag : Node_Id);
1097 -- Verify that the attribute appears within the "Ensures" argument of
1098 -- aspect or pragma Test_Case denoted by Prag.
1100 function Is_Within
1101 (Nod : Node_Id;
1102 Encl_Nod : Node_Id) return Boolean;
1103 -- Subsidiary to Check_Placemenet_In_XXX. Determine whether arbitrary
1104 -- node Nod is within enclosing node Encl_Nod.
1106 procedure Placement_Error;
1107 -- Emit a general error when the attributes does not appear in a
1108 -- postcondition-like aspect or pragma.
1110 ------------------------------
1111 -- Check_Placement_In_Check --
1112 ------------------------------
1114 procedure Check_Placement_In_Check (Prag : Node_Id) is
1115 Args : constant List_Id := Pragma_Argument_Associations (Prag);
1116 Nam : constant Name_Id := Chars (Get_Pragma_Arg (First (Args)));
1118 begin
1119 -- The "Name" argument of pragma Check denotes a postcondition
1121 if Nam_In (Nam, Name_Post,
1122 Name_Post_Class,
1123 Name_Postcondition,
1124 Name_Refined_Post)
1125 then
1126 null;
1128 -- Otherwise the placement of the attribute is illegal
1130 else
1131 Placement_Error;
1132 end if;
1133 end Check_Placement_In_Check;
1135 ---------------------------------------
1136 -- Check_Placement_In_Contract_Cases --
1137 ---------------------------------------
1139 procedure Check_Placement_In_Contract_Cases (Prag : Node_Id) is
1140 Arg : Node_Id;
1141 Cases : Node_Id;
1142 CCase : Node_Id;
1144 begin
1145 -- Obtain the argument of the aspect or pragma
1147 if Nkind (Prag) = N_Aspect_Specification then
1148 Arg := Prag;
1149 else
1150 Arg := First (Pragma_Argument_Associations (Prag));
1151 end if;
1153 Cases := Expression (Arg);
1155 if Present (Component_Associations (Cases)) then
1156 CCase := First (Component_Associations (Cases));
1157 while Present (CCase) loop
1159 -- Detect whether the attribute appears within the
1160 -- consequence of the current contract case.
1162 if Nkind (CCase) = N_Component_Association
1163 and then Is_Within (N, Expression (CCase))
1164 then
1165 return;
1166 end if;
1168 Next (CCase);
1169 end loop;
1170 end if;
1172 -- Otherwise aspect or pragma Contract_Cases is either malformed
1173 -- or the attribute does not appear within a consequence.
1175 Error_Attr
1176 ("attribute % must appear in the consequence of a contract case",
1178 end Check_Placement_In_Contract_Cases;
1180 ----------------------------------
1181 -- Check_Placement_In_Test_Case --
1182 ----------------------------------
1184 procedure Check_Placement_In_Test_Case (Prag : Node_Id) is
1185 Arg : constant Node_Id :=
1186 Test_Case_Arg
1187 (Prag => Prag,
1188 Arg_Nam => Name_Ensures,
1189 From_Aspect => Nkind (Prag) = N_Aspect_Specification);
1191 begin
1192 -- Detect whether the attribute appears within the "Ensures"
1193 -- expression of aspect or pragma Test_Case.
1195 if Present (Arg) and then Is_Within (N, Arg) then
1196 null;
1198 else
1199 Error_Attr
1200 ("attribute % must appear in the ensures expression of a "
1201 & "test case", P);
1202 end if;
1203 end Check_Placement_In_Test_Case;
1205 ---------------
1206 -- Is_Within --
1207 ---------------
1209 function Is_Within
1210 (Nod : Node_Id;
1211 Encl_Nod : Node_Id) return Boolean
1213 Par : Node_Id;
1215 begin
1216 Par := Nod;
1217 while Present (Par) loop
1218 if Par = Encl_Nod then
1219 return True;
1221 -- Prevent the search from going too far
1223 elsif Is_Body_Or_Package_Declaration (Par) then
1224 exit;
1225 end if;
1227 Par := Parent (Par);
1228 end loop;
1230 return False;
1231 end Is_Within;
1233 ---------------------
1234 -- Placement_Error --
1235 ---------------------
1237 procedure Placement_Error is
1238 begin
1239 if Aname = Name_Old then
1240 Error_Attr ("attribute % can only appear in postcondition", P);
1242 -- Specialize the error message for attribute 'Result
1244 else
1245 Error_Attr
1246 ("attribute % can only appear in postcondition of function",
1248 end if;
1249 end Placement_Error;
1251 -- Local variables
1253 Prag : Node_Id;
1254 Prag_Nam : Name_Id;
1255 Subp_Decl : Node_Id;
1257 -- Start of processing for Analyze_Attribute_Old_Result
1259 begin
1260 -- Assume that the attribute is illegal
1262 Legal := False;
1263 Spec_Id := Empty;
1265 -- Traverse the parent chain to find the aspect or pragma where the
1266 -- attribute resides.
1268 Prag := N;
1269 while Present (Prag) loop
1270 if Nkind_In (Prag, N_Aspect_Specification, N_Pragma) then
1271 exit;
1273 -- Prevent the search from going too far
1275 elsif Is_Body_Or_Package_Declaration (Prag) then
1276 exit;
1277 end if;
1279 Prag := Parent (Prag);
1280 end loop;
1282 -- The attribute is allowed to appear only in postcondition-like
1283 -- aspects or pragmas.
1285 if Nkind_In (Prag, N_Aspect_Specification, N_Pragma) then
1286 if Nkind (Prag) = N_Aspect_Specification then
1287 Prag_Nam := Chars (Identifier (Prag));
1288 else
1289 Prag_Nam := Pragma_Name (Prag);
1290 end if;
1292 if Prag_Nam = Name_Check then
1293 Check_Placement_In_Check (Prag);
1295 elsif Prag_Nam = Name_Contract_Cases then
1296 Check_Placement_In_Contract_Cases (Prag);
1298 elsif Nam_In (Prag_Nam, Name_Post,
1299 Name_Post_Class,
1300 Name_Postcondition,
1301 Name_Refined_Post)
1302 then
1303 null;
1305 elsif Prag_Nam = Name_Test_Case then
1306 Check_Placement_In_Test_Case (Prag);
1308 else
1309 Placement_Error;
1310 return;
1311 end if;
1313 -- Otherwise the placement of the attribute is illegal
1315 else
1316 Placement_Error;
1317 return;
1318 end if;
1320 -- Find the related subprogram subject to the aspect or pragma
1322 if Nkind (Prag) = N_Aspect_Specification then
1323 Subp_Decl := Parent (Prag);
1324 else
1325 Subp_Decl := Find_Related_Subprogram_Or_Body (Prag);
1326 end if;
1328 -- The aspect or pragma where the attribute resides should be
1329 -- associated with a subprogram declaration or a body. If this is not
1330 -- the case, then the aspect or pragma is illegal. Return as analysis
1331 -- cannot be carried out.
1333 if not Nkind_In (Subp_Decl, N_Abstract_Subprogram_Declaration,
1334 N_Entry_Declaration,
1335 N_Generic_Subprogram_Declaration,
1336 N_Subprogram_Body,
1337 N_Subprogram_Body_Stub,
1338 N_Subprogram_Declaration)
1339 then
1340 return;
1341 end if;
1343 -- If we get here, then the attribute is legal
1345 Legal := True;
1346 Spec_Id := Corresponding_Spec_Of (Subp_Decl);
1347 end Analyze_Attribute_Old_Result;
1349 ---------------------------------
1350 -- Bad_Attribute_For_Predicate --
1351 ---------------------------------
1353 procedure Bad_Attribute_For_Predicate is
1354 begin
1355 if Is_Scalar_Type (P_Type)
1356 and then Comes_From_Source (N)
1357 then
1358 Error_Msg_Name_1 := Aname;
1359 Bad_Predicated_Subtype_Use
1360 ("type& has predicates, attribute % not allowed", N, P_Type);
1361 end if;
1362 end Bad_Attribute_For_Predicate;
1364 --------------------------------
1365 -- Check_Array_Or_Scalar_Type --
1366 --------------------------------
1368 procedure Check_Array_Or_Scalar_Type is
1369 Index : Entity_Id;
1371 D : Int;
1372 -- Dimension number for array attributes
1374 begin
1375 -- Case of string literal or string literal subtype. These cases
1376 -- cannot arise from legal Ada code, but the expander is allowed
1377 -- to generate them. They require special handling because string
1378 -- literal subtypes do not have standard bounds (the whole idea
1379 -- of these subtypes is to avoid having to generate the bounds)
1381 if Ekind (P_Type) = E_String_Literal_Subtype then
1382 Set_Etype (N, Etype (First_Index (P_Base_Type)));
1383 return;
1385 -- Scalar types
1387 elsif Is_Scalar_Type (P_Type) then
1388 Check_Type;
1390 if Present (E1) then
1391 Error_Attr ("invalid argument in % attribute", E1);
1392 else
1393 Set_Etype (N, P_Base_Type);
1394 return;
1395 end if;
1397 -- The following is a special test to allow 'First to apply to
1398 -- private scalar types if the attribute comes from generated
1399 -- code. This occurs in the case of Normalize_Scalars code.
1401 elsif Is_Private_Type (P_Type)
1402 and then Present (Full_View (P_Type))
1403 and then Is_Scalar_Type (Full_View (P_Type))
1404 and then not Comes_From_Source (N)
1405 then
1406 Set_Etype (N, Implementation_Base_Type (P_Type));
1408 -- Array types other than string literal subtypes handled above
1410 else
1411 Check_Array_Type;
1413 -- We know prefix is an array type, or the name of an array
1414 -- object, and that the expression, if present, is static
1415 -- and within the range of the dimensions of the type.
1417 pragma Assert (Is_Array_Type (P_Type));
1418 Index := First_Index (P_Base_Type);
1420 if No (E1) then
1422 -- First dimension assumed
1424 Set_Etype (N, Base_Type (Etype (Index)));
1426 else
1427 D := UI_To_Int (Intval (E1));
1429 for J in 1 .. D - 1 loop
1430 Next_Index (Index);
1431 end loop;
1433 Set_Etype (N, Base_Type (Etype (Index)));
1434 Set_Etype (E1, Standard_Integer);
1435 end if;
1436 end if;
1437 end Check_Array_Or_Scalar_Type;
1439 ----------------------
1440 -- Check_Array_Type --
1441 ----------------------
1443 procedure Check_Array_Type is
1444 D : Int;
1445 -- Dimension number for array attributes
1447 begin
1448 -- If the type is a string literal type, then this must be generated
1449 -- internally, and no further check is required on its legality.
1451 if Ekind (P_Type) = E_String_Literal_Subtype then
1452 return;
1454 -- If the type is a composite, it is an illegal aggregate, no point
1455 -- in going on.
1457 elsif P_Type = Any_Composite then
1458 raise Bad_Attribute;
1459 end if;
1461 -- Normal case of array type or subtype
1463 Check_Either_E0_Or_E1;
1464 Check_Dereference;
1466 if Is_Array_Type (P_Type) then
1467 if not Is_Constrained (P_Type)
1468 and then Is_Entity_Name (P)
1469 and then Is_Type (Entity (P))
1470 then
1471 -- Note: we do not call Error_Attr here, since we prefer to
1472 -- continue, using the relevant index type of the array,
1473 -- even though it is unconstrained. This gives better error
1474 -- recovery behavior.
1476 Error_Msg_Name_1 := Aname;
1477 Error_Msg_F
1478 ("prefix for % attribute must be constrained array", P);
1479 end if;
1481 -- The attribute reference freezes the type, and thus the
1482 -- component type, even if the attribute may not depend on the
1483 -- component. Diagnose arrays with incomplete components now.
1484 -- If the prefix is an access to array, this does not freeze
1485 -- the designated type.
1487 if Nkind (P) /= N_Explicit_Dereference then
1488 Check_Fully_Declared (Component_Type (P_Type), P);
1489 end if;
1491 D := Number_Dimensions (P_Type);
1493 else
1494 if Is_Private_Type (P_Type) then
1495 Error_Attr_P ("prefix for % attribute may not be private type");
1497 elsif Is_Access_Type (P_Type)
1498 and then Is_Array_Type (Designated_Type (P_Type))
1499 and then Is_Entity_Name (P)
1500 and then Is_Type (Entity (P))
1501 then
1502 Error_Attr_P ("prefix of % attribute cannot be access type");
1504 elsif Attr_Id = Attribute_First
1505 or else
1506 Attr_Id = Attribute_Last
1507 then
1508 Error_Attr ("invalid prefix for % attribute", P);
1510 else
1511 Error_Attr_P ("prefix for % attribute must be array");
1512 end if;
1513 end if;
1515 if Present (E1) then
1516 Resolve (E1, Any_Integer);
1517 Set_Etype (E1, Standard_Integer);
1519 if not Is_OK_Static_Expression (E1)
1520 or else Raises_Constraint_Error (E1)
1521 then
1522 Flag_Non_Static_Expr
1523 ("expression for dimension must be static!", E1);
1524 Error_Attr;
1526 elsif UI_To_Int (Expr_Value (E1)) > D
1527 or else UI_To_Int (Expr_Value (E1)) < 1
1528 then
1529 Error_Attr ("invalid dimension number for array type", E1);
1530 end if;
1531 end if;
1533 if (Style_Check and Style_Check_Array_Attribute_Index)
1534 and then Comes_From_Source (N)
1535 then
1536 Style.Check_Array_Attribute_Index (N, E1, D);
1537 end if;
1538 end Check_Array_Type;
1540 -------------------------
1541 -- Check_Asm_Attribute --
1542 -------------------------
1544 procedure Check_Asm_Attribute is
1545 begin
1546 Check_Type;
1547 Check_E2;
1549 -- Check first argument is static string expression
1551 Analyze_And_Resolve (E1, Standard_String);
1553 if Etype (E1) = Any_Type then
1554 return;
1556 elsif not Is_OK_Static_Expression (E1) then
1557 Flag_Non_Static_Expr
1558 ("constraint argument must be static string expression!", E1);
1559 Error_Attr;
1560 end if;
1562 -- Check second argument is right type
1564 Analyze_And_Resolve (E2, Entity (P));
1566 -- Note: that is all we need to do, we don't need to check
1567 -- that it appears in a correct context. The Ada type system
1568 -- will do that for us.
1570 end Check_Asm_Attribute;
1572 ---------------------
1573 -- Check_Component --
1574 ---------------------
1576 procedure Check_Component is
1577 begin
1578 Check_E0;
1580 if Nkind (P) /= N_Selected_Component
1581 or else
1582 (Ekind (Entity (Selector_Name (P))) /= E_Component
1583 and then
1584 Ekind (Entity (Selector_Name (P))) /= E_Discriminant)
1585 then
1586 Error_Attr_P ("prefix for % attribute must be selected component");
1587 end if;
1588 end Check_Component;
1590 ------------------------------------
1591 -- Check_Decimal_Fixed_Point_Type --
1592 ------------------------------------
1594 procedure Check_Decimal_Fixed_Point_Type is
1595 begin
1596 Check_Type;
1598 if not Is_Decimal_Fixed_Point_Type (P_Type) then
1599 Error_Attr_P ("prefix of % attribute must be decimal type");
1600 end if;
1601 end Check_Decimal_Fixed_Point_Type;
1603 -----------------------
1604 -- Check_Dereference --
1605 -----------------------
1607 procedure Check_Dereference is
1608 begin
1610 -- Case of a subtype mark
1612 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
1613 return;
1614 end if;
1616 -- Case of an expression
1618 Resolve (P);
1620 if Is_Access_Type (P_Type) then
1622 -- If there is an implicit dereference, then we must freeze the
1623 -- designated type of the access type, since the type of the
1624 -- referenced array is this type (see AI95-00106).
1626 -- As done elsewhere, freezing must not happen when pre-analyzing
1627 -- a pre- or postcondition or a default value for an object or for
1628 -- a formal parameter.
1630 if not In_Spec_Expression then
1631 Freeze_Before (N, Designated_Type (P_Type));
1632 end if;
1634 Rewrite (P,
1635 Make_Explicit_Dereference (Sloc (P),
1636 Prefix => Relocate_Node (P)));
1638 Analyze_And_Resolve (P);
1639 P_Type := Etype (P);
1641 if P_Type = Any_Type then
1642 raise Bad_Attribute;
1643 end if;
1645 P_Base_Type := Base_Type (P_Type);
1646 end if;
1647 end Check_Dereference;
1649 -------------------------
1650 -- Check_Discrete_Type --
1651 -------------------------
1653 procedure Check_Discrete_Type is
1654 begin
1655 Check_Type;
1657 if not Is_Discrete_Type (P_Type) then
1658 Error_Attr_P ("prefix of % attribute must be discrete type");
1659 end if;
1660 end Check_Discrete_Type;
1662 --------------
1663 -- Check_E0 --
1664 --------------
1666 procedure Check_E0 is
1667 begin
1668 if Present (E1) then
1669 Unexpected_Argument (E1);
1670 end if;
1671 end Check_E0;
1673 --------------
1674 -- Check_E1 --
1675 --------------
1677 procedure Check_E1 is
1678 begin
1679 Check_Either_E0_Or_E1;
1681 if No (E1) then
1683 -- Special-case attributes that are functions and that appear as
1684 -- the prefix of another attribute. Error is posted on parent.
1686 if Nkind (Parent (N)) = N_Attribute_Reference
1687 and then Nam_In (Attribute_Name (Parent (N)), Name_Address,
1688 Name_Code_Address,
1689 Name_Access)
1690 then
1691 Error_Msg_Name_1 := Attribute_Name (Parent (N));
1692 Error_Msg_N ("illegal prefix for % attribute", Parent (N));
1693 Set_Etype (Parent (N), Any_Type);
1694 Set_Entity (Parent (N), Any_Type);
1695 raise Bad_Attribute;
1697 else
1698 Error_Attr ("missing argument for % attribute", N);
1699 end if;
1700 end if;
1701 end Check_E1;
1703 --------------
1704 -- Check_E2 --
1705 --------------
1707 procedure Check_E2 is
1708 begin
1709 if No (E1) then
1710 Error_Attr ("missing arguments for % attribute (2 required)", N);
1711 elsif No (E2) then
1712 Error_Attr ("missing argument for % attribute (2 required)", N);
1713 end if;
1714 end Check_E2;
1716 ---------------------------
1717 -- Check_Either_E0_Or_E1 --
1718 ---------------------------
1720 procedure Check_Either_E0_Or_E1 is
1721 begin
1722 if Present (E2) then
1723 Unexpected_Argument (E2);
1724 end if;
1725 end Check_Either_E0_Or_E1;
1727 ----------------------
1728 -- Check_Enum_Image --
1729 ----------------------
1731 procedure Check_Enum_Image is
1732 Lit : Entity_Id;
1734 begin
1735 -- When an enumeration type appears in an attribute reference, all
1736 -- literals of the type are marked as referenced. This must only be
1737 -- done if the attribute reference appears in the current source.
1738 -- Otherwise the information on references may differ between a
1739 -- normal compilation and one that performs inlining.
1741 if Is_Enumeration_Type (P_Base_Type)
1742 and then In_Extended_Main_Code_Unit (N)
1743 then
1744 Lit := First_Literal (P_Base_Type);
1745 while Present (Lit) loop
1746 Set_Referenced (Lit);
1747 Next_Literal (Lit);
1748 end loop;
1749 end if;
1750 end Check_Enum_Image;
1752 ----------------------------
1753 -- Check_First_Last_Valid --
1754 ----------------------------
1756 procedure Check_First_Last_Valid is
1757 begin
1758 Check_Discrete_Type;
1760 -- Freeze the subtype now, so that the following test for predicates
1761 -- works (we set the predicates stuff up at freeze time)
1763 Insert_Actions (N, Freeze_Entity (P_Type, P));
1765 -- Now test for dynamic predicate
1767 if Has_Predicates (P_Type)
1768 and then not (Has_Static_Predicate (P_Type))
1769 then
1770 Error_Attr_P
1771 ("prefix of % attribute may not have dynamic predicate");
1772 end if;
1774 -- Check non-static subtype
1776 if not Is_OK_Static_Subtype (P_Type) then
1777 Error_Attr_P ("prefix of % attribute must be a static subtype");
1778 end if;
1780 -- Test case for no values
1782 if Expr_Value (Type_Low_Bound (P_Type)) >
1783 Expr_Value (Type_High_Bound (P_Type))
1784 or else (Has_Predicates (P_Type)
1785 and then
1786 Is_Empty_List (Static_Discrete_Predicate (P_Type)))
1787 then
1788 Error_Attr_P
1789 ("prefix of % attribute must be subtype with at least one "
1790 & "value");
1791 end if;
1792 end Check_First_Last_Valid;
1794 ----------------------------
1795 -- Check_Fixed_Point_Type --
1796 ----------------------------
1798 procedure Check_Fixed_Point_Type is
1799 begin
1800 Check_Type;
1802 if not Is_Fixed_Point_Type (P_Type) then
1803 Error_Attr_P ("prefix of % attribute must be fixed point type");
1804 end if;
1805 end Check_Fixed_Point_Type;
1807 ------------------------------
1808 -- Check_Fixed_Point_Type_0 --
1809 ------------------------------
1811 procedure Check_Fixed_Point_Type_0 is
1812 begin
1813 Check_Fixed_Point_Type;
1814 Check_E0;
1815 end Check_Fixed_Point_Type_0;
1817 -------------------------------
1818 -- Check_Floating_Point_Type --
1819 -------------------------------
1821 procedure Check_Floating_Point_Type is
1822 begin
1823 Check_Type;
1825 if not Is_Floating_Point_Type (P_Type) then
1826 Error_Attr_P ("prefix of % attribute must be float type");
1827 end if;
1828 end Check_Floating_Point_Type;
1830 ---------------------------------
1831 -- Check_Floating_Point_Type_0 --
1832 ---------------------------------
1834 procedure Check_Floating_Point_Type_0 is
1835 begin
1836 Check_Floating_Point_Type;
1837 Check_E0;
1838 end Check_Floating_Point_Type_0;
1840 ---------------------------------
1841 -- Check_Floating_Point_Type_1 --
1842 ---------------------------------
1844 procedure Check_Floating_Point_Type_1 is
1845 begin
1846 Check_Floating_Point_Type;
1847 Check_E1;
1848 end Check_Floating_Point_Type_1;
1850 ---------------------------------
1851 -- Check_Floating_Point_Type_2 --
1852 ---------------------------------
1854 procedure Check_Floating_Point_Type_2 is
1855 begin
1856 Check_Floating_Point_Type;
1857 Check_E2;
1858 end Check_Floating_Point_Type_2;
1860 ------------------------
1861 -- Check_Integer_Type --
1862 ------------------------
1864 procedure Check_Integer_Type is
1865 begin
1866 Check_Type;
1868 if not Is_Integer_Type (P_Type) then
1869 Error_Attr_P ("prefix of % attribute must be integer type");
1870 end if;
1871 end Check_Integer_Type;
1873 --------------------------------
1874 -- Check_Modular_Integer_Type --
1875 --------------------------------
1877 procedure Check_Modular_Integer_Type is
1878 begin
1879 Check_Type;
1881 if not Is_Modular_Integer_Type (P_Type) then
1882 Error_Attr_P
1883 ("prefix of % attribute must be modular integer type");
1884 end if;
1885 end Check_Modular_Integer_Type;
1887 ------------------------
1888 -- Check_Not_CPP_Type --
1889 ------------------------
1891 procedure Check_Not_CPP_Type is
1892 begin
1893 if Is_Tagged_Type (Etype (P))
1894 and then Convention (Etype (P)) = Convention_CPP
1895 and then Is_CPP_Class (Root_Type (Etype (P)))
1896 then
1897 Error_Attr_P
1898 ("invalid use of % attribute with 'C'P'P tagged type");
1899 end if;
1900 end Check_Not_CPP_Type;
1902 -------------------------------
1903 -- Check_Not_Incomplete_Type --
1904 -------------------------------
1906 procedure Check_Not_Incomplete_Type is
1907 E : Entity_Id;
1908 Typ : Entity_Id;
1910 begin
1911 -- Ada 2005 (AI-50217, AI-326): If the prefix is an explicit
1912 -- dereference we have to check wrong uses of incomplete types
1913 -- (other wrong uses are checked at their freezing point).
1915 -- In Ada 2012, incomplete types can appear in subprogram
1916 -- profiles, but formals with incomplete types cannot be the
1917 -- prefix of attributes.
1919 -- Example 1: Limited-with
1921 -- limited with Pkg;
1922 -- package P is
1923 -- type Acc is access Pkg.T;
1924 -- X : Acc;
1925 -- S : Integer := X.all'Size; -- ERROR
1926 -- end P;
1928 -- Example 2: Tagged incomplete
1930 -- type T is tagged;
1931 -- type Acc is access all T;
1932 -- X : Acc;
1933 -- S : constant Integer := X.all'Size; -- ERROR
1934 -- procedure Q (Obj : Integer := X.all'Alignment); -- ERROR
1936 if Ada_Version >= Ada_2005
1937 and then Nkind (P) = N_Explicit_Dereference
1938 then
1939 E := P;
1940 while Nkind (E) = N_Explicit_Dereference loop
1941 E := Prefix (E);
1942 end loop;
1944 Typ := Etype (E);
1946 if From_Limited_With (Typ) then
1947 Error_Attr_P
1948 ("prefix of % attribute cannot be an incomplete type");
1950 -- If the prefix is an access type check the designated type
1952 elsif Is_Access_Type (Typ)
1953 and then Nkind (P) = N_Explicit_Dereference
1954 then
1955 Typ := Directly_Designated_Type (Typ);
1956 end if;
1958 if Is_Class_Wide_Type (Typ) then
1959 Typ := Root_Type (Typ);
1960 end if;
1962 -- A legal use of a shadow entity occurs only when the unit where
1963 -- the non-limited view resides is imported via a regular with
1964 -- clause in the current body. Such references to shadow entities
1965 -- may occur in subprogram formals.
1967 if Is_Incomplete_Type (Typ)
1968 and then From_Limited_With (Typ)
1969 and then Present (Non_Limited_View (Typ))
1970 and then Is_Legal_Shadow_Entity_In_Body (Typ)
1971 then
1972 Typ := Non_Limited_View (Typ);
1973 end if;
1975 -- If still incomplete, it can be a local incomplete type, or a
1976 -- limited view whose scope is also a limited view.
1978 if Ekind (Typ) = E_Incomplete_Type then
1979 if not From_Limited_With (Typ)
1980 and then No (Full_View (Typ))
1981 then
1982 Error_Attr_P
1983 ("prefix of % attribute cannot be an incomplete type");
1985 -- The limited view may be available indirectly through
1986 -- an intermediate unit. If the non-limited view is available
1987 -- the attribute reference is legal.
1989 elsif From_Limited_With (Typ)
1990 and then
1991 (No (Non_Limited_View (Typ))
1992 or else Is_Incomplete_Type (Non_Limited_View (Typ)))
1993 then
1994 Error_Attr_P
1995 ("prefix of % attribute cannot be an incomplete type");
1996 end if;
1997 end if;
1999 -- Ada 2012 : formals in bodies may be incomplete, but no attribute
2000 -- legally applies.
2002 elsif Is_Entity_Name (P)
2003 and then Is_Formal (Entity (P))
2004 and then Is_Incomplete_Type (Etype (Etype (P)))
2005 then
2006 Error_Attr_P
2007 ("prefix of % attribute cannot be an incomplete type");
2008 end if;
2010 if not Is_Entity_Name (P)
2011 or else not Is_Type (Entity (P))
2012 or else In_Spec_Expression
2013 then
2014 return;
2015 else
2016 Check_Fully_Declared (P_Type, P);
2017 end if;
2018 end Check_Not_Incomplete_Type;
2020 ----------------------------
2021 -- Check_Object_Reference --
2022 ----------------------------
2024 procedure Check_Object_Reference (P : Node_Id) is
2025 Rtyp : Entity_Id;
2027 begin
2028 -- If we need an object, and we have a prefix that is the name of
2029 -- a function entity, convert it into a function call.
2031 if Is_Entity_Name (P)
2032 and then Ekind (Entity (P)) = E_Function
2033 then
2034 Rtyp := Etype (Entity (P));
2036 Rewrite (P,
2037 Make_Function_Call (Sloc (P),
2038 Name => Relocate_Node (P)));
2040 Analyze_And_Resolve (P, Rtyp);
2042 -- Otherwise we must have an object reference
2044 elsif not Is_Object_Reference (P) then
2045 Error_Attr_P ("prefix of % attribute must be object");
2046 end if;
2047 end Check_Object_Reference;
2049 ----------------------------
2050 -- Check_PolyORB_Attribute --
2051 ----------------------------
2053 procedure Check_PolyORB_Attribute is
2054 begin
2055 Validate_Non_Static_Attribute_Function_Call;
2057 Check_Type;
2058 Check_Not_CPP_Type;
2060 if Get_PCS_Name /= Name_PolyORB_DSA then
2061 Error_Attr
2062 ("attribute% requires the 'Poly'O'R'B 'P'C'S", N);
2063 end if;
2064 end Check_PolyORB_Attribute;
2066 ------------------------
2067 -- Check_Program_Unit --
2068 ------------------------
2070 procedure Check_Program_Unit is
2071 begin
2072 if Is_Entity_Name (P) then
2073 declare
2074 K : constant Entity_Kind := Ekind (Entity (P));
2075 T : constant Entity_Id := Etype (Entity (P));
2077 begin
2078 if K in Subprogram_Kind
2079 or else K in Task_Kind
2080 or else K in Protected_Kind
2081 or else K = E_Package
2082 or else K in Generic_Unit_Kind
2083 or else (K = E_Variable
2084 and then
2085 (Is_Task_Type (T)
2086 or else
2087 Is_Protected_Type (T)))
2088 then
2089 return;
2090 end if;
2091 end;
2092 end if;
2094 Error_Attr_P ("prefix of % attribute must be program unit");
2095 end Check_Program_Unit;
2097 ---------------------
2098 -- Check_Real_Type --
2099 ---------------------
2101 procedure Check_Real_Type is
2102 begin
2103 Check_Type;
2105 if not Is_Real_Type (P_Type) then
2106 Error_Attr_P ("prefix of % attribute must be real type");
2107 end if;
2108 end Check_Real_Type;
2110 -----------------------
2111 -- Check_Scalar_Type --
2112 -----------------------
2114 procedure Check_Scalar_Type is
2115 begin
2116 Check_Type;
2118 if not Is_Scalar_Type (P_Type) then
2119 Error_Attr_P ("prefix of % attribute must be scalar type");
2120 end if;
2121 end Check_Scalar_Type;
2123 ------------------------------------------
2124 -- Check_SPARK_05_Restriction_On_Attribute --
2125 ------------------------------------------
2127 procedure Check_SPARK_05_Restriction_On_Attribute is
2128 begin
2129 Error_Msg_Name_1 := Aname;
2130 Check_SPARK_05_Restriction ("attribute % is not allowed", P);
2131 end Check_SPARK_05_Restriction_On_Attribute;
2133 ---------------------------
2134 -- Check_Standard_Prefix --
2135 ---------------------------
2137 procedure Check_Standard_Prefix is
2138 begin
2139 Check_E0;
2141 if Nkind (P) /= N_Identifier or else Chars (P) /= Name_Standard then
2142 Error_Attr ("only allowed prefix for % attribute is Standard", P);
2143 end if;
2144 end Check_Standard_Prefix;
2146 ----------------------------
2147 -- Check_Stream_Attribute --
2148 ----------------------------
2150 procedure Check_Stream_Attribute (Nam : TSS_Name_Type) is
2151 Etyp : Entity_Id;
2152 Btyp : Entity_Id;
2154 In_Shared_Var_Procs : Boolean;
2155 -- True when compiling System.Shared_Storage.Shared_Var_Procs body.
2156 -- For this runtime package (always compiled in GNAT mode), we allow
2157 -- stream attributes references for limited types for the case where
2158 -- shared passive objects are implemented using stream attributes,
2159 -- which is the default in GNAT's persistent storage implementation.
2161 begin
2162 Validate_Non_Static_Attribute_Function_Call;
2164 -- With the exception of 'Input, Stream attributes are procedures,
2165 -- and can only appear at the position of procedure calls. We check
2166 -- for this here, before they are rewritten, to give a more precise
2167 -- diagnostic.
2169 if Nam = TSS_Stream_Input then
2170 null;
2172 elsif Is_List_Member (N)
2173 and then not Nkind_In (Parent (N), N_Procedure_Call_Statement,
2174 N_Aggregate)
2175 then
2176 null;
2178 else
2179 Error_Attr
2180 ("invalid context for attribute%, which is a procedure", N);
2181 end if;
2183 Check_Type;
2184 Btyp := Implementation_Base_Type (P_Type);
2186 -- Stream attributes not allowed on limited types unless the
2187 -- attribute reference was generated by the expander (in which
2188 -- case the underlying type will be used, as described in Sinfo),
2189 -- or the attribute was specified explicitly for the type itself
2190 -- or one of its ancestors (taking visibility rules into account if
2191 -- in Ada 2005 mode), or a pragma Stream_Convert applies to Btyp
2192 -- (with no visibility restriction).
2194 declare
2195 Gen_Body : constant Node_Id := Enclosing_Generic_Body (N);
2196 begin
2197 if Present (Gen_Body) then
2198 In_Shared_Var_Procs :=
2199 Is_RTE (Corresponding_Spec (Gen_Body), RE_Shared_Var_Procs);
2200 else
2201 In_Shared_Var_Procs := False;
2202 end if;
2203 end;
2205 if (Comes_From_Source (N)
2206 and then not (In_Shared_Var_Procs or In_Instance))
2207 and then not Stream_Attribute_Available (P_Type, Nam)
2208 and then not Has_Rep_Pragma (Btyp, Name_Stream_Convert)
2209 then
2210 Error_Msg_Name_1 := Aname;
2212 if Is_Limited_Type (P_Type) then
2213 Error_Msg_NE
2214 ("limited type& has no% attribute", P, P_Type);
2215 Explain_Limited_Type (P_Type, P);
2216 else
2217 Error_Msg_NE
2218 ("attribute% for type& is not available", P, P_Type);
2219 end if;
2220 end if;
2222 -- Check for no stream operations allowed from No_Tagged_Streams
2224 if Is_Tagged_Type (P_Type)
2225 and then Present (No_Tagged_Streams_Pragma (P_Type))
2226 then
2227 Error_Msg_Sloc := Sloc (No_Tagged_Streams_Pragma (P_Type));
2228 Error_Msg_NE
2229 ("no stream operations for & (No_Tagged_Streams #)", N, P_Type);
2230 return;
2231 end if;
2233 -- Check restriction violations
2235 -- First check the No_Streams restriction, which prohibits the use
2236 -- of explicit stream attributes in the source program. We do not
2237 -- prevent the occurrence of stream attributes in generated code,
2238 -- for instance those generated implicitly for dispatching purposes.
2240 if Comes_From_Source (N) then
2241 Check_Restriction (No_Streams, P);
2242 end if;
2244 -- AI05-0057: if restriction No_Default_Stream_Attributes is active,
2245 -- it is illegal to use a predefined elementary type stream attribute
2246 -- either by itself, or more importantly as part of the attribute
2247 -- subprogram for a composite type. However, if the broader
2248 -- restriction No_Streams is active, stream operations are not
2249 -- generated, and there is no error.
2251 if Restriction_Active (No_Default_Stream_Attributes)
2252 and then not Restriction_Active (No_Streams)
2253 then
2254 declare
2255 T : Entity_Id;
2257 begin
2258 if Nam = TSS_Stream_Input
2259 or else
2260 Nam = TSS_Stream_Read
2261 then
2262 T :=
2263 Type_Without_Stream_Operation (P_Type, TSS_Stream_Read);
2264 else
2265 T :=
2266 Type_Without_Stream_Operation (P_Type, TSS_Stream_Write);
2267 end if;
2269 if Present (T) then
2270 Check_Restriction (No_Default_Stream_Attributes, N);
2272 Error_Msg_NE
2273 ("missing user-defined Stream Read or Write for type&",
2274 N, T);
2275 if not Is_Elementary_Type (P_Type) then
2276 Error_Msg_NE
2277 ("\which is a component of type&", N, P_Type);
2278 end if;
2279 end if;
2280 end;
2281 end if;
2283 -- Check special case of Exception_Id and Exception_Occurrence which
2284 -- are not allowed for restriction No_Exception_Registration.
2286 if Restriction_Check_Required (No_Exception_Registration)
2287 and then (Is_RTE (P_Type, RE_Exception_Id)
2288 or else
2289 Is_RTE (P_Type, RE_Exception_Occurrence))
2290 then
2291 Check_Restriction (No_Exception_Registration, P);
2292 end if;
2294 -- Here we must check that the first argument is an access type
2295 -- that is compatible with Ada.Streams.Root_Stream_Type'Class.
2297 Analyze_And_Resolve (E1);
2298 Etyp := Etype (E1);
2300 -- Note: the double call to Root_Type here is needed because the
2301 -- root type of a class-wide type is the corresponding type (e.g.
2302 -- X for X'Class, and we really want to go to the root.)
2304 if not Is_Access_Type (Etyp)
2305 or else Root_Type (Root_Type (Designated_Type (Etyp))) /=
2306 RTE (RE_Root_Stream_Type)
2307 then
2308 Error_Attr
2309 ("expected access to Ada.Streams.Root_Stream_Type''Class", E1);
2310 end if;
2312 -- Check that the second argument is of the right type if there is
2313 -- one (the Input attribute has only one argument so this is skipped)
2315 if Present (E2) then
2316 Analyze (E2);
2318 if Nam = TSS_Stream_Read
2319 and then not Is_OK_Variable_For_Out_Formal (E2)
2320 then
2321 Error_Attr
2322 ("second argument of % attribute must be a variable", E2);
2323 end if;
2325 Resolve (E2, P_Type);
2326 end if;
2328 Check_Not_CPP_Type;
2329 end Check_Stream_Attribute;
2331 -------------------------
2332 -- Check_System_Prefix --
2333 -------------------------
2335 procedure Check_System_Prefix is
2336 begin
2337 if Nkind (P) /= N_Identifier or else Chars (P) /= Name_System then
2338 Error_Attr ("only allowed prefix for % attribute is System", P);
2339 end if;
2340 end Check_System_Prefix;
2342 -----------------------
2343 -- Check_Task_Prefix --
2344 -----------------------
2346 procedure Check_Task_Prefix is
2347 begin
2348 Analyze (P);
2350 -- Ada 2005 (AI-345): Attribute 'Terminated can be applied to
2351 -- task interface class-wide types.
2353 if Is_Task_Type (Etype (P))
2354 or else (Is_Access_Type (Etype (P))
2355 and then Is_Task_Type (Designated_Type (Etype (P))))
2356 or else (Ada_Version >= Ada_2005
2357 and then Ekind (Etype (P)) = E_Class_Wide_Type
2358 and then Is_Interface (Etype (P))
2359 and then Is_Task_Interface (Etype (P)))
2360 then
2361 Resolve (P);
2363 else
2364 if Ada_Version >= Ada_2005 then
2365 Error_Attr_P
2366 ("prefix of % attribute must be a task or a task " &
2367 "interface class-wide object");
2369 else
2370 Error_Attr_P ("prefix of % attribute must be a task");
2371 end if;
2372 end if;
2373 end Check_Task_Prefix;
2375 ----------------
2376 -- Check_Type --
2377 ----------------
2379 -- The possibilities are an entity name denoting a type, or an
2380 -- attribute reference that denotes a type (Base or Class). If
2381 -- the type is incomplete, replace it with its full view.
2383 procedure Check_Type is
2384 begin
2385 if not Is_Entity_Name (P)
2386 or else not Is_Type (Entity (P))
2387 then
2388 Error_Attr_P ("prefix of % attribute must be a type");
2390 elsif Is_Protected_Self_Reference (P) then
2391 Error_Attr_P
2392 ("prefix of % attribute denotes current instance "
2393 & "(RM 9.4(21/2))");
2395 elsif Ekind (Entity (P)) = E_Incomplete_Type
2396 and then Present (Full_View (Entity (P)))
2397 then
2398 P_Type := Full_View (Entity (P));
2399 Set_Entity (P, P_Type);
2400 end if;
2401 end Check_Type;
2403 ---------------------
2404 -- Check_Unit_Name --
2405 ---------------------
2407 procedure Check_Unit_Name (Nod : Node_Id) is
2408 begin
2409 if Nkind (Nod) = N_Identifier then
2410 return;
2412 elsif Nkind_In (Nod, N_Selected_Component, N_Expanded_Name) then
2413 Check_Unit_Name (Prefix (Nod));
2415 if Nkind (Selector_Name (Nod)) = N_Identifier then
2416 return;
2417 end if;
2418 end if;
2420 Error_Attr ("argument for % attribute must be unit name", P);
2421 end Check_Unit_Name;
2423 ----------------
2424 -- Error_Attr --
2425 ----------------
2427 procedure Error_Attr is
2428 begin
2429 Set_Etype (N, Any_Type);
2430 Set_Entity (N, Any_Type);
2431 raise Bad_Attribute;
2432 end Error_Attr;
2434 procedure Error_Attr (Msg : String; Error_Node : Node_Id) is
2435 begin
2436 Error_Msg_Name_1 := Aname;
2437 Error_Msg_N (Msg, Error_Node);
2438 Error_Attr;
2439 end Error_Attr;
2441 ------------------
2442 -- Error_Attr_P --
2443 ------------------
2445 procedure Error_Attr_P (Msg : String) is
2446 begin
2447 Error_Msg_Name_1 := Aname;
2448 Error_Msg_F (Msg, P);
2449 Error_Attr;
2450 end Error_Attr_P;
2452 ----------------------------
2453 -- Legal_Formal_Attribute --
2454 ----------------------------
2456 procedure Legal_Formal_Attribute is
2457 begin
2458 Check_E0;
2460 if not Is_Entity_Name (P)
2461 or else not Is_Type (Entity (P))
2462 then
2463 Error_Attr_P ("prefix of % attribute must be generic type");
2465 elsif Is_Generic_Actual_Type (Entity (P))
2466 or else In_Instance
2467 or else In_Inlined_Body
2468 then
2469 null;
2471 elsif Is_Generic_Type (Entity (P)) then
2472 if not Is_Indefinite_Subtype (Entity (P)) then
2473 Error_Attr_P
2474 ("prefix of % attribute must be indefinite generic type");
2475 end if;
2477 else
2478 Error_Attr_P
2479 ("prefix of % attribute must be indefinite generic type");
2480 end if;
2482 Set_Etype (N, Standard_Boolean);
2483 end Legal_Formal_Attribute;
2485 ---------------------------------------------------------------
2486 -- Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements --
2487 ---------------------------------------------------------------
2489 procedure Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements is
2490 begin
2491 Check_E0;
2492 Check_Type;
2493 Check_Not_Incomplete_Type;
2494 Set_Etype (N, Universal_Integer);
2495 end Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
2497 -------------
2498 -- Min_Max --
2499 -------------
2501 procedure Min_Max is
2502 begin
2503 Check_E2;
2504 Check_Scalar_Type;
2505 Resolve (E1, P_Base_Type);
2506 Resolve (E2, P_Base_Type);
2507 Set_Etype (N, P_Base_Type);
2509 -- Check for comparison on unordered enumeration type
2511 if Bad_Unordered_Enumeration_Reference (N, P_Base_Type) then
2512 Error_Msg_Sloc := Sloc (P_Base_Type);
2513 Error_Msg_NE
2514 ("comparison on unordered enumeration type& declared#?U?",
2515 N, P_Base_Type);
2516 end if;
2517 end Min_Max;
2519 ------------------------
2520 -- Standard_Attribute --
2521 ------------------------
2523 procedure Standard_Attribute (Val : Int) is
2524 begin
2525 Check_Standard_Prefix;
2526 Rewrite (N, Make_Integer_Literal (Loc, Val));
2527 Analyze (N);
2528 Set_Is_Static_Expression (N, True);
2529 end Standard_Attribute;
2531 --------------------
2532 -- Uneval_Old_Msg --
2533 --------------------
2535 procedure Uneval_Old_Msg is
2536 Uneval_Old_Setting : Character;
2537 Prag : Node_Id;
2539 begin
2540 -- If from aspect, then Uneval_Old_Setting comes from flags in the
2541 -- N_Aspect_Specification node that corresponds to the attribute.
2543 -- First find the pragma in which we appear (note that at this stage,
2544 -- even if we appeared originally within an aspect specification, we
2545 -- are now within the corresponding pragma).
2547 Prag := N;
2548 loop
2549 Prag := Parent (Prag);
2550 exit when No (Prag) or else Nkind (Prag) = N_Pragma;
2551 end loop;
2553 if Present (Prag) then
2554 if Uneval_Old_Accept (Prag) then
2555 Uneval_Old_Setting := 'A';
2556 elsif Uneval_Old_Warn (Prag) then
2557 Uneval_Old_Setting := 'W';
2558 else
2559 Uneval_Old_Setting := 'E';
2560 end if;
2562 -- If we did not find the pragma, that's odd, just use the setting
2563 -- from Opt.Uneval_Old. Perhaps this is due to a previous error?
2565 else
2566 Uneval_Old_Setting := Opt.Uneval_Old;
2567 end if;
2569 -- Processing depends on the setting of Uneval_Old
2571 case Uneval_Old_Setting is
2572 when 'E' =>
2573 Error_Attr_P
2574 ("prefix of attribute % that is potentially "
2575 & "unevaluated must denote an entity");
2577 when 'W' =>
2578 Error_Msg_Name_1 := Aname;
2579 Error_Msg_F
2580 ("??prefix of attribute % appears in potentially "
2581 & "unevaluated context, exception may be raised", P);
2583 when 'A' =>
2584 null;
2586 when others =>
2587 raise Program_Error;
2588 end case;
2589 end Uneval_Old_Msg;
2591 -------------------------
2592 -- Unexpected Argument --
2593 -------------------------
2595 procedure Unexpected_Argument (En : Node_Id) is
2596 begin
2597 Error_Attr ("unexpected argument for % attribute", En);
2598 end Unexpected_Argument;
2600 -------------------------------------------------
2601 -- Validate_Non_Static_Attribute_Function_Call --
2602 -------------------------------------------------
2604 -- This function should be moved to Sem_Dist ???
2606 procedure Validate_Non_Static_Attribute_Function_Call is
2607 begin
2608 if In_Preelaborated_Unit
2609 and then not In_Subprogram_Or_Concurrent_Unit
2610 then
2611 Flag_Non_Static_Expr
2612 ("non-static function call in preelaborated unit!", N);
2613 end if;
2614 end Validate_Non_Static_Attribute_Function_Call;
2616 -- Start of processing for Analyze_Attribute
2618 begin
2619 -- Immediate return if unrecognized attribute (already diagnosed
2620 -- by parser, so there is nothing more that we need to do)
2622 if not Is_Attribute_Name (Aname) then
2623 raise Bad_Attribute;
2624 end if;
2626 -- Deal with Ada 83 issues
2628 if Comes_From_Source (N) then
2629 if not Attribute_83 (Attr_Id) then
2630 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
2631 Error_Msg_Name_1 := Aname;
2632 Error_Msg_N ("(Ada 83) attribute% is not standard??", N);
2633 end if;
2635 if Attribute_Impl_Def (Attr_Id) then
2636 Check_Restriction (No_Implementation_Attributes, N);
2637 end if;
2638 end if;
2639 end if;
2641 -- Deal with Ada 2005 attributes that are implementation attributes
2642 -- because they appear in a version of Ada before Ada 2005, and
2643 -- similarly for Ada 2012 attributes appearing in an earlier version.
2645 if (Attribute_05 (Attr_Id) and then Ada_Version < Ada_2005)
2646 or else
2647 (Attribute_12 (Attr_Id) and then Ada_Version < Ada_2012)
2648 then
2649 Check_Restriction (No_Implementation_Attributes, N);
2650 end if;
2652 -- Remote access to subprogram type access attribute reference needs
2653 -- unanalyzed copy for tree transformation. The analyzed copy is used
2654 -- for its semantic information (whether prefix is a remote subprogram
2655 -- name), the unanalyzed copy is used to construct new subtree rooted
2656 -- with N_Aggregate which represents a fat pointer aggregate.
2658 if Aname = Name_Access then
2659 Discard_Node (Copy_Separate_Tree (N));
2660 end if;
2662 -- Analyze prefix and exit if error in analysis. If the prefix is an
2663 -- incomplete type, use full view if available. Note that there are
2664 -- some attributes for which we do not analyze the prefix, since the
2665 -- prefix is not a normal name, or else needs special handling.
2667 if Aname /= Name_Elab_Body and then
2668 Aname /= Name_Elab_Spec and then
2669 Aname /= Name_Elab_Subp_Body and then
2670 Aname /= Name_UET_Address and then
2671 Aname /= Name_Enabled and then
2672 Aname /= Name_Old
2673 then
2674 Analyze (P);
2675 P_Type := Etype (P);
2677 if Is_Entity_Name (P)
2678 and then Present (Entity (P))
2679 and then Is_Type (Entity (P))
2680 then
2681 if Ekind (Entity (P)) = E_Incomplete_Type then
2682 P_Type := Get_Full_View (P_Type);
2683 Set_Entity (P, P_Type);
2684 Set_Etype (P, P_Type);
2686 elsif Entity (P) = Current_Scope
2687 and then Is_Record_Type (Entity (P))
2688 then
2689 -- Use of current instance within the type. Verify that if the
2690 -- attribute appears within a constraint, it yields an access
2691 -- type, other uses are illegal.
2693 declare
2694 Par : Node_Id;
2696 begin
2697 Par := Parent (N);
2698 while Present (Par)
2699 and then Nkind (Parent (Par)) /= N_Component_Definition
2700 loop
2701 Par := Parent (Par);
2702 end loop;
2704 if Present (Par)
2705 and then Nkind (Par) = N_Subtype_Indication
2706 then
2707 if Attr_Id /= Attribute_Access
2708 and then Attr_Id /= Attribute_Unchecked_Access
2709 and then Attr_Id /= Attribute_Unrestricted_Access
2710 then
2711 Error_Msg_N
2712 ("in a constraint the current instance can only "
2713 & "be used with an access attribute", N);
2714 end if;
2715 end if;
2716 end;
2717 end if;
2718 end if;
2720 if P_Type = Any_Type then
2721 raise Bad_Attribute;
2722 end if;
2724 P_Base_Type := Base_Type (P_Type);
2725 end if;
2727 -- Analyze expressions that may be present, exiting if an error occurs
2729 if No (Exprs) then
2730 E1 := Empty;
2731 E2 := Empty;
2733 else
2734 E1 := First (Exprs);
2736 -- Skip analysis for case of Restriction_Set, we do not expect
2737 -- the argument to be analyzed in this case.
2739 if Aname /= Name_Restriction_Set then
2740 Analyze (E1);
2742 -- Check for missing/bad expression (result of previous error)
2744 if No (E1) or else Etype (E1) = Any_Type then
2745 raise Bad_Attribute;
2746 end if;
2747 end if;
2749 E2 := Next (E1);
2751 if Present (E2) then
2752 Analyze (E2);
2754 if Etype (E2) = Any_Type then
2755 raise Bad_Attribute;
2756 end if;
2758 if Present (Next (E2)) then
2759 Unexpected_Argument (Next (E2));
2760 end if;
2761 end if;
2762 end if;
2764 -- Cases where prefix must be resolvable by itself
2766 if Is_Overloaded (P)
2767 and then Aname /= Name_Access
2768 and then Aname /= Name_Address
2769 and then Aname /= Name_Code_Address
2770 and then Aname /= Name_Result
2771 and then Aname /= Name_Unchecked_Access
2772 then
2773 -- The prefix must be resolvable by itself, without reference to the
2774 -- attribute. One case that requires special handling is a prefix
2775 -- that is a function name, where one interpretation may be a
2776 -- parameterless call. Entry attributes are handled specially below.
2778 if Is_Entity_Name (P)
2779 and then not Nam_In (Aname, Name_Count, Name_Caller)
2780 then
2781 Check_Parameterless_Call (P);
2782 end if;
2784 if Is_Overloaded (P) then
2786 -- Ada 2005 (AI-345): Since protected and task types have
2787 -- primitive entry wrappers, the attributes Count, and Caller
2788 -- require a context check
2790 if Nam_In (Aname, Name_Count, Name_Caller) then
2791 declare
2792 Count : Natural := 0;
2793 I : Interp_Index;
2794 It : Interp;
2796 begin
2797 Get_First_Interp (P, I, It);
2798 while Present (It.Nam) loop
2799 if Comes_From_Source (It.Nam) then
2800 Count := Count + 1;
2801 else
2802 Remove_Interp (I);
2803 end if;
2805 Get_Next_Interp (I, It);
2806 end loop;
2808 if Count > 1 then
2809 Error_Attr ("ambiguous prefix for % attribute", P);
2810 else
2811 Set_Is_Overloaded (P, False);
2812 end if;
2813 end;
2815 else
2816 Error_Attr ("ambiguous prefix for % attribute", P);
2817 end if;
2818 end if;
2819 end if;
2821 -- In SPARK, attributes of private types are only allowed if the full
2822 -- type declaration is visible.
2824 -- Note: the check for Present (Entity (P)) defends against some error
2825 -- conditions where the Entity field is not set.
2827 if Is_Entity_Name (P) and then Present (Entity (P))
2828 and then Is_Type (Entity (P))
2829 and then Is_Private_Type (P_Type)
2830 and then not In_Open_Scopes (Scope (P_Type))
2831 and then not In_Spec_Expression
2832 then
2833 Check_SPARK_05_Restriction ("invisible attribute of type", N);
2834 end if;
2836 -- Remaining processing depends on attribute
2838 case Attr_Id is
2840 -- Attributes related to Ada 2012 iterators. Attribute specifications
2841 -- exist for these, but they cannot be queried.
2843 when Attribute_Constant_Indexing |
2844 Attribute_Default_Iterator |
2845 Attribute_Implicit_Dereference |
2846 Attribute_Iterator_Element |
2847 Attribute_Iterable |
2848 Attribute_Variable_Indexing =>
2849 Error_Msg_N ("illegal attribute", N);
2851 -- Internal attributes used to deal with Ada 2012 delayed aspects. These
2852 -- were already rejected by the parser. Thus they shouldn't appear here.
2854 when Internal_Attribute_Id =>
2855 raise Program_Error;
2857 ------------------
2858 -- Abort_Signal --
2859 ------------------
2861 when Attribute_Abort_Signal =>
2862 Check_Standard_Prefix;
2863 Rewrite (N, New_Occurrence_Of (Stand.Abort_Signal, Loc));
2864 Analyze (N);
2866 ------------
2867 -- Access --
2868 ------------
2870 when Attribute_Access =>
2871 Analyze_Access_Attribute;
2872 Check_Not_Incomplete_Type;
2874 -------------
2875 -- Address --
2876 -------------
2878 when Attribute_Address =>
2879 Check_E0;
2880 Address_Checks;
2881 Check_Not_Incomplete_Type;
2882 Set_Etype (N, RTE (RE_Address));
2884 ------------------
2885 -- Address_Size --
2886 ------------------
2888 when Attribute_Address_Size =>
2889 Standard_Attribute (System_Address_Size);
2891 --------------
2892 -- Adjacent --
2893 --------------
2895 when Attribute_Adjacent =>
2896 Check_Floating_Point_Type_2;
2897 Set_Etype (N, P_Base_Type);
2898 Resolve (E1, P_Base_Type);
2899 Resolve (E2, P_Base_Type);
2901 ---------
2902 -- Aft --
2903 ---------
2905 when Attribute_Aft =>
2906 Check_Fixed_Point_Type_0;
2907 Set_Etype (N, Universal_Integer);
2909 ---------------
2910 -- Alignment --
2911 ---------------
2913 when Attribute_Alignment =>
2915 -- Don't we need more checking here, cf Size ???
2917 Check_E0;
2918 Check_Not_Incomplete_Type;
2919 Check_Not_CPP_Type;
2920 Set_Etype (N, Universal_Integer);
2922 ---------------
2923 -- Asm_Input --
2924 ---------------
2926 when Attribute_Asm_Input =>
2927 Check_Asm_Attribute;
2929 -- The back-end may need to take the address of E2
2931 if Is_Entity_Name (E2) then
2932 Set_Address_Taken (Entity (E2));
2933 end if;
2935 Set_Etype (N, RTE (RE_Asm_Input_Operand));
2937 ----------------
2938 -- Asm_Output --
2939 ----------------
2941 when Attribute_Asm_Output =>
2942 Check_Asm_Attribute;
2944 if Etype (E2) = Any_Type then
2945 return;
2947 elsif Aname = Name_Asm_Output then
2948 if not Is_Variable (E2) then
2949 Error_Attr
2950 ("second argument for Asm_Output is not variable", E2);
2951 end if;
2952 end if;
2954 Note_Possible_Modification (E2, Sure => True);
2956 -- The back-end may need to take the address of E2
2958 if Is_Entity_Name (E2) then
2959 Set_Address_Taken (Entity (E2));
2960 end if;
2962 Set_Etype (N, RTE (RE_Asm_Output_Operand));
2964 -----------------------------
2965 -- Atomic_Always_Lock_Free --
2966 -----------------------------
2968 when Attribute_Atomic_Always_Lock_Free =>
2969 Check_E0;
2970 Check_Type;
2971 Set_Etype (N, Standard_Boolean);
2973 ----------
2974 -- Base --
2975 ----------
2977 -- Note: when the base attribute appears in the context of a subtype
2978 -- mark, the analysis is done by Sem_Ch8.Find_Type, rather than by
2979 -- the following circuit.
2981 when Attribute_Base => Base : declare
2982 Typ : Entity_Id;
2984 begin
2985 Check_E0;
2986 Find_Type (P);
2987 Typ := Entity (P);
2989 if Ada_Version >= Ada_95
2990 and then not Is_Scalar_Type (Typ)
2991 and then not Is_Generic_Type (Typ)
2992 then
2993 Error_Attr_P ("prefix of Base attribute must be scalar type");
2995 elsif Sloc (Typ) = Standard_Location
2996 and then Base_Type (Typ) = Typ
2997 and then Warn_On_Redundant_Constructs
2998 then
2999 Error_Msg_NE -- CODEFIX
3000 ("?r?redundant attribute, & is its own base type", N, Typ);
3001 end if;
3003 if Nkind (Parent (N)) /= N_Attribute_Reference then
3004 Error_Msg_Name_1 := Aname;
3005 Check_SPARK_05_Restriction
3006 ("attribute% is only allowed as prefix of another attribute", P);
3007 end if;
3009 Set_Etype (N, Base_Type (Entity (P)));
3010 Set_Entity (N, Base_Type (Entity (P)));
3011 Rewrite (N, New_Occurrence_Of (Entity (N), Loc));
3012 Analyze (N);
3013 end Base;
3015 ---------
3016 -- Bit --
3017 ---------
3019 when Attribute_Bit => Bit :
3020 begin
3021 Check_E0;
3023 if not Is_Object_Reference (P) then
3024 Error_Attr_P ("prefix for % attribute must be object");
3026 -- What about the access object cases ???
3028 else
3029 null;
3030 end if;
3032 Set_Etype (N, Universal_Integer);
3033 end Bit;
3035 ---------------
3036 -- Bit_Order --
3037 ---------------
3039 when Attribute_Bit_Order => Bit_Order :
3040 begin
3041 Check_E0;
3042 Check_Type;
3044 if not Is_Record_Type (P_Type) then
3045 Error_Attr_P ("prefix of % attribute must be record type");
3046 end if;
3048 if Bytes_Big_Endian xor Reverse_Bit_Order (P_Type) then
3049 Rewrite (N,
3050 New_Occurrence_Of (RTE (RE_High_Order_First), Loc));
3051 else
3052 Rewrite (N,
3053 New_Occurrence_Of (RTE (RE_Low_Order_First), Loc));
3054 end if;
3056 Set_Etype (N, RTE (RE_Bit_Order));
3057 Resolve (N);
3059 -- Reset incorrect indication of staticness
3061 Set_Is_Static_Expression (N, False);
3062 end Bit_Order;
3064 ------------------
3065 -- Bit_Position --
3066 ------------------
3068 -- Note: in generated code, we can have a Bit_Position attribute
3069 -- applied to a (naked) record component (i.e. the prefix is an
3070 -- identifier that references an E_Component or E_Discriminant
3071 -- entity directly, and this is interpreted as expected by Gigi.
3072 -- The following code will not tolerate such usage, but when the
3073 -- expander creates this special case, it marks it as analyzed
3074 -- immediately and sets an appropriate type.
3076 when Attribute_Bit_Position =>
3077 if Comes_From_Source (N) then
3078 Check_Component;
3079 end if;
3081 Set_Etype (N, Universal_Integer);
3083 ------------------
3084 -- Body_Version --
3085 ------------------
3087 when Attribute_Body_Version =>
3088 Check_E0;
3089 Check_Program_Unit;
3090 Set_Etype (N, RTE (RE_Version_String));
3092 --------------
3093 -- Callable --
3094 --------------
3096 when Attribute_Callable =>
3097 Check_E0;
3098 Set_Etype (N, Standard_Boolean);
3099 Check_Task_Prefix;
3101 ------------
3102 -- Caller --
3103 ------------
3105 when Attribute_Caller => Caller : declare
3106 Ent : Entity_Id;
3107 S : Entity_Id;
3109 begin
3110 Check_E0;
3112 if Nkind_In (P, N_Identifier, N_Expanded_Name) then
3113 Ent := Entity (P);
3115 if not Is_Entry (Ent) then
3116 Error_Attr ("invalid entry name", N);
3117 end if;
3119 else
3120 Error_Attr ("invalid entry name", N);
3121 return;
3122 end if;
3124 for J in reverse 0 .. Scope_Stack.Last loop
3125 S := Scope_Stack.Table (J).Entity;
3127 if S = Scope (Ent) then
3128 Error_Attr ("Caller must appear in matching accept or body", N);
3129 elsif S = Ent then
3130 exit;
3131 end if;
3132 end loop;
3134 Set_Etype (N, RTE (RO_AT_Task_Id));
3135 end Caller;
3137 -------------
3138 -- Ceiling --
3139 -------------
3141 when Attribute_Ceiling =>
3142 Check_Floating_Point_Type_1;
3143 Set_Etype (N, P_Base_Type);
3144 Resolve (E1, P_Base_Type);
3146 -----------
3147 -- Class --
3148 -----------
3150 when Attribute_Class =>
3151 Check_Restriction (No_Dispatch, N);
3152 Check_E0;
3153 Find_Type (N);
3155 -- Applying Class to untagged incomplete type is obsolescent in Ada
3156 -- 2005. Note that we can't test Is_Tagged_Type here on P_Type, since
3157 -- this flag gets set by Find_Type in this situation.
3159 if Restriction_Check_Required (No_Obsolescent_Features)
3160 and then Ada_Version >= Ada_2005
3161 and then Ekind (P_Type) = E_Incomplete_Type
3162 then
3163 declare
3164 DN : constant Node_Id := Declaration_Node (P_Type);
3165 begin
3166 if Nkind (DN) = N_Incomplete_Type_Declaration
3167 and then not Tagged_Present (DN)
3168 then
3169 Check_Restriction (No_Obsolescent_Features, P);
3170 end if;
3171 end;
3172 end if;
3174 ------------------
3175 -- Code_Address --
3176 ------------------
3178 when Attribute_Code_Address =>
3179 Check_E0;
3181 if Nkind (P) = N_Attribute_Reference
3182 and then Nam_In (Attribute_Name (P), Name_Elab_Body, Name_Elab_Spec)
3183 then
3184 null;
3186 elsif not Is_Entity_Name (P)
3187 or else (Ekind (Entity (P)) /= E_Function
3188 and then
3189 Ekind (Entity (P)) /= E_Procedure)
3190 then
3191 Error_Attr ("invalid prefix for % attribute", P);
3192 Set_Address_Taken (Entity (P));
3194 -- Issue an error if the prefix denotes an eliminated subprogram
3196 else
3197 Check_For_Eliminated_Subprogram (P, Entity (P));
3198 end if;
3200 Set_Etype (N, RTE (RE_Address));
3202 ----------------------
3203 -- Compiler_Version --
3204 ----------------------
3206 when Attribute_Compiler_Version =>
3207 Check_E0;
3208 Check_Standard_Prefix;
3209 Rewrite (N, Make_String_Literal (Loc, "GNAT " & Gnat_Version_String));
3210 Analyze_And_Resolve (N, Standard_String);
3211 Set_Is_Static_Expression (N, True);
3213 --------------------
3214 -- Component_Size --
3215 --------------------
3217 when Attribute_Component_Size =>
3218 Check_E0;
3219 Set_Etype (N, Universal_Integer);
3221 -- Note: unlike other array attributes, unconstrained arrays are OK
3223 if Is_Array_Type (P_Type) and then not Is_Constrained (P_Type) then
3224 null;
3225 else
3226 Check_Array_Type;
3227 end if;
3229 -------------
3230 -- Compose --
3231 -------------
3233 when Attribute_Compose =>
3234 Check_Floating_Point_Type_2;
3235 Set_Etype (N, P_Base_Type);
3236 Resolve (E1, P_Base_Type);
3237 Resolve (E2, Any_Integer);
3239 -----------------
3240 -- Constrained --
3241 -----------------
3243 when Attribute_Constrained =>
3244 Check_E0;
3245 Set_Etype (N, Standard_Boolean);
3247 -- Case from RM J.4(2) of constrained applied to private type
3249 if Is_Entity_Name (P) and then Is_Type (Entity (P)) then
3250 Check_Restriction (No_Obsolescent_Features, P);
3252 if Warn_On_Obsolescent_Feature then
3253 Error_Msg_N
3254 ("constrained for private type is an " &
3255 "obsolescent feature (RM J.4)?j?", N);
3256 end if;
3258 -- If we are within an instance, the attribute must be legal
3259 -- because it was valid in the generic unit. Ditto if this is
3260 -- an inlining of a function declared in an instance.
3262 if In_Instance or else In_Inlined_Body then
3263 return;
3265 -- For sure OK if we have a real private type itself, but must
3266 -- be completed, cannot apply Constrained to incomplete type.
3268 elsif Is_Private_Type (Entity (P)) then
3270 -- Note: this is one of the Annex J features that does not
3271 -- generate a warning from -gnatwj, since in fact it seems
3272 -- very useful, and is used in the GNAT runtime.
3274 Check_Not_Incomplete_Type;
3275 return;
3276 end if;
3278 -- Normal (non-obsolescent case) of application to object of
3279 -- a discriminated type.
3281 else
3282 Check_Object_Reference (P);
3284 -- If N does not come from source, then we allow the
3285 -- the attribute prefix to be of a private type whose
3286 -- full type has discriminants. This occurs in cases
3287 -- involving expanded calls to stream attributes.
3289 if not Comes_From_Source (N) then
3290 P_Type := Underlying_Type (P_Type);
3291 end if;
3293 -- Must have discriminants or be an access type designating
3294 -- a type with discriminants. If it is a classwide type it
3295 -- has unknown discriminants.
3297 if Has_Discriminants (P_Type)
3298 or else Has_Unknown_Discriminants (P_Type)
3299 or else
3300 (Is_Access_Type (P_Type)
3301 and then Has_Discriminants (Designated_Type (P_Type)))
3302 then
3303 return;
3305 -- The rule given in 3.7.2 is part of static semantics, but the
3306 -- intent is clearly that it be treated as a legality rule, and
3307 -- rechecked in the visible part of an instance. Nevertheless
3308 -- the intent also seems to be it should legally apply to the
3309 -- actual of a formal with unknown discriminants, regardless of
3310 -- whether the actual has discriminants, in which case the value
3311 -- of the attribute is determined using the J.4 rules. This choice
3312 -- seems the most useful, and is compatible with existing tests.
3314 elsif In_Instance then
3315 return;
3317 -- Also allow an object of a generic type if extensions allowed
3318 -- and allow this for any type at all. (this may be obsolete ???)
3320 elsif (Is_Generic_Type (P_Type)
3321 or else Is_Generic_Actual_Type (P_Type))
3322 and then Extensions_Allowed
3323 then
3324 return;
3325 end if;
3326 end if;
3328 -- Fall through if bad prefix
3330 Error_Attr_P
3331 ("prefix of % attribute must be object of discriminated type");
3333 ---------------
3334 -- Copy_Sign --
3335 ---------------
3337 when Attribute_Copy_Sign =>
3338 Check_Floating_Point_Type_2;
3339 Set_Etype (N, P_Base_Type);
3340 Resolve (E1, P_Base_Type);
3341 Resolve (E2, P_Base_Type);
3343 -----------
3344 -- Count --
3345 -----------
3347 when Attribute_Count => Count :
3348 declare
3349 Ent : Entity_Id;
3350 S : Entity_Id;
3351 Tsk : Entity_Id;
3353 begin
3354 Check_E0;
3356 if Nkind_In (P, N_Identifier, N_Expanded_Name) then
3357 Ent := Entity (P);
3359 if Ekind (Ent) /= E_Entry then
3360 Error_Attr ("invalid entry name", N);
3361 end if;
3363 elsif Nkind (P) = N_Indexed_Component then
3364 if not Is_Entity_Name (Prefix (P))
3365 or else No (Entity (Prefix (P)))
3366 or else Ekind (Entity (Prefix (P))) /= E_Entry_Family
3367 then
3368 if Nkind (Prefix (P)) = N_Selected_Component
3369 and then Present (Entity (Selector_Name (Prefix (P))))
3370 and then Ekind (Entity (Selector_Name (Prefix (P)))) =
3371 E_Entry_Family
3372 then
3373 Error_Attr
3374 ("attribute % must apply to entry of current task", P);
3376 else
3377 Error_Attr ("invalid entry family name", P);
3378 end if;
3379 return;
3381 else
3382 Ent := Entity (Prefix (P));
3383 end if;
3385 elsif Nkind (P) = N_Selected_Component
3386 and then Present (Entity (Selector_Name (P)))
3387 and then Ekind (Entity (Selector_Name (P))) = E_Entry
3388 then
3389 Error_Attr
3390 ("attribute % must apply to entry of current task", P);
3392 else
3393 Error_Attr ("invalid entry name", N);
3394 return;
3395 end if;
3397 for J in reverse 0 .. Scope_Stack.Last loop
3398 S := Scope_Stack.Table (J).Entity;
3400 if S = Scope (Ent) then
3401 if Nkind (P) = N_Expanded_Name then
3402 Tsk := Entity (Prefix (P));
3404 -- The prefix denotes either the task type, or else a
3405 -- single task whose task type is being analyzed.
3407 if (Is_Type (Tsk) and then Tsk = S)
3408 or else (not Is_Type (Tsk)
3409 and then Etype (Tsk) = S
3410 and then not (Comes_From_Source (S)))
3411 then
3412 null;
3413 else
3414 Error_Attr
3415 ("Attribute % must apply to entry of current task", N);
3416 end if;
3417 end if;
3419 exit;
3421 elsif Ekind (Scope (Ent)) in Task_Kind
3422 and then
3423 not Ekind_In (S, E_Loop, E_Block, E_Entry, E_Entry_Family)
3424 then
3425 Error_Attr ("Attribute % cannot appear in inner unit", N);
3427 elsif Ekind (Scope (Ent)) = E_Protected_Type
3428 and then not Has_Completion (Scope (Ent))
3429 then
3430 Error_Attr ("attribute % can only be used inside body", N);
3431 end if;
3432 end loop;
3434 if Is_Overloaded (P) then
3435 declare
3436 Index : Interp_Index;
3437 It : Interp;
3439 begin
3440 Get_First_Interp (P, Index, It);
3441 while Present (It.Nam) loop
3442 if It.Nam = Ent then
3443 null;
3445 -- Ada 2005 (AI-345): Do not consider primitive entry
3446 -- wrappers generated for task or protected types.
3448 elsif Ada_Version >= Ada_2005
3449 and then not Comes_From_Source (It.Nam)
3450 then
3451 null;
3453 else
3454 Error_Attr ("ambiguous entry name", N);
3455 end if;
3457 Get_Next_Interp (Index, It);
3458 end loop;
3459 end;
3460 end if;
3462 Set_Etype (N, Universal_Integer);
3463 end Count;
3465 -----------------------
3466 -- Default_Bit_Order --
3467 -----------------------
3469 when Attribute_Default_Bit_Order => Default_Bit_Order : declare
3470 Target_Default_Bit_Order : System.Bit_Order;
3472 begin
3473 Check_Standard_Prefix;
3475 if Bytes_Big_Endian then
3476 Target_Default_Bit_Order := System.High_Order_First;
3477 else
3478 Target_Default_Bit_Order := System.Low_Order_First;
3479 end if;
3481 Rewrite (N,
3482 Make_Integer_Literal (Loc,
3483 UI_From_Int (System.Bit_Order'Pos (Target_Default_Bit_Order))));
3485 Set_Etype (N, Universal_Integer);
3486 Set_Is_Static_Expression (N);
3487 end Default_Bit_Order;
3489 ----------------------------------
3490 -- Default_Scalar_Storage_Order --
3491 ----------------------------------
3493 when Attribute_Default_Scalar_Storage_Order => Default_SSO : declare
3494 RE_Default_SSO : RE_Id;
3496 begin
3497 Check_Standard_Prefix;
3499 case Opt.Default_SSO is
3500 when ' ' =>
3501 if Bytes_Big_Endian then
3502 RE_Default_SSO := RE_High_Order_First;
3503 else
3504 RE_Default_SSO := RE_Low_Order_First;
3505 end if;
3507 when 'H' =>
3508 RE_Default_SSO := RE_High_Order_First;
3510 when 'L' =>
3511 RE_Default_SSO := RE_Low_Order_First;
3513 when others =>
3514 raise Program_Error;
3515 end case;
3517 Rewrite (N, New_Occurrence_Of (RTE (RE_Default_SSO), Loc));
3518 end Default_SSO;
3520 --------------
3521 -- Definite --
3522 --------------
3524 when Attribute_Definite =>
3525 Legal_Formal_Attribute;
3527 -----------
3528 -- Delta --
3529 -----------
3531 when Attribute_Delta =>
3532 Check_Fixed_Point_Type_0;
3533 Set_Etype (N, Universal_Real);
3535 ------------
3536 -- Denorm --
3537 ------------
3539 when Attribute_Denorm =>
3540 Check_Floating_Point_Type_0;
3541 Set_Etype (N, Standard_Boolean);
3543 -----------
3544 -- Deref --
3545 -----------
3547 when Attribute_Deref =>
3548 Check_Type;
3549 Check_E1;
3550 Resolve (E1, RTE (RE_Address));
3551 Set_Etype (N, P_Type);
3553 ---------------------
3554 -- Descriptor_Size --
3555 ---------------------
3557 when Attribute_Descriptor_Size =>
3558 Check_E0;
3560 if not Is_Entity_Name (P) or else not Is_Type (Entity (P)) then
3561 Error_Attr_P ("prefix of attribute % must denote a type");
3562 end if;
3564 Set_Etype (N, Universal_Integer);
3566 ------------
3567 -- Digits --
3568 ------------
3570 when Attribute_Digits =>
3571 Check_E0;
3572 Check_Type;
3574 if not Is_Floating_Point_Type (P_Type)
3575 and then not Is_Decimal_Fixed_Point_Type (P_Type)
3576 then
3577 Error_Attr_P
3578 ("prefix of % attribute must be float or decimal type");
3579 end if;
3581 Set_Etype (N, Universal_Integer);
3583 ---------------
3584 -- Elab_Body --
3585 ---------------
3587 -- Also handles processing for Elab_Spec and Elab_Subp_Body
3589 when Attribute_Elab_Body |
3590 Attribute_Elab_Spec |
3591 Attribute_Elab_Subp_Body =>
3593 Check_E0;
3594 Check_Unit_Name (P);
3595 Set_Etype (N, Standard_Void_Type);
3597 -- We have to manually call the expander in this case to get
3598 -- the necessary expansion (normally attributes that return
3599 -- entities are not expanded).
3601 Expand (N);
3603 ---------------
3604 -- Elab_Spec --
3605 ---------------
3607 -- Shares processing with Elab_Body
3609 ----------------
3610 -- Elaborated --
3611 ----------------
3613 when Attribute_Elaborated =>
3614 Check_E0;
3615 Check_Unit_Name (P);
3616 Set_Etype (N, Standard_Boolean);
3618 ----------
3619 -- Emax --
3620 ----------
3622 when Attribute_Emax =>
3623 Check_Floating_Point_Type_0;
3624 Set_Etype (N, Universal_Integer);
3626 -------------
3627 -- Enabled --
3628 -------------
3630 when Attribute_Enabled =>
3631 Check_Either_E0_Or_E1;
3633 if Present (E1) then
3634 if not Is_Entity_Name (E1) or else No (Entity (E1)) then
3635 Error_Msg_N ("entity name expected for Enabled attribute", E1);
3636 E1 := Empty;
3637 end if;
3638 end if;
3640 if Nkind (P) /= N_Identifier then
3641 Error_Msg_N ("identifier expected (check name)", P);
3642 elsif Get_Check_Id (Chars (P)) = No_Check_Id then
3643 Error_Msg_N ("& is not a recognized check name", P);
3644 end if;
3646 Set_Etype (N, Standard_Boolean);
3648 --------------
3649 -- Enum_Rep --
3650 --------------
3652 when Attribute_Enum_Rep => Enum_Rep : declare
3653 begin
3654 if Present (E1) then
3655 Check_E1;
3656 Check_Discrete_Type;
3657 Resolve (E1, P_Base_Type);
3659 else
3660 if not Is_Entity_Name (P)
3661 or else (not Is_Object (Entity (P))
3662 and then Ekind (Entity (P)) /= E_Enumeration_Literal)
3663 then
3664 Error_Attr_P
3665 ("prefix of % attribute must be " &
3666 "discrete type/object or enum literal");
3667 end if;
3668 end if;
3670 Set_Etype (N, Universal_Integer);
3671 end Enum_Rep;
3673 --------------
3674 -- Enum_Val --
3675 --------------
3677 when Attribute_Enum_Val => Enum_Val : begin
3678 Check_E1;
3679 Check_Type;
3681 if not Is_Enumeration_Type (P_Type) then
3682 Error_Attr_P ("prefix of % attribute must be enumeration type");
3683 end if;
3685 -- If the enumeration type has a standard representation, the effect
3686 -- is the same as 'Val, so rewrite the attribute as a 'Val.
3688 if not Has_Non_Standard_Rep (P_Base_Type) then
3689 Rewrite (N,
3690 Make_Attribute_Reference (Loc,
3691 Prefix => Relocate_Node (Prefix (N)),
3692 Attribute_Name => Name_Val,
3693 Expressions => New_List (Relocate_Node (E1))));
3694 Analyze_And_Resolve (N, P_Base_Type);
3696 -- Non-standard representation case (enumeration with holes)
3698 else
3699 Check_Enum_Image;
3700 Resolve (E1, Any_Integer);
3701 Set_Etype (N, P_Base_Type);
3702 end if;
3703 end Enum_Val;
3705 -------------
3706 -- Epsilon --
3707 -------------
3709 when Attribute_Epsilon =>
3710 Check_Floating_Point_Type_0;
3711 Set_Etype (N, Universal_Real);
3713 --------------
3714 -- Exponent --
3715 --------------
3717 when Attribute_Exponent =>
3718 Check_Floating_Point_Type_1;
3719 Set_Etype (N, Universal_Integer);
3720 Resolve (E1, P_Base_Type);
3722 ------------------
3723 -- External_Tag --
3724 ------------------
3726 when Attribute_External_Tag =>
3727 Check_E0;
3728 Check_Type;
3730 Set_Etype (N, Standard_String);
3732 if not Is_Tagged_Type (P_Type) then
3733 Error_Attr_P ("prefix of % attribute must be tagged");
3734 end if;
3736 ---------------
3737 -- Fast_Math --
3738 ---------------
3740 when Attribute_Fast_Math =>
3741 Check_Standard_Prefix;
3742 Rewrite (N, New_Occurrence_Of (Boolean_Literals (Fast_Math), Loc));
3744 -----------
3745 -- First --
3746 -----------
3748 when Attribute_First =>
3749 Check_Array_Or_Scalar_Type;
3750 Bad_Attribute_For_Predicate;
3752 ---------------
3753 -- First_Bit --
3754 ---------------
3756 when Attribute_First_Bit =>
3757 Check_Component;
3758 Set_Etype (N, Universal_Integer);
3760 -----------------
3761 -- First_Valid --
3762 -----------------
3764 when Attribute_First_Valid =>
3765 Check_First_Last_Valid;
3766 Set_Etype (N, P_Type);
3768 -----------------
3769 -- Fixed_Value --
3770 -----------------
3772 when Attribute_Fixed_Value =>
3773 Check_E1;
3774 Check_Fixed_Point_Type;
3775 Resolve (E1, Any_Integer);
3776 Set_Etype (N, P_Base_Type);
3778 -----------
3779 -- Floor --
3780 -----------
3782 when Attribute_Floor =>
3783 Check_Floating_Point_Type_1;
3784 Set_Etype (N, P_Base_Type);
3785 Resolve (E1, P_Base_Type);
3787 ----------
3788 -- Fore --
3789 ----------
3791 when Attribute_Fore =>
3792 Check_Fixed_Point_Type_0;
3793 Set_Etype (N, Universal_Integer);
3795 --------------
3796 -- Fraction --
3797 --------------
3799 when Attribute_Fraction =>
3800 Check_Floating_Point_Type_1;
3801 Set_Etype (N, P_Base_Type);
3802 Resolve (E1, P_Base_Type);
3804 --------------
3805 -- From_Any --
3806 --------------
3808 when Attribute_From_Any =>
3809 Check_E1;
3810 Check_PolyORB_Attribute;
3811 Set_Etype (N, P_Base_Type);
3813 -----------------------
3814 -- Has_Access_Values --
3815 -----------------------
3817 when Attribute_Has_Access_Values =>
3818 Check_Type;
3819 Check_E0;
3820 Set_Etype (N, Standard_Boolean);
3822 ----------------------
3823 -- Has_Same_Storage --
3824 ----------------------
3826 when Attribute_Has_Same_Storage =>
3827 Check_E1;
3829 -- The arguments must be objects of any type
3831 Analyze_And_Resolve (P);
3832 Analyze_And_Resolve (E1);
3833 Check_Object_Reference (P);
3834 Check_Object_Reference (E1);
3835 Set_Etype (N, Standard_Boolean);
3837 -----------------------
3838 -- Has_Tagged_Values --
3839 -----------------------
3841 when Attribute_Has_Tagged_Values =>
3842 Check_Type;
3843 Check_E0;
3844 Set_Etype (N, Standard_Boolean);
3846 -----------------------
3847 -- Has_Discriminants --
3848 -----------------------
3850 when Attribute_Has_Discriminants =>
3851 Legal_Formal_Attribute;
3853 --------------
3854 -- Identity --
3855 --------------
3857 when Attribute_Identity =>
3858 Check_E0;
3859 Analyze (P);
3861 if Etype (P) = Standard_Exception_Type then
3862 Set_Etype (N, RTE (RE_Exception_Id));
3864 -- Ada 2005 (AI-345): Attribute 'Identity may be applied to task
3865 -- interface class-wide types.
3867 elsif Is_Task_Type (Etype (P))
3868 or else (Is_Access_Type (Etype (P))
3869 and then Is_Task_Type (Designated_Type (Etype (P))))
3870 or else (Ada_Version >= Ada_2005
3871 and then Ekind (Etype (P)) = E_Class_Wide_Type
3872 and then Is_Interface (Etype (P))
3873 and then Is_Task_Interface (Etype (P)))
3874 then
3875 Resolve (P);
3876 Set_Etype (N, RTE (RO_AT_Task_Id));
3878 else
3879 if Ada_Version >= Ada_2005 then
3880 Error_Attr_P
3881 ("prefix of % attribute must be an exception, a " &
3882 "task or a task interface class-wide object");
3883 else
3884 Error_Attr_P
3885 ("prefix of % attribute must be a task or an exception");
3886 end if;
3887 end if;
3889 -----------
3890 -- Image --
3891 -----------
3893 when Attribute_Image => Image :
3894 begin
3895 Check_SPARK_05_Restriction_On_Attribute;
3896 Check_Scalar_Type;
3897 Set_Etype (N, Standard_String);
3899 if Is_Real_Type (P_Type) then
3900 if Ada_Version = Ada_83 and then Comes_From_Source (N) then
3901 Error_Msg_Name_1 := Aname;
3902 Error_Msg_N
3903 ("(Ada 83) % attribute not allowed for real types", N);
3904 end if;
3905 end if;
3907 if Is_Enumeration_Type (P_Type) then
3908 Check_Restriction (No_Enumeration_Maps, N);
3909 end if;
3911 Check_E1;
3912 Resolve (E1, P_Base_Type);
3913 Check_Enum_Image;
3914 Validate_Non_Static_Attribute_Function_Call;
3916 -- Check restriction No_Fixed_IO. Note the check of Comes_From_Source
3917 -- to avoid giving a duplicate message for Img expanded into Image.
3919 if Restriction_Check_Required (No_Fixed_IO)
3920 and then Comes_From_Source (N)
3921 and then Is_Fixed_Point_Type (P_Type)
3922 then
3923 Check_Restriction (No_Fixed_IO, P);
3924 end if;
3925 end Image;
3927 ---------
3928 -- Img --
3929 ---------
3931 when Attribute_Img => Img :
3932 begin
3933 Check_E0;
3934 Set_Etype (N, Standard_String);
3936 if not Is_Scalar_Type (P_Type)
3937 or else (Is_Entity_Name (P) and then Is_Type (Entity (P)))
3938 then
3939 Error_Attr_P
3940 ("prefix of % attribute must be scalar object name");
3941 end if;
3943 Check_Enum_Image;
3945 -- Check restriction No_Fixed_IO
3947 if Restriction_Check_Required (No_Fixed_IO)
3948 and then Is_Fixed_Point_Type (P_Type)
3949 then
3950 Check_Restriction (No_Fixed_IO, P);
3951 end if;
3952 end Img;
3954 -----------
3955 -- Input --
3956 -----------
3958 when Attribute_Input =>
3959 Check_E1;
3960 Check_Stream_Attribute (TSS_Stream_Input);
3961 Set_Etype (N, P_Base_Type);
3963 -------------------
3964 -- Integer_Value --
3965 -------------------
3967 when Attribute_Integer_Value =>
3968 Check_E1;
3969 Check_Integer_Type;
3970 Resolve (E1, Any_Fixed);
3972 -- Signal an error if argument type is not a specific fixed-point
3973 -- subtype. An error has been signalled already if the argument
3974 -- was not of a fixed-point type.
3976 if Etype (E1) = Any_Fixed and then not Error_Posted (E1) then
3977 Error_Attr ("argument of % must be of a fixed-point type", E1);
3978 end if;
3980 Set_Etype (N, P_Base_Type);
3982 -------------------
3983 -- Invalid_Value --
3984 -------------------
3986 when Attribute_Invalid_Value =>
3987 Check_E0;
3988 Check_Scalar_Type;
3989 Set_Etype (N, P_Base_Type);
3990 Invalid_Value_Used := True;
3992 -----------
3993 -- Large --
3994 -----------
3996 when Attribute_Large =>
3997 Check_E0;
3998 Check_Real_Type;
3999 Set_Etype (N, Universal_Real);
4001 ----------
4002 -- Last --
4003 ----------
4005 when Attribute_Last =>
4006 Check_Array_Or_Scalar_Type;
4007 Bad_Attribute_For_Predicate;
4009 --------------
4010 -- Last_Bit --
4011 --------------
4013 when Attribute_Last_Bit =>
4014 Check_Component;
4015 Set_Etype (N, Universal_Integer);
4017 ----------------
4018 -- Last_Valid --
4019 ----------------
4021 when Attribute_Last_Valid =>
4022 Check_First_Last_Valid;
4023 Set_Etype (N, P_Type);
4025 ------------------
4026 -- Leading_Part --
4027 ------------------
4029 when Attribute_Leading_Part =>
4030 Check_Floating_Point_Type_2;
4031 Set_Etype (N, P_Base_Type);
4032 Resolve (E1, P_Base_Type);
4033 Resolve (E2, Any_Integer);
4035 ------------
4036 -- Length --
4037 ------------
4039 when Attribute_Length =>
4040 Check_Array_Type;
4041 Set_Etype (N, Universal_Integer);
4043 -------------------
4044 -- Library_Level --
4045 -------------------
4047 when Attribute_Library_Level =>
4048 Check_E0;
4050 if not Is_Entity_Name (P) then
4051 Error_Attr_P ("prefix of % attribute must be an entity name");
4052 end if;
4054 if not Inside_A_Generic then
4055 Set_Boolean_Result (N,
4056 Is_Library_Level_Entity (Entity (P)));
4057 end if;
4059 Set_Etype (N, Standard_Boolean);
4061 ---------------
4062 -- Lock_Free --
4063 ---------------
4065 when Attribute_Lock_Free =>
4066 Check_E0;
4067 Set_Etype (N, Standard_Boolean);
4069 if not Is_Protected_Type (P_Type) then
4070 Error_Attr_P
4071 ("prefix of % attribute must be a protected object");
4072 end if;
4074 ----------------
4075 -- Loop_Entry --
4076 ----------------
4078 when Attribute_Loop_Entry => Loop_Entry : declare
4079 procedure Check_References_In_Prefix (Loop_Id : Entity_Id);
4080 -- Inspect the prefix for any uses of entities declared within the
4081 -- related loop. Loop_Id denotes the loop identifier.
4083 --------------------------------
4084 -- Check_References_In_Prefix --
4085 --------------------------------
4087 procedure Check_References_In_Prefix (Loop_Id : Entity_Id) is
4088 Loop_Decl : constant Node_Id := Label_Construct (Parent (Loop_Id));
4090 function Check_Reference (Nod : Node_Id) return Traverse_Result;
4091 -- Determine whether a reference mentions an entity declared
4092 -- within the related loop.
4094 function Declared_Within (Nod : Node_Id) return Boolean;
4095 -- Determine whether Nod appears in the subtree of Loop_Decl
4097 ---------------------
4098 -- Check_Reference --
4099 ---------------------
4101 function Check_Reference (Nod : Node_Id) return Traverse_Result is
4102 begin
4103 if Nkind (Nod) = N_Identifier
4104 and then Present (Entity (Nod))
4105 and then Declared_Within (Declaration_Node (Entity (Nod)))
4106 then
4107 Error_Attr
4108 ("prefix of attribute % cannot reference local entities",
4109 Nod);
4110 return Abandon;
4111 else
4112 return OK;
4113 end if;
4114 end Check_Reference;
4116 procedure Check_References is new Traverse_Proc (Check_Reference);
4118 ---------------------
4119 -- Declared_Within --
4120 ---------------------
4122 function Declared_Within (Nod : Node_Id) return Boolean is
4123 Stmt : Node_Id;
4125 begin
4126 Stmt := Nod;
4127 while Present (Stmt) loop
4128 if Stmt = Loop_Decl then
4129 return True;
4131 -- Prevent the search from going too far
4133 elsif Is_Body_Or_Package_Declaration (Stmt) then
4134 exit;
4135 end if;
4137 Stmt := Parent (Stmt);
4138 end loop;
4140 return False;
4141 end Declared_Within;
4143 -- Start of processing for Check_Prefix_For_Local_References
4145 begin
4146 Check_References (P);
4147 end Check_References_In_Prefix;
4149 -- Local variables
4151 Context : constant Node_Id := Parent (N);
4152 Attr : Node_Id;
4153 Enclosing_Loop : Node_Id;
4154 Loop_Id : Entity_Id := Empty;
4155 Scop : Entity_Id;
4156 Stmt : Node_Id;
4157 Enclosing_Pragma : Node_Id := Empty;
4159 -- Start of processing for Loop_Entry
4161 begin
4162 Attr := N;
4164 -- Set the type of the attribute now to ensure the successfull
4165 -- continuation of analysis even if the attribute is misplaced.
4167 Set_Etype (Attr, P_Type);
4169 -- Attribute 'Loop_Entry may appear in several flavors:
4171 -- * Prefix'Loop_Entry - in this form, the attribute applies to the
4172 -- nearest enclosing loop.
4174 -- * Prefix'Loop_Entry (Expr) - depending on what Expr denotes, the
4175 -- attribute may be related to a loop denoted by label Expr or
4176 -- the prefix may denote an array object and Expr may act as an
4177 -- indexed component.
4179 -- * Prefix'Loop_Entry (Expr1, ..., ExprN) - the attribute applies
4180 -- to the nearest enclosing loop, all expressions are part of
4181 -- an indexed component.
4183 -- * Prefix'Loop_Entry (Expr) (...) (...) - depending on what Expr
4184 -- denotes, the attribute may be related to a loop denoted by
4185 -- label Expr or the prefix may denote a multidimensional array
4186 -- array object and Expr along with the rest of the expressions
4187 -- may act as indexed components.
4189 -- Regardless of variations, the attribute reference does not have an
4190 -- expression list. Instead, all available expressions are stored as
4191 -- indexed components.
4193 -- When the attribute is part of an indexed component, find the first
4194 -- expression as it will determine the semantics of 'Loop_Entry.
4196 if Nkind (Context) = N_Indexed_Component then
4197 E1 := First (Expressions (Context));
4198 E2 := Next (E1);
4200 -- The attribute reference appears in the following form:
4202 -- Prefix'Loop_Entry (Exp1, Expr2, ..., ExprN) [(...)]
4204 -- In this case, the loop name is omitted and no rewriting is
4205 -- required.
4207 if Present (E2) then
4208 null;
4210 -- The form of the attribute is:
4212 -- Prefix'Loop_Entry (Expr) [(...)]
4214 -- If Expr denotes a loop entry, the whole attribute and indexed
4215 -- component will have to be rewritten to reflect this relation.
4217 else
4218 pragma Assert (Present (E1));
4220 -- Do not expand the expression as it may have side effects.
4221 -- Simply preanalyze to determine whether it is a loop name or
4222 -- something else.
4224 Preanalyze_And_Resolve (E1);
4226 if Is_Entity_Name (E1)
4227 and then Present (Entity (E1))
4228 and then Ekind (Entity (E1)) = E_Loop
4229 then
4230 Loop_Id := Entity (E1);
4232 -- Transform the attribute and enclosing indexed component
4234 Set_Expressions (N, Expressions (Context));
4235 Rewrite (Context, N);
4236 Set_Etype (Context, P_Type);
4238 Attr := Context;
4239 end if;
4240 end if;
4241 end if;
4243 -- The prefix must denote an object
4245 if not Is_Object_Reference (P) then
4246 Error_Attr_P ("prefix of attribute % must denote an object");
4247 end if;
4249 -- The prefix cannot be of a limited type because the expansion of
4250 -- Loop_Entry must create a constant initialized by the evaluated
4251 -- prefix.
4253 if Is_Limited_View (Etype (P)) then
4254 Error_Attr_P ("prefix of attribute % cannot be limited");
4255 end if;
4257 -- Climb the parent chain to verify the location of the attribute and
4258 -- find the enclosing loop.
4260 Stmt := Attr;
4261 while Present (Stmt) loop
4263 -- Locate the corresponding enclosing pragma. Note that in the
4264 -- case of Assert[And_Cut] and Assume, we have already checked
4265 -- that the pragma appears in an appropriate loop location.
4267 if Nkind (Original_Node (Stmt)) = N_Pragma
4268 and then Nam_In (Pragma_Name (Original_Node (Stmt)),
4269 Name_Loop_Invariant,
4270 Name_Loop_Variant,
4271 Name_Assert,
4272 Name_Assert_And_Cut,
4273 Name_Assume)
4274 then
4275 Enclosing_Pragma := Original_Node (Stmt);
4277 -- Locate the enclosing loop (if any). Note that Ada 2012 array
4278 -- iteration may be expanded into several nested loops, we are
4279 -- interested in the outermost one which has the loop identifier.
4281 elsif Nkind (Stmt) = N_Loop_Statement
4282 and then Present (Identifier (Stmt))
4283 then
4284 Enclosing_Loop := Stmt;
4286 -- The original attribute reference may lack a loop name. Use
4287 -- the name of the enclosing loop because it is the related
4288 -- loop.
4290 if No (Loop_Id) then
4291 Loop_Id := Entity (Identifier (Enclosing_Loop));
4292 end if;
4294 exit;
4296 -- Prevent the search from going too far
4298 elsif Is_Body_Or_Package_Declaration (Stmt) then
4299 exit;
4300 end if;
4302 Stmt := Parent (Stmt);
4303 end loop;
4305 -- Loop_Entry must appear within a Loop_Assertion pragma (Assert,
4306 -- Assert_And_Cut, Assume count as loop assertion pragmas for this
4307 -- purpose if they appear in an appropriate location in a loop,
4308 -- which was already checked by the top level pragma circuit).
4310 if No (Enclosing_Pragma) then
4311 Error_Attr ("attribute% must appear within appropriate pragma", N);
4312 end if;
4314 -- A Loop_Entry that applies to a given loop statement must not
4315 -- appear within a body of accept statement, if this construct is
4316 -- itself enclosed by the given loop statement.
4318 for Index in reverse 0 .. Scope_Stack.Last loop
4319 Scop := Scope_Stack.Table (Index).Entity;
4321 if Ekind (Scop) = E_Loop and then Scop = Loop_Id then
4322 exit;
4323 elsif Ekind_In (Scop, E_Block, E_Loop, E_Return_Statement) then
4324 null;
4325 else
4326 Error_Attr
4327 ("attribute % cannot appear in body or accept statement", N);
4328 exit;
4329 end if;
4330 end loop;
4332 -- The prefix cannot mention entities declared within the related
4333 -- loop because they will not be visible once the prefix is moved
4334 -- outside the loop.
4336 Check_References_In_Prefix (Loop_Id);
4338 -- The prefix must denote a static entity if the pragma does not
4339 -- apply to the innermost enclosing loop statement, or if it appears
4340 -- within a potentially unevaluated epxression.
4342 if Is_Entity_Name (P)
4343 or else Nkind (Parent (P)) = N_Object_Renaming_Declaration
4344 then
4345 null;
4347 elsif Present (Enclosing_Loop)
4348 and then Entity (Identifier (Enclosing_Loop)) /= Loop_Id
4349 then
4350 Error_Attr_P
4351 ("prefix of attribute % that applies to outer loop must denote "
4352 & "an entity");
4354 elsif Is_Potentially_Unevaluated (P) then
4355 Uneval_Old_Msg;
4356 end if;
4358 -- Replace the Loop_Entry attribute reference by its prefix if the
4359 -- related pragma is ignored. This transformation is OK with respect
4360 -- to typing because Loop_Entry's type is that of its prefix. This
4361 -- early transformation also avoids the generation of a useless loop
4362 -- entry constant.
4364 if Is_Ignored (Enclosing_Pragma) then
4365 Rewrite (N, Relocate_Node (P));
4366 end if;
4368 Preanalyze_And_Resolve (P);
4369 end Loop_Entry;
4371 -------------
4372 -- Machine --
4373 -------------
4375 when Attribute_Machine =>
4376 Check_Floating_Point_Type_1;
4377 Set_Etype (N, P_Base_Type);
4378 Resolve (E1, P_Base_Type);
4380 ------------------
4381 -- Machine_Emax --
4382 ------------------
4384 when Attribute_Machine_Emax =>
4385 Check_Floating_Point_Type_0;
4386 Set_Etype (N, Universal_Integer);
4388 ------------------
4389 -- Machine_Emin --
4390 ------------------
4392 when Attribute_Machine_Emin =>
4393 Check_Floating_Point_Type_0;
4394 Set_Etype (N, Universal_Integer);
4396 ----------------------
4397 -- Machine_Mantissa --
4398 ----------------------
4400 when Attribute_Machine_Mantissa =>
4401 Check_Floating_Point_Type_0;
4402 Set_Etype (N, Universal_Integer);
4404 -----------------------
4405 -- Machine_Overflows --
4406 -----------------------
4408 when Attribute_Machine_Overflows =>
4409 Check_Real_Type;
4410 Check_E0;
4411 Set_Etype (N, Standard_Boolean);
4413 -------------------
4414 -- Machine_Radix --
4415 -------------------
4417 when Attribute_Machine_Radix =>
4418 Check_Real_Type;
4419 Check_E0;
4420 Set_Etype (N, Universal_Integer);
4422 ----------------------
4423 -- Machine_Rounding --
4424 ----------------------
4426 when Attribute_Machine_Rounding =>
4427 Check_Floating_Point_Type_1;
4428 Set_Etype (N, P_Base_Type);
4429 Resolve (E1, P_Base_Type);
4431 --------------------
4432 -- Machine_Rounds --
4433 --------------------
4435 when Attribute_Machine_Rounds =>
4436 Check_Real_Type;
4437 Check_E0;
4438 Set_Etype (N, Standard_Boolean);
4440 ------------------
4441 -- Machine_Size --
4442 ------------------
4444 when Attribute_Machine_Size =>
4445 Check_E0;
4446 Check_Type;
4447 Check_Not_Incomplete_Type;
4448 Set_Etype (N, Universal_Integer);
4450 --------------
4451 -- Mantissa --
4452 --------------
4454 when Attribute_Mantissa =>
4455 Check_E0;
4456 Check_Real_Type;
4457 Set_Etype (N, Universal_Integer);
4459 ---------
4460 -- Max --
4461 ---------
4463 when Attribute_Max =>
4464 Min_Max;
4466 ----------------------------------
4467 -- Max_Alignment_For_Allocation --
4468 ----------------------------------
4470 when Attribute_Max_Size_In_Storage_Elements =>
4471 Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
4473 ----------------------------------
4474 -- Max_Size_In_Storage_Elements --
4475 ----------------------------------
4477 when Attribute_Max_Alignment_For_Allocation =>
4478 Max_Alignment_For_Allocation_Max_Size_In_Storage_Elements;
4480 -----------------------
4481 -- Maximum_Alignment --
4482 -----------------------
4484 when Attribute_Maximum_Alignment =>
4485 Standard_Attribute (Ttypes.Maximum_Alignment);
4487 --------------------
4488 -- Mechanism_Code --
4489 --------------------
4491 when Attribute_Mechanism_Code =>
4492 if not Is_Entity_Name (P)
4493 or else not Is_Subprogram (Entity (P))
4494 then
4495 Error_Attr_P ("prefix of % attribute must be subprogram");
4496 end if;
4498 Check_Either_E0_Or_E1;
4500 if Present (E1) then
4501 Resolve (E1, Any_Integer);
4502 Set_Etype (E1, Standard_Integer);
4504 if not Is_OK_Static_Expression (E1) then
4505 Flag_Non_Static_Expr
4506 ("expression for parameter number must be static!", E1);
4507 Error_Attr;
4509 elsif UI_To_Int (Intval (E1)) > Number_Formals (Entity (P))
4510 or else UI_To_Int (Intval (E1)) < 0
4511 then
4512 Error_Attr ("invalid parameter number for % attribute", E1);
4513 end if;
4514 end if;
4516 Set_Etype (N, Universal_Integer);
4518 ---------
4519 -- Min --
4520 ---------
4522 when Attribute_Min =>
4523 Min_Max;
4525 ---------
4526 -- Mod --
4527 ---------
4529 when Attribute_Mod =>
4531 -- Note: this attribute is only allowed in Ada 2005 mode, but
4532 -- we do not need to test that here, since Mod is only recognized
4533 -- as an attribute name in Ada 2005 mode during the parse.
4535 Check_E1;
4536 Check_Modular_Integer_Type;
4537 Resolve (E1, Any_Integer);
4538 Set_Etype (N, P_Base_Type);
4540 -----------
4541 -- Model --
4542 -----------
4544 when Attribute_Model =>
4545 Check_Floating_Point_Type_1;
4546 Set_Etype (N, P_Base_Type);
4547 Resolve (E1, P_Base_Type);
4549 ----------------
4550 -- Model_Emin --
4551 ----------------
4553 when Attribute_Model_Emin =>
4554 Check_Floating_Point_Type_0;
4555 Set_Etype (N, Universal_Integer);
4557 -------------------
4558 -- Model_Epsilon --
4559 -------------------
4561 when Attribute_Model_Epsilon =>
4562 Check_Floating_Point_Type_0;
4563 Set_Etype (N, Universal_Real);
4565 --------------------
4566 -- Model_Mantissa --
4567 --------------------
4569 when Attribute_Model_Mantissa =>
4570 Check_Floating_Point_Type_0;
4571 Set_Etype (N, Universal_Integer);
4573 -----------------
4574 -- Model_Small --
4575 -----------------
4577 when Attribute_Model_Small =>
4578 Check_Floating_Point_Type_0;
4579 Set_Etype (N, Universal_Real);
4581 -------------
4582 -- Modulus --
4583 -------------
4585 when Attribute_Modulus =>
4586 Check_E0;
4587 Check_Modular_Integer_Type;
4588 Set_Etype (N, Universal_Integer);
4590 --------------------
4591 -- Null_Parameter --
4592 --------------------
4594 when Attribute_Null_Parameter => Null_Parameter : declare
4595 Parnt : constant Node_Id := Parent (N);
4596 GParnt : constant Node_Id := Parent (Parnt);
4598 procedure Bad_Null_Parameter (Msg : String);
4599 -- Used if bad Null parameter attribute node is found. Issues
4600 -- given error message, and also sets the type to Any_Type to
4601 -- avoid blowups later on from dealing with a junk node.
4603 procedure Must_Be_Imported (Proc_Ent : Entity_Id);
4604 -- Called to check that Proc_Ent is imported subprogram
4606 ------------------------
4607 -- Bad_Null_Parameter --
4608 ------------------------
4610 procedure Bad_Null_Parameter (Msg : String) is
4611 begin
4612 Error_Msg_N (Msg, N);
4613 Set_Etype (N, Any_Type);
4614 end Bad_Null_Parameter;
4616 ----------------------
4617 -- Must_Be_Imported --
4618 ----------------------
4620 procedure Must_Be_Imported (Proc_Ent : Entity_Id) is
4621 Pent : constant Entity_Id := Ultimate_Alias (Proc_Ent);
4623 begin
4624 -- Ignore check if procedure not frozen yet (we will get
4625 -- another chance when the default parameter is reanalyzed)
4627 if not Is_Frozen (Pent) then
4628 return;
4630 elsif not Is_Imported (Pent) then
4631 Bad_Null_Parameter
4632 ("Null_Parameter can only be used with imported subprogram");
4634 else
4635 return;
4636 end if;
4637 end Must_Be_Imported;
4639 -- Start of processing for Null_Parameter
4641 begin
4642 Check_Type;
4643 Check_E0;
4644 Set_Etype (N, P_Type);
4646 -- Case of attribute used as default expression
4648 if Nkind (Parnt) = N_Parameter_Specification then
4649 Must_Be_Imported (Defining_Entity (GParnt));
4651 -- Case of attribute used as actual for subprogram (positional)
4653 elsif Nkind (Parnt) in N_Subprogram_Call
4654 and then Is_Entity_Name (Name (Parnt))
4655 then
4656 Must_Be_Imported (Entity (Name (Parnt)));
4658 -- Case of attribute used as actual for subprogram (named)
4660 elsif Nkind (Parnt) = N_Parameter_Association
4661 and then Nkind (GParnt) in N_Subprogram_Call
4662 and then Is_Entity_Name (Name (GParnt))
4663 then
4664 Must_Be_Imported (Entity (Name (GParnt)));
4666 -- Not an allowed case
4668 else
4669 Bad_Null_Parameter
4670 ("Null_Parameter must be actual or default parameter");
4671 end if;
4672 end Null_Parameter;
4674 -----------------
4675 -- Object_Size --
4676 -----------------
4678 when Attribute_Object_Size =>
4679 Check_E0;
4680 Check_Type;
4681 Check_Not_Incomplete_Type;
4682 Set_Etype (N, Universal_Integer);
4684 ---------
4685 -- Old --
4686 ---------
4688 when Attribute_Old => Old : declare
4689 procedure Check_References_In_Prefix (Subp_Id : Entity_Id);
4690 -- Inspect the contents of the prefix and detect illegal uses of a
4691 -- nested 'Old, attribute 'Result or a use of an entity declared in
4692 -- the related postcondition expression. Subp_Id is the subprogram to
4693 -- which the related postcondition applies.
4695 --------------------------------
4696 -- Check_References_In_Prefix --
4697 --------------------------------
4699 procedure Check_References_In_Prefix (Subp_Id : Entity_Id) is
4700 function Check_Reference (Nod : Node_Id) return Traverse_Result;
4701 -- Detect attribute 'Old, attribute 'Result of a use of an entity
4702 -- and perform the appropriate semantic check.
4704 ---------------------
4705 -- Check_Reference --
4706 ---------------------
4708 function Check_Reference (Nod : Node_Id) return Traverse_Result is
4709 begin
4710 -- Attributes 'Old and 'Result cannot appear in the prefix of
4711 -- another attribute 'Old.
4713 if Nkind (Nod) = N_Attribute_Reference
4714 and then Nam_In (Attribute_Name (Nod), Name_Old,
4715 Name_Result)
4716 then
4717 Error_Msg_Name_1 := Attribute_Name (Nod);
4718 Error_Msg_Name_2 := Name_Old;
4719 Error_Msg_N
4720 ("attribute % cannot appear in the prefix of attribute %",
4721 Nod);
4722 return Abandon;
4724 -- Entities mentioned within the prefix of attribute 'Old must
4725 -- be global to the related postcondition. If this is not the
4726 -- case, then the scope of the local entity is nested within
4727 -- that of the subprogram.
4729 elsif Is_Entity_Name (Nod)
4730 and then Present (Entity (Nod))
4731 and then Scope_Within (Scope (Entity (Nod)), Subp_Id)
4732 then
4733 Error_Attr
4734 ("prefix of attribute % cannot reference local entities",
4735 Nod);
4736 return Abandon;
4738 -- Otherwise keep inspecting the prefix
4740 else
4741 return OK;
4742 end if;
4743 end Check_Reference;
4745 procedure Check_References is new Traverse_Proc (Check_Reference);
4747 -- Start of processing for Check_References_In_Prefix
4749 begin
4750 Check_References (P);
4751 end Check_References_In_Prefix;
4753 -- Local variables
4755 Legal : Boolean;
4756 Pref_Id : Entity_Id;
4757 Pref_Typ : Entity_Id;
4758 Spec_Id : Entity_Id;
4760 -- Start of processing for Old
4762 begin
4763 -- The attribute reference is a primary. If any expressions follow,
4764 -- then the attribute reference is an indexable object. Transform the
4765 -- attribute into an indexed component and analyze it.
4767 if Present (E1) then
4768 Rewrite (N,
4769 Make_Indexed_Component (Loc,
4770 Prefix =>
4771 Make_Attribute_Reference (Loc,
4772 Prefix => Relocate_Node (P),
4773 Attribute_Name => Name_Old),
4774 Expressions => Expressions (N)));
4775 Analyze (N);
4776 return;
4777 end if;
4779 Analyze_Attribute_Old_Result (Legal, Spec_Id);
4781 -- The aspect or pragma where attribute 'Old resides should be
4782 -- associated with a subprogram declaration or a body. If this is not
4783 -- the case, then the aspect or pragma is illegal. Return as analysis
4784 -- cannot be carried out.
4786 if not Legal then
4787 return;
4788 end if;
4790 -- The prefix must be preanalyzed as the full analysis will take
4791 -- place during expansion.
4793 Preanalyze_And_Resolve (P);
4795 -- Ensure that the prefix does not contain attributes 'Old or 'Result
4797 Check_References_In_Prefix (Spec_Id);
4799 -- Set the type of the attribute now to prevent cascaded errors
4801 Pref_Typ := Etype (P);
4802 Set_Etype (N, Pref_Typ);
4804 -- Legality checks
4806 if Is_Limited_Type (Pref_Typ) then
4807 Error_Attr ("attribute % cannot apply to limited objects", P);
4808 end if;
4810 -- The prefix is a simple name
4812 if Is_Entity_Name (P) and then Present (Entity (P)) then
4813 Pref_Id := Entity (P);
4815 -- Emit a warning when the prefix is a constant. Note that the use
4816 -- of Error_Attr would reset the type of N to Any_Type even though
4817 -- this is a warning. Use Error_Msg_XXX instead.
4819 if Is_Constant_Object (Pref_Id) then
4820 Error_Msg_Name_1 := Name_Old;
4821 Error_Msg_N
4822 ("??attribute % applied to constant has no effect", P);
4823 end if;
4825 -- Otherwise the prefix is not a simple name
4827 else
4828 -- Ensure that the prefix of attribute 'Old is an entity when it
4829 -- is potentially unevaluated (6.1.1 (27/3)).
4831 if Is_Potentially_Unevaluated (N) then
4832 Uneval_Old_Msg;
4834 -- Detect a possible infinite recursion when the prefix denotes
4835 -- the related function.
4837 -- function Func (...) return ...
4838 -- with Post => Func'Old ...;
4840 elsif Nkind (P) = N_Function_Call then
4841 Pref_Id := Entity (Name (P));
4843 if Ekind_In (Spec_Id, E_Function, E_Generic_Function)
4844 and then Pref_Id = Spec_Id
4845 then
4846 Error_Msg_Warn := SPARK_Mode /= On;
4847 Error_Msg_N ("!possible infinite recursion<<", P);
4848 Error_Msg_N ("\!??Storage_Error ]<<", P);
4849 end if;
4850 end if;
4852 -- The prefix of attribute 'Old may refer to a component of a
4853 -- formal parameter. In this case its expansion may generate
4854 -- actual subtypes that are referenced in an inner context and
4855 -- that must be elaborated within the subprogram itself. If the
4856 -- prefix includes a function call, it may involve finalization
4857 -- actions that should be inserted when the attribute has been
4858 -- rewritten as a declaration. Create a declaration for the prefix
4859 -- and insert it at the start of the enclosing subprogram. This is
4860 -- an expansion activity that has to be performed now to prevent
4861 -- out-of-order issues.
4863 -- This expansion is both harmful and not needed in SPARK mode,
4864 -- since the formal verification backend relies on the types of
4865 -- nodes (hence is not robust w.r.t. a change to base type here),
4866 -- and does not suffer from the out-of-order issue described
4867 -- above. Thus, this expansion is skipped in SPARK mode.
4869 if not GNATprove_Mode then
4870 Pref_Typ := Base_Type (Pref_Typ);
4871 Set_Etype (N, Pref_Typ);
4872 Set_Etype (P, Pref_Typ);
4874 Analyze_Dimension (N);
4875 Expand (N);
4876 end if;
4877 end if;
4878 end Old;
4880 ----------------------
4881 -- Overlaps_Storage --
4882 ----------------------
4884 when Attribute_Overlaps_Storage =>
4885 Check_E1;
4887 -- Both arguments must be objects of any type
4889 Analyze_And_Resolve (P);
4890 Analyze_And_Resolve (E1);
4891 Check_Object_Reference (P);
4892 Check_Object_Reference (E1);
4893 Set_Etype (N, Standard_Boolean);
4895 ------------
4896 -- Output --
4897 ------------
4899 when Attribute_Output =>
4900 Check_E2;
4901 Check_Stream_Attribute (TSS_Stream_Output);
4902 Set_Etype (N, Standard_Void_Type);
4903 Resolve (N, Standard_Void_Type);
4905 ------------------
4906 -- Partition_ID --
4907 ------------------
4909 when Attribute_Partition_ID => Partition_Id :
4910 begin
4911 Check_E0;
4913 if P_Type /= Any_Type then
4914 if not Is_Library_Level_Entity (Entity (P)) then
4915 Error_Attr_P
4916 ("prefix of % attribute must be library-level entity");
4918 -- The defining entity of prefix should not be declared inside a
4919 -- Pure unit. RM E.1(8). Is_Pure was set during declaration.
4921 elsif Is_Entity_Name (P)
4922 and then Is_Pure (Entity (P))
4923 then
4924 Error_Attr_P ("prefix of% attribute must not be declared pure");
4925 end if;
4926 end if;
4928 Set_Etype (N, Universal_Integer);
4929 end Partition_Id;
4931 -------------------------
4932 -- Passed_By_Reference --
4933 -------------------------
4935 when Attribute_Passed_By_Reference =>
4936 Check_E0;
4937 Check_Type;
4938 Set_Etype (N, Standard_Boolean);
4940 ------------------
4941 -- Pool_Address --
4942 ------------------
4944 when Attribute_Pool_Address =>
4945 Check_E0;
4946 Set_Etype (N, RTE (RE_Address));
4948 ---------
4949 -- Pos --
4950 ---------
4952 when Attribute_Pos =>
4953 Check_Discrete_Type;
4954 Check_E1;
4956 if Is_Boolean_Type (P_Type) then
4957 Error_Msg_Name_1 := Aname;
4958 Error_Msg_Name_2 := Chars (P_Type);
4959 Check_SPARK_05_Restriction
4960 ("attribute% is not allowed for type%", P);
4961 end if;
4963 Resolve (E1, P_Base_Type);
4964 Set_Etype (N, Universal_Integer);
4966 --------------
4967 -- Position --
4968 --------------
4970 when Attribute_Position =>
4971 Check_Component;
4972 Set_Etype (N, Universal_Integer);
4974 ----------
4975 -- Pred --
4976 ----------
4978 when Attribute_Pred =>
4979 Check_Scalar_Type;
4980 Check_E1;
4982 if Is_Real_Type (P_Type) or else Is_Boolean_Type (P_Type) then
4983 Error_Msg_Name_1 := Aname;
4984 Error_Msg_Name_2 := Chars (P_Type);
4985 Check_SPARK_05_Restriction
4986 ("attribute% is not allowed for type%", P);
4987 end if;
4989 Resolve (E1, P_Base_Type);
4990 Set_Etype (N, P_Base_Type);
4992 -- Since Pred works on the base type, we normally do no check for the
4993 -- floating-point case, since the base type is unconstrained. But we
4994 -- make an exception in Check_Float_Overflow mode.
4996 if Is_Floating_Point_Type (P_Type) then
4997 if not Range_Checks_Suppressed (P_Base_Type) then
4998 Set_Do_Range_Check (E1);
4999 end if;
5001 -- If not modular type, test for overflow check required
5003 else
5004 if not Is_Modular_Integer_Type (P_Type)
5005 and then not Range_Checks_Suppressed (P_Base_Type)
5006 then
5007 Enable_Range_Check (E1);
5008 end if;
5009 end if;
5011 --------------
5012 -- Priority --
5013 --------------
5015 -- Ada 2005 (AI-327): Dynamic ceiling priorities
5017 when Attribute_Priority =>
5018 if Ada_Version < Ada_2005 then
5019 Error_Attr ("% attribute is allowed only in Ada 2005 mode", P);
5020 end if;
5022 Check_E0;
5024 -- The prefix must be a protected object (AARM D.5.2 (2/2))
5026 Analyze (P);
5028 if Is_Protected_Type (Etype (P))
5029 or else (Is_Access_Type (Etype (P))
5030 and then Is_Protected_Type (Designated_Type (Etype (P))))
5031 then
5032 Resolve (P, Etype (P));
5033 else
5034 Error_Attr_P ("prefix of % attribute must be a protected object");
5035 end if;
5037 Set_Etype (N, Standard_Integer);
5039 -- Must be called from within a protected procedure or entry of the
5040 -- protected object.
5042 declare
5043 S : Entity_Id;
5045 begin
5046 S := Current_Scope;
5047 while S /= Etype (P)
5048 and then S /= Standard_Standard
5049 loop
5050 S := Scope (S);
5051 end loop;
5053 if S = Standard_Standard then
5054 Error_Attr ("the attribute % is only allowed inside protected "
5055 & "operations", P);
5056 end if;
5057 end;
5059 Validate_Non_Static_Attribute_Function_Call;
5061 -----------
5062 -- Range --
5063 -----------
5065 when Attribute_Range =>
5066 Check_Array_Or_Scalar_Type;
5067 Bad_Attribute_For_Predicate;
5069 if Ada_Version = Ada_83
5070 and then Is_Scalar_Type (P_Type)
5071 and then Comes_From_Source (N)
5072 then
5073 Error_Attr
5074 ("(Ada 83) % attribute not allowed for scalar type", P);
5075 end if;
5077 ------------
5078 -- Result --
5079 ------------
5081 when Attribute_Result => Result : declare
5082 function Denote_Same_Function
5083 (Pref_Id : Entity_Id;
5084 Spec_Id : Entity_Id) return Boolean;
5085 -- Determine whether the entity of the prefix Pref_Id denotes the
5086 -- same entity as that of the related subprogram Spec_Id.
5088 --------------------------
5089 -- Denote_Same_Function --
5090 --------------------------
5092 function Denote_Same_Function
5093 (Pref_Id : Entity_Id;
5094 Spec_Id : Entity_Id) return Boolean
5096 Subp_Spec : constant Node_Id := Parent (Spec_Id);
5098 begin
5099 -- The prefix denotes the related subprogram
5101 if Pref_Id = Spec_Id then
5102 return True;
5104 -- Account for a special case when attribute 'Result appears in
5105 -- the postcondition of a generic function.
5107 -- generic
5108 -- function Gen_Func return ...
5109 -- with Post => Gen_Func'Result ...;
5111 -- When the generic function is instantiated, the Chars field of
5112 -- the instantiated prefix still denotes the name of the generic
5113 -- function. Note that any preemptive transformation is impossible
5114 -- without a proper analysis. The structure of the wrapper package
5115 -- is as follows:
5117 -- package Anon_Gen_Pack is
5118 -- <subtypes and renamings>
5119 -- function Subp_Decl return ...; -- (!)
5120 -- pragma Postcondition (Gen_Func'Result ...); -- (!)
5121 -- function Gen_Func ... renames Subp_Decl;
5122 -- end Anon_Gen_Pack;
5124 elsif Nkind (Subp_Spec) = N_Function_Specification
5125 and then Present (Generic_Parent (Subp_Spec))
5126 and then Ekind (Pref_Id) = E_Function
5127 and then Present (Alias (Pref_Id))
5128 and then Alias (Pref_Id) = Spec_Id
5129 then
5130 return True;
5132 -- Otherwise the prefix does not denote the related subprogram
5134 else
5135 return False;
5136 end if;
5137 end Denote_Same_Function;
5139 -- Local variables
5141 Legal : Boolean;
5142 Pref_Id : Entity_Id;
5143 Spec_Id : Entity_Id;
5145 -- Start of processing for Result
5147 begin
5148 -- The attribute reference is a primary. If any expressions follow,
5149 -- then the attribute reference is an indexable object. Transform the
5150 -- attribute into an indexed component and analyze it.
5152 if Present (E1) then
5153 Rewrite (N,
5154 Make_Indexed_Component (Loc,
5155 Prefix =>
5156 Make_Attribute_Reference (Loc,
5157 Prefix => Relocate_Node (P),
5158 Attribute_Name => Name_Result),
5159 Expressions => Expressions (N)));
5160 Analyze (N);
5161 return;
5162 end if;
5164 Analyze_Attribute_Old_Result (Legal, Spec_Id);
5166 -- The aspect or pragma where attribute 'Result resides should be
5167 -- associated with a subprogram declaration or a body. If this is not
5168 -- the case, then the aspect or pragma is illegal. Return as analysis
5169 -- cannot be carried out.
5171 if not Legal then
5172 return;
5173 end if;
5175 -- Attribute 'Result is part of a _Postconditions procedure. There is
5176 -- no need to perform the semantic checks below as they were already
5177 -- verified when the attribute was analyzed in its original context.
5178 -- Instead, rewrite the attribute as a reference to formal parameter
5179 -- _Result of the _Postconditions procedure.
5181 if Chars (Spec_Id) = Name_uPostconditions then
5182 Rewrite (N, Make_Identifier (Loc, Name_uResult));
5184 -- The type of formal parameter _Result is that of the function
5185 -- encapsulating the _Postconditions procedure. Resolution must
5186 -- be carried out against the function return type.
5188 Analyze_And_Resolve (N, Etype (Scope (Spec_Id)));
5190 -- Otherwise attribute 'Result appears in its original context and
5191 -- all semantic checks should be carried out.
5193 else
5194 -- Verify the legality of the prefix. It must denotes the entity
5195 -- of the related [generic] function.
5197 if Is_Entity_Name (P) then
5198 Pref_Id := Entity (P);
5200 if Ekind_In (Pref_Id, E_Function, E_Generic_Function) then
5201 if Denote_Same_Function (Pref_Id, Spec_Id) then
5202 Set_Etype (N, Etype (Spec_Id));
5204 -- Otherwise the prefix denotes some unrelated function
5206 else
5207 Error_Msg_Name_2 := Chars (Spec_Id);
5208 Error_Attr
5209 ("incorrect prefix for attribute %, expected %", P);
5210 end if;
5212 -- Otherwise the prefix denotes some other form of subprogram
5213 -- entity.
5215 else
5216 Error_Attr
5217 ("attribute % can only appear in postcondition of "
5218 & "function", P);
5219 end if;
5221 -- Otherwise the prefix is illegal
5223 else
5224 Error_Msg_Name_2 := Chars (Spec_Id);
5225 Error_Attr ("incorrect prefix for attribute %, expected %", P);
5226 end if;
5227 end if;
5228 end Result;
5230 ------------------
5231 -- Range_Length --
5232 ------------------
5234 when Attribute_Range_Length =>
5235 Check_E0;
5236 Check_Discrete_Type;
5237 Set_Etype (N, Universal_Integer);
5239 ----------
5240 -- Read --
5241 ----------
5243 when Attribute_Read =>
5244 Check_E2;
5245 Check_Stream_Attribute (TSS_Stream_Read);
5246 Set_Etype (N, Standard_Void_Type);
5247 Resolve (N, Standard_Void_Type);
5248 Note_Possible_Modification (E2, Sure => True);
5250 ---------
5251 -- Ref --
5252 ---------
5254 when Attribute_Ref =>
5255 Check_E1;
5256 Analyze (P);
5258 if Nkind (P) /= N_Expanded_Name
5259 or else not Is_RTE (P_Type, RE_Address)
5260 then
5261 Error_Attr_P ("prefix of % attribute must be System.Address");
5262 end if;
5264 Analyze_And_Resolve (E1, Any_Integer);
5265 Set_Etype (N, RTE (RE_Address));
5267 ---------------
5268 -- Remainder --
5269 ---------------
5271 when Attribute_Remainder =>
5272 Check_Floating_Point_Type_2;
5273 Set_Etype (N, P_Base_Type);
5274 Resolve (E1, P_Base_Type);
5275 Resolve (E2, P_Base_Type);
5277 ---------------------
5278 -- Restriction_Set --
5279 ---------------------
5281 when Attribute_Restriction_Set => Restriction_Set : declare
5282 R : Restriction_Id;
5283 U : Node_Id;
5284 Unam : Unit_Name_Type;
5286 begin
5287 Check_E1;
5288 Analyze (P);
5289 Check_System_Prefix;
5291 -- No_Dependence case
5293 if Nkind (E1) = N_Parameter_Association then
5294 pragma Assert (Chars (Selector_Name (E1)) = Name_No_Dependence);
5295 U := Explicit_Actual_Parameter (E1);
5297 if not OK_No_Dependence_Unit_Name (U) then
5298 Set_Boolean_Result (N, False);
5299 Error_Attr;
5300 end if;
5302 -- See if there is an entry already in the table. That's the
5303 -- case in which we can return True.
5305 for J in No_Dependences.First .. No_Dependences.Last loop
5306 if Designate_Same_Unit (U, No_Dependences.Table (J).Unit)
5307 and then No_Dependences.Table (J).Warn = False
5308 then
5309 Set_Boolean_Result (N, True);
5310 return;
5311 end if;
5312 end loop;
5314 -- If not in the No_Dependence table, result is False
5316 Set_Boolean_Result (N, False);
5318 -- In this case, we must ensure that the binder will reject any
5319 -- other unit in the partition that sets No_Dependence for this
5320 -- unit. We do that by making an entry in the special table kept
5321 -- for this purpose (if the entry is not there already).
5323 Unam := Get_Spec_Name (Get_Unit_Name (U));
5325 for J in Restriction_Set_Dependences.First ..
5326 Restriction_Set_Dependences.Last
5327 loop
5328 if Restriction_Set_Dependences.Table (J) = Unam then
5329 return;
5330 end if;
5331 end loop;
5333 Restriction_Set_Dependences.Append (Unam);
5335 -- Normal restriction case
5337 else
5338 if Nkind (E1) /= N_Identifier then
5339 Set_Boolean_Result (N, False);
5340 Error_Attr ("attribute % requires restriction identifier", E1);
5342 else
5343 R := Get_Restriction_Id (Process_Restriction_Synonyms (E1));
5345 if R = Not_A_Restriction_Id then
5346 Set_Boolean_Result (N, False);
5347 Error_Msg_Node_1 := E1;
5348 Error_Attr ("invalid restriction identifier &", E1);
5350 elsif R not in Partition_Boolean_Restrictions then
5351 Set_Boolean_Result (N, False);
5352 Error_Msg_Node_1 := E1;
5353 Error_Attr
5354 ("& is not a boolean partition-wide restriction", E1);
5355 end if;
5357 if Restriction_Active (R) then
5358 Set_Boolean_Result (N, True);
5359 else
5360 Check_Restriction (R, N);
5361 Set_Boolean_Result (N, False);
5362 end if;
5363 end if;
5364 end if;
5365 end Restriction_Set;
5367 -----------
5368 -- Round --
5369 -----------
5371 when Attribute_Round =>
5372 Check_E1;
5373 Check_Decimal_Fixed_Point_Type;
5374 Set_Etype (N, P_Base_Type);
5376 -- Because the context is universal_real (3.5.10(12)) it is a
5377 -- legal context for a universal fixed expression. This is the
5378 -- only attribute whose functional description involves U_R.
5380 if Etype (E1) = Universal_Fixed then
5381 declare
5382 Conv : constant Node_Id := Make_Type_Conversion (Loc,
5383 Subtype_Mark => New_Occurrence_Of (Universal_Real, Loc),
5384 Expression => Relocate_Node (E1));
5386 begin
5387 Rewrite (E1, Conv);
5388 Analyze (E1);
5389 end;
5390 end if;
5392 Resolve (E1, Any_Real);
5394 --------------
5395 -- Rounding --
5396 --------------
5398 when Attribute_Rounding =>
5399 Check_Floating_Point_Type_1;
5400 Set_Etype (N, P_Base_Type);
5401 Resolve (E1, P_Base_Type);
5403 ---------------
5404 -- Safe_Emax --
5405 ---------------
5407 when Attribute_Safe_Emax =>
5408 Check_Floating_Point_Type_0;
5409 Set_Etype (N, Universal_Integer);
5411 ----------------
5412 -- Safe_First --
5413 ----------------
5415 when Attribute_Safe_First =>
5416 Check_Floating_Point_Type_0;
5417 Set_Etype (N, Universal_Real);
5419 ----------------
5420 -- Safe_Large --
5421 ----------------
5423 when Attribute_Safe_Large =>
5424 Check_E0;
5425 Check_Real_Type;
5426 Set_Etype (N, Universal_Real);
5428 ---------------
5429 -- Safe_Last --
5430 ---------------
5432 when Attribute_Safe_Last =>
5433 Check_Floating_Point_Type_0;
5434 Set_Etype (N, Universal_Real);
5436 ----------------
5437 -- Safe_Small --
5438 ----------------
5440 when Attribute_Safe_Small =>
5441 Check_E0;
5442 Check_Real_Type;
5443 Set_Etype (N, Universal_Real);
5445 --------------------------
5446 -- Scalar_Storage_Order --
5447 --------------------------
5449 when Attribute_Scalar_Storage_Order => Scalar_Storage_Order :
5450 declare
5451 Ent : Entity_Id := Empty;
5453 begin
5454 Check_E0;
5455 Check_Type;
5457 if not (Is_Record_Type (P_Type) or else Is_Array_Type (P_Type)) then
5459 -- In GNAT mode, the attribute applies to generic types as well
5460 -- as composite types, and for non-composite types always returns
5461 -- the default bit order for the target.
5463 if not (GNAT_Mode and then Is_Generic_Type (P_Type))
5464 and then not In_Instance
5465 then
5466 Error_Attr_P
5467 ("prefix of % attribute must be record or array type");
5469 elsif not Is_Generic_Type (P_Type) then
5470 if Bytes_Big_Endian then
5471 Ent := RTE (RE_High_Order_First);
5472 else
5473 Ent := RTE (RE_Low_Order_First);
5474 end if;
5475 end if;
5477 elsif Bytes_Big_Endian xor Reverse_Storage_Order (P_Type) then
5478 Ent := RTE (RE_High_Order_First);
5480 else
5481 Ent := RTE (RE_Low_Order_First);
5482 end if;
5484 if Present (Ent) then
5485 Rewrite (N, New_Occurrence_Of (Ent, Loc));
5486 end if;
5488 Set_Etype (N, RTE (RE_Bit_Order));
5489 Resolve (N);
5491 -- Reset incorrect indication of staticness
5493 Set_Is_Static_Expression (N, False);
5494 end Scalar_Storage_Order;
5496 -----------
5497 -- Scale --
5498 -----------
5500 when Attribute_Scale =>
5501 Check_E0;
5502 Check_Decimal_Fixed_Point_Type;
5503 Set_Etype (N, Universal_Integer);
5505 -------------
5506 -- Scaling --
5507 -------------
5509 when Attribute_Scaling =>
5510 Check_Floating_Point_Type_2;
5511 Set_Etype (N, P_Base_Type);
5512 Resolve (E1, P_Base_Type);
5514 ------------------
5515 -- Signed_Zeros --
5516 ------------------
5518 when Attribute_Signed_Zeros =>
5519 Check_Floating_Point_Type_0;
5520 Set_Etype (N, Standard_Boolean);
5522 ----------
5523 -- Size --
5524 ----------
5526 when Attribute_Size | Attribute_VADS_Size => Size :
5527 begin
5528 Check_E0;
5530 -- If prefix is parameterless function call, rewrite and resolve
5531 -- as such.
5533 if Is_Entity_Name (P)
5534 and then Ekind (Entity (P)) = E_Function
5535 then
5536 Resolve (P);
5538 -- Similar processing for a protected function call
5540 elsif Nkind (P) = N_Selected_Component
5541 and then Ekind (Entity (Selector_Name (P))) = E_Function
5542 then
5543 Resolve (P);
5544 end if;
5546 if Is_Object_Reference (P) then
5547 Check_Object_Reference (P);
5549 elsif Is_Entity_Name (P)
5550 and then (Is_Type (Entity (P))
5551 or else Ekind (Entity (P)) = E_Enumeration_Literal)
5552 then
5553 null;
5555 elsif Nkind (P) = N_Type_Conversion
5556 and then not Comes_From_Source (P)
5557 then
5558 null;
5560 -- Some other compilers allow dubious use of X'???'Size
5562 elsif Relaxed_RM_Semantics
5563 and then Nkind (P) = N_Attribute_Reference
5564 then
5565 null;
5567 else
5568 Error_Attr_P ("invalid prefix for % attribute");
5569 end if;
5571 Check_Not_Incomplete_Type;
5572 Check_Not_CPP_Type;
5573 Set_Etype (N, Universal_Integer);
5574 end Size;
5576 -----------
5577 -- Small --
5578 -----------
5580 when Attribute_Small =>
5581 Check_E0;
5582 Check_Real_Type;
5583 Set_Etype (N, Universal_Real);
5585 ------------------
5586 -- Storage_Pool --
5587 ------------------
5589 when Attribute_Storage_Pool |
5590 Attribute_Simple_Storage_Pool => Storage_Pool :
5591 begin
5592 Check_E0;
5594 if Is_Access_Type (P_Type) then
5595 if Ekind (P_Type) = E_Access_Subprogram_Type then
5596 Error_Attr_P
5597 ("cannot use % attribute for access-to-subprogram type");
5598 end if;
5600 -- Set appropriate entity
5602 if Present (Associated_Storage_Pool (Root_Type (P_Type))) then
5603 Set_Entity (N, Associated_Storage_Pool (Root_Type (P_Type)));
5604 else
5605 Set_Entity (N, RTE (RE_Global_Pool_Object));
5606 end if;
5608 if Attr_Id = Attribute_Storage_Pool then
5609 if Present (Get_Rep_Pragma (Etype (Entity (N)),
5610 Name_Simple_Storage_Pool_Type))
5611 then
5612 Error_Msg_Name_1 := Aname;
5613 Error_Msg_Warn := SPARK_Mode /= On;
5614 Error_Msg_N ("cannot use % attribute for type with simple "
5615 & "storage pool<<", N);
5616 Error_Msg_N ("\Program_Error [<<", N);
5618 Rewrite
5619 (N, Make_Raise_Program_Error
5620 (Sloc (N), Reason => PE_Explicit_Raise));
5621 end if;
5623 Set_Etype (N, Class_Wide_Type (RTE (RE_Root_Storage_Pool)));
5625 -- In the Simple_Storage_Pool case, verify that the pool entity is
5626 -- actually of a simple storage pool type, and set the attribute's
5627 -- type to the pool object's type.
5629 else
5630 if not Present (Get_Rep_Pragma (Etype (Entity (N)),
5631 Name_Simple_Storage_Pool_Type))
5632 then
5633 Error_Attr_P
5634 ("cannot use % attribute for type without simple " &
5635 "storage pool");
5636 end if;
5638 Set_Etype (N, Etype (Entity (N)));
5639 end if;
5641 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
5642 -- Storage_Pool since this attribute is not defined for such
5643 -- types (RM E.2.3(22)).
5645 Validate_Remote_Access_To_Class_Wide_Type (N);
5647 else
5648 Error_Attr_P ("prefix of % attribute must be access type");
5649 end if;
5650 end Storage_Pool;
5652 ------------------
5653 -- Storage_Size --
5654 ------------------
5656 when Attribute_Storage_Size => Storage_Size :
5657 begin
5658 Check_E0;
5660 if Is_Task_Type (P_Type) then
5661 Set_Etype (N, Universal_Integer);
5663 -- Use with tasks is an obsolescent feature
5665 Check_Restriction (No_Obsolescent_Features, P);
5667 elsif Is_Access_Type (P_Type) then
5668 if Ekind (P_Type) = E_Access_Subprogram_Type then
5669 Error_Attr_P
5670 ("cannot use % attribute for access-to-subprogram type");
5671 end if;
5673 if Is_Entity_Name (P)
5674 and then Is_Type (Entity (P))
5675 then
5676 Check_Type;
5677 Set_Etype (N, Universal_Integer);
5679 -- Validate_Remote_Access_To_Class_Wide_Type for attribute
5680 -- Storage_Size since this attribute is not defined for
5681 -- such types (RM E.2.3(22)).
5683 Validate_Remote_Access_To_Class_Wide_Type (N);
5685 -- The prefix is allowed to be an implicit dereference of an
5686 -- access value designating a task.
5688 else
5689 Check_Task_Prefix;
5690 Set_Etype (N, Universal_Integer);
5691 end if;
5693 else
5694 Error_Attr_P ("prefix of % attribute must be access or task type");
5695 end if;
5696 end Storage_Size;
5698 ------------------
5699 -- Storage_Unit --
5700 ------------------
5702 when Attribute_Storage_Unit =>
5703 Standard_Attribute (Ttypes.System_Storage_Unit);
5705 -----------------
5706 -- Stream_Size --
5707 -----------------
5709 when Attribute_Stream_Size =>
5710 Check_E0;
5711 Check_Type;
5713 if Is_Entity_Name (P)
5714 and then Is_Elementary_Type (Entity (P))
5715 then
5716 Set_Etype (N, Universal_Integer);
5717 else
5718 Error_Attr_P ("invalid prefix for % attribute");
5719 end if;
5721 ---------------
5722 -- Stub_Type --
5723 ---------------
5725 when Attribute_Stub_Type =>
5726 Check_Type;
5727 Check_E0;
5729 if Is_Remote_Access_To_Class_Wide_Type (Base_Type (P_Type)) then
5731 -- For a real RACW [sub]type, use corresponding stub type
5733 if not Is_Generic_Type (P_Type) then
5734 Rewrite (N,
5735 New_Occurrence_Of
5736 (Corresponding_Stub_Type (Base_Type (P_Type)), Loc));
5738 -- For a generic type (that has been marked as an RACW using the
5739 -- Remote_Access_Type aspect or pragma), use a generic RACW stub
5740 -- type. Note that if the actual is not a remote access type, the
5741 -- instantiation will fail.
5743 else
5744 -- Note: we go to the underlying type here because the view
5745 -- returned by RTE (RE_RACW_Stub_Type) might be incomplete.
5747 Rewrite (N,
5748 New_Occurrence_Of
5749 (Underlying_Type (RTE (RE_RACW_Stub_Type)), Loc));
5750 end if;
5752 else
5753 Error_Attr_P
5754 ("prefix of% attribute must be remote access to classwide");
5755 end if;
5757 ----------
5758 -- Succ --
5759 ----------
5761 when Attribute_Succ =>
5762 Check_Scalar_Type;
5763 Check_E1;
5765 if Is_Real_Type (P_Type) or else Is_Boolean_Type (P_Type) then
5766 Error_Msg_Name_1 := Aname;
5767 Error_Msg_Name_2 := Chars (P_Type);
5768 Check_SPARK_05_Restriction
5769 ("attribute% is not allowed for type%", P);
5770 end if;
5772 Resolve (E1, P_Base_Type);
5773 Set_Etype (N, P_Base_Type);
5775 -- Since Pred works on the base type, we normally do no check for the
5776 -- floating-point case, since the base type is unconstrained. But we
5777 -- make an exception in Check_Float_Overflow mode.
5779 if Is_Floating_Point_Type (P_Type) then
5780 if not Range_Checks_Suppressed (P_Base_Type) then
5781 Set_Do_Range_Check (E1);
5782 end if;
5784 -- If not modular type, test for overflow check required
5786 else
5787 if not Is_Modular_Integer_Type (P_Type)
5788 and then not Range_Checks_Suppressed (P_Base_Type)
5789 then
5790 Enable_Range_Check (E1);
5791 end if;
5792 end if;
5794 --------------------------------
5795 -- System_Allocator_Alignment --
5796 --------------------------------
5798 when Attribute_System_Allocator_Alignment =>
5799 Standard_Attribute (Ttypes.System_Allocator_Alignment);
5801 ---------
5802 -- Tag --
5803 ---------
5805 when Attribute_Tag => Tag :
5806 begin
5807 Check_E0;
5808 Check_Dereference;
5810 if not Is_Tagged_Type (P_Type) then
5811 Error_Attr_P ("prefix of % attribute must be tagged");
5813 -- Next test does not apply to generated code why not, and what does
5814 -- the illegal reference mean???
5816 elsif Is_Object_Reference (P)
5817 and then not Is_Class_Wide_Type (P_Type)
5818 and then Comes_From_Source (N)
5819 then
5820 Error_Attr_P
5821 ("% attribute can only be applied to objects " &
5822 "of class - wide type");
5823 end if;
5825 -- The prefix cannot be an incomplete type. However, references to
5826 -- 'Tag can be generated when expanding interface conversions, and
5827 -- this is legal.
5829 if Comes_From_Source (N) then
5830 Check_Not_Incomplete_Type;
5831 end if;
5833 -- Set appropriate type
5835 Set_Etype (N, RTE (RE_Tag));
5836 end Tag;
5838 -----------------
5839 -- Target_Name --
5840 -----------------
5842 when Attribute_Target_Name => Target_Name : declare
5843 TN : constant String := Sdefault.Target_Name.all;
5844 TL : Natural;
5846 begin
5847 Check_Standard_Prefix;
5849 TL := TN'Last;
5851 if TN (TL) = '/' or else TN (TL) = '\' then
5852 TL := TL - 1;
5853 end if;
5855 Rewrite (N,
5856 Make_String_Literal (Loc,
5857 Strval => TN (TN'First .. TL)));
5858 Analyze_And_Resolve (N, Standard_String);
5859 Set_Is_Static_Expression (N, True);
5860 end Target_Name;
5862 ----------------
5863 -- Terminated --
5864 ----------------
5866 when Attribute_Terminated =>
5867 Check_E0;
5868 Set_Etype (N, Standard_Boolean);
5869 Check_Task_Prefix;
5871 ----------------
5872 -- To_Address --
5873 ----------------
5875 when Attribute_To_Address => To_Address : declare
5876 Val : Uint;
5878 begin
5879 Check_E1;
5880 Analyze (P);
5881 Check_System_Prefix;
5883 Generate_Reference (RTE (RE_Address), P);
5884 Analyze_And_Resolve (E1, Any_Integer);
5885 Set_Etype (N, RTE (RE_Address));
5887 if Is_Static_Expression (E1) then
5888 Set_Is_Static_Expression (N, True);
5889 end if;
5891 -- OK static expression case, check range and set appropriate type
5893 if Is_OK_Static_Expression (E1) then
5894 Val := Expr_Value (E1);
5896 if Val < -(2 ** UI_From_Int (Standard'Address_Size - 1))
5897 or else
5898 Val > 2 ** UI_From_Int (Standard'Address_Size) - 1
5899 then
5900 Error_Attr ("address value out of range for % attribute", E1);
5901 end if;
5903 -- In most cases the expression is a numeric literal or some other
5904 -- address expression, but if it is a declared constant it may be
5905 -- of a compatible type that must be left on the node.
5907 if Is_Entity_Name (E1) then
5908 null;
5910 -- Set type to universal integer if negative
5912 elsif Val < 0 then
5913 Set_Etype (E1, Universal_Integer);
5915 -- Otherwise set type to Unsigned_64 to accomodate max values
5917 else
5918 Set_Etype (E1, Standard_Unsigned_64);
5919 end if;
5920 end if;
5922 Set_Is_Static_Expression (N, True);
5923 end To_Address;
5925 ------------
5926 -- To_Any --
5927 ------------
5929 when Attribute_To_Any =>
5930 Check_E1;
5931 Check_PolyORB_Attribute;
5932 Set_Etype (N, RTE (RE_Any));
5934 ----------------
5935 -- Truncation --
5936 ----------------
5938 when Attribute_Truncation =>
5939 Check_Floating_Point_Type_1;
5940 Resolve (E1, P_Base_Type);
5941 Set_Etype (N, P_Base_Type);
5943 ----------------
5944 -- Type_Class --
5945 ----------------
5947 when Attribute_Type_Class =>
5948 Check_E0;
5949 Check_Type;
5950 Check_Not_Incomplete_Type;
5951 Set_Etype (N, RTE (RE_Type_Class));
5953 --------------
5954 -- TypeCode --
5955 --------------
5957 when Attribute_TypeCode =>
5958 Check_E0;
5959 Check_PolyORB_Attribute;
5960 Set_Etype (N, RTE (RE_TypeCode));
5962 --------------
5963 -- Type_Key --
5964 --------------
5966 when Attribute_Type_Key =>
5967 Check_E0;
5968 Check_Type;
5970 -- This processing belongs in Eval_Attribute ???
5972 declare
5973 function Type_Key return String_Id;
5974 -- A very preliminary implementation. For now, a signature
5975 -- consists of only the type name. This is clearly incomplete
5976 -- (e.g., adding a new field to a record type should change the
5977 -- type's Type_Key attribute).
5979 --------------
5980 -- Type_Key --
5981 --------------
5983 function Type_Key return String_Id is
5984 Full_Name : constant String_Id :=
5985 Fully_Qualified_Name_String (Entity (P));
5987 begin
5988 -- Copy all characters in Full_Name but the trailing NUL
5990 Start_String;
5991 for J in 1 .. String_Length (Full_Name) - 1 loop
5992 Store_String_Char (Get_String_Char (Full_Name, Int (J)));
5993 end loop;
5995 Store_String_Chars ("'Type_Key");
5996 return End_String;
5997 end Type_Key;
5999 begin
6000 Rewrite (N, Make_String_Literal (Loc, Type_Key));
6001 end;
6003 Analyze_And_Resolve (N, Standard_String);
6005 -----------------
6006 -- UET_Address --
6007 -----------------
6009 when Attribute_UET_Address =>
6010 Check_E0;
6011 Check_Unit_Name (P);
6012 Set_Etype (N, RTE (RE_Address));
6014 -----------------------
6015 -- Unbiased_Rounding --
6016 -----------------------
6018 when Attribute_Unbiased_Rounding =>
6019 Check_Floating_Point_Type_1;
6020 Set_Etype (N, P_Base_Type);
6021 Resolve (E1, P_Base_Type);
6023 ----------------------
6024 -- Unchecked_Access --
6025 ----------------------
6027 when Attribute_Unchecked_Access =>
6028 if Comes_From_Source (N) then
6029 Check_Restriction (No_Unchecked_Access, N);
6030 end if;
6032 Analyze_Access_Attribute;
6033 Check_Not_Incomplete_Type;
6035 -------------------------
6036 -- Unconstrained_Array --
6037 -------------------------
6039 when Attribute_Unconstrained_Array =>
6040 Check_E0;
6041 Check_Type;
6042 Check_Not_Incomplete_Type;
6043 Set_Etype (N, Standard_Boolean);
6044 Set_Is_Static_Expression (N, True);
6046 ------------------------------
6047 -- Universal_Literal_String --
6048 ------------------------------
6050 -- This is a GNAT specific attribute whose prefix must be a named
6051 -- number where the expression is either a single numeric literal,
6052 -- or a numeric literal immediately preceded by a minus sign. The
6053 -- result is equivalent to a string literal containing the text of
6054 -- the literal as it appeared in the source program with a possible
6055 -- leading minus sign.
6057 when Attribute_Universal_Literal_String => Universal_Literal_String :
6058 begin
6059 Check_E0;
6061 if not Is_Entity_Name (P)
6062 or else Ekind (Entity (P)) not in Named_Kind
6063 then
6064 Error_Attr_P ("prefix for % attribute must be named number");
6066 else
6067 declare
6068 Expr : Node_Id;
6069 Negative : Boolean;
6070 S : Source_Ptr;
6071 Src : Source_Buffer_Ptr;
6073 begin
6074 Expr := Original_Node (Expression (Parent (Entity (P))));
6076 if Nkind (Expr) = N_Op_Minus then
6077 Negative := True;
6078 Expr := Original_Node (Right_Opnd (Expr));
6079 else
6080 Negative := False;
6081 end if;
6083 if not Nkind_In (Expr, N_Integer_Literal, N_Real_Literal) then
6084 Error_Attr
6085 ("named number for % attribute must be simple literal", N);
6086 end if;
6088 -- Build string literal corresponding to source literal text
6090 Start_String;
6092 if Negative then
6093 Store_String_Char (Get_Char_Code ('-'));
6094 end if;
6096 S := Sloc (Expr);
6097 Src := Source_Text (Get_Source_File_Index (S));
6099 while Src (S) /= ';' and then Src (S) /= ' ' loop
6100 Store_String_Char (Get_Char_Code (Src (S)));
6101 S := S + 1;
6102 end loop;
6104 -- Now we rewrite the attribute with the string literal
6106 Rewrite (N,
6107 Make_String_Literal (Loc, End_String));
6108 Analyze (N);
6109 Set_Is_Static_Expression (N, True);
6110 end;
6111 end if;
6112 end Universal_Literal_String;
6114 -------------------------
6115 -- Unrestricted_Access --
6116 -------------------------
6118 -- This is a GNAT specific attribute which is like Access except that
6119 -- all scope checks and checks for aliased views are omitted. It is
6120 -- documented as being equivalent to the use of the Address attribute
6121 -- followed by an unchecked conversion to the target access type.
6123 when Attribute_Unrestricted_Access =>
6125 -- If from source, deal with relevant restrictions
6127 if Comes_From_Source (N) then
6128 Check_Restriction (No_Unchecked_Access, N);
6130 if Nkind (P) in N_Has_Entity
6131 and then Present (Entity (P))
6132 and then Is_Object (Entity (P))
6133 then
6134 Check_Restriction (No_Implicit_Aliasing, N);
6135 end if;
6136 end if;
6138 if Is_Entity_Name (P) then
6139 Set_Address_Taken (Entity (P));
6140 end if;
6142 -- It might seem reasonable to call Address_Checks here to apply the
6143 -- same set of semantic checks that we enforce for 'Address (after
6144 -- all we document Unrestricted_Access as being equivalent to the
6145 -- use of Address followed by an Unchecked_Conversion). However, if
6146 -- we do enable these checks, we get multiple failures in both the
6147 -- compiler run-time and in our regression test suite, so we leave
6148 -- out these checks for now. To be investigated further some time???
6150 -- Address_Checks;
6152 -- Now complete analysis using common access processing
6154 Analyze_Access_Attribute;
6156 ------------
6157 -- Update --
6158 ------------
6160 when Attribute_Update => Update : declare
6161 Common_Typ : Entity_Id;
6162 -- The common type of a multiple component update for a record
6164 Comps : Elist_Id := No_Elist;
6165 -- A list used in the resolution of a record update. It contains the
6166 -- entities of all record components processed so far.
6168 procedure Analyze_Array_Component_Update (Assoc : Node_Id);
6169 -- Analyze and resolve array_component_association Assoc against the
6170 -- index of array type P_Type.
6172 procedure Analyze_Record_Component_Update (Comp : Node_Id);
6173 -- Analyze and resolve record_component_association Comp against
6174 -- record type P_Type.
6176 ------------------------------------
6177 -- Analyze_Array_Component_Update --
6178 ------------------------------------
6180 procedure Analyze_Array_Component_Update (Assoc : Node_Id) is
6181 Expr : Node_Id;
6182 High : Node_Id;
6183 Index : Node_Id;
6184 Index_Typ : Entity_Id;
6185 Low : Node_Id;
6187 begin
6188 -- The current association contains a sequence of indexes denoting
6189 -- an element of a multidimensional array:
6191 -- (Index_1, ..., Index_N)
6193 -- Examine each individual index and resolve it against the proper
6194 -- index type of the array.
6196 if Nkind (First (Choices (Assoc))) = N_Aggregate then
6197 Expr := First (Choices (Assoc));
6198 while Present (Expr) loop
6200 -- The use of others is illegal (SPARK RM 4.4.1(12))
6202 if Nkind (Expr) = N_Others_Choice then
6203 Error_Attr
6204 ("others choice not allowed in attribute %", Expr);
6206 -- Otherwise analyze and resolve all indexes
6208 else
6209 Index := First (Expressions (Expr));
6210 Index_Typ := First_Index (P_Type);
6211 while Present (Index) and then Present (Index_Typ) loop
6212 Analyze_And_Resolve (Index, Etype (Index_Typ));
6213 Next (Index);
6214 Next_Index (Index_Typ);
6215 end loop;
6217 -- Detect a case where the association either lacks an
6218 -- index or contains an extra index.
6220 if Present (Index) or else Present (Index_Typ) then
6221 Error_Msg_N
6222 ("dimension mismatch in index list", Assoc);
6223 end if;
6224 end if;
6226 Next (Expr);
6227 end loop;
6229 -- The current association denotes either a single component or a
6230 -- range of components of a one dimensional array:
6232 -- 1, 2 .. 5
6234 -- Resolve the index or its high and low bounds (if range) against
6235 -- the proper index type of the array.
6237 else
6238 Index := First (Choices (Assoc));
6239 Index_Typ := First_Index (P_Type);
6241 if Present (Next_Index (Index_Typ)) then
6242 Error_Msg_N ("too few subscripts in array reference", Assoc);
6243 end if;
6245 while Present (Index) loop
6247 -- The use of others is illegal (SPARK RM 4.4.1(12))
6249 if Nkind (Index) = N_Others_Choice then
6250 Error_Attr
6251 ("others choice not allowed in attribute %", Index);
6253 -- The index denotes a range of elements
6255 elsif Nkind (Index) = N_Range then
6256 Low := Low_Bound (Index);
6257 High := High_Bound (Index);
6259 Analyze_And_Resolve (Low, Etype (Index_Typ));
6260 Analyze_And_Resolve (High, Etype (Index_Typ));
6262 -- Add a range check to ensure that the bounds of the
6263 -- range are within the index type when this cannot be
6264 -- determined statically.
6266 if not Is_OK_Static_Expression (Low) then
6267 Set_Do_Range_Check (Low);
6268 end if;
6270 if not Is_OK_Static_Expression (High) then
6271 Set_Do_Range_Check (High);
6272 end if;
6274 -- Otherwise the index denotes a single element
6276 else
6277 Analyze_And_Resolve (Index, Etype (Index_Typ));
6279 -- Add a range check to ensure that the index is within
6280 -- the index type when it is not possible to determine
6281 -- this statically.
6283 if not Is_OK_Static_Expression (Index) then
6284 Set_Do_Range_Check (Index);
6285 end if;
6286 end if;
6288 Next (Index);
6289 end loop;
6290 end if;
6291 end Analyze_Array_Component_Update;
6293 -------------------------------------
6294 -- Analyze_Record_Component_Update --
6295 -------------------------------------
6297 procedure Analyze_Record_Component_Update (Comp : Node_Id) is
6298 Comp_Name : constant Name_Id := Chars (Comp);
6299 Base_Typ : Entity_Id;
6300 Comp_Or_Discr : Entity_Id;
6302 begin
6303 -- Find the discriminant or component whose name corresponds to
6304 -- Comp. A simple character comparison is sufficient because all
6305 -- visible names within a record type are unique.
6307 Comp_Or_Discr := First_Entity (P_Type);
6308 while Present (Comp_Or_Discr) loop
6309 if Chars (Comp_Or_Discr) = Comp_Name then
6311 -- Decorate the component reference by setting its entity
6312 -- and type for resolution purposes.
6314 Set_Entity (Comp, Comp_Or_Discr);
6315 Set_Etype (Comp, Etype (Comp_Or_Discr));
6316 exit;
6317 end if;
6319 Comp_Or_Discr := Next_Entity (Comp_Or_Discr);
6320 end loop;
6322 -- Diagnose an illegal reference
6324 if Present (Comp_Or_Discr) then
6325 if Ekind (Comp_Or_Discr) = E_Discriminant then
6326 Error_Attr
6327 ("attribute % may not modify record discriminants", Comp);
6329 else pragma Assert (Ekind (Comp_Or_Discr) = E_Component);
6330 if Contains (Comps, Comp_Or_Discr) then
6331 Error_Msg_N ("component & already updated", Comp);
6333 -- Mark this component as processed
6335 else
6336 Append_New_Elmt (Comp_Or_Discr, Comps);
6337 end if;
6338 end if;
6340 -- The update aggregate mentions an entity that does not belong to
6341 -- the record type.
6343 else
6344 Error_Msg_N ("& is not a component of aggregate subtype", Comp);
6345 end if;
6347 -- Verify the consistency of types when the current component is
6348 -- part of a miltiple component update.
6350 -- Comp_1, ..., Comp_N => <value>
6352 if Present (Etype (Comp)) then
6353 Base_Typ := Base_Type (Etype (Comp));
6355 -- Save the type of the first component reference as the
6356 -- remaning references (if any) must resolve to this type.
6358 if No (Common_Typ) then
6359 Common_Typ := Base_Typ;
6361 elsif Base_Typ /= Common_Typ then
6362 Error_Msg_N
6363 ("components in choice list must have same type", Comp);
6364 end if;
6365 end if;
6366 end Analyze_Record_Component_Update;
6368 -- Local variables
6370 Assoc : Node_Id;
6371 Comp : Node_Id;
6373 -- Start of processing for Update
6375 begin
6376 Check_E1;
6378 if not Is_Object_Reference (P) then
6379 Error_Attr_P ("prefix of attribute % must denote an object");
6381 elsif not Is_Array_Type (P_Type)
6382 and then not Is_Record_Type (P_Type)
6383 then
6384 Error_Attr_P ("prefix of attribute % must be a record or array");
6386 elsif Is_Limited_View (P_Type) then
6387 Error_Attr ("prefix of attribute % cannot be limited", N);
6389 elsif Nkind (E1) /= N_Aggregate then
6390 Error_Attr ("attribute % requires component association list", N);
6391 end if;
6393 -- Inspect the update aggregate, looking at all the associations and
6394 -- choices. Perform the following checks:
6396 -- 1) Legality of "others" in all cases
6397 -- 2) Legality of <>
6398 -- 3) Component legality for arrays
6399 -- 4) Component legality for records
6401 -- The remaining checks are performed on the expanded attribute
6403 Assoc := First (Component_Associations (E1));
6404 while Present (Assoc) loop
6406 -- The use of <> is illegal (SPARK RM 4.4.1(1))
6408 if Box_Present (Assoc) then
6409 Error_Attr
6410 ("default initialization not allowed in attribute %", Assoc);
6412 -- Otherwise process the association
6414 else
6415 Analyze (Expression (Assoc));
6417 if Is_Array_Type (P_Type) then
6418 Analyze_Array_Component_Update (Assoc);
6420 elsif Is_Record_Type (P_Type) then
6422 -- Reset the common type used in a multiple component update
6423 -- as we are processing the contents of a new association.
6425 Common_Typ := Empty;
6427 Comp := First (Choices (Assoc));
6428 while Present (Comp) loop
6429 if Nkind (Comp) = N_Identifier then
6430 Analyze_Record_Component_Update (Comp);
6432 -- The use of others is illegal (SPARK RM 4.4.1(5))
6434 elsif Nkind (Comp) = N_Others_Choice then
6435 Error_Attr
6436 ("others choice not allowed in attribute %", Comp);
6438 -- The name of a record component cannot appear in any
6439 -- other form.
6441 else
6442 Error_Msg_N
6443 ("name should be identifier or OTHERS", Comp);
6444 end if;
6446 Next (Comp);
6447 end loop;
6448 end if;
6449 end if;
6451 Next (Assoc);
6452 end loop;
6454 -- The type of attribute 'Update is that of the prefix
6456 Set_Etype (N, P_Type);
6458 Sem_Warn.Warn_On_Suspicious_Update (N);
6459 end Update;
6461 ---------
6462 -- Val --
6463 ---------
6465 when Attribute_Val => Val : declare
6466 begin
6467 Check_E1;
6468 Check_Discrete_Type;
6470 if Is_Boolean_Type (P_Type) then
6471 Error_Msg_Name_1 := Aname;
6472 Error_Msg_Name_2 := Chars (P_Type);
6473 Check_SPARK_05_Restriction
6474 ("attribute% is not allowed for type%", P);
6475 end if;
6477 Resolve (E1, Any_Integer);
6478 Set_Etype (N, P_Base_Type);
6480 -- Note, we need a range check in general, but we wait for the
6481 -- Resolve call to do this, since we want to let Eval_Attribute
6482 -- have a chance to find an static illegality first.
6483 end Val;
6485 -----------
6486 -- Valid --
6487 -----------
6489 when Attribute_Valid =>
6490 Check_E0;
6492 -- Ignore check for object if we have a 'Valid reference generated
6493 -- by the expanded code, since in some cases valid checks can occur
6494 -- on items that are names, but are not objects (e.g. attributes).
6496 if Comes_From_Source (N) then
6497 Check_Object_Reference (P);
6498 end if;
6500 if not Is_Scalar_Type (P_Type) then
6501 Error_Attr_P ("object for % attribute must be of scalar type");
6502 end if;
6504 -- If the attribute appears within the subtype's own predicate
6505 -- function, then issue a warning that this will cause infinite
6506 -- recursion.
6508 declare
6509 Pred_Func : constant Entity_Id := Predicate_Function (P_Type);
6511 begin
6512 if Present (Pred_Func) and then Current_Scope = Pred_Func then
6513 Error_Msg_N
6514 ("attribute Valid requires a predicate check??", N);
6515 Error_Msg_N ("\and will result in infinite recursion??", N);
6516 end if;
6517 end;
6519 Set_Etype (N, Standard_Boolean);
6521 -------------------
6522 -- Valid_Scalars --
6523 -------------------
6525 when Attribute_Valid_Scalars =>
6526 Check_E0;
6527 Check_Object_Reference (P);
6528 Set_Etype (N, Standard_Boolean);
6530 -- Following checks are only for source types
6532 if Comes_From_Source (N) then
6533 if not Scalar_Part_Present (P_Type) then
6534 Error_Attr_P
6535 ("??attribute % always True, no scalars to check");
6536 end if;
6538 -- Not allowed for unchecked union type
6540 if Has_Unchecked_Union (P_Type) then
6541 Error_Attr_P
6542 ("attribute % not allowed for Unchecked_Union type");
6543 end if;
6544 end if;
6546 -----------
6547 -- Value --
6548 -----------
6550 when Attribute_Value => Value :
6551 begin
6552 Check_SPARK_05_Restriction_On_Attribute;
6553 Check_E1;
6554 Check_Scalar_Type;
6556 -- Case of enumeration type
6558 -- When an enumeration type appears in an attribute reference, all
6559 -- literals of the type are marked as referenced. This must only be
6560 -- done if the attribute reference appears in the current source.
6561 -- Otherwise the information on references may differ between a
6562 -- normal compilation and one that performs inlining.
6564 if Is_Enumeration_Type (P_Type)
6565 and then In_Extended_Main_Code_Unit (N)
6566 then
6567 Check_Restriction (No_Enumeration_Maps, N);
6569 -- Mark all enumeration literals as referenced, since the use of
6570 -- the Value attribute can implicitly reference any of the
6571 -- literals of the enumeration base type.
6573 declare
6574 Ent : Entity_Id := First_Literal (P_Base_Type);
6575 begin
6576 while Present (Ent) loop
6577 Set_Referenced (Ent);
6578 Next_Literal (Ent);
6579 end loop;
6580 end;
6581 end if;
6583 -- Set Etype before resolving expression because expansion of
6584 -- expression may require enclosing type. Note that the type
6585 -- returned by 'Value is the base type of the prefix type.
6587 Set_Etype (N, P_Base_Type);
6588 Validate_Non_Static_Attribute_Function_Call;
6590 -- Check restriction No_Fixed_IO
6592 if Restriction_Check_Required (No_Fixed_IO)
6593 and then Is_Fixed_Point_Type (P_Type)
6594 then
6595 Check_Restriction (No_Fixed_IO, P);
6596 end if;
6597 end Value;
6599 ----------------
6600 -- Value_Size --
6601 ----------------
6603 when Attribute_Value_Size =>
6604 Check_E0;
6605 Check_Type;
6606 Check_Not_Incomplete_Type;
6607 Set_Etype (N, Universal_Integer);
6609 -------------
6610 -- Version --
6611 -------------
6613 when Attribute_Version =>
6614 Check_E0;
6615 Check_Program_Unit;
6616 Set_Etype (N, RTE (RE_Version_String));
6618 ------------------
6619 -- Wchar_T_Size --
6620 ------------------
6622 when Attribute_Wchar_T_Size =>
6623 Standard_Attribute (Interfaces_Wchar_T_Size);
6625 ----------------
6626 -- Wide_Image --
6627 ----------------
6629 when Attribute_Wide_Image => Wide_Image :
6630 begin
6631 Check_SPARK_05_Restriction_On_Attribute;
6632 Check_Scalar_Type;
6633 Set_Etype (N, Standard_Wide_String);
6634 Check_E1;
6635 Resolve (E1, P_Base_Type);
6636 Validate_Non_Static_Attribute_Function_Call;
6638 -- Check restriction No_Fixed_IO
6640 if Restriction_Check_Required (No_Fixed_IO)
6641 and then Is_Fixed_Point_Type (P_Type)
6642 then
6643 Check_Restriction (No_Fixed_IO, P);
6644 end if;
6645 end Wide_Image;
6647 ---------------------
6648 -- Wide_Wide_Image --
6649 ---------------------
6651 when Attribute_Wide_Wide_Image => Wide_Wide_Image :
6652 begin
6653 Check_Scalar_Type;
6654 Set_Etype (N, Standard_Wide_Wide_String);
6655 Check_E1;
6656 Resolve (E1, P_Base_Type);
6657 Validate_Non_Static_Attribute_Function_Call;
6659 -- Check restriction No_Fixed_IO
6661 if Restriction_Check_Required (No_Fixed_IO)
6662 and then Is_Fixed_Point_Type (P_Type)
6663 then
6664 Check_Restriction (No_Fixed_IO, P);
6665 end if;
6666 end Wide_Wide_Image;
6668 ----------------
6669 -- Wide_Value --
6670 ----------------
6672 when Attribute_Wide_Value => Wide_Value :
6673 begin
6674 Check_SPARK_05_Restriction_On_Attribute;
6675 Check_E1;
6676 Check_Scalar_Type;
6678 -- Set Etype before resolving expression because expansion
6679 -- of expression may require enclosing type.
6681 Set_Etype (N, P_Type);
6682 Validate_Non_Static_Attribute_Function_Call;
6684 -- Check restriction No_Fixed_IO
6686 if Restriction_Check_Required (No_Fixed_IO)
6687 and then Is_Fixed_Point_Type (P_Type)
6688 then
6689 Check_Restriction (No_Fixed_IO, P);
6690 end if;
6691 end Wide_Value;
6693 ---------------------
6694 -- Wide_Wide_Value --
6695 ---------------------
6697 when Attribute_Wide_Wide_Value => Wide_Wide_Value :
6698 begin
6699 Check_E1;
6700 Check_Scalar_Type;
6702 -- Set Etype before resolving expression because expansion
6703 -- of expression may require enclosing type.
6705 Set_Etype (N, P_Type);
6706 Validate_Non_Static_Attribute_Function_Call;
6708 -- Check restriction No_Fixed_IO
6710 if Restriction_Check_Required (No_Fixed_IO)
6711 and then Is_Fixed_Point_Type (P_Type)
6712 then
6713 Check_Restriction (No_Fixed_IO, P);
6714 end if;
6715 end Wide_Wide_Value;
6717 ---------------------
6718 -- Wide_Wide_Width --
6719 ---------------------
6721 when Attribute_Wide_Wide_Width =>
6722 Check_E0;
6723 Check_Scalar_Type;
6724 Set_Etype (N, Universal_Integer);
6726 ----------------
6727 -- Wide_Width --
6728 ----------------
6730 when Attribute_Wide_Width =>
6731 Check_SPARK_05_Restriction_On_Attribute;
6732 Check_E0;
6733 Check_Scalar_Type;
6734 Set_Etype (N, Universal_Integer);
6736 -----------
6737 -- Width --
6738 -----------
6740 when Attribute_Width =>
6741 Check_SPARK_05_Restriction_On_Attribute;
6742 Check_E0;
6743 Check_Scalar_Type;
6744 Set_Etype (N, Universal_Integer);
6746 ---------------
6747 -- Word_Size --
6748 ---------------
6750 when Attribute_Word_Size =>
6751 Standard_Attribute (System_Word_Size);
6753 -----------
6754 -- Write --
6755 -----------
6757 when Attribute_Write =>
6758 Check_E2;
6759 Check_Stream_Attribute (TSS_Stream_Write);
6760 Set_Etype (N, Standard_Void_Type);
6761 Resolve (N, Standard_Void_Type);
6763 end case;
6765 -- All errors raise Bad_Attribute, so that we get out before any further
6766 -- damage occurs when an error is detected (for example, if we check for
6767 -- one attribute expression, and the check succeeds, we want to be able
6768 -- to proceed securely assuming that an expression is in fact present.
6770 -- Note: we set the attribute analyzed in this case to prevent any
6771 -- attempt at reanalysis which could generate spurious error msgs.
6773 exception
6774 when Bad_Attribute =>
6775 Set_Analyzed (N);
6776 Set_Etype (N, Any_Type);
6777 return;
6778 end Analyze_Attribute;
6780 --------------------
6781 -- Eval_Attribute --
6782 --------------------
6784 procedure Eval_Attribute (N : Node_Id) is
6785 Loc : constant Source_Ptr := Sloc (N);
6786 Aname : constant Name_Id := Attribute_Name (N);
6787 Id : constant Attribute_Id := Get_Attribute_Id (Aname);
6788 P : constant Node_Id := Prefix (N);
6790 C_Type : constant Entity_Id := Etype (N);
6791 -- The type imposed by the context
6793 E1 : Node_Id;
6794 -- First expression, or Empty if none
6796 E2 : Node_Id;
6797 -- Second expression, or Empty if none
6799 P_Entity : Entity_Id;
6800 -- Entity denoted by prefix
6802 P_Type : Entity_Id;
6803 -- The type of the prefix
6805 P_Base_Type : Entity_Id;
6806 -- The base type of the prefix type
6808 P_Root_Type : Entity_Id;
6809 -- The root type of the prefix type
6811 Static : Boolean;
6812 -- True if the result is Static. This is set by the general processing
6813 -- to true if the prefix is static, and all expressions are static. It
6814 -- can be reset as processing continues for particular attributes. This
6815 -- flag can still be True if the reference raises a constraint error.
6816 -- Is_Static_Expression (N) is set to follow this value as it is set
6817 -- and we could always reference this, but it is convenient to have a
6818 -- simple short name to use, since it is frequently referenced.
6820 Lo_Bound, Hi_Bound : Node_Id;
6821 -- Expressions for low and high bounds of type or array index referenced
6822 -- by First, Last, or Length attribute for array, set by Set_Bounds.
6824 CE_Node : Node_Id;
6825 -- Constraint error node used if we have an attribute reference has
6826 -- an argument that raises a constraint error. In this case we replace
6827 -- the attribute with a raise constraint_error node. This is important
6828 -- processing, since otherwise gigi might see an attribute which it is
6829 -- unprepared to deal with.
6831 procedure Check_Concurrent_Discriminant (Bound : Node_Id);
6832 -- If Bound is a reference to a discriminant of a task or protected type
6833 -- occurring within the object's body, rewrite attribute reference into
6834 -- a reference to the corresponding discriminal. Use for the expansion
6835 -- of checks against bounds of entry family index subtypes.
6837 procedure Check_Expressions;
6838 -- In case where the attribute is not foldable, the expressions, if
6839 -- any, of the attribute, are in a non-static context. This procedure
6840 -- performs the required additional checks.
6842 function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean;
6843 -- Determines if the given type has compile time known bounds. Note
6844 -- that we enter the case statement even in cases where the prefix
6845 -- type does NOT have known bounds, so it is important to guard any
6846 -- attempt to evaluate both bounds with a call to this function.
6848 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint);
6849 -- This procedure is called when the attribute N has a non-static
6850 -- but compile time known value given by Val. It includes the
6851 -- necessary checks for out of range values.
6853 function Fore_Value return Nat;
6854 -- Computes the Fore value for the current attribute prefix, which is
6855 -- known to be a static fixed-point type. Used by Fore and Width.
6857 function Mantissa return Uint;
6858 -- Returns the Mantissa value for the prefix type
6860 procedure Set_Bounds;
6861 -- Used for First, Last and Length attributes applied to an array or
6862 -- array subtype. Sets the variables Lo_Bound and Hi_Bound to the low
6863 -- and high bound expressions for the index referenced by the attribute
6864 -- designator (i.e. the first index if no expression is present, and the
6865 -- N'th index if the value N is present as an expression). Also used for
6866 -- First and Last of scalar types and for First_Valid and Last_Valid.
6867 -- Static is reset to False if the type or index type is not statically
6868 -- constrained.
6870 function Statically_Denotes_Entity (N : Node_Id) return Boolean;
6871 -- Verify that the prefix of a potentially static array attribute
6872 -- satisfies the conditions of 4.9 (14).
6874 -----------------------------------
6875 -- Check_Concurrent_Discriminant --
6876 -----------------------------------
6878 procedure Check_Concurrent_Discriminant (Bound : Node_Id) is
6879 Tsk : Entity_Id;
6880 -- The concurrent (task or protected) type
6882 begin
6883 if Nkind (Bound) = N_Identifier
6884 and then Ekind (Entity (Bound)) = E_Discriminant
6885 and then Is_Concurrent_Record_Type (Scope (Entity (Bound)))
6886 then
6887 Tsk := Corresponding_Concurrent_Type (Scope (Entity (Bound)));
6889 if In_Open_Scopes (Tsk) and then Has_Completion (Tsk) then
6891 -- Find discriminant of original concurrent type, and use
6892 -- its current discriminal, which is the renaming within
6893 -- the task/protected body.
6895 Rewrite (N,
6896 New_Occurrence_Of
6897 (Find_Body_Discriminal (Entity (Bound)), Loc));
6898 end if;
6899 end if;
6900 end Check_Concurrent_Discriminant;
6902 -----------------------
6903 -- Check_Expressions --
6904 -----------------------
6906 procedure Check_Expressions is
6907 E : Node_Id;
6908 begin
6909 E := E1;
6910 while Present (E) loop
6911 Check_Non_Static_Context (E);
6912 Next (E);
6913 end loop;
6914 end Check_Expressions;
6916 ----------------------------------
6917 -- Compile_Time_Known_Attribute --
6918 ----------------------------------
6920 procedure Compile_Time_Known_Attribute (N : Node_Id; Val : Uint) is
6921 T : constant Entity_Id := Etype (N);
6923 begin
6924 Fold_Uint (N, Val, False);
6926 -- Check that result is in bounds of the type if it is static
6928 if Is_In_Range (N, T, Assume_Valid => False) then
6929 null;
6931 elsif Is_Out_Of_Range (N, T) then
6932 Apply_Compile_Time_Constraint_Error
6933 (N, "value not in range of}??", CE_Range_Check_Failed);
6935 elsif not Range_Checks_Suppressed (T) then
6936 Enable_Range_Check (N);
6938 else
6939 Set_Do_Range_Check (N, False);
6940 end if;
6941 end Compile_Time_Known_Attribute;
6943 -------------------------------
6944 -- Compile_Time_Known_Bounds --
6945 -------------------------------
6947 function Compile_Time_Known_Bounds (Typ : Entity_Id) return Boolean is
6948 begin
6949 return
6950 Compile_Time_Known_Value (Type_Low_Bound (Typ))
6951 and then
6952 Compile_Time_Known_Value (Type_High_Bound (Typ));
6953 end Compile_Time_Known_Bounds;
6955 ----------------
6956 -- Fore_Value --
6957 ----------------
6959 -- Note that the Fore calculation is based on the actual values
6960 -- of the bounds, and does not take into account possible rounding.
6962 function Fore_Value return Nat is
6963 Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
6964 Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
6965 Small : constant Ureal := Small_Value (P_Type);
6966 Lo_Real : constant Ureal := Lo * Small;
6967 Hi_Real : constant Ureal := Hi * Small;
6968 T : Ureal;
6969 R : Nat;
6971 begin
6972 -- Bounds are given in terms of small units, so first compute
6973 -- proper values as reals.
6975 T := UR_Max (abs Lo_Real, abs Hi_Real);
6976 R := 2;
6978 -- Loop to compute proper value if more than one digit required
6980 while T >= Ureal_10 loop
6981 R := R + 1;
6982 T := T / Ureal_10;
6983 end loop;
6985 return R;
6986 end Fore_Value;
6988 --------------
6989 -- Mantissa --
6990 --------------
6992 -- Table of mantissa values accessed by function Computed using
6993 -- the relation:
6995 -- T'Mantissa = integer next above (D * log(10)/log(2)) + 1)
6997 -- where D is T'Digits (RM83 3.5.7)
6999 Mantissa_Value : constant array (Nat range 1 .. 40) of Nat := (
7000 1 => 5,
7001 2 => 8,
7002 3 => 11,
7003 4 => 15,
7004 5 => 18,
7005 6 => 21,
7006 7 => 25,
7007 8 => 28,
7008 9 => 31,
7009 10 => 35,
7010 11 => 38,
7011 12 => 41,
7012 13 => 45,
7013 14 => 48,
7014 15 => 51,
7015 16 => 55,
7016 17 => 58,
7017 18 => 61,
7018 19 => 65,
7019 20 => 68,
7020 21 => 71,
7021 22 => 75,
7022 23 => 78,
7023 24 => 81,
7024 25 => 85,
7025 26 => 88,
7026 27 => 91,
7027 28 => 95,
7028 29 => 98,
7029 30 => 101,
7030 31 => 104,
7031 32 => 108,
7032 33 => 111,
7033 34 => 114,
7034 35 => 118,
7035 36 => 121,
7036 37 => 124,
7037 38 => 128,
7038 39 => 131,
7039 40 => 134);
7041 function Mantissa return Uint is
7042 begin
7043 return
7044 UI_From_Int (Mantissa_Value (UI_To_Int (Digits_Value (P_Type))));
7045 end Mantissa;
7047 ----------------
7048 -- Set_Bounds --
7049 ----------------
7051 procedure Set_Bounds is
7052 Ndim : Nat;
7053 Indx : Node_Id;
7054 Ityp : Entity_Id;
7056 begin
7057 -- For a string literal subtype, we have to construct the bounds.
7058 -- Valid Ada code never applies attributes to string literals, but
7059 -- it is convenient to allow the expander to generate attribute
7060 -- references of this type (e.g. First and Last applied to a string
7061 -- literal).
7063 -- Note that the whole point of the E_String_Literal_Subtype is to
7064 -- avoid this construction of bounds, but the cases in which we
7065 -- have to materialize them are rare enough that we don't worry.
7067 -- The low bound is simply the low bound of the base type. The
7068 -- high bound is computed from the length of the string and this
7069 -- low bound.
7071 if Ekind (P_Type) = E_String_Literal_Subtype then
7072 Ityp := Etype (First_Index (Base_Type (P_Type)));
7073 Lo_Bound := Type_Low_Bound (Ityp);
7075 Hi_Bound :=
7076 Make_Integer_Literal (Sloc (P),
7077 Intval =>
7078 Expr_Value (Lo_Bound) + String_Literal_Length (P_Type) - 1);
7080 Set_Parent (Hi_Bound, P);
7081 Analyze_And_Resolve (Hi_Bound, Etype (Lo_Bound));
7082 return;
7084 -- For non-array case, just get bounds of scalar type
7086 elsif Is_Scalar_Type (P_Type) then
7087 Ityp := P_Type;
7089 -- For a fixed-point type, we must freeze to get the attributes
7090 -- of the fixed-point type set now so we can reference them.
7092 if Is_Fixed_Point_Type (P_Type)
7093 and then not Is_Frozen (Base_Type (P_Type))
7094 and then Compile_Time_Known_Value (Type_Low_Bound (P_Type))
7095 and then Compile_Time_Known_Value (Type_High_Bound (P_Type))
7096 then
7097 Freeze_Fixed_Point_Type (Base_Type (P_Type));
7098 end if;
7100 -- For array case, get type of proper index
7102 else
7103 if No (E1) then
7104 Ndim := 1;
7105 else
7106 Ndim := UI_To_Int (Expr_Value (E1));
7107 end if;
7109 Indx := First_Index (P_Type);
7110 for J in 1 .. Ndim - 1 loop
7111 Next_Index (Indx);
7112 end loop;
7114 -- If no index type, get out (some other error occurred, and
7115 -- we don't have enough information to complete the job).
7117 if No (Indx) then
7118 Lo_Bound := Error;
7119 Hi_Bound := Error;
7120 return;
7121 end if;
7123 Ityp := Etype (Indx);
7124 end if;
7126 -- A discrete range in an index constraint is allowed to be a
7127 -- subtype indication. This is syntactically a pain, but should
7128 -- not propagate to the entity for the corresponding index subtype.
7129 -- After checking that the subtype indication is legal, the range
7130 -- of the subtype indication should be transfered to the entity.
7131 -- The attributes for the bounds should remain the simple retrievals
7132 -- that they are now.
7134 Lo_Bound := Type_Low_Bound (Ityp);
7135 Hi_Bound := Type_High_Bound (Ityp);
7137 -- If subtype is non-static, result is definitely non-static
7139 if not Is_Static_Subtype (Ityp) then
7140 Static := False;
7141 Set_Is_Static_Expression (N, False);
7143 -- Subtype is static, does it raise CE?
7145 elsif not Is_OK_Static_Subtype (Ityp) then
7146 Set_Raises_Constraint_Error (N);
7147 end if;
7148 end Set_Bounds;
7150 -------------------------------
7151 -- Statically_Denotes_Entity --
7152 -------------------------------
7154 function Statically_Denotes_Entity (N : Node_Id) return Boolean is
7155 E : Entity_Id;
7157 begin
7158 if not Is_Entity_Name (N) then
7159 return False;
7160 else
7161 E := Entity (N);
7162 end if;
7164 return
7165 Nkind (Parent (E)) /= N_Object_Renaming_Declaration
7166 or else Statically_Denotes_Entity (Renamed_Object (E));
7167 end Statically_Denotes_Entity;
7169 -- Start of processing for Eval_Attribute
7171 begin
7172 -- Initialize result as non-static, will be reset if appropriate
7174 Set_Is_Static_Expression (N, False);
7175 Static := False;
7177 -- Acquire first two expressions (at the moment, no attributes take more
7178 -- than two expressions in any case).
7180 if Present (Expressions (N)) then
7181 E1 := First (Expressions (N));
7182 E2 := Next (E1);
7183 else
7184 E1 := Empty;
7185 E2 := Empty;
7186 end if;
7188 -- Special processing for Enabled attribute. This attribute has a very
7189 -- special prefix, and the easiest way to avoid lots of special checks
7190 -- to protect this special prefix from causing trouble is to deal with
7191 -- this attribute immediately and be done with it.
7193 if Id = Attribute_Enabled then
7195 -- We skip evaluation if the expander is not active. This is not just
7196 -- an optimization. It is of key importance that we not rewrite the
7197 -- attribute in a generic template, since we want to pick up the
7198 -- setting of the check in the instance, and testing expander active
7199 -- is as easy way of doing this as any.
7201 if Expander_Active then
7202 declare
7203 C : constant Check_Id := Get_Check_Id (Chars (P));
7204 R : Boolean;
7206 begin
7207 if No (E1) then
7208 if C in Predefined_Check_Id then
7209 R := Scope_Suppress.Suppress (C);
7210 else
7211 R := Is_Check_Suppressed (Empty, C);
7212 end if;
7214 else
7215 R := Is_Check_Suppressed (Entity (E1), C);
7216 end if;
7218 Rewrite (N, New_Occurrence_Of (Boolean_Literals (not R), Loc));
7219 end;
7220 end if;
7222 return;
7223 end if;
7225 -- Attribute 'Img applied to a static enumeration value is static, and
7226 -- we will do the folding right here (things get confused if we let this
7227 -- case go through the normal circuitry).
7229 if Attribute_Name (N) = Name_Img
7230 and then Is_Entity_Name (P)
7231 and then Is_Enumeration_Type (Etype (Entity (P)))
7232 and then Is_OK_Static_Expression (P)
7233 then
7234 declare
7235 Lit : constant Entity_Id := Expr_Value_E (P);
7236 Str : String_Id;
7238 begin
7239 Start_String;
7240 Get_Unqualified_Decoded_Name_String (Chars (Lit));
7241 Set_Casing (All_Upper_Case);
7242 Store_String_Chars (Name_Buffer (1 .. Name_Len));
7243 Str := End_String;
7245 Rewrite (N, Make_String_Literal (Loc, Strval => Str));
7246 Analyze_And_Resolve (N, Standard_String);
7247 Set_Is_Static_Expression (N, True);
7248 end;
7250 return;
7251 end if;
7253 -- Special processing for cases where the prefix is an object. For
7254 -- this purpose, a string literal counts as an object (attributes
7255 -- of string literals can only appear in generated code).
7257 if Is_Object_Reference (P) or else Nkind (P) = N_String_Literal then
7259 -- For Component_Size, the prefix is an array object, and we apply
7260 -- the attribute to the type of the object. This is allowed for
7261 -- both unconstrained and constrained arrays, since the bounds
7262 -- have no influence on the value of this attribute.
7264 if Id = Attribute_Component_Size then
7265 P_Entity := Etype (P);
7267 -- For First and Last, the prefix is an array object, and we apply
7268 -- the attribute to the type of the array, but we need a constrained
7269 -- type for this, so we use the actual subtype if available.
7271 elsif Id = Attribute_First or else
7272 Id = Attribute_Last or else
7273 Id = Attribute_Length
7274 then
7275 declare
7276 AS : constant Entity_Id := Get_Actual_Subtype_If_Available (P);
7278 begin
7279 if Present (AS) and then Is_Constrained (AS) then
7280 P_Entity := AS;
7282 -- If we have an unconstrained type we cannot fold
7284 else
7285 Check_Expressions;
7286 return;
7287 end if;
7288 end;
7290 -- For Size, give size of object if available, otherwise we
7291 -- cannot fold Size.
7293 elsif Id = Attribute_Size then
7294 if Is_Entity_Name (P)
7295 and then Known_Esize (Entity (P))
7296 then
7297 Compile_Time_Known_Attribute (N, Esize (Entity (P)));
7298 return;
7300 else
7301 Check_Expressions;
7302 return;
7303 end if;
7305 -- For Alignment, give size of object if available, otherwise we
7306 -- cannot fold Alignment.
7308 elsif Id = Attribute_Alignment then
7309 if Is_Entity_Name (P)
7310 and then Known_Alignment (Entity (P))
7311 then
7312 Fold_Uint (N, Alignment (Entity (P)), Static);
7313 return;
7315 else
7316 Check_Expressions;
7317 return;
7318 end if;
7320 -- For Lock_Free, we apply the attribute to the type of the object.
7321 -- This is allowed since we have already verified that the type is a
7322 -- protected type.
7324 elsif Id = Attribute_Lock_Free then
7325 P_Entity := Etype (P);
7327 -- No other attributes for objects are folded
7329 else
7330 Check_Expressions;
7331 return;
7332 end if;
7334 -- Cases where P is not an object. Cannot do anything if P is not the
7335 -- name of an entity.
7337 elsif not Is_Entity_Name (P) then
7338 Check_Expressions;
7339 return;
7341 -- Otherwise get prefix entity
7343 else
7344 P_Entity := Entity (P);
7345 end if;
7347 -- If we are asked to evaluate an attribute where the prefix is a
7348 -- non-frozen generic actual type whose RM_Size is still set to zero,
7349 -- then abandon the effort.
7351 if Is_Type (P_Entity)
7352 and then (not Is_Frozen (P_Entity)
7353 and then Is_Generic_Actual_Type (P_Entity)
7354 and then RM_Size (P_Entity) = 0)
7356 -- However, the attribute Unconstrained_Array must be evaluated,
7357 -- since it is documented to be a static attribute (and can for
7358 -- example appear in a Compile_Time_Warning pragma). The frozen
7359 -- status of the type does not affect its evaluation.
7361 and then Id /= Attribute_Unconstrained_Array
7362 then
7363 return;
7364 end if;
7366 -- At this stage P_Entity is the entity to which the attribute
7367 -- is to be applied. This is usually simply the entity of the
7368 -- prefix, except in some cases of attributes for objects, where
7369 -- as described above, we apply the attribute to the object type.
7371 -- Here is where we make sure that static attributes are properly
7372 -- marked as such. These are attributes whose prefix is a static
7373 -- scalar subtype, whose result is scalar, and whose arguments, if
7374 -- present, are static scalar expressions. Note that such references
7375 -- are static expressions even if they raise Constraint_Error.
7377 -- For example, Boolean'Pos (1/0 = 0) is a static expression, even
7378 -- though evaluating it raises constraint error. This means that a
7379 -- declaration like:
7381 -- X : constant := (if True then 1 else Boolean'Pos (1/0 = 0));
7383 -- is legal, since here this expression appears in a statically
7384 -- unevaluated position, so it does not actually raise an exception.
7386 if Is_Scalar_Type (P_Entity)
7387 and then (not Is_Generic_Type (P_Entity))
7388 and then Is_Static_Subtype (P_Entity)
7389 and then Is_Scalar_Type (Etype (N))
7390 and then
7391 (No (E1)
7392 or else (Is_Static_Expression (E1)
7393 and then Is_Scalar_Type (Etype (E1))))
7394 and then
7395 (No (E2)
7396 or else (Is_Static_Expression (E2)
7397 and then Is_Scalar_Type (Etype (E1))))
7398 then
7399 Static := True;
7400 Set_Is_Static_Expression (N, True);
7401 end if;
7403 -- First foldable possibility is a scalar or array type (RM 4.9(7))
7404 -- that is not generic (generic types are eliminated by RM 4.9(25)).
7405 -- Note we allow non-static non-generic types at this stage as further
7406 -- described below.
7408 if Is_Type (P_Entity)
7409 and then (Is_Scalar_Type (P_Entity) or Is_Array_Type (P_Entity))
7410 and then (not Is_Generic_Type (P_Entity))
7411 then
7412 P_Type := P_Entity;
7414 -- Second foldable possibility is an array object (RM 4.9(8))
7416 elsif Ekind_In (P_Entity, E_Variable, E_Constant)
7417 and then Is_Array_Type (Etype (P_Entity))
7418 and then (not Is_Generic_Type (Etype (P_Entity)))
7419 then
7420 P_Type := Etype (P_Entity);
7422 -- If the entity is an array constant with an unconstrained nominal
7423 -- subtype then get the type from the initial value. If the value has
7424 -- been expanded into assignments, there is no expression and the
7425 -- attribute reference remains dynamic.
7427 -- We could do better here and retrieve the type ???
7429 if Ekind (P_Entity) = E_Constant
7430 and then not Is_Constrained (P_Type)
7431 then
7432 if No (Constant_Value (P_Entity)) then
7433 return;
7434 else
7435 P_Type := Etype (Constant_Value (P_Entity));
7436 end if;
7437 end if;
7439 -- Definite must be folded if the prefix is not a generic type, that
7440 -- is to say if we are within an instantiation. Same processing applies
7441 -- to the GNAT attributes Atomic_Always_Lock_Free, Has_Discriminants,
7442 -- Lock_Free, Type_Class, Has_Tagged_Value, and Unconstrained_Array.
7444 elsif (Id = Attribute_Atomic_Always_Lock_Free or else
7445 Id = Attribute_Definite or else
7446 Id = Attribute_Has_Access_Values or else
7447 Id = Attribute_Has_Discriminants or else
7448 Id = Attribute_Has_Tagged_Values or else
7449 Id = Attribute_Lock_Free or else
7450 Id = Attribute_Type_Class or else
7451 Id = Attribute_Unconstrained_Array or else
7452 Id = Attribute_Max_Alignment_For_Allocation)
7453 and then not Is_Generic_Type (P_Entity)
7454 then
7455 P_Type := P_Entity;
7457 -- We can fold 'Size applied to a type if the size is known (as happens
7458 -- for a size from an attribute definition clause). At this stage, this
7459 -- can happen only for types (e.g. record types) for which the size is
7460 -- always non-static. We exclude generic types from consideration (since
7461 -- they have bogus sizes set within templates).
7463 elsif Id = Attribute_Size
7464 and then Is_Type (P_Entity)
7465 and then (not Is_Generic_Type (P_Entity))
7466 and then Known_Static_RM_Size (P_Entity)
7467 then
7468 Compile_Time_Known_Attribute (N, RM_Size (P_Entity));
7469 return;
7471 -- We can fold 'Alignment applied to a type if the alignment is known
7472 -- (as happens for an alignment from an attribute definition clause).
7473 -- At this stage, this can happen only for types (e.g. record types) for
7474 -- which the size is always non-static. We exclude generic types from
7475 -- consideration (since they have bogus sizes set within templates).
7477 elsif Id = Attribute_Alignment
7478 and then Is_Type (P_Entity)
7479 and then (not Is_Generic_Type (P_Entity))
7480 and then Known_Alignment (P_Entity)
7481 then
7482 Compile_Time_Known_Attribute (N, Alignment (P_Entity));
7483 return;
7485 -- If this is an access attribute that is known to fail accessibility
7486 -- check, rewrite accordingly.
7488 elsif Attribute_Name (N) = Name_Access
7489 and then Raises_Constraint_Error (N)
7490 then
7491 Rewrite (N,
7492 Make_Raise_Program_Error (Loc,
7493 Reason => PE_Accessibility_Check_Failed));
7494 Set_Etype (N, C_Type);
7495 return;
7497 -- No other cases are foldable (they certainly aren't static, and at
7498 -- the moment we don't try to fold any cases other than the ones above).
7500 else
7501 Check_Expressions;
7502 return;
7503 end if;
7505 -- If either attribute or the prefix is Any_Type, then propagate
7506 -- Any_Type to the result and don't do anything else at all.
7508 if P_Type = Any_Type
7509 or else (Present (E1) and then Etype (E1) = Any_Type)
7510 or else (Present (E2) and then Etype (E2) = Any_Type)
7511 then
7512 Set_Etype (N, Any_Type);
7513 return;
7514 end if;
7516 -- Scalar subtype case. We have not yet enforced the static requirement
7517 -- of (RM 4.9(7)) and we don't intend to just yet, since there are cases
7518 -- of non-static attribute references (e.g. S'Digits for a non-static
7519 -- floating-point type, which we can compute at compile time).
7521 -- Note: this folding of non-static attributes is not simply a case of
7522 -- optimization. For many of the attributes affected, Gigi cannot handle
7523 -- the attribute and depends on the front end having folded them away.
7525 -- Note: although we don't require staticness at this stage, we do set
7526 -- the Static variable to record the staticness, for easy reference by
7527 -- those attributes where it matters (e.g. Succ and Pred), and also to
7528 -- be used to ensure that non-static folded things are not marked as
7529 -- being static (a check that is done right at the end).
7531 P_Root_Type := Root_Type (P_Type);
7532 P_Base_Type := Base_Type (P_Type);
7534 -- If the root type or base type is generic, then we cannot fold. This
7535 -- test is needed because subtypes of generic types are not always
7536 -- marked as being generic themselves (which seems odd???)
7538 if Is_Generic_Type (P_Root_Type)
7539 or else Is_Generic_Type (P_Base_Type)
7540 then
7541 return;
7542 end if;
7544 if Is_Scalar_Type (P_Type) then
7545 if not Is_Static_Subtype (P_Type) then
7546 Static := False;
7547 Set_Is_Static_Expression (N, False);
7548 elsif not Is_OK_Static_Subtype (P_Type) then
7549 Set_Raises_Constraint_Error (N);
7550 end if;
7552 -- Array case. We enforce the constrained requirement of (RM 4.9(7-8))
7553 -- since we can't do anything with unconstrained arrays. In addition,
7554 -- only the First, Last and Length attributes are possibly static.
7556 -- Atomic_Always_Lock_Free, Definite, Has_Access_Values,
7557 -- Has_Discriminants, Has_Tagged_Values, Lock_Free, Type_Class, and
7558 -- Unconstrained_Array are again exceptions, because they apply as well
7559 -- to unconstrained types.
7561 -- In addition Component_Size is an exception since it is possibly
7562 -- foldable, even though it is never static, and it does apply to
7563 -- unconstrained arrays. Furthermore, it is essential to fold this
7564 -- in the packed case, since otherwise the value will be incorrect.
7566 elsif Id = Attribute_Atomic_Always_Lock_Free or else
7567 Id = Attribute_Definite or else
7568 Id = Attribute_Has_Access_Values or else
7569 Id = Attribute_Has_Discriminants or else
7570 Id = Attribute_Has_Tagged_Values or else
7571 Id = Attribute_Lock_Free or else
7572 Id = Attribute_Type_Class or else
7573 Id = Attribute_Unconstrained_Array or else
7574 Id = Attribute_Component_Size
7575 then
7576 Static := False;
7577 Set_Is_Static_Expression (N, False);
7579 elsif Id /= Attribute_Max_Alignment_For_Allocation then
7580 if not Is_Constrained (P_Type)
7581 or else (Id /= Attribute_First and then
7582 Id /= Attribute_Last and then
7583 Id /= Attribute_Length)
7584 then
7585 Check_Expressions;
7586 return;
7587 end if;
7589 -- The rules in (RM 4.9(7,8)) require a static array, but as in the
7590 -- scalar case, we hold off on enforcing staticness, since there are
7591 -- cases which we can fold at compile time even though they are not
7592 -- static (e.g. 'Length applied to a static index, even though other
7593 -- non-static indexes make the array type non-static). This is only
7594 -- an optimization, but it falls out essentially free, so why not.
7595 -- Again we compute the variable Static for easy reference later
7596 -- (note that no array attributes are static in Ada 83).
7598 -- We also need to set Static properly for subsequent legality checks
7599 -- which might otherwise accept non-static constants in contexts
7600 -- where they are not legal.
7602 Static :=
7603 Ada_Version >= Ada_95 and then Statically_Denotes_Entity (P);
7604 Set_Is_Static_Expression (N, Static);
7606 declare
7607 Nod : Node_Id;
7609 begin
7610 Nod := First_Index (P_Type);
7612 -- The expression is static if the array type is constrained
7613 -- by given bounds, and not by an initial expression. Constant
7614 -- strings are static in any case.
7616 if Root_Type (P_Type) /= Standard_String then
7617 Static :=
7618 Static and then not Is_Constr_Subt_For_U_Nominal (P_Type);
7619 Set_Is_Static_Expression (N, Static);
7620 end if;
7622 while Present (Nod) loop
7623 if not Is_Static_Subtype (Etype (Nod)) then
7624 Static := False;
7625 Set_Is_Static_Expression (N, False);
7627 elsif not Is_OK_Static_Subtype (Etype (Nod)) then
7628 Set_Raises_Constraint_Error (N);
7629 Static := False;
7630 Set_Is_Static_Expression (N, False);
7631 end if;
7633 -- If however the index type is generic, or derived from
7634 -- one, attributes cannot be folded.
7636 if Is_Generic_Type (Root_Type (Etype (Nod)))
7637 and then Id /= Attribute_Component_Size
7638 then
7639 return;
7640 end if;
7642 Next_Index (Nod);
7643 end loop;
7644 end;
7645 end if;
7647 -- Check any expressions that are present. Note that these expressions,
7648 -- depending on the particular attribute type, are either part of the
7649 -- attribute designator, or they are arguments in a case where the
7650 -- attribute reference returns a function. In the latter case, the
7651 -- rule in (RM 4.9(22)) applies and in particular requires the type
7652 -- of the expressions to be scalar in order for the attribute to be
7653 -- considered to be static.
7655 declare
7656 E : Node_Id;
7658 begin
7659 E := E1;
7661 while Present (E) loop
7663 -- If expression is not static, then the attribute reference
7664 -- result certainly cannot be static.
7666 if not Is_Static_Expression (E) then
7667 Static := False;
7668 Set_Is_Static_Expression (N, False);
7669 end if;
7671 if Raises_Constraint_Error (E) then
7672 Set_Raises_Constraint_Error (N);
7673 end if;
7675 -- If the result is not known at compile time, or is not of
7676 -- a scalar type, then the result is definitely not static,
7677 -- so we can quit now.
7679 if not Compile_Time_Known_Value (E)
7680 or else not Is_Scalar_Type (Etype (E))
7681 then
7682 -- An odd special case, if this is a Pos attribute, this
7683 -- is where we need to apply a range check since it does
7684 -- not get done anywhere else.
7686 if Id = Attribute_Pos then
7687 if Is_Integer_Type (Etype (E)) then
7688 Apply_Range_Check (E, Etype (N));
7689 end if;
7690 end if;
7692 Check_Expressions;
7693 return;
7695 -- If the expression raises a constraint error, then so does
7696 -- the attribute reference. We keep going in this case because
7697 -- we are still interested in whether the attribute reference
7698 -- is static even if it is not static.
7700 elsif Raises_Constraint_Error (E) then
7701 Set_Raises_Constraint_Error (N);
7702 end if;
7704 Next (E);
7705 end loop;
7707 if Raises_Constraint_Error (Prefix (N)) then
7708 Set_Is_Static_Expression (N, False);
7709 return;
7710 end if;
7711 end;
7713 -- Deal with the case of a static attribute reference that raises
7714 -- constraint error. The Raises_Constraint_Error flag will already
7715 -- have been set, and the Static flag shows whether the attribute
7716 -- reference is static. In any case we certainly can't fold such an
7717 -- attribute reference.
7719 -- Note that the rewriting of the attribute node with the constraint
7720 -- error node is essential in this case, because otherwise Gigi might
7721 -- blow up on one of the attributes it never expects to see.
7723 -- The constraint_error node must have the type imposed by the context,
7724 -- to avoid spurious errors in the enclosing expression.
7726 if Raises_Constraint_Error (N) then
7727 CE_Node :=
7728 Make_Raise_Constraint_Error (Sloc (N),
7729 Reason => CE_Range_Check_Failed);
7730 Set_Etype (CE_Node, Etype (N));
7731 Set_Raises_Constraint_Error (CE_Node);
7732 Check_Expressions;
7733 Rewrite (N, Relocate_Node (CE_Node));
7734 Set_Raises_Constraint_Error (N, True);
7735 return;
7736 end if;
7738 -- At this point we have a potentially foldable attribute reference.
7739 -- If Static is set, then the attribute reference definitely obeys
7740 -- the requirements in (RM 4.9(7,8,22)), and it definitely can be
7741 -- folded. If Static is not set, then the attribute may or may not
7742 -- be foldable, and the individual attribute processing routines
7743 -- test Static as required in cases where it makes a difference.
7745 -- In the case where Static is not set, we do know that all the
7746 -- expressions present are at least known at compile time (we assumed
7747 -- above that if this was not the case, then there was no hope of static
7748 -- evaluation). However, we did not require that the bounds of the
7749 -- prefix type be compile time known, let alone static). That's because
7750 -- there are many attributes that can be computed at compile time on
7751 -- non-static subtypes, even though such references are not static
7752 -- expressions.
7754 -- For VAX float, the root type is an IEEE type. So make sure to use the
7755 -- base type instead of the root-type for floating point attributes.
7757 case Id is
7759 -- Attributes related to Ada 2012 iterators (placeholder ???)
7761 when Attribute_Constant_Indexing |
7762 Attribute_Default_Iterator |
7763 Attribute_Implicit_Dereference |
7764 Attribute_Iterator_Element |
7765 Attribute_Iterable |
7766 Attribute_Variable_Indexing => null;
7768 -- Internal attributes used to deal with Ada 2012 delayed aspects.
7769 -- These were already rejected by the parser. Thus they shouldn't
7770 -- appear here.
7772 when Internal_Attribute_Id =>
7773 raise Program_Error;
7775 --------------
7776 -- Adjacent --
7777 --------------
7779 when Attribute_Adjacent =>
7780 Fold_Ureal
7782 Eval_Fat.Adjacent
7783 (P_Base_Type, Expr_Value_R (E1), Expr_Value_R (E2)),
7784 Static);
7786 ---------
7787 -- Aft --
7788 ---------
7790 when Attribute_Aft =>
7791 Fold_Uint (N, Aft_Value (P_Type), Static);
7793 ---------------
7794 -- Alignment --
7795 ---------------
7797 when Attribute_Alignment => Alignment_Block : declare
7798 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
7800 begin
7801 -- Fold if alignment is set and not otherwise
7803 if Known_Alignment (P_TypeA) then
7804 Fold_Uint (N, Alignment (P_TypeA), Static);
7805 end if;
7806 end Alignment_Block;
7808 -----------------------------
7809 -- Atomic_Always_Lock_Free --
7810 -----------------------------
7812 -- Atomic_Always_Lock_Free attribute is a Boolean, thus no need to fold
7813 -- here.
7815 when Attribute_Atomic_Always_Lock_Free => Atomic_Always_Lock_Free :
7816 declare
7817 V : constant Entity_Id :=
7818 Boolean_Literals
7819 (Support_Atomic_Primitives_On_Target
7820 and then Support_Atomic_Primitives (P_Type));
7822 begin
7823 Rewrite (N, New_Occurrence_Of (V, Loc));
7825 -- Analyze and resolve as boolean. Note that this attribute is a
7826 -- static attribute in GNAT.
7828 Analyze_And_Resolve (N, Standard_Boolean);
7829 Static := True;
7830 Set_Is_Static_Expression (N, True);
7831 end Atomic_Always_Lock_Free;
7833 ---------
7834 -- Bit --
7835 ---------
7837 -- Bit can never be folded
7839 when Attribute_Bit =>
7840 null;
7842 ------------------
7843 -- Body_Version --
7844 ------------------
7846 -- Body_version can never be static
7848 when Attribute_Body_Version =>
7849 null;
7851 -------------
7852 -- Ceiling --
7853 -------------
7855 when Attribute_Ceiling =>
7856 Fold_Ureal
7857 (N, Eval_Fat.Ceiling (P_Base_Type, Expr_Value_R (E1)), Static);
7859 --------------------
7860 -- Component_Size --
7861 --------------------
7863 when Attribute_Component_Size =>
7864 if Known_Static_Component_Size (P_Type) then
7865 Fold_Uint (N, Component_Size (P_Type), Static);
7866 end if;
7868 -------------
7869 -- Compose --
7870 -------------
7872 when Attribute_Compose =>
7873 Fold_Ureal
7875 Eval_Fat.Compose (P_Base_Type, Expr_Value_R (E1), Expr_Value (E2)),
7876 Static);
7878 -----------------
7879 -- Constrained --
7880 -----------------
7882 -- Constrained is never folded for now, there may be cases that
7883 -- could be handled at compile time. To be looked at later.
7885 when Attribute_Constrained =>
7887 -- The expander might fold it and set the static flag accordingly,
7888 -- but with expansion disabled (as in ASIS), it remains as an
7889 -- attribute reference, and this reference is not static.
7891 Set_Is_Static_Expression (N, False);
7892 null;
7894 ---------------
7895 -- Copy_Sign --
7896 ---------------
7898 when Attribute_Copy_Sign =>
7899 Fold_Ureal
7901 Eval_Fat.Copy_Sign
7902 (P_Base_Type, Expr_Value_R (E1), Expr_Value_R (E2)),
7903 Static);
7905 --------------
7906 -- Definite --
7907 --------------
7909 when Attribute_Definite =>
7910 Rewrite (N, New_Occurrence_Of (
7911 Boolean_Literals (not Is_Indefinite_Subtype (P_Entity)), Loc));
7912 Analyze_And_Resolve (N, Standard_Boolean);
7914 -----------
7915 -- Delta --
7916 -----------
7918 when Attribute_Delta =>
7919 Fold_Ureal (N, Delta_Value (P_Type), True);
7921 ------------
7922 -- Denorm --
7923 ------------
7925 when Attribute_Denorm =>
7926 Fold_Uint
7927 (N, UI_From_Int (Boolean'Pos (Has_Denormals (P_Type))), Static);
7929 ---------------------
7930 -- Descriptor_Size --
7931 ---------------------
7933 when Attribute_Descriptor_Size =>
7934 null;
7936 ------------
7937 -- Digits --
7938 ------------
7940 when Attribute_Digits =>
7941 Fold_Uint (N, Digits_Value (P_Type), Static);
7943 ----------
7944 -- Emax --
7945 ----------
7947 when Attribute_Emax =>
7949 -- Ada 83 attribute is defined as (RM83 3.5.8)
7951 -- T'Emax = 4 * T'Mantissa
7953 Fold_Uint (N, 4 * Mantissa, Static);
7955 --------------
7956 -- Enum_Rep --
7957 --------------
7959 when Attribute_Enum_Rep =>
7961 -- For an enumeration type with a non-standard representation use
7962 -- the Enumeration_Rep field of the proper constant. Note that this
7963 -- will not work for types Character/Wide_[Wide-]Character, since no
7964 -- real entities are created for the enumeration literals, but that
7965 -- does not matter since these two types do not have non-standard
7966 -- representations anyway.
7968 if Is_Enumeration_Type (P_Type)
7969 and then Has_Non_Standard_Rep (P_Type)
7970 then
7971 Fold_Uint (N, Enumeration_Rep (Expr_Value_E (E1)), Static);
7973 -- For enumeration types with standard representations and all
7974 -- other cases (i.e. all integer and modular types), Enum_Rep
7975 -- is equivalent to Pos.
7977 else
7978 Fold_Uint (N, Expr_Value (E1), Static);
7979 end if;
7981 --------------
7982 -- Enum_Val --
7983 --------------
7985 when Attribute_Enum_Val => Enum_Val : declare
7986 Lit : Node_Id;
7988 begin
7989 -- We have something like Enum_Type'Enum_Val (23), so search for a
7990 -- corresponding value in the list of Enum_Rep values for the type.
7992 Lit := First_Literal (P_Base_Type);
7993 loop
7994 if Enumeration_Rep (Lit) = Expr_Value (E1) then
7995 Fold_Uint (N, Enumeration_Pos (Lit), Static);
7996 exit;
7997 end if;
7999 Next_Literal (Lit);
8001 if No (Lit) then
8002 Apply_Compile_Time_Constraint_Error
8003 (N, "no representation value matches",
8004 CE_Range_Check_Failed,
8005 Warn => not Static);
8006 exit;
8007 end if;
8008 end loop;
8009 end Enum_Val;
8011 -------------
8012 -- Epsilon --
8013 -------------
8015 when Attribute_Epsilon =>
8017 -- Ada 83 attribute is defined as (RM83 3.5.8)
8019 -- T'Epsilon = 2.0**(1 - T'Mantissa)
8021 Fold_Ureal (N, Ureal_2 ** (1 - Mantissa), True);
8023 --------------
8024 -- Exponent --
8025 --------------
8027 when Attribute_Exponent =>
8028 Fold_Uint (N,
8029 Eval_Fat.Exponent (P_Base_Type, Expr_Value_R (E1)), Static);
8031 -----------
8032 -- First --
8033 -----------
8035 when Attribute_First => First_Attr :
8036 begin
8037 Set_Bounds;
8039 if Compile_Time_Known_Value (Lo_Bound) then
8040 if Is_Real_Type (P_Type) then
8041 Fold_Ureal (N, Expr_Value_R (Lo_Bound), Static);
8042 else
8043 Fold_Uint (N, Expr_Value (Lo_Bound), Static);
8044 end if;
8046 else
8047 Check_Concurrent_Discriminant (Lo_Bound);
8048 end if;
8049 end First_Attr;
8051 -----------------
8052 -- First_Valid --
8053 -----------------
8055 when Attribute_First_Valid => First_Valid :
8056 begin
8057 if Has_Predicates (P_Type)
8058 and then Has_Static_Predicate (P_Type)
8059 then
8060 declare
8061 FirstN : constant Node_Id :=
8062 First (Static_Discrete_Predicate (P_Type));
8063 begin
8064 if Nkind (FirstN) = N_Range then
8065 Fold_Uint (N, Expr_Value (Low_Bound (FirstN)), Static);
8066 else
8067 Fold_Uint (N, Expr_Value (FirstN), Static);
8068 end if;
8069 end;
8071 else
8072 Set_Bounds;
8073 Fold_Uint (N, Expr_Value (Lo_Bound), Static);
8074 end if;
8075 end First_Valid;
8077 -----------------
8078 -- Fixed_Value --
8079 -----------------
8081 when Attribute_Fixed_Value =>
8082 null;
8084 -----------
8085 -- Floor --
8086 -----------
8088 when Attribute_Floor =>
8089 Fold_Ureal
8090 (N, Eval_Fat.Floor (P_Base_Type, Expr_Value_R (E1)), Static);
8092 ----------
8093 -- Fore --
8094 ----------
8096 when Attribute_Fore =>
8097 if Compile_Time_Known_Bounds (P_Type) then
8098 Fold_Uint (N, UI_From_Int (Fore_Value), Static);
8099 end if;
8101 --------------
8102 -- Fraction --
8103 --------------
8105 when Attribute_Fraction =>
8106 Fold_Ureal
8107 (N, Eval_Fat.Fraction (P_Base_Type, Expr_Value_R (E1)), Static);
8109 -----------------------
8110 -- Has_Access_Values --
8111 -----------------------
8113 when Attribute_Has_Access_Values =>
8114 Rewrite (N, New_Occurrence_Of
8115 (Boolean_Literals (Has_Access_Values (P_Root_Type)), Loc));
8116 Analyze_And_Resolve (N, Standard_Boolean);
8118 -----------------------
8119 -- Has_Discriminants --
8120 -----------------------
8122 when Attribute_Has_Discriminants =>
8123 Rewrite (N, New_Occurrence_Of (
8124 Boolean_Literals (Has_Discriminants (P_Entity)), Loc));
8125 Analyze_And_Resolve (N, Standard_Boolean);
8127 ----------------------
8128 -- Has_Same_Storage --
8129 ----------------------
8131 when Attribute_Has_Same_Storage =>
8132 null;
8134 -----------------------
8135 -- Has_Tagged_Values --
8136 -----------------------
8138 when Attribute_Has_Tagged_Values =>
8139 Rewrite (N, New_Occurrence_Of
8140 (Boolean_Literals (Has_Tagged_Component (P_Root_Type)), Loc));
8141 Analyze_And_Resolve (N, Standard_Boolean);
8143 --------------
8144 -- Identity --
8145 --------------
8147 when Attribute_Identity =>
8148 null;
8150 -----------
8151 -- Image --
8152 -----------
8154 -- Image is a scalar attribute, but is never static, because it is
8155 -- not a static function (having a non-scalar argument (RM 4.9(22))
8156 -- However, we can constant-fold the image of an enumeration literal
8157 -- if names are available.
8159 when Attribute_Image =>
8160 if Is_Entity_Name (E1)
8161 and then Ekind (Entity (E1)) = E_Enumeration_Literal
8162 and then not Discard_Names (First_Subtype (Etype (E1)))
8163 and then not Global_Discard_Names
8164 then
8165 declare
8166 Lit : constant Entity_Id := Entity (E1);
8167 Str : String_Id;
8168 begin
8169 Start_String;
8170 Get_Unqualified_Decoded_Name_String (Chars (Lit));
8171 Set_Casing (All_Upper_Case);
8172 Store_String_Chars (Name_Buffer (1 .. Name_Len));
8173 Str := End_String;
8174 Rewrite (N, Make_String_Literal (Loc, Strval => Str));
8175 Analyze_And_Resolve (N, Standard_String);
8176 Set_Is_Static_Expression (N, False);
8177 end;
8178 end if;
8180 -------------------
8181 -- Integer_Value --
8182 -------------------
8184 -- We never try to fold Integer_Value (though perhaps we could???)
8186 when Attribute_Integer_Value =>
8187 null;
8189 -------------------
8190 -- Invalid_Value --
8191 -------------------
8193 -- Invalid_Value is a scalar attribute that is never static, because
8194 -- the value is by design out of range.
8196 when Attribute_Invalid_Value =>
8197 null;
8199 -----------
8200 -- Large --
8201 -----------
8203 when Attribute_Large =>
8205 -- For fixed-point, we use the identity:
8207 -- T'Large = (2.0**T'Mantissa - 1.0) * T'Small
8209 if Is_Fixed_Point_Type (P_Type) then
8210 Rewrite (N,
8211 Make_Op_Multiply (Loc,
8212 Left_Opnd =>
8213 Make_Op_Subtract (Loc,
8214 Left_Opnd =>
8215 Make_Op_Expon (Loc,
8216 Left_Opnd =>
8217 Make_Real_Literal (Loc, Ureal_2),
8218 Right_Opnd =>
8219 Make_Attribute_Reference (Loc,
8220 Prefix => P,
8221 Attribute_Name => Name_Mantissa)),
8222 Right_Opnd => Make_Real_Literal (Loc, Ureal_1)),
8224 Right_Opnd =>
8225 Make_Real_Literal (Loc, Small_Value (Entity (P)))));
8227 Analyze_And_Resolve (N, C_Type);
8229 -- Floating-point (Ada 83 compatibility)
8231 else
8232 -- Ada 83 attribute is defined as (RM83 3.5.8)
8234 -- T'Large = 2.0**T'Emax * (1.0 - 2.0**(-T'Mantissa))
8236 -- where
8238 -- T'Emax = 4 * T'Mantissa
8240 Fold_Ureal
8242 Ureal_2 ** (4 * Mantissa) * (Ureal_1 - Ureal_2 ** (-Mantissa)),
8243 True);
8244 end if;
8246 ---------------
8247 -- Lock_Free --
8248 ---------------
8250 when Attribute_Lock_Free => Lock_Free : declare
8251 V : constant Entity_Id := Boolean_Literals (Uses_Lock_Free (P_Type));
8253 begin
8254 Rewrite (N, New_Occurrence_Of (V, Loc));
8256 -- Analyze and resolve as boolean. Note that this attribute is a
8257 -- static attribute in GNAT.
8259 Analyze_And_Resolve (N, Standard_Boolean);
8260 Static := True;
8261 Set_Is_Static_Expression (N, True);
8262 end Lock_Free;
8264 ----------
8265 -- Last --
8266 ----------
8268 when Attribute_Last => Last_Attr :
8269 begin
8270 Set_Bounds;
8272 if Compile_Time_Known_Value (Hi_Bound) then
8273 if Is_Real_Type (P_Type) then
8274 Fold_Ureal (N, Expr_Value_R (Hi_Bound), Static);
8275 else
8276 Fold_Uint (N, Expr_Value (Hi_Bound), Static);
8277 end if;
8279 else
8280 Check_Concurrent_Discriminant (Hi_Bound);
8281 end if;
8282 end Last_Attr;
8284 ----------------
8285 -- Last_Valid --
8286 ----------------
8288 when Attribute_Last_Valid => Last_Valid :
8289 begin
8290 if Has_Predicates (P_Type)
8291 and then Has_Static_Predicate (P_Type)
8292 then
8293 declare
8294 LastN : constant Node_Id :=
8295 Last (Static_Discrete_Predicate (P_Type));
8296 begin
8297 if Nkind (LastN) = N_Range then
8298 Fold_Uint (N, Expr_Value (High_Bound (LastN)), Static);
8299 else
8300 Fold_Uint (N, Expr_Value (LastN), Static);
8301 end if;
8302 end;
8304 else
8305 Set_Bounds;
8306 Fold_Uint (N, Expr_Value (Hi_Bound), Static);
8307 end if;
8308 end Last_Valid;
8310 ------------------
8311 -- Leading_Part --
8312 ------------------
8314 when Attribute_Leading_Part =>
8315 Fold_Ureal
8317 Eval_Fat.Leading_Part
8318 (P_Base_Type, Expr_Value_R (E1), Expr_Value (E2)),
8319 Static);
8321 ------------
8322 -- Length --
8323 ------------
8325 when Attribute_Length => Length : declare
8326 Ind : Node_Id;
8328 begin
8329 -- If any index type is a formal type, or derived from one, the
8330 -- bounds are not static. Treating them as static can produce
8331 -- spurious warnings or improper constant folding.
8333 Ind := First_Index (P_Type);
8334 while Present (Ind) loop
8335 if Is_Generic_Type (Root_Type (Etype (Ind))) then
8336 return;
8337 end if;
8339 Next_Index (Ind);
8340 end loop;
8342 Set_Bounds;
8344 -- For two compile time values, we can compute length
8346 if Compile_Time_Known_Value (Lo_Bound)
8347 and then Compile_Time_Known_Value (Hi_Bound)
8348 then
8349 Fold_Uint (N,
8350 UI_Max (0, 1 + (Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound))),
8351 Static);
8352 end if;
8354 -- One more case is where Hi_Bound and Lo_Bound are compile-time
8355 -- comparable, and we can figure out the difference between them.
8357 declare
8358 Diff : aliased Uint;
8360 begin
8361 case
8362 Compile_Time_Compare
8363 (Lo_Bound, Hi_Bound, Diff'Access, Assume_Valid => False)
8365 when EQ =>
8366 Fold_Uint (N, Uint_1, Static);
8368 when GT =>
8369 Fold_Uint (N, Uint_0, Static);
8371 when LT =>
8372 if Diff /= No_Uint then
8373 Fold_Uint (N, Diff + 1, Static);
8374 end if;
8376 when others =>
8377 null;
8378 end case;
8379 end;
8380 end Length;
8382 ----------------
8383 -- Loop_Entry --
8384 ----------------
8386 -- Loop_Entry acts as an alias of a constant initialized to the prefix
8387 -- of the said attribute at the point of entry into the related loop. As
8388 -- such, the attribute reference does not need to be evaluated because
8389 -- the prefix is the one that is evaluted.
8391 when Attribute_Loop_Entry =>
8392 null;
8394 -------------
8395 -- Machine --
8396 -------------
8398 when Attribute_Machine =>
8399 Fold_Ureal
8401 Eval_Fat.Machine
8402 (P_Base_Type, Expr_Value_R (E1), Eval_Fat.Round, N),
8403 Static);
8405 ------------------
8406 -- Machine_Emax --
8407 ------------------
8409 when Attribute_Machine_Emax =>
8410 Fold_Uint (N, Machine_Emax_Value (P_Type), Static);
8412 ------------------
8413 -- Machine_Emin --
8414 ------------------
8416 when Attribute_Machine_Emin =>
8417 Fold_Uint (N, Machine_Emin_Value (P_Type), Static);
8419 ----------------------
8420 -- Machine_Mantissa --
8421 ----------------------
8423 when Attribute_Machine_Mantissa =>
8424 Fold_Uint (N, Machine_Mantissa_Value (P_Type), Static);
8426 -----------------------
8427 -- Machine_Overflows --
8428 -----------------------
8430 when Attribute_Machine_Overflows =>
8432 -- Always true for fixed-point
8434 if Is_Fixed_Point_Type (P_Type) then
8435 Fold_Uint (N, True_Value, Static);
8437 -- Floating point case
8439 else
8440 Fold_Uint (N,
8441 UI_From_Int (Boolean'Pos (Machine_Overflows_On_Target)),
8442 Static);
8443 end if;
8445 -------------------
8446 -- Machine_Radix --
8447 -------------------
8449 when Attribute_Machine_Radix =>
8450 if Is_Fixed_Point_Type (P_Type) then
8451 if Is_Decimal_Fixed_Point_Type (P_Type)
8452 and then Machine_Radix_10 (P_Type)
8453 then
8454 Fold_Uint (N, Uint_10, Static);
8455 else
8456 Fold_Uint (N, Uint_2, Static);
8457 end if;
8459 -- All floating-point type always have radix 2
8461 else
8462 Fold_Uint (N, Uint_2, Static);
8463 end if;
8465 ----------------------
8466 -- Machine_Rounding --
8467 ----------------------
8469 -- Note: for the folding case, it is fine to treat Machine_Rounding
8470 -- exactly the same way as Rounding, since this is one of the allowed
8471 -- behaviors, and performance is not an issue here. It might be a bit
8472 -- better to give the same result as it would give at run time, even
8473 -- though the non-determinism is certainly permitted.
8475 when Attribute_Machine_Rounding =>
8476 Fold_Ureal
8477 (N, Eval_Fat.Rounding (P_Base_Type, Expr_Value_R (E1)), Static);
8479 --------------------
8480 -- Machine_Rounds --
8481 --------------------
8483 when Attribute_Machine_Rounds =>
8485 -- Always False for fixed-point
8487 if Is_Fixed_Point_Type (P_Type) then
8488 Fold_Uint (N, False_Value, Static);
8490 -- Else yield proper floating-point result
8492 else
8493 Fold_Uint
8494 (N, UI_From_Int (Boolean'Pos (Machine_Rounds_On_Target)),
8495 Static);
8496 end if;
8498 ------------------
8499 -- Machine_Size --
8500 ------------------
8502 -- Note: Machine_Size is identical to Object_Size
8504 when Attribute_Machine_Size => Machine_Size : declare
8505 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
8507 begin
8508 if Known_Esize (P_TypeA) then
8509 Fold_Uint (N, Esize (P_TypeA), Static);
8510 end if;
8511 end Machine_Size;
8513 --------------
8514 -- Mantissa --
8515 --------------
8517 when Attribute_Mantissa =>
8519 -- Fixed-point mantissa
8521 if Is_Fixed_Point_Type (P_Type) then
8523 -- Compile time foldable case
8525 if Compile_Time_Known_Value (Type_Low_Bound (P_Type))
8526 and then
8527 Compile_Time_Known_Value (Type_High_Bound (P_Type))
8528 then
8529 -- The calculation of the obsolete Ada 83 attribute Mantissa
8530 -- is annoying, because of AI00143, quoted here:
8532 -- !question 84-01-10
8534 -- Consider the model numbers for F:
8536 -- type F is delta 1.0 range -7.0 .. 8.0;
8538 -- The wording requires that F'MANTISSA be the SMALLEST
8539 -- integer number for which each bound of the specified
8540 -- range is either a model number or lies at most small
8541 -- distant from a model number. This means F'MANTISSA
8542 -- is required to be 3 since the range -7.0 .. 7.0 fits
8543 -- in 3 signed bits, and 8 is "at most" 1.0 from a model
8544 -- number, namely, 7. Is this analysis correct? Note that
8545 -- this implies the upper bound of the range is not
8546 -- represented as a model number.
8548 -- !response 84-03-17
8550 -- The analysis is correct. The upper and lower bounds for
8551 -- a fixed point type can lie outside the range of model
8552 -- numbers.
8554 declare
8555 Siz : Uint;
8556 LBound : Ureal;
8557 UBound : Ureal;
8558 Bound : Ureal;
8559 Max_Man : Uint;
8561 begin
8562 LBound := Expr_Value_R (Type_Low_Bound (P_Type));
8563 UBound := Expr_Value_R (Type_High_Bound (P_Type));
8564 Bound := UR_Max (UR_Abs (LBound), UR_Abs (UBound));
8565 Max_Man := UR_Trunc (Bound / Small_Value (P_Type));
8567 -- If the Bound is exactly a model number, i.e. a multiple
8568 -- of Small, then we back it off by one to get the integer
8569 -- value that must be representable.
8571 if Small_Value (P_Type) * Max_Man = Bound then
8572 Max_Man := Max_Man - 1;
8573 end if;
8575 -- Now find corresponding size = Mantissa value
8577 Siz := Uint_0;
8578 while 2 ** Siz < Max_Man loop
8579 Siz := Siz + 1;
8580 end loop;
8582 Fold_Uint (N, Siz, Static);
8583 end;
8585 else
8586 -- The case of dynamic bounds cannot be evaluated at compile
8587 -- time. Instead we use a runtime routine (see Exp_Attr).
8589 null;
8590 end if;
8592 -- Floating-point Mantissa
8594 else
8595 Fold_Uint (N, Mantissa, Static);
8596 end if;
8598 ---------
8599 -- Max --
8600 ---------
8602 when Attribute_Max => Max :
8603 begin
8604 if Is_Real_Type (P_Type) then
8605 Fold_Ureal
8606 (N, UR_Max (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
8607 else
8608 Fold_Uint (N, UI_Max (Expr_Value (E1), Expr_Value (E2)), Static);
8609 end if;
8610 end Max;
8612 ----------------------------------
8613 -- Max_Alignment_For_Allocation --
8614 ----------------------------------
8616 -- Max_Alignment_For_Allocation is usually the Alignment. However,
8617 -- arrays are allocated with dope, so we need to take into account both
8618 -- the alignment of the array, which comes from the component alignment,
8619 -- and the alignment of the dope. Also, if the alignment is unknown, we
8620 -- use the max (it's OK to be pessimistic).
8622 when Attribute_Max_Alignment_For_Allocation =>
8623 declare
8624 A : Uint := UI_From_Int (Ttypes.Maximum_Alignment);
8625 begin
8626 if Known_Alignment (P_Type) and then
8627 (not Is_Array_Type (P_Type) or else Alignment (P_Type) > A)
8628 then
8629 A := Alignment (P_Type);
8630 end if;
8632 Fold_Uint (N, A, Static);
8633 end;
8635 ----------------------------------
8636 -- Max_Size_In_Storage_Elements --
8637 ----------------------------------
8639 -- Max_Size_In_Storage_Elements is simply the Size rounded up to a
8640 -- Storage_Unit boundary. We can fold any cases for which the size
8641 -- is known by the front end.
8643 when Attribute_Max_Size_In_Storage_Elements =>
8644 if Known_Esize (P_Type) then
8645 Fold_Uint (N,
8646 (Esize (P_Type) + System_Storage_Unit - 1) /
8647 System_Storage_Unit,
8648 Static);
8649 end if;
8651 --------------------
8652 -- Mechanism_Code --
8653 --------------------
8655 when Attribute_Mechanism_Code =>
8656 declare
8657 Val : Int;
8658 Formal : Entity_Id;
8659 Mech : Mechanism_Type;
8661 begin
8662 if No (E1) then
8663 Mech := Mechanism (P_Entity);
8665 else
8666 Val := UI_To_Int (Expr_Value (E1));
8668 Formal := First_Formal (P_Entity);
8669 for J in 1 .. Val - 1 loop
8670 Next_Formal (Formal);
8671 end loop;
8672 Mech := Mechanism (Formal);
8673 end if;
8675 if Mech < 0 then
8676 Fold_Uint (N, UI_From_Int (Int (-Mech)), Static);
8677 end if;
8678 end;
8680 ---------
8681 -- Min --
8682 ---------
8684 when Attribute_Min => Min :
8685 begin
8686 if Is_Real_Type (P_Type) then
8687 Fold_Ureal
8688 (N, UR_Min (Expr_Value_R (E1), Expr_Value_R (E2)), Static);
8689 else
8690 Fold_Uint
8691 (N, UI_Min (Expr_Value (E1), Expr_Value (E2)), Static);
8692 end if;
8693 end Min;
8695 ---------
8696 -- Mod --
8697 ---------
8699 when Attribute_Mod =>
8700 Fold_Uint
8701 (N, UI_Mod (Expr_Value (E1), Modulus (P_Base_Type)), Static);
8703 -----------
8704 -- Model --
8705 -----------
8707 when Attribute_Model =>
8708 Fold_Ureal
8709 (N, Eval_Fat.Model (P_Base_Type, Expr_Value_R (E1)), Static);
8711 ----------------
8712 -- Model_Emin --
8713 ----------------
8715 when Attribute_Model_Emin =>
8716 Fold_Uint (N, Model_Emin_Value (P_Base_Type), Static);
8718 -------------------
8719 -- Model_Epsilon --
8720 -------------------
8722 when Attribute_Model_Epsilon =>
8723 Fold_Ureal (N, Model_Epsilon_Value (P_Base_Type), Static);
8725 --------------------
8726 -- Model_Mantissa --
8727 --------------------
8729 when Attribute_Model_Mantissa =>
8730 Fold_Uint (N, Model_Mantissa_Value (P_Base_Type), Static);
8732 -----------------
8733 -- Model_Small --
8734 -----------------
8736 when Attribute_Model_Small =>
8737 Fold_Ureal (N, Model_Small_Value (P_Base_Type), Static);
8739 -------------
8740 -- Modulus --
8741 -------------
8743 when Attribute_Modulus =>
8744 Fold_Uint (N, Modulus (P_Type), Static);
8746 --------------------
8747 -- Null_Parameter --
8748 --------------------
8750 -- Cannot fold, we know the value sort of, but the whole point is
8751 -- that there is no way to talk about this imaginary value except
8752 -- by using the attribute, so we leave it the way it is.
8754 when Attribute_Null_Parameter =>
8755 null;
8757 -----------------
8758 -- Object_Size --
8759 -----------------
8761 -- The Object_Size attribute for a type returns the Esize of the
8762 -- type and can be folded if this value is known.
8764 when Attribute_Object_Size => Object_Size : declare
8765 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
8767 begin
8768 if Known_Esize (P_TypeA) then
8769 Fold_Uint (N, Esize (P_TypeA), Static);
8770 end if;
8771 end Object_Size;
8773 ----------------------
8774 -- Overlaps_Storage --
8775 ----------------------
8777 when Attribute_Overlaps_Storage =>
8778 null;
8780 -------------------------
8781 -- Passed_By_Reference --
8782 -------------------------
8784 -- Scalar types are never passed by reference
8786 when Attribute_Passed_By_Reference =>
8787 Fold_Uint (N, False_Value, Static);
8789 ---------
8790 -- Pos --
8791 ---------
8793 when Attribute_Pos =>
8794 Fold_Uint (N, Expr_Value (E1), Static);
8796 ----------
8797 -- Pred --
8798 ----------
8800 when Attribute_Pred => Pred :
8801 begin
8802 -- Floating-point case
8804 if Is_Floating_Point_Type (P_Type) then
8805 Fold_Ureal
8806 (N, Eval_Fat.Pred (P_Base_Type, Expr_Value_R (E1)), Static);
8808 -- Fixed-point case
8810 elsif Is_Fixed_Point_Type (P_Type) then
8811 Fold_Ureal
8812 (N, Expr_Value_R (E1) - Small_Value (P_Type), True);
8814 -- Modular integer case (wraps)
8816 elsif Is_Modular_Integer_Type (P_Type) then
8817 Fold_Uint (N, (Expr_Value (E1) - 1) mod Modulus (P_Type), Static);
8819 -- Other scalar cases
8821 else
8822 pragma Assert (Is_Scalar_Type (P_Type));
8824 if Is_Enumeration_Type (P_Type)
8825 and then Expr_Value (E1) =
8826 Expr_Value (Type_Low_Bound (P_Base_Type))
8827 then
8828 Apply_Compile_Time_Constraint_Error
8829 (N, "Pred of `&''First`",
8830 CE_Overflow_Check_Failed,
8831 Ent => P_Base_Type,
8832 Warn => not Static);
8834 Check_Expressions;
8835 return;
8836 end if;
8838 Fold_Uint (N, Expr_Value (E1) - 1, Static);
8839 end if;
8840 end Pred;
8842 -----------
8843 -- Range --
8844 -----------
8846 -- No processing required, because by this stage, Range has been
8847 -- replaced by First .. Last, so this branch can never be taken.
8849 when Attribute_Range =>
8850 raise Program_Error;
8852 ------------------
8853 -- Range_Length --
8854 ------------------
8856 when Attribute_Range_Length =>
8857 Set_Bounds;
8859 -- Can fold if both bounds are compile time known
8861 if Compile_Time_Known_Value (Hi_Bound)
8862 and then Compile_Time_Known_Value (Lo_Bound)
8863 then
8864 Fold_Uint (N,
8865 UI_Max
8866 (0, Expr_Value (Hi_Bound) - Expr_Value (Lo_Bound) + 1),
8867 Static);
8868 end if;
8870 -- One more case is where Hi_Bound and Lo_Bound are compile-time
8871 -- comparable, and we can figure out the difference between them.
8873 declare
8874 Diff : aliased Uint;
8876 begin
8877 case
8878 Compile_Time_Compare
8879 (Lo_Bound, Hi_Bound, Diff'Access, Assume_Valid => False)
8881 when EQ =>
8882 Fold_Uint (N, Uint_1, Static);
8884 when GT =>
8885 Fold_Uint (N, Uint_0, Static);
8887 when LT =>
8888 if Diff /= No_Uint then
8889 Fold_Uint (N, Diff + 1, Static);
8890 end if;
8892 when others =>
8893 null;
8894 end case;
8895 end;
8897 ---------
8898 -- Ref --
8899 ---------
8901 when Attribute_Ref =>
8902 Fold_Uint (N, Expr_Value (E1), Static);
8904 ---------------
8905 -- Remainder --
8906 ---------------
8908 when Attribute_Remainder => Remainder : declare
8909 X : constant Ureal := Expr_Value_R (E1);
8910 Y : constant Ureal := Expr_Value_R (E2);
8912 begin
8913 if UR_Is_Zero (Y) then
8914 Apply_Compile_Time_Constraint_Error
8915 (N, "division by zero in Remainder",
8916 CE_Overflow_Check_Failed,
8917 Warn => not Static);
8919 Check_Expressions;
8920 return;
8921 end if;
8923 Fold_Ureal (N, Eval_Fat.Remainder (P_Base_Type, X, Y), Static);
8924 end Remainder;
8926 -----------------
8927 -- Restriction --
8928 -----------------
8930 when Attribute_Restriction_Set => Restriction_Set : declare
8931 begin
8932 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
8933 Set_Is_Static_Expression (N);
8934 end Restriction_Set;
8936 -----------
8937 -- Round --
8938 -----------
8940 when Attribute_Round => Round :
8941 declare
8942 Sr : Ureal;
8943 Si : Uint;
8945 begin
8946 -- First we get the (exact result) in units of small
8948 Sr := Expr_Value_R (E1) / Small_Value (C_Type);
8950 -- Now round that exactly to an integer
8952 Si := UR_To_Uint (Sr);
8954 -- Finally the result is obtained by converting back to real
8956 Fold_Ureal (N, Si * Small_Value (C_Type), Static);
8957 end Round;
8959 --------------
8960 -- Rounding --
8961 --------------
8963 when Attribute_Rounding =>
8964 Fold_Ureal
8965 (N, Eval_Fat.Rounding (P_Base_Type, Expr_Value_R (E1)), Static);
8967 ---------------
8968 -- Safe_Emax --
8969 ---------------
8971 when Attribute_Safe_Emax =>
8972 Fold_Uint (N, Safe_Emax_Value (P_Type), Static);
8974 ----------------
8975 -- Safe_First --
8976 ----------------
8978 when Attribute_Safe_First =>
8979 Fold_Ureal (N, Safe_First_Value (P_Type), Static);
8981 ----------------
8982 -- Safe_Large --
8983 ----------------
8985 when Attribute_Safe_Large =>
8986 if Is_Fixed_Point_Type (P_Type) then
8987 Fold_Ureal
8988 (N, Expr_Value_R (Type_High_Bound (P_Base_Type)), Static);
8989 else
8990 Fold_Ureal (N, Safe_Last_Value (P_Type), Static);
8991 end if;
8993 ---------------
8994 -- Safe_Last --
8995 ---------------
8997 when Attribute_Safe_Last =>
8998 Fold_Ureal (N, Safe_Last_Value (P_Type), Static);
9000 ----------------
9001 -- Safe_Small --
9002 ----------------
9004 when Attribute_Safe_Small =>
9006 -- In Ada 95, the old Ada 83 attribute Safe_Small is redundant
9007 -- for fixed-point, since is the same as Small, but we implement
9008 -- it for backwards compatibility.
9010 if Is_Fixed_Point_Type (P_Type) then
9011 Fold_Ureal (N, Small_Value (P_Type), Static);
9013 -- Ada 83 Safe_Small for floating-point cases
9015 else
9016 Fold_Ureal (N, Model_Small_Value (P_Type), Static);
9017 end if;
9019 -----------
9020 -- Scale --
9021 -----------
9023 when Attribute_Scale =>
9024 Fold_Uint (N, Scale_Value (P_Type), Static);
9026 -------------
9027 -- Scaling --
9028 -------------
9030 when Attribute_Scaling =>
9031 Fold_Ureal
9033 Eval_Fat.Scaling
9034 (P_Base_Type, Expr_Value_R (E1), Expr_Value (E2)),
9035 Static);
9037 ------------------
9038 -- Signed_Zeros --
9039 ------------------
9041 when Attribute_Signed_Zeros =>
9042 Fold_Uint
9043 (N, UI_From_Int (Boolean'Pos (Has_Signed_Zeros (P_Type))), Static);
9045 ----------
9046 -- Size --
9047 ----------
9049 -- Size attribute returns the RM size. All scalar types can be folded,
9050 -- as well as any types for which the size is known by the front end,
9051 -- including any type for which a size attribute is specified. This is
9052 -- one of the places where it is annoying that a size of zero means two
9053 -- things (zero size for scalars, unspecified size for non-scalars).
9055 when Attribute_Size | Attribute_VADS_Size => Size : declare
9056 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
9058 begin
9059 if Is_Scalar_Type (P_TypeA) or else RM_Size (P_TypeA) /= Uint_0 then
9061 -- VADS_Size case
9063 if Id = Attribute_VADS_Size or else Use_VADS_Size then
9064 declare
9065 S : constant Node_Id := Size_Clause (P_TypeA);
9067 begin
9068 -- If a size clause applies, then use the size from it.
9069 -- This is one of the rare cases where we can use the
9070 -- Size_Clause field for a subtype when Has_Size_Clause
9071 -- is False. Consider:
9073 -- type x is range 1 .. 64;
9074 -- for x'size use 12;
9075 -- subtype y is x range 0 .. 3;
9077 -- Here y has a size clause inherited from x, but normally
9078 -- it does not apply, and y'size is 2. However, y'VADS_Size
9079 -- is indeed 12 and not 2.
9081 if Present (S)
9082 and then Is_OK_Static_Expression (Expression (S))
9083 then
9084 Fold_Uint (N, Expr_Value (Expression (S)), Static);
9086 -- If no size is specified, then we simply use the object
9087 -- size in the VADS_Size case (e.g. Natural'Size is equal
9088 -- to Integer'Size, not one less).
9090 else
9091 Fold_Uint (N, Esize (P_TypeA), Static);
9092 end if;
9093 end;
9095 -- Normal case (Size) in which case we want the RM_Size
9097 else
9098 Fold_Uint (N, RM_Size (P_TypeA), Static);
9099 end if;
9100 end if;
9101 end Size;
9103 -----------
9104 -- Small --
9105 -----------
9107 when Attribute_Small =>
9109 -- The floating-point case is present only for Ada 83 compatibility.
9110 -- Note that strictly this is an illegal addition, since we are
9111 -- extending an Ada 95 defined attribute, but we anticipate an
9112 -- ARG ruling that will permit this.
9114 if Is_Floating_Point_Type (P_Type) then
9116 -- Ada 83 attribute is defined as (RM83 3.5.8)
9118 -- T'Small = 2.0**(-T'Emax - 1)
9120 -- where
9122 -- T'Emax = 4 * T'Mantissa
9124 Fold_Ureal (N, Ureal_2 ** ((-(4 * Mantissa)) - 1), Static);
9126 -- Normal Ada 95 fixed-point case
9128 else
9129 Fold_Ureal (N, Small_Value (P_Type), True);
9130 end if;
9132 -----------------
9133 -- Stream_Size --
9134 -----------------
9136 when Attribute_Stream_Size =>
9137 null;
9139 ----------
9140 -- Succ --
9141 ----------
9143 when Attribute_Succ => Succ :
9144 begin
9145 -- Floating-point case
9147 if Is_Floating_Point_Type (P_Type) then
9148 Fold_Ureal
9149 (N, Eval_Fat.Succ (P_Base_Type, Expr_Value_R (E1)), Static);
9151 -- Fixed-point case
9153 elsif Is_Fixed_Point_Type (P_Type) then
9154 Fold_Ureal (N, Expr_Value_R (E1) + Small_Value (P_Type), Static);
9156 -- Modular integer case (wraps)
9158 elsif Is_Modular_Integer_Type (P_Type) then
9159 Fold_Uint (N, (Expr_Value (E1) + 1) mod Modulus (P_Type), Static);
9161 -- Other scalar cases
9163 else
9164 pragma Assert (Is_Scalar_Type (P_Type));
9166 if Is_Enumeration_Type (P_Type)
9167 and then Expr_Value (E1) =
9168 Expr_Value (Type_High_Bound (P_Base_Type))
9169 then
9170 Apply_Compile_Time_Constraint_Error
9171 (N, "Succ of `&''Last`",
9172 CE_Overflow_Check_Failed,
9173 Ent => P_Base_Type,
9174 Warn => not Static);
9176 Check_Expressions;
9177 return;
9178 else
9179 Fold_Uint (N, Expr_Value (E1) + 1, Static);
9180 end if;
9181 end if;
9182 end Succ;
9184 ----------------
9185 -- Truncation --
9186 ----------------
9188 when Attribute_Truncation =>
9189 Fold_Ureal
9191 Eval_Fat.Truncation (P_Base_Type, Expr_Value_R (E1)),
9192 Static);
9194 ----------------
9195 -- Type_Class --
9196 ----------------
9198 when Attribute_Type_Class => Type_Class : declare
9199 Typ : constant Entity_Id := Underlying_Type (P_Base_Type);
9200 Id : RE_Id;
9202 begin
9203 if Is_Descendent_Of_Address (Typ) then
9204 Id := RE_Type_Class_Address;
9206 elsif Is_Enumeration_Type (Typ) then
9207 Id := RE_Type_Class_Enumeration;
9209 elsif Is_Integer_Type (Typ) then
9210 Id := RE_Type_Class_Integer;
9212 elsif Is_Fixed_Point_Type (Typ) then
9213 Id := RE_Type_Class_Fixed_Point;
9215 elsif Is_Floating_Point_Type (Typ) then
9216 Id := RE_Type_Class_Floating_Point;
9218 elsif Is_Array_Type (Typ) then
9219 Id := RE_Type_Class_Array;
9221 elsif Is_Record_Type (Typ) then
9222 Id := RE_Type_Class_Record;
9224 elsif Is_Access_Type (Typ) then
9225 Id := RE_Type_Class_Access;
9227 elsif Is_Enumeration_Type (Typ) then
9228 Id := RE_Type_Class_Enumeration;
9230 elsif Is_Task_Type (Typ) then
9231 Id := RE_Type_Class_Task;
9233 -- We treat protected types like task types. It would make more
9234 -- sense to have another enumeration value, but after all the
9235 -- whole point of this feature is to be exactly DEC compatible,
9236 -- and changing the type Type_Class would not meet this requirement.
9238 elsif Is_Protected_Type (Typ) then
9239 Id := RE_Type_Class_Task;
9241 -- Not clear if there are any other possibilities, but if there
9242 -- are, then we will treat them as the address case.
9244 else
9245 Id := RE_Type_Class_Address;
9246 end if;
9248 Rewrite (N, New_Occurrence_Of (RTE (Id), Loc));
9249 end Type_Class;
9251 -----------------------
9252 -- Unbiased_Rounding --
9253 -----------------------
9255 when Attribute_Unbiased_Rounding =>
9256 Fold_Ureal
9258 Eval_Fat.Unbiased_Rounding (P_Base_Type, Expr_Value_R (E1)),
9259 Static);
9261 -------------------------
9262 -- Unconstrained_Array --
9263 -------------------------
9265 when Attribute_Unconstrained_Array => Unconstrained_Array : declare
9266 Typ : constant Entity_Id := Underlying_Type (P_Type);
9268 begin
9269 Rewrite (N, New_Occurrence_Of (
9270 Boolean_Literals (
9271 Is_Array_Type (P_Type)
9272 and then not Is_Constrained (Typ)), Loc));
9274 -- Analyze and resolve as boolean, note that this attribute is
9275 -- a static attribute in GNAT.
9277 Analyze_And_Resolve (N, Standard_Boolean);
9278 Static := True;
9279 Set_Is_Static_Expression (N, True);
9280 end Unconstrained_Array;
9282 -- Attribute Update is never static
9284 when Attribute_Update =>
9285 return;
9287 ---------------
9288 -- VADS_Size --
9289 ---------------
9291 -- Processing is shared with Size
9293 ---------
9294 -- Val --
9295 ---------
9297 when Attribute_Val => Val :
9298 begin
9299 if Expr_Value (E1) < Expr_Value (Type_Low_Bound (P_Base_Type))
9300 or else
9301 Expr_Value (E1) > Expr_Value (Type_High_Bound (P_Base_Type))
9302 then
9303 Apply_Compile_Time_Constraint_Error
9304 (N, "Val expression out of range",
9305 CE_Range_Check_Failed,
9306 Warn => not Static);
9308 Check_Expressions;
9309 return;
9311 else
9312 Fold_Uint (N, Expr_Value (E1), Static);
9313 end if;
9314 end Val;
9316 ----------------
9317 -- Value_Size --
9318 ----------------
9320 -- The Value_Size attribute for a type returns the RM size of the type.
9321 -- This an always be folded for scalar types, and can also be folded for
9322 -- non-scalar types if the size is set. This is one of the places where
9323 -- it is annoying that a size of zero means two things!
9325 when Attribute_Value_Size => Value_Size : declare
9326 P_TypeA : constant Entity_Id := Underlying_Type (P_Type);
9327 begin
9328 if Is_Scalar_Type (P_TypeA) or else RM_Size (P_TypeA) /= Uint_0 then
9329 Fold_Uint (N, RM_Size (P_TypeA), Static);
9330 end if;
9331 end Value_Size;
9333 -------------
9334 -- Version --
9335 -------------
9337 -- Version can never be static
9339 when Attribute_Version =>
9340 null;
9342 ----------------
9343 -- Wide_Image --
9344 ----------------
9346 -- Wide_Image is a scalar attribute, but is never static, because it
9347 -- is not a static function (having a non-scalar argument (RM 4.9(22))
9349 when Attribute_Wide_Image =>
9350 null;
9352 ---------------------
9353 -- Wide_Wide_Image --
9354 ---------------------
9356 -- Wide_Wide_Image is a scalar attribute but is never static, because it
9357 -- is not a static function (having a non-scalar argument (RM 4.9(22)).
9359 when Attribute_Wide_Wide_Image =>
9360 null;
9362 ---------------------
9363 -- Wide_Wide_Width --
9364 ---------------------
9366 -- Processing for Wide_Wide_Width is combined with Width
9368 ----------------
9369 -- Wide_Width --
9370 ----------------
9372 -- Processing for Wide_Width is combined with Width
9374 -----------
9375 -- Width --
9376 -----------
9378 -- This processing also handles the case of Wide_[Wide_]Width
9380 when Attribute_Width |
9381 Attribute_Wide_Width |
9382 Attribute_Wide_Wide_Width => Width :
9383 begin
9384 if Compile_Time_Known_Bounds (P_Type) then
9386 -- Floating-point types
9388 if Is_Floating_Point_Type (P_Type) then
9390 -- Width is zero for a null range (RM 3.5 (38))
9392 if Expr_Value_R (Type_High_Bound (P_Type)) <
9393 Expr_Value_R (Type_Low_Bound (P_Type))
9394 then
9395 Fold_Uint (N, Uint_0, Static);
9397 else
9398 -- For floating-point, we have +N.dddE+nnn where length
9399 -- of ddd is determined by type'Digits - 1, but is one
9400 -- if Digits is one (RM 3.5 (33)).
9402 -- nnn is set to 2 for Short_Float and Float (32 bit
9403 -- floats), and 3 for Long_Float and Long_Long_Float.
9404 -- For machines where Long_Long_Float is the IEEE
9405 -- extended precision type, the exponent takes 4 digits.
9407 declare
9408 Len : Int :=
9409 Int'Max (2, UI_To_Int (Digits_Value (P_Type)));
9411 begin
9412 if Esize (P_Type) <= 32 then
9413 Len := Len + 6;
9414 elsif Esize (P_Type) = 64 then
9415 Len := Len + 7;
9416 else
9417 Len := Len + 8;
9418 end if;
9420 Fold_Uint (N, UI_From_Int (Len), Static);
9421 end;
9422 end if;
9424 -- Fixed-point types
9426 elsif Is_Fixed_Point_Type (P_Type) then
9428 -- Width is zero for a null range (RM 3.5 (38))
9430 if Expr_Value (Type_High_Bound (P_Type)) <
9431 Expr_Value (Type_Low_Bound (P_Type))
9432 then
9433 Fold_Uint (N, Uint_0, Static);
9435 -- The non-null case depends on the specific real type
9437 else
9438 -- For fixed-point type width is Fore + 1 + Aft (RM 3.5(34))
9440 Fold_Uint
9441 (N, UI_From_Int (Fore_Value + 1) + Aft_Value (P_Type),
9442 Static);
9443 end if;
9445 -- Discrete types
9447 else
9448 declare
9449 R : constant Entity_Id := Root_Type (P_Type);
9450 Lo : constant Uint := Expr_Value (Type_Low_Bound (P_Type));
9451 Hi : constant Uint := Expr_Value (Type_High_Bound (P_Type));
9452 W : Nat;
9453 Wt : Nat;
9454 T : Uint;
9455 L : Node_Id;
9456 C : Character;
9458 begin
9459 -- Empty ranges
9461 if Lo > Hi then
9462 W := 0;
9464 -- Width for types derived from Standard.Character
9465 -- and Standard.Wide_[Wide_]Character.
9467 elsif Is_Standard_Character_Type (P_Type) then
9468 W := 0;
9470 -- Set W larger if needed
9472 for J in UI_To_Int (Lo) .. UI_To_Int (Hi) loop
9474 -- All wide characters look like Hex_hhhhhhhh
9476 if J > 255 then
9478 -- No need to compute this more than once
9480 exit;
9482 else
9483 C := Character'Val (J);
9485 -- Test for all cases where Character'Image
9486 -- yields an image that is longer than three
9487 -- characters. First the cases of Reserved_xxx
9488 -- names (length = 12).
9490 case C is
9491 when Reserved_128 | Reserved_129 |
9492 Reserved_132 | Reserved_153
9493 => Wt := 12;
9495 when BS | HT | LF | VT | FF | CR |
9496 SO | SI | EM | FS | GS | RS |
9497 US | RI | MW | ST | PM
9498 => Wt := 2;
9500 when NUL | SOH | STX | ETX | EOT |
9501 ENQ | ACK | BEL | DLE | DC1 |
9502 DC2 | DC3 | DC4 | NAK | SYN |
9503 ETB | CAN | SUB | ESC | DEL |
9504 BPH | NBH | NEL | SSA | ESA |
9505 HTS | HTJ | VTS | PLD | PLU |
9506 SS2 | SS3 | DCS | PU1 | PU2 |
9507 STS | CCH | SPA | EPA | SOS |
9508 SCI | CSI | OSC | APC
9509 => Wt := 3;
9511 when Space .. Tilde |
9512 No_Break_Space .. LC_Y_Diaeresis
9514 -- Special case of soft hyphen in Ada 2005
9516 if C = Character'Val (16#AD#)
9517 and then Ada_Version >= Ada_2005
9518 then
9519 Wt := 11;
9520 else
9521 Wt := 3;
9522 end if;
9523 end case;
9525 W := Int'Max (W, Wt);
9526 end if;
9527 end loop;
9529 -- Width for types derived from Standard.Boolean
9531 elsif R = Standard_Boolean then
9532 if Lo = 0 then
9533 W := 5; -- FALSE
9534 else
9535 W := 4; -- TRUE
9536 end if;
9538 -- Width for integer types
9540 elsif Is_Integer_Type (P_Type) then
9541 T := UI_Max (abs Lo, abs Hi);
9543 W := 2;
9544 while T >= 10 loop
9545 W := W + 1;
9546 T := T / 10;
9547 end loop;
9549 -- User declared enum type with discard names
9551 elsif Discard_Names (R) then
9553 -- If range is null, result is zero, that has already
9554 -- been dealt with, so what we need is the power of ten
9555 -- that accomodates the Pos of the largest value, which
9556 -- is the high bound of the range + one for the space.
9558 W := 1;
9559 T := Hi;
9560 while T /= 0 loop
9561 T := T / 10;
9562 W := W + 1;
9563 end loop;
9565 -- Only remaining possibility is user declared enum type
9566 -- with normal case of Discard_Names not active.
9568 else
9569 pragma Assert (Is_Enumeration_Type (P_Type));
9571 W := 0;
9572 L := First_Literal (P_Type);
9573 while Present (L) loop
9575 -- Only pay attention to in range characters
9577 if Lo <= Enumeration_Pos (L)
9578 and then Enumeration_Pos (L) <= Hi
9579 then
9580 -- For Width case, use decoded name
9582 if Id = Attribute_Width then
9583 Get_Decoded_Name_String (Chars (L));
9584 Wt := Nat (Name_Len);
9586 -- For Wide_[Wide_]Width, use encoded name, and
9587 -- then adjust for the encoding.
9589 else
9590 Get_Name_String (Chars (L));
9592 -- Character literals are always of length 3
9594 if Name_Buffer (1) = 'Q' then
9595 Wt := 3;
9597 -- Otherwise loop to adjust for upper/wide chars
9599 else
9600 Wt := Nat (Name_Len);
9602 for J in 1 .. Name_Len loop
9603 if Name_Buffer (J) = 'U' then
9604 Wt := Wt - 2;
9605 elsif Name_Buffer (J) = 'W' then
9606 Wt := Wt - 4;
9607 end if;
9608 end loop;
9609 end if;
9610 end if;
9612 W := Int'Max (W, Wt);
9613 end if;
9615 Next_Literal (L);
9616 end loop;
9617 end if;
9619 Fold_Uint (N, UI_From_Int (W), Static);
9620 end;
9621 end if;
9622 end if;
9623 end Width;
9625 -- The following attributes denote functions that cannot be folded
9627 when Attribute_From_Any |
9628 Attribute_To_Any |
9629 Attribute_TypeCode =>
9630 null;
9632 -- The following attributes can never be folded, and furthermore we
9633 -- should not even have entered the case statement for any of these.
9634 -- Note that in some cases, the values have already been folded as
9635 -- a result of the processing in Analyze_Attribute or earlier in
9636 -- this procedure.
9638 when Attribute_Abort_Signal |
9639 Attribute_Access |
9640 Attribute_Address |
9641 Attribute_Address_Size |
9642 Attribute_Asm_Input |
9643 Attribute_Asm_Output |
9644 Attribute_Base |
9645 Attribute_Bit_Order |
9646 Attribute_Bit_Position |
9647 Attribute_Callable |
9648 Attribute_Caller |
9649 Attribute_Class |
9650 Attribute_Code_Address |
9651 Attribute_Compiler_Version |
9652 Attribute_Count |
9653 Attribute_Default_Bit_Order |
9654 Attribute_Default_Scalar_Storage_Order |
9655 Attribute_Deref |
9656 Attribute_Elaborated |
9657 Attribute_Elab_Body |
9658 Attribute_Elab_Spec |
9659 Attribute_Elab_Subp_Body |
9660 Attribute_Enabled |
9661 Attribute_External_Tag |
9662 Attribute_Fast_Math |
9663 Attribute_First_Bit |
9664 Attribute_Img |
9665 Attribute_Input |
9666 Attribute_Last_Bit |
9667 Attribute_Library_Level |
9668 Attribute_Maximum_Alignment |
9669 Attribute_Old |
9670 Attribute_Output |
9671 Attribute_Partition_ID |
9672 Attribute_Pool_Address |
9673 Attribute_Position |
9674 Attribute_Priority |
9675 Attribute_Read |
9676 Attribute_Result |
9677 Attribute_Scalar_Storage_Order |
9678 Attribute_Simple_Storage_Pool |
9679 Attribute_Storage_Pool |
9680 Attribute_Storage_Size |
9681 Attribute_Storage_Unit |
9682 Attribute_Stub_Type |
9683 Attribute_System_Allocator_Alignment |
9684 Attribute_Tag |
9685 Attribute_Target_Name |
9686 Attribute_Terminated |
9687 Attribute_To_Address |
9688 Attribute_Type_Key |
9689 Attribute_UET_Address |
9690 Attribute_Unchecked_Access |
9691 Attribute_Universal_Literal_String |
9692 Attribute_Unrestricted_Access |
9693 Attribute_Valid |
9694 Attribute_Valid_Scalars |
9695 Attribute_Value |
9696 Attribute_Wchar_T_Size |
9697 Attribute_Wide_Value |
9698 Attribute_Wide_Wide_Value |
9699 Attribute_Word_Size |
9700 Attribute_Write =>
9702 raise Program_Error;
9703 end case;
9705 -- At the end of the case, one more check. If we did a static evaluation
9706 -- so that the result is now a literal, then set Is_Static_Expression
9707 -- in the constant only if the prefix type is a static subtype. For
9708 -- non-static subtypes, the folding is still OK, but not static.
9710 -- An exception is the GNAT attribute Constrained_Array which is
9711 -- defined to be a static attribute in all cases.
9713 if Nkind_In (N, N_Integer_Literal,
9714 N_Real_Literal,
9715 N_Character_Literal,
9716 N_String_Literal)
9717 or else (Is_Entity_Name (N)
9718 and then Ekind (Entity (N)) = E_Enumeration_Literal)
9719 then
9720 Set_Is_Static_Expression (N, Static);
9722 -- If this is still an attribute reference, then it has not been folded
9723 -- and that means that its expressions are in a non-static context.
9725 elsif Nkind (N) = N_Attribute_Reference then
9726 Check_Expressions;
9728 -- Note: the else case not covered here are odd cases where the
9729 -- processing has transformed the attribute into something other
9730 -- than a constant. Nothing more to do in such cases.
9732 else
9733 null;
9734 end if;
9735 end Eval_Attribute;
9737 ------------------------------
9738 -- Is_Anonymous_Tagged_Base --
9739 ------------------------------
9741 function Is_Anonymous_Tagged_Base
9742 (Anon : Entity_Id;
9743 Typ : Entity_Id) return Boolean
9745 begin
9746 return
9747 Anon = Current_Scope
9748 and then Is_Itype (Anon)
9749 and then Associated_Node_For_Itype (Anon) = Parent (Typ);
9750 end Is_Anonymous_Tagged_Base;
9752 --------------------------------
9753 -- Name_Implies_Lvalue_Prefix --
9754 --------------------------------
9756 function Name_Implies_Lvalue_Prefix (Nam : Name_Id) return Boolean is
9757 pragma Assert (Is_Attribute_Name (Nam));
9758 begin
9759 return Attribute_Name_Implies_Lvalue_Prefix (Get_Attribute_Id (Nam));
9760 end Name_Implies_Lvalue_Prefix;
9762 -----------------------
9763 -- Resolve_Attribute --
9764 -----------------------
9766 procedure Resolve_Attribute (N : Node_Id; Typ : Entity_Id) is
9767 Loc : constant Source_Ptr := Sloc (N);
9768 P : constant Node_Id := Prefix (N);
9769 Aname : constant Name_Id := Attribute_Name (N);
9770 Attr_Id : constant Attribute_Id := Get_Attribute_Id (Aname);
9771 Btyp : constant Entity_Id := Base_Type (Typ);
9772 Des_Btyp : Entity_Id;
9773 Index : Interp_Index;
9774 It : Interp;
9775 Nom_Subt : Entity_Id;
9777 procedure Accessibility_Message;
9778 -- Error, or warning within an instance, if the static accessibility
9779 -- rules of 3.10.2 are violated.
9781 function Declared_Within_Generic_Unit
9782 (Entity : Entity_Id;
9783 Generic_Unit : Node_Id) return Boolean;
9784 -- Returns True if Declared_Entity is declared within the declarative
9785 -- region of Generic_Unit; otherwise returns False.
9787 ---------------------------
9788 -- Accessibility_Message --
9789 ---------------------------
9791 procedure Accessibility_Message is
9792 Indic : Node_Id := Parent (Parent (N));
9794 begin
9795 -- In an instance, this is a runtime check, but one we
9796 -- know will fail, so generate an appropriate warning.
9798 if In_Instance_Body then
9799 Error_Msg_Warn := SPARK_Mode /= On;
9800 Error_Msg_F
9801 ("non-local pointer cannot point to local object<<", P);
9802 Error_Msg_F ("\Program_Error [<<", P);
9803 Rewrite (N,
9804 Make_Raise_Program_Error (Loc,
9805 Reason => PE_Accessibility_Check_Failed));
9806 Set_Etype (N, Typ);
9807 return;
9809 else
9810 Error_Msg_F ("non-local pointer cannot point to local object", P);
9812 -- Check for case where we have a missing access definition
9814 if Is_Record_Type (Current_Scope)
9815 and then
9816 Nkind_In (Parent (N), N_Discriminant_Association,
9817 N_Index_Or_Discriminant_Constraint)
9818 then
9819 Indic := Parent (Parent (N));
9820 while Present (Indic)
9821 and then Nkind (Indic) /= N_Subtype_Indication
9822 loop
9823 Indic := Parent (Indic);
9824 end loop;
9826 if Present (Indic) then
9827 Error_Msg_NE
9828 ("\use an access definition for" &
9829 " the access discriminant of&",
9830 N, Entity (Subtype_Mark (Indic)));
9831 end if;
9832 end if;
9833 end if;
9834 end Accessibility_Message;
9836 ----------------------------------
9837 -- Declared_Within_Generic_Unit --
9838 ----------------------------------
9840 function Declared_Within_Generic_Unit
9841 (Entity : Entity_Id;
9842 Generic_Unit : Node_Id) return Boolean
9844 Generic_Encloser : Node_Id := Enclosing_Generic_Unit (Entity);
9846 begin
9847 while Present (Generic_Encloser) loop
9848 if Generic_Encloser = Generic_Unit then
9849 return True;
9850 end if;
9852 -- We have to step to the scope of the generic's entity, because
9853 -- otherwise we'll just get back the same generic.
9855 Generic_Encloser :=
9856 Enclosing_Generic_Unit
9857 (Scope (Defining_Entity (Generic_Encloser)));
9858 end loop;
9860 return False;
9861 end Declared_Within_Generic_Unit;
9863 -- Start of processing for Resolve_Attribute
9865 begin
9866 -- If error during analysis, no point in continuing, except for array
9867 -- types, where we get better recovery by using unconstrained indexes
9868 -- than nothing at all (see Check_Array_Type).
9870 if Error_Posted (N)
9871 and then Attr_Id /= Attribute_First
9872 and then Attr_Id /= Attribute_Last
9873 and then Attr_Id /= Attribute_Length
9874 and then Attr_Id /= Attribute_Range
9875 then
9876 return;
9877 end if;
9879 -- If attribute was universal type, reset to actual type
9881 if Etype (N) = Universal_Integer
9882 or else Etype (N) = Universal_Real
9883 then
9884 Set_Etype (N, Typ);
9885 end if;
9887 -- Remaining processing depends on attribute
9889 case Attr_Id is
9891 ------------
9892 -- Access --
9893 ------------
9895 -- For access attributes, if the prefix denotes an entity, it is
9896 -- interpreted as a name, never as a call. It may be overloaded,
9897 -- in which case resolution uses the profile of the context type.
9898 -- Otherwise prefix must be resolved.
9900 when Attribute_Access
9901 | Attribute_Unchecked_Access
9902 | Attribute_Unrestricted_Access =>
9904 Access_Attribute :
9905 begin
9906 -- Note possible modification if we have a variable
9908 if Is_Variable (P) then
9909 declare
9910 PN : constant Node_Id := Parent (N);
9911 Nm : Node_Id;
9913 Note : Boolean := True;
9914 -- Skip this for the case of Unrestricted_Access occuring in
9915 -- the context of a Valid check, since this otherwise leads
9916 -- to a missed warning (the Valid check does not really
9917 -- modify!) If this case, Note will be reset to False.
9919 begin
9920 if Attr_Id = Attribute_Unrestricted_Access
9921 and then Nkind (PN) = N_Function_Call
9922 then
9923 Nm := Name (PN);
9925 if Nkind (Nm) = N_Expanded_Name
9926 and then Chars (Nm) = Name_Valid
9927 and then Nkind (Prefix (Nm)) = N_Identifier
9928 and then Chars (Prefix (Nm)) = Name_Attr_Long_Float
9929 then
9930 Note := False;
9931 end if;
9932 end if;
9934 if Note then
9935 Note_Possible_Modification (P, Sure => False);
9936 end if;
9937 end;
9938 end if;
9940 -- The following comes from a query concerning improper use of
9941 -- universal_access in equality tests involving anonymous access
9942 -- types. Another good reason for 'Ref, but for now disable the
9943 -- test, which breaks several filed tests???
9945 if Ekind (Typ) = E_Anonymous_Access_Type
9946 and then Nkind_In (Parent (N), N_Op_Eq, N_Op_Ne)
9947 and then False
9948 then
9949 Error_Msg_N ("need unique type to resolve 'Access", N);
9950 Error_Msg_N ("\qualify attribute with some access type", N);
9951 end if;
9953 -- Case where prefix is an entity name
9955 if Is_Entity_Name (P) then
9957 -- Deal with case where prefix itself is overloaded
9959 if Is_Overloaded (P) then
9960 Get_First_Interp (P, Index, It);
9961 while Present (It.Nam) loop
9962 if Type_Conformant (Designated_Type (Typ), It.Nam) then
9963 Set_Entity (P, It.Nam);
9965 -- The prefix is definitely NOT overloaded anymore at
9966 -- this point, so we reset the Is_Overloaded flag to
9967 -- avoid any confusion when reanalyzing the node.
9969 Set_Is_Overloaded (P, False);
9970 Set_Is_Overloaded (N, False);
9971 Generate_Reference (Entity (P), P);
9972 exit;
9973 end if;
9975 Get_Next_Interp (Index, It);
9976 end loop;
9978 -- If Prefix is a subprogram name, this reference freezes:
9980 -- If it is a type, there is nothing to resolve.
9981 -- If it is an object, complete its resolution.
9983 elsif Is_Overloadable (Entity (P)) then
9985 -- Avoid insertion of freeze actions in spec expression mode
9987 if not In_Spec_Expression then
9988 Freeze_Before (N, Entity (P));
9989 end if;
9991 -- Nothing to do if prefix is a type name
9993 elsif Is_Type (Entity (P)) then
9994 null;
9996 -- Otherwise non-overloaded other case, resolve the prefix
9998 else
9999 Resolve (P);
10000 end if;
10002 -- Some further error checks
10004 Error_Msg_Name_1 := Aname;
10006 if not Is_Entity_Name (P) then
10007 null;
10009 elsif Is_Overloadable (Entity (P))
10010 and then Is_Abstract_Subprogram (Entity (P))
10011 then
10012 Error_Msg_F ("prefix of % attribute cannot be abstract", P);
10013 Set_Etype (N, Any_Type);
10015 elsif Ekind (Entity (P)) = E_Enumeration_Literal then
10016 Error_Msg_F
10017 ("prefix of % attribute cannot be enumeration literal", P);
10018 Set_Etype (N, Any_Type);
10020 -- An attempt to take 'Access of a function that renames an
10021 -- enumeration literal. Issue a specialized error message.
10023 elsif Ekind (Entity (P)) = E_Function
10024 and then Present (Alias (Entity (P)))
10025 and then Ekind (Alias (Entity (P))) = E_Enumeration_Literal
10026 then
10027 Error_Msg_F
10028 ("prefix of % attribute cannot be function renaming "
10029 & "an enumeration literal", P);
10030 Set_Etype (N, Any_Type);
10032 elsif Convention (Entity (P)) = Convention_Intrinsic then
10033 Error_Msg_F ("prefix of % attribute cannot be intrinsic", P);
10034 Set_Etype (N, Any_Type);
10035 end if;
10037 -- Assignments, return statements, components of aggregates,
10038 -- generic instantiations will require convention checks if
10039 -- the type is an access to subprogram. Given that there will
10040 -- also be accessibility checks on those, this is where the
10041 -- checks can eventually be centralized ???
10043 if Ekind_In (Btyp, E_Access_Subprogram_Type,
10044 E_Anonymous_Access_Subprogram_Type,
10045 E_Access_Protected_Subprogram_Type,
10046 E_Anonymous_Access_Protected_Subprogram_Type)
10047 then
10048 -- Deal with convention mismatch
10050 if Convention (Designated_Type (Btyp)) /=
10051 Convention (Entity (P))
10052 then
10053 Error_Msg_FE
10054 ("subprogram & has wrong convention", P, Entity (P));
10055 Error_Msg_Sloc := Sloc (Btyp);
10056 Error_Msg_FE ("\does not match & declared#", P, Btyp);
10058 if not Is_Itype (Btyp)
10059 and then not Has_Convention_Pragma (Btyp)
10060 then
10061 Error_Msg_FE
10062 ("\probable missing pragma Convention for &",
10063 P, Btyp);
10064 end if;
10066 else
10067 Check_Subtype_Conformant
10068 (New_Id => Entity (P),
10069 Old_Id => Designated_Type (Btyp),
10070 Err_Loc => P);
10071 end if;
10073 if Attr_Id = Attribute_Unchecked_Access then
10074 Error_Msg_Name_1 := Aname;
10075 Error_Msg_F
10076 ("attribute% cannot be applied to a subprogram", P);
10078 elsif Aname = Name_Unrestricted_Access then
10079 null; -- Nothing to check
10081 -- Check the static accessibility rule of 3.10.2(32).
10082 -- This rule also applies within the private part of an
10083 -- instantiation. This rule does not apply to anonymous
10084 -- access-to-subprogram types in access parameters.
10086 elsif Attr_Id = Attribute_Access
10087 and then not In_Instance_Body
10088 and then
10089 (Ekind (Btyp) = E_Access_Subprogram_Type
10090 or else Is_Local_Anonymous_Access (Btyp))
10091 and then Subprogram_Access_Level (Entity (P)) >
10092 Type_Access_Level (Btyp)
10093 then
10094 Error_Msg_F
10095 ("subprogram must not be deeper than access type", P);
10097 -- Check the restriction of 3.10.2(32) that disallows the
10098 -- access attribute within a generic body when the ultimate
10099 -- ancestor of the type of the attribute is declared outside
10100 -- of the generic unit and the subprogram is declared within
10101 -- that generic unit. This includes any such attribute that
10102 -- occurs within the body of a generic unit that is a child
10103 -- of the generic unit where the subprogram is declared.
10105 -- The rule also prohibits applying the attribute when the
10106 -- access type is a generic formal access type (since the
10107 -- level of the actual type is not known). This restriction
10108 -- does not apply when the attribute type is an anonymous
10109 -- access-to-subprogram type. Note that this check was
10110 -- revised by AI-229, because the original Ada 95 rule
10111 -- was too lax. The original rule only applied when the
10112 -- subprogram was declared within the body of the generic,
10113 -- which allowed the possibility of dangling references).
10114 -- The rule was also too strict in some cases, in that it
10115 -- didn't permit the access to be declared in the generic
10116 -- spec, whereas the revised rule does (as long as it's not
10117 -- a formal type).
10119 -- There are a couple of subtleties of the test for applying
10120 -- the check that are worth noting. First, we only apply it
10121 -- when the levels of the subprogram and access type are the
10122 -- same (the case where the subprogram is statically deeper
10123 -- was applied above, and the case where the type is deeper
10124 -- is always safe). Second, we want the check to apply
10125 -- within nested generic bodies and generic child unit
10126 -- bodies, but not to apply to an attribute that appears in
10127 -- the generic unit's specification. This is done by testing
10128 -- that the attribute's innermost enclosing generic body is
10129 -- not the same as the innermost generic body enclosing the
10130 -- generic unit where the subprogram is declared (we don't
10131 -- want the check to apply when the access attribute is in
10132 -- the spec and there's some other generic body enclosing
10133 -- generic). Finally, there's no point applying the check
10134 -- when within an instance, because any violations will have
10135 -- been caught by the compilation of the generic unit.
10137 -- We relax this check in Relaxed_RM_Semantics mode for
10138 -- compatibility with legacy code for use by Ada source
10139 -- code analyzers (e.g. CodePeer).
10141 elsif Attr_Id = Attribute_Access
10142 and then not Relaxed_RM_Semantics
10143 and then not In_Instance
10144 and then Present (Enclosing_Generic_Unit (Entity (P)))
10145 and then Present (Enclosing_Generic_Body (N))
10146 and then Enclosing_Generic_Body (N) /=
10147 Enclosing_Generic_Body
10148 (Enclosing_Generic_Unit (Entity (P)))
10149 and then Subprogram_Access_Level (Entity (P)) =
10150 Type_Access_Level (Btyp)
10151 and then Ekind (Btyp) /=
10152 E_Anonymous_Access_Subprogram_Type
10153 and then Ekind (Btyp) /=
10154 E_Anonymous_Access_Protected_Subprogram_Type
10155 then
10156 -- The attribute type's ultimate ancestor must be
10157 -- declared within the same generic unit as the
10158 -- subprogram is declared (including within another
10159 -- nested generic unit). The error message is
10160 -- specialized to say "ancestor" for the case where the
10161 -- access type is not its own ancestor, since saying
10162 -- simply "access type" would be very confusing.
10164 if not Declared_Within_Generic_Unit
10165 (Root_Type (Btyp),
10166 Enclosing_Generic_Unit (Entity (P)))
10167 then
10168 Error_Msg_N
10169 ("''Access attribute not allowed in generic body",
10172 if Root_Type (Btyp) = Btyp then
10173 Error_Msg_NE
10174 ("\because " &
10175 "access type & is declared outside " &
10176 "generic unit (RM 3.10.2(32))", N, Btyp);
10177 else
10178 Error_Msg_NE
10179 ("\because ancestor of " &
10180 "access type & is declared outside " &
10181 "generic unit (RM 3.10.2(32))", N, Btyp);
10182 end if;
10184 Error_Msg_NE
10185 ("\move ''Access to private part, or " &
10186 "(Ada 2005) use anonymous access type instead of &",
10187 N, Btyp);
10189 -- If the ultimate ancestor of the attribute's type is
10190 -- a formal type, then the attribute is illegal because
10191 -- the actual type might be declared at a higher level.
10192 -- The error message is specialized to say "ancestor"
10193 -- for the case where the access type is not its own
10194 -- ancestor, since saying simply "access type" would be
10195 -- very confusing.
10197 elsif Is_Generic_Type (Root_Type (Btyp)) then
10198 if Root_Type (Btyp) = Btyp then
10199 Error_Msg_N
10200 ("access type must not be a generic formal type",
10202 else
10203 Error_Msg_N
10204 ("ancestor access type must not be a generic " &
10205 "formal type", N);
10206 end if;
10207 end if;
10208 end if;
10209 end if;
10211 -- If this is a renaming, an inherited operation, or a
10212 -- subprogram instance, use the original entity. This may make
10213 -- the node type-inconsistent, so this transformation can only
10214 -- be done if the node will not be reanalyzed. In particular,
10215 -- if it is within a default expression, the transformation
10216 -- must be delayed until the default subprogram is created for
10217 -- it, when the enclosing subprogram is frozen.
10219 if Is_Entity_Name (P)
10220 and then Is_Overloadable (Entity (P))
10221 and then Present (Alias (Entity (P)))
10222 and then Expander_Active
10223 then
10224 Rewrite (P,
10225 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
10226 end if;
10228 elsif Nkind (P) = N_Selected_Component
10229 and then Is_Overloadable (Entity (Selector_Name (P)))
10230 then
10231 -- Protected operation. If operation is overloaded, must
10232 -- disambiguate. Prefix that denotes protected object itself
10233 -- is resolved with its own type.
10235 if Attr_Id = Attribute_Unchecked_Access then
10236 Error_Msg_Name_1 := Aname;
10237 Error_Msg_F
10238 ("attribute% cannot be applied to protected operation", P);
10239 end if;
10241 Resolve (Prefix (P));
10242 Generate_Reference (Entity (Selector_Name (P)), P);
10244 -- Implement check implied by 3.10.2 (18.1/2) : F.all'access is
10245 -- statically illegal if F is an anonymous access to subprogram.
10247 elsif Nkind (P) = N_Explicit_Dereference
10248 and then Is_Entity_Name (Prefix (P))
10249 and then Ekind (Etype (Entity (Prefix (P)))) =
10250 E_Anonymous_Access_Subprogram_Type
10251 then
10252 Error_Msg_N ("anonymous access to subprogram "
10253 & "has deeper accessibility than any master", P);
10255 elsif Is_Overloaded (P) then
10257 -- Use the designated type of the context to disambiguate
10258 -- Note that this was not strictly conformant to Ada 95,
10259 -- but was the implementation adopted by most Ada 95 compilers.
10260 -- The use of the context type to resolve an Access attribute
10261 -- reference is now mandated in AI-235 for Ada 2005.
10263 declare
10264 Index : Interp_Index;
10265 It : Interp;
10267 begin
10268 Get_First_Interp (P, Index, It);
10269 while Present (It.Typ) loop
10270 if Covers (Designated_Type (Typ), It.Typ) then
10271 Resolve (P, It.Typ);
10272 exit;
10273 end if;
10275 Get_Next_Interp (Index, It);
10276 end loop;
10277 end;
10278 else
10279 Resolve (P);
10280 end if;
10282 -- X'Access is illegal if X denotes a constant and the access type
10283 -- is access-to-variable. Same for 'Unchecked_Access. The rule
10284 -- does not apply to 'Unrestricted_Access. If the reference is a
10285 -- default-initialized aggregate component for a self-referential
10286 -- type the reference is legal.
10288 if not (Ekind (Btyp) = E_Access_Subprogram_Type
10289 or else Ekind (Btyp) = E_Anonymous_Access_Subprogram_Type
10290 or else (Is_Record_Type (Btyp)
10291 and then
10292 Present (Corresponding_Remote_Type (Btyp)))
10293 or else Ekind (Btyp) = E_Access_Protected_Subprogram_Type
10294 or else Ekind (Btyp)
10295 = E_Anonymous_Access_Protected_Subprogram_Type
10296 or else Is_Access_Constant (Btyp)
10297 or else Is_Variable (P)
10298 or else Attr_Id = Attribute_Unrestricted_Access)
10299 then
10300 if Is_Entity_Name (P)
10301 and then Is_Type (Entity (P))
10302 then
10303 -- Legality of a self-reference through an access
10304 -- attribute has been verified in Analyze_Access_Attribute.
10306 null;
10308 elsif Comes_From_Source (N) then
10309 Error_Msg_F ("access-to-variable designates constant", P);
10310 end if;
10311 end if;
10313 Des_Btyp := Designated_Type (Btyp);
10315 if Ada_Version >= Ada_2005
10316 and then Is_Incomplete_Type (Des_Btyp)
10317 then
10318 -- Ada 2005 (AI-412): If the (sub)type is a limited view of an
10319 -- imported entity, and the non-limited view is visible, make
10320 -- use of it. If it is an incomplete subtype, use the base type
10321 -- in any case.
10323 if From_Limited_With (Des_Btyp)
10324 and then Present (Non_Limited_View (Des_Btyp))
10325 then
10326 Des_Btyp := Non_Limited_View (Des_Btyp);
10328 elsif Ekind (Des_Btyp) = E_Incomplete_Subtype then
10329 Des_Btyp := Etype (Des_Btyp);
10330 end if;
10331 end if;
10333 if (Attr_Id = Attribute_Access
10334 or else
10335 Attr_Id = Attribute_Unchecked_Access)
10336 and then (Ekind (Btyp) = E_General_Access_Type
10337 or else Ekind (Btyp) = E_Anonymous_Access_Type)
10338 then
10339 -- Ada 2005 (AI-230): Check the accessibility of anonymous
10340 -- access types for stand-alone objects, record and array
10341 -- components, and return objects. For a component definition
10342 -- the level is the same of the enclosing composite type.
10344 if Ada_Version >= Ada_2005
10345 and then (Is_Local_Anonymous_Access (Btyp)
10347 -- Handle cases where Btyp is the anonymous access
10348 -- type of an Ada 2012 stand-alone object.
10350 or else Nkind (Associated_Node_For_Itype (Btyp)) =
10351 N_Object_Declaration)
10352 and then
10353 Object_Access_Level (P) > Deepest_Type_Access_Level (Btyp)
10354 and then Attr_Id = Attribute_Access
10355 then
10356 -- In an instance, this is a runtime check, but one we know
10357 -- will fail, so generate an appropriate warning. As usual,
10358 -- this kind of warning is an error in SPARK mode.
10360 if In_Instance_Body then
10361 Error_Msg_Warn := SPARK_Mode /= On;
10362 Error_Msg_F
10363 ("non-local pointer cannot point to local object<<", P);
10364 Error_Msg_F ("\Program_Error [<<", P);
10366 Rewrite (N,
10367 Make_Raise_Program_Error (Loc,
10368 Reason => PE_Accessibility_Check_Failed));
10369 Set_Etype (N, Typ);
10371 else
10372 Error_Msg_F
10373 ("non-local pointer cannot point to local object", P);
10374 end if;
10375 end if;
10377 if Is_Dependent_Component_Of_Mutable_Object (P) then
10378 Error_Msg_F
10379 ("illegal attribute for discriminant-dependent component",
10381 end if;
10383 -- Check static matching rule of 3.10.2(27). Nominal subtype
10384 -- of the prefix must statically match the designated type.
10386 Nom_Subt := Etype (P);
10388 if Is_Constr_Subt_For_U_Nominal (Nom_Subt) then
10389 Nom_Subt := Base_Type (Nom_Subt);
10390 end if;
10392 if Is_Tagged_Type (Designated_Type (Typ)) then
10394 -- If the attribute is in the context of an access
10395 -- parameter, then the prefix is allowed to be of
10396 -- the class-wide type (by AI-127).
10398 if Ekind (Typ) = E_Anonymous_Access_Type then
10399 if not Covers (Designated_Type (Typ), Nom_Subt)
10400 and then not Covers (Nom_Subt, Designated_Type (Typ))
10401 then
10402 declare
10403 Desig : Entity_Id;
10405 begin
10406 Desig := Designated_Type (Typ);
10408 if Is_Class_Wide_Type (Desig) then
10409 Desig := Etype (Desig);
10410 end if;
10412 if Is_Anonymous_Tagged_Base (Nom_Subt, Desig) then
10413 null;
10415 else
10416 Error_Msg_FE
10417 ("type of prefix: & not compatible",
10418 P, Nom_Subt);
10419 Error_Msg_FE
10420 ("\with &, the expected designated type",
10421 P, Designated_Type (Typ));
10422 end if;
10423 end;
10424 end if;
10426 elsif not Covers (Designated_Type (Typ), Nom_Subt)
10427 or else
10428 (not Is_Class_Wide_Type (Designated_Type (Typ))
10429 and then Is_Class_Wide_Type (Nom_Subt))
10430 then
10431 Error_Msg_FE
10432 ("type of prefix: & is not covered", P, Nom_Subt);
10433 Error_Msg_FE
10434 ("\by &, the expected designated type" &
10435 " (RM 3.10.2 (27))", P, Designated_Type (Typ));
10436 end if;
10438 if Is_Class_Wide_Type (Designated_Type (Typ))
10439 and then Has_Discriminants (Etype (Designated_Type (Typ)))
10440 and then Is_Constrained (Etype (Designated_Type (Typ)))
10441 and then Designated_Type (Typ) /= Nom_Subt
10442 then
10443 Apply_Discriminant_Check
10444 (N, Etype (Designated_Type (Typ)));
10445 end if;
10447 -- Ada 2005 (AI-363): Require static matching when designated
10448 -- type has discriminants and a constrained partial view, since
10449 -- in general objects of such types are mutable, so we can't
10450 -- allow the access value to designate a constrained object
10451 -- (because access values must be assumed to designate mutable
10452 -- objects when designated type does not impose a constraint).
10454 elsif Subtypes_Statically_Match (Des_Btyp, Nom_Subt) then
10455 null;
10457 elsif Has_Discriminants (Designated_Type (Typ))
10458 and then not Is_Constrained (Des_Btyp)
10459 and then
10460 (Ada_Version < Ada_2005
10461 or else
10462 not Object_Type_Has_Constrained_Partial_View
10463 (Typ => Designated_Type (Base_Type (Typ)),
10464 Scop => Current_Scope))
10465 then
10466 null;
10468 else
10469 Error_Msg_F
10470 ("object subtype must statically match "
10471 & "designated subtype", P);
10473 if Is_Entity_Name (P)
10474 and then Is_Array_Type (Designated_Type (Typ))
10475 then
10476 declare
10477 D : constant Node_Id := Declaration_Node (Entity (P));
10478 begin
10479 Error_Msg_N
10480 ("aliased object has explicit bounds??", D);
10481 Error_Msg_N
10482 ("\declare without bounds (and with explicit "
10483 & "initialization)??", D);
10484 Error_Msg_N
10485 ("\for use with unconstrained access??", D);
10486 end;
10487 end if;
10488 end if;
10490 -- Check the static accessibility rule of 3.10.2(28). Note that
10491 -- this check is not performed for the case of an anonymous
10492 -- access type, since the access attribute is always legal
10493 -- in such a context.
10495 if Attr_Id /= Attribute_Unchecked_Access
10496 and then Ekind (Btyp) = E_General_Access_Type
10497 and then
10498 Object_Access_Level (P) > Deepest_Type_Access_Level (Btyp)
10499 then
10500 Accessibility_Message;
10501 return;
10502 end if;
10503 end if;
10505 if Ekind_In (Btyp, E_Access_Protected_Subprogram_Type,
10506 E_Anonymous_Access_Protected_Subprogram_Type)
10507 then
10508 if Is_Entity_Name (P)
10509 and then not Is_Protected_Type (Scope (Entity (P)))
10510 then
10511 Error_Msg_F ("context requires a protected subprogram", P);
10513 -- Check accessibility of protected object against that of the
10514 -- access type, but only on user code, because the expander
10515 -- creates access references for handlers. If the context is an
10516 -- anonymous_access_to_protected, there are no accessibility
10517 -- checks either. Omit check entirely for Unrestricted_Access.
10519 elsif Object_Access_Level (P) > Deepest_Type_Access_Level (Btyp)
10520 and then Comes_From_Source (N)
10521 and then Ekind (Btyp) = E_Access_Protected_Subprogram_Type
10522 and then Attr_Id /= Attribute_Unrestricted_Access
10523 then
10524 Accessibility_Message;
10525 return;
10527 -- AI05-0225: If the context is not an access to protected
10528 -- function, the prefix must be a variable, given that it may
10529 -- be used subsequently in a protected call.
10531 elsif Nkind (P) = N_Selected_Component
10532 and then not Is_Variable (Prefix (P))
10533 and then Ekind (Entity (Selector_Name (P))) /= E_Function
10534 then
10535 Error_Msg_N
10536 ("target object of access to protected procedure "
10537 & "must be variable", N);
10539 elsif Is_Entity_Name (P) then
10540 Check_Internal_Protected_Use (N, Entity (P));
10541 end if;
10543 elsif Ekind_In (Btyp, E_Access_Subprogram_Type,
10544 E_Anonymous_Access_Subprogram_Type)
10545 and then Ekind (Etype (N)) = E_Access_Protected_Subprogram_Type
10546 then
10547 Error_Msg_F ("context requires a non-protected subprogram", P);
10548 end if;
10550 -- The context cannot be a pool-specific type, but this is a
10551 -- legality rule, not a resolution rule, so it must be checked
10552 -- separately, after possibly disambiguation (see AI-245).
10554 if Ekind (Btyp) = E_Access_Type
10555 and then Attr_Id /= Attribute_Unrestricted_Access
10556 then
10557 Wrong_Type (N, Typ);
10558 end if;
10560 -- The context may be a constrained access type (however ill-
10561 -- advised such subtypes might be) so in order to generate a
10562 -- constraint check when needed set the type of the attribute
10563 -- reference to the base type of the context.
10565 Set_Etype (N, Btyp);
10567 -- Check for incorrect atomic/volatile reference (RM C.6(12))
10569 if Attr_Id /= Attribute_Unrestricted_Access then
10570 if Is_Atomic_Object (P)
10571 and then not Is_Atomic (Designated_Type (Typ))
10572 then
10573 Error_Msg_F
10574 ("access to atomic object cannot yield access-to-" &
10575 "non-atomic type", P);
10577 elsif Is_Volatile_Object (P)
10578 and then not Is_Volatile (Designated_Type (Typ))
10579 then
10580 Error_Msg_F
10581 ("access to volatile object cannot yield access-to-" &
10582 "non-volatile type", P);
10583 end if;
10584 end if;
10586 -- Check for unrestricted access where expected type is a thin
10587 -- pointer to an unconstrained array.
10589 if Non_Aliased_Prefix (N)
10590 and then Has_Size_Clause (Typ)
10591 and then RM_Size (Typ) = System_Address_Size
10592 then
10593 declare
10594 DT : constant Entity_Id := Designated_Type (Typ);
10595 begin
10596 if Is_Array_Type (DT) and then not Is_Constrained (DT) then
10597 Error_Msg_N
10598 ("illegal use of Unrestricted_Access attribute", P);
10599 Error_Msg_N
10600 ("\attempt to generate thin pointer to unaliased "
10601 & "object", P);
10602 end if;
10603 end;
10604 end if;
10606 -- Mark that address of entity is taken
10608 if Is_Entity_Name (P) then
10609 Set_Address_Taken (Entity (P));
10610 end if;
10612 -- Deal with possible elaboration check
10614 if Is_Entity_Name (P) and then Is_Subprogram (Entity (P)) then
10615 declare
10616 Subp_Id : constant Entity_Id := Entity (P);
10617 Scop : constant Entity_Id := Scope (Subp_Id);
10618 Subp_Decl : constant Node_Id :=
10619 Unit_Declaration_Node (Subp_Id);
10620 Flag_Id : Entity_Id;
10621 Subp_Body : Node_Id;
10623 -- If the access has been taken and the body of the subprogram
10624 -- has not been see yet, indirect calls must be protected with
10625 -- elaboration checks. We have the proper elaboration machinery
10626 -- for subprograms declared in packages, but within a block or
10627 -- a subprogram the body will appear in the same declarative
10628 -- part, and we must insert a check in the eventual body itself
10629 -- using the elaboration flag that we generate now. The check
10630 -- is then inserted when the body is expanded. This processing
10631 -- is not needed for a stand alone expression function because
10632 -- the internally generated spec and body are always inserted
10633 -- as a pair in the same declarative list.
10635 begin
10636 if Expander_Active
10637 and then Comes_From_Source (Subp_Id)
10638 and then Comes_From_Source (N)
10639 and then In_Open_Scopes (Scop)
10640 and then Ekind_In (Scop, E_Block, E_Procedure, E_Function)
10641 and then not Has_Completion (Subp_Id)
10642 and then No (Elaboration_Entity (Subp_Id))
10643 and then Nkind (Subp_Decl) = N_Subprogram_Declaration
10644 and then Nkind (Original_Node (Subp_Decl)) /=
10645 N_Expression_Function
10646 then
10647 -- Create elaboration variable for it
10649 Flag_Id := Make_Temporary (Loc, 'E');
10650 Set_Elaboration_Entity (Subp_Id, Flag_Id);
10651 Set_Is_Frozen (Flag_Id);
10653 -- Insert declaration for flag after subprogram
10654 -- declaration. Note that attribute reference may
10655 -- appear within a nested scope.
10657 Insert_After_And_Analyze (Subp_Decl,
10658 Make_Object_Declaration (Loc,
10659 Defining_Identifier => Flag_Id,
10660 Object_Definition =>
10661 New_Occurrence_Of (Standard_Short_Integer, Loc),
10662 Expression =>
10663 Make_Integer_Literal (Loc, Uint_0)));
10664 end if;
10666 -- Taking the 'Access of an expression function freezes its
10667 -- expression (RM 13.14 10.3/3). This does not apply to an
10668 -- expression function that acts as a completion because the
10669 -- generated body is immediately analyzed and the expression
10670 -- is automatically frozen.
10672 if Is_Expression_Function (Subp_Id)
10673 and then Present (Corresponding_Body (Subp_Decl))
10674 then
10675 Subp_Body :=
10676 Unit_Declaration_Node (Corresponding_Body (Subp_Decl));
10678 -- Analyze the body of the expression function to freeze
10679 -- the expression. This takes care of the case where the
10680 -- 'Access is part of dispatch table initialization and
10681 -- the generated body of the expression function has not
10682 -- been analyzed yet.
10684 if not Analyzed (Subp_Body) then
10685 Analyze (Subp_Body);
10686 end if;
10687 end if;
10688 end;
10689 end if;
10690 end Access_Attribute;
10692 -------------
10693 -- Address --
10694 -------------
10696 -- Deal with resolving the type for Address attribute, overloading
10697 -- is not permitted here, since there is no context to resolve it.
10699 when Attribute_Address | Attribute_Code_Address =>
10700 Address_Attribute : begin
10702 -- To be safe, assume that if the address of a variable is taken,
10703 -- it may be modified via this address, so note modification.
10705 if Is_Variable (P) then
10706 Note_Possible_Modification (P, Sure => False);
10707 end if;
10709 if Nkind (P) in N_Subexpr
10710 and then Is_Overloaded (P)
10711 then
10712 Get_First_Interp (P, Index, It);
10713 Get_Next_Interp (Index, It);
10715 if Present (It.Nam) then
10716 Error_Msg_Name_1 := Aname;
10717 Error_Msg_F
10718 ("prefix of % attribute cannot be overloaded", P);
10719 end if;
10720 end if;
10722 if not Is_Entity_Name (P)
10723 or else not Is_Overloadable (Entity (P))
10724 then
10725 if not Is_Task_Type (Etype (P))
10726 or else Nkind (P) = N_Explicit_Dereference
10727 then
10728 Resolve (P);
10729 end if;
10730 end if;
10732 -- If this is the name of a derived subprogram, or that of a
10733 -- generic actual, the address is that of the original entity.
10735 if Is_Entity_Name (P)
10736 and then Is_Overloadable (Entity (P))
10737 and then Present (Alias (Entity (P)))
10738 then
10739 Rewrite (P,
10740 New_Occurrence_Of (Alias (Entity (P)), Sloc (P)));
10741 end if;
10743 if Is_Entity_Name (P) then
10744 Set_Address_Taken (Entity (P));
10745 end if;
10747 if Nkind (P) = N_Slice then
10749 -- Arr (X .. Y)'address is identical to Arr (X)'address,
10750 -- even if the array is packed and the slice itself is not
10751 -- addressable. Transform the prefix into an indexed component.
10753 -- Note that the transformation is safe only if we know that
10754 -- the slice is non-null. That is because a null slice can have
10755 -- an out of bounds index value.
10757 -- Right now, gigi blows up if given 'Address on a slice as a
10758 -- result of some incorrect freeze nodes generated by the front
10759 -- end, and this covers up that bug in one case, but the bug is
10760 -- likely still there in the cases not handled by this code ???
10762 -- It's not clear what 'Address *should* return for a null
10763 -- slice with out of bounds indexes, this might be worth an ARG
10764 -- discussion ???
10766 -- One approach would be to do a length check unconditionally,
10767 -- and then do the transformation below unconditionally, but
10768 -- analyze with checks off, avoiding the problem of the out of
10769 -- bounds index. This approach would interpret the address of
10770 -- an out of bounds null slice as being the address where the
10771 -- array element would be if there was one, which is probably
10772 -- as reasonable an interpretation as any ???
10774 declare
10775 Loc : constant Source_Ptr := Sloc (P);
10776 D : constant Node_Id := Discrete_Range (P);
10777 Lo : Node_Id;
10779 begin
10780 if Is_Entity_Name (D)
10781 and then
10782 Not_Null_Range
10783 (Type_Low_Bound (Entity (D)),
10784 Type_High_Bound (Entity (D)))
10785 then
10786 Lo :=
10787 Make_Attribute_Reference (Loc,
10788 Prefix => (New_Occurrence_Of (Entity (D), Loc)),
10789 Attribute_Name => Name_First);
10791 elsif Nkind (D) = N_Range
10792 and then Not_Null_Range (Low_Bound (D), High_Bound (D))
10793 then
10794 Lo := Low_Bound (D);
10796 else
10797 Lo := Empty;
10798 end if;
10800 if Present (Lo) then
10801 Rewrite (P,
10802 Make_Indexed_Component (Loc,
10803 Prefix => Relocate_Node (Prefix (P)),
10804 Expressions => New_List (Lo)));
10806 Analyze_And_Resolve (P);
10807 end if;
10808 end;
10809 end if;
10810 end Address_Attribute;
10812 ------------------
10813 -- Body_Version --
10814 ------------------
10816 -- Prefix of Body_Version attribute can be a subprogram name which
10817 -- must not be resolved, since this is not a call.
10819 when Attribute_Body_Version =>
10820 null;
10822 ------------
10823 -- Caller --
10824 ------------
10826 -- Prefix of Caller attribute is an entry name which must not
10827 -- be resolved, since this is definitely not an entry call.
10829 when Attribute_Caller =>
10830 null;
10832 ------------------
10833 -- Code_Address --
10834 ------------------
10836 -- Shares processing with Address attribute
10838 -----------
10839 -- Count --
10840 -----------
10842 -- If the prefix of the Count attribute is an entry name it must not
10843 -- be resolved, since this is definitely not an entry call. However,
10844 -- if it is an element of an entry family, the index itself may
10845 -- have to be resolved because it can be a general expression.
10847 when Attribute_Count =>
10848 if Nkind (P) = N_Indexed_Component
10849 and then Is_Entity_Name (Prefix (P))
10850 then
10851 declare
10852 Indx : constant Node_Id := First (Expressions (P));
10853 Fam : constant Entity_Id := Entity (Prefix (P));
10854 begin
10855 Resolve (Indx, Entry_Index_Type (Fam));
10856 Apply_Range_Check (Indx, Entry_Index_Type (Fam));
10857 end;
10858 end if;
10860 ----------------
10861 -- Elaborated --
10862 ----------------
10864 -- Prefix of the Elaborated attribute is a subprogram name which
10865 -- must not be resolved, since this is definitely not a call. Note
10866 -- that it is a library unit, so it cannot be overloaded here.
10868 when Attribute_Elaborated =>
10869 null;
10871 -------------
10872 -- Enabled --
10873 -------------
10875 -- Prefix of Enabled attribute is a check name, which must be treated
10876 -- specially and not touched by Resolve.
10878 when Attribute_Enabled =>
10879 null;
10881 ----------------
10882 -- Loop_Entry --
10883 ----------------
10885 -- Do not resolve the prefix of Loop_Entry, instead wait until the
10886 -- attribute has been expanded (see Expand_Loop_Entry_Attributes).
10887 -- The delay ensures that any generated checks or temporaries are
10888 -- inserted before the relocated prefix.
10890 when Attribute_Loop_Entry =>
10891 null;
10893 --------------------
10894 -- Mechanism_Code --
10895 --------------------
10897 -- Prefix of the Mechanism_Code attribute is a function name
10898 -- which must not be resolved. Should we check for overloaded ???
10900 when Attribute_Mechanism_Code =>
10901 null;
10903 ------------------
10904 -- Partition_ID --
10905 ------------------
10907 -- Most processing is done in sem_dist, after determining the
10908 -- context type. Node is rewritten as a conversion to a runtime call.
10910 when Attribute_Partition_ID =>
10911 Process_Partition_Id (N);
10912 return;
10914 ------------------
10915 -- Pool_Address --
10916 ------------------
10918 when Attribute_Pool_Address =>
10919 Resolve (P);
10921 -----------
10922 -- Range --
10923 -----------
10925 -- We replace the Range attribute node with a range expression whose
10926 -- bounds are the 'First and 'Last attributes applied to the same
10927 -- prefix. The reason that we do this transformation here instead of
10928 -- in the expander is that it simplifies other parts of the semantic
10929 -- analysis which assume that the Range has been replaced; thus it
10930 -- must be done even when in semantic-only mode (note that the RM
10931 -- specifically mentions this equivalence, we take care that the
10932 -- prefix is only evaluated once).
10934 when Attribute_Range => Range_Attribute :
10935 declare
10936 LB : Node_Id;
10937 HB : Node_Id;
10938 Dims : List_Id;
10940 begin
10941 if not Is_Entity_Name (P)
10942 or else not Is_Type (Entity (P))
10943 then
10944 Resolve (P);
10945 end if;
10947 Dims := Expressions (N);
10949 HB :=
10950 Make_Attribute_Reference (Loc,
10951 Prefix => Duplicate_Subexpr (P, Name_Req => True),
10952 Attribute_Name => Name_Last,
10953 Expressions => Dims);
10955 LB :=
10956 Make_Attribute_Reference (Loc,
10957 Prefix => P,
10958 Attribute_Name => Name_First,
10959 Expressions => (Dims));
10961 -- Do not share the dimension indicator, if present. Even
10962 -- though it is a static constant, its source location
10963 -- may be modified when printing expanded code and node
10964 -- sharing will lead to chaos in Sprint.
10966 if Present (Dims) then
10967 Set_Expressions (LB,
10968 New_List (New_Copy_Tree (First (Dims))));
10969 end if;
10971 -- If the original was marked as Must_Not_Freeze (see code
10972 -- in Sem_Ch3.Make_Index), then make sure the rewriting
10973 -- does not freeze either.
10975 if Must_Not_Freeze (N) then
10976 Set_Must_Not_Freeze (HB);
10977 Set_Must_Not_Freeze (LB);
10978 Set_Must_Not_Freeze (Prefix (HB));
10979 Set_Must_Not_Freeze (Prefix (LB));
10980 end if;
10982 if Raises_Constraint_Error (Prefix (N)) then
10984 -- Preserve Sloc of prefix in the new bounds, so that
10985 -- the posted warning can be removed if we are within
10986 -- unreachable code.
10988 Set_Sloc (LB, Sloc (Prefix (N)));
10989 Set_Sloc (HB, Sloc (Prefix (N)));
10990 end if;
10992 Rewrite (N, Make_Range (Loc, LB, HB));
10993 Analyze_And_Resolve (N, Typ);
10995 -- Ensure that the expanded range does not have side effects
10997 Force_Evaluation (LB);
10998 Force_Evaluation (HB);
11000 -- Normally after resolving attribute nodes, Eval_Attribute
11001 -- is called to do any possible static evaluation of the node.
11002 -- However, here since the Range attribute has just been
11003 -- transformed into a range expression it is no longer an
11004 -- attribute node and therefore the call needs to be avoided
11005 -- and is accomplished by simply returning from the procedure.
11007 return;
11008 end Range_Attribute;
11010 ------------
11011 -- Result --
11012 ------------
11014 -- We will only come here during the prescan of a spec expression
11015 -- containing a Result attribute. In that case the proper Etype has
11016 -- already been set, and nothing more needs to be done here.
11018 when Attribute_Result =>
11019 null;
11021 -----------------
11022 -- UET_Address --
11023 -----------------
11025 -- Prefix must not be resolved in this case, since it is not a
11026 -- real entity reference. No action of any kind is require.
11028 when Attribute_UET_Address =>
11029 return;
11031 ----------------------
11032 -- Unchecked_Access --
11033 ----------------------
11035 -- Processing is shared with Access
11037 -------------------------
11038 -- Unrestricted_Access --
11039 -------------------------
11041 -- Processing is shared with Access
11043 ------------
11044 -- Update --
11045 ------------
11047 -- Resolve aggregate components in component associations
11049 when Attribute_Update =>
11050 declare
11051 Aggr : constant Node_Id := First (Expressions (N));
11052 Typ : constant Entity_Id := Etype (Prefix (N));
11053 Assoc : Node_Id;
11054 Comp : Node_Id;
11055 Expr : Node_Id;
11057 begin
11058 -- Set the Etype of the aggregate to that of the prefix, even
11059 -- though the aggregate may not be a proper representation of a
11060 -- value of the type (missing or duplicated associations, etc.)
11061 -- Complete resolution of the prefix. Note that in Ada 2012 it
11062 -- can be a qualified expression that is e.g. an aggregate.
11064 Set_Etype (Aggr, Typ);
11065 Resolve (Prefix (N), Typ);
11067 -- For an array type, resolve expressions with the component
11068 -- type of the array, and apply constraint checks when needed.
11070 if Is_Array_Type (Typ) then
11071 Assoc := First (Component_Associations (Aggr));
11072 while Present (Assoc) loop
11073 Expr := Expression (Assoc);
11074 Resolve (Expr, Component_Type (Typ));
11076 -- For scalar array components set Do_Range_Check when
11077 -- needed. Constraint checking on non-scalar components
11078 -- is done in Aggregate_Constraint_Checks, but only if
11079 -- full analysis is enabled. These flags are not set in
11080 -- the front-end in GnatProve mode.
11082 if Is_Scalar_Type (Component_Type (Typ))
11083 and then not Is_OK_Static_Expression (Expr)
11084 then
11085 if Is_Entity_Name (Expr)
11086 and then Etype (Expr) = Component_Type (Typ)
11087 then
11088 null;
11090 else
11091 Set_Do_Range_Check (Expr);
11092 end if;
11093 end if;
11095 -- The choices in the association are static constants,
11096 -- or static aggregates each of whose components belongs
11097 -- to the proper index type. However, they must also
11098 -- belong to the index subtype (s) of the prefix, which
11099 -- may be a subtype (e.g. given by a slice).
11101 -- Choices may also be identifiers with no staticness
11102 -- requirements, in which case they must resolve to the
11103 -- index type.
11105 declare
11106 C : Node_Id;
11107 C_E : Node_Id;
11108 Indx : Node_Id;
11110 begin
11111 C := First (Choices (Assoc));
11112 while Present (C) loop
11113 Indx := First_Index (Etype (Prefix (N)));
11115 if Nkind (C) /= N_Aggregate then
11116 Analyze_And_Resolve (C, Etype (Indx));
11117 Apply_Constraint_Check (C, Etype (Indx));
11118 Check_Non_Static_Context (C);
11120 else
11121 C_E := First (Expressions (C));
11122 while Present (C_E) loop
11123 Analyze_And_Resolve (C_E, Etype (Indx));
11124 Apply_Constraint_Check (C_E, Etype (Indx));
11125 Check_Non_Static_Context (C_E);
11127 Next (C_E);
11128 Next_Index (Indx);
11129 end loop;
11130 end if;
11132 Next (C);
11133 end loop;
11134 end;
11136 Next (Assoc);
11137 end loop;
11139 -- For a record type, use type of each component, which is
11140 -- recorded during analysis.
11142 else
11143 Assoc := First (Component_Associations (Aggr));
11144 while Present (Assoc) loop
11145 Comp := First (Choices (Assoc));
11146 Expr := Expression (Assoc);
11148 if Nkind (Comp) /= N_Others_Choice
11149 and then not Error_Posted (Comp)
11150 then
11151 Resolve (Expr, Etype (Entity (Comp)));
11153 if Is_Scalar_Type (Etype (Entity (Comp)))
11154 and then not Is_OK_Static_Expression (Expr)
11155 then
11156 Set_Do_Range_Check (Expr);
11157 end if;
11158 end if;
11160 Next (Assoc);
11161 end loop;
11162 end if;
11163 end;
11165 ---------
11166 -- Val --
11167 ---------
11169 -- Apply range check. Note that we did not do this during the
11170 -- analysis phase, since we wanted Eval_Attribute to have a
11171 -- chance at finding an illegal out of range value.
11173 when Attribute_Val =>
11175 -- Note that we do our own Eval_Attribute call here rather than
11176 -- use the common one, because we need to do processing after
11177 -- the call, as per above comment.
11179 Eval_Attribute (N);
11181 -- Eval_Attribute may replace the node with a raise CE, or
11182 -- fold it to a constant. Obviously we only apply a scalar
11183 -- range check if this did not happen.
11185 if Nkind (N) = N_Attribute_Reference
11186 and then Attribute_Name (N) = Name_Val
11187 then
11188 Apply_Scalar_Range_Check (First (Expressions (N)), Btyp);
11189 end if;
11191 return;
11193 -------------
11194 -- Version --
11195 -------------
11197 -- Prefix of Version attribute can be a subprogram name which
11198 -- must not be resolved, since this is not a call.
11200 when Attribute_Version =>
11201 null;
11203 ----------------------
11204 -- Other Attributes --
11205 ----------------------
11207 -- For other attributes, resolve prefix unless it is a type. If
11208 -- the attribute reference itself is a type name ('Base and 'Class)
11209 -- then this is only legal within a task or protected record.
11211 when others =>
11212 if not Is_Entity_Name (P) or else not Is_Type (Entity (P)) then
11213 Resolve (P);
11214 end if;
11216 -- If the attribute reference itself is a type name ('Base,
11217 -- 'Class) then this is only legal within a task or protected
11218 -- record. What is this all about ???
11220 if Is_Entity_Name (N) and then Is_Type (Entity (N)) then
11221 if Is_Concurrent_Type (Entity (N))
11222 and then In_Open_Scopes (Entity (P))
11223 then
11224 null;
11225 else
11226 Error_Msg_N
11227 ("invalid use of subtype name in expression or call", N);
11228 end if;
11229 end if;
11231 -- For attributes whose argument may be a string, complete
11232 -- resolution of argument now. This avoids premature expansion
11233 -- (and the creation of transient scopes) before the attribute
11234 -- reference is resolved.
11236 case Attr_Id is
11237 when Attribute_Value =>
11238 Resolve (First (Expressions (N)), Standard_String);
11240 when Attribute_Wide_Value =>
11241 Resolve (First (Expressions (N)), Standard_Wide_String);
11243 when Attribute_Wide_Wide_Value =>
11244 Resolve (First (Expressions (N)), Standard_Wide_Wide_String);
11246 when others => null;
11247 end case;
11249 -- If the prefix of the attribute is a class-wide type then it
11250 -- will be expanded into a dispatching call to a predefined
11251 -- primitive. Therefore we must check for potential violation
11252 -- of such restriction.
11254 if Is_Class_Wide_Type (Etype (P)) then
11255 Check_Restriction (No_Dispatching_Calls, N);
11256 end if;
11257 end case;
11259 -- Normally the Freezing is done by Resolve but sometimes the Prefix
11260 -- is not resolved, in which case the freezing must be done now.
11262 -- For an elaboration check on a subprogram, we do not freeze its type.
11263 -- It may be declared in an unrelated scope, in particular in the case
11264 -- of a generic function whose type may remain unelaborated.
11266 if Attr_Id = Attribute_Elaborated then
11267 null;
11269 else
11270 Freeze_Expression (P);
11271 end if;
11273 -- Finally perform static evaluation on the attribute reference
11275 Analyze_Dimension (N);
11276 Eval_Attribute (N);
11277 end Resolve_Attribute;
11279 ------------------------
11280 -- Set_Boolean_Result --
11281 ------------------------
11283 procedure Set_Boolean_Result (N : Node_Id; B : Boolean) is
11284 Loc : constant Source_Ptr := Sloc (N);
11285 begin
11286 if B then
11287 Rewrite (N, New_Occurrence_Of (Standard_True, Loc));
11288 else
11289 Rewrite (N, New_Occurrence_Of (Standard_False, Loc));
11290 end if;
11291 end Set_Boolean_Result;
11293 --------------------------------
11294 -- Stream_Attribute_Available --
11295 --------------------------------
11297 function Stream_Attribute_Available
11298 (Typ : Entity_Id;
11299 Nam : TSS_Name_Type;
11300 Partial_View : Node_Id := Empty) return Boolean
11302 Etyp : Entity_Id := Typ;
11304 -- Start of processing for Stream_Attribute_Available
11306 begin
11307 -- We need some comments in this body ???
11309 if Has_Stream_Attribute_Definition (Typ, Nam) then
11310 return True;
11311 end if;
11313 if Is_Class_Wide_Type (Typ) then
11314 return not Is_Limited_Type (Typ)
11315 or else Stream_Attribute_Available (Etype (Typ), Nam);
11316 end if;
11318 if Nam = TSS_Stream_Input
11319 and then Is_Abstract_Type (Typ)
11320 and then not Is_Class_Wide_Type (Typ)
11321 then
11322 return False;
11323 end if;
11325 if not (Is_Limited_Type (Typ)
11326 or else (Present (Partial_View)
11327 and then Is_Limited_Type (Partial_View)))
11328 then
11329 return True;
11330 end if;
11332 -- In Ada 2005, Input can invoke Read, and Output can invoke Write
11334 if Nam = TSS_Stream_Input
11335 and then Ada_Version >= Ada_2005
11336 and then Stream_Attribute_Available (Etyp, TSS_Stream_Read)
11337 then
11338 return True;
11340 elsif Nam = TSS_Stream_Output
11341 and then Ada_Version >= Ada_2005
11342 and then Stream_Attribute_Available (Etyp, TSS_Stream_Write)
11343 then
11344 return True;
11345 end if;
11347 -- Case of Read and Write: check for attribute definition clause that
11348 -- applies to an ancestor type.
11350 while Etype (Etyp) /= Etyp loop
11351 Etyp := Etype (Etyp);
11353 if Has_Stream_Attribute_Definition (Etyp, Nam) then
11354 return True;
11355 end if;
11356 end loop;
11358 if Ada_Version < Ada_2005 then
11360 -- In Ada 95 mode, also consider a non-visible definition
11362 declare
11363 Btyp : constant Entity_Id := Implementation_Base_Type (Typ);
11364 begin
11365 return Btyp /= Typ
11366 and then Stream_Attribute_Available
11367 (Btyp, Nam, Partial_View => Typ);
11368 end;
11369 end if;
11371 return False;
11372 end Stream_Attribute_Available;
11374 end Sem_Attr;