2015-05-05 Yvan Roux <yvan.roux@linaro.org>
[official-gcc.git] / gcc / ada / freeze.adb
blobbfee6559088db7649fb48e22f532638a35bf4213
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- F R E E Z E --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Debug; use Debug;
30 with Einfo; use Einfo;
31 with Elists; use Elists;
32 with Errout; use Errout;
33 with Exp_Ch3; use Exp_Ch3;
34 with Exp_Ch7; use Exp_Ch7;
35 with Exp_Disp; use Exp_Disp;
36 with Exp_Pakd; use Exp_Pakd;
37 with Exp_Util; use Exp_Util;
38 with Exp_Tss; use Exp_Tss;
39 with Ghost; use Ghost;
40 with Layout; use Layout;
41 with Lib; use Lib;
42 with Namet; use Namet;
43 with Nlists; use Nlists;
44 with Nmake; use Nmake;
45 with Opt; use Opt;
46 with Restrict; use Restrict;
47 with Rident; use Rident;
48 with Rtsfind; use Rtsfind;
49 with Sem; use Sem;
50 with Sem_Aux; use Sem_Aux;
51 with Sem_Cat; use Sem_Cat;
52 with Sem_Ch6; use Sem_Ch6;
53 with Sem_Ch7; use Sem_Ch7;
54 with Sem_Ch8; use Sem_Ch8;
55 with Sem_Ch13; use Sem_Ch13;
56 with Sem_Eval; use Sem_Eval;
57 with Sem_Mech; use Sem_Mech;
58 with Sem_Prag; use Sem_Prag;
59 with Sem_Res; use Sem_Res;
60 with Sem_Util; use Sem_Util;
61 with Sinfo; use Sinfo;
62 with Snames; use Snames;
63 with Stand; use Stand;
64 with Targparm; use Targparm;
65 with Tbuild; use Tbuild;
66 with Ttypes; use Ttypes;
67 with Uintp; use Uintp;
68 with Urealp; use Urealp;
69 with Warnsw; use Warnsw;
71 package body Freeze is
73 -----------------------
74 -- Local Subprograms --
75 -----------------------
77 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id);
78 -- Typ is a type that is being frozen. If no size clause is given,
79 -- but a default Esize has been computed, then this default Esize is
80 -- adjusted up if necessary to be consistent with a given alignment,
81 -- but never to a value greater than Long_Long_Integer'Size. This
82 -- is used for all discrete types and for fixed-point types.
84 procedure Build_And_Analyze_Renamed_Body
85 (Decl : Node_Id;
86 New_S : Entity_Id;
87 After : in out Node_Id);
88 -- Build body for a renaming declaration, insert in tree and analyze
90 procedure Check_Address_Clause (E : Entity_Id);
91 -- Apply legality checks to address clauses for object declarations,
92 -- at the point the object is frozen. Also ensure any initialization is
93 -- performed only after the object has been frozen.
95 procedure Check_Component_Storage_Order
96 (Encl_Type : Entity_Id;
97 Comp : Entity_Id;
98 ADC : Node_Id;
99 Comp_ADC_Present : out Boolean);
100 -- For an Encl_Type that has a Scalar_Storage_Order attribute definition
101 -- clause, verify that the component type has an explicit and compatible
102 -- attribute/aspect. For arrays, Comp is Empty; for records, it is the
103 -- entity of the component under consideration. For an Encl_Type that
104 -- does not have a Scalar_Storage_Order attribute definition clause,
105 -- verify that the component also does not have such a clause.
106 -- ADC is the attribute definition clause if present (or Empty). On return,
107 -- Comp_ADC_Present is set True if the component has a Scalar_Storage_Order
108 -- attribute definition clause.
110 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id);
111 -- When an expression function is frozen by a use of it, the expression
112 -- itself is frozen. Check that the expression does not include references
113 -- to deferred constants without completion. We report this at the freeze
114 -- point of the function, to provide a better error message.
116 -- In most cases the expression itself is frozen by the time the function
117 -- itself is frozen, because the formals will be frozen by then. However,
118 -- Attribute references to outer types are freeze points for those types;
119 -- this routine generates the required freeze nodes for them.
121 procedure Check_Strict_Alignment (E : Entity_Id);
122 -- E is a base type. If E is tagged or has a component that is aliased
123 -- or tagged or contains something this is aliased or tagged, set
124 -- Strict_Alignment.
126 procedure Check_Unsigned_Type (E : Entity_Id);
127 pragma Inline (Check_Unsigned_Type);
128 -- If E is a fixed-point or discrete type, then all the necessary work
129 -- to freeze it is completed except for possible setting of the flag
130 -- Is_Unsigned_Type, which is done by this procedure. The call has no
131 -- effect if the entity E is not a discrete or fixed-point type.
133 procedure Freeze_And_Append
134 (Ent : Entity_Id;
135 N : Node_Id;
136 Result : in out List_Id);
137 -- Freezes Ent using Freeze_Entity, and appends the resulting list of
138 -- nodes to Result, modifying Result from No_List if necessary. N has
139 -- the same usage as in Freeze_Entity.
141 procedure Freeze_Enumeration_Type (Typ : Entity_Id);
142 -- Freeze enumeration type. The Esize field is set as processing
143 -- proceeds (i.e. set by default when the type is declared and then
144 -- adjusted by rep clauses. What this procedure does is to make sure
145 -- that if a foreign convention is specified, and no specific size
146 -- is given, then the size must be at least Integer'Size.
148 procedure Freeze_Static_Object (E : Entity_Id);
149 -- If an object is frozen which has Is_Statically_Allocated set, then
150 -- all referenced types must also be marked with this flag. This routine
151 -- is in charge of meeting this requirement for the object entity E.
153 procedure Freeze_Subprogram (E : Entity_Id);
154 -- Perform freezing actions for a subprogram (create extra formals,
155 -- and set proper default mechanism values). Note that this routine
156 -- is not called for internal subprograms, for which neither of these
157 -- actions is needed (or desirable, we do not want for example to have
158 -- these extra formals present in initialization procedures, where they
159 -- would serve no purpose). In this call E is either a subprogram or
160 -- a subprogram type (i.e. an access to a subprogram).
162 function Is_Fully_Defined (T : Entity_Id) return Boolean;
163 -- True if T is not private and has no private components, or has a full
164 -- view. Used to determine whether the designated type of an access type
165 -- should be frozen when the access type is frozen. This is done when an
166 -- allocator is frozen, or an expression that may involve attributes of
167 -- the designated type. Otherwise freezing the access type does not freeze
168 -- the designated type.
170 procedure Process_Default_Expressions
171 (E : Entity_Id;
172 After : in out Node_Id);
173 -- This procedure is called for each subprogram to complete processing of
174 -- default expressions at the point where all types are known to be frozen.
175 -- The expressions must be analyzed in full, to make sure that all error
176 -- processing is done (they have only been pre-analyzed). If the expression
177 -- is not an entity or literal, its analysis may generate code which must
178 -- not be executed. In that case we build a function body to hold that
179 -- code. This wrapper function serves no other purpose (it used to be
180 -- called to evaluate the default, but now the default is inlined at each
181 -- point of call).
183 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id);
184 -- Typ is a record or array type that is being frozen. This routine sets
185 -- the default component alignment from the scope stack values if the
186 -- alignment is otherwise not specified.
188 procedure Check_Debug_Info_Needed (T : Entity_Id);
189 -- As each entity is frozen, this routine is called to deal with the
190 -- setting of Debug_Info_Needed for the entity. This flag is set if
191 -- the entity comes from source, or if we are in Debug_Generated_Code
192 -- mode or if the -gnatdV debug flag is set. However, it never sets
193 -- the flag if Debug_Info_Off is set. This procedure also ensures that
194 -- subsidiary entities have the flag set as required.
196 procedure Set_SSO_From_Default (T : Entity_Id);
197 -- T is a record or array type that is being frozen. If it is a base type,
198 -- and if SSO_Set_Low/High_By_Default is set, then Reverse_Storage order
199 -- will be set appropriately. Note that an explicit occurrence of aspect
200 -- Scalar_Storage_Order or an explicit setting of this aspect with an
201 -- attribute definition clause occurs, then these two flags are reset in
202 -- any case, so call will have no effect.
204 procedure Undelay_Type (T : Entity_Id);
205 -- T is a type of a component that we know to be an Itype. We don't want
206 -- this to have a Freeze_Node, so ensure it doesn't. Do the same for any
207 -- Full_View or Corresponding_Record_Type.
209 procedure Warn_Overlay
210 (Expr : Node_Id;
211 Typ : Entity_Id;
212 Nam : Node_Id);
213 -- Expr is the expression for an address clause for entity Nam whose type
214 -- is Typ. If Typ has a default initialization, and there is no explicit
215 -- initialization in the source declaration, check whether the address
216 -- clause might cause overlaying of an entity, and emit a warning on the
217 -- side effect that the initialization will cause.
219 -------------------------------
220 -- Adjust_Esize_For_Alignment --
221 -------------------------------
223 procedure Adjust_Esize_For_Alignment (Typ : Entity_Id) is
224 Align : Uint;
226 begin
227 if Known_Esize (Typ) and then Known_Alignment (Typ) then
228 Align := Alignment_In_Bits (Typ);
230 if Align > Esize (Typ)
231 and then Align <= Standard_Long_Long_Integer_Size
232 then
233 Set_Esize (Typ, Align);
234 end if;
235 end if;
236 end Adjust_Esize_For_Alignment;
238 ------------------------------------
239 -- Build_And_Analyze_Renamed_Body --
240 ------------------------------------
242 procedure Build_And_Analyze_Renamed_Body
243 (Decl : Node_Id;
244 New_S : Entity_Id;
245 After : in out Node_Id)
247 Body_Decl : constant Node_Id := Unit_Declaration_Node (New_S);
248 Ent : constant Entity_Id := Defining_Entity (Decl);
249 Body_Node : Node_Id;
250 Renamed_Subp : Entity_Id;
252 begin
253 -- If the renamed subprogram is intrinsic, there is no need for a
254 -- wrapper body: we set the alias that will be called and expanded which
255 -- completes the declaration. This transformation is only legal if the
256 -- renamed entity has already been elaborated.
258 -- Note that it is legal for a renaming_as_body to rename an intrinsic
259 -- subprogram, as long as the renaming occurs before the new entity
260 -- is frozen (RM 8.5.4 (5)).
262 if Nkind (Body_Decl) = N_Subprogram_Renaming_Declaration
263 and then Is_Entity_Name (Name (Body_Decl))
264 then
265 Renamed_Subp := Entity (Name (Body_Decl));
266 else
267 Renamed_Subp := Empty;
268 end if;
270 if Present (Renamed_Subp)
271 and then Is_Intrinsic_Subprogram (Renamed_Subp)
272 and then
273 (not In_Same_Source_Unit (Renamed_Subp, Ent)
274 or else Sloc (Renamed_Subp) < Sloc (Ent))
276 -- We can make the renaming entity intrinsic if the renamed function
277 -- has an interface name, or if it is one of the shift/rotate
278 -- operations known to the compiler.
280 and then
281 (Present (Interface_Name (Renamed_Subp))
282 or else Nam_In (Chars (Renamed_Subp), Name_Rotate_Left,
283 Name_Rotate_Right,
284 Name_Shift_Left,
285 Name_Shift_Right,
286 Name_Shift_Right_Arithmetic))
287 then
288 Set_Interface_Name (Ent, Interface_Name (Renamed_Subp));
290 if Present (Alias (Renamed_Subp)) then
291 Set_Alias (Ent, Alias (Renamed_Subp));
292 else
293 Set_Alias (Ent, Renamed_Subp);
294 end if;
296 Set_Is_Intrinsic_Subprogram (Ent);
297 Set_Has_Completion (Ent);
299 else
300 Body_Node := Build_Renamed_Body (Decl, New_S);
301 Insert_After (After, Body_Node);
302 Mark_Rewrite_Insertion (Body_Node);
303 Analyze (Body_Node);
304 After := Body_Node;
305 end if;
306 end Build_And_Analyze_Renamed_Body;
308 ------------------------
309 -- Build_Renamed_Body --
310 ------------------------
312 function Build_Renamed_Body
313 (Decl : Node_Id;
314 New_S : Entity_Id) return Node_Id
316 Loc : constant Source_Ptr := Sloc (New_S);
317 -- We use for the source location of the renamed body, the location of
318 -- the spec entity. It might seem more natural to use the location of
319 -- the renaming declaration itself, but that would be wrong, since then
320 -- the body we create would look as though it was created far too late,
321 -- and this could cause problems with elaboration order analysis,
322 -- particularly in connection with instantiations.
324 N : constant Node_Id := Unit_Declaration_Node (New_S);
325 Nam : constant Node_Id := Name (N);
326 Old_S : Entity_Id;
327 Spec : constant Node_Id := New_Copy_Tree (Specification (Decl));
328 Actuals : List_Id := No_List;
329 Call_Node : Node_Id;
330 Call_Name : Node_Id;
331 Body_Node : Node_Id;
332 Formal : Entity_Id;
333 O_Formal : Entity_Id;
334 Param_Spec : Node_Id;
336 Pref : Node_Id := Empty;
337 -- If the renamed entity is a primitive operation given in prefix form,
338 -- the prefix is the target object and it has to be added as the first
339 -- actual in the generated call.
341 begin
342 -- Determine the entity being renamed, which is the target of the call
343 -- statement. If the name is an explicit dereference, this is a renaming
344 -- of a subprogram type rather than a subprogram. The name itself is
345 -- fully analyzed.
347 if Nkind (Nam) = N_Selected_Component then
348 Old_S := Entity (Selector_Name (Nam));
350 elsif Nkind (Nam) = N_Explicit_Dereference then
351 Old_S := Etype (Nam);
353 elsif Nkind (Nam) = N_Indexed_Component then
354 if Is_Entity_Name (Prefix (Nam)) then
355 Old_S := Entity (Prefix (Nam));
356 else
357 Old_S := Entity (Selector_Name (Prefix (Nam)));
358 end if;
360 elsif Nkind (Nam) = N_Character_Literal then
361 Old_S := Etype (New_S);
363 else
364 Old_S := Entity (Nam);
365 end if;
367 if Is_Entity_Name (Nam) then
369 -- If the renamed entity is a predefined operator, retain full name
370 -- to ensure its visibility.
372 if Ekind (Old_S) = E_Operator
373 and then Nkind (Nam) = N_Expanded_Name
374 then
375 Call_Name := New_Copy (Name (N));
376 else
377 Call_Name := New_Occurrence_Of (Old_S, Loc);
378 end if;
380 else
381 if Nkind (Nam) = N_Selected_Component
382 and then Present (First_Formal (Old_S))
383 and then
384 (Is_Controlling_Formal (First_Formal (Old_S))
385 or else Is_Class_Wide_Type (Etype (First_Formal (Old_S))))
386 then
388 -- Retrieve the target object, to be added as a first actual
389 -- in the call.
391 Call_Name := New_Occurrence_Of (Old_S, Loc);
392 Pref := Prefix (Nam);
394 else
395 Call_Name := New_Copy (Name (N));
396 end if;
398 -- Original name may have been overloaded, but is fully resolved now
400 Set_Is_Overloaded (Call_Name, False);
401 end if;
403 -- For simple renamings, subsequent calls can be expanded directly as
404 -- calls to the renamed entity. The body must be generated in any case
405 -- for calls that may appear elsewhere. This is not done in the case
406 -- where the subprogram is an instantiation because the actual proper
407 -- body has not been built yet.
409 if Ekind_In (Old_S, E_Function, E_Procedure)
410 and then Nkind (Decl) = N_Subprogram_Declaration
411 and then not Is_Generic_Instance (Old_S)
412 then
413 Set_Body_To_Inline (Decl, Old_S);
414 end if;
416 -- Check whether the return type is a limited view. If the subprogram
417 -- is already frozen the generated body may have a non-limited view
418 -- of the type, that must be used, because it is the one in the spec
419 -- of the renaming declaration.
421 if Ekind (Old_S) = E_Function
422 and then Is_Entity_Name (Result_Definition (Spec))
423 then
424 declare
425 Ret_Type : constant Entity_Id := Etype (Result_Definition (Spec));
426 begin
427 if Ekind (Ret_Type) = E_Incomplete_Type
428 and then Present (Non_Limited_View (Ret_Type))
429 then
430 Set_Result_Definition (Spec,
431 New_Occurrence_Of (Non_Limited_View (Ret_Type), Loc));
432 end if;
433 end;
434 end if;
436 -- The body generated for this renaming is an internal artifact, and
437 -- does not constitute a freeze point for the called entity.
439 Set_Must_Not_Freeze (Call_Name);
441 Formal := First_Formal (Defining_Entity (Decl));
443 if Present (Pref) then
444 declare
445 Pref_Type : constant Entity_Id := Etype (Pref);
446 Form_Type : constant Entity_Id := Etype (First_Formal (Old_S));
448 begin
449 -- The controlling formal may be an access parameter, or the
450 -- actual may be an access value, so adjust accordingly.
452 if Is_Access_Type (Pref_Type)
453 and then not Is_Access_Type (Form_Type)
454 then
455 Actuals := New_List
456 (Make_Explicit_Dereference (Loc, Relocate_Node (Pref)));
458 elsif Is_Access_Type (Form_Type)
459 and then not Is_Access_Type (Pref)
460 then
461 Actuals := New_List
462 (Make_Attribute_Reference (Loc,
463 Attribute_Name => Name_Access,
464 Prefix => Relocate_Node (Pref)));
465 else
466 Actuals := New_List (Pref);
467 end if;
468 end;
470 elsif Present (Formal) then
471 Actuals := New_List;
473 else
474 Actuals := No_List;
475 end if;
477 if Present (Formal) then
478 while Present (Formal) loop
479 Append (New_Occurrence_Of (Formal, Loc), Actuals);
480 Next_Formal (Formal);
481 end loop;
482 end if;
484 -- If the renamed entity is an entry, inherit its profile. For other
485 -- renamings as bodies, both profiles must be subtype conformant, so it
486 -- is not necessary to replace the profile given in the declaration.
487 -- However, default values that are aggregates are rewritten when
488 -- partially analyzed, so we recover the original aggregate to insure
489 -- that subsequent conformity checking works. Similarly, if the default
490 -- expression was constant-folded, recover the original expression.
492 Formal := First_Formal (Defining_Entity (Decl));
494 if Present (Formal) then
495 O_Formal := First_Formal (Old_S);
496 Param_Spec := First (Parameter_Specifications (Spec));
497 while Present (Formal) loop
498 if Is_Entry (Old_S) then
499 if Nkind (Parameter_Type (Param_Spec)) /=
500 N_Access_Definition
501 then
502 Set_Etype (Formal, Etype (O_Formal));
503 Set_Entity (Parameter_Type (Param_Spec), Etype (O_Formal));
504 end if;
506 elsif Nkind (Default_Value (O_Formal)) = N_Aggregate
507 or else Nkind (Original_Node (Default_Value (O_Formal))) /=
508 Nkind (Default_Value (O_Formal))
509 then
510 Set_Expression (Param_Spec,
511 New_Copy_Tree (Original_Node (Default_Value (O_Formal))));
512 end if;
514 Next_Formal (Formal);
515 Next_Formal (O_Formal);
516 Next (Param_Spec);
517 end loop;
518 end if;
520 -- If the renamed entity is a function, the generated body contains a
521 -- return statement. Otherwise, build a procedure call. If the entity is
522 -- an entry, subsequent analysis of the call will transform it into the
523 -- proper entry or protected operation call. If the renamed entity is
524 -- a character literal, return it directly.
526 if Ekind (Old_S) = E_Function
527 or else Ekind (Old_S) = E_Operator
528 or else (Ekind (Old_S) = E_Subprogram_Type
529 and then Etype (Old_S) /= Standard_Void_Type)
530 then
531 Call_Node :=
532 Make_Simple_Return_Statement (Loc,
533 Expression =>
534 Make_Function_Call (Loc,
535 Name => Call_Name,
536 Parameter_Associations => Actuals));
538 elsif Ekind (Old_S) = E_Enumeration_Literal then
539 Call_Node :=
540 Make_Simple_Return_Statement (Loc,
541 Expression => New_Occurrence_Of (Old_S, Loc));
543 elsif Nkind (Nam) = N_Character_Literal then
544 Call_Node :=
545 Make_Simple_Return_Statement (Loc,
546 Expression => Call_Name);
548 else
549 Call_Node :=
550 Make_Procedure_Call_Statement (Loc,
551 Name => Call_Name,
552 Parameter_Associations => Actuals);
553 end if;
555 -- Create entities for subprogram body and formals
557 Set_Defining_Unit_Name (Spec,
558 Make_Defining_Identifier (Loc, Chars => Chars (New_S)));
560 Param_Spec := First (Parameter_Specifications (Spec));
561 while Present (Param_Spec) loop
562 Set_Defining_Identifier (Param_Spec,
563 Make_Defining_Identifier (Loc,
564 Chars => Chars (Defining_Identifier (Param_Spec))));
565 Next (Param_Spec);
566 end loop;
568 Body_Node :=
569 Make_Subprogram_Body (Loc,
570 Specification => Spec,
571 Declarations => New_List,
572 Handled_Statement_Sequence =>
573 Make_Handled_Sequence_Of_Statements (Loc,
574 Statements => New_List (Call_Node)));
576 if Nkind (Decl) /= N_Subprogram_Declaration then
577 Rewrite (N,
578 Make_Subprogram_Declaration (Loc,
579 Specification => Specification (N)));
580 end if;
582 -- Link the body to the entity whose declaration it completes. If
583 -- the body is analyzed when the renamed entity is frozen, it may
584 -- be necessary to restore the proper scope (see package Exp_Ch13).
586 if Nkind (N) = N_Subprogram_Renaming_Declaration
587 and then Present (Corresponding_Spec (N))
588 then
589 Set_Corresponding_Spec (Body_Node, Corresponding_Spec (N));
590 else
591 Set_Corresponding_Spec (Body_Node, New_S);
592 end if;
594 return Body_Node;
595 end Build_Renamed_Body;
597 --------------------------
598 -- Check_Address_Clause --
599 --------------------------
601 procedure Check_Address_Clause (E : Entity_Id) is
602 Addr : constant Node_Id := Address_Clause (E);
603 Expr : Node_Id;
604 Decl : constant Node_Id := Declaration_Node (E);
605 Loc : constant Source_Ptr := Sloc (Decl);
606 Typ : constant Entity_Id := Etype (E);
607 Lhs : Node_Id;
608 Tag_Assign : Node_Id;
610 begin
611 if Present (Addr) then
612 Expr := Expression (Addr);
614 if Needs_Constant_Address (Decl, Typ) then
615 Check_Constant_Address_Clause (Expr, E);
617 -- Has_Delayed_Freeze was set on E when the address clause was
618 -- analyzed, and must remain set because we want the address
619 -- clause to be elaborated only after any entity it references
620 -- has been elaborated.
621 end if;
623 -- If Rep_Clauses are to be ignored, remove address clause from
624 -- list attached to entity, because it may be illegal for gigi,
625 -- for example by breaking order of elaboration..
627 if Ignore_Rep_Clauses then
628 declare
629 Rep : Node_Id;
631 begin
632 Rep := First_Rep_Item (E);
634 if Rep = Addr then
635 Set_First_Rep_Item (E, Next_Rep_Item (Addr));
637 else
638 while Present (Rep)
639 and then Next_Rep_Item (Rep) /= Addr
640 loop
641 Rep := Next_Rep_Item (Rep);
642 end loop;
643 end if;
645 if Present (Rep) then
646 Set_Next_Rep_Item (Rep, Next_Rep_Item (Addr));
647 end if;
648 end;
650 -- And now remove the address clause
652 Kill_Rep_Clause (Addr);
654 elsif not Error_Posted (Expr)
655 and then not Needs_Finalization (Typ)
656 then
657 Warn_Overlay (Expr, Typ, Name (Addr));
658 end if;
660 if Present (Expression (Decl)) then
662 -- Capture initialization value at point of declaration,
663 -- and make explicit assignment legal, because object may
664 -- be a constant.
666 Remove_Side_Effects (Expression (Decl));
667 Lhs := New_Occurrence_Of (E, Loc);
668 Set_Assignment_OK (Lhs);
670 -- Move initialization to freeze actions (once the object has
671 -- been frozen, and the address clause alignment check has been
672 -- performed.
674 Append_Freeze_Action (E,
675 Make_Assignment_Statement (Loc,
676 Name => Lhs,
677 Expression => Expression (Decl)));
679 Set_No_Initialization (Decl);
681 -- If the objet is tagged, check whether the tag must be
682 -- reassigned expliitly.
684 Tag_Assign := Make_Tag_Assignment (Decl);
685 if Present (Tag_Assign) then
686 Append_Freeze_Action (E, Tag_Assign);
687 end if;
688 end if;
689 end if;
690 end Check_Address_Clause;
692 -----------------------------
693 -- Check_Compile_Time_Size --
694 -----------------------------
696 procedure Check_Compile_Time_Size (T : Entity_Id) is
698 procedure Set_Small_Size (T : Entity_Id; S : Uint);
699 -- Sets the compile time known size (32 bits or less) in the Esize
700 -- field, of T checking for a size clause that was given which attempts
701 -- to give a smaller size, and also checking for an alignment clause.
703 function Size_Known (T : Entity_Id) return Boolean;
704 -- Recursive function that does all the work
706 function Static_Discriminated_Components (T : Entity_Id) return Boolean;
707 -- If T is a constrained subtype, its size is not known if any of its
708 -- discriminant constraints is not static and it is not a null record.
709 -- The test is conservative and doesn't check that the components are
710 -- in fact constrained by non-static discriminant values. Could be made
711 -- more precise ???
713 --------------------
714 -- Set_Small_Size --
715 --------------------
717 procedure Set_Small_Size (T : Entity_Id; S : Uint) is
718 begin
719 if S > 32 then
720 return;
722 -- Check for bad size clause given
724 elsif Has_Size_Clause (T) then
725 if RM_Size (T) < S then
726 Error_Msg_Uint_1 := S;
727 Error_Msg_NE
728 ("size for& too small, minimum allowed is ^",
729 Size_Clause (T), T);
730 end if;
732 -- Set size if not set already
734 elsif Unknown_RM_Size (T) then
735 Set_RM_Size (T, S);
736 end if;
737 end Set_Small_Size;
739 ----------------
740 -- Size_Known --
741 ----------------
743 function Size_Known (T : Entity_Id) return Boolean is
744 Index : Entity_Id;
745 Comp : Entity_Id;
746 Ctyp : Entity_Id;
747 Low : Node_Id;
748 High : Node_Id;
750 begin
751 if Size_Known_At_Compile_Time (T) then
752 return True;
754 -- Always True for scalar types. This is true even for generic formal
755 -- scalar types. We used to return False in the latter case, but the
756 -- size is known at compile time, even in the template, we just do
757 -- not know the exact size but that's not the point of this routine.
759 elsif Is_Scalar_Type (T)
760 or else Is_Task_Type (T)
761 then
762 return True;
764 -- Array types
766 elsif Is_Array_Type (T) then
768 -- String literals always have known size, and we can set it
770 if Ekind (T) = E_String_Literal_Subtype then
771 Set_Small_Size (T, Component_Size (T)
772 * String_Literal_Length (T));
773 return True;
775 -- Unconstrained types never have known at compile time size
777 elsif not Is_Constrained (T) then
778 return False;
780 -- Don't do any recursion on type with error posted, since we may
781 -- have a malformed type that leads us into a loop.
783 elsif Error_Posted (T) then
784 return False;
786 -- Otherwise if component size unknown, then array size unknown
788 elsif not Size_Known (Component_Type (T)) then
789 return False;
790 end if;
792 -- Check for all indexes static, and also compute possible size
793 -- (in case it is less than 32 and may be packable).
795 declare
796 Esiz : Uint := Component_Size (T);
797 Dim : Uint;
799 begin
800 Index := First_Index (T);
801 while Present (Index) loop
802 if Nkind (Index) = N_Range then
803 Get_Index_Bounds (Index, Low, High);
805 elsif Error_Posted (Scalar_Range (Etype (Index))) then
806 return False;
808 else
809 Low := Type_Low_Bound (Etype (Index));
810 High := Type_High_Bound (Etype (Index));
811 end if;
813 if not Compile_Time_Known_Value (Low)
814 or else not Compile_Time_Known_Value (High)
815 or else Etype (Index) = Any_Type
816 then
817 return False;
819 else
820 Dim := Expr_Value (High) - Expr_Value (Low) + 1;
822 if Dim >= 0 then
823 Esiz := Esiz * Dim;
824 else
825 Esiz := Uint_0;
826 end if;
827 end if;
829 Next_Index (Index);
830 end loop;
832 Set_Small_Size (T, Esiz);
833 return True;
834 end;
836 -- Access types always have known at compile time sizes
838 elsif Is_Access_Type (T) then
839 return True;
841 -- For non-generic private types, go to underlying type if present
843 elsif Is_Private_Type (T)
844 and then not Is_Generic_Type (T)
845 and then Present (Underlying_Type (T))
846 then
847 -- Don't do any recursion on type with error posted, since we may
848 -- have a malformed type that leads us into a loop.
850 if Error_Posted (T) then
851 return False;
852 else
853 return Size_Known (Underlying_Type (T));
854 end if;
856 -- Record types
858 elsif Is_Record_Type (T) then
860 -- A class-wide type is never considered to have a known size
862 if Is_Class_Wide_Type (T) then
863 return False;
865 -- A subtype of a variant record must not have non-static
866 -- discriminated components.
868 elsif T /= Base_Type (T)
869 and then not Static_Discriminated_Components (T)
870 then
871 return False;
873 -- Don't do any recursion on type with error posted, since we may
874 -- have a malformed type that leads us into a loop.
876 elsif Error_Posted (T) then
877 return False;
878 end if;
880 -- Now look at the components of the record
882 declare
883 -- The following two variables are used to keep track of the
884 -- size of packed records if we can tell the size of the packed
885 -- record in the front end. Packed_Size_Known is True if so far
886 -- we can figure out the size. It is initialized to True for a
887 -- packed record, unless the record has discriminants or atomic
888 -- components or independent components.
890 -- The reason we eliminate the discriminated case is that
891 -- we don't know the way the back end lays out discriminated
892 -- packed records. If Packed_Size_Known is True, then
893 -- Packed_Size is the size in bits so far.
895 Packed_Size_Known : Boolean :=
896 Is_Packed (T)
897 and then not Has_Discriminants (T)
898 and then not Has_Atomic_Components (T)
899 and then not Has_Independent_Components (T);
901 Packed_Size : Uint := Uint_0;
902 -- Size in bits so far
904 begin
905 -- Test for variant part present
907 if Has_Discriminants (T)
908 and then Present (Parent (T))
909 and then Nkind (Parent (T)) = N_Full_Type_Declaration
910 and then Nkind (Type_Definition (Parent (T))) =
911 N_Record_Definition
912 and then not Null_Present (Type_Definition (Parent (T)))
913 and then
914 Present (Variant_Part
915 (Component_List (Type_Definition (Parent (T)))))
916 then
917 -- If variant part is present, and type is unconstrained,
918 -- then we must have defaulted discriminants, or a size
919 -- clause must be present for the type, or else the size
920 -- is definitely not known at compile time.
922 if not Is_Constrained (T)
923 and then
924 No (Discriminant_Default_Value (First_Discriminant (T)))
925 and then Unknown_RM_Size (T)
926 then
927 return False;
928 end if;
929 end if;
931 -- Loop through components
933 Comp := First_Component_Or_Discriminant (T);
934 while Present (Comp) loop
935 Ctyp := Etype (Comp);
937 -- We do not know the packed size if there is a component
938 -- clause present (we possibly could, but this would only
939 -- help in the case of a record with partial rep clauses.
940 -- That's because in the case of full rep clauses, the
941 -- size gets figured out anyway by a different circuit).
943 if Present (Component_Clause (Comp)) then
944 Packed_Size_Known := False;
945 end if;
947 -- We do not know the packed size if we have an atomic type
948 -- or component, or an independent type or component, or a
949 -- by reference type or aliased component (because packing
950 -- does not touch these).
952 if Is_Atomic (Ctyp)
953 or else Is_Atomic (Comp)
954 or else Is_Independent (Ctyp)
955 or else Is_Independent (Comp)
956 or else Is_By_Reference_Type (Ctyp)
957 or else Is_Aliased (Comp)
958 then
959 Packed_Size_Known := False;
960 end if;
962 -- We need to identify a component that is an array where
963 -- the index type is an enumeration type with non-standard
964 -- representation, and some bound of the type depends on a
965 -- discriminant.
967 -- This is because gigi computes the size by doing a
968 -- substitution of the appropriate discriminant value in
969 -- the size expression for the base type, and gigi is not
970 -- clever enough to evaluate the resulting expression (which
971 -- involves a call to rep_to_pos) at compile time.
973 -- It would be nice if gigi would either recognize that
974 -- this expression can be computed at compile time, or
975 -- alternatively figured out the size from the subtype
976 -- directly, where all the information is at hand ???
978 if Is_Array_Type (Etype (Comp))
979 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
980 then
981 declare
982 Ocomp : constant Entity_Id :=
983 Original_Record_Component (Comp);
984 OCtyp : constant Entity_Id := Etype (Ocomp);
985 Ind : Node_Id;
986 Indtyp : Entity_Id;
987 Lo, Hi : Node_Id;
989 begin
990 Ind := First_Index (OCtyp);
991 while Present (Ind) loop
992 Indtyp := Etype (Ind);
994 if Is_Enumeration_Type (Indtyp)
995 and then Has_Non_Standard_Rep (Indtyp)
996 then
997 Lo := Type_Low_Bound (Indtyp);
998 Hi := Type_High_Bound (Indtyp);
1000 if Is_Entity_Name (Lo)
1001 and then Ekind (Entity (Lo)) = E_Discriminant
1002 then
1003 return False;
1005 elsif Is_Entity_Name (Hi)
1006 and then Ekind (Entity (Hi)) = E_Discriminant
1007 then
1008 return False;
1009 end if;
1010 end if;
1012 Next_Index (Ind);
1013 end loop;
1014 end;
1015 end if;
1017 -- Clearly size of record is not known if the size of one of
1018 -- the components is not known.
1020 if not Size_Known (Ctyp) then
1021 return False;
1022 end if;
1024 -- Accumulate packed size if possible
1026 if Packed_Size_Known then
1028 -- We can only deal with elementary types, since for
1029 -- non-elementary components, alignment enters into the
1030 -- picture, and we don't know enough to handle proper
1031 -- alignment in this context. Packed arrays count as
1032 -- elementary if the representation is a modular type.
1034 if Is_Elementary_Type (Ctyp)
1035 or else (Is_Array_Type (Ctyp)
1036 and then Present
1037 (Packed_Array_Impl_Type (Ctyp))
1038 and then Is_Modular_Integer_Type
1039 (Packed_Array_Impl_Type (Ctyp)))
1040 then
1041 -- Packed size unknown if we have an atomic type
1042 -- or a by reference type, since the back end
1043 -- knows how these are layed out.
1045 if Is_Atomic (Ctyp)
1046 or else Is_By_Reference_Type (Ctyp)
1047 then
1048 Packed_Size_Known := False;
1050 -- If RM_Size is known and static, then we can keep
1051 -- accumulating the packed size
1053 elsif Known_Static_RM_Size (Ctyp) then
1055 -- A little glitch, to be removed sometime ???
1056 -- gigi does not understand zero sizes yet.
1058 if RM_Size (Ctyp) = Uint_0 then
1059 Packed_Size_Known := False;
1061 -- Normal case where we can keep accumulating the
1062 -- packed array size.
1064 else
1065 Packed_Size := Packed_Size + RM_Size (Ctyp);
1066 end if;
1068 -- If we have a field whose RM_Size is not known then
1069 -- we can't figure out the packed size here.
1071 else
1072 Packed_Size_Known := False;
1073 end if;
1075 -- If we have a non-elementary type we can't figure out
1076 -- the packed array size (alignment issues).
1078 else
1079 Packed_Size_Known := False;
1080 end if;
1081 end if;
1083 Next_Component_Or_Discriminant (Comp);
1084 end loop;
1086 if Packed_Size_Known then
1087 Set_Small_Size (T, Packed_Size);
1088 end if;
1090 return True;
1091 end;
1093 -- All other cases, size not known at compile time
1095 else
1096 return False;
1097 end if;
1098 end Size_Known;
1100 -------------------------------------
1101 -- Static_Discriminated_Components --
1102 -------------------------------------
1104 function Static_Discriminated_Components
1105 (T : Entity_Id) return Boolean
1107 Constraint : Elmt_Id;
1109 begin
1110 if Has_Discriminants (T)
1111 and then Present (Discriminant_Constraint (T))
1112 and then Present (First_Component (T))
1113 then
1114 Constraint := First_Elmt (Discriminant_Constraint (T));
1115 while Present (Constraint) loop
1116 if not Compile_Time_Known_Value (Node (Constraint)) then
1117 return False;
1118 end if;
1120 Next_Elmt (Constraint);
1121 end loop;
1122 end if;
1124 return True;
1125 end Static_Discriminated_Components;
1127 -- Start of processing for Check_Compile_Time_Size
1129 begin
1130 Set_Size_Known_At_Compile_Time (T, Size_Known (T));
1131 end Check_Compile_Time_Size;
1133 -----------------------------------
1134 -- Check_Component_Storage_Order --
1135 -----------------------------------
1137 procedure Check_Component_Storage_Order
1138 (Encl_Type : Entity_Id;
1139 Comp : Entity_Id;
1140 ADC : Node_Id;
1141 Comp_ADC_Present : out Boolean)
1143 Comp_Type : Entity_Id;
1144 Comp_ADC : Node_Id;
1145 Err_Node : Node_Id;
1147 Comp_Byte_Aligned : Boolean;
1148 -- Set for the record case, True if Comp starts on a byte boundary
1149 -- (in which case it is allowed to have different storage order).
1151 Comp_SSO_Differs : Boolean;
1152 -- Set True when the component is a nested composite, and it does not
1153 -- have the same scalar storage order as Encl_Type.
1155 Component_Aliased : Boolean;
1157 begin
1158 -- Record case
1160 if Present (Comp) then
1161 Err_Node := Comp;
1162 Comp_Type := Etype (Comp);
1164 if Is_Tag (Comp) then
1165 Comp_Byte_Aligned := True;
1166 Component_Aliased := False;
1168 else
1169 -- If a component clause is present, check if the component starts
1170 -- on a storage element boundary. Otherwise conservatively assume
1171 -- it does so only in the case where the record is not packed.
1173 if Present (Component_Clause (Comp)) then
1174 Comp_Byte_Aligned :=
1175 Normalized_First_Bit (Comp) mod System_Storage_Unit = 0;
1176 else
1177 Comp_Byte_Aligned := not Is_Packed (Encl_Type);
1178 end if;
1180 Component_Aliased := Is_Aliased (Comp);
1181 end if;
1183 -- Array case
1185 else
1186 Err_Node := Encl_Type;
1187 Comp_Type := Component_Type (Encl_Type);
1189 Component_Aliased := Has_Aliased_Components (Encl_Type);
1190 end if;
1192 -- Note: the Reverse_Storage_Order flag is set on the base type, but
1193 -- the attribute definition clause is attached to the first subtype.
1195 Comp_Type := Base_Type (Comp_Type);
1196 Comp_ADC := Get_Attribute_Definition_Clause
1197 (First_Subtype (Comp_Type),
1198 Attribute_Scalar_Storage_Order);
1199 Comp_ADC_Present := Present (Comp_ADC);
1201 -- Case of record or array component: check storage order compatibility
1203 if Is_Record_Type (Comp_Type) or else Is_Array_Type (Comp_Type) then
1204 Comp_SSO_Differs :=
1205 Reverse_Storage_Order (Encl_Type)
1207 Reverse_Storage_Order (Comp_Type);
1209 -- Parent and extension must have same storage order
1211 if Present (Comp) and then Chars (Comp) = Name_uParent then
1212 if Comp_SSO_Differs then
1213 Error_Msg_N
1214 ("record extension must have same scalar storage order as "
1215 & "parent", Err_Node);
1216 end if;
1218 -- If enclosing composite has explicit SSO then nested composite must
1219 -- have explicit SSO as well.
1221 elsif Present (ADC) and then No (Comp_ADC) then
1222 Error_Msg_N ("nested composite must have explicit scalar "
1223 & "storage order", Err_Node);
1225 -- If component and composite SSO differs, check that component
1226 -- falls on byte boundaries and isn't packed.
1228 elsif Comp_SSO_Differs then
1230 -- Component SSO differs from enclosing composite:
1232 -- Reject if component is a packed array, as it may be represented
1233 -- as a scalar internally.
1235 if Is_Packed_Array (Comp_Type) then
1236 Error_Msg_N
1237 ("type of packed component must have same scalar "
1238 & "storage order as enclosing composite", Err_Node);
1240 -- Reject if composite is a packed array, as it may be rewritten
1241 -- into an array of scalars.
1243 elsif Is_Packed_Array (Encl_Type) then
1244 Error_Msg_N ("type of packed array must have same scalar "
1245 & "storage order as component", Err_Node);
1247 -- Reject if not byte aligned
1249 elsif Is_Record_Type (Encl_Type)
1250 and then not Comp_Byte_Aligned
1251 then
1252 Error_Msg_N
1253 ("type of non-byte-aligned component must have same scalar "
1254 & "storage order as enclosing composite", Err_Node);
1255 end if;
1256 end if;
1258 -- Enclosing type has explicit SSO: non-composite component must not
1259 -- be aliased.
1261 elsif Present (ADC) and then Component_Aliased then
1262 Error_Msg_N
1263 ("aliased component not permitted for type with "
1264 & "explicit Scalar_Storage_Order", Err_Node);
1265 end if;
1266 end Check_Component_Storage_Order;
1268 -----------------------------
1269 -- Check_Debug_Info_Needed --
1270 -----------------------------
1272 procedure Check_Debug_Info_Needed (T : Entity_Id) is
1273 begin
1274 if Debug_Info_Off (T) then
1275 return;
1277 elsif Comes_From_Source (T)
1278 or else Debug_Generated_Code
1279 or else Debug_Flag_VV
1280 or else Needs_Debug_Info (T)
1281 then
1282 Set_Debug_Info_Needed (T);
1283 end if;
1284 end Check_Debug_Info_Needed;
1286 -------------------------------
1287 -- Check_Expression_Function --
1288 -------------------------------
1290 procedure Check_Expression_Function (N : Node_Id; Nam : Entity_Id) is
1291 Decl : Node_Id;
1293 function Find_Constant (Nod : Node_Id) return Traverse_Result;
1294 -- Function to search for deferred constant
1296 -------------------
1297 -- Find_Constant --
1298 -------------------
1300 function Find_Constant (Nod : Node_Id) return Traverse_Result is
1301 begin
1302 -- When a constant is initialized with the result of a dispatching
1303 -- call, the constant declaration is rewritten as a renaming of the
1304 -- displaced function result. This scenario is not a premature use of
1305 -- a constant even though the Has_Completion flag is not set.
1307 if Is_Entity_Name (Nod)
1308 and then Present (Entity (Nod))
1309 and then Ekind (Entity (Nod)) = E_Constant
1310 and then Scope (Entity (Nod)) = Current_Scope
1311 and then Nkind (Declaration_Node (Entity (Nod))) =
1312 N_Object_Declaration
1313 and then not Is_Imported (Entity (Nod))
1314 and then not Has_Completion (Entity (Nod))
1315 then
1316 Error_Msg_NE
1317 ("premature use of& in call or instance", N, Entity (Nod));
1319 elsif Nkind (Nod) = N_Attribute_Reference then
1320 Analyze (Prefix (Nod));
1322 if Is_Entity_Name (Prefix (Nod))
1323 and then Is_Type (Entity (Prefix (Nod)))
1324 then
1325 Freeze_Before (N, Entity (Prefix (Nod)));
1326 end if;
1327 end if;
1329 return OK;
1330 end Find_Constant;
1332 procedure Check_Deferred is new Traverse_Proc (Find_Constant);
1334 -- Start of processing for Check_Expression_Function
1336 begin
1337 Decl := Original_Node (Unit_Declaration_Node (Nam));
1339 if Scope (Nam) = Current_Scope
1340 and then Nkind (Decl) = N_Expression_Function
1341 then
1342 Check_Deferred (Expression (Decl));
1343 end if;
1344 end Check_Expression_Function;
1346 ----------------------------
1347 -- Check_Strict_Alignment --
1348 ----------------------------
1350 procedure Check_Strict_Alignment (E : Entity_Id) is
1351 Comp : Entity_Id;
1353 begin
1354 if Is_Tagged_Type (E) or else Is_Concurrent_Type (E) then
1355 Set_Strict_Alignment (E);
1357 elsif Is_Array_Type (E) then
1358 Set_Strict_Alignment (E, Strict_Alignment (Component_Type (E)));
1360 elsif Is_Record_Type (E) then
1361 if Is_Limited_Record (E) then
1362 Set_Strict_Alignment (E);
1363 return;
1364 end if;
1366 Comp := First_Component (E);
1367 while Present (Comp) loop
1368 if not Is_Type (Comp)
1369 and then (Strict_Alignment (Etype (Comp))
1370 or else Is_Aliased (Comp))
1371 then
1372 Set_Strict_Alignment (E);
1373 return;
1374 end if;
1376 Next_Component (Comp);
1377 end loop;
1378 end if;
1379 end Check_Strict_Alignment;
1381 -------------------------
1382 -- Check_Unsigned_Type --
1383 -------------------------
1385 procedure Check_Unsigned_Type (E : Entity_Id) is
1386 Ancestor : Entity_Id;
1387 Lo_Bound : Node_Id;
1388 Btyp : Entity_Id;
1390 begin
1391 if not Is_Discrete_Or_Fixed_Point_Type (E) then
1392 return;
1393 end if;
1395 -- Do not attempt to analyze case where range was in error
1397 if No (Scalar_Range (E)) or else Error_Posted (Scalar_Range (E)) then
1398 return;
1399 end if;
1401 -- The situation that is non trivial is something like
1403 -- subtype x1 is integer range -10 .. +10;
1404 -- subtype x2 is x1 range 0 .. V1;
1405 -- subtype x3 is x2 range V2 .. V3;
1406 -- subtype x4 is x3 range V4 .. V5;
1408 -- where Vn are variables. Here the base type is signed, but we still
1409 -- know that x4 is unsigned because of the lower bound of x2.
1411 -- The only way to deal with this is to look up the ancestor chain
1413 Ancestor := E;
1414 loop
1415 if Ancestor = Any_Type or else Etype (Ancestor) = Any_Type then
1416 return;
1417 end if;
1419 Lo_Bound := Type_Low_Bound (Ancestor);
1421 if Compile_Time_Known_Value (Lo_Bound) then
1422 if Expr_Rep_Value (Lo_Bound) >= 0 then
1423 Set_Is_Unsigned_Type (E, True);
1424 end if;
1426 return;
1428 else
1429 Ancestor := Ancestor_Subtype (Ancestor);
1431 -- If no ancestor had a static lower bound, go to base type
1433 if No (Ancestor) then
1435 -- Note: the reason we still check for a compile time known
1436 -- value for the base type is that at least in the case of
1437 -- generic formals, we can have bounds that fail this test,
1438 -- and there may be other cases in error situations.
1440 Btyp := Base_Type (E);
1442 if Btyp = Any_Type or else Etype (Btyp) = Any_Type then
1443 return;
1444 end if;
1446 Lo_Bound := Type_Low_Bound (Base_Type (E));
1448 if Compile_Time_Known_Value (Lo_Bound)
1449 and then Expr_Rep_Value (Lo_Bound) >= 0
1450 then
1451 Set_Is_Unsigned_Type (E, True);
1452 end if;
1454 return;
1455 end if;
1456 end if;
1457 end loop;
1458 end Check_Unsigned_Type;
1460 -------------------------
1461 -- Is_Atomic_Aggregate --
1462 -------------------------
1464 function Is_Atomic_Aggregate
1465 (E : Entity_Id;
1466 Typ : Entity_Id) return Boolean
1468 Loc : constant Source_Ptr := Sloc (E);
1469 New_N : Node_Id;
1470 Par : Node_Id;
1471 Temp : Entity_Id;
1473 begin
1474 Par := Parent (E);
1476 -- Array may be qualified, so find outer context
1478 if Nkind (Par) = N_Qualified_Expression then
1479 Par := Parent (Par);
1480 end if;
1482 if Nkind_In (Par, N_Object_Declaration, N_Assignment_Statement)
1483 and then Comes_From_Source (Par)
1484 then
1485 Temp := Make_Temporary (Loc, 'T', E);
1486 New_N :=
1487 Make_Object_Declaration (Loc,
1488 Defining_Identifier => Temp,
1489 Object_Definition => New_Occurrence_Of (Typ, Loc),
1490 Expression => Relocate_Node (E));
1491 Insert_Before (Par, New_N);
1492 Analyze (New_N);
1494 Set_Expression (Par, New_Occurrence_Of (Temp, Loc));
1495 return True;
1497 else
1498 return False;
1499 end if;
1500 end Is_Atomic_Aggregate;
1502 -----------------------------------------------
1503 -- Explode_Initialization_Compound_Statement --
1504 -----------------------------------------------
1506 procedure Explode_Initialization_Compound_Statement (E : Entity_Id) is
1507 Init_Stmts : constant Node_Id := Initialization_Statements (E);
1509 begin
1510 if Present (Init_Stmts)
1511 and then Nkind (Init_Stmts) = N_Compound_Statement
1512 then
1513 Insert_List_Before (Init_Stmts, Actions (Init_Stmts));
1515 -- Note that we rewrite Init_Stmts into a NULL statement, rather than
1516 -- just removing it, because Freeze_All may rely on this particular
1517 -- Node_Id still being present in the enclosing list to know where to
1518 -- stop freezing.
1520 Rewrite (Init_Stmts, Make_Null_Statement (Sloc (Init_Stmts)));
1522 Set_Initialization_Statements (E, Empty);
1523 end if;
1524 end Explode_Initialization_Compound_Statement;
1526 ----------------
1527 -- Freeze_All --
1528 ----------------
1530 -- Note: the easy coding for this procedure would be to just build a
1531 -- single list of freeze nodes and then insert them and analyze them
1532 -- all at once. This won't work, because the analysis of earlier freeze
1533 -- nodes may recursively freeze types which would otherwise appear later
1534 -- on in the freeze list. So we must analyze and expand the freeze nodes
1535 -- as they are generated.
1537 procedure Freeze_All (From : Entity_Id; After : in out Node_Id) is
1538 E : Entity_Id;
1539 Decl : Node_Id;
1541 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id);
1542 -- This is the internal recursive routine that does freezing of entities
1543 -- (but NOT the analysis of default expressions, which should not be
1544 -- recursive, we don't want to analyze those till we are sure that ALL
1545 -- the types are frozen).
1547 --------------------
1548 -- Freeze_All_Ent --
1549 --------------------
1551 procedure Freeze_All_Ent (From : Entity_Id; After : in out Node_Id) is
1552 E : Entity_Id;
1553 Flist : List_Id;
1554 Lastn : Node_Id;
1556 procedure Process_Flist;
1557 -- If freeze nodes are present, insert and analyze, and reset cursor
1558 -- for next insertion.
1560 -------------------
1561 -- Process_Flist --
1562 -------------------
1564 procedure Process_Flist is
1565 begin
1566 if Is_Non_Empty_List (Flist) then
1567 Lastn := Next (After);
1568 Insert_List_After_And_Analyze (After, Flist);
1570 if Present (Lastn) then
1571 After := Prev (Lastn);
1572 else
1573 After := Last (List_Containing (After));
1574 end if;
1575 end if;
1576 end Process_Flist;
1578 -- Start or processing for Freeze_All_Ent
1580 begin
1581 E := From;
1582 while Present (E) loop
1584 -- If the entity is an inner package which is not a package
1585 -- renaming, then its entities must be frozen at this point. Note
1586 -- that such entities do NOT get frozen at the end of the nested
1587 -- package itself (only library packages freeze).
1589 -- Same is true for task declarations, where anonymous records
1590 -- created for entry parameters must be frozen.
1592 if Ekind (E) = E_Package
1593 and then No (Renamed_Object (E))
1594 and then not Is_Child_Unit (E)
1595 and then not Is_Frozen (E)
1596 then
1597 Push_Scope (E);
1598 Install_Visible_Declarations (E);
1599 Install_Private_Declarations (E);
1601 Freeze_All (First_Entity (E), After);
1603 End_Package_Scope (E);
1605 if Is_Generic_Instance (E)
1606 and then Has_Delayed_Freeze (E)
1607 then
1608 Set_Has_Delayed_Freeze (E, False);
1609 Expand_N_Package_Declaration (Unit_Declaration_Node (E));
1610 end if;
1612 elsif Ekind (E) in Task_Kind
1613 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1614 N_Single_Task_Declaration)
1615 then
1616 Push_Scope (E);
1617 Freeze_All (First_Entity (E), After);
1618 End_Scope;
1620 -- For a derived tagged type, we must ensure that all the
1621 -- primitive operations of the parent have been frozen, so that
1622 -- their addresses will be in the parent's dispatch table at the
1623 -- point it is inherited.
1625 elsif Ekind (E) = E_Record_Type
1626 and then Is_Tagged_Type (E)
1627 and then Is_Tagged_Type (Etype (E))
1628 and then Is_Derived_Type (E)
1629 then
1630 declare
1631 Prim_List : constant Elist_Id :=
1632 Primitive_Operations (Etype (E));
1634 Prim : Elmt_Id;
1635 Subp : Entity_Id;
1637 begin
1638 Prim := First_Elmt (Prim_List);
1639 while Present (Prim) loop
1640 Subp := Node (Prim);
1642 if Comes_From_Source (Subp)
1643 and then not Is_Frozen (Subp)
1644 then
1645 Flist := Freeze_Entity (Subp, After);
1646 Process_Flist;
1647 end if;
1649 Next_Elmt (Prim);
1650 end loop;
1651 end;
1652 end if;
1654 if not Is_Frozen (E) then
1655 Flist := Freeze_Entity (E, After);
1656 Process_Flist;
1658 -- If already frozen, and there are delayed aspects, this is where
1659 -- we do the visibility check for these aspects (see Sem_Ch13 spec
1660 -- for a description of how we handle aspect visibility).
1662 elsif Has_Delayed_Aspects (E) then
1664 -- Retrieve the visibility to the discriminants in order to
1665 -- analyze properly the aspects.
1667 Push_Scope_And_Install_Discriminants (E);
1669 declare
1670 Ritem : Node_Id;
1672 begin
1673 Ritem := First_Rep_Item (E);
1674 while Present (Ritem) loop
1675 if Nkind (Ritem) = N_Aspect_Specification
1676 and then Entity (Ritem) = E
1677 and then Is_Delayed_Aspect (Ritem)
1678 then
1679 Check_Aspect_At_End_Of_Declarations (Ritem);
1680 end if;
1682 Ritem := Next_Rep_Item (Ritem);
1683 end loop;
1684 end;
1686 Uninstall_Discriminants_And_Pop_Scope (E);
1687 end if;
1689 -- If an incomplete type is still not frozen, this may be a
1690 -- premature freezing because of a body declaration that follows.
1691 -- Indicate where the freezing took place. Freezing will happen
1692 -- if the body comes from source, but not if it is internally
1693 -- generated, for example as the body of a type invariant.
1695 -- If the freezing is caused by the end of the current declarative
1696 -- part, it is a Taft Amendment type, and there is no error.
1698 if not Is_Frozen (E)
1699 and then Ekind (E) = E_Incomplete_Type
1700 then
1701 declare
1702 Bod : constant Node_Id := Next (After);
1704 begin
1705 -- The presence of a body freezes all entities previously
1706 -- declared in the current list of declarations, but this
1707 -- does not apply if the body does not come from source.
1708 -- A type invariant is transformed into a subprogram body
1709 -- which is placed at the end of the private part of the
1710 -- current package, but this body does not freeze incomplete
1711 -- types that may be declared in this private part.
1713 if (Nkind_In (Bod, N_Subprogram_Body,
1714 N_Entry_Body,
1715 N_Package_Body,
1716 N_Protected_Body,
1717 N_Task_Body)
1718 or else Nkind (Bod) in N_Body_Stub)
1719 and then
1720 List_Containing (After) = List_Containing (Parent (E))
1721 and then Comes_From_Source (Bod)
1722 then
1723 Error_Msg_Sloc := Sloc (Next (After));
1724 Error_Msg_NE
1725 ("type& is frozen# before its full declaration",
1726 Parent (E), E);
1727 end if;
1728 end;
1729 end if;
1731 Next_Entity (E);
1732 end loop;
1733 end Freeze_All_Ent;
1735 -- Start of processing for Freeze_All
1737 begin
1738 Freeze_All_Ent (From, After);
1740 -- Now that all types are frozen, we can deal with default expressions
1741 -- that require us to build a default expression functions. This is the
1742 -- point at which such functions are constructed (after all types that
1743 -- might be used in such expressions have been frozen).
1745 -- For subprograms that are renaming_as_body, we create the wrapper
1746 -- bodies as needed.
1748 -- We also add finalization chains to access types whose designated
1749 -- types are controlled. This is normally done when freezing the type,
1750 -- but this misses recursive type definitions where the later members
1751 -- of the recursion introduce controlled components.
1753 -- Loop through entities
1755 E := From;
1756 while Present (E) loop
1757 if Is_Subprogram (E) then
1758 if not Default_Expressions_Processed (E) then
1759 Process_Default_Expressions (E, After);
1760 end if;
1762 if not Has_Completion (E) then
1763 Decl := Unit_Declaration_Node (E);
1765 if Nkind (Decl) = N_Subprogram_Renaming_Declaration then
1766 if Error_Posted (Decl) then
1767 Set_Has_Completion (E);
1768 else
1769 Build_And_Analyze_Renamed_Body (Decl, E, After);
1770 end if;
1772 elsif Nkind (Decl) = N_Subprogram_Declaration
1773 and then Present (Corresponding_Body (Decl))
1774 and then
1775 Nkind (Unit_Declaration_Node (Corresponding_Body (Decl)))
1776 = N_Subprogram_Renaming_Declaration
1777 then
1778 Build_And_Analyze_Renamed_Body
1779 (Decl, Corresponding_Body (Decl), After);
1780 end if;
1781 end if;
1783 elsif Ekind (E) in Task_Kind
1784 and then Nkind_In (Parent (E), N_Task_Type_Declaration,
1785 N_Single_Task_Declaration)
1786 then
1787 declare
1788 Ent : Entity_Id;
1790 begin
1791 Ent := First_Entity (E);
1792 while Present (Ent) loop
1793 if Is_Entry (Ent)
1794 and then not Default_Expressions_Processed (Ent)
1795 then
1796 Process_Default_Expressions (Ent, After);
1797 end if;
1799 Next_Entity (Ent);
1800 end loop;
1801 end;
1802 end if;
1804 -- Historical note: We used to create a finalization master for an
1805 -- access type whose designated type is not controlled, but contains
1806 -- private controlled compoments. This form of postprocessing is no
1807 -- longer needed because the finalization master is now created when
1808 -- the access type is frozen (see Exp_Ch3.Freeze_Type).
1810 Next_Entity (E);
1811 end loop;
1812 end Freeze_All;
1814 -----------------------
1815 -- Freeze_And_Append --
1816 -----------------------
1818 procedure Freeze_And_Append
1819 (Ent : Entity_Id;
1820 N : Node_Id;
1821 Result : in out List_Id)
1823 L : constant List_Id := Freeze_Entity (Ent, N);
1824 begin
1825 if Is_Non_Empty_List (L) then
1826 if Result = No_List then
1827 Result := L;
1828 else
1829 Append_List (L, Result);
1830 end if;
1831 end if;
1832 end Freeze_And_Append;
1834 -------------------
1835 -- Freeze_Before --
1836 -------------------
1838 procedure Freeze_Before (N : Node_Id; T : Entity_Id) is
1839 Freeze_Nodes : constant List_Id := Freeze_Entity (T, N);
1841 begin
1842 if Ekind (T) = E_Function then
1843 Check_Expression_Function (N, T);
1844 end if;
1846 if Is_Non_Empty_List (Freeze_Nodes) then
1847 Insert_Actions (N, Freeze_Nodes);
1848 end if;
1849 end Freeze_Before;
1851 -------------------
1852 -- Freeze_Entity --
1853 -------------------
1855 function Freeze_Entity (E : Entity_Id; N : Node_Id) return List_Id is
1856 GM : constant Ghost_Mode_Type := Ghost_Mode;
1857 -- Save the current Ghost mode in effect in case the entity being frozen
1858 -- sets a different mode.
1860 Loc : constant Source_Ptr := Sloc (N);
1861 Atype : Entity_Id;
1862 Comp : Entity_Id;
1863 F_Node : Node_Id;
1864 Formal : Entity_Id;
1865 Indx : Node_Id;
1867 Test_E : Entity_Id := E;
1868 -- This could use a comment ???
1870 Late_Freezing : Boolean := False;
1871 -- Used to detect attempt to freeze function declared in another unit
1873 Result : List_Id := No_List;
1874 -- List of freezing actions, left at No_List if none
1876 Has_Default_Initialization : Boolean := False;
1877 -- This flag gets set to true for a variable with default initialization
1879 procedure Add_To_Result (N : Node_Id);
1880 -- N is a freezing action to be appended to the Result
1882 function After_Last_Declaration return Boolean;
1883 -- If Loc is a freeze_entity that appears after the last declaration
1884 -- in the scope, inhibit error messages on late completion.
1886 procedure Check_Current_Instance (Comp_Decl : Node_Id);
1887 -- Check that an Access or Unchecked_Access attribute with a prefix
1888 -- which is the current instance type can only be applied when the type
1889 -- is limited.
1891 procedure Check_Suspicious_Modulus (Utype : Entity_Id);
1892 -- Give warning for modulus of 8, 16, 32, or 64 given as an explicit
1893 -- integer literal without an explicit corresponding size clause. The
1894 -- caller has checked that Utype is a modular integer type.
1896 procedure Freeze_Array_Type (Arr : Entity_Id);
1897 -- Freeze array type, including freezing index and component types
1899 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id;
1900 -- Create Freeze_Generic_Entity nodes for types declared in a generic
1901 -- package. Recurse on inner generic packages.
1903 function Freeze_Profile (E : Entity_Id) return Boolean;
1904 -- Freeze formals and return type of subprogram. If some type in the
1905 -- profile is a limited view, freezing of the entity will take place
1906 -- elsewhere, and the function returns False. This routine will be
1907 -- modified if and when we can implement AI05-019 efficiently ???
1909 procedure Freeze_Record_Type (Rec : Entity_Id);
1910 -- Freeze record type, including freezing component types, and freezing
1911 -- primitive operations if this is a tagged type.
1913 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean;
1914 -- Determine whether an arbitrary entity is subject to Boolean aspect
1915 -- Import and its value is specified as True.
1917 procedure Late_Freeze_Subprogram (E : Entity_Id);
1918 -- Following AI05-151, a function can return a limited view of a type
1919 -- declared elsewhere. In that case the function cannot be frozen at
1920 -- the end of its enclosing package. If its first use is in a different
1921 -- unit, it cannot be frozen there, but if the call is legal the full
1922 -- view of the return type is available and the subprogram can now be
1923 -- frozen. However the freeze node cannot be inserted at the point of
1924 -- call, but rather must go in the package holding the function, so that
1925 -- the backend can process it in the proper context.
1927 procedure Restore_Globals;
1928 -- Restore the values of all saved global variables
1930 procedure Wrap_Imported_Subprogram (E : Entity_Id);
1931 -- If E is an entity for an imported subprogram with pre/post-conditions
1932 -- then this procedure will create a wrapper to ensure that proper run-
1933 -- time checking of the pre/postconditions. See body for details.
1935 -------------------
1936 -- Add_To_Result --
1937 -------------------
1939 procedure Add_To_Result (N : Node_Id) is
1940 begin
1941 if No (Result) then
1942 Result := New_List (N);
1943 else
1944 Append (N, Result);
1945 end if;
1946 end Add_To_Result;
1948 ----------------------------
1949 -- After_Last_Declaration --
1950 ----------------------------
1952 function After_Last_Declaration return Boolean is
1953 Spec : constant Node_Id := Parent (Current_Scope);
1955 begin
1956 if Nkind (Spec) = N_Package_Specification then
1957 if Present (Private_Declarations (Spec)) then
1958 return Loc >= Sloc (Last (Private_Declarations (Spec)));
1959 elsif Present (Visible_Declarations (Spec)) then
1960 return Loc >= Sloc (Last (Visible_Declarations (Spec)));
1961 else
1962 return False;
1963 end if;
1965 else
1966 return False;
1967 end if;
1968 end After_Last_Declaration;
1970 ----------------------------
1971 -- Check_Current_Instance --
1972 ----------------------------
1974 procedure Check_Current_Instance (Comp_Decl : Node_Id) is
1976 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean;
1977 -- Determine whether Typ is compatible with the rules for aliased
1978 -- views of types as defined in RM 3.10 in the various dialects.
1980 function Process (N : Node_Id) return Traverse_Result;
1981 -- Process routine to apply check to given node
1983 -----------------------------
1984 -- Is_Aliased_View_Of_Type --
1985 -----------------------------
1987 function Is_Aliased_View_Of_Type (Typ : Entity_Id) return Boolean is
1988 Typ_Decl : constant Node_Id := Parent (Typ);
1990 begin
1991 -- Common case
1993 if Nkind (Typ_Decl) = N_Full_Type_Declaration
1994 and then Limited_Present (Type_Definition (Typ_Decl))
1995 then
1996 return True;
1998 -- The following paragraphs describe what a legal aliased view of
1999 -- a type is in the various dialects of Ada.
2001 -- Ada 95
2003 -- The current instance of a limited type, and a formal parameter
2004 -- or generic formal object of a tagged type.
2006 -- Ada 95 limited type
2007 -- * Type with reserved word "limited"
2008 -- * A protected or task type
2009 -- * A composite type with limited component
2011 elsif Ada_Version <= Ada_95 then
2012 return Is_Limited_Type (Typ);
2014 -- Ada 2005
2016 -- The current instance of a limited tagged type, a protected
2017 -- type, a task type, or a type that has the reserved word
2018 -- "limited" in its full definition ... a formal parameter or
2019 -- generic formal object of a tagged type.
2021 -- Ada 2005 limited type
2022 -- * Type with reserved word "limited", "synchronized", "task"
2023 -- or "protected"
2024 -- * A composite type with limited component
2025 -- * A derived type whose parent is a non-interface limited type
2027 elsif Ada_Version = Ada_2005 then
2028 return
2029 (Is_Limited_Type (Typ) and then Is_Tagged_Type (Typ))
2030 or else
2031 (Is_Derived_Type (Typ)
2032 and then not Is_Interface (Etype (Typ))
2033 and then Is_Limited_Type (Etype (Typ)));
2035 -- Ada 2012 and beyond
2037 -- The current instance of an immutably limited type ... a formal
2038 -- parameter or generic formal object of a tagged type.
2040 -- Ada 2012 limited type
2041 -- * Type with reserved word "limited", "synchronized", "task"
2042 -- or "protected"
2043 -- * A composite type with limited component
2044 -- * A derived type whose parent is a non-interface limited type
2045 -- * An incomplete view
2047 -- Ada 2012 immutably limited type
2048 -- * Explicitly limited record type
2049 -- * Record extension with "limited" present
2050 -- * Non-formal limited private type that is either tagged
2051 -- or has at least one access discriminant with a default
2052 -- expression
2053 -- * Task type, protected type or synchronized interface
2054 -- * Type derived from immutably limited type
2056 else
2057 return
2058 Is_Immutably_Limited_Type (Typ)
2059 or else Is_Incomplete_Type (Typ);
2060 end if;
2061 end Is_Aliased_View_Of_Type;
2063 -------------
2064 -- Process --
2065 -------------
2067 function Process (N : Node_Id) return Traverse_Result is
2068 begin
2069 case Nkind (N) is
2070 when N_Attribute_Reference =>
2071 if Nam_In (Attribute_Name (N), Name_Access,
2072 Name_Unchecked_Access)
2073 and then Is_Entity_Name (Prefix (N))
2074 and then Is_Type (Entity (Prefix (N)))
2075 and then Entity (Prefix (N)) = E
2076 then
2077 if Ada_Version < Ada_2012 then
2078 Error_Msg_N
2079 ("current instance must be a limited type",
2080 Prefix (N));
2081 else
2082 Error_Msg_N
2083 ("current instance must be an immutably limited "
2084 & "type (RM-2012, 7.5 (8.1/3))", Prefix (N));
2085 end if;
2087 return Abandon;
2089 else
2090 return OK;
2091 end if;
2093 when others => return OK;
2094 end case;
2095 end Process;
2097 procedure Traverse is new Traverse_Proc (Process);
2099 -- Local variables
2101 Rec_Type : constant Entity_Id :=
2102 Scope (Defining_Identifier (Comp_Decl));
2104 -- Start of processing for Check_Current_Instance
2106 begin
2107 if not Is_Aliased_View_Of_Type (Rec_Type) then
2108 Traverse (Comp_Decl);
2109 end if;
2110 end Check_Current_Instance;
2112 ------------------------------
2113 -- Check_Suspicious_Modulus --
2114 ------------------------------
2116 procedure Check_Suspicious_Modulus (Utype : Entity_Id) is
2117 Decl : constant Node_Id := Declaration_Node (Underlying_Type (Utype));
2119 begin
2120 if not Warn_On_Suspicious_Modulus_Value then
2121 return;
2122 end if;
2124 if Nkind (Decl) = N_Full_Type_Declaration then
2125 declare
2126 Tdef : constant Node_Id := Type_Definition (Decl);
2128 begin
2129 if Nkind (Tdef) = N_Modular_Type_Definition then
2130 declare
2131 Modulus : constant Node_Id :=
2132 Original_Node (Expression (Tdef));
2134 begin
2135 if Nkind (Modulus) = N_Integer_Literal then
2136 declare
2137 Modv : constant Uint := Intval (Modulus);
2138 Sizv : constant Uint := RM_Size (Utype);
2140 begin
2141 -- First case, modulus and size are the same. This
2142 -- happens if you have something like mod 32, with
2143 -- an explicit size of 32, this is for sure a case
2144 -- where the warning is given, since it is seems
2145 -- very unlikely that someone would want e.g. a
2146 -- five bit type stored in 32 bits. It is much
2147 -- more likely they wanted a 32-bit type.
2149 if Modv = Sizv then
2150 null;
2152 -- Second case, the modulus is 32 or 64 and no
2153 -- size clause is present. This is a less clear
2154 -- case for giving the warning, but in the case
2155 -- of 32/64 (5-bit or 6-bit types) these seem rare
2156 -- enough that it is a likely error (and in any
2157 -- case using 2**5 or 2**6 in these cases seems
2158 -- clearer. We don't include 8 or 16 here, simply
2159 -- because in practice 3-bit and 4-bit types are
2160 -- more common and too many false positives if
2161 -- we warn in these cases.
2163 elsif not Has_Size_Clause (Utype)
2164 and then (Modv = Uint_32 or else Modv = Uint_64)
2165 then
2166 null;
2168 -- No warning needed
2170 else
2171 return;
2172 end if;
2174 -- If we fall through, give warning
2176 Error_Msg_Uint_1 := Modv;
2177 Error_Msg_N
2178 ("?M?2 '*'*^' may have been intended here",
2179 Modulus);
2180 end;
2181 end if;
2182 end;
2183 end if;
2184 end;
2185 end if;
2186 end Check_Suspicious_Modulus;
2188 -----------------------
2189 -- Freeze_Array_Type --
2190 -----------------------
2192 procedure Freeze_Array_Type (Arr : Entity_Id) is
2193 FS : constant Entity_Id := First_Subtype (Arr);
2194 Ctyp : constant Entity_Id := Component_Type (Arr);
2195 Clause : Entity_Id;
2197 Non_Standard_Enum : Boolean := False;
2198 -- Set true if any of the index types is an enumeration type with a
2199 -- non-standard representation.
2201 begin
2202 Freeze_And_Append (Ctyp, N, Result);
2204 Indx := First_Index (Arr);
2205 while Present (Indx) loop
2206 Freeze_And_Append (Etype (Indx), N, Result);
2208 if Is_Enumeration_Type (Etype (Indx))
2209 and then Has_Non_Standard_Rep (Etype (Indx))
2210 then
2211 Non_Standard_Enum := True;
2212 end if;
2214 Next_Index (Indx);
2215 end loop;
2217 -- Processing that is done only for base types
2219 if Ekind (Arr) = E_Array_Type then
2221 -- Deal with default setting of reverse storage order
2223 Set_SSO_From_Default (Arr);
2225 -- Propagate flags for component type
2227 if Is_Controlled (Component_Type (Arr))
2228 or else Has_Controlled_Component (Ctyp)
2229 then
2230 Set_Has_Controlled_Component (Arr);
2231 end if;
2233 if Has_Unchecked_Union (Component_Type (Arr)) then
2234 Set_Has_Unchecked_Union (Arr);
2235 end if;
2237 -- Warn for pragma Pack overriding foreign convention
2239 if Has_Foreign_Convention (Ctyp)
2240 and then Has_Pragma_Pack (Arr)
2241 then
2242 declare
2243 CN : constant Name_Id :=
2244 Get_Convention_Name (Convention (Ctyp));
2245 PP : constant Node_Id :=
2246 Get_Pragma (First_Subtype (Arr), Pragma_Pack);
2247 begin
2248 if Present (PP) then
2249 Error_Msg_Name_1 := CN;
2250 Error_Msg_Sloc := Sloc (Arr);
2251 Error_Msg_N
2252 ("pragma Pack affects convention % components #??", PP);
2253 Error_Msg_Name_1 := CN;
2254 Error_Msg_N
2255 ("\array components may not have % compatible "
2256 & "representation??", PP);
2257 end if;
2258 end;
2259 end if;
2261 -- If packing was requested or if the component size was
2262 -- set explicitly, then see if bit packing is required. This
2263 -- processing is only done for base types, since all of the
2264 -- representation aspects involved are type-related.
2266 -- This is not just an optimization, if we start processing the
2267 -- subtypes, they interfere with the settings on the base type
2268 -- (this is because Is_Packed has a slightly different meaning
2269 -- before and after freezing).
2271 declare
2272 Csiz : Uint;
2273 Esiz : Uint;
2275 begin
2276 if (Is_Packed (Arr) or else Has_Pragma_Pack (Arr))
2277 and then Known_Static_RM_Size (Ctyp)
2278 and then not Has_Component_Size_Clause (Arr)
2279 then
2280 Csiz := UI_Max (RM_Size (Ctyp), 1);
2282 elsif Known_Component_Size (Arr) then
2283 Csiz := Component_Size (Arr);
2285 elsif not Known_Static_Esize (Ctyp) then
2286 Csiz := Uint_0;
2288 else
2289 Esiz := Esize (Ctyp);
2291 -- We can set the component size if it is less than 16,
2292 -- rounding it up to the next storage unit size.
2294 if Esiz <= 8 then
2295 Csiz := Uint_8;
2296 elsif Esiz <= 16 then
2297 Csiz := Uint_16;
2298 else
2299 Csiz := Uint_0;
2300 end if;
2302 -- Set component size up to match alignment if it would
2303 -- otherwise be less than the alignment. This deals with
2304 -- cases of types whose alignment exceeds their size (the
2305 -- padded type cases).
2307 if Csiz /= 0 then
2308 declare
2309 A : constant Uint := Alignment_In_Bits (Ctyp);
2310 begin
2311 if Csiz < A then
2312 Csiz := A;
2313 end if;
2314 end;
2315 end if;
2316 end if;
2318 -- Case of component size that may result in packing
2320 if 1 <= Csiz and then Csiz <= 64 then
2321 declare
2322 Ent : constant Entity_Id :=
2323 First_Subtype (Arr);
2324 Pack_Pragma : constant Node_Id :=
2325 Get_Rep_Pragma (Ent, Name_Pack);
2326 Comp_Size_C : constant Node_Id :=
2327 Get_Attribute_Definition_Clause
2328 (Ent, Attribute_Component_Size);
2330 begin
2331 -- Warn if we have pack and component size so that the
2332 -- pack is ignored.
2334 -- Note: here we must check for the presence of a
2335 -- component size before checking for a Pack pragma to
2336 -- deal with the case where the array type is a derived
2337 -- type whose parent is currently private.
2339 if Present (Comp_Size_C)
2340 and then Has_Pragma_Pack (Ent)
2341 and then Warn_On_Redundant_Constructs
2342 then
2343 Error_Msg_Sloc := Sloc (Comp_Size_C);
2344 Error_Msg_NE
2345 ("?r?pragma Pack for& ignored!", Pack_Pragma, Ent);
2346 Error_Msg_N
2347 ("\?r?explicit component size given#!", Pack_Pragma);
2348 Set_Is_Packed (Base_Type (Ent), False);
2349 Set_Is_Bit_Packed_Array (Base_Type (Ent), False);
2350 end if;
2352 -- Set component size if not already set by a component
2353 -- size clause.
2355 if not Present (Comp_Size_C) then
2356 Set_Component_Size (Arr, Csiz);
2357 end if;
2359 -- Check for base type of 8, 16, 32 bits, where an
2360 -- unsigned subtype has a length one less than the
2361 -- base type (e.g. Natural subtype of Integer).
2363 -- In such cases, if a component size was not set
2364 -- explicitly, then generate a warning.
2366 if Has_Pragma_Pack (Arr)
2367 and then not Present (Comp_Size_C)
2368 and then (Csiz = 7 or else Csiz = 15 or else Csiz = 31)
2369 and then Esize (Base_Type (Ctyp)) = Csiz + 1
2370 then
2371 Error_Msg_Uint_1 := Csiz;
2373 if Present (Pack_Pragma) then
2374 Error_Msg_N
2375 ("??pragma Pack causes component size to be ^!",
2376 Pack_Pragma);
2377 Error_Msg_N
2378 ("\??use Component_Size to set desired value!",
2379 Pack_Pragma);
2380 end if;
2381 end if;
2383 -- Actual packing is not needed for 8, 16, 32, 64. Also
2384 -- not needed for 24 if alignment is 1.
2386 if Csiz = 8
2387 or else Csiz = 16
2388 or else Csiz = 32
2389 or else Csiz = 64
2390 or else (Csiz = 24 and then Alignment (Ctyp) = 1)
2391 then
2392 -- Here the array was requested to be packed, but
2393 -- the packing request had no effect, so Is_Packed
2394 -- is reset.
2396 -- Note: semantically this means that we lose track
2397 -- of the fact that a derived type inherited a pragma
2398 -- Pack that was non- effective, but that seems fine.
2400 -- We regard a Pack pragma as a request to set a
2401 -- representation characteristic, and this request
2402 -- may be ignored.
2404 Set_Is_Packed (Base_Type (Arr), False);
2405 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2407 if Known_Static_Esize (Component_Type (Arr))
2408 and then Esize (Component_Type (Arr)) = Csiz
2409 then
2410 Set_Has_Non_Standard_Rep (Base_Type (Arr), False);
2411 end if;
2413 -- In all other cases, packing is indeed needed
2415 else
2416 Set_Has_Non_Standard_Rep (Base_Type (Arr), True);
2417 Set_Is_Bit_Packed_Array (Base_Type (Arr), True);
2418 Set_Is_Packed (Base_Type (Arr), True);
2419 end if;
2420 end;
2421 end if;
2422 end;
2424 -- Check for Aliased or Atomic_Components/Atomic with unsuitable
2425 -- packing or explicit component size clause given.
2427 if (Has_Aliased_Components (Arr)
2428 or else Has_Atomic_Components (Arr)
2429 or else Is_Atomic (Ctyp))
2430 and then
2431 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2432 then
2433 Alias_Atomic_Check : declare
2435 procedure Complain_CS (T : String);
2436 -- Outputs error messages for incorrect CS clause or pragma
2437 -- Pack for aliased or atomic components (T is "aliased" or
2438 -- "atomic");
2440 -----------------
2441 -- Complain_CS --
2442 -----------------
2444 procedure Complain_CS (T : String) is
2445 begin
2446 if Has_Component_Size_Clause (Arr) then
2447 Clause :=
2448 Get_Attribute_Definition_Clause
2449 (FS, Attribute_Component_Size);
2451 Error_Msg_N
2452 ("incorrect component size for "
2453 & T & " components", Clause);
2454 Error_Msg_Uint_1 := Esize (Ctyp);
2455 Error_Msg_N
2456 ("\only allowed value is^", Clause);
2458 else
2459 Error_Msg_N
2460 ("cannot pack " & T & " components",
2461 Get_Rep_Pragma (FS, Name_Pack));
2462 end if;
2463 end Complain_CS;
2465 -- Start of processing for Alias_Atomic_Check
2467 begin
2468 -- If object size of component type isn't known, we cannot
2469 -- be sure so we defer to the back end.
2471 if not Known_Static_Esize (Ctyp) then
2472 null;
2474 -- Case where component size has no effect. First check for
2475 -- object size of component type multiple of the storage
2476 -- unit size.
2478 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2480 -- OK in both packing case and component size case if RM
2481 -- size is known and static and same as the object size.
2483 and then
2484 ((Known_Static_RM_Size (Ctyp)
2485 and then Esize (Ctyp) = RM_Size (Ctyp))
2487 -- Or if we have an explicit component size clause and
2488 -- the component size and object size are equal.
2490 or else
2491 (Has_Component_Size_Clause (Arr)
2492 and then Component_Size (Arr) = Esize (Ctyp)))
2493 then
2494 null;
2496 elsif Has_Aliased_Components (Arr) then
2497 Complain_CS ("aliased");
2499 elsif Has_Atomic_Components (Arr) or else Is_Atomic (Ctyp)
2500 then
2501 Complain_CS ("atomic");
2502 end if;
2503 end Alias_Atomic_Check;
2504 end if;
2506 -- Check for Independent_Components/Independent with unsuitable
2507 -- packing or explicit component size clause given.
2509 if (Has_Independent_Components (Arr) or else Is_Independent (Ctyp))
2510 and then
2511 (Has_Component_Size_Clause (Arr) or else Is_Packed (Arr))
2512 then
2513 begin
2514 -- If object size of component type isn't known, we cannot
2515 -- be sure so we defer to the back end.
2517 if not Known_Static_Esize (Ctyp) then
2518 null;
2520 -- Case where component size has no effect. First check for
2521 -- object size of component type multiple of the storage
2522 -- unit size.
2524 elsif Esize (Ctyp) mod System_Storage_Unit = 0
2526 -- OK in both packing case and component size case if RM
2527 -- size is known and multiple of the storage unit size.
2529 and then
2530 ((Known_Static_RM_Size (Ctyp)
2531 and then RM_Size (Ctyp) mod System_Storage_Unit = 0)
2533 -- Or if we have an explicit component size clause and
2534 -- the component size is larger than the object size.
2536 or else
2537 (Has_Component_Size_Clause (Arr)
2538 and then Component_Size (Arr) >= Esize (Ctyp)))
2539 then
2540 null;
2542 else
2543 if Has_Component_Size_Clause (Arr) then
2544 Clause :=
2545 Get_Attribute_Definition_Clause
2546 (FS, Attribute_Component_Size);
2548 Error_Msg_N
2549 ("incorrect component size for "
2550 & "independent components", Clause);
2551 Error_Msg_Uint_1 := Esize (Ctyp);
2552 Error_Msg_N
2553 ("\minimum allowed is^", Clause);
2555 else
2556 Error_Msg_N
2557 ("cannot pack independent components",
2558 Get_Rep_Pragma (FS, Name_Pack));
2559 end if;
2560 end if;
2561 end;
2562 end if;
2564 -- Warn for case of atomic type
2566 Clause := Get_Rep_Pragma (FS, Name_Atomic);
2568 if Present (Clause)
2569 and then not Addressable (Component_Size (FS))
2570 then
2571 Error_Msg_NE
2572 ("non-atomic components of type& may not be "
2573 & "accessible by separate tasks??", Clause, Arr);
2575 if Has_Component_Size_Clause (Arr) then
2576 Error_Msg_Sloc := Sloc (Get_Attribute_Definition_Clause
2577 (FS, Attribute_Component_Size));
2578 Error_Msg_N ("\because of component size clause#??", Clause);
2580 elsif Has_Pragma_Pack (Arr) then
2581 Error_Msg_Sloc := Sloc (Get_Rep_Pragma (FS, Name_Pack));
2582 Error_Msg_N ("\because of pragma Pack#??", Clause);
2583 end if;
2584 end if;
2586 -- Check for scalar storage order
2588 declare
2589 Dummy : Boolean;
2590 begin
2591 Check_Component_Storage_Order
2592 (Encl_Type => Arr,
2593 Comp => Empty,
2594 ADC => Get_Attribute_Definition_Clause
2595 (First_Subtype (Arr),
2596 Attribute_Scalar_Storage_Order),
2597 Comp_ADC_Present => Dummy);
2598 end;
2600 -- Processing that is done only for subtypes
2602 else
2603 -- Acquire alignment from base type
2605 if Unknown_Alignment (Arr) then
2606 Set_Alignment (Arr, Alignment (Base_Type (Arr)));
2607 Adjust_Esize_Alignment (Arr);
2608 end if;
2609 end if;
2611 -- Specific checks for bit-packed arrays
2613 if Is_Bit_Packed_Array (Arr) then
2615 -- Check number of elements for bit packed arrays that come from
2616 -- source and have compile time known ranges. The bit-packed
2617 -- arrays circuitry does not support arrays with more than
2618 -- Integer'Last + 1 elements, and when this restriction is
2619 -- violated, causes incorrect data access.
2621 -- For the case where this is not compile time known, a run-time
2622 -- check should be generated???
2624 if Comes_From_Source (Arr) and then Is_Constrained (Arr) then
2625 declare
2626 Elmts : Uint;
2627 Index : Node_Id;
2628 Ilen : Node_Id;
2629 Ityp : Entity_Id;
2631 begin
2632 Elmts := Uint_1;
2633 Index := First_Index (Arr);
2634 while Present (Index) loop
2635 Ityp := Etype (Index);
2637 -- Never generate an error if any index is of a generic
2638 -- type. We will check this in instances.
2640 if Is_Generic_Type (Ityp) then
2641 Elmts := Uint_0;
2642 exit;
2643 end if;
2645 Ilen :=
2646 Make_Attribute_Reference (Loc,
2647 Prefix => New_Occurrence_Of (Ityp, Loc),
2648 Attribute_Name => Name_Range_Length);
2649 Analyze_And_Resolve (Ilen);
2651 -- No attempt is made to check number of elements if not
2652 -- compile time known.
2654 if Nkind (Ilen) /= N_Integer_Literal then
2655 Elmts := Uint_0;
2656 exit;
2657 end if;
2659 Elmts := Elmts * Intval (Ilen);
2660 Next_Index (Index);
2661 end loop;
2663 if Elmts > Intval (High_Bound
2664 (Scalar_Range (Standard_Integer))) + 1
2665 then
2666 Error_Msg_N
2667 ("bit packed array type may not have "
2668 & "more than Integer''Last+1 elements", Arr);
2669 end if;
2670 end;
2671 end if;
2673 -- Check size
2675 if Known_RM_Size (Arr) then
2676 declare
2677 SizC : constant Node_Id := Size_Clause (Arr);
2678 Discard : Boolean;
2680 begin
2681 -- It is not clear if it is possible to have no size clause
2682 -- at this stage, but it is not worth worrying about. Post
2683 -- error on the entity name in the size clause if present,
2684 -- else on the type entity itself.
2686 if Present (SizC) then
2687 Check_Size (Name (SizC), Arr, RM_Size (Arr), Discard);
2688 else
2689 Check_Size (Arr, Arr, RM_Size (Arr), Discard);
2690 end if;
2691 end;
2692 end if;
2693 end if;
2695 -- If any of the index types was an enumeration type with a non-
2696 -- standard rep clause, then we indicate that the array type is
2697 -- always packed (even if it is not bit packed).
2699 if Non_Standard_Enum then
2700 Set_Has_Non_Standard_Rep (Base_Type (Arr));
2701 Set_Is_Packed (Base_Type (Arr));
2702 end if;
2704 Set_Component_Alignment_If_Not_Set (Arr);
2706 -- If the array is packed, we must create the packed array type to be
2707 -- used to actually implement the type. This is only needed for real
2708 -- array types (not for string literal types, since they are present
2709 -- only for the front end).
2711 if Is_Packed (Arr)
2712 and then Ekind (Arr) /= E_String_Literal_Subtype
2713 then
2714 Create_Packed_Array_Impl_Type (Arr);
2715 Freeze_And_Append (Packed_Array_Impl_Type (Arr), N, Result);
2717 -- Make sure that we have the necessary routines to implement the
2718 -- packing, and complain now if not. Note that we only test this
2719 -- for constrained array types.
2721 if Is_Constrained (Arr)
2722 and then Is_Bit_Packed_Array (Arr)
2723 and then Present (Packed_Array_Impl_Type (Arr))
2724 and then Is_Array_Type (Packed_Array_Impl_Type (Arr))
2725 then
2726 declare
2727 CS : constant Uint := Component_Size (Arr);
2728 RE : constant RE_Id := Get_Id (UI_To_Int (CS));
2730 begin
2731 if RE /= RE_Null
2732 and then not RTE_Available (RE)
2733 then
2734 Error_Msg_CRT
2735 ("packing of " & UI_Image (CS) & "-bit components",
2736 First_Subtype (Etype (Arr)));
2738 -- Cancel the packing
2740 Set_Is_Packed (Base_Type (Arr), False);
2741 Set_Is_Bit_Packed_Array (Base_Type (Arr), False);
2742 Set_Packed_Array_Impl_Type (Arr, Empty);
2743 goto Skip_Packed;
2744 end if;
2745 end;
2746 end if;
2748 -- Size information of packed array type is copied to the array
2749 -- type, since this is really the representation. But do not
2750 -- override explicit existing size values. If the ancestor subtype
2751 -- is constrained the Packed_Array_Impl_Type will be inherited
2752 -- from it, but the size may have been provided already, and
2753 -- must not be overridden either.
2755 if not Has_Size_Clause (Arr)
2756 and then
2757 (No (Ancestor_Subtype (Arr))
2758 or else not Has_Size_Clause (Ancestor_Subtype (Arr)))
2759 then
2760 Set_Esize (Arr, Esize (Packed_Array_Impl_Type (Arr)));
2761 Set_RM_Size (Arr, RM_Size (Packed_Array_Impl_Type (Arr)));
2762 end if;
2764 if not Has_Alignment_Clause (Arr) then
2765 Set_Alignment (Arr, Alignment (Packed_Array_Impl_Type (Arr)));
2766 end if;
2767 end if;
2769 <<Skip_Packed>>
2771 -- For non-packed arrays set the alignment of the array to the
2772 -- alignment of the component type if it is unknown. Skip this
2773 -- in atomic case (atomic arrays may need larger alignments).
2775 if not Is_Packed (Arr)
2776 and then Unknown_Alignment (Arr)
2777 and then Known_Alignment (Ctyp)
2778 and then Known_Static_Component_Size (Arr)
2779 and then Known_Static_Esize (Ctyp)
2780 and then Esize (Ctyp) = Component_Size (Arr)
2781 and then not Is_Atomic (Arr)
2782 then
2783 Set_Alignment (Arr, Alignment (Component_Type (Arr)));
2784 end if;
2785 end Freeze_Array_Type;
2787 -----------------------------
2788 -- Freeze_Generic_Entities --
2789 -----------------------------
2791 function Freeze_Generic_Entities (Pack : Entity_Id) return List_Id is
2792 E : Entity_Id;
2793 F : Node_Id;
2794 Flist : List_Id;
2796 begin
2797 Flist := New_List;
2798 E := First_Entity (Pack);
2799 while Present (E) loop
2800 if Is_Type (E) and then not Is_Generic_Type (E) then
2801 F := Make_Freeze_Generic_Entity (Sloc (Pack));
2802 Set_Entity (F, E);
2803 Append_To (Flist, F);
2805 elsif Ekind (E) = E_Generic_Package then
2806 Append_List_To (Flist, Freeze_Generic_Entities (E));
2807 end if;
2809 Next_Entity (E);
2810 end loop;
2812 return Flist;
2813 end Freeze_Generic_Entities;
2815 --------------------
2816 -- Freeze_Profile --
2817 --------------------
2819 function Freeze_Profile (E : Entity_Id) return Boolean is
2820 F_Type : Entity_Id;
2821 R_Type : Entity_Id;
2822 Warn_Node : Node_Id;
2824 begin
2825 -- Loop through formals
2827 Formal := First_Formal (E);
2828 while Present (Formal) loop
2829 F_Type := Etype (Formal);
2831 -- AI05-0151: incomplete types can appear in a profile. By the
2832 -- time the entity is frozen, the full view must be available,
2833 -- unless it is a limited view.
2835 if Is_Incomplete_Type (F_Type)
2836 and then Present (Full_View (F_Type))
2837 and then not From_Limited_With (F_Type)
2838 then
2839 F_Type := Full_View (F_Type);
2840 Set_Etype (Formal, F_Type);
2841 end if;
2843 Freeze_And_Append (F_Type, N, Result);
2845 if Is_Private_Type (F_Type)
2846 and then Is_Private_Type (Base_Type (F_Type))
2847 and then No (Full_View (Base_Type (F_Type)))
2848 and then not Is_Generic_Type (F_Type)
2849 and then not Is_Derived_Type (F_Type)
2850 then
2851 -- If the type of a formal is incomplete, subprogram is being
2852 -- frozen prematurely. Within an instance (but not within a
2853 -- wrapper package) this is an artifact of our need to regard
2854 -- the end of an instantiation as a freeze point. Otherwise it
2855 -- is a definite error.
2857 if In_Instance then
2858 Set_Is_Frozen (E, False);
2859 Result := No_List;
2860 return False;
2862 elsif not After_Last_Declaration
2863 and then not Freezing_Library_Level_Tagged_Type
2864 then
2865 Error_Msg_Node_1 := F_Type;
2866 Error_Msg
2867 ("type & must be fully defined before this point", Loc);
2868 end if;
2869 end if;
2871 -- Check suspicious parameter for C function. These tests apply
2872 -- only to exported/imported subprograms.
2874 if Warn_On_Export_Import
2875 and then Comes_From_Source (E)
2876 and then (Convention (E) = Convention_C
2877 or else
2878 Convention (E) = Convention_CPP)
2879 and then (Is_Imported (E) or else Is_Exported (E))
2880 and then Convention (E) /= Convention (Formal)
2881 and then not Has_Warnings_Off (E)
2882 and then not Has_Warnings_Off (F_Type)
2883 and then not Has_Warnings_Off (Formal)
2884 then
2885 -- Qualify mention of formals with subprogram name
2887 Error_Msg_Qual_Level := 1;
2889 -- Check suspicious use of fat C pointer
2891 if Is_Access_Type (F_Type)
2892 and then Esize (F_Type) > Ttypes.System_Address_Size
2893 then
2894 Error_Msg_N
2895 ("?x?type of & does not correspond to C pointer!", Formal);
2897 -- Check suspicious return of boolean
2899 elsif Root_Type (F_Type) = Standard_Boolean
2900 and then Convention (F_Type) = Convention_Ada
2901 and then not Has_Warnings_Off (F_Type)
2902 and then not Has_Size_Clause (F_Type)
2903 and then VM_Target = No_VM
2904 then
2905 Error_Msg_N
2906 ("& is an 8-bit Ada Boolean?x?", Formal);
2907 Error_Msg_N
2908 ("\use appropriate corresponding type in C "
2909 & "(e.g. char)?x?", Formal);
2911 -- Check suspicious tagged type
2913 elsif (Is_Tagged_Type (F_Type)
2914 or else
2915 (Is_Access_Type (F_Type)
2916 and then Is_Tagged_Type (Designated_Type (F_Type))))
2917 and then Convention (E) = Convention_C
2918 then
2919 Error_Msg_N
2920 ("?x?& involves a tagged type which does not "
2921 & "correspond to any C type!", Formal);
2923 -- Check wrong convention subprogram pointer
2925 elsif Ekind (F_Type) = E_Access_Subprogram_Type
2926 and then not Has_Foreign_Convention (F_Type)
2927 then
2928 Error_Msg_N
2929 ("?x?subprogram pointer & should "
2930 & "have foreign convention!", Formal);
2931 Error_Msg_Sloc := Sloc (F_Type);
2932 Error_Msg_NE
2933 ("\?x?add Convention pragma to declaration of &#",
2934 Formal, F_Type);
2935 end if;
2937 -- Turn off name qualification after message output
2939 Error_Msg_Qual_Level := 0;
2940 end if;
2942 -- Check for unconstrained array in exported foreign convention
2943 -- case.
2945 if Has_Foreign_Convention (E)
2946 and then not Is_Imported (E)
2947 and then Is_Array_Type (F_Type)
2948 and then not Is_Constrained (F_Type)
2949 and then Warn_On_Export_Import
2951 -- Exclude VM case, since both .NET and JVM can handle
2952 -- unconstrained arrays without a problem.
2954 and then VM_Target = No_VM
2955 then
2956 Error_Msg_Qual_Level := 1;
2958 -- If this is an inherited operation, place the warning on
2959 -- the derived type declaration, rather than on the original
2960 -- subprogram.
2962 if Nkind (Original_Node (Parent (E))) = N_Full_Type_Declaration
2963 then
2964 Warn_Node := Parent (E);
2966 if Formal = First_Formal (E) then
2967 Error_Msg_NE ("??in inherited operation&", Warn_Node, E);
2968 end if;
2969 else
2970 Warn_Node := Formal;
2971 end if;
2973 Error_Msg_NE ("?x?type of argument& is unconstrained array",
2974 Warn_Node, Formal);
2975 Error_Msg_NE ("?x?foreign caller must pass bounds explicitly",
2976 Warn_Node, Formal);
2977 Error_Msg_Qual_Level := 0;
2978 end if;
2980 if not From_Limited_With (F_Type) then
2981 if Is_Access_Type (F_Type) then
2982 F_Type := Designated_Type (F_Type);
2983 end if;
2985 -- If the formal is an anonymous_access_to_subprogram
2986 -- freeze the subprogram type as well, to prevent
2987 -- scope anomalies in gigi, because there is no other
2988 -- clear point at which it could be frozen.
2990 if Is_Itype (Etype (Formal))
2991 and then Ekind (F_Type) = E_Subprogram_Type
2992 then
2993 Freeze_And_Append (F_Type, N, Result);
2994 end if;
2995 end if;
2997 Next_Formal (Formal);
2998 end loop;
3000 -- Case of function: similar checks on return type
3002 if Ekind (E) = E_Function then
3004 -- Check whether function is declared elsewhere.
3006 Late_Freezing :=
3007 Get_Source_Unit (E) /= Get_Source_Unit (N)
3008 and then Returns_Limited_View (E)
3009 and then not In_Open_Scopes (Scope (E));
3011 -- Freeze return type
3013 R_Type := Etype (E);
3015 -- AI05-0151: the return type may have been incomplete
3016 -- at the point of declaration. Replace it with the full
3017 -- view, unless the current type is a limited view. In
3018 -- that case the full view is in a different unit, and
3019 -- gigi finds the non-limited view after the other unit
3020 -- is elaborated.
3022 if Ekind (R_Type) = E_Incomplete_Type
3023 and then Present (Full_View (R_Type))
3024 and then not From_Limited_With (R_Type)
3025 then
3026 R_Type := Full_View (R_Type);
3027 Set_Etype (E, R_Type);
3029 -- If the return type is a limited view and the non-limited
3030 -- view is still incomplete, the function has to be frozen at a
3031 -- later time. If the function is abstract there is no place at
3032 -- which the full view will become available, and no code to be
3033 -- generated for it, so mark type as frozen.
3035 elsif Ekind (R_Type) = E_Incomplete_Type
3036 and then From_Limited_With (R_Type)
3037 and then Ekind (Non_Limited_View (R_Type)) = E_Incomplete_Type
3038 then
3039 if Is_Abstract_Subprogram (E) then
3040 null;
3041 else
3042 Set_Is_Frozen (E, False);
3043 Set_Returns_Limited_View (E);
3044 return False;
3045 end if;
3046 end if;
3048 Freeze_And_Append (R_Type, N, Result);
3050 -- Check suspicious return type for C function
3052 if Warn_On_Export_Import
3053 and then (Convention (E) = Convention_C
3054 or else
3055 Convention (E) = Convention_CPP)
3056 and then (Is_Imported (E) or else Is_Exported (E))
3057 then
3058 -- Check suspicious return of fat C pointer
3060 if Is_Access_Type (R_Type)
3061 and then Esize (R_Type) > Ttypes.System_Address_Size
3062 and then not Has_Warnings_Off (E)
3063 and then not Has_Warnings_Off (R_Type)
3064 then
3065 Error_Msg_N ("?x?return type of& does not "
3066 & "correspond to C pointer!", E);
3068 -- Check suspicious return of boolean
3070 elsif Root_Type (R_Type) = Standard_Boolean
3071 and then Convention (R_Type) = Convention_Ada
3072 and then VM_Target = No_VM
3073 and then not Has_Warnings_Off (E)
3074 and then not Has_Warnings_Off (R_Type)
3075 and then not Has_Size_Clause (R_Type)
3076 then
3077 declare
3078 N : constant Node_Id :=
3079 Result_Definition (Declaration_Node (E));
3080 begin
3081 Error_Msg_NE
3082 ("return type of & is an 8-bit Ada Boolean?x?", N, E);
3083 Error_Msg_NE
3084 ("\use appropriate corresponding type in C "
3085 & "(e.g. char)?x?", N, E);
3086 end;
3088 -- Check suspicious return tagged type
3090 elsif (Is_Tagged_Type (R_Type)
3091 or else (Is_Access_Type (R_Type)
3092 and then
3093 Is_Tagged_Type
3094 (Designated_Type (R_Type))))
3095 and then Convention (E) = Convention_C
3096 and then not Has_Warnings_Off (E)
3097 and then not Has_Warnings_Off (R_Type)
3098 then
3099 Error_Msg_N ("?x?return type of & does not "
3100 & "correspond to C type!", E);
3102 -- Check return of wrong convention subprogram pointer
3104 elsif Ekind (R_Type) = E_Access_Subprogram_Type
3105 and then not Has_Foreign_Convention (R_Type)
3106 and then not Has_Warnings_Off (E)
3107 and then not Has_Warnings_Off (R_Type)
3108 then
3109 Error_Msg_N ("?x?& should return a foreign "
3110 & "convention subprogram pointer", E);
3111 Error_Msg_Sloc := Sloc (R_Type);
3112 Error_Msg_NE
3113 ("\?x?add Convention pragma to declaration of& #",
3114 E, R_Type);
3115 end if;
3116 end if;
3118 -- Give warning for suspicious return of a result of an
3119 -- unconstrained array type in a foreign convention function.
3121 if Has_Foreign_Convention (E)
3123 -- We are looking for a return of unconstrained array
3125 and then Is_Array_Type (R_Type)
3126 and then not Is_Constrained (R_Type)
3128 -- Exclude imported routines, the warning does not belong on
3129 -- the import, but rather on the routine definition.
3131 and then not Is_Imported (E)
3133 -- Exclude VM case, since both .NET and JVM can handle return
3134 -- of unconstrained arrays without a problem.
3136 and then VM_Target = No_VM
3138 -- Check that general warning is enabled, and that it is not
3139 -- suppressed for this particular case.
3141 and then Warn_On_Export_Import
3142 and then not Has_Warnings_Off (E)
3143 and then not Has_Warnings_Off (R_Type)
3144 then
3145 Error_Msg_N ("?x?foreign convention function& should not " &
3146 "return unconstrained array!", E);
3147 end if;
3148 end if;
3150 -- Check suspicious use of Import in pure unit
3152 if Is_Imported (E) and then Is_Pure (Cunit_Entity (Current_Sem_Unit))
3154 -- Ignore internally generated entity. This happens in some cases
3155 -- of subprograms in specs, where we generate an implied body.
3157 and then Comes_From_Source (Import_Pragma (E))
3159 -- Assume run-time knows what it is doing
3161 and then not GNAT_Mode
3163 -- Assume explicit Pure_Function means import is pure
3165 and then not Has_Pragma_Pure_Function (E)
3167 -- Don't need warning in relaxed semantics mode
3169 and then not Relaxed_RM_Semantics
3171 -- Assume convention Intrinsic is OK, since this is specialized.
3172 -- This deals with the DEC unit current_exception.ads
3174 and then Convention (E) /= Convention_Intrinsic
3176 -- Assume that ASM interface knows what it is doing. This deals
3177 -- with unsigned.ads in the AAMP back end.
3179 and then Convention (E) /= Convention_Assembler
3180 then
3181 Error_Msg_N
3182 ("pragma Import in Pure unit??", Import_Pragma (E));
3183 Error_Msg_NE
3184 ("\calls to & may be omitted (RM 10.2.1(18/3))??",
3185 Import_Pragma (E), E);
3186 end if;
3188 return True;
3189 end Freeze_Profile;
3191 ------------------------
3192 -- Freeze_Record_Type --
3193 ------------------------
3195 procedure Freeze_Record_Type (Rec : Entity_Id) is
3196 ADC : Node_Id;
3197 Comp : Entity_Id;
3198 IR : Node_Id;
3199 Prev : Entity_Id;
3201 Junk : Boolean;
3202 pragma Warnings (Off, Junk);
3204 Rec_Pushed : Boolean := False;
3205 -- Set True if the record type scope Rec has been pushed on the scope
3206 -- stack. Needed for the analysis of delayed aspects specified to the
3207 -- components of Rec.
3209 SSO_ADC : Node_Id;
3210 -- Scalar_Storage_Order attribute definition clause for the record
3212 Unplaced_Component : Boolean := False;
3213 -- Set True if we find at least one component with no component
3214 -- clause (used to warn about useless Pack pragmas).
3216 Placed_Component : Boolean := False;
3217 -- Set True if we find at least one component with a component
3218 -- clause (used to warn about useless Bit_Order pragmas, and also
3219 -- to detect cases where Implicit_Packing may have an effect).
3221 Aliased_Component : Boolean := False;
3222 -- Set True if we find at least one component which is aliased. This
3223 -- is used to prevent Implicit_Packing of the record, since packing
3224 -- cannot modify the size of alignment of an aliased component.
3226 SSO_ADC_Component : Boolean := False;
3227 -- Set True if we find at least one component whose type has a
3228 -- Scalar_Storage_Order attribute definition clause.
3230 All_Scalar_Components : Boolean := True;
3231 -- Set False if we encounter a component of a non-scalar type
3233 Scalar_Component_Total_RM_Size : Uint := Uint_0;
3234 Scalar_Component_Total_Esize : Uint := Uint_0;
3235 -- Accumulates total RM_Size values and total Esize values of all
3236 -- scalar components. Used for processing of Implicit_Packing.
3238 function Check_Allocator (N : Node_Id) return Node_Id;
3239 -- If N is an allocator, possibly wrapped in one or more level of
3240 -- qualified expression(s), return the inner allocator node, else
3241 -- return Empty.
3243 procedure Check_Itype (Typ : Entity_Id);
3244 -- If the component subtype is an access to a constrained subtype of
3245 -- an already frozen type, make the subtype frozen as well. It might
3246 -- otherwise be frozen in the wrong scope, and a freeze node on
3247 -- subtype has no effect. Similarly, if the component subtype is a
3248 -- regular (not protected) access to subprogram, set the anonymous
3249 -- subprogram type to frozen as well, to prevent an out-of-scope
3250 -- freeze node at some eventual point of call. Protected operations
3251 -- are handled elsewhere.
3253 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id);
3254 -- Make sure that all types mentioned in Discrete_Choices of the
3255 -- variants referenceed by the Variant_Part VP are frozen. This is
3256 -- a recursive routine to deal with nested variants.
3258 ---------------------
3259 -- Check_Allocator --
3260 ---------------------
3262 function Check_Allocator (N : Node_Id) return Node_Id is
3263 Inner : Node_Id;
3264 begin
3265 Inner := N;
3266 loop
3267 if Nkind (Inner) = N_Allocator then
3268 return Inner;
3269 elsif Nkind (Inner) = N_Qualified_Expression then
3270 Inner := Expression (Inner);
3271 else
3272 return Empty;
3273 end if;
3274 end loop;
3275 end Check_Allocator;
3277 -----------------
3278 -- Check_Itype --
3279 -----------------
3281 procedure Check_Itype (Typ : Entity_Id) is
3282 Desig : constant Entity_Id := Designated_Type (Typ);
3284 begin
3285 if not Is_Frozen (Desig)
3286 and then Is_Frozen (Base_Type (Desig))
3287 then
3288 Set_Is_Frozen (Desig);
3290 -- In addition, add an Itype_Reference to ensure that the
3291 -- access subtype is elaborated early enough. This cannot be
3292 -- done if the subtype may depend on discriminants.
3294 if Ekind (Comp) = E_Component
3295 and then Is_Itype (Etype (Comp))
3296 and then not Has_Discriminants (Rec)
3297 then
3298 IR := Make_Itype_Reference (Sloc (Comp));
3299 Set_Itype (IR, Desig);
3300 Add_To_Result (IR);
3301 end if;
3303 elsif Ekind (Typ) = E_Anonymous_Access_Subprogram_Type
3304 and then Convention (Desig) /= Convention_Protected
3305 then
3306 Set_Is_Frozen (Desig);
3307 end if;
3308 end Check_Itype;
3310 ------------------------------------
3311 -- Freeze_Choices_In_Variant_Part --
3312 ------------------------------------
3314 procedure Freeze_Choices_In_Variant_Part (VP : Node_Id) is
3315 pragma Assert (Nkind (VP) = N_Variant_Part);
3317 Variant : Node_Id;
3318 Choice : Node_Id;
3319 CL : Node_Id;
3321 begin
3322 -- Loop through variants
3324 Variant := First_Non_Pragma (Variants (VP));
3325 while Present (Variant) loop
3327 -- Loop through choices, checking that all types are frozen
3329 Choice := First_Non_Pragma (Discrete_Choices (Variant));
3330 while Present (Choice) loop
3331 if Nkind (Choice) in N_Has_Etype
3332 and then Present (Etype (Choice))
3333 then
3334 Freeze_And_Append (Etype (Choice), N, Result);
3335 end if;
3337 Next_Non_Pragma (Choice);
3338 end loop;
3340 -- Check for nested variant part to process
3342 CL := Component_List (Variant);
3344 if not Null_Present (CL) then
3345 if Present (Variant_Part (CL)) then
3346 Freeze_Choices_In_Variant_Part (Variant_Part (CL));
3347 end if;
3348 end if;
3350 Next_Non_Pragma (Variant);
3351 end loop;
3352 end Freeze_Choices_In_Variant_Part;
3354 -- Start of processing for Freeze_Record_Type
3356 begin
3357 -- Deal with delayed aspect specifications for components. The
3358 -- analysis of the aspect is required to be delayed to the freeze
3359 -- point, thus we analyze the pragma or attribute definition
3360 -- clause in the tree at this point. We also analyze the aspect
3361 -- specification node at the freeze point when the aspect doesn't
3362 -- correspond to pragma/attribute definition clause.
3364 Comp := First_Entity (Rec);
3365 while Present (Comp) loop
3366 if Ekind (Comp) = E_Component
3367 and then Has_Delayed_Aspects (Comp)
3368 then
3369 if not Rec_Pushed then
3370 Push_Scope (Rec);
3371 Rec_Pushed := True;
3373 -- The visibility to the discriminants must be restored in
3374 -- order to properly analyze the aspects.
3376 if Has_Discriminants (Rec) then
3377 Install_Discriminants (Rec);
3378 end if;
3379 end if;
3381 Analyze_Aspects_At_Freeze_Point (Comp);
3382 end if;
3384 Next_Entity (Comp);
3385 end loop;
3387 -- Pop the scope if Rec scope has been pushed on the scope stack
3388 -- during the delayed aspect analysis process.
3390 if Rec_Pushed then
3391 if Has_Discriminants (Rec) then
3392 Uninstall_Discriminants (Rec);
3393 end if;
3395 Pop_Scope;
3396 end if;
3398 -- Freeze components and embedded subtypes
3400 Comp := First_Entity (Rec);
3401 Prev := Empty;
3402 while Present (Comp) loop
3403 if Is_Aliased (Comp) then
3404 Aliased_Component := True;
3405 end if;
3407 -- Handle the component and discriminant case
3409 if Ekind_In (Comp, E_Component, E_Discriminant) then
3410 declare
3411 CC : constant Node_Id := Component_Clause (Comp);
3413 begin
3414 -- Freezing a record type freezes the type of each of its
3415 -- components. However, if the type of the component is
3416 -- part of this record, we do not want or need a separate
3417 -- Freeze_Node. Note that Is_Itype is wrong because that's
3418 -- also set in private type cases. We also can't check for
3419 -- the Scope being exactly Rec because of private types and
3420 -- record extensions.
3422 if Is_Itype (Etype (Comp))
3423 and then Is_Record_Type (Underlying_Type
3424 (Scope (Etype (Comp))))
3425 then
3426 Undelay_Type (Etype (Comp));
3427 end if;
3429 Freeze_And_Append (Etype (Comp), N, Result);
3431 -- Warn for pragma Pack overriding foreign convention
3433 if Has_Foreign_Convention (Etype (Comp))
3434 and then Has_Pragma_Pack (Rec)
3436 -- Don't warn for aliased components, since override
3437 -- cannot happen in that case.
3439 and then not Is_Aliased (Comp)
3440 then
3441 declare
3442 CN : constant Name_Id :=
3443 Get_Convention_Name (Convention (Etype (Comp)));
3444 PP : constant Node_Id :=
3445 Get_Pragma (Rec, Pragma_Pack);
3446 begin
3447 if Present (PP) then
3448 Error_Msg_Name_1 := CN;
3449 Error_Msg_Sloc := Sloc (Comp);
3450 Error_Msg_N
3451 ("pragma Pack affects convention % component#??",
3452 PP);
3453 Error_Msg_Name_1 := CN;
3454 Error_Msg_NE
3455 ("\component & may not have % compatible "
3456 & "representation??", PP, Comp);
3457 end if;
3458 end;
3459 end if;
3461 -- Check for error of component clause given for variable
3462 -- sized type. We have to delay this test till this point,
3463 -- since the component type has to be frozen for us to know
3464 -- if it is variable length.
3466 if Present (CC) then
3467 Placed_Component := True;
3469 -- We omit this test in a generic context, it will be
3470 -- applied at instantiation time.
3472 if Inside_A_Generic then
3473 null;
3475 -- Also omit this test in CodePeer mode, since we do not
3476 -- have sufficient info on size and rep clauses.
3478 elsif CodePeer_Mode then
3479 null;
3481 -- Omit check if component has a generic type. This can
3482 -- happen in an instantiation within a generic in ASIS
3483 -- mode, where we force freeze actions without full
3484 -- expansion.
3486 elsif Is_Generic_Type (Etype (Comp)) then
3487 null;
3489 -- Do the check
3491 elsif not
3492 Size_Known_At_Compile_Time
3493 (Underlying_Type (Etype (Comp)))
3494 then
3495 Error_Msg_N
3496 ("component clause not allowed for variable " &
3497 "length component", CC);
3498 end if;
3500 else
3501 Unplaced_Component := True;
3502 end if;
3504 -- Case of component requires byte alignment
3506 if Must_Be_On_Byte_Boundary (Etype (Comp)) then
3508 -- Set the enclosing record to also require byte align
3510 Set_Must_Be_On_Byte_Boundary (Rec);
3512 -- Check for component clause that is inconsistent with
3513 -- the required byte boundary alignment.
3515 if Present (CC)
3516 and then Normalized_First_Bit (Comp) mod
3517 System_Storage_Unit /= 0
3518 then
3519 Error_Msg_N
3520 ("component & must be byte aligned",
3521 Component_Name (Component_Clause (Comp)));
3522 end if;
3523 end if;
3524 end;
3525 end if;
3527 -- Gather data for possible Implicit_Packing later. Note that at
3528 -- this stage we might be dealing with a real component, or with
3529 -- an implicit subtype declaration.
3531 if not Is_Scalar_Type (Etype (Comp)) then
3532 All_Scalar_Components := False;
3533 else
3534 Scalar_Component_Total_RM_Size :=
3535 Scalar_Component_Total_RM_Size + RM_Size (Etype (Comp));
3536 Scalar_Component_Total_Esize :=
3537 Scalar_Component_Total_Esize + Esize (Etype (Comp));
3538 end if;
3540 -- If the component is an Itype with Delayed_Freeze and is either
3541 -- a record or array subtype and its base type has not yet been
3542 -- frozen, we must remove this from the entity list of this record
3543 -- and put it on the entity list of the scope of its base type.
3544 -- Note that we know that this is not the type of a component
3545 -- since we cleared Has_Delayed_Freeze for it in the previous
3546 -- loop. Thus this must be the Designated_Type of an access type,
3547 -- which is the type of a component.
3549 if Is_Itype (Comp)
3550 and then Is_Type (Scope (Comp))
3551 and then Is_Composite_Type (Comp)
3552 and then Base_Type (Comp) /= Comp
3553 and then Has_Delayed_Freeze (Comp)
3554 and then not Is_Frozen (Base_Type (Comp))
3555 then
3556 declare
3557 Will_Be_Frozen : Boolean := False;
3558 S : Entity_Id;
3560 begin
3561 -- We have a difficult case to handle here. Suppose Rec is
3562 -- subtype being defined in a subprogram that's created as
3563 -- part of the freezing of Rec'Base. In that case, we know
3564 -- that Comp'Base must have already been frozen by the time
3565 -- we get to elaborate this because Gigi doesn't elaborate
3566 -- any bodies until it has elaborated all of the declarative
3567 -- part. But Is_Frozen will not be set at this point because
3568 -- we are processing code in lexical order.
3570 -- We detect this case by going up the Scope chain of Rec
3571 -- and seeing if we have a subprogram scope before reaching
3572 -- the top of the scope chain or that of Comp'Base. If we
3573 -- do, then mark that Comp'Base will actually be frozen. If
3574 -- so, we merely undelay it.
3576 S := Scope (Rec);
3577 while Present (S) loop
3578 if Is_Subprogram (S) then
3579 Will_Be_Frozen := True;
3580 exit;
3581 elsif S = Scope (Base_Type (Comp)) then
3582 exit;
3583 end if;
3585 S := Scope (S);
3586 end loop;
3588 if Will_Be_Frozen then
3589 Undelay_Type (Comp);
3591 else
3592 if Present (Prev) then
3593 Set_Next_Entity (Prev, Next_Entity (Comp));
3594 else
3595 Set_First_Entity (Rec, Next_Entity (Comp));
3596 end if;
3598 -- Insert in entity list of scope of base type (which
3599 -- must be an enclosing scope, because still unfrozen).
3601 Append_Entity (Comp, Scope (Base_Type (Comp)));
3602 end if;
3603 end;
3605 -- If the component is an access type with an allocator as default
3606 -- value, the designated type will be frozen by the corresponding
3607 -- expression in init_proc. In order to place the freeze node for
3608 -- the designated type before that for the current record type,
3609 -- freeze it now.
3611 -- Same process if the component is an array of access types,
3612 -- initialized with an aggregate. If the designated type is
3613 -- private, it cannot contain allocators, and it is premature
3614 -- to freeze the type, so we check for this as well.
3616 elsif Is_Access_Type (Etype (Comp))
3617 and then Present (Parent (Comp))
3618 and then Present (Expression (Parent (Comp)))
3619 then
3620 declare
3621 Alloc : constant Node_Id :=
3622 Check_Allocator (Expression (Parent (Comp)));
3624 begin
3625 if Present (Alloc) then
3627 -- If component is pointer to a class-wide type, freeze
3628 -- the specific type in the expression being allocated.
3629 -- The expression may be a subtype indication, in which
3630 -- case freeze the subtype mark.
3632 if Is_Class_Wide_Type
3633 (Designated_Type (Etype (Comp)))
3634 then
3635 if Is_Entity_Name (Expression (Alloc)) then
3636 Freeze_And_Append
3637 (Entity (Expression (Alloc)), N, Result);
3639 elsif Nkind (Expression (Alloc)) = N_Subtype_Indication
3640 then
3641 Freeze_And_Append
3642 (Entity (Subtype_Mark (Expression (Alloc))),
3643 N, Result);
3644 end if;
3646 elsif Is_Itype (Designated_Type (Etype (Comp))) then
3647 Check_Itype (Etype (Comp));
3649 else
3650 Freeze_And_Append
3651 (Designated_Type (Etype (Comp)), N, Result);
3652 end if;
3653 end if;
3654 end;
3656 elsif Is_Access_Type (Etype (Comp))
3657 and then Is_Itype (Designated_Type (Etype (Comp)))
3658 then
3659 Check_Itype (Etype (Comp));
3661 -- Freeze the designated type when initializing a component with
3662 -- an aggregate in case the aggregate contains allocators.
3664 -- type T is ...;
3665 -- type T_Ptr is access all T;
3666 -- type T_Array is array ... of T_Ptr;
3668 -- type Rec is record
3669 -- Comp : T_Array := (others => ...);
3670 -- end record;
3672 elsif Is_Array_Type (Etype (Comp))
3673 and then Is_Access_Type (Component_Type (Etype (Comp)))
3674 then
3675 declare
3676 Comp_Par : constant Node_Id := Parent (Comp);
3677 Desig_Typ : constant Entity_Id :=
3678 Designated_Type
3679 (Component_Type (Etype (Comp)));
3681 begin
3682 -- The only case when this sort of freezing is not done is
3683 -- when the designated type is class-wide and the root type
3684 -- is the record owning the component. This scenario results
3685 -- in a circularity because the class-wide type requires
3686 -- primitives that have not been created yet as the root
3687 -- type is in the process of being frozen.
3689 -- type Rec is tagged;
3690 -- type Rec_Ptr is access all Rec'Class;
3691 -- type Rec_Array is array ... of Rec_Ptr;
3693 -- type Rec is record
3694 -- Comp : Rec_Array := (others => ...);
3695 -- end record;
3697 if Is_Class_Wide_Type (Desig_Typ)
3698 and then Root_Type (Desig_Typ) = Rec
3699 then
3700 null;
3702 elsif Is_Fully_Defined (Desig_Typ)
3703 and then Present (Comp_Par)
3704 and then Nkind (Comp_Par) = N_Component_Declaration
3705 and then Present (Expression (Comp_Par))
3706 and then Nkind (Expression (Comp_Par)) = N_Aggregate
3707 then
3708 Freeze_And_Append (Desig_Typ, N, Result);
3709 end if;
3710 end;
3711 end if;
3713 Prev := Comp;
3714 Next_Entity (Comp);
3715 end loop;
3717 -- Deal with default setting of reverse storage order
3719 Set_SSO_From_Default (Rec);
3721 -- Check consistent attribute setting on component types
3723 SSO_ADC := Get_Attribute_Definition_Clause
3724 (Rec, Attribute_Scalar_Storage_Order);
3726 declare
3727 Comp_ADC_Present : Boolean;
3728 begin
3729 Comp := First_Component (Rec);
3730 while Present (Comp) loop
3731 Check_Component_Storage_Order
3732 (Encl_Type => Rec,
3733 Comp => Comp,
3734 ADC => SSO_ADC,
3735 Comp_ADC_Present => Comp_ADC_Present);
3736 SSO_ADC_Component := SSO_ADC_Component or Comp_ADC_Present;
3737 Next_Component (Comp);
3738 end loop;
3739 end;
3741 -- Now deal with reverse storage order/bit order issues
3743 if Present (SSO_ADC) then
3745 -- Check compatibility of Scalar_Storage_Order with Bit_Order, if
3746 -- the former is specified.
3748 if Reverse_Bit_Order (Rec) /= Reverse_Storage_Order (Rec) then
3750 -- Note: report error on Rec, not on SSO_ADC, as ADC may apply
3751 -- to some ancestor type.
3753 Error_Msg_Sloc := Sloc (SSO_ADC);
3754 Error_Msg_N
3755 ("scalar storage order for& specified# inconsistent with "
3756 & "bit order", Rec);
3757 end if;
3759 -- Warn if there is an Scalar_Storage_Order attribute definition
3760 -- clause but no component clause, no component that itself has
3761 -- such an attribute definition, and no pragma Pack.
3763 if not (Placed_Component
3764 or else
3765 SSO_ADC_Component
3766 or else
3767 Is_Packed (Rec))
3768 then
3769 Error_Msg_N
3770 ("??scalar storage order specified but no component clause",
3771 SSO_ADC);
3772 end if;
3773 end if;
3775 -- Deal with Bit_Order aspect
3777 ADC := Get_Attribute_Definition_Clause (Rec, Attribute_Bit_Order);
3779 if Present (ADC) and then Base_Type (Rec) = Rec then
3780 if not (Placed_Component
3781 or else Present (SSO_ADC)
3782 or else Is_Packed (Rec))
3783 then
3784 -- Warn if clause has no effect when no component clause is
3785 -- present, but suppress warning if the Bit_Order is required
3786 -- due to the presence of a Scalar_Storage_Order attribute.
3788 Error_Msg_N
3789 ("??bit order specification has no effect", ADC);
3790 Error_Msg_N
3791 ("\??since no component clauses were specified", ADC);
3793 -- Here is where we do the processing to adjust component clauses
3794 -- for reversed bit order, when not using reverse SSO.
3796 elsif Reverse_Bit_Order (Rec)
3797 and then not Reverse_Storage_Order (Rec)
3798 then
3799 Adjust_Record_For_Reverse_Bit_Order (Rec);
3801 -- Case where we have both an explicit Bit_Order and the same
3802 -- Scalar_Storage_Order: leave record untouched, the back-end
3803 -- will take care of required layout conversions.
3805 else
3806 null;
3808 end if;
3809 end if;
3811 -- Complete error checking on record representation clause (e.g.
3812 -- overlap of components). This is called after adjusting the
3813 -- record for reverse bit order.
3815 declare
3816 RRC : constant Node_Id := Get_Record_Representation_Clause (Rec);
3817 begin
3818 if Present (RRC) then
3819 Check_Record_Representation_Clause (RRC);
3820 end if;
3821 end;
3823 -- Set OK_To_Reorder_Components depending on debug flags
3825 if Is_Base_Type (Rec) and then Convention (Rec) = Convention_Ada then
3826 if (Has_Discriminants (Rec) and then Debug_Flag_Dot_V)
3827 or else
3828 (not Has_Discriminants (Rec) and then Debug_Flag_Dot_R)
3829 then
3830 Set_OK_To_Reorder_Components (Rec);
3831 end if;
3832 end if;
3834 -- Check for useless pragma Pack when all components placed. We only
3835 -- do this check for record types, not subtypes, since a subtype may
3836 -- have all its components placed, and it still makes perfectly good
3837 -- sense to pack other subtypes or the parent type. We do not give
3838 -- this warning if Optimize_Alignment is set to Space, since the
3839 -- pragma Pack does have an effect in this case (it always resets
3840 -- the alignment to one).
3842 if Ekind (Rec) = E_Record_Type
3843 and then Is_Packed (Rec)
3844 and then not Unplaced_Component
3845 and then Optimize_Alignment /= 'S'
3846 then
3847 -- Reset packed status. Probably not necessary, but we do it so
3848 -- that there is no chance of the back end doing something strange
3849 -- with this redundant indication of packing.
3851 Set_Is_Packed (Rec, False);
3853 -- Give warning if redundant constructs warnings on
3855 if Warn_On_Redundant_Constructs then
3856 Error_Msg_N -- CODEFIX
3857 ("??pragma Pack has no effect, no unplaced components",
3858 Get_Rep_Pragma (Rec, Name_Pack));
3859 end if;
3860 end if;
3862 -- If this is the record corresponding to a remote type, freeze the
3863 -- remote type here since that is what we are semantically freezing.
3864 -- This prevents the freeze node for that type in an inner scope.
3866 if Ekind (Rec) = E_Record_Type then
3867 if Present (Corresponding_Remote_Type (Rec)) then
3868 Freeze_And_Append (Corresponding_Remote_Type (Rec), N, Result);
3869 end if;
3871 -- Check for controlled components and unchecked unions.
3873 Comp := First_Component (Rec);
3874 while Present (Comp) loop
3876 -- Do not set Has_Controlled_Component on a class-wide
3877 -- equivalent type. See Make_CW_Equivalent_Type.
3879 if not Is_Class_Wide_Equivalent_Type (Rec)
3880 and then
3881 (Has_Controlled_Component (Etype (Comp))
3882 or else
3883 (Chars (Comp) /= Name_uParent
3884 and then Is_Controlled (Etype (Comp)))
3885 or else
3886 (Is_Protected_Type (Etype (Comp))
3887 and then
3888 Present (Corresponding_Record_Type (Etype (Comp)))
3889 and then
3890 Has_Controlled_Component
3891 (Corresponding_Record_Type (Etype (Comp)))))
3892 then
3893 Set_Has_Controlled_Component (Rec);
3894 end if;
3896 if Has_Unchecked_Union (Etype (Comp)) then
3897 Set_Has_Unchecked_Union (Rec);
3898 end if;
3900 -- Scan component declaration for likely misuses of current
3901 -- instance, either in a constraint or a default expression.
3903 if Has_Per_Object_Constraint (Comp) then
3904 Check_Current_Instance (Parent (Comp));
3905 end if;
3907 Next_Component (Comp);
3908 end loop;
3909 end if;
3911 -- Enforce the restriction that access attributes with a current
3912 -- instance prefix can only apply to limited types. This comment
3913 -- is floating here, but does not seem to belong here???
3915 -- Set component alignment if not otherwise already set
3917 Set_Component_Alignment_If_Not_Set (Rec);
3919 -- For first subtypes, check if there are any fixed-point fields with
3920 -- component clauses, where we must check the size. This is not done
3921 -- till the freeze point since for fixed-point types, we do not know
3922 -- the size until the type is frozen. Similar processing applies to
3923 -- bit packed arrays.
3925 if Is_First_Subtype (Rec) then
3926 Comp := First_Component (Rec);
3927 while Present (Comp) loop
3928 if Present (Component_Clause (Comp))
3929 and then (Is_Fixed_Point_Type (Etype (Comp))
3930 or else Is_Bit_Packed_Array (Etype (Comp)))
3931 then
3932 Check_Size
3933 (Component_Name (Component_Clause (Comp)),
3934 Etype (Comp),
3935 Esize (Comp),
3936 Junk);
3937 end if;
3939 Next_Component (Comp);
3940 end loop;
3941 end if;
3943 -- Generate warning for applying C or C++ convention to a record
3944 -- with discriminants. This is suppressed for the unchecked union
3945 -- case, since the whole point in this case is interface C. We also
3946 -- do not generate this within instantiations, since we will have
3947 -- generated a message on the template.
3949 if Has_Discriminants (E)
3950 and then not Is_Unchecked_Union (E)
3951 and then (Convention (E) = Convention_C
3952 or else
3953 Convention (E) = Convention_CPP)
3954 and then Comes_From_Source (E)
3955 and then not In_Instance
3956 and then not Has_Warnings_Off (E)
3957 and then not Has_Warnings_Off (Base_Type (E))
3958 then
3959 declare
3960 Cprag : constant Node_Id := Get_Rep_Pragma (E, Name_Convention);
3961 A2 : Node_Id;
3963 begin
3964 if Present (Cprag) then
3965 A2 := Next (First (Pragma_Argument_Associations (Cprag)));
3967 if Convention (E) = Convention_C then
3968 Error_Msg_N
3969 ("?x?variant record has no direct equivalent in C",
3970 A2);
3971 else
3972 Error_Msg_N
3973 ("?x?variant record has no direct equivalent in C++",
3974 A2);
3975 end if;
3977 Error_Msg_NE
3978 ("\?x?use of convention for type& is dubious", A2, E);
3979 end if;
3980 end;
3981 end if;
3983 -- See if Size is too small as is (and implicit packing might help)
3985 if not Is_Packed (Rec)
3987 -- No implicit packing if even one component is explicitly placed
3989 and then not Placed_Component
3991 -- Or even one component is aliased
3993 and then not Aliased_Component
3995 -- Must have size clause and all scalar components
3997 and then Has_Size_Clause (Rec)
3998 and then All_Scalar_Components
4000 -- Do not try implicit packing on records with discriminants, too
4001 -- complicated, especially in the variant record case.
4003 and then not Has_Discriminants (Rec)
4005 -- We can implicitly pack if the specified size of the record is
4006 -- less than the sum of the object sizes (no point in packing if
4007 -- this is not the case).
4009 and then RM_Size (Rec) < Scalar_Component_Total_Esize
4011 -- And the total RM size cannot be greater than the specified size
4012 -- since otherwise packing will not get us where we have to be.
4014 and then RM_Size (Rec) >= Scalar_Component_Total_RM_Size
4016 -- Never do implicit packing in CodePeer or SPARK modes since
4017 -- we don't do any packing in these modes, since this generates
4018 -- over-complex code that confuses static analysis, and in
4019 -- general, neither CodePeer not GNATprove care about the
4020 -- internal representation of objects.
4022 and then not (CodePeer_Mode or GNATprove_Mode)
4023 then
4024 -- If implicit packing enabled, do it
4026 if Implicit_Packing then
4027 Set_Is_Packed (Rec);
4029 -- Otherwise flag the size clause
4031 else
4032 declare
4033 Sz : constant Node_Id := Size_Clause (Rec);
4034 begin
4035 Error_Msg_NE -- CODEFIX
4036 ("size given for& too small", Sz, Rec);
4037 Error_Msg_N -- CODEFIX
4038 ("\use explicit pragma Pack "
4039 & "or use pragma Implicit_Packing", Sz);
4040 end;
4041 end if;
4042 end if;
4044 -- The following checks are only relevant when SPARK_Mode is on as
4045 -- they are not standard Ada legality rules.
4047 if SPARK_Mode = On then
4048 if Is_Effectively_Volatile (Rec) then
4050 -- A discriminated type cannot be effectively volatile
4051 -- (SPARK RM C.6(4)).
4053 if Has_Discriminants (Rec) then
4054 Error_Msg_N ("discriminated type & cannot be volatile", Rec);
4056 -- A tagged type cannot be effectively volatile
4057 -- (SPARK RM C.6(5)).
4059 elsif Is_Tagged_Type (Rec) then
4060 Error_Msg_N ("tagged type & cannot be volatile", Rec);
4061 end if;
4063 -- A non-effectively volatile record type cannot contain
4064 -- effectively volatile components (SPARK RM C.6(2)).
4066 else
4067 Comp := First_Component (Rec);
4068 while Present (Comp) loop
4069 if Comes_From_Source (Comp)
4070 and then Is_Effectively_Volatile (Etype (Comp))
4071 then
4072 Error_Msg_Name_1 := Chars (Rec);
4073 Error_Msg_N
4074 ("component & of non-volatile type % cannot be "
4075 & "volatile", Comp);
4076 end if;
4078 Next_Component (Comp);
4079 end loop;
4080 end if;
4081 end if;
4083 -- All done if not a full record definition
4085 if Ekind (Rec) /= E_Record_Type then
4086 return;
4087 end if;
4089 -- Finally we need to check the variant part to make sure that
4090 -- all types within choices are properly frozen as part of the
4091 -- freezing of the record type.
4093 Check_Variant_Part : declare
4094 D : constant Node_Id := Declaration_Node (Rec);
4095 T : Node_Id;
4096 C : Node_Id;
4098 begin
4099 -- Find component list
4101 C := Empty;
4103 if Nkind (D) = N_Full_Type_Declaration then
4104 T := Type_Definition (D);
4106 if Nkind (T) = N_Record_Definition then
4107 C := Component_List (T);
4109 elsif Nkind (T) = N_Derived_Type_Definition
4110 and then Present (Record_Extension_Part (T))
4111 then
4112 C := Component_List (Record_Extension_Part (T));
4113 end if;
4114 end if;
4116 -- Case of variant part present
4118 if Present (C) and then Present (Variant_Part (C)) then
4119 Freeze_Choices_In_Variant_Part (Variant_Part (C));
4120 end if;
4122 -- Note: we used to call Check_Choices here, but it is too early,
4123 -- since predicated subtypes are frozen here, but their freezing
4124 -- actions are in Analyze_Freeze_Entity, which has not been called
4125 -- yet for entities frozen within this procedure, so we moved that
4126 -- call to the Analyze_Freeze_Entity for the record type.
4128 end Check_Variant_Part;
4130 -- Check that all the primitives of an interface type are abstract
4131 -- or null procedures.
4133 if Is_Interface (Rec)
4134 and then not Error_Posted (Parent (Rec))
4135 then
4136 declare
4137 Elmt : Elmt_Id;
4138 Subp : Entity_Id;
4140 begin
4141 Elmt := First_Elmt (Primitive_Operations (Rec));
4142 while Present (Elmt) loop
4143 Subp := Node (Elmt);
4145 if not Is_Abstract_Subprogram (Subp)
4147 -- Avoid reporting the error on inherited primitives
4149 and then Comes_From_Source (Subp)
4150 then
4151 Error_Msg_Name_1 := Chars (Subp);
4153 if Ekind (Subp) = E_Procedure then
4154 if not Null_Present (Parent (Subp)) then
4155 Error_Msg_N
4156 ("interface procedure % must be abstract or null",
4157 Parent (Subp));
4158 end if;
4159 else
4160 Error_Msg_N
4161 ("interface function % must be abstract",
4162 Parent (Subp));
4163 end if;
4164 end if;
4166 Next_Elmt (Elmt);
4167 end loop;
4168 end;
4169 end if;
4170 end Freeze_Record_Type;
4172 -------------------------------
4173 -- Has_Boolean_Aspect_Import --
4174 -------------------------------
4176 function Has_Boolean_Aspect_Import (E : Entity_Id) return Boolean is
4177 Decl : constant Node_Id := Declaration_Node (E);
4178 Asp : Node_Id;
4179 Expr : Node_Id;
4181 begin
4182 if Has_Aspects (Decl) then
4183 Asp := First (Aspect_Specifications (Decl));
4184 while Present (Asp) loop
4185 Expr := Expression (Asp);
4187 -- The value of aspect Import is True when the expression is
4188 -- either missing or it is explicitly set to True.
4190 if Get_Aspect_Id (Asp) = Aspect_Import
4191 and then (No (Expr)
4192 or else (Compile_Time_Known_Value (Expr)
4193 and then Is_True (Expr_Value (Expr))))
4194 then
4195 return True;
4196 end if;
4198 Next (Asp);
4199 end loop;
4200 end if;
4202 return False;
4203 end Has_Boolean_Aspect_Import;
4205 ----------------------------
4206 -- Late_Freeze_Subprogram --
4207 ----------------------------
4209 procedure Late_Freeze_Subprogram (E : Entity_Id) is
4210 Spec : constant Node_Id :=
4211 Specification (Unit_Declaration_Node (Scope (E)));
4212 Decls : List_Id;
4214 begin
4215 if Present (Private_Declarations (Spec)) then
4216 Decls := Private_Declarations (Spec);
4217 else
4218 Decls := Visible_Declarations (Spec);
4219 end if;
4221 Append_List (Result, Decls);
4222 end Late_Freeze_Subprogram;
4224 ---------------------
4225 -- Restore_Globals --
4226 ---------------------
4228 procedure Restore_Globals is
4229 begin
4230 Ghost_Mode := GM;
4231 end Restore_Globals;
4233 ------------------------------
4234 -- Wrap_Imported_Subprogram --
4235 ------------------------------
4237 -- The issue here is that our normal approach of checking preconditions
4238 -- and postconditions does not work for imported procedures, since we
4239 -- are not generating code for the body. To get around this we create
4240 -- a wrapper, as shown by the following example:
4242 -- procedure K (A : Integer);
4243 -- pragma Import (C, K);
4245 -- The spec is rewritten by removing the effects of pragma Import, but
4246 -- leaving the convention unchanged, as though the source had said:
4248 -- procedure K (A : Integer);
4249 -- pragma Convention (C, K);
4251 -- and we create a body, added to the entity K freeze actions, which
4252 -- looks like:
4254 -- procedure K (A : Integer) is
4255 -- procedure K (A : Integer);
4256 -- pragma Import (C, K);
4257 -- begin
4258 -- K (A);
4259 -- end K;
4261 -- Now the contract applies in the normal way to the outer procedure,
4262 -- and the inner procedure has no contracts, so there is no problem
4263 -- in just calling it to get the original effect.
4265 -- In the case of a function, we create an appropriate return statement
4266 -- for the subprogram body that calls the inner procedure.
4268 procedure Wrap_Imported_Subprogram (E : Entity_Id) is
4269 Loc : constant Source_Ptr := Sloc (E);
4270 CE : constant Name_Id := Chars (E);
4271 Spec : Node_Id;
4272 Parms : List_Id;
4273 Stmt : Node_Id;
4274 Iprag : Node_Id;
4275 Bod : Node_Id;
4276 Forml : Entity_Id;
4278 begin
4279 -- Nothing to do if not imported
4281 if not Is_Imported (E) then
4282 return;
4284 -- Test enabling conditions for wrapping
4286 elsif Is_Subprogram (E)
4287 and then Present (Contract (E))
4288 and then Present (Pre_Post_Conditions (Contract (E)))
4289 and then not GNATprove_Mode
4290 then
4291 -- Here we do the wrap
4293 -- Note on calls to Copy_Separate_Tree. The trees we are copying
4294 -- here are fully analyzed, but we definitely want fully syntactic
4295 -- unanalyzed trees in the body we construct, so that the analysis
4296 -- generates the right visibility, and that is exactly what the
4297 -- calls to Copy_Separate_Tree give us.
4299 -- Acquire copy of Inline pragma, and indicate that it does not
4300 -- come from an aspect, as it applies to an internal entity.
4302 Iprag := Copy_Separate_Tree (Import_Pragma (E));
4303 Set_From_Aspect_Specification (Iprag, False);
4305 -- Fix up spec to be not imported any more
4307 Set_Is_Imported (E, False);
4308 Set_Interface_Name (E, Empty);
4309 Set_Has_Completion (E, False);
4310 Set_Import_Pragma (E, Empty);
4312 -- Grab the subprogram declaration and specification
4314 Spec := Declaration_Node (E);
4316 -- Build parameter list that we need
4318 Parms := New_List;
4319 Forml := First_Formal (E);
4320 while Present (Forml) loop
4321 Append_To (Parms, Make_Identifier (Loc, Chars (Forml)));
4322 Next_Formal (Forml);
4323 end loop;
4325 -- Build the call
4327 if Ekind_In (E, E_Function, E_Generic_Function) then
4328 Stmt :=
4329 Make_Simple_Return_Statement (Loc,
4330 Expression =>
4331 Make_Function_Call (Loc,
4332 Name => Make_Identifier (Loc, CE),
4333 Parameter_Associations => Parms));
4335 else
4336 Stmt :=
4337 Make_Procedure_Call_Statement (Loc,
4338 Name => Make_Identifier (Loc, CE),
4339 Parameter_Associations => Parms);
4340 end if;
4342 -- Now build the body
4344 Bod :=
4345 Make_Subprogram_Body (Loc,
4346 Specification =>
4347 Copy_Separate_Tree (Spec),
4348 Declarations => New_List (
4349 Make_Subprogram_Declaration (Loc,
4350 Specification =>
4351 Copy_Separate_Tree (Spec)),
4352 Iprag),
4353 Handled_Statement_Sequence =>
4354 Make_Handled_Sequence_Of_Statements (Loc,
4355 Statements => New_List (Stmt),
4356 End_Label => Make_Identifier (Loc, CE)));
4358 -- Append the body to freeze result
4360 Add_To_Result (Bod);
4361 return;
4363 -- Case of imported subprogram that does not get wrapped
4365 else
4366 -- Set Is_Public. All imported entities need an external symbol
4367 -- created for them since they are always referenced from another
4368 -- object file. Note this used to be set when we set Is_Imported
4369 -- back in Sem_Prag, but now we delay it to this point, since we
4370 -- don't want to set this flag if we wrap an imported subprogram.
4372 Set_Is_Public (E);
4373 end if;
4374 end Wrap_Imported_Subprogram;
4376 -- Start of processing for Freeze_Entity
4378 begin
4379 -- The entity being frozen may be subject to pragma Ghost with policy
4380 -- Ignore. Set the mode now to ensure that any nodes generated during
4381 -- freezing are properly flagged as ignored Ghost.
4383 Set_Ghost_Mode_For_Freeze (E, N);
4385 -- We are going to test for various reasons why this entity need not be
4386 -- frozen here, but in the case of an Itype that's defined within a
4387 -- record, that test actually applies to the record.
4389 if Is_Itype (E) and then Is_Record_Type (Scope (E)) then
4390 Test_E := Scope (E);
4391 elsif Is_Itype (E) and then Present (Underlying_Type (Scope (E)))
4392 and then Is_Record_Type (Underlying_Type (Scope (E)))
4393 then
4394 Test_E := Underlying_Type (Scope (E));
4395 end if;
4397 -- Do not freeze if already frozen since we only need one freeze node
4399 if Is_Frozen (E) then
4400 Restore_Globals;
4401 return No_List;
4403 -- It is improper to freeze an external entity within a generic because
4404 -- its freeze node will appear in a non-valid context. The entity will
4405 -- be frozen in the proper scope after the current generic is analyzed.
4406 -- However, aspects must be analyzed because they may be queried later
4407 -- within the generic itself, and the corresponding pragma or attribute
4408 -- definition has not been analyzed yet.
4410 elsif Inside_A_Generic and then External_Ref_In_Generic (Test_E) then
4411 if Has_Delayed_Aspects (E) then
4412 Analyze_Aspects_At_Freeze_Point (E);
4413 end if;
4415 Restore_Globals;
4416 return No_List;
4418 -- AI05-0213: A formal incomplete type does not freeze the actual. In
4419 -- the instance, the same applies to the subtype renaming the actual.
4421 elsif Is_Private_Type (E)
4422 and then Is_Generic_Actual_Type (E)
4423 and then No (Full_View (Base_Type (E)))
4424 and then Ada_Version >= Ada_2012
4425 then
4426 Restore_Globals;
4427 return No_List;
4429 -- Formal subprograms are never frozen
4431 elsif Is_Formal_Subprogram (E) then
4432 Restore_Globals;
4433 return No_List;
4435 -- Generic types are never frozen as they lack delayed semantic checks
4437 elsif Is_Generic_Type (E) then
4438 Restore_Globals;
4439 return No_List;
4441 -- Do not freeze a global entity within an inner scope created during
4442 -- expansion. A call to subprogram E within some internal procedure
4443 -- (a stream attribute for example) might require freezing E, but the
4444 -- freeze node must appear in the same declarative part as E itself.
4445 -- The two-pass elaboration mechanism in gigi guarantees that E will
4446 -- be frozen before the inner call is elaborated. We exclude constants
4447 -- from this test, because deferred constants may be frozen early, and
4448 -- must be diagnosed (e.g. in the case of a deferred constant being used
4449 -- in a default expression). If the enclosing subprogram comes from
4450 -- source, or is a generic instance, then the freeze point is the one
4451 -- mandated by the language, and we freeze the entity. A subprogram that
4452 -- is a child unit body that acts as a spec does not have a spec that
4453 -- comes from source, but can only come from source.
4455 elsif In_Open_Scopes (Scope (Test_E))
4456 and then Scope (Test_E) /= Current_Scope
4457 and then Ekind (Test_E) /= E_Constant
4458 then
4459 declare
4460 S : Entity_Id;
4462 begin
4463 S := Current_Scope;
4464 while Present (S) loop
4465 if Is_Overloadable (S) then
4466 if Comes_From_Source (S)
4467 or else Is_Generic_Instance (S)
4468 or else Is_Child_Unit (S)
4469 then
4470 exit;
4471 else
4472 Restore_Globals;
4473 return No_List;
4474 end if;
4475 end if;
4477 S := Scope (S);
4478 end loop;
4479 end;
4481 -- Similarly, an inlined instance body may make reference to global
4482 -- entities, but these references cannot be the proper freezing point
4483 -- for them, and in the absence of inlining freezing will take place in
4484 -- their own scope. Normally instance bodies are analyzed after the
4485 -- enclosing compilation, and everything has been frozen at the proper
4486 -- place, but with front-end inlining an instance body is compiled
4487 -- before the end of the enclosing scope, and as a result out-of-order
4488 -- freezing must be prevented.
4490 elsif Front_End_Inlining
4491 and then In_Instance_Body
4492 and then Present (Scope (Test_E))
4493 then
4494 declare
4495 S : Entity_Id;
4497 begin
4498 S := Scope (Test_E);
4499 while Present (S) loop
4500 if Is_Generic_Instance (S) then
4501 exit;
4502 else
4503 S := Scope (S);
4504 end if;
4505 end loop;
4507 if No (S) then
4508 Restore_Globals;
4509 return No_List;
4510 end if;
4511 end;
4513 elsif Ekind (E) = E_Generic_Package then
4514 Result := Freeze_Generic_Entities (E);
4516 Restore_Globals;
4517 return Result;
4518 end if;
4520 -- Add checks to detect proper initialization of scalars that may appear
4521 -- as subprogram parameters.
4523 if Is_Subprogram (E) and then Check_Validity_Of_Parameters then
4524 Apply_Parameter_Validity_Checks (E);
4525 end if;
4527 -- Deal with delayed aspect specifications. The analysis of the aspect
4528 -- is required to be delayed to the freeze point, thus we analyze the
4529 -- pragma or attribute definition clause in the tree at this point. We
4530 -- also analyze the aspect specification node at the freeze point when
4531 -- the aspect doesn't correspond to pragma/attribute definition clause.
4533 if Has_Delayed_Aspects (E) then
4534 Analyze_Aspects_At_Freeze_Point (E);
4535 end if;
4537 -- Here to freeze the entity
4539 Set_Is_Frozen (E);
4541 -- Case of entity being frozen is other than a type
4543 if not Is_Type (E) then
4545 -- If entity is exported or imported and does not have an external
4546 -- name, now is the time to provide the appropriate default name.
4547 -- Skip this if the entity is stubbed, since we don't need a name
4548 -- for any stubbed routine. For the case on intrinsics, if no
4549 -- external name is specified, then calls will be handled in
4550 -- Exp_Intr.Expand_Intrinsic_Call, and no name is needed. If an
4551 -- external name is provided, then Expand_Intrinsic_Call leaves
4552 -- calls in place for expansion by GIGI.
4554 if (Is_Imported (E) or else Is_Exported (E))
4555 and then No (Interface_Name (E))
4556 and then Convention (E) /= Convention_Stubbed
4557 and then Convention (E) /= Convention_Intrinsic
4558 then
4559 Set_Encoded_Interface_Name
4560 (E, Get_Default_External_Name (E));
4562 -- If entity is an atomic object appearing in a declaration and
4563 -- the expression is an aggregate, assign it to a temporary to
4564 -- ensure that the actual assignment is done atomically rather
4565 -- than component-wise (the assignment to the temp may be done
4566 -- component-wise, but that is harmless).
4568 elsif Is_Atomic (E)
4569 and then Nkind (Parent (E)) = N_Object_Declaration
4570 and then Present (Expression (Parent (E)))
4571 and then Nkind (Expression (Parent (E))) = N_Aggregate
4572 and then Is_Atomic_Aggregate (Expression (Parent (E)), Etype (E))
4573 then
4574 null;
4575 end if;
4577 -- Subprogram case
4579 if Is_Subprogram (E) then
4581 -- Check for needing to wrap imported subprogram
4583 Wrap_Imported_Subprogram (E);
4585 -- Freeze all parameter types and the return type (RM 13.14(14)).
4586 -- However skip this for internal subprograms. This is also where
4587 -- any extra formal parameters are created since we now know
4588 -- whether the subprogram will use a foreign convention.
4590 -- In Ada 2012, freezing a subprogram does not always freeze
4591 -- the corresponding profile (see AI05-019). An attribute
4592 -- reference is not a freezing point of the profile.
4593 -- Other constructs that should not freeze ???
4595 -- This processing doesn't apply to internal entities (see below)
4597 if not Is_Internal (E) then
4598 if not Freeze_Profile (E) then
4599 Restore_Globals;
4600 return Result;
4601 end if;
4602 end if;
4604 -- Must freeze its parent first if it is a derived subprogram
4606 if Present (Alias (E)) then
4607 Freeze_And_Append (Alias (E), N, Result);
4608 end if;
4610 -- We don't freeze internal subprograms, because we don't normally
4611 -- want addition of extra formals or mechanism setting to happen
4612 -- for those. However we do pass through predefined dispatching
4613 -- cases, since extra formals may be needed in some cases, such as
4614 -- for the stream 'Input function (build-in-place formals).
4616 if not Is_Internal (E)
4617 or else Is_Predefined_Dispatching_Operation (E)
4618 then
4619 Freeze_Subprogram (E);
4620 end if;
4622 if Late_Freezing then
4623 Late_Freeze_Subprogram (E);
4624 Restore_Globals;
4625 return No_List;
4626 end if;
4628 -- If warning on suspicious contracts then check for the case of
4629 -- a postcondition other than False for a No_Return subprogram.
4631 if No_Return (E)
4632 and then Warn_On_Suspicious_Contract
4633 and then Present (Contract (E))
4634 then
4635 declare
4636 Prag : Node_Id := Pre_Post_Conditions (Contract (E));
4637 Exp : Node_Id;
4639 begin
4640 while Present (Prag) loop
4641 if Nam_In (Pragma_Name (Prag), Name_Post,
4642 Name_Postcondition,
4643 Name_Refined_Post)
4644 then
4645 Exp :=
4646 Expression
4647 (First (Pragma_Argument_Associations (Prag)));
4649 if Nkind (Exp) /= N_Identifier
4650 or else Chars (Exp) /= Name_False
4651 then
4652 Error_Msg_NE
4653 ("useless postcondition, & is marked "
4654 & "No_Return?T?", Exp, E);
4655 end if;
4656 end if;
4658 Prag := Next_Pragma (Prag);
4659 end loop;
4660 end;
4661 end if;
4663 -- Here for other than a subprogram or type
4665 else
4666 -- If entity has a type, and it is not a generic unit, then
4667 -- freeze it first (RM 13.14(10)).
4669 if Present (Etype (E))
4670 and then Ekind (E) /= E_Generic_Function
4671 then
4672 Freeze_And_Append (Etype (E), N, Result);
4674 -- For an object of an anonymous array type, aspects on the
4675 -- object declaration apply to the type itself. This is the
4676 -- case for Atomic_Components, Volatile_Components, and
4677 -- Independent_Components. In these cases analysis of the
4678 -- generated pragma will mark the anonymous types accordingly,
4679 -- and the object itself does not require a freeze node.
4681 if Ekind (E) = E_Variable
4682 and then Is_Itype (Etype (E))
4683 and then Is_Array_Type (Etype (E))
4684 and then Has_Delayed_Aspects (E)
4685 then
4686 Set_Has_Delayed_Aspects (E, False);
4687 Set_Has_Delayed_Freeze (E, False);
4688 Set_Freeze_Node (E, Empty);
4689 end if;
4690 end if;
4692 -- Special processing for objects created by object declaration
4694 if Nkind (Declaration_Node (E)) = N_Object_Declaration then
4696 -- Abstract type allowed only for C++ imported variables or
4697 -- constants.
4699 -- Note: we inhibit this check for objects that do not come
4700 -- from source because there is at least one case (the
4701 -- expansion of x'Class'Input where x is abstract) where we
4702 -- legitimately generate an abstract object.
4704 if Is_Abstract_Type (Etype (E))
4705 and then Comes_From_Source (Parent (E))
4706 and then not (Is_Imported (E)
4707 and then Is_CPP_Class (Etype (E)))
4708 then
4709 Error_Msg_N ("type of object cannot be abstract",
4710 Object_Definition (Parent (E)));
4712 if Is_CPP_Class (Etype (E)) then
4713 Error_Msg_NE
4714 ("\} may need a cpp_constructor",
4715 Object_Definition (Parent (E)), Etype (E));
4717 elsif Present (Expression (Parent (E))) then
4718 Error_Msg_N -- CODEFIX
4719 ("\maybe a class-wide type was meant",
4720 Object_Definition (Parent (E)));
4721 end if;
4722 end if;
4724 -- For object created by object declaration, perform required
4725 -- categorization (preelaborate and pure) checks. Defer these
4726 -- checks to freeze time since pragma Import inhibits default
4727 -- initialization and thus pragma Import affects these checks.
4729 Validate_Object_Declaration (Declaration_Node (E));
4731 -- If there is an address clause, check that it is valid
4733 Check_Address_Clause (E);
4735 -- Reset Is_True_Constant for non-constant aliased object. We
4736 -- consider that the fact that a non-constant object is aliased
4737 -- may indicate that some funny business is going on, e.g. an
4738 -- aliased object is passed by reference to a procedure which
4739 -- captures the address of the object, which is later used to
4740 -- assign a new value, even though the compiler thinks that
4741 -- it is not modified. Such code is highly dubious, but we
4742 -- choose to make it "work" for non-constant aliased objects.
4743 -- Note that we used to do this for all aliased objects,
4744 -- whether or not constant, but this caused anomalies down
4745 -- the line because we ended up with static objects that
4746 -- were not Is_True_Constant. Not resetting Is_True_Constant
4747 -- for (aliased) constant objects ensures that this anomaly
4748 -- never occurs.
4750 -- However, we don't do that for internal entities. We figure
4751 -- that if we deliberately set Is_True_Constant for an internal
4752 -- entity, e.g. a dispatch table entry, then we mean it.
4754 if Ekind (E) /= E_Constant
4755 and then (Is_Aliased (E) or else Is_Aliased (Etype (E)))
4756 and then not Is_Internal_Name (Chars (E))
4757 then
4758 Set_Is_True_Constant (E, False);
4759 end if;
4761 -- If the object needs any kind of default initialization, an
4762 -- error must be issued if No_Default_Initialization applies.
4763 -- The check doesn't apply to imported objects, which are not
4764 -- ever default initialized, and is why the check is deferred
4765 -- until freezing, at which point we know if Import applies.
4766 -- Deferred constants are also exempted from this test because
4767 -- their completion is explicit, or through an import pragma.
4769 if Ekind (E) = E_Constant
4770 and then Present (Full_View (E))
4771 then
4772 null;
4774 elsif Comes_From_Source (E)
4775 and then not Is_Imported (E)
4776 and then not Has_Init_Expression (Declaration_Node (E))
4777 and then
4778 ((Has_Non_Null_Base_Init_Proc (Etype (E))
4779 and then not No_Initialization (Declaration_Node (E))
4780 and then not Is_Value_Type (Etype (E))
4781 and then not Initialization_Suppressed (Etype (E)))
4782 or else
4783 (Needs_Simple_Initialization (Etype (E))
4784 and then not Is_Internal (E)))
4785 then
4786 Has_Default_Initialization := True;
4787 Check_Restriction
4788 (No_Default_Initialization, Declaration_Node (E));
4789 end if;
4791 -- Check that a Thread_Local_Storage variable does not have
4792 -- default initialization, and any explicit initialization must
4793 -- either be the null constant or a static constant.
4795 if Has_Pragma_Thread_Local_Storage (E) then
4796 declare
4797 Decl : constant Node_Id := Declaration_Node (E);
4798 begin
4799 if Has_Default_Initialization
4800 or else
4801 (Has_Init_Expression (Decl)
4802 and then
4803 (No (Expression (Decl))
4804 or else not
4805 (Is_OK_Static_Expression (Expression (Decl))
4806 or else
4807 Nkind (Expression (Decl)) = N_Null)))
4808 then
4809 Error_Msg_NE
4810 ("Thread_Local_Storage variable& is "
4811 & "improperly initialized", Decl, E);
4812 Error_Msg_NE
4813 ("\only allowed initialization is explicit "
4814 & "NULL or static expression", Decl, E);
4815 end if;
4816 end;
4817 end if;
4819 -- For imported objects, set Is_Public unless there is also an
4820 -- address clause, which means that there is no external symbol
4821 -- needed for the Import (Is_Public may still be set for other
4822 -- unrelated reasons). Note that we delayed this processing
4823 -- till freeze time so that we can be sure not to set the flag
4824 -- if there is an address clause. If there is such a clause,
4825 -- then the only purpose of the Import pragma is to suppress
4826 -- implicit initialization.
4828 if Is_Imported (E) and then No (Address_Clause (E)) then
4829 Set_Is_Public (E);
4830 end if;
4832 -- For source objects that are not Imported and are library
4833 -- level, if no linker section pragma was given inherit the
4834 -- appropriate linker section from the corresponding type.
4836 if Comes_From_Source (E)
4837 and then not Is_Imported (E)
4838 and then Is_Library_Level_Entity (E)
4839 and then No (Linker_Section_Pragma (E))
4840 then
4841 Set_Linker_Section_Pragma
4842 (E, Linker_Section_Pragma (Etype (E)));
4843 end if;
4845 -- For convention C objects of an enumeration type, warn if
4846 -- the size is not integer size and no explicit size given.
4847 -- Skip warning for Boolean, and Character, assume programmer
4848 -- expects 8-bit sizes for these cases.
4850 if (Convention (E) = Convention_C
4851 or else
4852 Convention (E) = Convention_CPP)
4853 and then Is_Enumeration_Type (Etype (E))
4854 and then not Is_Character_Type (Etype (E))
4855 and then not Is_Boolean_Type (Etype (E))
4856 and then Esize (Etype (E)) < Standard_Integer_Size
4857 and then not Has_Size_Clause (E)
4858 then
4859 Error_Msg_Uint_1 := UI_From_Int (Standard_Integer_Size);
4860 Error_Msg_N
4861 ("??convention C enumeration object has size less than ^",
4863 Error_Msg_N ("\??use explicit size clause to set size", E);
4864 end if;
4865 end if;
4867 -- Check that a constant which has a pragma Volatile[_Components]
4868 -- or Atomic[_Components] also has a pragma Import (RM C.6(13)).
4870 -- Note: Atomic[_Components] also sets Volatile[_Components]
4872 if Ekind (E) = E_Constant
4873 and then (Has_Volatile_Components (E) or else Is_Volatile (E))
4874 and then not Is_Imported (E)
4875 and then not Has_Boolean_Aspect_Import (E)
4876 then
4877 -- Make sure we actually have a pragma, and have not merely
4878 -- inherited the indication from elsewhere (e.g. an address
4879 -- clause, which is not good enough in RM terms).
4881 if Has_Rep_Pragma (E, Name_Atomic)
4882 or else
4883 Has_Rep_Pragma (E, Name_Atomic_Components)
4884 then
4885 Error_Msg_N
4886 ("stand alone atomic constant must be " &
4887 "imported (RM C.6(13))", E);
4889 elsif Has_Rep_Pragma (E, Name_Volatile)
4890 or else
4891 Has_Rep_Pragma (E, Name_Volatile_Components)
4892 then
4893 Error_Msg_N
4894 ("stand alone volatile constant must be " &
4895 "imported (RM C.6(13))", E);
4896 end if;
4897 end if;
4899 -- Static objects require special handling
4901 if (Ekind (E) = E_Constant or else Ekind (E) = E_Variable)
4902 and then Is_Statically_Allocated (E)
4903 then
4904 Freeze_Static_Object (E);
4905 end if;
4907 -- Remaining step is to layout objects
4909 if Ekind_In (E, E_Variable, E_Constant, E_Loop_Parameter)
4910 or else Is_Formal (E)
4911 then
4912 Layout_Object (E);
4913 end if;
4915 -- For an object that does not have delayed freezing, and whose
4916 -- initialization actions have been captured in a compound
4917 -- statement, move them back now directly within the enclosing
4918 -- statement sequence.
4920 if Ekind_In (E, E_Constant, E_Variable)
4921 and then not Has_Delayed_Freeze (E)
4922 then
4923 Explode_Initialization_Compound_Statement (E);
4924 end if;
4925 end if;
4927 -- Case of a type or subtype being frozen
4929 else
4930 -- We used to check here that a full type must have preelaborable
4931 -- initialization if it completes a private type specified with
4932 -- pragma Preelaborable_Initialization, but that missed cases where
4933 -- the types occur within a generic package, since the freezing
4934 -- that occurs within a containing scope generally skips traversal
4935 -- of a generic unit's declarations (those will be frozen within
4936 -- instances). This check was moved to Analyze_Package_Specification.
4938 -- The type may be defined in a generic unit. This can occur when
4939 -- freezing a generic function that returns the type (which is
4940 -- defined in a parent unit). It is clearly meaningless to freeze
4941 -- this type. However, if it is a subtype, its size may be determi-
4942 -- nable and used in subsequent checks, so might as well try to
4943 -- compute it.
4945 -- In Ada 2012, Freeze_Entities is also used in the front end to
4946 -- trigger the analysis of aspect expressions, so in this case we
4947 -- want to continue the freezing process.
4949 if Present (Scope (E))
4950 and then Is_Generic_Unit (Scope (E))
4951 and then
4952 (not Has_Predicates (E)
4953 and then not Has_Delayed_Freeze (E))
4954 then
4955 Check_Compile_Time_Size (E);
4956 Restore_Globals;
4957 return No_List;
4958 end if;
4960 -- Check for error of Type_Invariant'Class applied to an untagged
4961 -- type (check delayed to freeze time when full type is available).
4963 declare
4964 Prag : constant Node_Id := Get_Pragma (E, Pragma_Invariant);
4965 begin
4966 if Present (Prag)
4967 and then Class_Present (Prag)
4968 and then not Is_Tagged_Type (E)
4969 then
4970 Error_Msg_NE
4971 ("Type_Invariant''Class cannot be specified for &",
4972 Prag, E);
4973 Error_Msg_N
4974 ("\can only be specified for a tagged type", Prag);
4975 end if;
4976 end;
4978 -- A Ghost type cannot be effectively volatile (SPARK RM 6.9(8))
4980 if Is_Ghost_Entity (E)
4981 and then Is_Effectively_Volatile (E)
4982 then
4983 Error_Msg_N ("ghost type & cannot be volatile", E);
4984 end if;
4986 -- Deal with special cases of freezing for subtype
4988 if E /= Base_Type (E) then
4990 -- Before we do anything else, a specialized test for the case of
4991 -- a size given for an array where the array needs to be packed,
4992 -- but was not so the size cannot be honored. This is the case
4993 -- where implicit packing may apply. The reason we do this so
4994 -- early is that if we have implicit packing, the layout of the
4995 -- base type is affected, so we must do this before we freeze
4996 -- the base type.
4998 -- We could do this processing only if implicit packing is enabled
4999 -- since in all other cases, the error would be caught by the back
5000 -- end. However, we choose to do the check even if we do not have
5001 -- implicit packing enabled, since this allows us to give a more
5002 -- useful error message (advising use of pragmas Implicit_Packing
5003 -- or Pack).
5005 if Is_Array_Type (E) then
5006 declare
5007 Ctyp : constant Entity_Id := Component_Type (E);
5008 Rsiz : constant Uint := RM_Size (Ctyp);
5009 SZ : constant Node_Id := Size_Clause (E);
5010 Btyp : constant Entity_Id := Base_Type (E);
5012 Lo : Node_Id;
5013 Hi : Node_Id;
5014 Indx : Node_Id;
5016 Num_Elmts : Uint;
5017 -- Number of elements in array
5019 begin
5020 -- Check enabling conditions. These are straightforward
5021 -- except for the test for a limited composite type. This
5022 -- eliminates the rare case of a array of limited components
5023 -- where there are issues of whether or not we can go ahead
5024 -- and pack the array (since we can't freely pack and unpack
5025 -- arrays if they are limited).
5027 -- Note that we check the root type explicitly because the
5028 -- whole point is we are doing this test before we have had
5029 -- a chance to freeze the base type (and it is that freeze
5030 -- action that causes stuff to be inherited).
5032 if Has_Size_Clause (E)
5033 and then Known_Static_RM_Size (E)
5034 and then not Is_Packed (E)
5035 and then not Has_Pragma_Pack (E)
5036 and then not Has_Component_Size_Clause (E)
5037 and then Known_Static_RM_Size (Ctyp)
5038 and then RM_Size (Ctyp) < 64
5039 and then not Is_Limited_Composite (E)
5040 and then not Is_Packed (Root_Type (E))
5041 and then not Has_Component_Size_Clause (Root_Type (E))
5042 and then not (CodePeer_Mode or GNATprove_Mode)
5043 then
5044 -- Compute number of elements in array
5046 Num_Elmts := Uint_1;
5047 Indx := First_Index (E);
5048 while Present (Indx) loop
5049 Get_Index_Bounds (Indx, Lo, Hi);
5051 if not (Compile_Time_Known_Value (Lo)
5052 and then
5053 Compile_Time_Known_Value (Hi))
5054 then
5055 goto No_Implicit_Packing;
5056 end if;
5058 Num_Elmts :=
5059 Num_Elmts *
5060 UI_Max (Uint_0,
5061 Expr_Value (Hi) - Expr_Value (Lo) + 1);
5062 Next_Index (Indx);
5063 end loop;
5065 -- What we are looking for here is the situation where
5066 -- the RM_Size given would be exactly right if there was
5067 -- a pragma Pack (resulting in the component size being
5068 -- the same as the RM_Size). Furthermore, the component
5069 -- type size must be an odd size (not a multiple of
5070 -- storage unit). If the component RM size is an exact
5071 -- number of storage units that is a power of two, the
5072 -- array is not packed and has a standard representation.
5074 if RM_Size (E) = Num_Elmts * Rsiz
5075 and then Rsiz mod System_Storage_Unit /= 0
5076 then
5077 -- For implicit packing mode, just set the component
5078 -- size silently.
5080 if Implicit_Packing then
5081 Set_Component_Size (Btyp, Rsiz);
5082 Set_Is_Bit_Packed_Array (Btyp);
5083 Set_Is_Packed (Btyp);
5084 Set_Has_Non_Standard_Rep (Btyp);
5086 -- Otherwise give an error message
5088 else
5089 Error_Msg_NE
5090 ("size given for& too small", SZ, E);
5091 Error_Msg_N -- CODEFIX
5092 ("\use explicit pragma Pack "
5093 & "or use pragma Implicit_Packing", SZ);
5094 end if;
5096 elsif RM_Size (E) = Num_Elmts * Rsiz
5097 and then Implicit_Packing
5098 and then
5099 (Rsiz / System_Storage_Unit = 1
5100 or else
5101 Rsiz / System_Storage_Unit = 2
5102 or else
5103 Rsiz / System_Storage_Unit = 4)
5104 then
5105 -- Not a packed array, but indicate the desired
5106 -- component size, for the back-end.
5108 Set_Component_Size (Btyp, Rsiz);
5109 end if;
5110 end if;
5111 end;
5112 end if;
5114 <<No_Implicit_Packing>>
5116 -- If ancestor subtype present, freeze that first. Note that this
5117 -- will also get the base type frozen. Need RM reference ???
5119 Atype := Ancestor_Subtype (E);
5121 if Present (Atype) then
5122 Freeze_And_Append (Atype, N, Result);
5124 -- No ancestor subtype present
5126 else
5127 -- See if we have a nearest ancestor that has a predicate.
5128 -- That catches the case of derived type with a predicate.
5129 -- Need RM reference here ???
5131 Atype := Nearest_Ancestor (E);
5133 if Present (Atype) and then Has_Predicates (Atype) then
5134 Freeze_And_Append (Atype, N, Result);
5135 end if;
5137 -- Freeze base type before freezing the entity (RM 13.14(15))
5139 if E /= Base_Type (E) then
5140 Freeze_And_Append (Base_Type (E), N, Result);
5141 end if;
5142 end if;
5144 -- A subtype inherits all the type-related representation aspects
5145 -- from its parents (RM 13.1(8)).
5147 Inherit_Aspects_At_Freeze_Point (E);
5149 -- For a derived type, freeze its parent type first (RM 13.14(15))
5151 elsif Is_Derived_Type (E) then
5152 Freeze_And_Append (Etype (E), N, Result);
5153 Freeze_And_Append (First_Subtype (Etype (E)), N, Result);
5155 -- A derived type inherits each type-related representation aspect
5156 -- of its parent type that was directly specified before the
5157 -- declaration of the derived type (RM 13.1(15)).
5159 Inherit_Aspects_At_Freeze_Point (E);
5160 end if;
5162 -- Check for incompatible size and alignment for record type
5164 if Warn_On_Size_Alignment
5165 and then Is_Record_Type (E)
5166 and then Has_Size_Clause (E) and then Has_Alignment_Clause (E)
5168 -- If explicit Object_Size clause given assume that the programmer
5169 -- knows what he is doing, and expects the compiler behavior.
5171 and then not Has_Object_Size_Clause (E)
5173 -- Check for size not a multiple of alignment
5175 and then RM_Size (E) mod (Alignment (E) * System_Storage_Unit) /= 0
5176 then
5177 declare
5178 SC : constant Node_Id := Size_Clause (E);
5179 AC : constant Node_Id := Alignment_Clause (E);
5180 Loc : Node_Id;
5181 Abits : constant Uint := Alignment (E) * System_Storage_Unit;
5183 begin
5184 if Present (SC) and then Present (AC) then
5186 -- Give a warning
5188 if Sloc (SC) > Sloc (AC) then
5189 Loc := SC;
5190 Error_Msg_NE
5191 ("??size is not a multiple of alignment for &", Loc, E);
5192 Error_Msg_Sloc := Sloc (AC);
5193 Error_Msg_Uint_1 := Alignment (E);
5194 Error_Msg_N ("\??alignment of ^ specified #", Loc);
5196 else
5197 Loc := AC;
5198 Error_Msg_NE
5199 ("??size is not a multiple of alignment for &", Loc, E);
5200 Error_Msg_Sloc := Sloc (SC);
5201 Error_Msg_Uint_1 := RM_Size (E);
5202 Error_Msg_N ("\??size of ^ specified #", Loc);
5203 end if;
5205 Error_Msg_Uint_1 := ((RM_Size (E) / Abits) + 1) * Abits;
5206 Error_Msg_N ("\??Object_Size will be increased to ^", Loc);
5207 end if;
5208 end;
5209 end if;
5211 -- Array type
5213 if Is_Array_Type (E) then
5214 Freeze_Array_Type (E);
5216 -- For a class-wide type, the corresponding specific type is
5217 -- frozen as well (RM 13.14(15))
5219 elsif Is_Class_Wide_Type (E) then
5220 Freeze_And_Append (Root_Type (E), N, Result);
5222 -- If the base type of the class-wide type is still incomplete,
5223 -- the class-wide remains unfrozen as well. This is legal when
5224 -- E is the formal of a primitive operation of some other type
5225 -- which is being frozen.
5227 if not Is_Frozen (Root_Type (E)) then
5228 Set_Is_Frozen (E, False);
5229 Restore_Globals;
5230 return Result;
5231 end if;
5233 -- The equivalent type associated with a class-wide subtype needs
5234 -- to be frozen to ensure that its layout is done.
5236 if Ekind (E) = E_Class_Wide_Subtype
5237 and then Present (Equivalent_Type (E))
5238 then
5239 Freeze_And_Append (Equivalent_Type (E), N, Result);
5240 end if;
5242 -- Generate an itype reference for a library-level class-wide type
5243 -- at the freeze point. Otherwise the first explicit reference to
5244 -- the type may appear in an inner scope which will be rejected by
5245 -- the back-end.
5247 if Is_Itype (E)
5248 and then Is_Compilation_Unit (Scope (E))
5249 then
5250 declare
5251 Ref : constant Node_Id := Make_Itype_Reference (Loc);
5253 begin
5254 Set_Itype (Ref, E);
5256 -- From a gigi point of view, a class-wide subtype derives
5257 -- from its record equivalent type. As a result, the itype
5258 -- reference must appear after the freeze node of the
5259 -- equivalent type or gigi will reject the reference.
5261 if Ekind (E) = E_Class_Wide_Subtype
5262 and then Present (Equivalent_Type (E))
5263 then
5264 Insert_After (Freeze_Node (Equivalent_Type (E)), Ref);
5265 else
5266 Add_To_Result (Ref);
5267 end if;
5268 end;
5269 end if;
5271 -- For a record type or record subtype, freeze all component types
5272 -- (RM 13.14(15)). We test for E_Record_(sub)Type here, rather than
5273 -- using Is_Record_Type, because we don't want to attempt the freeze
5274 -- for the case of a private type with record extension (we will do
5275 -- that later when the full type is frozen).
5277 elsif Ekind_In (E, E_Record_Type, E_Record_Subtype)
5278 and then not (Present (Scope (E))
5279 and then Is_Generic_Unit (Scope (E)))
5280 then
5281 Freeze_Record_Type (E);
5283 -- For a concurrent type, freeze corresponding record type. This does
5284 -- not correspond to any specific rule in the RM, but the record type
5285 -- is essentially part of the concurrent type. Also freeze all local
5286 -- entities. This includes record types created for entry parameter
5287 -- blocks and whatever local entities may appear in the private part.
5289 elsif Is_Concurrent_Type (E) then
5290 if Present (Corresponding_Record_Type (E)) then
5291 Freeze_And_Append (Corresponding_Record_Type (E), N, Result);
5292 end if;
5294 Comp := First_Entity (E);
5295 while Present (Comp) loop
5296 if Is_Type (Comp) then
5297 Freeze_And_Append (Comp, N, Result);
5299 elsif (Ekind (Comp)) /= E_Function then
5301 -- The guard on the presence of the Etype seems to be needed
5302 -- for some CodePeer (-gnatcC) cases, but not clear why???
5304 if Present (Etype (Comp)) then
5305 if Is_Itype (Etype (Comp))
5306 and then Underlying_Type (Scope (Etype (Comp))) = E
5307 then
5308 Undelay_Type (Etype (Comp));
5309 end if;
5311 Freeze_And_Append (Etype (Comp), N, Result);
5312 end if;
5313 end if;
5315 Next_Entity (Comp);
5316 end loop;
5318 -- Private types are required to point to the same freeze node as
5319 -- their corresponding full views. The freeze node itself has to
5320 -- point to the partial view of the entity (because from the partial
5321 -- view, we can retrieve the full view, but not the reverse).
5322 -- However, in order to freeze correctly, we need to freeze the full
5323 -- view. If we are freezing at the end of a scope (or within the
5324 -- scope) of the private type, the partial and full views will have
5325 -- been swapped, the full view appears first in the entity chain and
5326 -- the swapping mechanism ensures that the pointers are properly set
5327 -- (on scope exit).
5329 -- If we encounter the partial view before the full view (e.g. when
5330 -- freezing from another scope), we freeze the full view, and then
5331 -- set the pointers appropriately since we cannot rely on swapping to
5332 -- fix things up (subtypes in an outer scope might not get swapped).
5334 -- If the full view is itself private, the above requirements apply
5335 -- to the underlying full view instead of the full view. But there is
5336 -- no swapping mechanism for the underlying full view so we need to
5337 -- set the pointers appropriately in both cases.
5339 elsif Is_Incomplete_Or_Private_Type (E)
5340 and then not Is_Generic_Type (E)
5341 then
5342 -- The construction of the dispatch table associated with library
5343 -- level tagged types forces freezing of all the primitives of the
5344 -- type, which may cause premature freezing of the partial view.
5345 -- For example:
5347 -- package Pkg is
5348 -- type T is tagged private;
5349 -- type DT is new T with private;
5350 -- procedure Prim (X : in out T; Y : in out DT'Class);
5351 -- private
5352 -- type T is tagged null record;
5353 -- Obj : T;
5354 -- type DT is new T with null record;
5355 -- end;
5357 -- In this case the type will be frozen later by the usual
5358 -- mechanism: an object declaration, an instantiation, or the
5359 -- end of a declarative part.
5361 if Is_Library_Level_Tagged_Type (E)
5362 and then not Present (Full_View (E))
5363 then
5364 Set_Is_Frozen (E, False);
5365 Restore_Globals;
5366 return Result;
5368 -- Case of full view present
5370 elsif Present (Full_View (E)) then
5372 -- If full view has already been frozen, then no further
5373 -- processing is required
5375 if Is_Frozen (Full_View (E)) then
5376 Set_Has_Delayed_Freeze (E, False);
5377 Set_Freeze_Node (E, Empty);
5379 -- Otherwise freeze full view and patch the pointers so that
5380 -- the freeze node will elaborate both views in the back end.
5381 -- However, if full view is itself private, freeze underlying
5382 -- full view instead and patch the pointers so that the freeze
5383 -- node will elaborate the three views in the back end.
5385 else
5386 declare
5387 Full : Entity_Id := Full_View (E);
5389 begin
5390 if Is_Private_Type (Full)
5391 and then Present (Underlying_Full_View (Full))
5392 then
5393 Full := Underlying_Full_View (Full);
5394 end if;
5396 Freeze_And_Append (Full, N, Result);
5398 if Full /= Full_View (E)
5399 and then Has_Delayed_Freeze (Full_View (E))
5400 then
5401 F_Node := Freeze_Node (Full);
5403 if Present (F_Node) then
5404 Set_Freeze_Node (Full_View (E), F_Node);
5405 Set_Entity (F_Node, Full_View (E));
5407 else
5408 Set_Has_Delayed_Freeze (Full_View (E), False);
5409 Set_Freeze_Node (Full_View (E), Empty);
5410 end if;
5411 end if;
5413 if Has_Delayed_Freeze (E) then
5414 F_Node := Freeze_Node (Full_View (E));
5416 if Present (F_Node) then
5417 Set_Freeze_Node (E, F_Node);
5418 Set_Entity (F_Node, E);
5420 else
5421 -- {Incomplete,Private}_Subtypes with Full_Views
5422 -- constrained by discriminants.
5424 Set_Has_Delayed_Freeze (E, False);
5425 Set_Freeze_Node (E, Empty);
5426 end if;
5427 end if;
5428 end;
5429 end if;
5431 Check_Debug_Info_Needed (E);
5433 -- AI-117 requires that the convention of a partial view be the
5434 -- same as the convention of the full view. Note that this is a
5435 -- recognized breach of privacy, but it's essential for logical
5436 -- consistency of representation, and the lack of a rule in
5437 -- RM95 was an oversight.
5439 Set_Convention (E, Convention (Full_View (E)));
5441 Set_Size_Known_At_Compile_Time (E,
5442 Size_Known_At_Compile_Time (Full_View (E)));
5444 -- Size information is copied from the full view to the
5445 -- incomplete or private view for consistency.
5447 -- We skip this is the full view is not a type. This is very
5448 -- strange of course, and can only happen as a result of
5449 -- certain illegalities, such as a premature attempt to derive
5450 -- from an incomplete type.
5452 if Is_Type (Full_View (E)) then
5453 Set_Size_Info (E, Full_View (E));
5454 Set_RM_Size (E, RM_Size (Full_View (E)));
5455 end if;
5457 Restore_Globals;
5458 return Result;
5460 -- Case of underlying full view present
5462 elsif Is_Private_Type (E)
5463 and then Present (Underlying_Full_View (E))
5464 then
5465 if not Is_Frozen (Underlying_Full_View (E)) then
5466 Freeze_And_Append (Underlying_Full_View (E), N, Result);
5467 end if;
5469 -- Patch the pointers so that the freeze node will elaborate
5470 -- both views in the back end.
5472 if Has_Delayed_Freeze (E) then
5473 F_Node := Freeze_Node (Underlying_Full_View (E));
5475 if Present (F_Node) then
5476 Set_Freeze_Node (E, F_Node);
5477 Set_Entity (F_Node, E);
5479 else
5480 Set_Has_Delayed_Freeze (E, False);
5481 Set_Freeze_Node (E, Empty);
5482 end if;
5483 end if;
5485 Check_Debug_Info_Needed (E);
5487 Restore_Globals;
5488 return Result;
5490 -- Case of no full view present. If entity is derived or subtype,
5491 -- it is safe to freeze, correctness depends on the frozen status
5492 -- of parent. Otherwise it is either premature usage, or a Taft
5493 -- amendment type, so diagnosis is at the point of use and the
5494 -- type might be frozen later.
5496 elsif E /= Base_Type (E) or else Is_Derived_Type (E) then
5497 null;
5499 else
5500 Set_Is_Frozen (E, False);
5501 Restore_Globals;
5502 return No_List;
5503 end if;
5505 -- For access subprogram, freeze types of all formals, the return
5506 -- type was already frozen, since it is the Etype of the function.
5507 -- Formal types can be tagged Taft amendment types, but otherwise
5508 -- they cannot be incomplete.
5510 elsif Ekind (E) = E_Subprogram_Type then
5511 Formal := First_Formal (E);
5512 while Present (Formal) loop
5513 if Ekind (Etype (Formal)) = E_Incomplete_Type
5514 and then No (Full_View (Etype (Formal)))
5515 and then not Is_Value_Type (Etype (Formal))
5516 then
5517 if Is_Tagged_Type (Etype (Formal)) then
5518 null;
5520 -- AI05-151: Incomplete types are allowed in access to
5521 -- subprogram specifications.
5523 elsif Ada_Version < Ada_2012 then
5524 Error_Msg_NE
5525 ("invalid use of incomplete type&", E, Etype (Formal));
5526 end if;
5527 end if;
5529 Freeze_And_Append (Etype (Formal), N, Result);
5530 Next_Formal (Formal);
5531 end loop;
5533 Freeze_Subprogram (E);
5535 -- For access to a protected subprogram, freeze the equivalent type
5536 -- (however this is not set if we are not generating code or if this
5537 -- is an anonymous type used just for resolution).
5539 elsif Is_Access_Protected_Subprogram_Type (E) then
5540 if Present (Equivalent_Type (E)) then
5541 Freeze_And_Append (Equivalent_Type (E), N, Result);
5542 end if;
5543 end if;
5545 -- Generic types are never seen by the back-end, and are also not
5546 -- processed by the expander (since the expander is turned off for
5547 -- generic processing), so we never need freeze nodes for them.
5549 if Is_Generic_Type (E) then
5550 Restore_Globals;
5551 return Result;
5552 end if;
5554 -- Some special processing for non-generic types to complete
5555 -- representation details not known till the freeze point.
5557 if Is_Fixed_Point_Type (E) then
5558 Freeze_Fixed_Point_Type (E);
5560 -- Some error checks required for ordinary fixed-point type. Defer
5561 -- these till the freeze-point since we need the small and range
5562 -- values. We only do these checks for base types
5564 if Is_Ordinary_Fixed_Point_Type (E) and then Is_Base_Type (E) then
5565 if Small_Value (E) < Ureal_2_M_80 then
5566 Error_Msg_Name_1 := Name_Small;
5567 Error_Msg_N
5568 ("`&''%` too small, minimum allowed is 2.0'*'*(-80)", E);
5570 elsif Small_Value (E) > Ureal_2_80 then
5571 Error_Msg_Name_1 := Name_Small;
5572 Error_Msg_N
5573 ("`&''%` too large, maximum allowed is 2.0'*'*80", E);
5574 end if;
5576 if Expr_Value_R (Type_Low_Bound (E)) < Ureal_M_10_36 then
5577 Error_Msg_Name_1 := Name_First;
5578 Error_Msg_N
5579 ("`&''%` too small, minimum allowed is -10.0'*'*36", E);
5580 end if;
5582 if Expr_Value_R (Type_High_Bound (E)) > Ureal_10_36 then
5583 Error_Msg_Name_1 := Name_Last;
5584 Error_Msg_N
5585 ("`&''%` too large, maximum allowed is 10.0'*'*36", E);
5586 end if;
5587 end if;
5589 elsif Is_Enumeration_Type (E) then
5590 Freeze_Enumeration_Type (E);
5592 elsif Is_Integer_Type (E) then
5593 Adjust_Esize_For_Alignment (E);
5595 if Is_Modular_Integer_Type (E)
5596 and then Warn_On_Suspicious_Modulus_Value
5597 then
5598 Check_Suspicious_Modulus (E);
5599 end if;
5601 -- The pool applies to named and anonymous access types, but not
5602 -- to subprogram and to internal types generated for 'Access
5603 -- references.
5605 elsif Is_Access_Type (E)
5606 and then not Is_Access_Subprogram_Type (E)
5607 and then Ekind (E) /= E_Access_Attribute_Type
5608 then
5609 -- If a pragma Default_Storage_Pool applies, and this type has no
5610 -- Storage_Pool or Storage_Size clause (which must have occurred
5611 -- before the freezing point), then use the default. This applies
5612 -- only to base types.
5614 -- None of this applies to access to subprograms, for which there
5615 -- are clearly no pools.
5617 if Present (Default_Pool)
5618 and then Is_Base_Type (E)
5619 and then not Has_Storage_Size_Clause (E)
5620 and then No (Associated_Storage_Pool (E))
5621 then
5622 -- Case of pragma Default_Storage_Pool (null)
5624 if Nkind (Default_Pool) = N_Null then
5625 Set_No_Pool_Assigned (E);
5627 -- Case of pragma Default_Storage_Pool (storage_pool_NAME)
5629 else
5630 Set_Associated_Storage_Pool (E, Entity (Default_Pool));
5631 end if;
5632 end if;
5634 -- Check restriction for standard storage pool
5636 if No (Associated_Storage_Pool (E)) then
5637 Check_Restriction (No_Standard_Storage_Pools, E);
5638 end if;
5640 -- Deal with error message for pure access type. This is not an
5641 -- error in Ada 2005 if there is no pool (see AI-366).
5643 if Is_Pure_Unit_Access_Type (E)
5644 and then (Ada_Version < Ada_2005
5645 or else not No_Pool_Assigned (E))
5646 and then not Is_Generic_Unit (Scope (E))
5647 then
5648 Error_Msg_N ("named access type not allowed in pure unit", E);
5650 if Ada_Version >= Ada_2005 then
5651 Error_Msg_N
5652 ("\would be legal if Storage_Size of 0 given??", E);
5654 elsif No_Pool_Assigned (E) then
5655 Error_Msg_N
5656 ("\would be legal in Ada 2005??", E);
5658 else
5659 Error_Msg_N
5660 ("\would be legal in Ada 2005 if "
5661 & "Storage_Size of 0 given??", E);
5662 end if;
5663 end if;
5664 end if;
5666 -- Case of composite types
5668 if Is_Composite_Type (E) then
5670 -- AI-117 requires that all new primitives of a tagged type must
5671 -- inherit the convention of the full view of the type. Inherited
5672 -- and overriding operations are defined to inherit the convention
5673 -- of their parent or overridden subprogram (also specified in
5674 -- AI-117), which will have occurred earlier (in Derive_Subprogram
5675 -- and New_Overloaded_Entity). Here we set the convention of
5676 -- primitives that are still convention Ada, which will ensure
5677 -- that any new primitives inherit the type's convention. Class-
5678 -- wide types can have a foreign convention inherited from their
5679 -- specific type, but are excluded from this since they don't have
5680 -- any associated primitives.
5682 if Is_Tagged_Type (E)
5683 and then not Is_Class_Wide_Type (E)
5684 and then Convention (E) /= Convention_Ada
5685 then
5686 declare
5687 Prim_List : constant Elist_Id := Primitive_Operations (E);
5688 Prim : Elmt_Id;
5690 begin
5691 Prim := First_Elmt (Prim_List);
5692 while Present (Prim) loop
5693 if Convention (Node (Prim)) = Convention_Ada then
5694 Set_Convention (Node (Prim), Convention (E));
5695 end if;
5697 Next_Elmt (Prim);
5698 end loop;
5699 end;
5700 end if;
5702 -- If the type is a simple storage pool type, then this is where
5703 -- we attempt to locate and validate its Allocate, Deallocate, and
5704 -- Storage_Size operations (the first is required, and the latter
5705 -- two are optional). We also verify that the full type for a
5706 -- private type is allowed to be a simple storage pool type.
5708 if Present (Get_Rep_Pragma (E, Name_Simple_Storage_Pool_Type))
5709 and then (Is_Base_Type (E) or else Has_Private_Declaration (E))
5710 then
5711 -- If the type is marked Has_Private_Declaration, then this is
5712 -- a full type for a private type that was specified with the
5713 -- pragma Simple_Storage_Pool_Type, and here we ensure that the
5714 -- pragma is allowed for the full type (for example, it can't
5715 -- be an array type, or a nonlimited record type).
5717 if Has_Private_Declaration (E) then
5718 if (not Is_Record_Type (E) or else not Is_Limited_View (E))
5719 and then not Is_Private_Type (E)
5720 then
5721 Error_Msg_Name_1 := Name_Simple_Storage_Pool_Type;
5722 Error_Msg_N
5723 ("pragma% can only apply to full type that is an " &
5724 "explicitly limited type", E);
5725 end if;
5726 end if;
5728 Validate_Simple_Pool_Ops : declare
5729 Pool_Type : Entity_Id renames E;
5730 Address_Type : constant Entity_Id := RTE (RE_Address);
5731 Stg_Cnt_Type : constant Entity_Id := RTE (RE_Storage_Count);
5733 procedure Validate_Simple_Pool_Op_Formal
5734 (Pool_Op : Entity_Id;
5735 Pool_Op_Formal : in out Entity_Id;
5736 Expected_Mode : Formal_Kind;
5737 Expected_Type : Entity_Id;
5738 Formal_Name : String;
5739 OK_Formal : in out Boolean);
5740 -- Validate one formal Pool_Op_Formal of the candidate pool
5741 -- operation Pool_Op. The formal must be of Expected_Type
5742 -- and have mode Expected_Mode. OK_Formal will be set to
5743 -- False if the formal doesn't match. If OK_Formal is False
5744 -- on entry, then the formal will effectively be ignored
5745 -- (because validation of the pool op has already failed).
5746 -- Upon return, Pool_Op_Formal will be updated to the next
5747 -- formal, if any.
5749 procedure Validate_Simple_Pool_Operation
5750 (Op_Name : Name_Id);
5751 -- Search for and validate a simple pool operation with the
5752 -- name Op_Name. If the name is Allocate, then there must be
5753 -- exactly one such primitive operation for the simple pool
5754 -- type. If the name is Deallocate or Storage_Size, then
5755 -- there can be at most one such primitive operation. The
5756 -- profile of the located primitive must conform to what
5757 -- is expected for each operation.
5759 ------------------------------------
5760 -- Validate_Simple_Pool_Op_Formal --
5761 ------------------------------------
5763 procedure Validate_Simple_Pool_Op_Formal
5764 (Pool_Op : Entity_Id;
5765 Pool_Op_Formal : in out Entity_Id;
5766 Expected_Mode : Formal_Kind;
5767 Expected_Type : Entity_Id;
5768 Formal_Name : String;
5769 OK_Formal : in out Boolean)
5771 begin
5772 -- If OK_Formal is False on entry, then simply ignore
5773 -- the formal, because an earlier formal has already
5774 -- been flagged.
5776 if not OK_Formal then
5777 return;
5779 -- If no formal is passed in, then issue an error for a
5780 -- missing formal.
5782 elsif not Present (Pool_Op_Formal) then
5783 Error_Msg_NE
5784 ("simple storage pool op missing formal " &
5785 Formal_Name & " of type&", Pool_Op, Expected_Type);
5786 OK_Formal := False;
5788 return;
5789 end if;
5791 if Etype (Pool_Op_Formal) /= Expected_Type then
5793 -- If the pool type was expected for this formal, then
5794 -- this will not be considered a candidate operation
5795 -- for the simple pool, so we unset OK_Formal so that
5796 -- the op and any later formals will be ignored.
5798 if Expected_Type = Pool_Type then
5799 OK_Formal := False;
5801 return;
5803 else
5804 Error_Msg_NE
5805 ("wrong type for formal " & Formal_Name &
5806 " of simple storage pool op; expected type&",
5807 Pool_Op_Formal, Expected_Type);
5808 end if;
5809 end if;
5811 -- Issue error if formal's mode is not the expected one
5813 if Ekind (Pool_Op_Formal) /= Expected_Mode then
5814 Error_Msg_N
5815 ("wrong mode for formal of simple storage pool op",
5816 Pool_Op_Formal);
5817 end if;
5819 -- Advance to the next formal
5821 Next_Formal (Pool_Op_Formal);
5822 end Validate_Simple_Pool_Op_Formal;
5824 ------------------------------------
5825 -- Validate_Simple_Pool_Operation --
5826 ------------------------------------
5828 procedure Validate_Simple_Pool_Operation
5829 (Op_Name : Name_Id)
5831 Op : Entity_Id;
5832 Found_Op : Entity_Id := Empty;
5833 Formal : Entity_Id;
5834 Is_OK : Boolean;
5836 begin
5837 pragma Assert
5838 (Nam_In (Op_Name, Name_Allocate,
5839 Name_Deallocate,
5840 Name_Storage_Size));
5842 Error_Msg_Name_1 := Op_Name;
5844 -- For each homonym declared immediately in the scope
5845 -- of the simple storage pool type, determine whether
5846 -- the homonym is an operation of the pool type, and,
5847 -- if so, check that its profile is as expected for
5848 -- a simple pool operation of that name.
5850 Op := Get_Name_Entity_Id (Op_Name);
5851 while Present (Op) loop
5852 if Ekind_In (Op, E_Function, E_Procedure)
5853 and then Scope (Op) = Current_Scope
5854 then
5855 Formal := First_Entity (Op);
5857 Is_OK := True;
5859 -- The first parameter must be of the pool type
5860 -- in order for the operation to qualify.
5862 if Op_Name = Name_Storage_Size then
5863 Validate_Simple_Pool_Op_Formal
5864 (Op, Formal, E_In_Parameter, Pool_Type,
5865 "Pool", Is_OK);
5866 else
5867 Validate_Simple_Pool_Op_Formal
5868 (Op, Formal, E_In_Out_Parameter, Pool_Type,
5869 "Pool", Is_OK);
5870 end if;
5872 -- If another operation with this name has already
5873 -- been located for the type, then flag an error,
5874 -- since we only allow the type to have a single
5875 -- such primitive.
5877 if Present (Found_Op) and then Is_OK then
5878 Error_Msg_NE
5879 ("only one % operation allowed for " &
5880 "simple storage pool type&", Op, Pool_Type);
5881 end if;
5883 -- In the case of Allocate and Deallocate, a formal
5884 -- of type System.Address is required.
5886 if Op_Name = Name_Allocate then
5887 Validate_Simple_Pool_Op_Formal
5888 (Op, Formal, E_Out_Parameter,
5889 Address_Type, "Storage_Address", Is_OK);
5891 elsif Op_Name = Name_Deallocate then
5892 Validate_Simple_Pool_Op_Formal
5893 (Op, Formal, E_In_Parameter,
5894 Address_Type, "Storage_Address", Is_OK);
5895 end if;
5897 -- In the case of Allocate and Deallocate, formals
5898 -- of type Storage_Count are required as the third
5899 -- and fourth parameters.
5901 if Op_Name /= Name_Storage_Size then
5902 Validate_Simple_Pool_Op_Formal
5903 (Op, Formal, E_In_Parameter,
5904 Stg_Cnt_Type, "Size_In_Storage_Units", Is_OK);
5905 Validate_Simple_Pool_Op_Formal
5906 (Op, Formal, E_In_Parameter,
5907 Stg_Cnt_Type, "Alignment", Is_OK);
5908 end if;
5910 -- If no mismatched formals have been found (Is_OK)
5911 -- and no excess formals are present, then this
5912 -- operation has been validated, so record it.
5914 if not Present (Formal) and then Is_OK then
5915 Found_Op := Op;
5916 end if;
5917 end if;
5919 Op := Homonym (Op);
5920 end loop;
5922 -- There must be a valid Allocate operation for the type,
5923 -- so issue an error if none was found.
5925 if Op_Name = Name_Allocate
5926 and then not Present (Found_Op)
5927 then
5928 Error_Msg_N ("missing % operation for simple " &
5929 "storage pool type", Pool_Type);
5931 elsif Present (Found_Op) then
5933 -- Simple pool operations can't be abstract
5935 if Is_Abstract_Subprogram (Found_Op) then
5936 Error_Msg_N
5937 ("simple storage pool operation must not be " &
5938 "abstract", Found_Op);
5939 end if;
5941 -- The Storage_Size operation must be a function with
5942 -- Storage_Count as its result type.
5944 if Op_Name = Name_Storage_Size then
5945 if Ekind (Found_Op) = E_Procedure then
5946 Error_Msg_N
5947 ("% operation must be a function", Found_Op);
5949 elsif Etype (Found_Op) /= Stg_Cnt_Type then
5950 Error_Msg_NE
5951 ("wrong result type for%, expected type&",
5952 Found_Op, Stg_Cnt_Type);
5953 end if;
5955 -- Allocate and Deallocate must be procedures
5957 elsif Ekind (Found_Op) = E_Function then
5958 Error_Msg_N
5959 ("% operation must be a procedure", Found_Op);
5960 end if;
5961 end if;
5962 end Validate_Simple_Pool_Operation;
5964 -- Start of processing for Validate_Simple_Pool_Ops
5966 begin
5967 Validate_Simple_Pool_Operation (Name_Allocate);
5968 Validate_Simple_Pool_Operation (Name_Deallocate);
5969 Validate_Simple_Pool_Operation (Name_Storage_Size);
5970 end Validate_Simple_Pool_Ops;
5971 end if;
5972 end if;
5974 -- Now that all types from which E may depend are frozen, see if the
5975 -- size is known at compile time, if it must be unsigned, or if
5976 -- strict alignment is required
5978 Check_Compile_Time_Size (E);
5979 Check_Unsigned_Type (E);
5981 if Base_Type (E) = E then
5982 Check_Strict_Alignment (E);
5983 end if;
5985 -- Do not allow a size clause for a type which does not have a size
5986 -- that is known at compile time
5988 if Has_Size_Clause (E)
5989 and then not Size_Known_At_Compile_Time (E)
5990 then
5991 -- Suppress this message if errors posted on E, even if we are
5992 -- in all errors mode, since this is often a junk message
5994 if not Error_Posted (E) then
5995 Error_Msg_N
5996 ("size clause not allowed for variable length type",
5997 Size_Clause (E));
5998 end if;
5999 end if;
6001 -- Now we set/verify the representation information, in particular
6002 -- the size and alignment values. This processing is not required for
6003 -- generic types, since generic types do not play any part in code
6004 -- generation, and so the size and alignment values for such types
6005 -- are irrelevant. Ditto for types declared within a generic unit,
6006 -- which may have components that depend on generic parameters, and
6007 -- that will be recreated in an instance.
6009 if Inside_A_Generic then
6010 null;
6012 -- Otherwise we call the layout procedure
6014 else
6015 Layout_Type (E);
6016 end if;
6018 -- If this is an access to subprogram whose designated type is itself
6019 -- a subprogram type, the return type of this anonymous subprogram
6020 -- type must be decorated as well.
6022 if Ekind (E) = E_Anonymous_Access_Subprogram_Type
6023 and then Ekind (Designated_Type (E)) = E_Subprogram_Type
6024 then
6025 Layout_Type (Etype (Designated_Type (E)));
6026 end if;
6028 -- If the type has a Defaut_Value/Default_Component_Value aspect,
6029 -- this is where we analye the expression (after the type is frozen,
6030 -- since in the case of Default_Value, we are analyzing with the
6031 -- type itself, and we treat Default_Component_Value similarly for
6032 -- the sake of uniformity).
6034 if Is_First_Subtype (E) and then Has_Default_Aspect (E) then
6035 declare
6036 Nam : Name_Id;
6037 Exp : Node_Id;
6038 Typ : Entity_Id;
6040 begin
6041 if Is_Scalar_Type (E) then
6042 Nam := Name_Default_Value;
6043 Typ := E;
6044 Exp := Default_Aspect_Value (Typ);
6045 else
6046 Nam := Name_Default_Component_Value;
6047 Typ := Component_Type (E);
6048 Exp := Default_Aspect_Component_Value (E);
6049 end if;
6051 Analyze_And_Resolve (Exp, Typ);
6053 if Etype (Exp) /= Any_Type then
6054 if not Is_OK_Static_Expression (Exp) then
6055 Error_Msg_Name_1 := Nam;
6056 Flag_Non_Static_Expr
6057 ("aspect% requires static expression", Exp);
6058 end if;
6059 end if;
6060 end;
6061 end if;
6063 -- End of freeze processing for type entities
6064 end if;
6066 -- Here is where we logically freeze the current entity. If it has a
6067 -- freeze node, then this is the point at which the freeze node is
6068 -- linked into the result list.
6070 if Has_Delayed_Freeze (E) then
6072 -- If a freeze node is already allocated, use it, otherwise allocate
6073 -- a new one. The preallocation happens in the case of anonymous base
6074 -- types, where we preallocate so that we can set First_Subtype_Link.
6075 -- Note that we reset the Sloc to the current freeze location.
6077 if Present (Freeze_Node (E)) then
6078 F_Node := Freeze_Node (E);
6079 Set_Sloc (F_Node, Loc);
6081 else
6082 F_Node := New_Node (N_Freeze_Entity, Loc);
6083 Set_Freeze_Node (E, F_Node);
6084 Set_Access_Types_To_Process (F_Node, No_Elist);
6085 Set_TSS_Elist (F_Node, No_Elist);
6086 Set_Actions (F_Node, No_List);
6087 end if;
6089 Set_Entity (F_Node, E);
6090 Add_To_Result (F_Node);
6092 -- A final pass over record types with discriminants. If the type
6093 -- has an incomplete declaration, there may be constrained access
6094 -- subtypes declared elsewhere, which do not depend on the discrimi-
6095 -- nants of the type, and which are used as component types (i.e.
6096 -- the full view is a recursive type). The designated types of these
6097 -- subtypes can only be elaborated after the type itself, and they
6098 -- need an itype reference.
6100 if Ekind (E) = E_Record_Type
6101 and then Has_Discriminants (E)
6102 then
6103 declare
6104 Comp : Entity_Id;
6105 IR : Node_Id;
6106 Typ : Entity_Id;
6108 begin
6109 Comp := First_Component (E);
6110 while Present (Comp) loop
6111 Typ := Etype (Comp);
6113 if Ekind (Comp) = E_Component
6114 and then Is_Access_Type (Typ)
6115 and then Scope (Typ) /= E
6116 and then Base_Type (Designated_Type (Typ)) = E
6117 and then Is_Itype (Designated_Type (Typ))
6118 then
6119 IR := Make_Itype_Reference (Sloc (Comp));
6120 Set_Itype (IR, Designated_Type (Typ));
6121 Append (IR, Result);
6122 end if;
6124 Next_Component (Comp);
6125 end loop;
6126 end;
6127 end if;
6128 end if;
6130 -- When a type is frozen, the first subtype of the type is frozen as
6131 -- well (RM 13.14(15)). This has to be done after freezing the type,
6132 -- since obviously the first subtype depends on its own base type.
6134 if Is_Type (E) then
6135 Freeze_And_Append (First_Subtype (E), N, Result);
6137 -- If we just froze a tagged non-class wide record, then freeze the
6138 -- corresponding class-wide type. This must be done after the tagged
6139 -- type itself is frozen, because the class-wide type refers to the
6140 -- tagged type which generates the class.
6142 if Is_Tagged_Type (E)
6143 and then not Is_Class_Wide_Type (E)
6144 and then Present (Class_Wide_Type (E))
6145 then
6146 Freeze_And_Append (Class_Wide_Type (E), N, Result);
6147 end if;
6148 end if;
6150 Check_Debug_Info_Needed (E);
6152 -- Special handling for subprograms
6154 if Is_Subprogram (E) then
6156 -- If subprogram has address clause then reset Is_Public flag, since
6157 -- we do not want the backend to generate external references.
6159 if Present (Address_Clause (E))
6160 and then not Is_Library_Level_Entity (E)
6161 then
6162 Set_Is_Public (E, False);
6163 end if;
6164 end if;
6166 Restore_Globals;
6167 return Result;
6168 end Freeze_Entity;
6170 -----------------------------
6171 -- Freeze_Enumeration_Type --
6172 -----------------------------
6174 procedure Freeze_Enumeration_Type (Typ : Entity_Id) is
6175 begin
6176 -- By default, if no size clause is present, an enumeration type with
6177 -- Convention C is assumed to interface to a C enum, and has integer
6178 -- size. This applies to types. For subtypes, verify that its base
6179 -- type has no size clause either. Treat other foreign conventions
6180 -- in the same way, and also make sure alignment is set right.
6182 if Has_Foreign_Convention (Typ)
6183 and then not Has_Size_Clause (Typ)
6184 and then not Has_Size_Clause (Base_Type (Typ))
6185 and then Esize (Typ) < Standard_Integer_Size
6187 -- Don't do this if Short_Enums on target
6189 and then not Target_Short_Enums
6190 then
6191 Init_Esize (Typ, Standard_Integer_Size);
6192 Set_Alignment (Typ, Alignment (Standard_Integer));
6194 -- Normal Ada case or size clause present or not Long_C_Enums on target
6196 else
6197 -- If the enumeration type interfaces to C, and it has a size clause
6198 -- that specifies less than int size, it warrants a warning. The
6199 -- user may intend the C type to be an enum or a char, so this is
6200 -- not by itself an error that the Ada compiler can detect, but it
6201 -- it is a worth a heads-up. For Boolean and Character types we
6202 -- assume that the programmer has the proper C type in mind.
6204 if Convention (Typ) = Convention_C
6205 and then Has_Size_Clause (Typ)
6206 and then Esize (Typ) /= Esize (Standard_Integer)
6207 and then not Is_Boolean_Type (Typ)
6208 and then not Is_Character_Type (Typ)
6210 -- Don't do this if Short_Enums on target
6212 and then not Target_Short_Enums
6213 then
6214 Error_Msg_N
6215 ("C enum types have the size of a C int??", Size_Clause (Typ));
6216 end if;
6218 Adjust_Esize_For_Alignment (Typ);
6219 end if;
6220 end Freeze_Enumeration_Type;
6222 -----------------------
6223 -- Freeze_Expression --
6224 -----------------------
6226 procedure Freeze_Expression (N : Node_Id) is
6227 In_Spec_Exp : constant Boolean := In_Spec_Expression;
6228 Typ : Entity_Id;
6229 Nam : Entity_Id;
6230 Desig_Typ : Entity_Id;
6231 P : Node_Id;
6232 Parent_P : Node_Id;
6234 Freeze_Outside : Boolean := False;
6235 -- This flag is set true if the entity must be frozen outside the
6236 -- current subprogram. This happens in the case of expander generated
6237 -- subprograms (_Init_Proc, _Input, _Output, _Read, _Write) which do
6238 -- not freeze all entities like other bodies, but which nevertheless
6239 -- may reference entities that have to be frozen before the body and
6240 -- obviously cannot be frozen inside the body.
6242 function Find_Aggregate_Component_Desig_Type return Entity_Id;
6243 -- If the expression is an array aggregate, the type of the component
6244 -- expressions is also frozen. If the component type is an access type
6245 -- and the expressions include allocators, the designed type is frozen
6246 -- as well.
6248 function In_Expanded_Body (N : Node_Id) return Boolean;
6249 -- Given an N_Handled_Sequence_Of_Statements node N, determines whether
6250 -- it is the handled statement sequence of an expander-generated
6251 -- subprogram (init proc, stream subprogram, or renaming as body).
6252 -- If so, this is not a freezing context.
6254 -----------------------------------------
6255 -- Find_Aggregate_Component_Desig_Type --
6256 -----------------------------------------
6258 function Find_Aggregate_Component_Desig_Type return Entity_Id is
6259 Assoc : Node_Id;
6260 Exp : Node_Id;
6262 begin
6263 if Present (Expressions (N)) then
6264 Exp := First (Expressions (N));
6265 while Present (Exp) loop
6266 if Nkind (Exp) = N_Allocator then
6267 return Designated_Type (Component_Type (Etype (N)));
6268 end if;
6270 Next (Exp);
6271 end loop;
6272 end if;
6274 if Present (Component_Associations (N)) then
6275 Assoc := First (Component_Associations (N));
6276 while Present (Assoc) loop
6277 if Nkind (Expression (Assoc)) = N_Allocator then
6278 return Designated_Type (Component_Type (Etype (N)));
6279 end if;
6281 Next (Assoc);
6282 end loop;
6283 end if;
6285 return Empty;
6286 end Find_Aggregate_Component_Desig_Type;
6288 ----------------------
6289 -- In_Expanded_Body --
6290 ----------------------
6292 function In_Expanded_Body (N : Node_Id) return Boolean is
6293 P : Node_Id;
6294 Id : Entity_Id;
6296 begin
6297 if Nkind (N) = N_Subprogram_Body then
6298 P := N;
6299 else
6300 P := Parent (N);
6301 end if;
6303 if Nkind (P) /= N_Subprogram_Body then
6304 return False;
6306 else
6307 Id := Defining_Unit_Name (Specification (P));
6309 -- The following are expander-created bodies, or bodies that
6310 -- are not freeze points.
6312 if Nkind (Id) = N_Defining_Identifier
6313 and then (Is_Init_Proc (Id)
6314 or else Is_TSS (Id, TSS_Stream_Input)
6315 or else Is_TSS (Id, TSS_Stream_Output)
6316 or else Is_TSS (Id, TSS_Stream_Read)
6317 or else Is_TSS (Id, TSS_Stream_Write)
6318 or else Nkind_In (Original_Node (P),
6319 N_Subprogram_Renaming_Declaration,
6320 N_Expression_Function))
6321 then
6322 return True;
6323 else
6324 return False;
6325 end if;
6326 end if;
6327 end In_Expanded_Body;
6329 -- Start of processing for Freeze_Expression
6331 begin
6332 -- Immediate return if freezing is inhibited. This flag is set by the
6333 -- analyzer to stop freezing on generated expressions that would cause
6334 -- freezing if they were in the source program, but which are not
6335 -- supposed to freeze, since they are created.
6337 if Must_Not_Freeze (N) then
6338 return;
6339 end if;
6341 -- If expression is non-static, then it does not freeze in a default
6342 -- expression, see section "Handling of Default Expressions" in the
6343 -- spec of package Sem for further details. Note that we have to make
6344 -- sure that we actually have a real expression (if we have a subtype
6345 -- indication, we can't test Is_OK_Static_Expression). However, we
6346 -- exclude the case of the prefix of an attribute of a static scalar
6347 -- subtype from this early return, because static subtype attributes
6348 -- should always cause freezing, even in default expressions, but
6349 -- the attribute may not have been marked as static yet (because in
6350 -- Resolve_Attribute, the call to Eval_Attribute follows the call of
6351 -- Freeze_Expression on the prefix).
6353 if In_Spec_Exp
6354 and then Nkind (N) in N_Subexpr
6355 and then not Is_OK_Static_Expression (N)
6356 and then (Nkind (Parent (N)) /= N_Attribute_Reference
6357 or else not (Is_Entity_Name (N)
6358 and then Is_Type (Entity (N))
6359 and then Is_OK_Static_Subtype (Entity (N))))
6360 then
6361 return;
6362 end if;
6364 -- Freeze type of expression if not frozen already
6366 Typ := Empty;
6368 if Nkind (N) in N_Has_Etype then
6369 if not Is_Frozen (Etype (N)) then
6370 Typ := Etype (N);
6372 -- Base type may be an derived numeric type that is frozen at
6373 -- the point of declaration, but first_subtype is still unfrozen.
6375 elsif not Is_Frozen (First_Subtype (Etype (N))) then
6376 Typ := First_Subtype (Etype (N));
6377 end if;
6378 end if;
6380 -- For entity name, freeze entity if not frozen already. A special
6381 -- exception occurs for an identifier that did not come from source.
6382 -- We don't let such identifiers freeze a non-internal entity, i.e.
6383 -- an entity that did come from source, since such an identifier was
6384 -- generated by the expander, and cannot have any semantic effect on
6385 -- the freezing semantics. For example, this stops the parameter of
6386 -- an initialization procedure from freezing the variable.
6388 if Is_Entity_Name (N)
6389 and then not Is_Frozen (Entity (N))
6390 and then (Nkind (N) /= N_Identifier
6391 or else Comes_From_Source (N)
6392 or else not Comes_From_Source (Entity (N)))
6393 then
6394 Nam := Entity (N);
6396 if Present (Nam) and then Ekind (Nam) = E_Function then
6397 Check_Expression_Function (N, Nam);
6398 end if;
6400 else
6401 Nam := Empty;
6402 end if;
6404 -- For an allocator freeze designated type if not frozen already
6406 -- For an aggregate whose component type is an access type, freeze the
6407 -- designated type now, so that its freeze does not appear within the
6408 -- loop that might be created in the expansion of the aggregate. If the
6409 -- designated type is a private type without full view, the expression
6410 -- cannot contain an allocator, so the type is not frozen.
6412 -- For a function, we freeze the entity when the subprogram declaration
6413 -- is frozen, but a function call may appear in an initialization proc.
6414 -- before the declaration is frozen. We need to generate the extra
6415 -- formals, if any, to ensure that the expansion of the call includes
6416 -- the proper actuals. This only applies to Ada subprograms, not to
6417 -- imported ones.
6419 Desig_Typ := Empty;
6421 case Nkind (N) is
6422 when N_Allocator =>
6423 Desig_Typ := Designated_Type (Etype (N));
6425 when N_Aggregate =>
6426 if Is_Array_Type (Etype (N))
6427 and then Is_Access_Type (Component_Type (Etype (N)))
6428 then
6430 -- Check whether aggregate includes allocators.
6432 Desig_Typ := Find_Aggregate_Component_Desig_Type;
6433 end if;
6435 when N_Selected_Component |
6436 N_Indexed_Component |
6437 N_Slice =>
6439 if Is_Access_Type (Etype (Prefix (N))) then
6440 Desig_Typ := Designated_Type (Etype (Prefix (N)));
6441 end if;
6443 when N_Identifier =>
6444 if Present (Nam)
6445 and then Ekind (Nam) = E_Function
6446 and then Nkind (Parent (N)) = N_Function_Call
6447 and then Convention (Nam) = Convention_Ada
6448 then
6449 Create_Extra_Formals (Nam);
6450 end if;
6452 when others =>
6453 null;
6454 end case;
6456 if Desig_Typ /= Empty
6457 and then (Is_Frozen (Desig_Typ)
6458 or else (not Is_Fully_Defined (Desig_Typ)))
6459 then
6460 Desig_Typ := Empty;
6461 end if;
6463 -- All done if nothing needs freezing
6465 if No (Typ)
6466 and then No (Nam)
6467 and then No (Desig_Typ)
6468 then
6469 return;
6470 end if;
6472 -- Examine the enclosing context by climbing the parent chain. The
6473 -- traversal serves two purposes - to detect scenarios where freezeing
6474 -- is not needed and to find the proper insertion point for the freeze
6475 -- nodes. Although somewhat similar to Insert_Actions, this traversal
6476 -- is freezing semantics-sensitive. Inserting freeze nodes blindly in
6477 -- the tree may result in types being frozen too early.
6479 P := N;
6480 loop
6481 Parent_P := Parent (P);
6483 -- If we don't have a parent, then we are not in a well-formed tree.
6484 -- This is an unusual case, but there are some legitimate situations
6485 -- in which this occurs, notably when the expressions in the range of
6486 -- a type declaration are resolved. We simply ignore the freeze
6487 -- request in this case. Is this right ???
6489 if No (Parent_P) then
6490 return;
6491 end if;
6493 -- See if we have got to an appropriate point in the tree
6495 case Nkind (Parent_P) is
6497 -- A special test for the exception of (RM 13.14(8)) for the case
6498 -- of per-object expressions (RM 3.8(18)) occurring in component
6499 -- definition or a discrete subtype definition. Note that we test
6500 -- for a component declaration which includes both cases we are
6501 -- interested in, and furthermore the tree does not have explicit
6502 -- nodes for either of these two constructs.
6504 when N_Component_Declaration =>
6506 -- The case we want to test for here is an identifier that is
6507 -- a per-object expression, this is either a discriminant that
6508 -- appears in a context other than the component declaration
6509 -- or it is a reference to the type of the enclosing construct.
6511 -- For either of these cases, we skip the freezing
6513 if not In_Spec_Expression
6514 and then Nkind (N) = N_Identifier
6515 and then (Present (Entity (N)))
6516 then
6517 -- We recognize the discriminant case by just looking for
6518 -- a reference to a discriminant. It can only be one for
6519 -- the enclosing construct. Skip freezing in this case.
6521 if Ekind (Entity (N)) = E_Discriminant then
6522 return;
6524 -- For the case of a reference to the enclosing record,
6525 -- (or task or protected type), we look for a type that
6526 -- matches the current scope.
6528 elsif Entity (N) = Current_Scope then
6529 return;
6530 end if;
6531 end if;
6533 -- If we have an enumeration literal that appears as the choice in
6534 -- the aggregate of an enumeration representation clause, then
6535 -- freezing does not occur (RM 13.14(10)).
6537 when N_Enumeration_Representation_Clause =>
6539 -- The case we are looking for is an enumeration literal
6541 if (Nkind (N) = N_Identifier or Nkind (N) = N_Character_Literal)
6542 and then Is_Enumeration_Type (Etype (N))
6543 then
6544 -- If enumeration literal appears directly as the choice,
6545 -- do not freeze (this is the normal non-overloaded case)
6547 if Nkind (Parent (N)) = N_Component_Association
6548 and then First (Choices (Parent (N))) = N
6549 then
6550 return;
6552 -- If enumeration literal appears as the name of function
6553 -- which is the choice, then also do not freeze. This
6554 -- happens in the overloaded literal case, where the
6555 -- enumeration literal is temporarily changed to a function
6556 -- call for overloading analysis purposes.
6558 elsif Nkind (Parent (N)) = N_Function_Call
6559 and then
6560 Nkind (Parent (Parent (N))) = N_Component_Association
6561 and then
6562 First (Choices (Parent (Parent (N)))) = Parent (N)
6563 then
6564 return;
6565 end if;
6566 end if;
6568 -- Normally if the parent is a handled sequence of statements,
6569 -- then the current node must be a statement, and that is an
6570 -- appropriate place to insert a freeze node.
6572 when N_Handled_Sequence_Of_Statements =>
6574 -- An exception occurs when the sequence of statements is for
6575 -- an expander generated body that did not do the usual freeze
6576 -- all operation. In this case we usually want to freeze
6577 -- outside this body, not inside it, and we skip past the
6578 -- subprogram body that we are inside.
6580 if In_Expanded_Body (Parent_P) then
6581 declare
6582 Subp : constant Node_Id := Parent (Parent_P);
6583 Spec : Entity_Id;
6585 begin
6586 -- Freeze the entity only when it is declared inside the
6587 -- body of the expander generated procedure. This case
6588 -- is recognized by the scope of the entity or its type,
6589 -- which is either the spec for some enclosing body, or
6590 -- (in the case of init_procs, for which there are no
6591 -- separate specs) the current scope.
6593 if Nkind (Subp) = N_Subprogram_Body then
6594 Spec := Corresponding_Spec (Subp);
6596 if (Present (Typ) and then Scope (Typ) = Spec)
6597 or else
6598 (Present (Nam) and then Scope (Nam) = Spec)
6599 then
6600 exit;
6602 elsif Present (Typ)
6603 and then Scope (Typ) = Current_Scope
6604 and then Defining_Entity (Subp) = Current_Scope
6605 then
6606 exit;
6607 end if;
6608 end if;
6610 -- An expression function may act as a completion of
6611 -- a function declaration. As such, it can reference
6612 -- entities declared between the two views:
6614 -- Hidden []; -- 1
6615 -- function F return ...;
6616 -- private
6617 -- function Hidden return ...;
6618 -- function F return ... is (Hidden); -- 2
6620 -- Refering to the example above, freezing the expression
6621 -- of F (2) would place Hidden's freeze node (1) in the
6622 -- wrong place. Avoid explicit freezing and let the usual
6623 -- scenarios do the job - for example, reaching the end
6624 -- of the private declarations, or a call to F.
6626 if Nkind (Original_Node (Subp)) =
6627 N_Expression_Function
6628 then
6629 null;
6631 -- Freeze outside the body
6633 else
6634 Parent_P := Parent (Parent_P);
6635 Freeze_Outside := True;
6636 end if;
6637 end;
6639 -- Here if normal case where we are in handled statement
6640 -- sequence and want to do the insertion right there.
6642 else
6643 exit;
6644 end if;
6646 -- If parent is a body or a spec or a block, then the current node
6647 -- is a statement or declaration and we can insert the freeze node
6648 -- before it.
6650 when N_Block_Statement |
6651 N_Entry_Body |
6652 N_Package_Body |
6653 N_Package_Specification |
6654 N_Protected_Body |
6655 N_Subprogram_Body |
6656 N_Task_Body => exit;
6658 -- The expander is allowed to define types in any statements list,
6659 -- so any of the following parent nodes also mark a freezing point
6660 -- if the actual node is in a list of statements or declarations.
6662 when N_Abortable_Part |
6663 N_Accept_Alternative |
6664 N_And_Then |
6665 N_Case_Statement_Alternative |
6666 N_Compilation_Unit_Aux |
6667 N_Conditional_Entry_Call |
6668 N_Delay_Alternative |
6669 N_Elsif_Part |
6670 N_Entry_Call_Alternative |
6671 N_Exception_Handler |
6672 N_Extended_Return_Statement |
6673 N_Freeze_Entity |
6674 N_If_Statement |
6675 N_Or_Else |
6676 N_Selective_Accept |
6677 N_Triggering_Alternative =>
6679 exit when Is_List_Member (P);
6681 -- Freeze nodes produced by an expression coming from the Actions
6682 -- list of a N_Expression_With_Actions node must remain within the
6683 -- Actions list. Inserting the freeze nodes further up the tree
6684 -- may lead to use before declaration issues in the case of array
6685 -- types.
6687 when N_Expression_With_Actions =>
6688 if Is_List_Member (P)
6689 and then List_Containing (P) = Actions (Parent_P)
6690 then
6691 exit;
6692 end if;
6694 -- Note: N_Loop_Statement is a special case. A type that appears
6695 -- in the source can never be frozen in a loop (this occurs only
6696 -- because of a loop expanded by the expander), so we keep on
6697 -- going. Otherwise we terminate the search. Same is true of any
6698 -- entity which comes from source. (if they have predefined type,
6699 -- that type does not appear to come from source, but the entity
6700 -- should not be frozen here).
6702 when N_Loop_Statement =>
6703 exit when not Comes_From_Source (Etype (N))
6704 and then (No (Nam) or else not Comes_From_Source (Nam));
6706 -- For all other cases, keep looking at parents
6708 when others =>
6709 null;
6710 end case;
6712 -- We fall through the case if we did not yet find the proper
6713 -- place in the free for inserting the freeze node, so climb.
6715 P := Parent_P;
6716 end loop;
6718 -- If the expression appears in a record or an initialization procedure,
6719 -- the freeze nodes are collected and attached to the current scope, to
6720 -- be inserted and analyzed on exit from the scope, to insure that
6721 -- generated entities appear in the correct scope. If the expression is
6722 -- a default for a discriminant specification, the scope is still void.
6723 -- The expression can also appear in the discriminant part of a private
6724 -- or concurrent type.
6726 -- If the expression appears in a constrained subcomponent of an
6727 -- enclosing record declaration, the freeze nodes must be attached to
6728 -- the outer record type so they can eventually be placed in the
6729 -- enclosing declaration list.
6731 -- The other case requiring this special handling is if we are in a
6732 -- default expression, since in that case we are about to freeze a
6733 -- static type, and the freeze scope needs to be the outer scope, not
6734 -- the scope of the subprogram with the default parameter.
6736 -- For default expressions and other spec expressions in generic units,
6737 -- the Move_Freeze_Nodes mechanism (see sem_ch12.adb) takes care of
6738 -- placing them at the proper place, after the generic unit.
6740 if (In_Spec_Exp and not Inside_A_Generic)
6741 or else Freeze_Outside
6742 or else (Is_Type (Current_Scope)
6743 and then (not Is_Concurrent_Type (Current_Scope)
6744 or else not Has_Completion (Current_Scope)))
6745 or else Ekind (Current_Scope) = E_Void
6746 then
6747 declare
6748 N : constant Node_Id := Current_Scope;
6749 Freeze_Nodes : List_Id := No_List;
6750 Pos : Int := Scope_Stack.Last;
6752 begin
6753 if Present (Desig_Typ) then
6754 Freeze_And_Append (Desig_Typ, N, Freeze_Nodes);
6755 end if;
6757 if Present (Typ) then
6758 Freeze_And_Append (Typ, N, Freeze_Nodes);
6759 end if;
6761 if Present (Nam) then
6762 Freeze_And_Append (Nam, N, Freeze_Nodes);
6763 end if;
6765 -- The current scope may be that of a constrained component of
6766 -- an enclosing record declaration, or of a loop of an enclosing
6767 -- quantified expression, which is above the current scope in the
6768 -- scope stack. Indeed in the context of a quantified expression,
6769 -- a scope is created and pushed above the current scope in order
6770 -- to emulate the loop-like behavior of the quantified expression.
6771 -- If the expression is within a top-level pragma, as for a pre-
6772 -- condition on a library-level subprogram, nothing to do.
6774 if not Is_Compilation_Unit (Current_Scope)
6775 and then (Is_Record_Type (Scope (Current_Scope))
6776 or else Nkind (Parent (Current_Scope)) =
6777 N_Quantified_Expression)
6778 then
6779 Pos := Pos - 1;
6780 end if;
6782 if Is_Non_Empty_List (Freeze_Nodes) then
6783 if No (Scope_Stack.Table (Pos).Pending_Freeze_Actions) then
6784 Scope_Stack.Table (Pos).Pending_Freeze_Actions :=
6785 Freeze_Nodes;
6786 else
6787 Append_List (Freeze_Nodes,
6788 Scope_Stack.Table (Pos).Pending_Freeze_Actions);
6789 end if;
6790 end if;
6791 end;
6793 return;
6794 end if;
6796 -- Now we have the right place to do the freezing. First, a special
6797 -- adjustment, if we are in spec-expression analysis mode, these freeze
6798 -- actions must not be thrown away (normally all inserted actions are
6799 -- thrown away in this mode. However, the freeze actions are from static
6800 -- expressions and one of the important reasons we are doing this
6801 -- special analysis is to get these freeze actions. Therefore we turn
6802 -- off the In_Spec_Expression mode to propagate these freeze actions.
6803 -- This also means they get properly analyzed and expanded.
6805 In_Spec_Expression := False;
6807 -- Freeze the designated type of an allocator (RM 13.14(13))
6809 if Present (Desig_Typ) then
6810 Freeze_Before (P, Desig_Typ);
6811 end if;
6813 -- Freeze type of expression (RM 13.14(10)). Note that we took care of
6814 -- the enumeration representation clause exception in the loop above.
6816 if Present (Typ) then
6817 Freeze_Before (P, Typ);
6818 end if;
6820 -- Freeze name if one is present (RM 13.14(11))
6822 if Present (Nam) then
6823 Freeze_Before (P, Nam);
6824 end if;
6826 -- Restore In_Spec_Expression flag
6828 In_Spec_Expression := In_Spec_Exp;
6829 end Freeze_Expression;
6831 -----------------------------
6832 -- Freeze_Fixed_Point_Type --
6833 -----------------------------
6835 -- Certain fixed-point types and subtypes, including implicit base types
6836 -- and declared first subtypes, have not yet set up a range. This is
6837 -- because the range cannot be set until the Small and Size values are
6838 -- known, and these are not known till the type is frozen.
6840 -- To signal this case, Scalar_Range contains an unanalyzed syntactic range
6841 -- whose bounds are unanalyzed real literals. This routine will recognize
6842 -- this case, and transform this range node into a properly typed range
6843 -- with properly analyzed and resolved values.
6845 procedure Freeze_Fixed_Point_Type (Typ : Entity_Id) is
6846 Rng : constant Node_Id := Scalar_Range (Typ);
6847 Lo : constant Node_Id := Low_Bound (Rng);
6848 Hi : constant Node_Id := High_Bound (Rng);
6849 Btyp : constant Entity_Id := Base_Type (Typ);
6850 Brng : constant Node_Id := Scalar_Range (Btyp);
6851 BLo : constant Node_Id := Low_Bound (Brng);
6852 BHi : constant Node_Id := High_Bound (Brng);
6853 Small : constant Ureal := Small_Value (Typ);
6854 Loval : Ureal;
6855 Hival : Ureal;
6856 Atype : Entity_Id;
6858 Orig_Lo : Ureal;
6859 Orig_Hi : Ureal;
6860 -- Save original bounds (for shaving tests)
6862 Actual_Size : Nat;
6863 -- Actual size chosen
6865 function Fsize (Lov, Hiv : Ureal) return Nat;
6866 -- Returns size of type with given bounds. Also leaves these
6867 -- bounds set as the current bounds of the Typ.
6869 -----------
6870 -- Fsize --
6871 -----------
6873 function Fsize (Lov, Hiv : Ureal) return Nat is
6874 begin
6875 Set_Realval (Lo, Lov);
6876 Set_Realval (Hi, Hiv);
6877 return Minimum_Size (Typ);
6878 end Fsize;
6880 -- Start of processing for Freeze_Fixed_Point_Type
6882 begin
6883 -- If Esize of a subtype has not previously been set, set it now
6885 if Unknown_Esize (Typ) then
6886 Atype := Ancestor_Subtype (Typ);
6888 if Present (Atype) then
6889 Set_Esize (Typ, Esize (Atype));
6890 else
6891 Set_Esize (Typ, Esize (Base_Type (Typ)));
6892 end if;
6893 end if;
6895 -- Immediate return if the range is already analyzed. This means that
6896 -- the range is already set, and does not need to be computed by this
6897 -- routine.
6899 if Analyzed (Rng) then
6900 return;
6901 end if;
6903 -- Immediate return if either of the bounds raises Constraint_Error
6905 if Raises_Constraint_Error (Lo)
6906 or else Raises_Constraint_Error (Hi)
6907 then
6908 return;
6909 end if;
6911 Loval := Realval (Lo);
6912 Hival := Realval (Hi);
6914 Orig_Lo := Loval;
6915 Orig_Hi := Hival;
6917 -- Ordinary fixed-point case
6919 if Is_Ordinary_Fixed_Point_Type (Typ) then
6921 -- For the ordinary fixed-point case, we are allowed to fudge the
6922 -- end-points up or down by small. Generally we prefer to fudge up,
6923 -- i.e. widen the bounds for non-model numbers so that the end points
6924 -- are included. However there are cases in which this cannot be
6925 -- done, and indeed cases in which we may need to narrow the bounds.
6926 -- The following circuit makes the decision.
6928 -- Note: our terminology here is that Incl_EP means that the bounds
6929 -- are widened by Small if necessary to include the end points, and
6930 -- Excl_EP means that the bounds are narrowed by Small to exclude the
6931 -- end-points if this reduces the size.
6933 -- Note that in the Incl case, all we care about is including the
6934 -- end-points. In the Excl case, we want to narrow the bounds as
6935 -- much as permitted by the RM, to give the smallest possible size.
6937 Fudge : declare
6938 Loval_Incl_EP : Ureal;
6939 Hival_Incl_EP : Ureal;
6941 Loval_Excl_EP : Ureal;
6942 Hival_Excl_EP : Ureal;
6944 Size_Incl_EP : Nat;
6945 Size_Excl_EP : Nat;
6947 Model_Num : Ureal;
6948 First_Subt : Entity_Id;
6949 Actual_Lo : Ureal;
6950 Actual_Hi : Ureal;
6952 begin
6953 -- First step. Base types are required to be symmetrical. Right
6954 -- now, the base type range is a copy of the first subtype range.
6955 -- This will be corrected before we are done, but right away we
6956 -- need to deal with the case where both bounds are non-negative.
6957 -- In this case, we set the low bound to the negative of the high
6958 -- bound, to make sure that the size is computed to include the
6959 -- required sign. Note that we do not need to worry about the
6960 -- case of both bounds negative, because the sign will be dealt
6961 -- with anyway. Furthermore we can't just go making such a bound
6962 -- symmetrical, since in a twos-complement system, there is an
6963 -- extra negative value which could not be accommodated on the
6964 -- positive side.
6966 if Typ = Btyp
6967 and then not UR_Is_Negative (Loval)
6968 and then Hival > Loval
6969 then
6970 Loval := -Hival;
6971 Set_Realval (Lo, Loval);
6972 end if;
6974 -- Compute the fudged bounds. If the number is a model number,
6975 -- then we do nothing to include it, but we are allowed to backoff
6976 -- to the next adjacent model number when we exclude it. If it is
6977 -- not a model number then we straddle the two values with the
6978 -- model numbers on either side.
6980 Model_Num := UR_Trunc (Loval / Small) * Small;
6982 if Loval = Model_Num then
6983 Loval_Incl_EP := Model_Num;
6984 else
6985 Loval_Incl_EP := Model_Num - Small;
6986 end if;
6988 -- The low value excluding the end point is Small greater, but
6989 -- we do not do this exclusion if the low value is positive,
6990 -- since it can't help the size and could actually hurt by
6991 -- crossing the high bound.
6993 if UR_Is_Negative (Loval_Incl_EP) then
6994 Loval_Excl_EP := Loval_Incl_EP + Small;
6996 -- If the value went from negative to zero, then we have the
6997 -- case where Loval_Incl_EP is the model number just below
6998 -- zero, so we want to stick to the negative value for the
6999 -- base type to maintain the condition that the size will
7000 -- include signed values.
7002 if Typ = Btyp
7003 and then UR_Is_Zero (Loval_Excl_EP)
7004 then
7005 Loval_Excl_EP := Loval_Incl_EP;
7006 end if;
7008 else
7009 Loval_Excl_EP := Loval_Incl_EP;
7010 end if;
7012 -- Similar processing for upper bound and high value
7014 Model_Num := UR_Trunc (Hival / Small) * Small;
7016 if Hival = Model_Num then
7017 Hival_Incl_EP := Model_Num;
7018 else
7019 Hival_Incl_EP := Model_Num + Small;
7020 end if;
7022 if UR_Is_Positive (Hival_Incl_EP) then
7023 Hival_Excl_EP := Hival_Incl_EP - Small;
7024 else
7025 Hival_Excl_EP := Hival_Incl_EP;
7026 end if;
7028 -- One further adjustment is needed. In the case of subtypes, we
7029 -- cannot go outside the range of the base type, or we get
7030 -- peculiarities, and the base type range is already set. This
7031 -- only applies to the Incl values, since clearly the Excl values
7032 -- are already as restricted as they are allowed to be.
7034 if Typ /= Btyp then
7035 Loval_Incl_EP := UR_Max (Loval_Incl_EP, Realval (BLo));
7036 Hival_Incl_EP := UR_Min (Hival_Incl_EP, Realval (BHi));
7037 end if;
7039 -- Get size including and excluding end points
7041 Size_Incl_EP := Fsize (Loval_Incl_EP, Hival_Incl_EP);
7042 Size_Excl_EP := Fsize (Loval_Excl_EP, Hival_Excl_EP);
7044 -- No need to exclude end-points if it does not reduce size
7046 if Fsize (Loval_Incl_EP, Hival_Excl_EP) = Size_Excl_EP then
7047 Loval_Excl_EP := Loval_Incl_EP;
7048 end if;
7050 if Fsize (Loval_Excl_EP, Hival_Incl_EP) = Size_Excl_EP then
7051 Hival_Excl_EP := Hival_Incl_EP;
7052 end if;
7054 -- Now we set the actual size to be used. We want to use the
7055 -- bounds fudged up to include the end-points but only if this
7056 -- can be done without violating a specifically given size
7057 -- size clause or causing an unacceptable increase in size.
7059 -- Case of size clause given
7061 if Has_Size_Clause (Typ) then
7063 -- Use the inclusive size only if it is consistent with
7064 -- the explicitly specified size.
7066 if Size_Incl_EP <= RM_Size (Typ) then
7067 Actual_Lo := Loval_Incl_EP;
7068 Actual_Hi := Hival_Incl_EP;
7069 Actual_Size := Size_Incl_EP;
7071 -- If the inclusive size is too large, we try excluding
7072 -- the end-points (will be caught later if does not work).
7074 else
7075 Actual_Lo := Loval_Excl_EP;
7076 Actual_Hi := Hival_Excl_EP;
7077 Actual_Size := Size_Excl_EP;
7078 end if;
7080 -- Case of size clause not given
7082 else
7083 -- If we have a base type whose corresponding first subtype
7084 -- has an explicit size that is large enough to include our
7085 -- end-points, then do so. There is no point in working hard
7086 -- to get a base type whose size is smaller than the specified
7087 -- size of the first subtype.
7089 First_Subt := First_Subtype (Typ);
7091 if Has_Size_Clause (First_Subt)
7092 and then Size_Incl_EP <= Esize (First_Subt)
7093 then
7094 Actual_Size := Size_Incl_EP;
7095 Actual_Lo := Loval_Incl_EP;
7096 Actual_Hi := Hival_Incl_EP;
7098 -- If excluding the end-points makes the size smaller and
7099 -- results in a size of 8,16,32,64, then we take the smaller
7100 -- size. For the 64 case, this is compulsory. For the other
7101 -- cases, it seems reasonable. We like to include end points
7102 -- if we can, but not at the expense of moving to the next
7103 -- natural boundary of size.
7105 elsif Size_Incl_EP /= Size_Excl_EP
7106 and then Addressable (Size_Excl_EP)
7107 then
7108 Actual_Size := Size_Excl_EP;
7109 Actual_Lo := Loval_Excl_EP;
7110 Actual_Hi := Hival_Excl_EP;
7112 -- Otherwise we can definitely include the end points
7114 else
7115 Actual_Size := Size_Incl_EP;
7116 Actual_Lo := Loval_Incl_EP;
7117 Actual_Hi := Hival_Incl_EP;
7118 end if;
7120 -- One pathological case: normally we never fudge a low bound
7121 -- down, since it would seem to increase the size (if it has
7122 -- any effect), but for ranges containing single value, or no
7123 -- values, the high bound can be small too large. Consider:
7125 -- type t is delta 2.0**(-14)
7126 -- range 131072.0 .. 0;
7128 -- That lower bound is *just* outside the range of 32 bits, and
7129 -- does need fudging down in this case. Note that the bounds
7130 -- will always have crossed here, since the high bound will be
7131 -- fudged down if necessary, as in the case of:
7133 -- type t is delta 2.0**(-14)
7134 -- range 131072.0 .. 131072.0;
7136 -- So we detect the situation by looking for crossed bounds,
7137 -- and if the bounds are crossed, and the low bound is greater
7138 -- than zero, we will always back it off by small, since this
7139 -- is completely harmless.
7141 if Actual_Lo > Actual_Hi then
7142 if UR_Is_Positive (Actual_Lo) then
7143 Actual_Lo := Loval_Incl_EP - Small;
7144 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7146 -- And of course, we need to do exactly the same parallel
7147 -- fudge for flat ranges in the negative region.
7149 elsif UR_Is_Negative (Actual_Hi) then
7150 Actual_Hi := Hival_Incl_EP + Small;
7151 Actual_Size := Fsize (Actual_Lo, Actual_Hi);
7152 end if;
7153 end if;
7154 end if;
7156 Set_Realval (Lo, Actual_Lo);
7157 Set_Realval (Hi, Actual_Hi);
7158 end Fudge;
7160 -- For the decimal case, none of this fudging is required, since there
7161 -- are no end-point problems in the decimal case (the end-points are
7162 -- always included).
7164 else
7165 Actual_Size := Fsize (Loval, Hival);
7166 end if;
7168 -- At this stage, the actual size has been calculated and the proper
7169 -- required bounds are stored in the low and high bounds.
7171 if Actual_Size > 64 then
7172 Error_Msg_Uint_1 := UI_From_Int (Actual_Size);
7173 Error_Msg_N
7174 ("size required (^) for type& too large, maximum allowed is 64",
7175 Typ);
7176 Actual_Size := 64;
7177 end if;
7179 -- Check size against explicit given size
7181 if Has_Size_Clause (Typ) then
7182 if Actual_Size > RM_Size (Typ) then
7183 Error_Msg_Uint_1 := RM_Size (Typ);
7184 Error_Msg_Uint_2 := UI_From_Int (Actual_Size);
7185 Error_Msg_NE
7186 ("size given (^) for type& too small, minimum allowed is ^",
7187 Size_Clause (Typ), Typ);
7189 else
7190 Actual_Size := UI_To_Int (Esize (Typ));
7191 end if;
7193 -- Increase size to next natural boundary if no size clause given
7195 else
7196 if Actual_Size <= 8 then
7197 Actual_Size := 8;
7198 elsif Actual_Size <= 16 then
7199 Actual_Size := 16;
7200 elsif Actual_Size <= 32 then
7201 Actual_Size := 32;
7202 else
7203 Actual_Size := 64;
7204 end if;
7206 Init_Esize (Typ, Actual_Size);
7207 Adjust_Esize_For_Alignment (Typ);
7208 end if;
7210 -- If we have a base type, then expand the bounds so that they extend to
7211 -- the full width of the allocated size in bits, to avoid junk range
7212 -- checks on intermediate computations.
7214 if Base_Type (Typ) = Typ then
7215 Set_Realval (Lo, -(Small * (Uint_2 ** (Actual_Size - 1))));
7216 Set_Realval (Hi, (Small * (Uint_2 ** (Actual_Size - 1) - 1)));
7217 end if;
7219 -- Final step is to reanalyze the bounds using the proper type
7220 -- and set the Corresponding_Integer_Value fields of the literals.
7222 Set_Etype (Lo, Empty);
7223 Set_Analyzed (Lo, False);
7224 Analyze (Lo);
7226 -- Resolve with universal fixed if the base type, and the base type if
7227 -- it is a subtype. Note we can't resolve the base type with itself,
7228 -- that would be a reference before definition.
7230 if Typ = Btyp then
7231 Resolve (Lo, Universal_Fixed);
7232 else
7233 Resolve (Lo, Btyp);
7234 end if;
7236 -- Set corresponding integer value for bound
7238 Set_Corresponding_Integer_Value
7239 (Lo, UR_To_Uint (Realval (Lo) / Small));
7241 -- Similar processing for high bound
7243 Set_Etype (Hi, Empty);
7244 Set_Analyzed (Hi, False);
7245 Analyze (Hi);
7247 if Typ = Btyp then
7248 Resolve (Hi, Universal_Fixed);
7249 else
7250 Resolve (Hi, Btyp);
7251 end if;
7253 Set_Corresponding_Integer_Value
7254 (Hi, UR_To_Uint (Realval (Hi) / Small));
7256 -- Set type of range to correspond to bounds
7258 Set_Etype (Rng, Etype (Lo));
7260 -- Set Esize to calculated size if not set already
7262 if Unknown_Esize (Typ) then
7263 Init_Esize (Typ, Actual_Size);
7264 end if;
7266 -- Set RM_Size if not already set. If already set, check value
7268 declare
7269 Minsiz : constant Uint := UI_From_Int (Minimum_Size (Typ));
7271 begin
7272 if RM_Size (Typ) /= Uint_0 then
7273 if RM_Size (Typ) < Minsiz then
7274 Error_Msg_Uint_1 := RM_Size (Typ);
7275 Error_Msg_Uint_2 := Minsiz;
7276 Error_Msg_NE
7277 ("size given (^) for type& too small, minimum allowed is ^",
7278 Size_Clause (Typ), Typ);
7279 end if;
7281 else
7282 Set_RM_Size (Typ, Minsiz);
7283 end if;
7284 end;
7286 -- Check for shaving
7288 if Comes_From_Source (Typ) then
7289 if Orig_Lo < Expr_Value_R (Lo) then
7290 Error_Msg_N
7291 ("declared low bound of type & is outside type range??", Typ);
7292 Error_Msg_N
7293 ("\low bound adjusted up by delta (RM 3.5.9(13))??", Typ);
7294 end if;
7296 if Orig_Hi > Expr_Value_R (Hi) then
7297 Error_Msg_N
7298 ("declared high bound of type & is outside type range??", Typ);
7299 Error_Msg_N
7300 ("\high bound adjusted down by delta (RM 3.5.9(13))??", Typ);
7301 end if;
7302 end if;
7303 end Freeze_Fixed_Point_Type;
7305 ------------------
7306 -- Freeze_Itype --
7307 ------------------
7309 procedure Freeze_Itype (T : Entity_Id; N : Node_Id) is
7310 L : List_Id;
7312 begin
7313 Set_Has_Delayed_Freeze (T);
7314 L := Freeze_Entity (T, N);
7316 if Is_Non_Empty_List (L) then
7317 Insert_Actions (N, L);
7318 end if;
7319 end Freeze_Itype;
7321 --------------------------
7322 -- Freeze_Static_Object --
7323 --------------------------
7325 procedure Freeze_Static_Object (E : Entity_Id) is
7327 Cannot_Be_Static : exception;
7328 -- Exception raised if the type of a static object cannot be made
7329 -- static. This happens if the type depends on non-global objects.
7331 procedure Ensure_Expression_Is_SA (N : Node_Id);
7332 -- Called to ensure that an expression used as part of a type definition
7333 -- is statically allocatable, which means that the expression type is
7334 -- statically allocatable, and the expression is either static, or a
7335 -- reference to a library level constant.
7337 procedure Ensure_Type_Is_SA (Typ : Entity_Id);
7338 -- Called to mark a type as static, checking that it is possible
7339 -- to set the type as static. If it is not possible, then the
7340 -- exception Cannot_Be_Static is raised.
7342 -----------------------------
7343 -- Ensure_Expression_Is_SA --
7344 -----------------------------
7346 procedure Ensure_Expression_Is_SA (N : Node_Id) is
7347 Ent : Entity_Id;
7349 begin
7350 Ensure_Type_Is_SA (Etype (N));
7352 if Is_OK_Static_Expression (N) then
7353 return;
7355 elsif Nkind (N) = N_Identifier then
7356 Ent := Entity (N);
7358 if Present (Ent)
7359 and then Ekind (Ent) = E_Constant
7360 and then Is_Library_Level_Entity (Ent)
7361 then
7362 return;
7363 end if;
7364 end if;
7366 raise Cannot_Be_Static;
7367 end Ensure_Expression_Is_SA;
7369 -----------------------
7370 -- Ensure_Type_Is_SA --
7371 -----------------------
7373 procedure Ensure_Type_Is_SA (Typ : Entity_Id) is
7374 N : Node_Id;
7375 C : Entity_Id;
7377 begin
7378 -- If type is library level, we are all set
7380 if Is_Library_Level_Entity (Typ) then
7381 return;
7382 end if;
7384 -- We are also OK if the type already marked as statically allocated,
7385 -- which means we processed it before.
7387 if Is_Statically_Allocated (Typ) then
7388 return;
7389 end if;
7391 -- Mark type as statically allocated
7393 Set_Is_Statically_Allocated (Typ);
7395 -- Check that it is safe to statically allocate this type
7397 if Is_Scalar_Type (Typ) or else Is_Real_Type (Typ) then
7398 Ensure_Expression_Is_SA (Type_Low_Bound (Typ));
7399 Ensure_Expression_Is_SA (Type_High_Bound (Typ));
7401 elsif Is_Array_Type (Typ) then
7402 N := First_Index (Typ);
7403 while Present (N) loop
7404 Ensure_Type_Is_SA (Etype (N));
7405 Next_Index (N);
7406 end loop;
7408 Ensure_Type_Is_SA (Component_Type (Typ));
7410 elsif Is_Access_Type (Typ) then
7411 if Ekind (Designated_Type (Typ)) = E_Subprogram_Type then
7413 declare
7414 F : Entity_Id;
7415 T : constant Entity_Id := Etype (Designated_Type (Typ));
7417 begin
7418 if T /= Standard_Void_Type then
7419 Ensure_Type_Is_SA (T);
7420 end if;
7422 F := First_Formal (Designated_Type (Typ));
7423 while Present (F) loop
7424 Ensure_Type_Is_SA (Etype (F));
7425 Next_Formal (F);
7426 end loop;
7427 end;
7429 else
7430 Ensure_Type_Is_SA (Designated_Type (Typ));
7431 end if;
7433 elsif Is_Record_Type (Typ) then
7434 C := First_Entity (Typ);
7435 while Present (C) loop
7436 if Ekind (C) = E_Discriminant
7437 or else Ekind (C) = E_Component
7438 then
7439 Ensure_Type_Is_SA (Etype (C));
7441 elsif Is_Type (C) then
7442 Ensure_Type_Is_SA (C);
7443 end if;
7445 Next_Entity (C);
7446 end loop;
7448 elsif Ekind (Typ) = E_Subprogram_Type then
7449 Ensure_Type_Is_SA (Etype (Typ));
7451 C := First_Formal (Typ);
7452 while Present (C) loop
7453 Ensure_Type_Is_SA (Etype (C));
7454 Next_Formal (C);
7455 end loop;
7457 else
7458 raise Cannot_Be_Static;
7459 end if;
7460 end Ensure_Type_Is_SA;
7462 -- Start of processing for Freeze_Static_Object
7464 begin
7465 Ensure_Type_Is_SA (Etype (E));
7467 exception
7468 when Cannot_Be_Static =>
7470 -- If the object that cannot be static is imported or exported, then
7471 -- issue an error message saying that this object cannot be imported
7472 -- or exported. If it has an address clause it is an overlay in the
7473 -- current partition and the static requirement is not relevant.
7474 -- Do not issue any error message when ignoring rep clauses.
7476 if Ignore_Rep_Clauses then
7477 null;
7479 elsif Is_Imported (E) then
7480 if No (Address_Clause (E)) then
7481 Error_Msg_N
7482 ("& cannot be imported (local type is not constant)", E);
7483 end if;
7485 -- Otherwise must be exported, something is wrong if compiler
7486 -- is marking something as statically allocated which cannot be).
7488 else pragma Assert (Is_Exported (E));
7489 Error_Msg_N
7490 ("& cannot be exported (local type is not constant)", E);
7491 end if;
7492 end Freeze_Static_Object;
7494 -----------------------
7495 -- Freeze_Subprogram --
7496 -----------------------
7498 procedure Freeze_Subprogram (E : Entity_Id) is
7499 Retype : Entity_Id;
7500 F : Entity_Id;
7502 begin
7503 -- Subprogram may not have an address clause unless it is imported
7505 if Present (Address_Clause (E)) then
7506 if not Is_Imported (E) then
7507 Error_Msg_N
7508 ("address clause can only be given " &
7509 "for imported subprogram",
7510 Name (Address_Clause (E)));
7511 end if;
7512 end if;
7514 -- Reset the Pure indication on an imported subprogram unless an
7515 -- explicit Pure_Function pragma was present or the subprogram is an
7516 -- intrinsic. We do this because otherwise it is an insidious error
7517 -- to call a non-pure function from pure unit and have calls
7518 -- mysteriously optimized away. What happens here is that the Import
7519 -- can bypass the normal check to ensure that pure units call only pure
7520 -- subprograms.
7522 -- The reason for the intrinsic exception is that in general, intrinsic
7523 -- functions (such as shifts) are pure anyway. The only exceptions are
7524 -- the intrinsics in GNAT.Source_Info, and that unit is not marked Pure
7525 -- in any case, so no problem arises.
7527 if Is_Imported (E)
7528 and then Is_Pure (E)
7529 and then not Has_Pragma_Pure_Function (E)
7530 and then not Is_Intrinsic_Subprogram (E)
7531 then
7532 Set_Is_Pure (E, False);
7533 end if;
7535 -- For non-foreign convention subprograms, this is where we create
7536 -- the extra formals (for accessibility level and constrained bit
7537 -- information). We delay this till the freeze point precisely so
7538 -- that we know the convention.
7540 if not Has_Foreign_Convention (E) then
7541 Create_Extra_Formals (E);
7542 Set_Mechanisms (E);
7544 -- If this is convention Ada and a Valued_Procedure, that's odd
7546 if Ekind (E) = E_Procedure
7547 and then Is_Valued_Procedure (E)
7548 and then Convention (E) = Convention_Ada
7549 and then Warn_On_Export_Import
7550 then
7551 Error_Msg_N
7552 ("??Valued_Procedure has no effect for convention Ada", E);
7553 Set_Is_Valued_Procedure (E, False);
7554 end if;
7556 -- Case of foreign convention
7558 else
7559 Set_Mechanisms (E);
7561 -- For foreign conventions, warn about return of unconstrained array
7563 if Ekind (E) = E_Function then
7564 Retype := Underlying_Type (Etype (E));
7566 -- If no return type, probably some other error, e.g. a
7567 -- missing full declaration, so ignore.
7569 if No (Retype) then
7570 null;
7572 -- If the return type is generic, we have emitted a warning
7573 -- earlier on, and there is nothing else to check here. Specific
7574 -- instantiations may lead to erroneous behavior.
7576 elsif Is_Generic_Type (Etype (E)) then
7577 null;
7579 -- Display warning if returning unconstrained array
7581 elsif Is_Array_Type (Retype)
7582 and then not Is_Constrained (Retype)
7584 -- Check appropriate warning is enabled (should we check for
7585 -- Warnings (Off) on specific entities here, probably so???)
7587 and then Warn_On_Export_Import
7589 -- Exclude the VM case, since return of unconstrained arrays
7590 -- is properly handled in both the JVM and .NET cases.
7592 and then VM_Target = No_VM
7593 then
7594 Error_Msg_N
7595 ("?x?foreign convention function& should not return " &
7596 "unconstrained array", E);
7597 return;
7598 end if;
7599 end if;
7601 -- If any of the formals for an exported foreign convention
7602 -- subprogram have defaults, then emit an appropriate warning since
7603 -- this is odd (default cannot be used from non-Ada code)
7605 if Is_Exported (E) then
7606 F := First_Formal (E);
7607 while Present (F) loop
7608 if Warn_On_Export_Import
7609 and then Present (Default_Value (F))
7610 then
7611 Error_Msg_N
7612 ("?x?parameter cannot be defaulted in non-Ada call",
7613 Default_Value (F));
7614 end if;
7616 Next_Formal (F);
7617 end loop;
7618 end if;
7619 end if;
7621 -- Pragma Inline_Always is disallowed for dispatching subprograms
7622 -- because the address of such subprograms is saved in the dispatch
7623 -- table to support dispatching calls, and dispatching calls cannot
7624 -- be inlined. This is consistent with the restriction against using
7625 -- 'Access or 'Address on an Inline_Always subprogram.
7627 if Is_Dispatching_Operation (E)
7628 and then Has_Pragma_Inline_Always (E)
7629 then
7630 Error_Msg_N
7631 ("pragma Inline_Always not allowed for dispatching subprograms", E);
7632 end if;
7634 -- Because of the implicit representation of inherited predefined
7635 -- operators in the front-end, the overriding status of the operation
7636 -- may be affected when a full view of a type is analyzed, and this is
7637 -- not captured by the analysis of the corresponding type declaration.
7638 -- Therefore the correctness of a not-overriding indicator must be
7639 -- rechecked when the subprogram is frozen.
7641 if Nkind (E) = N_Defining_Operator_Symbol
7642 and then not Error_Posted (Parent (E))
7643 then
7644 Check_Overriding_Indicator (E, Empty, Is_Primitive (E));
7645 end if;
7646 end Freeze_Subprogram;
7648 ----------------------
7649 -- Is_Fully_Defined --
7650 ----------------------
7652 function Is_Fully_Defined (T : Entity_Id) return Boolean is
7653 begin
7654 if Ekind (T) = E_Class_Wide_Type then
7655 return Is_Fully_Defined (Etype (T));
7657 elsif Is_Array_Type (T) then
7658 return Is_Fully_Defined (Component_Type (T));
7660 elsif Is_Record_Type (T)
7661 and not Is_Private_Type (T)
7662 then
7663 -- Verify that the record type has no components with private types
7664 -- without completion.
7666 declare
7667 Comp : Entity_Id;
7669 begin
7670 Comp := First_Component (T);
7671 while Present (Comp) loop
7672 if not Is_Fully_Defined (Etype (Comp)) then
7673 return False;
7674 end if;
7676 Next_Component (Comp);
7677 end loop;
7678 return True;
7679 end;
7681 -- For the designated type of an access to subprogram, all types in
7682 -- the profile must be fully defined.
7684 elsif Ekind (T) = E_Subprogram_Type then
7685 declare
7686 F : Entity_Id;
7688 begin
7689 F := First_Formal (T);
7690 while Present (F) loop
7691 if not Is_Fully_Defined (Etype (F)) then
7692 return False;
7693 end if;
7695 Next_Formal (F);
7696 end loop;
7698 return Is_Fully_Defined (Etype (T));
7699 end;
7701 else
7702 return not Is_Private_Type (T)
7703 or else Present (Full_View (Base_Type (T)));
7704 end if;
7705 end Is_Fully_Defined;
7707 ---------------------------------
7708 -- Process_Default_Expressions --
7709 ---------------------------------
7711 procedure Process_Default_Expressions
7712 (E : Entity_Id;
7713 After : in out Node_Id)
7715 Loc : constant Source_Ptr := Sloc (E);
7716 Dbody : Node_Id;
7717 Formal : Node_Id;
7718 Dcopy : Node_Id;
7719 Dnam : Entity_Id;
7721 begin
7722 Set_Default_Expressions_Processed (E);
7724 -- A subprogram instance and its associated anonymous subprogram share
7725 -- their signature. The default expression functions are defined in the
7726 -- wrapper packages for the anonymous subprogram, and should not be
7727 -- generated again for the instance.
7729 if Is_Generic_Instance (E)
7730 and then Present (Alias (E))
7731 and then Default_Expressions_Processed (Alias (E))
7732 then
7733 return;
7734 end if;
7736 Formal := First_Formal (E);
7737 while Present (Formal) loop
7738 if Present (Default_Value (Formal)) then
7740 -- We work with a copy of the default expression because we
7741 -- do not want to disturb the original, since this would mess
7742 -- up the conformance checking.
7744 Dcopy := New_Copy_Tree (Default_Value (Formal));
7746 -- The analysis of the expression may generate insert actions,
7747 -- which of course must not be executed. We wrap those actions
7748 -- in a procedure that is not called, and later on eliminated.
7749 -- The following cases have no side-effects, and are analyzed
7750 -- directly.
7752 if Nkind (Dcopy) = N_Identifier
7753 or else Nkind_In (Dcopy, N_Expanded_Name,
7754 N_Integer_Literal,
7755 N_Character_Literal,
7756 N_String_Literal,
7757 N_Real_Literal)
7758 or else (Nkind (Dcopy) = N_Attribute_Reference
7759 and then Attribute_Name (Dcopy) = Name_Null_Parameter)
7760 or else Known_Null (Dcopy)
7761 then
7762 -- If there is no default function, we must still do a full
7763 -- analyze call on the default value, to ensure that all error
7764 -- checks are performed, e.g. those associated with static
7765 -- evaluation. Note: this branch will always be taken if the
7766 -- analyzer is turned off (but we still need the error checks).
7768 -- Note: the setting of parent here is to meet the requirement
7769 -- that we can only analyze the expression while attached to
7770 -- the tree. Really the requirement is that the parent chain
7771 -- be set, we don't actually need to be in the tree.
7773 Set_Parent (Dcopy, Declaration_Node (Formal));
7774 Analyze (Dcopy);
7776 -- Default expressions are resolved with their own type if the
7777 -- context is generic, to avoid anomalies with private types.
7779 if Ekind (Scope (E)) = E_Generic_Package then
7780 Resolve (Dcopy);
7781 else
7782 Resolve (Dcopy, Etype (Formal));
7783 end if;
7785 -- If that resolved expression will raise constraint error,
7786 -- then flag the default value as raising constraint error.
7787 -- This allows a proper error message on the calls.
7789 if Raises_Constraint_Error (Dcopy) then
7790 Set_Raises_Constraint_Error (Default_Value (Formal));
7791 end if;
7793 -- If the default is a parameterless call, we use the name of
7794 -- the called function directly, and there is no body to build.
7796 elsif Nkind (Dcopy) = N_Function_Call
7797 and then No (Parameter_Associations (Dcopy))
7798 then
7799 null;
7801 -- Else construct and analyze the body of a wrapper procedure
7802 -- that contains an object declaration to hold the expression.
7803 -- Given that this is done only to complete the analysis, it
7804 -- simpler to build a procedure than a function which might
7805 -- involve secondary stack expansion.
7807 else
7808 Dnam := Make_Temporary (Loc, 'D');
7810 Dbody :=
7811 Make_Subprogram_Body (Loc,
7812 Specification =>
7813 Make_Procedure_Specification (Loc,
7814 Defining_Unit_Name => Dnam),
7816 Declarations => New_List (
7817 Make_Object_Declaration (Loc,
7818 Defining_Identifier => Make_Temporary (Loc, 'T'),
7819 Object_Definition =>
7820 New_Occurrence_Of (Etype (Formal), Loc),
7821 Expression => New_Copy_Tree (Dcopy))),
7823 Handled_Statement_Sequence =>
7824 Make_Handled_Sequence_Of_Statements (Loc,
7825 Statements => Empty_List));
7827 Set_Scope (Dnam, Scope (E));
7828 Set_Assignment_OK (First (Declarations (Dbody)));
7829 Set_Is_Eliminated (Dnam);
7830 Insert_After (After, Dbody);
7831 Analyze (Dbody);
7832 After := Dbody;
7833 end if;
7834 end if;
7836 Next_Formal (Formal);
7837 end loop;
7838 end Process_Default_Expressions;
7840 ----------------------------------------
7841 -- Set_Component_Alignment_If_Not_Set --
7842 ----------------------------------------
7844 procedure Set_Component_Alignment_If_Not_Set (Typ : Entity_Id) is
7845 begin
7846 -- Ignore if not base type, subtypes don't need anything
7848 if Typ /= Base_Type (Typ) then
7849 return;
7850 end if;
7852 -- Do not override existing representation
7854 if Is_Packed (Typ) then
7855 return;
7857 elsif Has_Specified_Layout (Typ) then
7858 return;
7860 elsif Component_Alignment (Typ) /= Calign_Default then
7861 return;
7863 else
7864 Set_Component_Alignment
7865 (Typ, Scope_Stack.Table
7866 (Scope_Stack.Last).Component_Alignment_Default);
7867 end if;
7868 end Set_Component_Alignment_If_Not_Set;
7870 --------------------------
7871 -- Set_SSO_From_Default --
7872 --------------------------
7874 procedure Set_SSO_From_Default (T : Entity_Id) is
7875 Reversed : Boolean;
7877 begin
7878 -- Set default SSO for an array or record base type, except in case of
7879 -- a type extension (which always inherits the SSO of its parent type).
7881 if Is_Base_Type (T)
7882 and then (Is_Array_Type (T)
7883 or else (Is_Record_Type (T)
7884 and then not (Is_Tagged_Type (T)
7885 and then Is_Derived_Type (T))))
7886 then
7887 Reversed :=
7888 (Bytes_Big_Endian and then SSO_Set_Low_By_Default (T))
7889 or else
7890 (not Bytes_Big_Endian and then SSO_Set_High_By_Default (T));
7892 if (SSO_Set_Low_By_Default (T) or else SSO_Set_High_By_Default (T))
7894 -- For a record type, if bit order is specified explicitly,
7895 -- then do not set SSO from default if not consistent. Note that
7896 -- we do not want to look at a Bit_Order attribute definition
7897 -- for a parent: if we were to inherit Bit_Order, then both
7898 -- SSO_Set_*_By_Default flags would have been cleared already
7899 -- (by Inherit_Aspects_At_Freeze_Point).
7901 and then not
7902 (Is_Record_Type (T)
7903 and then
7904 Has_Rep_Item (T, Name_Bit_Order, Check_Parents => False)
7905 and then Reverse_Bit_Order (T) /= Reversed)
7906 then
7907 -- If flags cause reverse storage order, then set the result. Note
7908 -- that we would have ignored the pragma setting the non default
7909 -- storage order in any case, hence the assertion at this point.
7911 pragma Assert
7912 (not Reversed or else Support_Nondefault_SSO_On_Target);
7914 Set_Reverse_Storage_Order (T, Reversed);
7916 -- For a record type, also set reversed bit order. Note: if a bit
7917 -- order has been specified explicitly, then this is a no-op.
7919 if Is_Record_Type (T) then
7920 Set_Reverse_Bit_Order (T, Reversed);
7921 end if;
7922 end if;
7923 end if;
7924 end Set_SSO_From_Default;
7926 ------------------
7927 -- Undelay_Type --
7928 ------------------
7930 procedure Undelay_Type (T : Entity_Id) is
7931 begin
7932 Set_Has_Delayed_Freeze (T, False);
7933 Set_Freeze_Node (T, Empty);
7935 -- Since we don't want T to have a Freeze_Node, we don't want its
7936 -- Full_View or Corresponding_Record_Type to have one either.
7938 -- ??? Fundamentally, this whole handling is unpleasant. What we really
7939 -- want is to be sure that for an Itype that's part of record R and is a
7940 -- subtype of type T, that it's frozen after the later of the freeze
7941 -- points of R and T. We have no way of doing that directly, so what we
7942 -- do is force most such Itypes to be frozen as part of freezing R via
7943 -- this procedure and only delay the ones that need to be delayed
7944 -- (mostly the designated types of access types that are defined as part
7945 -- of the record).
7947 if Is_Private_Type (T)
7948 and then Present (Full_View (T))
7949 and then Is_Itype (Full_View (T))
7950 and then Is_Record_Type (Scope (Full_View (T)))
7951 then
7952 Undelay_Type (Full_View (T));
7953 end if;
7955 if Is_Concurrent_Type (T)
7956 and then Present (Corresponding_Record_Type (T))
7957 and then Is_Itype (Corresponding_Record_Type (T))
7958 and then Is_Record_Type (Scope (Corresponding_Record_Type (T)))
7959 then
7960 Undelay_Type (Corresponding_Record_Type (T));
7961 end if;
7962 end Undelay_Type;
7964 ------------------
7965 -- Warn_Overlay --
7966 ------------------
7968 procedure Warn_Overlay
7969 (Expr : Node_Id;
7970 Typ : Entity_Id;
7971 Nam : Entity_Id)
7973 Ent : constant Entity_Id := Entity (Nam);
7974 -- The object to which the address clause applies
7976 Init : Node_Id;
7977 Old : Entity_Id := Empty;
7978 Decl : Node_Id;
7980 begin
7981 -- No warning if address clause overlay warnings are off
7983 if not Address_Clause_Overlay_Warnings then
7984 return;
7985 end if;
7987 -- No warning if there is an explicit initialization
7989 Init := Original_Node (Expression (Declaration_Node (Ent)));
7991 if Present (Init) and then Comes_From_Source (Init) then
7992 return;
7993 end if;
7995 -- We only give the warning for non-imported entities of a type for
7996 -- which a non-null base init proc is defined, or for objects of access
7997 -- types with implicit null initialization, or when Normalize_Scalars
7998 -- applies and the type is scalar or a string type (the latter being
7999 -- tested for because predefined String types are initialized by inline
8000 -- code rather than by an init_proc). Note that we do not give the
8001 -- warning for Initialize_Scalars, since we suppressed initialization
8002 -- in this case. Also, do not warn if Suppress_Initialization is set.
8004 if Present (Expr)
8005 and then not Is_Imported (Ent)
8006 and then not Initialization_Suppressed (Typ)
8007 and then (Has_Non_Null_Base_Init_Proc (Typ)
8008 or else Is_Access_Type (Typ)
8009 or else (Normalize_Scalars
8010 and then (Is_Scalar_Type (Typ)
8011 or else Is_String_Type (Typ))))
8012 then
8013 if Nkind (Expr) = N_Attribute_Reference
8014 and then Is_Entity_Name (Prefix (Expr))
8015 then
8016 Old := Entity (Prefix (Expr));
8018 elsif Is_Entity_Name (Expr)
8019 and then Ekind (Entity (Expr)) = E_Constant
8020 then
8021 Decl := Declaration_Node (Entity (Expr));
8023 if Nkind (Decl) = N_Object_Declaration
8024 and then Present (Expression (Decl))
8025 and then Nkind (Expression (Decl)) = N_Attribute_Reference
8026 and then Is_Entity_Name (Prefix (Expression (Decl)))
8027 then
8028 Old := Entity (Prefix (Expression (Decl)));
8030 elsif Nkind (Expr) = N_Function_Call then
8031 return;
8032 end if;
8034 -- A function call (most likely to To_Address) is probably not an
8035 -- overlay, so skip warning. Ditto if the function call was inlined
8036 -- and transformed into an entity.
8038 elsif Nkind (Original_Node (Expr)) = N_Function_Call then
8039 return;
8040 end if;
8042 -- If a pragma Import follows, we assume that it is for the current
8043 -- target of the address clause, and skip the warning. There may be
8044 -- a source pragma or an aspect that specifies import and generates
8045 -- the corresponding pragma. These will indicate that the entity is
8046 -- imported and that is checked above so that the spurious warning
8047 -- (generated when the entity is frozen) will be suppressed. The
8048 -- pragma may be attached to the aspect, so it is not yet a list
8049 -- member.
8051 if Is_List_Member (Parent (Expr)) then
8052 Decl := Next (Parent (Expr));
8054 if Present (Decl)
8055 and then Nkind (Decl) = N_Pragma
8056 and then Pragma_Name (Decl) = Name_Import
8057 then
8058 return;
8059 end if;
8060 end if;
8062 -- Otherwise give warning message
8064 if Present (Old) then
8065 Error_Msg_Node_2 := Old;
8066 Error_Msg_N
8067 ("default initialization of & may modify &??",
8068 Nam);
8069 else
8070 Error_Msg_N
8071 ("default initialization of & may modify overlaid storage??",
8072 Nam);
8073 end if;
8075 -- Add friendly warning if initialization comes from a packed array
8076 -- component.
8078 if Is_Record_Type (Typ) then
8079 declare
8080 Comp : Entity_Id;
8082 begin
8083 Comp := First_Component (Typ);
8084 while Present (Comp) loop
8085 if Nkind (Parent (Comp)) = N_Component_Declaration
8086 and then Present (Expression (Parent (Comp)))
8087 then
8088 exit;
8089 elsif Is_Array_Type (Etype (Comp))
8090 and then Present (Packed_Array_Impl_Type (Etype (Comp)))
8091 then
8092 Error_Msg_NE
8093 ("\packed array component& " &
8094 "will be initialized to zero??",
8095 Nam, Comp);
8096 exit;
8097 else
8098 Next_Component (Comp);
8099 end if;
8100 end loop;
8101 end;
8102 end if;
8104 Error_Msg_N
8105 ("\use pragma Import for & to " &
8106 "suppress initialization (RM B.1(24))??",
8107 Nam);
8108 end if;
8109 end Warn_Overlay;
8111 end Freeze;