2015-05-05 Yvan Roux <yvan.roux@linaro.org>
[official-gcc.git] / gcc / ada / exp_util.adb
blob5ae0a2113f53514cbfdf8204965e8e044a17e82e
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- E X P _ U T I L --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2015, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Casing; use Casing;
29 with Checks; use Checks;
30 with Debug; use Debug;
31 with Einfo; use Einfo;
32 with Elists; use Elists;
33 with Errout; use Errout;
34 with Exp_Aggr; use Exp_Aggr;
35 with Exp_Ch6; use Exp_Ch6;
36 with Exp_Ch7; use Exp_Ch7;
37 with Inline; use Inline;
38 with Itypes; use Itypes;
39 with Lib; use Lib;
40 with Nlists; use Nlists;
41 with Nmake; use Nmake;
42 with Opt; use Opt;
43 with Restrict; use Restrict;
44 with Rident; use Rident;
45 with Sem; use Sem;
46 with Sem_Aux; use Sem_Aux;
47 with Sem_Ch8; use Sem_Ch8;
48 with Sem_Eval; use Sem_Eval;
49 with Sem_Res; use Sem_Res;
50 with Sem_Type; use Sem_Type;
51 with Sem_Util; use Sem_Util;
52 with Snames; use Snames;
53 with Stand; use Stand;
54 with Stringt; use Stringt;
55 with Targparm; use Targparm;
56 with Tbuild; use Tbuild;
57 with Ttypes; use Ttypes;
58 with Urealp; use Urealp;
59 with Validsw; use Validsw;
61 package body Exp_Util is
63 -----------------------
64 -- Local Subprograms --
65 -----------------------
67 function Build_Task_Array_Image
68 (Loc : Source_Ptr;
69 Id_Ref : Node_Id;
70 A_Type : Entity_Id;
71 Dyn : Boolean := False) return Node_Id;
72 -- Build function to generate the image string for a task that is an array
73 -- component, concatenating the images of each index. To avoid storage
74 -- leaks, the string is built with successive slice assignments. The flag
75 -- Dyn indicates whether this is called for the initialization procedure of
76 -- an array of tasks, or for the name of a dynamically created task that is
77 -- assigned to an indexed component.
79 function Build_Task_Image_Function
80 (Loc : Source_Ptr;
81 Decls : List_Id;
82 Stats : List_Id;
83 Res : Entity_Id) return Node_Id;
84 -- Common processing for Task_Array_Image and Task_Record_Image. Build
85 -- function body that computes image.
87 procedure Build_Task_Image_Prefix
88 (Loc : Source_Ptr;
89 Len : out Entity_Id;
90 Res : out Entity_Id;
91 Pos : out Entity_Id;
92 Prefix : Entity_Id;
93 Sum : Node_Id;
94 Decls : List_Id;
95 Stats : List_Id);
96 -- Common processing for Task_Array_Image and Task_Record_Image. Create
97 -- local variables and assign prefix of name to result string.
99 function Build_Task_Record_Image
100 (Loc : Source_Ptr;
101 Id_Ref : Node_Id;
102 Dyn : Boolean := False) return Node_Id;
103 -- Build function to generate the image string for a task that is a record
104 -- component. Concatenate name of variable with that of selector. The flag
105 -- Dyn indicates whether this is called for the initialization procedure of
106 -- record with task components, or for a dynamically created task that is
107 -- assigned to a selected component.
109 procedure Evaluate_Slice_Bounds (Slice : Node_Id);
110 -- Force evaluation of bounds of a slice, which may be given by a range
111 -- or by a subtype indication with or without a constraint.
113 function Make_CW_Equivalent_Type
114 (T : Entity_Id;
115 E : Node_Id) return Entity_Id;
116 -- T is a class-wide type entity, E is the initial expression node that
117 -- constrains T in case such as: " X: T := E" or "new T'(E)". This function
118 -- returns the entity of the Equivalent type and inserts on the fly the
119 -- necessary declaration such as:
121 -- type anon is record
122 -- _parent : Root_Type (T); constrained with E discriminants (if any)
123 -- Extension : String (1 .. expr to match size of E);
124 -- end record;
126 -- This record is compatible with any object of the class of T thanks to
127 -- the first field and has the same size as E thanks to the second.
129 function Make_Literal_Range
130 (Loc : Source_Ptr;
131 Literal_Typ : Entity_Id) return Node_Id;
132 -- Produce a Range node whose bounds are:
133 -- Low_Bound (Literal_Type) ..
134 -- Low_Bound (Literal_Type) + (Length (Literal_Typ) - 1)
135 -- this is used for expanding declarations like X : String := "sdfgdfg";
137 -- If the index type of the target array is not integer, we generate:
138 -- Low_Bound (Literal_Type) ..
139 -- Literal_Type'Val
140 -- (Literal_Type'Pos (Low_Bound (Literal_Type))
141 -- + (Length (Literal_Typ) -1))
143 function Make_Non_Empty_Check
144 (Loc : Source_Ptr;
145 N : Node_Id) return Node_Id;
146 -- Produce a boolean expression checking that the unidimensional array
147 -- node N is not empty.
149 function New_Class_Wide_Subtype
150 (CW_Typ : Entity_Id;
151 N : Node_Id) return Entity_Id;
152 -- Create an implicit subtype of CW_Typ attached to node N
154 function Requires_Cleanup_Actions
155 (L : List_Id;
156 Lib_Level : Boolean;
157 Nested_Constructs : Boolean) return Boolean;
158 -- Given a list L, determine whether it contains one of the following:
160 -- 1) controlled objects
161 -- 2) library-level tagged types
163 -- Lib_Level is True when the list comes from a construct at the library
164 -- level, and False otherwise. Nested_Constructs is True when any nested
165 -- packages declared in L must be processed, and False otherwise.
167 -------------------------------------
168 -- Activate_Atomic_Synchronization --
169 -------------------------------------
171 procedure Activate_Atomic_Synchronization (N : Node_Id) is
172 Msg_Node : Node_Id;
174 begin
175 case Nkind (Parent (N)) is
177 -- Check for cases of appearing in the prefix of a construct where
178 -- we don't need atomic synchronization for this kind of usage.
180 when
181 -- Nothing to do if we are the prefix of an attribute, since we
182 -- do not want an atomic sync operation for things like 'Size.
184 N_Attribute_Reference |
186 -- The N_Reference node is like an attribute
188 N_Reference |
190 -- Nothing to do for a reference to a component (or components)
191 -- of a composite object. Only reads and updates of the object
192 -- as a whole require atomic synchronization (RM C.6 (15)).
194 N_Indexed_Component |
195 N_Selected_Component |
196 N_Slice =>
198 -- For all the above cases, nothing to do if we are the prefix
200 if Prefix (Parent (N)) = N then
201 return;
202 end if;
204 when others => null;
205 end case;
207 -- Go ahead and set the flag
209 Set_Atomic_Sync_Required (N);
211 -- Generate info message if requested
213 if Warn_On_Atomic_Synchronization then
214 case Nkind (N) is
215 when N_Identifier =>
216 Msg_Node := N;
218 when N_Selected_Component | N_Expanded_Name =>
219 Msg_Node := Selector_Name (N);
221 when N_Explicit_Dereference | N_Indexed_Component =>
222 Msg_Node := Empty;
224 when others =>
225 pragma Assert (False);
226 return;
227 end case;
229 if Present (Msg_Node) then
230 Error_Msg_N
231 ("info: atomic synchronization set for &?N?", Msg_Node);
232 else
233 Error_Msg_N
234 ("info: atomic synchronization set?N?", N);
235 end if;
236 end if;
237 end Activate_Atomic_Synchronization;
239 ----------------------
240 -- Adjust_Condition --
241 ----------------------
243 procedure Adjust_Condition (N : Node_Id) is
244 begin
245 if No (N) then
246 return;
247 end if;
249 declare
250 Loc : constant Source_Ptr := Sloc (N);
251 T : constant Entity_Id := Etype (N);
252 Ti : Entity_Id;
254 begin
255 -- Defend against a call where the argument has no type, or has a
256 -- type that is not Boolean. This can occur because of prior errors.
258 if No (T) or else not Is_Boolean_Type (T) then
259 return;
260 end if;
262 -- Apply validity checking if needed
264 if Validity_Checks_On and Validity_Check_Tests then
265 Ensure_Valid (N);
266 end if;
268 -- Immediate return if standard boolean, the most common case,
269 -- where nothing needs to be done.
271 if Base_Type (T) = Standard_Boolean then
272 return;
273 end if;
275 -- Case of zero/non-zero semantics or non-standard enumeration
276 -- representation. In each case, we rewrite the node as:
278 -- ityp!(N) /= False'Enum_Rep
280 -- where ityp is an integer type with large enough size to hold any
281 -- value of type T.
283 if Nonzero_Is_True (T) or else Has_Non_Standard_Rep (T) then
284 if Esize (T) <= Esize (Standard_Integer) then
285 Ti := Standard_Integer;
286 else
287 Ti := Standard_Long_Long_Integer;
288 end if;
290 Rewrite (N,
291 Make_Op_Ne (Loc,
292 Left_Opnd => Unchecked_Convert_To (Ti, N),
293 Right_Opnd =>
294 Make_Attribute_Reference (Loc,
295 Attribute_Name => Name_Enum_Rep,
296 Prefix =>
297 New_Occurrence_Of (First_Literal (T), Loc))));
298 Analyze_And_Resolve (N, Standard_Boolean);
300 else
301 Rewrite (N, Convert_To (Standard_Boolean, N));
302 Analyze_And_Resolve (N, Standard_Boolean);
303 end if;
304 end;
305 end Adjust_Condition;
307 ------------------------
308 -- Adjust_Result_Type --
309 ------------------------
311 procedure Adjust_Result_Type (N : Node_Id; T : Entity_Id) is
312 begin
313 -- Ignore call if current type is not Standard.Boolean
315 if Etype (N) /= Standard_Boolean then
316 return;
317 end if;
319 -- If result is already of correct type, nothing to do. Note that
320 -- this will get the most common case where everything has a type
321 -- of Standard.Boolean.
323 if Base_Type (T) = Standard_Boolean then
324 return;
326 else
327 declare
328 KP : constant Node_Kind := Nkind (Parent (N));
330 begin
331 -- If result is to be used as a Condition in the syntax, no need
332 -- to convert it back, since if it was changed to Standard.Boolean
333 -- using Adjust_Condition, that is just fine for this usage.
335 if KP in N_Raise_xxx_Error or else KP in N_Has_Condition then
336 return;
338 -- If result is an operand of another logical operation, no need
339 -- to reset its type, since Standard.Boolean is just fine, and
340 -- such operations always do Adjust_Condition on their operands.
342 elsif KP in N_Op_Boolean
343 or else KP in N_Short_Circuit
344 or else KP = N_Op_Not
345 then
346 return;
348 -- Otherwise we perform a conversion from the current type, which
349 -- must be Standard.Boolean, to the desired type.
351 else
352 Set_Analyzed (N);
353 Rewrite (N, Convert_To (T, N));
354 Analyze_And_Resolve (N, T);
355 end if;
356 end;
357 end if;
358 end Adjust_Result_Type;
360 --------------------------
361 -- Append_Freeze_Action --
362 --------------------------
364 procedure Append_Freeze_Action (T : Entity_Id; N : Node_Id) is
365 Fnode : Node_Id;
367 begin
368 Ensure_Freeze_Node (T);
369 Fnode := Freeze_Node (T);
371 if No (Actions (Fnode)) then
372 Set_Actions (Fnode, New_List (N));
373 else
374 Append (N, Actions (Fnode));
375 end if;
377 end Append_Freeze_Action;
379 ---------------------------
380 -- Append_Freeze_Actions --
381 ---------------------------
383 procedure Append_Freeze_Actions (T : Entity_Id; L : List_Id) is
384 Fnode : Node_Id;
386 begin
387 if No (L) then
388 return;
389 end if;
391 Ensure_Freeze_Node (T);
392 Fnode := Freeze_Node (T);
394 if No (Actions (Fnode)) then
395 Set_Actions (Fnode, L);
396 else
397 Append_List (L, Actions (Fnode));
398 end if;
399 end Append_Freeze_Actions;
401 ------------------------------------
402 -- Build_Allocate_Deallocate_Proc --
403 ------------------------------------
405 procedure Build_Allocate_Deallocate_Proc
406 (N : Node_Id;
407 Is_Allocate : Boolean)
409 Desig_Typ : Entity_Id;
410 Expr : Node_Id;
411 Pool_Id : Entity_Id;
412 Proc_To_Call : Node_Id := Empty;
413 Ptr_Typ : Entity_Id;
415 function Find_Object (E : Node_Id) return Node_Id;
416 -- Given an arbitrary expression of an allocator, try to find an object
417 -- reference in it, otherwise return the original expression.
419 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean;
420 -- Determine whether subprogram Subp denotes a custom allocate or
421 -- deallocate.
423 -----------------
424 -- Find_Object --
425 -----------------
427 function Find_Object (E : Node_Id) return Node_Id is
428 Expr : Node_Id;
430 begin
431 pragma Assert (Is_Allocate);
433 Expr := E;
434 loop
435 if Nkind (Expr) = N_Explicit_Dereference then
436 Expr := Prefix (Expr);
438 elsif Nkind (Expr) = N_Qualified_Expression then
439 Expr := Expression (Expr);
441 elsif Nkind (Expr) = N_Unchecked_Type_Conversion then
443 -- When interface class-wide types are involved in allocation,
444 -- the expander introduces several levels of address arithmetic
445 -- to perform dispatch table displacement. In this scenario the
446 -- object appears as:
448 -- Tag_Ptr (Base_Address (<object>'Address))
450 -- Detect this case and utilize the whole expression as the
451 -- "object" since it now points to the proper dispatch table.
453 if Is_RTE (Etype (Expr), RE_Tag_Ptr) then
454 exit;
456 -- Continue to strip the object
458 else
459 Expr := Expression (Expr);
460 end if;
462 else
463 exit;
464 end if;
465 end loop;
467 return Expr;
468 end Find_Object;
470 ---------------------------------
471 -- Is_Allocate_Deallocate_Proc --
472 ---------------------------------
474 function Is_Allocate_Deallocate_Proc (Subp : Entity_Id) return Boolean is
475 begin
476 -- Look for a subprogram body with only one statement which is a
477 -- call to Allocate_Any_Controlled / Deallocate_Any_Controlled.
479 if Ekind (Subp) = E_Procedure
480 and then Nkind (Parent (Parent (Subp))) = N_Subprogram_Body
481 then
482 declare
483 HSS : constant Node_Id :=
484 Handled_Statement_Sequence (Parent (Parent (Subp)));
485 Proc : Entity_Id;
487 begin
488 if Present (Statements (HSS))
489 and then Nkind (First (Statements (HSS))) =
490 N_Procedure_Call_Statement
491 then
492 Proc := Entity (Name (First (Statements (HSS))));
494 return
495 Is_RTE (Proc, RE_Allocate_Any_Controlled)
496 or else Is_RTE (Proc, RE_Deallocate_Any_Controlled);
497 end if;
498 end;
499 end if;
501 return False;
502 end Is_Allocate_Deallocate_Proc;
504 -- Start of processing for Build_Allocate_Deallocate_Proc
506 begin
507 -- Obtain the attributes of the allocation / deallocation
509 if Nkind (N) = N_Free_Statement then
510 Expr := Expression (N);
511 Ptr_Typ := Base_Type (Etype (Expr));
512 Proc_To_Call := Procedure_To_Call (N);
514 else
515 if Nkind (N) = N_Object_Declaration then
516 Expr := Expression (N);
517 else
518 Expr := N;
519 end if;
521 -- In certain cases an allocator with a qualified expression may
522 -- be relocated and used as the initialization expression of a
523 -- temporary:
525 -- before:
526 -- Obj : Ptr_Typ := new Desig_Typ'(...);
528 -- after:
529 -- Tmp : Ptr_Typ := new Desig_Typ'(...);
530 -- Obj : Ptr_Typ := Tmp;
532 -- Since the allocator is always marked as analyzed to avoid infinite
533 -- expansion, it will never be processed by this routine given that
534 -- the designated type needs finalization actions. Detect this case
535 -- and complete the expansion of the allocator.
537 if Nkind (Expr) = N_Identifier
538 and then Nkind (Parent (Entity (Expr))) = N_Object_Declaration
539 and then Nkind (Expression (Parent (Entity (Expr)))) = N_Allocator
540 then
541 Build_Allocate_Deallocate_Proc (Parent (Entity (Expr)), True);
542 return;
543 end if;
545 -- The allocator may have been rewritten into something else in which
546 -- case the expansion performed by this routine does not apply.
548 if Nkind (Expr) /= N_Allocator then
549 return;
550 end if;
552 Ptr_Typ := Base_Type (Etype (Expr));
553 Proc_To_Call := Procedure_To_Call (Expr);
554 end if;
556 Pool_Id := Associated_Storage_Pool (Ptr_Typ);
557 Desig_Typ := Available_View (Designated_Type (Ptr_Typ));
559 -- Handle concurrent types
561 if Is_Concurrent_Type (Desig_Typ)
562 and then Present (Corresponding_Record_Type (Desig_Typ))
563 then
564 Desig_Typ := Corresponding_Record_Type (Desig_Typ);
565 end if;
567 -- Do not process allocations / deallocations without a pool
569 if No (Pool_Id) then
570 return;
572 -- Do not process allocations on / deallocations from the secondary
573 -- stack.
575 elsif Is_RTE (Pool_Id, RE_SS_Pool) then
576 return;
578 -- Do not replicate the machinery if the allocator / free has already
579 -- been expanded and has a custom Allocate / Deallocate.
581 elsif Present (Proc_To_Call)
582 and then Is_Allocate_Deallocate_Proc (Proc_To_Call)
583 then
584 return;
585 end if;
587 if Needs_Finalization (Desig_Typ) then
589 -- Certain run-time configurations and targets do not provide support
590 -- for controlled types.
592 if Restriction_Active (No_Finalization) then
593 return;
595 -- Do nothing if the access type may never allocate / deallocate
596 -- objects.
598 elsif No_Pool_Assigned (Ptr_Typ) then
599 return;
601 -- Access-to-controlled types are not supported on .NET/JVM since
602 -- these targets cannot support pools and address arithmetic.
604 elsif VM_Target /= No_VM then
605 return;
606 end if;
608 -- The allocation / deallocation of a controlled object must be
609 -- chained on / detached from a finalization master.
611 pragma Assert (Present (Finalization_Master (Ptr_Typ)));
613 -- The only other kind of allocation / deallocation supported by this
614 -- routine is on / from a subpool.
616 elsif Nkind (Expr) = N_Allocator
617 and then No (Subpool_Handle_Name (Expr))
618 then
619 return;
620 end if;
622 declare
623 Loc : constant Source_Ptr := Sloc (N);
624 Addr_Id : constant Entity_Id := Make_Temporary (Loc, 'A');
625 Alig_Id : constant Entity_Id := Make_Temporary (Loc, 'L');
626 Proc_Id : constant Entity_Id := Make_Temporary (Loc, 'P');
627 Size_Id : constant Entity_Id := Make_Temporary (Loc, 'S');
629 Actuals : List_Id;
630 Fin_Addr_Id : Entity_Id;
631 Fin_Mas_Act : Node_Id;
632 Fin_Mas_Id : Entity_Id;
633 Proc_To_Call : Entity_Id;
634 Subpool : Node_Id := Empty;
636 begin
637 -- Step 1: Construct all the actuals for the call to library routine
638 -- Allocate_Any_Controlled / Deallocate_Any_Controlled.
640 -- a) Storage pool
642 Actuals := New_List (New_Occurrence_Of (Pool_Id, Loc));
644 if Is_Allocate then
646 -- b) Subpool
648 if Nkind (Expr) = N_Allocator then
649 Subpool := Subpool_Handle_Name (Expr);
650 end if;
652 -- If a subpool is present it can be an arbitrary name, so make
653 -- the actual by copying the tree.
655 if Present (Subpool) then
656 Append_To (Actuals, New_Copy_Tree (Subpool, New_Sloc => Loc));
657 else
658 Append_To (Actuals, Make_Null (Loc));
659 end if;
661 -- c) Finalization master
663 if Needs_Finalization (Desig_Typ) then
664 Fin_Mas_Id := Finalization_Master (Ptr_Typ);
665 Fin_Mas_Act := New_Occurrence_Of (Fin_Mas_Id, Loc);
667 -- Handle the case where the master is actually a pointer to a
668 -- master. This case arises in build-in-place functions.
670 if Is_Access_Type (Etype (Fin_Mas_Id)) then
671 Append_To (Actuals, Fin_Mas_Act);
672 else
673 Append_To (Actuals,
674 Make_Attribute_Reference (Loc,
675 Prefix => Fin_Mas_Act,
676 Attribute_Name => Name_Unrestricted_Access));
677 end if;
678 else
679 Append_To (Actuals, Make_Null (Loc));
680 end if;
682 -- d) Finalize_Address
684 -- Primitive Finalize_Address is never generated in CodePeer mode
685 -- since it contains an Unchecked_Conversion.
687 if Needs_Finalization (Desig_Typ) and then not CodePeer_Mode then
688 Fin_Addr_Id := Finalize_Address (Desig_Typ);
689 pragma Assert (Present (Fin_Addr_Id));
691 Append_To (Actuals,
692 Make_Attribute_Reference (Loc,
693 Prefix => New_Occurrence_Of (Fin_Addr_Id, Loc),
694 Attribute_Name => Name_Unrestricted_Access));
695 else
696 Append_To (Actuals, Make_Null (Loc));
697 end if;
698 end if;
700 -- e) Address
701 -- f) Storage_Size
702 -- g) Alignment
704 Append_To (Actuals, New_Occurrence_Of (Addr_Id, Loc));
705 Append_To (Actuals, New_Occurrence_Of (Size_Id, Loc));
707 if Is_Allocate or else not Is_Class_Wide_Type (Desig_Typ) then
708 Append_To (Actuals, New_Occurrence_Of (Alig_Id, Loc));
710 -- For deallocation of class-wide types we obtain the value of
711 -- alignment from the Type Specific Record of the deallocated object.
712 -- This is needed because the frontend expansion of class-wide types
713 -- into equivalent types confuses the backend.
715 else
716 -- Generate:
717 -- Obj.all'Alignment
719 -- ... because 'Alignment applied to class-wide types is expanded
720 -- into the code that reads the value of alignment from the TSD
721 -- (see Expand_N_Attribute_Reference)
723 Append_To (Actuals,
724 Unchecked_Convert_To (RTE (RE_Storage_Offset),
725 Make_Attribute_Reference (Loc,
726 Prefix =>
727 Make_Explicit_Dereference (Loc, Relocate_Node (Expr)),
728 Attribute_Name => Name_Alignment)));
729 end if;
731 -- h) Is_Controlled
733 if Needs_Finalization (Desig_Typ) then
734 declare
735 Flag_Id : constant Entity_Id := Make_Temporary (Loc, 'F');
736 Flag_Expr : Node_Id;
737 Param : Node_Id;
738 Temp : Node_Id;
740 begin
741 if Is_Allocate then
742 Temp := Find_Object (Expression (Expr));
743 else
744 Temp := Expr;
745 end if;
747 -- Processing for allocations where the expression is a subtype
748 -- indication.
750 if Is_Allocate
751 and then Is_Entity_Name (Temp)
752 and then Is_Type (Entity (Temp))
753 then
754 Flag_Expr :=
755 New_Occurrence_Of
756 (Boolean_Literals
757 (Needs_Finalization (Entity (Temp))), Loc);
759 -- The allocation / deallocation of a class-wide object relies
760 -- on a runtime check to determine whether the object is truly
761 -- controlled or not. Depending on this check, the finalization
762 -- machinery will request or reclaim extra storage reserved for
763 -- a list header.
765 elsif Is_Class_Wide_Type (Desig_Typ) then
767 -- Detect a special case where interface class-wide types
768 -- are involved as the object appears as:
770 -- Tag_Ptr (Base_Address (<object>'Address))
772 -- The expression already yields the proper tag, generate:
774 -- Temp.all
776 if Is_RTE (Etype (Temp), RE_Tag_Ptr) then
777 Param :=
778 Make_Explicit_Dereference (Loc,
779 Prefix => Relocate_Node (Temp));
781 -- In the default case, obtain the tag of the object about
782 -- to be allocated / deallocated. Generate:
784 -- Temp'Tag
786 else
787 Param :=
788 Make_Attribute_Reference (Loc,
789 Prefix => Relocate_Node (Temp),
790 Attribute_Name => Name_Tag);
791 end if;
793 -- Generate:
794 -- Needs_Finalization (<Param>)
796 Flag_Expr :=
797 Make_Function_Call (Loc,
798 Name =>
799 New_Occurrence_Of (RTE (RE_Needs_Finalization), Loc),
800 Parameter_Associations => New_List (Param));
802 -- Processing for generic actuals
804 elsif Is_Generic_Actual_Type (Desig_Typ) then
805 Flag_Expr :=
806 New_Occurrence_Of (Boolean_Literals
807 (Needs_Finalization (Base_Type (Desig_Typ))), Loc);
809 -- The object does not require any specialized checks, it is
810 -- known to be controlled.
812 else
813 Flag_Expr := New_Occurrence_Of (Standard_True, Loc);
814 end if;
816 -- Create the temporary which represents the finalization state
817 -- of the expression. Generate:
819 -- F : constant Boolean := <Flag_Expr>;
821 Insert_Action (N,
822 Make_Object_Declaration (Loc,
823 Defining_Identifier => Flag_Id,
824 Constant_Present => True,
825 Object_Definition =>
826 New_Occurrence_Of (Standard_Boolean, Loc),
827 Expression => Flag_Expr));
829 Append_To (Actuals, New_Occurrence_Of (Flag_Id, Loc));
830 end;
832 -- The object is not controlled
834 else
835 Append_To (Actuals, New_Occurrence_Of (Standard_False, Loc));
836 end if;
838 -- i) On_Subpool
840 if Is_Allocate then
841 Append_To (Actuals,
842 New_Occurrence_Of (Boolean_Literals (Present (Subpool)), Loc));
843 end if;
845 -- Step 2: Build a wrapper Allocate / Deallocate which internally
846 -- calls Allocate_Any_Controlled / Deallocate_Any_Controlled.
848 -- Select the proper routine to call
850 if Is_Allocate then
851 Proc_To_Call := RTE (RE_Allocate_Any_Controlled);
852 else
853 Proc_To_Call := RTE (RE_Deallocate_Any_Controlled);
854 end if;
856 -- Create a custom Allocate / Deallocate routine which has identical
857 -- profile to that of System.Storage_Pools.
859 Insert_Action (N,
860 Make_Subprogram_Body (Loc,
861 Specification =>
863 -- procedure Pnn
865 Make_Procedure_Specification (Loc,
866 Defining_Unit_Name => Proc_Id,
867 Parameter_Specifications => New_List (
869 -- P : Root_Storage_Pool
871 Make_Parameter_Specification (Loc,
872 Defining_Identifier => Make_Temporary (Loc, 'P'),
873 Parameter_Type =>
874 New_Occurrence_Of (RTE (RE_Root_Storage_Pool), Loc)),
876 -- A : [out] Address
878 Make_Parameter_Specification (Loc,
879 Defining_Identifier => Addr_Id,
880 Out_Present => Is_Allocate,
881 Parameter_Type =>
882 New_Occurrence_Of (RTE (RE_Address), Loc)),
884 -- S : Storage_Count
886 Make_Parameter_Specification (Loc,
887 Defining_Identifier => Size_Id,
888 Parameter_Type =>
889 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)),
891 -- L : Storage_Count
893 Make_Parameter_Specification (Loc,
894 Defining_Identifier => Alig_Id,
895 Parameter_Type =>
896 New_Occurrence_Of (RTE (RE_Storage_Count), Loc)))),
898 Declarations => No_List,
900 Handled_Statement_Sequence =>
901 Make_Handled_Sequence_Of_Statements (Loc,
902 Statements => New_List (
903 Make_Procedure_Call_Statement (Loc,
904 Name => New_Occurrence_Of (Proc_To_Call, Loc),
905 Parameter_Associations => Actuals)))));
907 -- The newly generated Allocate / Deallocate becomes the default
908 -- procedure to call when the back end processes the allocation /
909 -- deallocation.
911 if Is_Allocate then
912 Set_Procedure_To_Call (Expr, Proc_Id);
913 else
914 Set_Procedure_To_Call (N, Proc_Id);
915 end if;
916 end;
917 end Build_Allocate_Deallocate_Proc;
919 ------------------------
920 -- Build_Runtime_Call --
921 ------------------------
923 function Build_Runtime_Call (Loc : Source_Ptr; RE : RE_Id) return Node_Id is
924 begin
925 -- If entity is not available, we can skip making the call (this avoids
926 -- junk duplicated error messages in a number of cases).
928 if not RTE_Available (RE) then
929 return Make_Null_Statement (Loc);
930 else
931 return
932 Make_Procedure_Call_Statement (Loc,
933 Name => New_Occurrence_Of (RTE (RE), Loc));
934 end if;
935 end Build_Runtime_Call;
937 ------------------------
938 -- Build_SS_Mark_Call --
939 ------------------------
941 function Build_SS_Mark_Call
942 (Loc : Source_Ptr;
943 Mark : Entity_Id) return Node_Id
945 begin
946 -- Generate:
947 -- Mark : constant Mark_Id := SS_Mark;
949 return
950 Make_Object_Declaration (Loc,
951 Defining_Identifier => Mark,
952 Constant_Present => True,
953 Object_Definition =>
954 New_Occurrence_Of (RTE (RE_Mark_Id), Loc),
955 Expression =>
956 Make_Function_Call (Loc,
957 Name => New_Occurrence_Of (RTE (RE_SS_Mark), Loc)));
958 end Build_SS_Mark_Call;
960 ---------------------------
961 -- Build_SS_Release_Call --
962 ---------------------------
964 function Build_SS_Release_Call
965 (Loc : Source_Ptr;
966 Mark : Entity_Id) return Node_Id
968 begin
969 -- Generate:
970 -- SS_Release (Mark);
972 return
973 Make_Procedure_Call_Statement (Loc,
974 Name =>
975 New_Occurrence_Of (RTE (RE_SS_Release), Loc),
976 Parameter_Associations => New_List (
977 New_Occurrence_Of (Mark, Loc)));
978 end Build_SS_Release_Call;
980 ----------------------------
981 -- Build_Task_Array_Image --
982 ----------------------------
984 -- This function generates the body for a function that constructs the
985 -- image string for a task that is an array component. The function is
986 -- local to the init proc for the array type, and is called for each one
987 -- of the components. The constructed image has the form of an indexed
988 -- component, whose prefix is the outer variable of the array type.
989 -- The n-dimensional array type has known indexes Index, Index2...
991 -- Id_Ref is an indexed component form created by the enclosing init proc.
992 -- Its successive indexes are Val1, Val2, ... which are the loop variables
993 -- in the loops that call the individual task init proc on each component.
995 -- The generated function has the following structure:
997 -- function F return String is
998 -- Pref : string renames Task_Name;
999 -- T1 : String := Index1'Image (Val1);
1000 -- ...
1001 -- Tn : String := indexn'image (Valn);
1002 -- Len : Integer := T1'Length + ... + Tn'Length + n + 1;
1003 -- -- Len includes commas and the end parentheses.
1004 -- Res : String (1..Len);
1005 -- Pos : Integer := Pref'Length;
1007 -- begin
1008 -- Res (1 .. Pos) := Pref;
1009 -- Pos := Pos + 1;
1010 -- Res (Pos) := '(';
1011 -- Pos := Pos + 1;
1012 -- Res (Pos .. Pos + T1'Length - 1) := T1;
1013 -- Pos := Pos + T1'Length;
1014 -- Res (Pos) := '.';
1015 -- Pos := Pos + 1;
1016 -- ...
1017 -- Res (Pos .. Pos + Tn'Length - 1) := Tn;
1018 -- Res (Len) := ')';
1020 -- return Res;
1021 -- end F;
1023 -- Needless to say, multidimensional arrays of tasks are rare enough that
1024 -- the bulkiness of this code is not really a concern.
1026 function Build_Task_Array_Image
1027 (Loc : Source_Ptr;
1028 Id_Ref : Node_Id;
1029 A_Type : Entity_Id;
1030 Dyn : Boolean := False) return Node_Id
1032 Dims : constant Nat := Number_Dimensions (A_Type);
1033 -- Number of dimensions for array of tasks
1035 Temps : array (1 .. Dims) of Entity_Id;
1036 -- Array of temporaries to hold string for each index
1038 Indx : Node_Id;
1039 -- Index expression
1041 Len : Entity_Id;
1042 -- Total length of generated name
1044 Pos : Entity_Id;
1045 -- Running index for substring assignments
1047 Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
1048 -- Name of enclosing variable, prefix of resulting name
1050 Res : Entity_Id;
1051 -- String to hold result
1053 Val : Node_Id;
1054 -- Value of successive indexes
1056 Sum : Node_Id;
1057 -- Expression to compute total size of string
1059 T : Entity_Id;
1060 -- Entity for name at one index position
1062 Decls : constant List_Id := New_List;
1063 Stats : constant List_Id := New_List;
1065 begin
1066 -- For a dynamic task, the name comes from the target variable. For a
1067 -- static one it is a formal of the enclosing init proc.
1069 if Dyn then
1070 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
1071 Append_To (Decls,
1072 Make_Object_Declaration (Loc,
1073 Defining_Identifier => Pref,
1074 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1075 Expression =>
1076 Make_String_Literal (Loc,
1077 Strval => String_From_Name_Buffer)));
1079 else
1080 Append_To (Decls,
1081 Make_Object_Renaming_Declaration (Loc,
1082 Defining_Identifier => Pref,
1083 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1084 Name => Make_Identifier (Loc, Name_uTask_Name)));
1085 end if;
1087 Indx := First_Index (A_Type);
1088 Val := First (Expressions (Id_Ref));
1090 for J in 1 .. Dims loop
1091 T := Make_Temporary (Loc, 'T');
1092 Temps (J) := T;
1094 Append_To (Decls,
1095 Make_Object_Declaration (Loc,
1096 Defining_Identifier => T,
1097 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1098 Expression =>
1099 Make_Attribute_Reference (Loc,
1100 Attribute_Name => Name_Image,
1101 Prefix => New_Occurrence_Of (Etype (Indx), Loc),
1102 Expressions => New_List (New_Copy_Tree (Val)))));
1104 Next_Index (Indx);
1105 Next (Val);
1106 end loop;
1108 Sum := Make_Integer_Literal (Loc, Dims + 1);
1110 Sum :=
1111 Make_Op_Add (Loc,
1112 Left_Opnd => Sum,
1113 Right_Opnd =>
1114 Make_Attribute_Reference (Loc,
1115 Attribute_Name => Name_Length,
1116 Prefix => New_Occurrence_Of (Pref, Loc),
1117 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1119 for J in 1 .. Dims loop
1120 Sum :=
1121 Make_Op_Add (Loc,
1122 Left_Opnd => Sum,
1123 Right_Opnd =>
1124 Make_Attribute_Reference (Loc,
1125 Attribute_Name => Name_Length,
1126 Prefix =>
1127 New_Occurrence_Of (Temps (J), Loc),
1128 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1129 end loop;
1131 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
1133 Set_Character_Literal_Name (Char_Code (Character'Pos ('(')));
1135 Append_To (Stats,
1136 Make_Assignment_Statement (Loc,
1137 Name =>
1138 Make_Indexed_Component (Loc,
1139 Prefix => New_Occurrence_Of (Res, Loc),
1140 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1141 Expression =>
1142 Make_Character_Literal (Loc,
1143 Chars => Name_Find,
1144 Char_Literal_Value => UI_From_Int (Character'Pos ('(')))));
1146 Append_To (Stats,
1147 Make_Assignment_Statement (Loc,
1148 Name => New_Occurrence_Of (Pos, Loc),
1149 Expression =>
1150 Make_Op_Add (Loc,
1151 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1152 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1154 for J in 1 .. Dims loop
1156 Append_To (Stats,
1157 Make_Assignment_Statement (Loc,
1158 Name =>
1159 Make_Slice (Loc,
1160 Prefix => New_Occurrence_Of (Res, Loc),
1161 Discrete_Range =>
1162 Make_Range (Loc,
1163 Low_Bound => New_Occurrence_Of (Pos, Loc),
1164 High_Bound =>
1165 Make_Op_Subtract (Loc,
1166 Left_Opnd =>
1167 Make_Op_Add (Loc,
1168 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1169 Right_Opnd =>
1170 Make_Attribute_Reference (Loc,
1171 Attribute_Name => Name_Length,
1172 Prefix =>
1173 New_Occurrence_Of (Temps (J), Loc),
1174 Expressions =>
1175 New_List (Make_Integer_Literal (Loc, 1)))),
1176 Right_Opnd => Make_Integer_Literal (Loc, 1)))),
1178 Expression => New_Occurrence_Of (Temps (J), Loc)));
1180 if J < Dims then
1181 Append_To (Stats,
1182 Make_Assignment_Statement (Loc,
1183 Name => New_Occurrence_Of (Pos, Loc),
1184 Expression =>
1185 Make_Op_Add (Loc,
1186 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1187 Right_Opnd =>
1188 Make_Attribute_Reference (Loc,
1189 Attribute_Name => Name_Length,
1190 Prefix => New_Occurrence_Of (Temps (J), Loc),
1191 Expressions =>
1192 New_List (Make_Integer_Literal (Loc, 1))))));
1194 Set_Character_Literal_Name (Char_Code (Character'Pos (',')));
1196 Append_To (Stats,
1197 Make_Assignment_Statement (Loc,
1198 Name => Make_Indexed_Component (Loc,
1199 Prefix => New_Occurrence_Of (Res, Loc),
1200 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1201 Expression =>
1202 Make_Character_Literal (Loc,
1203 Chars => Name_Find,
1204 Char_Literal_Value => UI_From_Int (Character'Pos (',')))));
1206 Append_To (Stats,
1207 Make_Assignment_Statement (Loc,
1208 Name => New_Occurrence_Of (Pos, Loc),
1209 Expression =>
1210 Make_Op_Add (Loc,
1211 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1212 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1213 end if;
1214 end loop;
1216 Set_Character_Literal_Name (Char_Code (Character'Pos (')')));
1218 Append_To (Stats,
1219 Make_Assignment_Statement (Loc,
1220 Name =>
1221 Make_Indexed_Component (Loc,
1222 Prefix => New_Occurrence_Of (Res, Loc),
1223 Expressions => New_List (New_Occurrence_Of (Len, Loc))),
1224 Expression =>
1225 Make_Character_Literal (Loc,
1226 Chars => Name_Find,
1227 Char_Literal_Value => UI_From_Int (Character'Pos (')')))));
1228 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
1229 end Build_Task_Array_Image;
1231 ----------------------------
1232 -- Build_Task_Image_Decls --
1233 ----------------------------
1235 function Build_Task_Image_Decls
1236 (Loc : Source_Ptr;
1237 Id_Ref : Node_Id;
1238 A_Type : Entity_Id;
1239 In_Init_Proc : Boolean := False) return List_Id
1241 Decls : constant List_Id := New_List;
1242 T_Id : Entity_Id := Empty;
1243 Decl : Node_Id;
1244 Expr : Node_Id := Empty;
1245 Fun : Node_Id := Empty;
1246 Is_Dyn : constant Boolean :=
1247 Nkind (Parent (Id_Ref)) = N_Assignment_Statement
1248 and then
1249 Nkind (Expression (Parent (Id_Ref))) = N_Allocator;
1251 begin
1252 -- If Discard_Names or No_Implicit_Heap_Allocations are in effect,
1253 -- generate a dummy declaration only.
1255 if Restriction_Active (No_Implicit_Heap_Allocations)
1256 or else Global_Discard_Names
1257 then
1258 T_Id := Make_Temporary (Loc, 'J');
1259 Name_Len := 0;
1261 return
1262 New_List (
1263 Make_Object_Declaration (Loc,
1264 Defining_Identifier => T_Id,
1265 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1266 Expression =>
1267 Make_String_Literal (Loc,
1268 Strval => String_From_Name_Buffer)));
1270 else
1271 if Nkind (Id_Ref) = N_Identifier
1272 or else Nkind (Id_Ref) = N_Defining_Identifier
1273 then
1274 -- For a simple variable, the image of the task is built from
1275 -- the name of the variable. To avoid possible conflict with the
1276 -- anonymous type created for a single protected object, add a
1277 -- numeric suffix.
1279 T_Id :=
1280 Make_Defining_Identifier (Loc,
1281 New_External_Name (Chars (Id_Ref), 'T', 1));
1283 Get_Name_String (Chars (Id_Ref));
1285 Expr :=
1286 Make_String_Literal (Loc,
1287 Strval => String_From_Name_Buffer);
1289 elsif Nkind (Id_Ref) = N_Selected_Component then
1290 T_Id :=
1291 Make_Defining_Identifier (Loc,
1292 New_External_Name (Chars (Selector_Name (Id_Ref)), 'T'));
1293 Fun := Build_Task_Record_Image (Loc, Id_Ref, Is_Dyn);
1295 elsif Nkind (Id_Ref) = N_Indexed_Component then
1296 T_Id :=
1297 Make_Defining_Identifier (Loc,
1298 New_External_Name (Chars (A_Type), 'N'));
1300 Fun := Build_Task_Array_Image (Loc, Id_Ref, A_Type, Is_Dyn);
1301 end if;
1302 end if;
1304 if Present (Fun) then
1305 Append (Fun, Decls);
1306 Expr := Make_Function_Call (Loc,
1307 Name => New_Occurrence_Of (Defining_Entity (Fun), Loc));
1309 if not In_Init_Proc and then VM_Target = No_VM then
1310 Set_Uses_Sec_Stack (Defining_Entity (Fun));
1311 end if;
1312 end if;
1314 Decl := Make_Object_Declaration (Loc,
1315 Defining_Identifier => T_Id,
1316 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1317 Constant_Present => True,
1318 Expression => Expr);
1320 Append (Decl, Decls);
1321 return Decls;
1322 end Build_Task_Image_Decls;
1324 -------------------------------
1325 -- Build_Task_Image_Function --
1326 -------------------------------
1328 function Build_Task_Image_Function
1329 (Loc : Source_Ptr;
1330 Decls : List_Id;
1331 Stats : List_Id;
1332 Res : Entity_Id) return Node_Id
1334 Spec : Node_Id;
1336 begin
1337 Append_To (Stats,
1338 Make_Simple_Return_Statement (Loc,
1339 Expression => New_Occurrence_Of (Res, Loc)));
1341 Spec := Make_Function_Specification (Loc,
1342 Defining_Unit_Name => Make_Temporary (Loc, 'F'),
1343 Result_Definition => New_Occurrence_Of (Standard_String, Loc));
1345 -- Calls to 'Image use the secondary stack, which must be cleaned up
1346 -- after the task name is built.
1348 return Make_Subprogram_Body (Loc,
1349 Specification => Spec,
1350 Declarations => Decls,
1351 Handled_Statement_Sequence =>
1352 Make_Handled_Sequence_Of_Statements (Loc, Statements => Stats));
1353 end Build_Task_Image_Function;
1355 -----------------------------
1356 -- Build_Task_Image_Prefix --
1357 -----------------------------
1359 procedure Build_Task_Image_Prefix
1360 (Loc : Source_Ptr;
1361 Len : out Entity_Id;
1362 Res : out Entity_Id;
1363 Pos : out Entity_Id;
1364 Prefix : Entity_Id;
1365 Sum : Node_Id;
1366 Decls : List_Id;
1367 Stats : List_Id)
1369 begin
1370 Len := Make_Temporary (Loc, 'L', Sum);
1372 Append_To (Decls,
1373 Make_Object_Declaration (Loc,
1374 Defining_Identifier => Len,
1375 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc),
1376 Expression => Sum));
1378 Res := Make_Temporary (Loc, 'R');
1380 Append_To (Decls,
1381 Make_Object_Declaration (Loc,
1382 Defining_Identifier => Res,
1383 Object_Definition =>
1384 Make_Subtype_Indication (Loc,
1385 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1386 Constraint =>
1387 Make_Index_Or_Discriminant_Constraint (Loc,
1388 Constraints =>
1389 New_List (
1390 Make_Range (Loc,
1391 Low_Bound => Make_Integer_Literal (Loc, 1),
1392 High_Bound => New_Occurrence_Of (Len, Loc)))))));
1394 -- Indicate that the result is an internal temporary, so it does not
1395 -- receive a bogus initialization when declaration is expanded. This
1396 -- is both efficient, and prevents anomalies in the handling of
1397 -- dynamic objects on the secondary stack.
1399 Set_Is_Internal (Res);
1400 Pos := Make_Temporary (Loc, 'P');
1402 Append_To (Decls,
1403 Make_Object_Declaration (Loc,
1404 Defining_Identifier => Pos,
1405 Object_Definition => New_Occurrence_Of (Standard_Integer, Loc)));
1407 -- Pos := Prefix'Length;
1409 Append_To (Stats,
1410 Make_Assignment_Statement (Loc,
1411 Name => New_Occurrence_Of (Pos, Loc),
1412 Expression =>
1413 Make_Attribute_Reference (Loc,
1414 Attribute_Name => Name_Length,
1415 Prefix => New_Occurrence_Of (Prefix, Loc),
1416 Expressions => New_List (Make_Integer_Literal (Loc, 1)))));
1418 -- Res (1 .. Pos) := Prefix;
1420 Append_To (Stats,
1421 Make_Assignment_Statement (Loc,
1422 Name =>
1423 Make_Slice (Loc,
1424 Prefix => New_Occurrence_Of (Res, Loc),
1425 Discrete_Range =>
1426 Make_Range (Loc,
1427 Low_Bound => Make_Integer_Literal (Loc, 1),
1428 High_Bound => New_Occurrence_Of (Pos, Loc))),
1430 Expression => New_Occurrence_Of (Prefix, Loc)));
1432 Append_To (Stats,
1433 Make_Assignment_Statement (Loc,
1434 Name => New_Occurrence_Of (Pos, Loc),
1435 Expression =>
1436 Make_Op_Add (Loc,
1437 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1438 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1439 end Build_Task_Image_Prefix;
1441 -----------------------------
1442 -- Build_Task_Record_Image --
1443 -----------------------------
1445 function Build_Task_Record_Image
1446 (Loc : Source_Ptr;
1447 Id_Ref : Node_Id;
1448 Dyn : Boolean := False) return Node_Id
1450 Len : Entity_Id;
1451 -- Total length of generated name
1453 Pos : Entity_Id;
1454 -- Index into result
1456 Res : Entity_Id;
1457 -- String to hold result
1459 Pref : constant Entity_Id := Make_Temporary (Loc, 'P');
1460 -- Name of enclosing variable, prefix of resulting name
1462 Sum : Node_Id;
1463 -- Expression to compute total size of string
1465 Sel : Entity_Id;
1466 -- Entity for selector name
1468 Decls : constant List_Id := New_List;
1469 Stats : constant List_Id := New_List;
1471 begin
1472 -- For a dynamic task, the name comes from the target variable. For a
1473 -- static one it is a formal of the enclosing init proc.
1475 if Dyn then
1476 Get_Name_String (Chars (Entity (Prefix (Id_Ref))));
1477 Append_To (Decls,
1478 Make_Object_Declaration (Loc,
1479 Defining_Identifier => Pref,
1480 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1481 Expression =>
1482 Make_String_Literal (Loc,
1483 Strval => String_From_Name_Buffer)));
1485 else
1486 Append_To (Decls,
1487 Make_Object_Renaming_Declaration (Loc,
1488 Defining_Identifier => Pref,
1489 Subtype_Mark => New_Occurrence_Of (Standard_String, Loc),
1490 Name => Make_Identifier (Loc, Name_uTask_Name)));
1491 end if;
1493 Sel := Make_Temporary (Loc, 'S');
1495 Get_Name_String (Chars (Selector_Name (Id_Ref)));
1497 Append_To (Decls,
1498 Make_Object_Declaration (Loc,
1499 Defining_Identifier => Sel,
1500 Object_Definition => New_Occurrence_Of (Standard_String, Loc),
1501 Expression =>
1502 Make_String_Literal (Loc,
1503 Strval => String_From_Name_Buffer)));
1505 Sum := Make_Integer_Literal (Loc, Nat (Name_Len + 1));
1507 Sum :=
1508 Make_Op_Add (Loc,
1509 Left_Opnd => Sum,
1510 Right_Opnd =>
1511 Make_Attribute_Reference (Loc,
1512 Attribute_Name => Name_Length,
1513 Prefix =>
1514 New_Occurrence_Of (Pref, Loc),
1515 Expressions => New_List (Make_Integer_Literal (Loc, 1))));
1517 Build_Task_Image_Prefix (Loc, Len, Res, Pos, Pref, Sum, Decls, Stats);
1519 Set_Character_Literal_Name (Char_Code (Character'Pos ('.')));
1521 -- Res (Pos) := '.';
1523 Append_To (Stats,
1524 Make_Assignment_Statement (Loc,
1525 Name => Make_Indexed_Component (Loc,
1526 Prefix => New_Occurrence_Of (Res, Loc),
1527 Expressions => New_List (New_Occurrence_Of (Pos, Loc))),
1528 Expression =>
1529 Make_Character_Literal (Loc,
1530 Chars => Name_Find,
1531 Char_Literal_Value =>
1532 UI_From_Int (Character'Pos ('.')))));
1534 Append_To (Stats,
1535 Make_Assignment_Statement (Loc,
1536 Name => New_Occurrence_Of (Pos, Loc),
1537 Expression =>
1538 Make_Op_Add (Loc,
1539 Left_Opnd => New_Occurrence_Of (Pos, Loc),
1540 Right_Opnd => Make_Integer_Literal (Loc, 1))));
1542 -- Res (Pos .. Len) := Selector;
1544 Append_To (Stats,
1545 Make_Assignment_Statement (Loc,
1546 Name => Make_Slice (Loc,
1547 Prefix => New_Occurrence_Of (Res, Loc),
1548 Discrete_Range =>
1549 Make_Range (Loc,
1550 Low_Bound => New_Occurrence_Of (Pos, Loc),
1551 High_Bound => New_Occurrence_Of (Len, Loc))),
1552 Expression => New_Occurrence_Of (Sel, Loc)));
1554 return Build_Task_Image_Function (Loc, Decls, Stats, Res);
1555 end Build_Task_Record_Image;
1557 -----------------------------
1558 -- Check_Float_Op_Overflow --
1559 -----------------------------
1561 procedure Check_Float_Op_Overflow (N : Node_Id) is
1562 begin
1563 -- Return if no check needed
1565 if not Is_Floating_Point_Type (Etype (N))
1566 or else not (Do_Overflow_Check (N) and then Check_Float_Overflow)
1568 -- In CodePeer_Mode, rely on the overflow check flag being set instead
1569 -- and do not expand the code for float overflow checking.
1571 or else CodePeer_Mode
1572 then
1573 return;
1574 end if;
1576 -- Otherwise we replace the expression by
1578 -- do Tnn : constant ftype := expression;
1579 -- constraint_error when not Tnn'Valid;
1580 -- in Tnn;
1582 declare
1583 Loc : constant Source_Ptr := Sloc (N);
1584 Tnn : constant Entity_Id := Make_Temporary (Loc, 'T', N);
1585 Typ : constant Entity_Id := Etype (N);
1587 begin
1588 -- Turn off the Do_Overflow_Check flag, since we are doing that work
1589 -- right here. We also set the node as analyzed to prevent infinite
1590 -- recursion from repeating the operation in the expansion.
1592 Set_Do_Overflow_Check (N, False);
1593 Set_Analyzed (N, True);
1595 -- Do the rewrite to include the check
1597 Rewrite (N,
1598 Make_Expression_With_Actions (Loc,
1599 Actions => New_List (
1600 Make_Object_Declaration (Loc,
1601 Defining_Identifier => Tnn,
1602 Object_Definition => New_Occurrence_Of (Typ, Loc),
1603 Constant_Present => True,
1604 Expression => Relocate_Node (N)),
1605 Make_Raise_Constraint_Error (Loc,
1606 Condition =>
1607 Make_Op_Not (Loc,
1608 Right_Opnd =>
1609 Make_Attribute_Reference (Loc,
1610 Prefix => New_Occurrence_Of (Tnn, Loc),
1611 Attribute_Name => Name_Valid)),
1612 Reason => CE_Overflow_Check_Failed)),
1613 Expression => New_Occurrence_Of (Tnn, Loc)));
1615 Analyze_And_Resolve (N, Typ);
1616 end;
1617 end Check_Float_Op_Overflow;
1619 ----------------------------------
1620 -- Component_May_Be_Bit_Aligned --
1621 ----------------------------------
1623 function Component_May_Be_Bit_Aligned (Comp : Entity_Id) return Boolean is
1624 UT : Entity_Id;
1626 begin
1627 -- If no component clause, then everything is fine, since the back end
1628 -- never bit-misaligns by default, even if there is a pragma Packed for
1629 -- the record.
1631 if No (Comp) or else No (Component_Clause (Comp)) then
1632 return False;
1633 end if;
1635 UT := Underlying_Type (Etype (Comp));
1637 -- It is only array and record types that cause trouble
1639 if not Is_Record_Type (UT) and then not Is_Array_Type (UT) then
1640 return False;
1642 -- If we know that we have a small (64 bits or less) record or small
1643 -- bit-packed array, then everything is fine, since the back end can
1644 -- handle these cases correctly.
1646 elsif Esize (Comp) <= 64
1647 and then (Is_Record_Type (UT) or else Is_Bit_Packed_Array (UT))
1648 then
1649 return False;
1651 -- Otherwise if the component is not byte aligned, we know we have the
1652 -- nasty unaligned case.
1654 elsif Normalized_First_Bit (Comp) /= Uint_0
1655 or else Esize (Comp) mod System_Storage_Unit /= Uint_0
1656 then
1657 return True;
1659 -- If we are large and byte aligned, then OK at this level
1661 else
1662 return False;
1663 end if;
1664 end Component_May_Be_Bit_Aligned;
1666 ----------------------------------------
1667 -- Containing_Package_With_Ext_Axioms --
1668 ----------------------------------------
1670 function Containing_Package_With_Ext_Axioms
1671 (E : Entity_Id) return Entity_Id
1673 Decl : Node_Id;
1675 begin
1676 if Ekind (E) = E_Package then
1677 if Nkind (Parent (E)) = N_Defining_Program_Unit_Name then
1678 Decl := Parent (Parent (E));
1679 else
1680 Decl := Parent (E);
1681 end if;
1682 end if;
1684 -- E is the package or generic package which is externally axiomatized
1686 if Ekind_In (E, E_Package, E_Generic_Package)
1687 and then Has_Annotate_Pragma_For_External_Axiomatization (E)
1688 then
1689 return E;
1690 end if;
1692 -- If E's scope is axiomatized, E is axiomatized.
1694 declare
1695 First_Ax_Parent_Scope : Entity_Id := Empty;
1697 begin
1698 if Present (Scope (E)) then
1699 First_Ax_Parent_Scope :=
1700 Containing_Package_With_Ext_Axioms (Scope (E));
1701 end if;
1703 if Present (First_Ax_Parent_Scope) then
1704 return First_Ax_Parent_Scope;
1705 end if;
1707 -- otherwise, if E is a package instance, it is axiomatized if the
1708 -- corresponding generic package is axiomatized.
1710 if Ekind (E) = E_Package
1711 and then Present (Generic_Parent (Decl))
1712 then
1713 return
1714 Containing_Package_With_Ext_Axioms (Generic_Parent (Decl));
1715 else
1716 return Empty;
1717 end if;
1718 end;
1719 end Containing_Package_With_Ext_Axioms;
1721 -------------------------------
1722 -- Convert_To_Actual_Subtype --
1723 -------------------------------
1725 procedure Convert_To_Actual_Subtype (Exp : Entity_Id) is
1726 Act_ST : Entity_Id;
1728 begin
1729 Act_ST := Get_Actual_Subtype (Exp);
1731 if Act_ST = Etype (Exp) then
1732 return;
1733 else
1734 Rewrite (Exp, Convert_To (Act_ST, Relocate_Node (Exp)));
1735 Analyze_And_Resolve (Exp, Act_ST);
1736 end if;
1737 end Convert_To_Actual_Subtype;
1739 -----------------------------------
1740 -- Corresponding_Runtime_Package --
1741 -----------------------------------
1743 function Corresponding_Runtime_Package (Typ : Entity_Id) return RTU_Id is
1744 Pkg_Id : RTU_Id := RTU_Null;
1746 begin
1747 pragma Assert (Is_Concurrent_Type (Typ));
1749 if Ekind (Typ) in Protected_Kind then
1750 if Has_Entries (Typ)
1752 -- A protected type without entries that covers an interface and
1753 -- overrides the abstract routines with protected procedures is
1754 -- considered equivalent to a protected type with entries in the
1755 -- context of dispatching select statements. It is sufficient to
1756 -- check for the presence of an interface list in the declaration
1757 -- node to recognize this case.
1759 or else Present (Interface_List (Parent (Typ)))
1761 -- Protected types with interrupt handlers (when not using a
1762 -- restricted profile) are also considered equivalent to
1763 -- protected types with entries. The types which are used
1764 -- (Static_Interrupt_Protection and Dynamic_Interrupt_Protection)
1765 -- are derived from Protection_Entries.
1767 or else (Has_Attach_Handler (Typ) and then not Restricted_Profile)
1768 or else Has_Interrupt_Handler (Typ)
1769 then
1770 if Abort_Allowed
1771 or else Restriction_Active (No_Entry_Queue) = False
1772 or else Restriction_Active (No_Select_Statements) = False
1773 or else Number_Entries (Typ) > 1
1774 or else (Has_Attach_Handler (Typ)
1775 and then not Restricted_Profile)
1776 then
1777 Pkg_Id := System_Tasking_Protected_Objects_Entries;
1778 else
1779 Pkg_Id := System_Tasking_Protected_Objects_Single_Entry;
1780 end if;
1782 else
1783 Pkg_Id := System_Tasking_Protected_Objects;
1784 end if;
1785 end if;
1787 return Pkg_Id;
1788 end Corresponding_Runtime_Package;
1790 -----------------------------------
1791 -- Current_Sem_Unit_Declarations --
1792 -----------------------------------
1794 function Current_Sem_Unit_Declarations return List_Id is
1795 U : Node_Id := Unit (Cunit (Current_Sem_Unit));
1796 Decls : List_Id;
1798 begin
1799 -- If the current unit is a package body, locate the visible
1800 -- declarations of the package spec.
1802 if Nkind (U) = N_Package_Body then
1803 U := Unit (Library_Unit (Cunit (Current_Sem_Unit)));
1804 end if;
1806 if Nkind (U) = N_Package_Declaration then
1807 U := Specification (U);
1808 Decls := Visible_Declarations (U);
1810 if No (Decls) then
1811 Decls := New_List;
1812 Set_Visible_Declarations (U, Decls);
1813 end if;
1815 else
1816 Decls := Declarations (U);
1818 if No (Decls) then
1819 Decls := New_List;
1820 Set_Declarations (U, Decls);
1821 end if;
1822 end if;
1824 return Decls;
1825 end Current_Sem_Unit_Declarations;
1827 -----------------------
1828 -- Duplicate_Subexpr --
1829 -----------------------
1831 function Duplicate_Subexpr
1832 (Exp : Node_Id;
1833 Name_Req : Boolean := False;
1834 Renaming_Req : Boolean := False) return Node_Id
1836 begin
1837 Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
1838 return New_Copy_Tree (Exp);
1839 end Duplicate_Subexpr;
1841 ---------------------------------
1842 -- Duplicate_Subexpr_No_Checks --
1843 ---------------------------------
1845 function Duplicate_Subexpr_No_Checks
1846 (Exp : Node_Id;
1847 Name_Req : Boolean := False;
1848 Renaming_Req : Boolean := False;
1849 Related_Id : Entity_Id := Empty;
1850 Is_Low_Bound : Boolean := False;
1851 Is_High_Bound : Boolean := False) return Node_Id
1853 New_Exp : Node_Id;
1855 begin
1856 Remove_Side_Effects
1857 (Exp => Exp,
1858 Name_Req => Name_Req,
1859 Renaming_Req => Renaming_Req,
1860 Related_Id => Related_Id,
1861 Is_Low_Bound => Is_Low_Bound,
1862 Is_High_Bound => Is_High_Bound);
1864 New_Exp := New_Copy_Tree (Exp);
1865 Remove_Checks (New_Exp);
1866 return New_Exp;
1867 end Duplicate_Subexpr_No_Checks;
1869 -----------------------------------
1870 -- Duplicate_Subexpr_Move_Checks --
1871 -----------------------------------
1873 function Duplicate_Subexpr_Move_Checks
1874 (Exp : Node_Id;
1875 Name_Req : Boolean := False;
1876 Renaming_Req : Boolean := False) return Node_Id
1878 New_Exp : Node_Id;
1880 begin
1881 Remove_Side_Effects (Exp, Name_Req, Renaming_Req);
1882 New_Exp := New_Copy_Tree (Exp);
1883 Remove_Checks (Exp);
1884 return New_Exp;
1885 end Duplicate_Subexpr_Move_Checks;
1887 --------------------
1888 -- Ensure_Defined --
1889 --------------------
1891 procedure Ensure_Defined (Typ : Entity_Id; N : Node_Id) is
1892 IR : Node_Id;
1894 begin
1895 -- An itype reference must only be created if this is a local itype, so
1896 -- that gigi can elaborate it on the proper objstack.
1898 if Is_Itype (Typ) and then Scope (Typ) = Current_Scope then
1899 IR := Make_Itype_Reference (Sloc (N));
1900 Set_Itype (IR, Typ);
1901 Insert_Action (N, IR);
1902 end if;
1903 end Ensure_Defined;
1905 --------------------
1906 -- Entry_Names_OK --
1907 --------------------
1909 function Entry_Names_OK return Boolean is
1910 begin
1911 return
1912 not Restricted_Profile
1913 and then not Global_Discard_Names
1914 and then not Restriction_Active (No_Implicit_Heap_Allocations)
1915 and then not Restriction_Active (No_Local_Allocators);
1916 end Entry_Names_OK;
1918 -------------------
1919 -- Evaluate_Name --
1920 -------------------
1922 procedure Evaluate_Name (Nam : Node_Id) is
1923 K : constant Node_Kind := Nkind (Nam);
1925 begin
1926 -- For an explicit dereference, we simply force the evaluation of the
1927 -- name expression. The dereference provides a value that is the address
1928 -- for the renamed object, and it is precisely this value that we want
1929 -- to preserve.
1931 if K = N_Explicit_Dereference then
1932 Force_Evaluation (Prefix (Nam));
1934 -- For a selected component, we simply evaluate the prefix
1936 elsif K = N_Selected_Component then
1937 Evaluate_Name (Prefix (Nam));
1939 -- For an indexed component, or an attribute reference, we evaluate the
1940 -- prefix, which is itself a name, recursively, and then force the
1941 -- evaluation of all the subscripts (or attribute expressions).
1943 elsif Nkind_In (K, N_Indexed_Component, N_Attribute_Reference) then
1944 Evaluate_Name (Prefix (Nam));
1946 declare
1947 E : Node_Id;
1949 begin
1950 E := First (Expressions (Nam));
1951 while Present (E) loop
1952 Force_Evaluation (E);
1954 if Original_Node (E) /= E then
1955 Set_Do_Range_Check (E, Do_Range_Check (Original_Node (E)));
1956 end if;
1958 Next (E);
1959 end loop;
1960 end;
1962 -- For a slice, we evaluate the prefix, as for the indexed component
1963 -- case and then, if there is a range present, either directly or as the
1964 -- constraint of a discrete subtype indication, we evaluate the two
1965 -- bounds of this range.
1967 elsif K = N_Slice then
1968 Evaluate_Name (Prefix (Nam));
1969 Evaluate_Slice_Bounds (Nam);
1971 -- For a type conversion, the expression of the conversion must be the
1972 -- name of an object, and we simply need to evaluate this name.
1974 elsif K = N_Type_Conversion then
1975 Evaluate_Name (Expression (Nam));
1977 -- For a function call, we evaluate the call
1979 elsif K = N_Function_Call then
1980 Force_Evaluation (Nam);
1982 -- The remaining cases are direct name, operator symbol and character
1983 -- literal. In all these cases, we do nothing, since we want to
1984 -- reevaluate each time the renamed object is used.
1986 else
1987 return;
1988 end if;
1989 end Evaluate_Name;
1991 ---------------------------
1992 -- Evaluate_Slice_Bounds --
1993 ---------------------------
1995 procedure Evaluate_Slice_Bounds (Slice : Node_Id) is
1996 DR : constant Node_Id := Discrete_Range (Slice);
1997 Constr : Node_Id;
1998 Rexpr : Node_Id;
2000 begin
2001 if Nkind (DR) = N_Range then
2002 Force_Evaluation (Low_Bound (DR));
2003 Force_Evaluation (High_Bound (DR));
2005 elsif Nkind (DR) = N_Subtype_Indication then
2006 Constr := Constraint (DR);
2008 if Nkind (Constr) = N_Range_Constraint then
2009 Rexpr := Range_Expression (Constr);
2011 Force_Evaluation (Low_Bound (Rexpr));
2012 Force_Evaluation (High_Bound (Rexpr));
2013 end if;
2014 end if;
2015 end Evaluate_Slice_Bounds;
2017 ---------------------
2018 -- Evolve_And_Then --
2019 ---------------------
2021 procedure Evolve_And_Then (Cond : in out Node_Id; Cond1 : Node_Id) is
2022 begin
2023 if No (Cond) then
2024 Cond := Cond1;
2025 else
2026 Cond :=
2027 Make_And_Then (Sloc (Cond1),
2028 Left_Opnd => Cond,
2029 Right_Opnd => Cond1);
2030 end if;
2031 end Evolve_And_Then;
2033 --------------------
2034 -- Evolve_Or_Else --
2035 --------------------
2037 procedure Evolve_Or_Else (Cond : in out Node_Id; Cond1 : Node_Id) is
2038 begin
2039 if No (Cond) then
2040 Cond := Cond1;
2041 else
2042 Cond :=
2043 Make_Or_Else (Sloc (Cond1),
2044 Left_Opnd => Cond,
2045 Right_Opnd => Cond1);
2046 end if;
2047 end Evolve_Or_Else;
2049 -----------------------------------------
2050 -- Expand_Static_Predicates_In_Choices --
2051 -----------------------------------------
2053 procedure Expand_Static_Predicates_In_Choices (N : Node_Id) is
2054 pragma Assert (Nkind_In (N, N_Case_Statement_Alternative, N_Variant));
2056 Choices : constant List_Id := Discrete_Choices (N);
2058 Choice : Node_Id;
2059 Next_C : Node_Id;
2060 P : Node_Id;
2061 C : Node_Id;
2063 begin
2064 Choice := First (Choices);
2065 while Present (Choice) loop
2066 Next_C := Next (Choice);
2068 -- Check for name of subtype with static predicate
2070 if Is_Entity_Name (Choice)
2071 and then Is_Type (Entity (Choice))
2072 and then Has_Predicates (Entity (Choice))
2073 then
2074 -- Loop through entries in predicate list, converting to choices
2075 -- and inserting in the list before the current choice. Note that
2076 -- if the list is empty, corresponding to a False predicate, then
2077 -- no choices are inserted.
2079 P := First (Static_Discrete_Predicate (Entity (Choice)));
2080 while Present (P) loop
2082 -- If low bound and high bounds are equal, copy simple choice
2084 if Expr_Value (Low_Bound (P)) = Expr_Value (High_Bound (P)) then
2085 C := New_Copy (Low_Bound (P));
2087 -- Otherwise copy a range
2089 else
2090 C := New_Copy (P);
2091 end if;
2093 -- Change Sloc to referencing choice (rather than the Sloc of
2094 -- the predicate declaration element itself).
2096 Set_Sloc (C, Sloc (Choice));
2097 Insert_Before (Choice, C);
2098 Next (P);
2099 end loop;
2101 -- Delete the predicated entry
2103 Remove (Choice);
2104 end if;
2106 -- Move to next choice to check
2108 Choice := Next_C;
2109 end loop;
2110 end Expand_Static_Predicates_In_Choices;
2112 ------------------------------
2113 -- Expand_Subtype_From_Expr --
2114 ------------------------------
2116 -- This function is applicable for both static and dynamic allocation of
2117 -- objects which are constrained by an initial expression. Basically it
2118 -- transforms an unconstrained subtype indication into a constrained one.
2120 -- The expression may also be transformed in certain cases in order to
2121 -- avoid multiple evaluation. In the static allocation case, the general
2122 -- scheme is:
2124 -- Val : T := Expr;
2126 -- is transformed into
2128 -- Val : Constrained_Subtype_of_T := Maybe_Modified_Expr;
2130 -- Here are the main cases :
2132 -- <if Expr is a Slice>
2133 -- Val : T ([Index_Subtype (Expr)]) := Expr;
2135 -- <elsif Expr is a String Literal>
2136 -- Val : T (T'First .. T'First + Length (string literal) - 1) := Expr;
2138 -- <elsif Expr is Constrained>
2139 -- subtype T is Type_Of_Expr
2140 -- Val : T := Expr;
2142 -- <elsif Expr is an entity_name>
2143 -- Val : T (constraints taken from Expr) := Expr;
2145 -- <else>
2146 -- type Axxx is access all T;
2147 -- Rval : Axxx := Expr'ref;
2148 -- Val : T (constraints taken from Rval) := Rval.all;
2150 -- ??? note: when the Expression is allocated in the secondary stack
2151 -- we could use it directly instead of copying it by declaring
2152 -- Val : T (...) renames Rval.all
2154 procedure Expand_Subtype_From_Expr
2155 (N : Node_Id;
2156 Unc_Type : Entity_Id;
2157 Subtype_Indic : Node_Id;
2158 Exp : Node_Id)
2160 Loc : constant Source_Ptr := Sloc (N);
2161 Exp_Typ : constant Entity_Id := Etype (Exp);
2162 T : Entity_Id;
2164 begin
2165 -- In general we cannot build the subtype if expansion is disabled,
2166 -- because internal entities may not have been defined. However, to
2167 -- avoid some cascaded errors, we try to continue when the expression is
2168 -- an array (or string), because it is safe to compute the bounds. It is
2169 -- in fact required to do so even in a generic context, because there
2170 -- may be constants that depend on the bounds of a string literal, both
2171 -- standard string types and more generally arrays of characters.
2173 -- In GNATprove mode, these extra subtypes are not needed
2175 if GNATprove_Mode then
2176 return;
2177 end if;
2179 if not Expander_Active
2180 and then (No (Etype (Exp)) or else not Is_String_Type (Etype (Exp)))
2181 then
2182 return;
2183 end if;
2185 if Nkind (Exp) = N_Slice then
2186 declare
2187 Slice_Type : constant Entity_Id := Etype (First_Index (Exp_Typ));
2189 begin
2190 Rewrite (Subtype_Indic,
2191 Make_Subtype_Indication (Loc,
2192 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
2193 Constraint =>
2194 Make_Index_Or_Discriminant_Constraint (Loc,
2195 Constraints => New_List
2196 (New_Occurrence_Of (Slice_Type, Loc)))));
2198 -- This subtype indication may be used later for constraint checks
2199 -- we better make sure that if a variable was used as a bound of
2200 -- of the original slice, its value is frozen.
2202 Evaluate_Slice_Bounds (Exp);
2203 end;
2205 elsif Ekind (Exp_Typ) = E_String_Literal_Subtype then
2206 Rewrite (Subtype_Indic,
2207 Make_Subtype_Indication (Loc,
2208 Subtype_Mark => New_Occurrence_Of (Unc_Type, Loc),
2209 Constraint =>
2210 Make_Index_Or_Discriminant_Constraint (Loc,
2211 Constraints => New_List (
2212 Make_Literal_Range (Loc,
2213 Literal_Typ => Exp_Typ)))));
2215 -- If the type of the expression is an internally generated type it
2216 -- may not be necessary to create a new subtype. However there are two
2217 -- exceptions: references to the current instances, and aliased array
2218 -- object declarations for which the backend needs to create a template.
2220 elsif Is_Constrained (Exp_Typ)
2221 and then not Is_Class_Wide_Type (Unc_Type)
2222 and then
2223 (Nkind (N) /= N_Object_Declaration
2224 or else not Is_Entity_Name (Expression (N))
2225 or else not Comes_From_Source (Entity (Expression (N)))
2226 or else not Is_Array_Type (Exp_Typ)
2227 or else not Aliased_Present (N))
2228 then
2229 if Is_Itype (Exp_Typ) then
2231 -- Within an initialization procedure, a selected component
2232 -- denotes a component of the enclosing record, and it appears as
2233 -- an actual in a call to its own initialization procedure. If
2234 -- this component depends on the outer discriminant, we must
2235 -- generate the proper actual subtype for it.
2237 if Nkind (Exp) = N_Selected_Component
2238 and then Within_Init_Proc
2239 then
2240 declare
2241 Decl : constant Node_Id :=
2242 Build_Actual_Subtype_Of_Component (Exp_Typ, Exp);
2243 begin
2244 if Present (Decl) then
2245 Insert_Action (N, Decl);
2246 T := Defining_Identifier (Decl);
2247 else
2248 T := Exp_Typ;
2249 end if;
2250 end;
2252 -- No need to generate a new subtype
2254 else
2255 T := Exp_Typ;
2256 end if;
2258 else
2259 T := Make_Temporary (Loc, 'T');
2261 Insert_Action (N,
2262 Make_Subtype_Declaration (Loc,
2263 Defining_Identifier => T,
2264 Subtype_Indication => New_Occurrence_Of (Exp_Typ, Loc)));
2266 -- This type is marked as an itype even though it has an explicit
2267 -- declaration since otherwise Is_Generic_Actual_Type can get
2268 -- set, resulting in the generation of spurious errors. (See
2269 -- sem_ch8.Analyze_Package_Renaming and sem_type.covers)
2271 Set_Is_Itype (T);
2272 Set_Associated_Node_For_Itype (T, Exp);
2273 end if;
2275 Rewrite (Subtype_Indic, New_Occurrence_Of (T, Loc));
2277 -- Nothing needs to be done for private types with unknown discriminants
2278 -- if the underlying type is not an unconstrained composite type or it
2279 -- is an unchecked union.
2281 elsif Is_Private_Type (Unc_Type)
2282 and then Has_Unknown_Discriminants (Unc_Type)
2283 and then (not Is_Composite_Type (Underlying_Type (Unc_Type))
2284 or else Is_Constrained (Underlying_Type (Unc_Type))
2285 or else Is_Unchecked_Union (Underlying_Type (Unc_Type)))
2286 then
2287 null;
2289 -- Case of derived type with unknown discriminants where the parent type
2290 -- also has unknown discriminants.
2292 elsif Is_Record_Type (Unc_Type)
2293 and then not Is_Class_Wide_Type (Unc_Type)
2294 and then Has_Unknown_Discriminants (Unc_Type)
2295 and then Has_Unknown_Discriminants (Underlying_Type (Unc_Type))
2296 then
2297 -- Nothing to be done if no underlying record view available
2299 if No (Underlying_Record_View (Unc_Type)) then
2300 null;
2302 -- Otherwise use the Underlying_Record_View to create the proper
2303 -- constrained subtype for an object of a derived type with unknown
2304 -- discriminants.
2306 else
2307 Remove_Side_Effects (Exp);
2308 Rewrite (Subtype_Indic,
2309 Make_Subtype_From_Expr (Exp, Underlying_Record_View (Unc_Type)));
2310 end if;
2312 -- Renamings of class-wide interface types require no equivalent
2313 -- constrained type declarations because we only need to reference
2314 -- the tag component associated with the interface. The same is
2315 -- presumably true for class-wide types in general, so this test
2316 -- is broadened to include all class-wide renamings, which also
2317 -- avoids cases of unbounded recursion in Remove_Side_Effects.
2318 -- (Is this really correct, or are there some cases of class-wide
2319 -- renamings that require action in this procedure???)
2321 elsif Present (N)
2322 and then Nkind (N) = N_Object_Renaming_Declaration
2323 and then Is_Class_Wide_Type (Unc_Type)
2324 then
2325 null;
2327 -- In Ada 95 nothing to be done if the type of the expression is limited
2328 -- because in this case the expression cannot be copied, and its use can
2329 -- only be by reference.
2331 -- In Ada 2005 the context can be an object declaration whose expression
2332 -- is a function that returns in place. If the nominal subtype has
2333 -- unknown discriminants, the call still provides constraints on the
2334 -- object, and we have to create an actual subtype from it.
2336 -- If the type is class-wide, the expression is dynamically tagged and
2337 -- we do not create an actual subtype either. Ditto for an interface.
2338 -- For now this applies only if the type is immutably limited, and the
2339 -- function being called is build-in-place. This will have to be revised
2340 -- when build-in-place functions are generalized to other types.
2342 elsif Is_Limited_View (Exp_Typ)
2343 and then
2344 (Is_Class_Wide_Type (Exp_Typ)
2345 or else Is_Interface (Exp_Typ)
2346 or else not Has_Unknown_Discriminants (Exp_Typ)
2347 or else not Is_Composite_Type (Unc_Type))
2348 then
2349 null;
2351 -- For limited objects initialized with build in place function calls,
2352 -- nothing to be done; otherwise we prematurely introduce an N_Reference
2353 -- node in the expression initializing the object, which breaks the
2354 -- circuitry that detects and adds the additional arguments to the
2355 -- called function.
2357 elsif Is_Build_In_Place_Function_Call (Exp) then
2358 null;
2360 else
2361 Remove_Side_Effects (Exp);
2362 Rewrite (Subtype_Indic,
2363 Make_Subtype_From_Expr (Exp, Unc_Type));
2364 end if;
2365 end Expand_Subtype_From_Expr;
2367 ----------------------
2368 -- Finalize_Address --
2369 ----------------------
2371 function Finalize_Address (Typ : Entity_Id) return Entity_Id is
2372 Utyp : Entity_Id := Typ;
2374 begin
2375 -- Handle protected class-wide or task class-wide types
2377 if Is_Class_Wide_Type (Utyp) then
2378 if Is_Concurrent_Type (Root_Type (Utyp)) then
2379 Utyp := Root_Type (Utyp);
2381 elsif Is_Private_Type (Root_Type (Utyp))
2382 and then Present (Full_View (Root_Type (Utyp)))
2383 and then Is_Concurrent_Type (Full_View (Root_Type (Utyp)))
2384 then
2385 Utyp := Full_View (Root_Type (Utyp));
2386 end if;
2387 end if;
2389 -- Handle private types
2391 if Is_Private_Type (Utyp) and then Present (Full_View (Utyp)) then
2392 Utyp := Full_View (Utyp);
2393 end if;
2395 -- Handle protected and task types
2397 if Is_Concurrent_Type (Utyp)
2398 and then Present (Corresponding_Record_Type (Utyp))
2399 then
2400 Utyp := Corresponding_Record_Type (Utyp);
2401 end if;
2403 Utyp := Underlying_Type (Base_Type (Utyp));
2405 -- Deal with untagged derivation of private views. If the parent is
2406 -- now known to be protected, the finalization routine is the one
2407 -- defined on the corresponding record of the ancestor (corresponding
2408 -- records do not automatically inherit operations, but maybe they
2409 -- should???)
2411 if Is_Untagged_Derivation (Typ) then
2412 if Is_Protected_Type (Typ) then
2413 Utyp := Corresponding_Record_Type (Root_Type (Base_Type (Typ)));
2415 else
2416 Utyp := Underlying_Type (Root_Type (Base_Type (Typ)));
2418 if Is_Protected_Type (Utyp) then
2419 Utyp := Corresponding_Record_Type (Utyp);
2420 end if;
2421 end if;
2422 end if;
2424 -- If the underlying_type is a subtype, we are dealing with the
2425 -- completion of a private type. We need to access the base type and
2426 -- generate a conversion to it.
2428 if Utyp /= Base_Type (Utyp) then
2429 pragma Assert (Is_Private_Type (Typ));
2431 Utyp := Base_Type (Utyp);
2432 end if;
2434 -- When dealing with an internally built full view for a type with
2435 -- unknown discriminants, use the original record type.
2437 if Is_Underlying_Record_View (Utyp) then
2438 Utyp := Etype (Utyp);
2439 end if;
2441 return TSS (Utyp, TSS_Finalize_Address);
2442 end Finalize_Address;
2444 ------------------------
2445 -- Find_Interface_ADT --
2446 ------------------------
2448 function Find_Interface_ADT
2449 (T : Entity_Id;
2450 Iface : Entity_Id) return Elmt_Id
2452 ADT : Elmt_Id;
2453 Typ : Entity_Id := T;
2455 begin
2456 pragma Assert (Is_Interface (Iface));
2458 -- Handle private types
2460 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
2461 Typ := Full_View (Typ);
2462 end if;
2464 -- Handle access types
2466 if Is_Access_Type (Typ) then
2467 Typ := Designated_Type (Typ);
2468 end if;
2470 -- Handle task and protected types implementing interfaces
2472 if Is_Concurrent_Type (Typ) then
2473 Typ := Corresponding_Record_Type (Typ);
2474 end if;
2476 pragma Assert
2477 (not Is_Class_Wide_Type (Typ)
2478 and then Ekind (Typ) /= E_Incomplete_Type);
2480 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
2481 return First_Elmt (Access_Disp_Table (Typ));
2483 else
2484 ADT := Next_Elmt (Next_Elmt (First_Elmt (Access_Disp_Table (Typ))));
2485 while Present (ADT)
2486 and then Present (Related_Type (Node (ADT)))
2487 and then Related_Type (Node (ADT)) /= Iface
2488 and then not Is_Ancestor (Iface, Related_Type (Node (ADT)),
2489 Use_Full_View => True)
2490 loop
2491 Next_Elmt (ADT);
2492 end loop;
2494 pragma Assert (Present (Related_Type (Node (ADT))));
2495 return ADT;
2496 end if;
2497 end Find_Interface_ADT;
2499 ------------------------
2500 -- Find_Interface_Tag --
2501 ------------------------
2503 function Find_Interface_Tag
2504 (T : Entity_Id;
2505 Iface : Entity_Id) return Entity_Id
2507 AI_Tag : Entity_Id;
2508 Found : Boolean := False;
2509 Typ : Entity_Id := T;
2511 procedure Find_Tag (Typ : Entity_Id);
2512 -- Internal subprogram used to recursively climb to the ancestors
2514 --------------
2515 -- Find_Tag --
2516 --------------
2518 procedure Find_Tag (Typ : Entity_Id) is
2519 AI_Elmt : Elmt_Id;
2520 AI : Node_Id;
2522 begin
2523 -- This routine does not handle the case in which the interface is an
2524 -- ancestor of Typ. That case is handled by the enclosing subprogram.
2526 pragma Assert (Typ /= Iface);
2528 -- Climb to the root type handling private types
2530 if Present (Full_View (Etype (Typ))) then
2531 if Full_View (Etype (Typ)) /= Typ then
2532 Find_Tag (Full_View (Etype (Typ)));
2533 end if;
2535 elsif Etype (Typ) /= Typ then
2536 Find_Tag (Etype (Typ));
2537 end if;
2539 -- Traverse the list of interfaces implemented by the type
2541 if not Found
2542 and then Present (Interfaces (Typ))
2543 and then not (Is_Empty_Elmt_List (Interfaces (Typ)))
2544 then
2545 -- Skip the tag associated with the primary table
2547 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
2548 AI_Tag := Next_Tag_Component (First_Tag_Component (Typ));
2549 pragma Assert (Present (AI_Tag));
2551 AI_Elmt := First_Elmt (Interfaces (Typ));
2552 while Present (AI_Elmt) loop
2553 AI := Node (AI_Elmt);
2555 if AI = Iface
2556 or else Is_Ancestor (Iface, AI, Use_Full_View => True)
2557 then
2558 Found := True;
2559 return;
2560 end if;
2562 AI_Tag := Next_Tag_Component (AI_Tag);
2563 Next_Elmt (AI_Elmt);
2564 end loop;
2565 end if;
2566 end Find_Tag;
2568 -- Start of processing for Find_Interface_Tag
2570 begin
2571 pragma Assert (Is_Interface (Iface));
2573 -- Handle access types
2575 if Is_Access_Type (Typ) then
2576 Typ := Designated_Type (Typ);
2577 end if;
2579 -- Handle class-wide types
2581 if Is_Class_Wide_Type (Typ) then
2582 Typ := Root_Type (Typ);
2583 end if;
2585 -- Handle private types
2587 if Has_Private_Declaration (Typ) and then Present (Full_View (Typ)) then
2588 Typ := Full_View (Typ);
2589 end if;
2591 -- Handle entities from the limited view
2593 if Ekind (Typ) = E_Incomplete_Type then
2594 pragma Assert (Present (Non_Limited_View (Typ)));
2595 Typ := Non_Limited_View (Typ);
2596 end if;
2598 -- Handle task and protected types implementing interfaces
2600 if Is_Concurrent_Type (Typ) then
2601 Typ := Corresponding_Record_Type (Typ);
2602 end if;
2604 -- If the interface is an ancestor of the type, then it shared the
2605 -- primary dispatch table.
2607 if Is_Ancestor (Iface, Typ, Use_Full_View => True) then
2608 pragma Assert (Etype (First_Tag_Component (Typ)) = RTE (RE_Tag));
2609 return First_Tag_Component (Typ);
2611 -- Otherwise we need to search for its associated tag component
2613 else
2614 Find_Tag (Typ);
2615 pragma Assert (Found);
2616 return AI_Tag;
2617 end if;
2618 end Find_Interface_Tag;
2620 ------------------
2621 -- Find_Prim_Op --
2622 ------------------
2624 function Find_Prim_Op (T : Entity_Id; Name : Name_Id) return Entity_Id is
2625 Prim : Elmt_Id;
2626 Typ : Entity_Id := T;
2627 Op : Entity_Id;
2629 begin
2630 if Is_Class_Wide_Type (Typ) then
2631 Typ := Root_Type (Typ);
2632 end if;
2634 Typ := Underlying_Type (Typ);
2636 -- Loop through primitive operations
2638 Prim := First_Elmt (Primitive_Operations (Typ));
2639 while Present (Prim) loop
2640 Op := Node (Prim);
2642 -- We can retrieve primitive operations by name if it is an internal
2643 -- name. For equality we must check that both of its operands have
2644 -- the same type, to avoid confusion with user-defined equalities
2645 -- than may have a non-symmetric signature.
2647 exit when Chars (Op) = Name
2648 and then
2649 (Name /= Name_Op_Eq
2650 or else Etype (First_Formal (Op)) = Etype (Last_Formal (Op)));
2652 Next_Elmt (Prim);
2654 -- Raise Program_Error if no primitive found
2656 if No (Prim) then
2657 raise Program_Error;
2658 end if;
2659 end loop;
2661 return Node (Prim);
2662 end Find_Prim_Op;
2664 ------------------
2665 -- Find_Prim_Op --
2666 ------------------
2668 function Find_Prim_Op
2669 (T : Entity_Id;
2670 Name : TSS_Name_Type) return Entity_Id
2672 Inher_Op : Entity_Id := Empty;
2673 Own_Op : Entity_Id := Empty;
2674 Prim_Elmt : Elmt_Id;
2675 Prim_Id : Entity_Id;
2676 Typ : Entity_Id := T;
2678 begin
2679 if Is_Class_Wide_Type (Typ) then
2680 Typ := Root_Type (Typ);
2681 end if;
2683 Typ := Underlying_Type (Typ);
2685 -- This search is based on the assertion that the dispatching version
2686 -- of the TSS routine always precedes the real primitive.
2688 Prim_Elmt := First_Elmt (Primitive_Operations (Typ));
2689 while Present (Prim_Elmt) loop
2690 Prim_Id := Node (Prim_Elmt);
2692 if Is_TSS (Prim_Id, Name) then
2693 if Present (Alias (Prim_Id)) then
2694 Inher_Op := Prim_Id;
2695 else
2696 Own_Op := Prim_Id;
2697 end if;
2698 end if;
2700 Next_Elmt (Prim_Elmt);
2701 end loop;
2703 if Present (Own_Op) then
2704 return Own_Op;
2705 elsif Present (Inher_Op) then
2706 return Inher_Op;
2707 else
2708 raise Program_Error;
2709 end if;
2710 end Find_Prim_Op;
2712 ----------------------------
2713 -- Find_Protection_Object --
2714 ----------------------------
2716 function Find_Protection_Object (Scop : Entity_Id) return Entity_Id is
2717 S : Entity_Id;
2719 begin
2720 S := Scop;
2721 while Present (S) loop
2722 if Ekind_In (S, E_Entry, E_Entry_Family, E_Function, E_Procedure)
2723 and then Present (Protection_Object (S))
2724 then
2725 return Protection_Object (S);
2726 end if;
2728 S := Scope (S);
2729 end loop;
2731 -- If we do not find a Protection object in the scope chain, then
2732 -- something has gone wrong, most likely the object was never created.
2734 raise Program_Error;
2735 end Find_Protection_Object;
2737 --------------------------
2738 -- Find_Protection_Type --
2739 --------------------------
2741 function Find_Protection_Type (Conc_Typ : Entity_Id) return Entity_Id is
2742 Comp : Entity_Id;
2743 Typ : Entity_Id := Conc_Typ;
2745 begin
2746 if Is_Concurrent_Type (Typ) then
2747 Typ := Corresponding_Record_Type (Typ);
2748 end if;
2750 -- Since restriction violations are not considered serious errors, the
2751 -- expander remains active, but may leave the corresponding record type
2752 -- malformed. In such cases, component _object is not available so do
2753 -- not look for it.
2755 if not Analyzed (Typ) then
2756 return Empty;
2757 end if;
2759 Comp := First_Component (Typ);
2760 while Present (Comp) loop
2761 if Chars (Comp) = Name_uObject then
2762 return Base_Type (Etype (Comp));
2763 end if;
2765 Next_Component (Comp);
2766 end loop;
2768 -- The corresponding record of a protected type should always have an
2769 -- _object field.
2771 raise Program_Error;
2772 end Find_Protection_Type;
2774 -----------------------
2775 -- Find_Hook_Context --
2776 -----------------------
2778 function Find_Hook_Context (N : Node_Id) return Node_Id is
2779 Par : Node_Id;
2780 Top : Node_Id;
2782 Wrapped_Node : Node_Id;
2783 -- Note: if we are in a transient scope, we want to reuse it as
2784 -- the context for actions insertion, if possible. But if N is itself
2785 -- part of the stored actions for the current transient scope,
2786 -- then we need to insert at the appropriate (inner) location in
2787 -- the not as an action on Node_To_Be_Wrapped.
2789 In_Cond_Expr : constant Boolean := Within_Case_Or_If_Expression (N);
2791 begin
2792 -- When the node is inside a case/if expression, the lifetime of any
2793 -- temporary controlled object is extended. Find a suitable insertion
2794 -- node by locating the topmost case or if expressions.
2796 if In_Cond_Expr then
2797 Par := N;
2798 Top := N;
2799 while Present (Par) loop
2800 if Nkind_In (Original_Node (Par), N_Case_Expression,
2801 N_If_Expression)
2802 then
2803 Top := Par;
2805 -- Prevent the search from going too far
2807 elsif Is_Body_Or_Package_Declaration (Par) then
2808 exit;
2809 end if;
2811 Par := Parent (Par);
2812 end loop;
2814 -- The topmost case or if expression is now recovered, but it may
2815 -- still not be the correct place to add generated code. Climb to
2816 -- find a parent that is part of a declarative or statement list,
2817 -- and is not a list of actuals in a call.
2819 Par := Top;
2820 while Present (Par) loop
2821 if Is_List_Member (Par)
2822 and then not Nkind_In (Par, N_Component_Association,
2823 N_Discriminant_Association,
2824 N_Parameter_Association,
2825 N_Pragma_Argument_Association)
2826 and then not Nkind_In
2827 (Parent (Par), N_Function_Call,
2828 N_Procedure_Call_Statement,
2829 N_Entry_Call_Statement)
2831 then
2832 return Par;
2834 -- Prevent the search from going too far
2836 elsif Is_Body_Or_Package_Declaration (Par) then
2837 exit;
2838 end if;
2840 Par := Parent (Par);
2841 end loop;
2843 return Par;
2845 else
2846 Par := N;
2847 while Present (Par) loop
2849 -- Keep climbing past various operators
2851 if Nkind (Parent (Par)) in N_Op
2852 or else Nkind_In (Parent (Par), N_And_Then, N_Or_Else)
2853 then
2854 Par := Parent (Par);
2855 else
2856 exit;
2857 end if;
2858 end loop;
2860 Top := Par;
2862 -- The node may be located in a pragma in which case return the
2863 -- pragma itself:
2865 -- pragma Precondition (... and then Ctrl_Func_Call ...);
2867 -- Similar case occurs when the node is related to an object
2868 -- declaration or assignment:
2870 -- Obj [: Some_Typ] := ... and then Ctrl_Func_Call ...;
2872 -- Another case to consider is when the node is part of a return
2873 -- statement:
2875 -- return ... and then Ctrl_Func_Call ...;
2877 -- Another case is when the node acts as a formal in a procedure
2878 -- call statement:
2880 -- Proc (... and then Ctrl_Func_Call ...);
2882 if Scope_Is_Transient then
2883 Wrapped_Node := Node_To_Be_Wrapped;
2884 else
2885 Wrapped_Node := Empty;
2886 end if;
2888 while Present (Par) loop
2889 if Par = Wrapped_Node
2890 or else Nkind_In (Par, N_Assignment_Statement,
2891 N_Object_Declaration,
2892 N_Pragma,
2893 N_Procedure_Call_Statement,
2894 N_Simple_Return_Statement)
2895 then
2896 return Par;
2898 -- Prevent the search from going too far
2900 elsif Is_Body_Or_Package_Declaration (Par) then
2901 exit;
2902 end if;
2904 Par := Parent (Par);
2905 end loop;
2907 -- Return the topmost short circuit operator
2909 return Top;
2910 end if;
2911 end Find_Hook_Context;
2913 ------------------------------
2914 -- Following_Address_Clause --
2915 ------------------------------
2917 function Following_Address_Clause (D : Node_Id) return Node_Id is
2918 Id : constant Entity_Id := Defining_Identifier (D);
2919 Result : Node_Id;
2920 Par : Node_Id;
2922 function Check_Decls (D : Node_Id) return Node_Id;
2923 -- This internal function differs from the main function in that it
2924 -- gets called to deal with a following package private part, and
2925 -- it checks declarations starting with D (the main function checks
2926 -- declarations following D). If D is Empty, then Empty is returned.
2928 -----------------
2929 -- Check_Decls --
2930 -----------------
2932 function Check_Decls (D : Node_Id) return Node_Id is
2933 Decl : Node_Id;
2935 begin
2936 Decl := D;
2937 while Present (Decl) loop
2938 if Nkind (Decl) = N_At_Clause
2939 and then Chars (Identifier (Decl)) = Chars (Id)
2940 then
2941 return Decl;
2943 elsif Nkind (Decl) = N_Attribute_Definition_Clause
2944 and then Chars (Decl) = Name_Address
2945 and then Chars (Name (Decl)) = Chars (Id)
2946 then
2947 return Decl;
2948 end if;
2950 Next (Decl);
2951 end loop;
2953 -- Otherwise not found, return Empty
2955 return Empty;
2956 end Check_Decls;
2958 -- Start of processing for Following_Address_Clause
2960 begin
2961 -- If parser detected no address clause for the identifier in question,
2962 -- then the answer is a quick NO, without the need for a search.
2964 if not Get_Name_Table_Boolean1 (Chars (Id)) then
2965 return Empty;
2966 end if;
2968 -- Otherwise search current declarative unit
2970 Result := Check_Decls (Next (D));
2972 if Present (Result) then
2973 return Result;
2974 end if;
2976 -- Check for possible package private part following
2978 Par := Parent (D);
2980 if Nkind (Par) = N_Package_Specification
2981 and then Visible_Declarations (Par) = List_Containing (D)
2982 and then Present (Private_Declarations (Par))
2983 then
2984 -- Private part present, check declarations there
2986 return Check_Decls (First (Private_Declarations (Par)));
2988 else
2989 -- No private part, clause not found, return Empty
2991 return Empty;
2992 end if;
2993 end Following_Address_Clause;
2995 ----------------------
2996 -- Force_Evaluation --
2997 ----------------------
2999 procedure Force_Evaluation
3000 (Exp : Node_Id;
3001 Name_Req : Boolean := False;
3002 Related_Id : Entity_Id := Empty;
3003 Is_Low_Bound : Boolean := False;
3004 Is_High_Bound : Boolean := False)
3006 begin
3007 Remove_Side_Effects
3008 (Exp => Exp,
3009 Name_Req => Name_Req,
3010 Variable_Ref => True,
3011 Renaming_Req => False,
3012 Related_Id => Related_Id,
3013 Is_Low_Bound => Is_Low_Bound,
3014 Is_High_Bound => Is_High_Bound);
3015 end Force_Evaluation;
3017 ---------------------------------
3018 -- Fully_Qualified_Name_String --
3019 ---------------------------------
3021 function Fully_Qualified_Name_String
3022 (E : Entity_Id;
3023 Append_NUL : Boolean := True) return String_Id
3025 procedure Internal_Full_Qualified_Name (E : Entity_Id);
3026 -- Compute recursively the qualified name without NUL at the end, adding
3027 -- it to the currently started string being generated
3029 ----------------------------------
3030 -- Internal_Full_Qualified_Name --
3031 ----------------------------------
3033 procedure Internal_Full_Qualified_Name (E : Entity_Id) is
3034 Ent : Entity_Id;
3036 begin
3037 -- Deal properly with child units
3039 if Nkind (E) = N_Defining_Program_Unit_Name then
3040 Ent := Defining_Identifier (E);
3041 else
3042 Ent := E;
3043 end if;
3045 -- Compute qualification recursively (only "Standard" has no scope)
3047 if Present (Scope (Scope (Ent))) then
3048 Internal_Full_Qualified_Name (Scope (Ent));
3049 Store_String_Char (Get_Char_Code ('.'));
3050 end if;
3052 -- Every entity should have a name except some expanded blocks
3053 -- don't bother about those.
3055 if Chars (Ent) = No_Name then
3056 return;
3057 end if;
3059 -- Generates the entity name in upper case
3061 Get_Decoded_Name_String (Chars (Ent));
3062 Set_All_Upper_Case;
3063 Store_String_Chars (Name_Buffer (1 .. Name_Len));
3064 return;
3065 end Internal_Full_Qualified_Name;
3067 -- Start of processing for Full_Qualified_Name
3069 begin
3070 Start_String;
3071 Internal_Full_Qualified_Name (E);
3073 if Append_NUL then
3074 Store_String_Char (Get_Char_Code (ASCII.NUL));
3075 end if;
3077 return End_String;
3078 end Fully_Qualified_Name_String;
3080 ------------------------
3081 -- Generate_Poll_Call --
3082 ------------------------
3084 procedure Generate_Poll_Call (N : Node_Id) is
3085 begin
3086 -- No poll call if polling not active
3088 if not Polling_Required then
3089 return;
3091 -- Otherwise generate require poll call
3093 else
3094 Insert_Before_And_Analyze (N,
3095 Make_Procedure_Call_Statement (Sloc (N),
3096 Name => New_Occurrence_Of (RTE (RE_Poll), Sloc (N))));
3097 end if;
3098 end Generate_Poll_Call;
3100 ---------------------------------
3101 -- Get_Current_Value_Condition --
3102 ---------------------------------
3104 -- Note: the implementation of this procedure is very closely tied to the
3105 -- implementation of Set_Current_Value_Condition. In the Get procedure, we
3106 -- interpret Current_Value fields set by the Set procedure, so the two
3107 -- procedures need to be closely coordinated.
3109 procedure Get_Current_Value_Condition
3110 (Var : Node_Id;
3111 Op : out Node_Kind;
3112 Val : out Node_Id)
3114 Loc : constant Source_Ptr := Sloc (Var);
3115 Ent : constant Entity_Id := Entity (Var);
3117 procedure Process_Current_Value_Condition
3118 (N : Node_Id;
3119 S : Boolean);
3120 -- N is an expression which holds either True (S = True) or False (S =
3121 -- False) in the condition. This procedure digs out the expression and
3122 -- if it refers to Ent, sets Op and Val appropriately.
3124 -------------------------------------
3125 -- Process_Current_Value_Condition --
3126 -------------------------------------
3128 procedure Process_Current_Value_Condition
3129 (N : Node_Id;
3130 S : Boolean)
3132 Cond : Node_Id;
3133 Prev_Cond : Node_Id;
3134 Sens : Boolean;
3136 begin
3137 Cond := N;
3138 Sens := S;
3140 loop
3141 Prev_Cond := Cond;
3143 -- Deal with NOT operators, inverting sense
3145 while Nkind (Cond) = N_Op_Not loop
3146 Cond := Right_Opnd (Cond);
3147 Sens := not Sens;
3148 end loop;
3150 -- Deal with conversions, qualifications, and expressions with
3151 -- actions.
3153 while Nkind_In (Cond,
3154 N_Type_Conversion,
3155 N_Qualified_Expression,
3156 N_Expression_With_Actions)
3157 loop
3158 Cond := Expression (Cond);
3159 end loop;
3161 exit when Cond = Prev_Cond;
3162 end loop;
3164 -- Deal with AND THEN and AND cases
3166 if Nkind_In (Cond, N_And_Then, N_Op_And) then
3168 -- Don't ever try to invert a condition that is of the form of an
3169 -- AND or AND THEN (since we are not doing sufficiently general
3170 -- processing to allow this).
3172 if Sens = False then
3173 Op := N_Empty;
3174 Val := Empty;
3175 return;
3176 end if;
3178 -- Recursively process AND and AND THEN branches
3180 Process_Current_Value_Condition (Left_Opnd (Cond), True);
3182 if Op /= N_Empty then
3183 return;
3184 end if;
3186 Process_Current_Value_Condition (Right_Opnd (Cond), True);
3187 return;
3189 -- Case of relational operator
3191 elsif Nkind (Cond) in N_Op_Compare then
3192 Op := Nkind (Cond);
3194 -- Invert sense of test if inverted test
3196 if Sens = False then
3197 case Op is
3198 when N_Op_Eq => Op := N_Op_Ne;
3199 when N_Op_Ne => Op := N_Op_Eq;
3200 when N_Op_Lt => Op := N_Op_Ge;
3201 when N_Op_Gt => Op := N_Op_Le;
3202 when N_Op_Le => Op := N_Op_Gt;
3203 when N_Op_Ge => Op := N_Op_Lt;
3204 when others => raise Program_Error;
3205 end case;
3206 end if;
3208 -- Case of entity op value
3210 if Is_Entity_Name (Left_Opnd (Cond))
3211 and then Ent = Entity (Left_Opnd (Cond))
3212 and then Compile_Time_Known_Value (Right_Opnd (Cond))
3213 then
3214 Val := Right_Opnd (Cond);
3216 -- Case of value op entity
3218 elsif Is_Entity_Name (Right_Opnd (Cond))
3219 and then Ent = Entity (Right_Opnd (Cond))
3220 and then Compile_Time_Known_Value (Left_Opnd (Cond))
3221 then
3222 Val := Left_Opnd (Cond);
3224 -- We are effectively swapping operands
3226 case Op is
3227 when N_Op_Eq => null;
3228 when N_Op_Ne => null;
3229 when N_Op_Lt => Op := N_Op_Gt;
3230 when N_Op_Gt => Op := N_Op_Lt;
3231 when N_Op_Le => Op := N_Op_Ge;
3232 when N_Op_Ge => Op := N_Op_Le;
3233 when others => raise Program_Error;
3234 end case;
3236 else
3237 Op := N_Empty;
3238 end if;
3240 return;
3242 elsif Nkind_In (Cond,
3243 N_Type_Conversion,
3244 N_Qualified_Expression,
3245 N_Expression_With_Actions)
3246 then
3247 Cond := Expression (Cond);
3249 -- Case of Boolean variable reference, return as though the
3250 -- reference had said var = True.
3252 else
3253 if Is_Entity_Name (Cond) and then Ent = Entity (Cond) then
3254 Val := New_Occurrence_Of (Standard_True, Sloc (Cond));
3256 if Sens = False then
3257 Op := N_Op_Ne;
3258 else
3259 Op := N_Op_Eq;
3260 end if;
3261 end if;
3262 end if;
3263 end Process_Current_Value_Condition;
3265 -- Start of processing for Get_Current_Value_Condition
3267 begin
3268 Op := N_Empty;
3269 Val := Empty;
3271 -- Immediate return, nothing doing, if this is not an object
3273 if Ekind (Ent) not in Object_Kind then
3274 return;
3275 end if;
3277 -- Otherwise examine current value
3279 declare
3280 CV : constant Node_Id := Current_Value (Ent);
3281 Sens : Boolean;
3282 Stm : Node_Id;
3284 begin
3285 -- If statement. Condition is known true in THEN section, known False
3286 -- in any ELSIF or ELSE part, and unknown outside the IF statement.
3288 if Nkind (CV) = N_If_Statement then
3290 -- Before start of IF statement
3292 if Loc < Sloc (CV) then
3293 return;
3295 -- After end of IF statement
3297 elsif Loc >= Sloc (CV) + Text_Ptr (UI_To_Int (End_Span (CV))) then
3298 return;
3299 end if;
3301 -- At this stage we know that we are within the IF statement, but
3302 -- unfortunately, the tree does not record the SLOC of the ELSE so
3303 -- we cannot use a simple SLOC comparison to distinguish between
3304 -- the then/else statements, so we have to climb the tree.
3306 declare
3307 N : Node_Id;
3309 begin
3310 N := Parent (Var);
3311 while Parent (N) /= CV loop
3312 N := Parent (N);
3314 -- If we fall off the top of the tree, then that's odd, but
3315 -- perhaps it could occur in some error situation, and the
3316 -- safest response is simply to assume that the outcome of
3317 -- the condition is unknown. No point in bombing during an
3318 -- attempt to optimize things.
3320 if No (N) then
3321 return;
3322 end if;
3323 end loop;
3325 -- Now we have N pointing to a node whose parent is the IF
3326 -- statement in question, so now we can tell if we are within
3327 -- the THEN statements.
3329 if Is_List_Member (N)
3330 and then List_Containing (N) = Then_Statements (CV)
3331 then
3332 Sens := True;
3334 -- If the variable reference does not come from source, we
3335 -- cannot reliably tell whether it appears in the else part.
3336 -- In particular, if it appears in generated code for a node
3337 -- that requires finalization, it may be attached to a list
3338 -- that has not been yet inserted into the code. For now,
3339 -- treat it as unknown.
3341 elsif not Comes_From_Source (N) then
3342 return;
3344 -- Otherwise we must be in ELSIF or ELSE part
3346 else
3347 Sens := False;
3348 end if;
3349 end;
3351 -- ELSIF part. Condition is known true within the referenced
3352 -- ELSIF, known False in any subsequent ELSIF or ELSE part,
3353 -- and unknown before the ELSE part or after the IF statement.
3355 elsif Nkind (CV) = N_Elsif_Part then
3357 -- if the Elsif_Part had condition_actions, the elsif has been
3358 -- rewritten as a nested if, and the original elsif_part is
3359 -- detached from the tree, so there is no way to obtain useful
3360 -- information on the current value of the variable.
3361 -- Can this be improved ???
3363 if No (Parent (CV)) then
3364 return;
3365 end if;
3367 Stm := Parent (CV);
3369 -- Before start of ELSIF part
3371 if Loc < Sloc (CV) then
3372 return;
3374 -- After end of IF statement
3376 elsif Loc >= Sloc (Stm) +
3377 Text_Ptr (UI_To_Int (End_Span (Stm)))
3378 then
3379 return;
3380 end if;
3382 -- Again we lack the SLOC of the ELSE, so we need to climb the
3383 -- tree to see if we are within the ELSIF part in question.
3385 declare
3386 N : Node_Id;
3388 begin
3389 N := Parent (Var);
3390 while Parent (N) /= Stm loop
3391 N := Parent (N);
3393 -- If we fall off the top of the tree, then that's odd, but
3394 -- perhaps it could occur in some error situation, and the
3395 -- safest response is simply to assume that the outcome of
3396 -- the condition is unknown. No point in bombing during an
3397 -- attempt to optimize things.
3399 if No (N) then
3400 return;
3401 end if;
3402 end loop;
3404 -- Now we have N pointing to a node whose parent is the IF
3405 -- statement in question, so see if is the ELSIF part we want.
3406 -- the THEN statements.
3408 if N = CV then
3409 Sens := True;
3411 -- Otherwise we must be in subsequent ELSIF or ELSE part
3413 else
3414 Sens := False;
3415 end if;
3416 end;
3418 -- Iteration scheme of while loop. The condition is known to be
3419 -- true within the body of the loop.
3421 elsif Nkind (CV) = N_Iteration_Scheme then
3422 declare
3423 Loop_Stmt : constant Node_Id := Parent (CV);
3425 begin
3426 -- Before start of body of loop
3428 if Loc < Sloc (Loop_Stmt) then
3429 return;
3431 -- After end of LOOP statement
3433 elsif Loc >= Sloc (End_Label (Loop_Stmt)) then
3434 return;
3436 -- We are within the body of the loop
3438 else
3439 Sens := True;
3440 end if;
3441 end;
3443 -- All other cases of Current_Value settings
3445 else
3446 return;
3447 end if;
3449 -- If we fall through here, then we have a reportable condition, Sens
3450 -- is True if the condition is true and False if it needs inverting.
3452 Process_Current_Value_Condition (Condition (CV), Sens);
3453 end;
3454 end Get_Current_Value_Condition;
3456 ---------------------
3457 -- Get_Stream_Size --
3458 ---------------------
3460 function Get_Stream_Size (E : Entity_Id) return Uint is
3461 begin
3462 -- If we have a Stream_Size clause for this type use it
3464 if Has_Stream_Size_Clause (E) then
3465 return Static_Integer (Expression (Stream_Size_Clause (E)));
3467 -- Otherwise the Stream_Size if the size of the type
3469 else
3470 return Esize (E);
3471 end if;
3472 end Get_Stream_Size;
3474 ---------------------------
3475 -- Has_Access_Constraint --
3476 ---------------------------
3478 function Has_Access_Constraint (E : Entity_Id) return Boolean is
3479 Disc : Entity_Id;
3480 T : constant Entity_Id := Etype (E);
3482 begin
3483 if Has_Per_Object_Constraint (E) and then Has_Discriminants (T) then
3484 Disc := First_Discriminant (T);
3485 while Present (Disc) loop
3486 if Is_Access_Type (Etype (Disc)) then
3487 return True;
3488 end if;
3490 Next_Discriminant (Disc);
3491 end loop;
3493 return False;
3494 else
3495 return False;
3496 end if;
3497 end Has_Access_Constraint;
3499 -----------------------------------------------------
3500 -- Has_Annotate_Pragma_For_External_Axiomatization --
3501 -----------------------------------------------------
3503 function Has_Annotate_Pragma_For_External_Axiomatization
3504 (E : Entity_Id) return Boolean
3506 function Is_Annotate_Pragma_For_External_Axiomatization
3507 (N : Node_Id) return Boolean;
3508 -- Returns whether N is
3509 -- pragma Annotate (GNATprove, External_Axiomatization);
3511 ----------------------------------------------------
3512 -- Is_Annotate_Pragma_For_External_Axiomatization --
3513 ----------------------------------------------------
3515 -- The general form of pragma Annotate is
3517 -- pragma Annotate (IDENTIFIER [, IDENTIFIER {, ARG}]);
3518 -- ARG ::= NAME | EXPRESSION
3520 -- The first two arguments are by convention intended to refer to an
3521 -- external tool and a tool-specific function. These arguments are
3522 -- not analyzed.
3524 -- The following is used to annotate a package specification which
3525 -- GNATprove should treat specially, because the axiomatization of
3526 -- this unit is given by the user instead of being automatically
3527 -- generated.
3529 -- pragma Annotate (GNATprove, External_Axiomatization);
3531 function Is_Annotate_Pragma_For_External_Axiomatization
3532 (N : Node_Id) return Boolean
3534 Name_GNATprove : constant String :=
3535 "gnatprove";
3536 Name_External_Axiomatization : constant String :=
3537 "external_axiomatization";
3538 -- Special names
3540 begin
3541 if Nkind (N) = N_Pragma
3542 and then Get_Pragma_Id (Pragma_Name (N)) = Pragma_Annotate
3543 and then List_Length (Pragma_Argument_Associations (N)) = 2
3544 then
3545 declare
3546 Arg1 : constant Node_Id :=
3547 First (Pragma_Argument_Associations (N));
3548 Arg2 : constant Node_Id := Next (Arg1);
3549 Nam1 : Name_Id;
3550 Nam2 : Name_Id;
3552 begin
3553 -- Fill in Name_Buffer with Name_GNATprove first, and then with
3554 -- Name_External_Axiomatization so that Name_Find returns the
3555 -- corresponding name. This takes care of all possible casings.
3557 Name_Len := 0;
3558 Add_Str_To_Name_Buffer (Name_GNATprove);
3559 Nam1 := Name_Find;
3561 Name_Len := 0;
3562 Add_Str_To_Name_Buffer (Name_External_Axiomatization);
3563 Nam2 := Name_Find;
3565 return Chars (Get_Pragma_Arg (Arg1)) = Nam1
3566 and then
3567 Chars (Get_Pragma_Arg (Arg2)) = Nam2;
3568 end;
3570 else
3571 return False;
3572 end if;
3573 end Is_Annotate_Pragma_For_External_Axiomatization;
3575 -- Local variables
3577 Decl : Node_Id;
3578 Vis_Decls : List_Id;
3579 N : Node_Id;
3581 -- Start of processing for Has_Annotate_Pragma_For_External_Axiomatization
3583 begin
3584 if Nkind (Parent (E)) = N_Defining_Program_Unit_Name then
3585 Decl := Parent (Parent (E));
3586 else
3587 Decl := Parent (E);
3588 end if;
3590 Vis_Decls := Visible_Declarations (Decl);
3592 N := First (Vis_Decls);
3593 while Present (N) loop
3595 -- Skip declarations generated by the frontend. Skip all pragmas
3596 -- that are not the desired Annotate pragma. Stop the search on
3597 -- the first non-pragma source declaration.
3599 if Comes_From_Source (N) then
3600 if Nkind (N) = N_Pragma then
3601 if Is_Annotate_Pragma_For_External_Axiomatization (N) then
3602 return True;
3603 end if;
3604 else
3605 return False;
3606 end if;
3607 end if;
3609 Next (N);
3610 end loop;
3612 return False;
3613 end Has_Annotate_Pragma_For_External_Axiomatization;
3615 --------------------
3616 -- Homonym_Number --
3617 --------------------
3619 function Homonym_Number (Subp : Entity_Id) return Nat is
3620 Count : Nat;
3621 Hom : Entity_Id;
3623 begin
3624 Count := 1;
3625 Hom := Homonym (Subp);
3626 while Present (Hom) loop
3627 if Scope (Hom) = Scope (Subp) then
3628 Count := Count + 1;
3629 end if;
3631 Hom := Homonym (Hom);
3632 end loop;
3634 return Count;
3635 end Homonym_Number;
3637 -----------------------------------
3638 -- In_Library_Level_Package_Body --
3639 -----------------------------------
3641 function In_Library_Level_Package_Body (Id : Entity_Id) return Boolean is
3642 begin
3643 -- First determine whether the entity appears at the library level, then
3644 -- look at the containing unit.
3646 if Is_Library_Level_Entity (Id) then
3647 declare
3648 Container : constant Node_Id := Cunit (Get_Source_Unit (Id));
3650 begin
3651 return Nkind (Unit (Container)) = N_Package_Body;
3652 end;
3653 end if;
3655 return False;
3656 end In_Library_Level_Package_Body;
3658 ------------------------------
3659 -- In_Unconditional_Context --
3660 ------------------------------
3662 function In_Unconditional_Context (Node : Node_Id) return Boolean is
3663 P : Node_Id;
3665 begin
3666 P := Node;
3667 while Present (P) loop
3668 case Nkind (P) is
3669 when N_Subprogram_Body =>
3670 return True;
3672 when N_If_Statement =>
3673 return False;
3675 when N_Loop_Statement =>
3676 return False;
3678 when N_Case_Statement =>
3679 return False;
3681 when others =>
3682 P := Parent (P);
3683 end case;
3684 end loop;
3686 return False;
3687 end In_Unconditional_Context;
3689 -------------------
3690 -- Insert_Action --
3691 -------------------
3693 procedure Insert_Action (Assoc_Node : Node_Id; Ins_Action : Node_Id) is
3694 begin
3695 if Present (Ins_Action) then
3696 Insert_Actions (Assoc_Node, New_List (Ins_Action));
3697 end if;
3698 end Insert_Action;
3700 -- Version with check(s) suppressed
3702 procedure Insert_Action
3703 (Assoc_Node : Node_Id; Ins_Action : Node_Id; Suppress : Check_Id)
3705 begin
3706 Insert_Actions (Assoc_Node, New_List (Ins_Action), Suppress);
3707 end Insert_Action;
3709 -------------------------
3710 -- Insert_Action_After --
3711 -------------------------
3713 procedure Insert_Action_After
3714 (Assoc_Node : Node_Id;
3715 Ins_Action : Node_Id)
3717 begin
3718 Insert_Actions_After (Assoc_Node, New_List (Ins_Action));
3719 end Insert_Action_After;
3721 --------------------
3722 -- Insert_Actions --
3723 --------------------
3725 procedure Insert_Actions (Assoc_Node : Node_Id; Ins_Actions : List_Id) is
3726 N : Node_Id;
3727 P : Node_Id;
3729 Wrapped_Node : Node_Id := Empty;
3731 begin
3732 if No (Ins_Actions) or else Is_Empty_List (Ins_Actions) then
3733 return;
3734 end if;
3736 -- Ignore insert of actions from inside default expression (or other
3737 -- similar "spec expression") in the special spec-expression analyze
3738 -- mode. Any insertions at this point have no relevance, since we are
3739 -- only doing the analyze to freeze the types of any static expressions.
3740 -- See section "Handling of Default Expressions" in the spec of package
3741 -- Sem for further details.
3743 if In_Spec_Expression then
3744 return;
3745 end if;
3747 -- If the action derives from stuff inside a record, then the actions
3748 -- are attached to the current scope, to be inserted and analyzed on
3749 -- exit from the scope. The reason for this is that we may also be
3750 -- generating freeze actions at the same time, and they must eventually
3751 -- be elaborated in the correct order.
3753 if Is_Record_Type (Current_Scope)
3754 and then not Is_Frozen (Current_Scope)
3755 then
3756 if No (Scope_Stack.Table
3757 (Scope_Stack.Last).Pending_Freeze_Actions)
3758 then
3759 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions :=
3760 Ins_Actions;
3761 else
3762 Append_List
3763 (Ins_Actions,
3764 Scope_Stack.Table (Scope_Stack.Last).Pending_Freeze_Actions);
3765 end if;
3767 return;
3768 end if;
3770 -- We now intend to climb up the tree to find the right point to
3771 -- insert the actions. We start at Assoc_Node, unless this node is a
3772 -- subexpression in which case we start with its parent. We do this for
3773 -- two reasons. First it speeds things up. Second, if Assoc_Node is
3774 -- itself one of the special nodes like N_And_Then, then we assume that
3775 -- an initial request to insert actions for such a node does not expect
3776 -- the actions to get deposited in the node for later handling when the
3777 -- node is expanded, since clearly the node is being dealt with by the
3778 -- caller. Note that in the subexpression case, N is always the child we
3779 -- came from.
3781 -- N_Raise_xxx_Error is an annoying special case, it is a statement if
3782 -- it has type Standard_Void_Type, and a subexpression otherwise.
3783 -- otherwise. Procedure calls, and similarly procedure attribute
3784 -- references, are also statements.
3786 if Nkind (Assoc_Node) in N_Subexpr
3787 and then (Nkind (Assoc_Node) not in N_Raise_xxx_Error
3788 or else Etype (Assoc_Node) /= Standard_Void_Type)
3789 and then Nkind (Assoc_Node) /= N_Procedure_Call_Statement
3790 and then (Nkind (Assoc_Node) /= N_Attribute_Reference
3791 or else not Is_Procedure_Attribute_Name
3792 (Attribute_Name (Assoc_Node)))
3793 then
3794 N := Assoc_Node;
3795 P := Parent (Assoc_Node);
3797 -- Non-subexpression case. Note that N is initially Empty in this case
3798 -- (N is only guaranteed Non-Empty in the subexpr case).
3800 else
3801 N := Empty;
3802 P := Assoc_Node;
3803 end if;
3805 -- Capture root of the transient scope
3807 if Scope_Is_Transient then
3808 Wrapped_Node := Node_To_Be_Wrapped;
3809 end if;
3811 loop
3812 pragma Assert (Present (P));
3814 -- Make sure that inserted actions stay in the transient scope
3816 if Present (Wrapped_Node) and then N = Wrapped_Node then
3817 Store_Before_Actions_In_Scope (Ins_Actions);
3818 return;
3819 end if;
3821 case Nkind (P) is
3823 -- Case of right operand of AND THEN or OR ELSE. Put the actions
3824 -- in the Actions field of the right operand. They will be moved
3825 -- out further when the AND THEN or OR ELSE operator is expanded.
3826 -- Nothing special needs to be done for the left operand since
3827 -- in that case the actions are executed unconditionally.
3829 when N_Short_Circuit =>
3830 if N = Right_Opnd (P) then
3832 -- We are now going to either append the actions to the
3833 -- actions field of the short-circuit operation. We will
3834 -- also analyze the actions now.
3836 -- This analysis is really too early, the proper thing would
3837 -- be to just park them there now, and only analyze them if
3838 -- we find we really need them, and to it at the proper
3839 -- final insertion point. However attempting to this proved
3840 -- tricky, so for now we just kill current values before and
3841 -- after the analyze call to make sure we avoid peculiar
3842 -- optimizations from this out of order insertion.
3844 Kill_Current_Values;
3846 -- If P has already been expanded, we can't park new actions
3847 -- on it, so we need to expand them immediately, introducing
3848 -- an Expression_With_Actions. N can't be an expression
3849 -- with actions, or else then the actions would have been
3850 -- inserted at an inner level.
3852 if Analyzed (P) then
3853 pragma Assert (Nkind (N) /= N_Expression_With_Actions);
3854 Rewrite (N,
3855 Make_Expression_With_Actions (Sloc (N),
3856 Actions => Ins_Actions,
3857 Expression => Relocate_Node (N)));
3858 Analyze_And_Resolve (N);
3860 elsif Present (Actions (P)) then
3861 Insert_List_After_And_Analyze
3862 (Last (Actions (P)), Ins_Actions);
3863 else
3864 Set_Actions (P, Ins_Actions);
3865 Analyze_List (Actions (P));
3866 end if;
3868 Kill_Current_Values;
3870 return;
3871 end if;
3873 -- Then or Else dependent expression of an if expression. Add
3874 -- actions to Then_Actions or Else_Actions field as appropriate.
3875 -- The actions will be moved further out when the if is expanded.
3877 when N_If_Expression =>
3878 declare
3879 ThenX : constant Node_Id := Next (First (Expressions (P)));
3880 ElseX : constant Node_Id := Next (ThenX);
3882 begin
3883 -- If the enclosing expression is already analyzed, as
3884 -- is the case for nested elaboration checks, insert the
3885 -- conditional further out.
3887 if Analyzed (P) then
3888 null;
3890 -- Actions belong to the then expression, temporarily place
3891 -- them as Then_Actions of the if expression. They will be
3892 -- moved to the proper place later when the if expression
3893 -- is expanded.
3895 elsif N = ThenX then
3896 if Present (Then_Actions (P)) then
3897 Insert_List_After_And_Analyze
3898 (Last (Then_Actions (P)), Ins_Actions);
3899 else
3900 Set_Then_Actions (P, Ins_Actions);
3901 Analyze_List (Then_Actions (P));
3902 end if;
3904 return;
3906 -- Actions belong to the else expression, temporarily place
3907 -- them as Else_Actions of the if expression. They will be
3908 -- moved to the proper place later when the if expression
3909 -- is expanded.
3911 elsif N = ElseX then
3912 if Present (Else_Actions (P)) then
3913 Insert_List_After_And_Analyze
3914 (Last (Else_Actions (P)), Ins_Actions);
3915 else
3916 Set_Else_Actions (P, Ins_Actions);
3917 Analyze_List (Else_Actions (P));
3918 end if;
3920 return;
3922 -- Actions belong to the condition. In this case they are
3923 -- unconditionally executed, and so we can continue the
3924 -- search for the proper insert point.
3926 else
3927 null;
3928 end if;
3929 end;
3931 -- Alternative of case expression, we place the action in the
3932 -- Actions field of the case expression alternative, this will
3933 -- be handled when the case expression is expanded.
3935 when N_Case_Expression_Alternative =>
3936 if Present (Actions (P)) then
3937 Insert_List_After_And_Analyze
3938 (Last (Actions (P)), Ins_Actions);
3939 else
3940 Set_Actions (P, Ins_Actions);
3941 Analyze_List (Actions (P));
3942 end if;
3944 return;
3946 -- Case of appearing within an Expressions_With_Actions node. When
3947 -- the new actions come from the expression of the expression with
3948 -- actions, they must be added to the existing actions. The other
3949 -- alternative is when the new actions are related to one of the
3950 -- existing actions of the expression with actions, and should
3951 -- never reach here: if actions are inserted on a statement
3952 -- within the Actions of an expression with actions, or on some
3953 -- sub-expression of such a statement, then the outermost proper
3954 -- insertion point is right before the statement, and we should
3955 -- never climb up as far as the N_Expression_With_Actions itself.
3957 when N_Expression_With_Actions =>
3958 if N = Expression (P) then
3959 if Is_Empty_List (Actions (P)) then
3960 Append_List_To (Actions (P), Ins_Actions);
3961 Analyze_List (Actions (P));
3962 else
3963 Insert_List_After_And_Analyze
3964 (Last (Actions (P)), Ins_Actions);
3965 end if;
3967 return;
3969 else
3970 raise Program_Error;
3971 end if;
3973 -- Case of appearing in the condition of a while expression or
3974 -- elsif. We insert the actions into the Condition_Actions field.
3975 -- They will be moved further out when the while loop or elsif
3976 -- is analyzed.
3978 when N_Iteration_Scheme |
3979 N_Elsif_Part
3981 if N = Condition (P) then
3982 if Present (Condition_Actions (P)) then
3983 Insert_List_After_And_Analyze
3984 (Last (Condition_Actions (P)), Ins_Actions);
3985 else
3986 Set_Condition_Actions (P, Ins_Actions);
3988 -- Set the parent of the insert actions explicitly. This
3989 -- is not a syntactic field, but we need the parent field
3990 -- set, in particular so that freeze can understand that
3991 -- it is dealing with condition actions, and properly
3992 -- insert the freezing actions.
3994 Set_Parent (Ins_Actions, P);
3995 Analyze_List (Condition_Actions (P));
3996 end if;
3998 return;
3999 end if;
4001 -- Statements, declarations, pragmas, representation clauses
4003 when
4004 -- Statements
4006 N_Procedure_Call_Statement |
4007 N_Statement_Other_Than_Procedure_Call |
4009 -- Pragmas
4011 N_Pragma |
4013 -- Representation_Clause
4015 N_At_Clause |
4016 N_Attribute_Definition_Clause |
4017 N_Enumeration_Representation_Clause |
4018 N_Record_Representation_Clause |
4020 -- Declarations
4022 N_Abstract_Subprogram_Declaration |
4023 N_Entry_Body |
4024 N_Exception_Declaration |
4025 N_Exception_Renaming_Declaration |
4026 N_Expression_Function |
4027 N_Formal_Abstract_Subprogram_Declaration |
4028 N_Formal_Concrete_Subprogram_Declaration |
4029 N_Formal_Object_Declaration |
4030 N_Formal_Type_Declaration |
4031 N_Full_Type_Declaration |
4032 N_Function_Instantiation |
4033 N_Generic_Function_Renaming_Declaration |
4034 N_Generic_Package_Declaration |
4035 N_Generic_Package_Renaming_Declaration |
4036 N_Generic_Procedure_Renaming_Declaration |
4037 N_Generic_Subprogram_Declaration |
4038 N_Implicit_Label_Declaration |
4039 N_Incomplete_Type_Declaration |
4040 N_Number_Declaration |
4041 N_Object_Declaration |
4042 N_Object_Renaming_Declaration |
4043 N_Package_Body |
4044 N_Package_Body_Stub |
4045 N_Package_Declaration |
4046 N_Package_Instantiation |
4047 N_Package_Renaming_Declaration |
4048 N_Private_Extension_Declaration |
4049 N_Private_Type_Declaration |
4050 N_Procedure_Instantiation |
4051 N_Protected_Body |
4052 N_Protected_Body_Stub |
4053 N_Protected_Type_Declaration |
4054 N_Single_Task_Declaration |
4055 N_Subprogram_Body |
4056 N_Subprogram_Body_Stub |
4057 N_Subprogram_Declaration |
4058 N_Subprogram_Renaming_Declaration |
4059 N_Subtype_Declaration |
4060 N_Task_Body |
4061 N_Task_Body_Stub |
4062 N_Task_Type_Declaration |
4064 -- Use clauses can appear in lists of declarations
4066 N_Use_Package_Clause |
4067 N_Use_Type_Clause |
4069 -- Freeze entity behaves like a declaration or statement
4071 N_Freeze_Entity |
4072 N_Freeze_Generic_Entity
4074 -- Do not insert here if the item is not a list member (this
4075 -- happens for example with a triggering statement, and the
4076 -- proper approach is to insert before the entire select).
4078 if not Is_List_Member (P) then
4079 null;
4081 -- Do not insert if parent of P is an N_Component_Association
4082 -- node (i.e. we are in the context of an N_Aggregate or
4083 -- N_Extension_Aggregate node. In this case we want to insert
4084 -- before the entire aggregate.
4086 elsif Nkind (Parent (P)) = N_Component_Association then
4087 null;
4089 -- Do not insert if the parent of P is either an N_Variant node
4090 -- or an N_Record_Definition node, meaning in either case that
4091 -- P is a member of a component list, and that therefore the
4092 -- actions should be inserted outside the complete record
4093 -- declaration.
4095 elsif Nkind_In (Parent (P), N_Variant, N_Record_Definition) then
4096 null;
4098 -- Do not insert freeze nodes within the loop generated for
4099 -- an aggregate, because they may be elaborated too late for
4100 -- subsequent use in the back end: within a package spec the
4101 -- loop is part of the elaboration procedure and is only
4102 -- elaborated during the second pass.
4104 -- If the loop comes from source, or the entity is local to the
4105 -- loop itself it must remain within.
4107 elsif Nkind (Parent (P)) = N_Loop_Statement
4108 and then not Comes_From_Source (Parent (P))
4109 and then Nkind (First (Ins_Actions)) = N_Freeze_Entity
4110 and then
4111 Scope (Entity (First (Ins_Actions))) /= Current_Scope
4112 then
4113 null;
4115 -- Otherwise we can go ahead and do the insertion
4117 elsif P = Wrapped_Node then
4118 Store_Before_Actions_In_Scope (Ins_Actions);
4119 return;
4121 else
4122 Insert_List_Before_And_Analyze (P, Ins_Actions);
4123 return;
4124 end if;
4126 -- A special case, N_Raise_xxx_Error can act either as a statement
4127 -- or a subexpression. We tell the difference by looking at the
4128 -- Etype. It is set to Standard_Void_Type in the statement case.
4130 when
4131 N_Raise_xxx_Error =>
4132 if Etype (P) = Standard_Void_Type then
4133 if P = Wrapped_Node then
4134 Store_Before_Actions_In_Scope (Ins_Actions);
4135 else
4136 Insert_List_Before_And_Analyze (P, Ins_Actions);
4137 end if;
4139 return;
4141 -- In the subexpression case, keep climbing
4143 else
4144 null;
4145 end if;
4147 -- If a component association appears within a loop created for
4148 -- an array aggregate, attach the actions to the association so
4149 -- they can be subsequently inserted within the loop. For other
4150 -- component associations insert outside of the aggregate. For
4151 -- an association that will generate a loop, its Loop_Actions
4152 -- attribute is already initialized (see exp_aggr.adb).
4154 -- The list of loop_actions can in turn generate additional ones,
4155 -- that are inserted before the associated node. If the associated
4156 -- node is outside the aggregate, the new actions are collected
4157 -- at the end of the loop actions, to respect the order in which
4158 -- they are to be elaborated.
4160 when
4161 N_Component_Association =>
4162 if Nkind (Parent (P)) = N_Aggregate
4163 and then Present (Loop_Actions (P))
4164 then
4165 if Is_Empty_List (Loop_Actions (P)) then
4166 Set_Loop_Actions (P, Ins_Actions);
4167 Analyze_List (Ins_Actions);
4169 else
4170 declare
4171 Decl : Node_Id;
4173 begin
4174 -- Check whether these actions were generated by a
4175 -- declaration that is part of the loop_ actions
4176 -- for the component_association.
4178 Decl := Assoc_Node;
4179 while Present (Decl) loop
4180 exit when Parent (Decl) = P
4181 and then Is_List_Member (Decl)
4182 and then
4183 List_Containing (Decl) = Loop_Actions (P);
4184 Decl := Parent (Decl);
4185 end loop;
4187 if Present (Decl) then
4188 Insert_List_Before_And_Analyze
4189 (Decl, Ins_Actions);
4190 else
4191 Insert_List_After_And_Analyze
4192 (Last (Loop_Actions (P)), Ins_Actions);
4193 end if;
4194 end;
4195 end if;
4197 return;
4199 else
4200 null;
4201 end if;
4203 -- Another special case, an attribute denoting a procedure call
4205 when
4206 N_Attribute_Reference =>
4207 if Is_Procedure_Attribute_Name (Attribute_Name (P)) then
4208 if P = Wrapped_Node then
4209 Store_Before_Actions_In_Scope (Ins_Actions);
4210 else
4211 Insert_List_Before_And_Analyze (P, Ins_Actions);
4212 end if;
4214 return;
4216 -- In the subexpression case, keep climbing
4218 else
4219 null;
4220 end if;
4222 -- A contract node should not belong to the tree
4224 when N_Contract =>
4225 raise Program_Error;
4227 -- For all other node types, keep climbing tree
4229 when
4230 N_Abortable_Part |
4231 N_Accept_Alternative |
4232 N_Access_Definition |
4233 N_Access_Function_Definition |
4234 N_Access_Procedure_Definition |
4235 N_Access_To_Object_Definition |
4236 N_Aggregate |
4237 N_Allocator |
4238 N_Aspect_Specification |
4239 N_Case_Expression |
4240 N_Case_Statement_Alternative |
4241 N_Character_Literal |
4242 N_Compilation_Unit |
4243 N_Compilation_Unit_Aux |
4244 N_Component_Clause |
4245 N_Component_Declaration |
4246 N_Component_Definition |
4247 N_Component_List |
4248 N_Constrained_Array_Definition |
4249 N_Decimal_Fixed_Point_Definition |
4250 N_Defining_Character_Literal |
4251 N_Defining_Identifier |
4252 N_Defining_Operator_Symbol |
4253 N_Defining_Program_Unit_Name |
4254 N_Delay_Alternative |
4255 N_Delta_Constraint |
4256 N_Derived_Type_Definition |
4257 N_Designator |
4258 N_Digits_Constraint |
4259 N_Discriminant_Association |
4260 N_Discriminant_Specification |
4261 N_Empty |
4262 N_Entry_Body_Formal_Part |
4263 N_Entry_Call_Alternative |
4264 N_Entry_Declaration |
4265 N_Entry_Index_Specification |
4266 N_Enumeration_Type_Definition |
4267 N_Error |
4268 N_Exception_Handler |
4269 N_Expanded_Name |
4270 N_Explicit_Dereference |
4271 N_Extension_Aggregate |
4272 N_Floating_Point_Definition |
4273 N_Formal_Decimal_Fixed_Point_Definition |
4274 N_Formal_Derived_Type_Definition |
4275 N_Formal_Discrete_Type_Definition |
4276 N_Formal_Floating_Point_Definition |
4277 N_Formal_Modular_Type_Definition |
4278 N_Formal_Ordinary_Fixed_Point_Definition |
4279 N_Formal_Package_Declaration |
4280 N_Formal_Private_Type_Definition |
4281 N_Formal_Incomplete_Type_Definition |
4282 N_Formal_Signed_Integer_Type_Definition |
4283 N_Function_Call |
4284 N_Function_Specification |
4285 N_Generic_Association |
4286 N_Handled_Sequence_Of_Statements |
4287 N_Identifier |
4288 N_In |
4289 N_Index_Or_Discriminant_Constraint |
4290 N_Indexed_Component |
4291 N_Integer_Literal |
4292 N_Iterator_Specification |
4293 N_Itype_Reference |
4294 N_Label |
4295 N_Loop_Parameter_Specification |
4296 N_Mod_Clause |
4297 N_Modular_Type_Definition |
4298 N_Not_In |
4299 N_Null |
4300 N_Op_Abs |
4301 N_Op_Add |
4302 N_Op_And |
4303 N_Op_Concat |
4304 N_Op_Divide |
4305 N_Op_Eq |
4306 N_Op_Expon |
4307 N_Op_Ge |
4308 N_Op_Gt |
4309 N_Op_Le |
4310 N_Op_Lt |
4311 N_Op_Minus |
4312 N_Op_Mod |
4313 N_Op_Multiply |
4314 N_Op_Ne |
4315 N_Op_Not |
4316 N_Op_Or |
4317 N_Op_Plus |
4318 N_Op_Rem |
4319 N_Op_Rotate_Left |
4320 N_Op_Rotate_Right |
4321 N_Op_Shift_Left |
4322 N_Op_Shift_Right |
4323 N_Op_Shift_Right_Arithmetic |
4324 N_Op_Subtract |
4325 N_Op_Xor |
4326 N_Operator_Symbol |
4327 N_Ordinary_Fixed_Point_Definition |
4328 N_Others_Choice |
4329 N_Package_Specification |
4330 N_Parameter_Association |
4331 N_Parameter_Specification |
4332 N_Pop_Constraint_Error_Label |
4333 N_Pop_Program_Error_Label |
4334 N_Pop_Storage_Error_Label |
4335 N_Pragma_Argument_Association |
4336 N_Procedure_Specification |
4337 N_Protected_Definition |
4338 N_Push_Constraint_Error_Label |
4339 N_Push_Program_Error_Label |
4340 N_Push_Storage_Error_Label |
4341 N_Qualified_Expression |
4342 N_Quantified_Expression |
4343 N_Raise_Expression |
4344 N_Range |
4345 N_Range_Constraint |
4346 N_Real_Literal |
4347 N_Real_Range_Specification |
4348 N_Record_Definition |
4349 N_Reference |
4350 N_SCIL_Dispatch_Table_Tag_Init |
4351 N_SCIL_Dispatching_Call |
4352 N_SCIL_Membership_Test |
4353 N_Selected_Component |
4354 N_Signed_Integer_Type_Definition |
4355 N_Single_Protected_Declaration |
4356 N_Slice |
4357 N_String_Literal |
4358 N_Subtype_Indication |
4359 N_Subunit |
4360 N_Task_Definition |
4361 N_Terminate_Alternative |
4362 N_Triggering_Alternative |
4363 N_Type_Conversion |
4364 N_Unchecked_Expression |
4365 N_Unchecked_Type_Conversion |
4366 N_Unconstrained_Array_Definition |
4367 N_Unused_At_End |
4368 N_Unused_At_Start |
4369 N_Variant |
4370 N_Variant_Part |
4371 N_Validate_Unchecked_Conversion |
4372 N_With_Clause
4374 null;
4376 end case;
4378 -- If we fall through above tests, keep climbing tree
4380 N := P;
4382 if Nkind (Parent (N)) = N_Subunit then
4384 -- This is the proper body corresponding to a stub. Insertion must
4385 -- be done at the point of the stub, which is in the declarative
4386 -- part of the parent unit.
4388 P := Corresponding_Stub (Parent (N));
4390 else
4391 P := Parent (N);
4392 end if;
4393 end loop;
4394 end Insert_Actions;
4396 -- Version with check(s) suppressed
4398 procedure Insert_Actions
4399 (Assoc_Node : Node_Id;
4400 Ins_Actions : List_Id;
4401 Suppress : Check_Id)
4403 begin
4404 if Suppress = All_Checks then
4405 declare
4406 Sva : constant Suppress_Array := Scope_Suppress.Suppress;
4407 begin
4408 Scope_Suppress.Suppress := (others => True);
4409 Insert_Actions (Assoc_Node, Ins_Actions);
4410 Scope_Suppress.Suppress := Sva;
4411 end;
4413 else
4414 declare
4415 Svg : constant Boolean := Scope_Suppress.Suppress (Suppress);
4416 begin
4417 Scope_Suppress.Suppress (Suppress) := True;
4418 Insert_Actions (Assoc_Node, Ins_Actions);
4419 Scope_Suppress.Suppress (Suppress) := Svg;
4420 end;
4421 end if;
4422 end Insert_Actions;
4424 --------------------------
4425 -- Insert_Actions_After --
4426 --------------------------
4428 procedure Insert_Actions_After
4429 (Assoc_Node : Node_Id;
4430 Ins_Actions : List_Id)
4432 begin
4433 if Scope_Is_Transient and then Assoc_Node = Node_To_Be_Wrapped then
4434 Store_After_Actions_In_Scope (Ins_Actions);
4435 else
4436 Insert_List_After_And_Analyze (Assoc_Node, Ins_Actions);
4437 end if;
4438 end Insert_Actions_After;
4440 ------------------------
4441 -- Insert_Declaration --
4442 ------------------------
4444 procedure Insert_Declaration (N : Node_Id; Decl : Node_Id) is
4445 P : Node_Id;
4447 begin
4448 pragma Assert (Nkind (N) in N_Subexpr);
4450 -- Climb until we find a procedure or a package
4452 P := N;
4453 loop
4454 pragma Assert (Present (Parent (P)));
4455 P := Parent (P);
4457 if Is_List_Member (P) then
4458 exit when Nkind_In (Parent (P), N_Package_Specification,
4459 N_Subprogram_Body);
4461 -- Special handling for handled sequence of statements, we must
4462 -- insert in the statements not the exception handlers!
4464 if Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements then
4465 P := First (Statements (Parent (P)));
4466 exit;
4467 end if;
4468 end if;
4469 end loop;
4471 -- Now do the insertion
4473 Insert_Before (P, Decl);
4474 Analyze (Decl);
4475 end Insert_Declaration;
4477 ---------------------------------
4478 -- Insert_Library_Level_Action --
4479 ---------------------------------
4481 procedure Insert_Library_Level_Action (N : Node_Id) is
4482 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
4484 begin
4485 Push_Scope (Cunit_Entity (Main_Unit));
4486 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
4488 if No (Actions (Aux)) then
4489 Set_Actions (Aux, New_List (N));
4490 else
4491 Append (N, Actions (Aux));
4492 end if;
4494 Analyze (N);
4495 Pop_Scope;
4496 end Insert_Library_Level_Action;
4498 ----------------------------------
4499 -- Insert_Library_Level_Actions --
4500 ----------------------------------
4502 procedure Insert_Library_Level_Actions (L : List_Id) is
4503 Aux : constant Node_Id := Aux_Decls_Node (Cunit (Main_Unit));
4505 begin
4506 if Is_Non_Empty_List (L) then
4507 Push_Scope (Cunit_Entity (Main_Unit));
4508 -- ??? should this be Current_Sem_Unit instead of Main_Unit?
4510 if No (Actions (Aux)) then
4511 Set_Actions (Aux, L);
4512 Analyze_List (L);
4513 else
4514 Insert_List_After_And_Analyze (Last (Actions (Aux)), L);
4515 end if;
4517 Pop_Scope;
4518 end if;
4519 end Insert_Library_Level_Actions;
4521 ----------------------
4522 -- Inside_Init_Proc --
4523 ----------------------
4525 function Inside_Init_Proc return Boolean is
4526 S : Entity_Id;
4528 begin
4529 S := Current_Scope;
4530 while Present (S) and then S /= Standard_Standard loop
4531 if Is_Init_Proc (S) then
4532 return True;
4533 else
4534 S := Scope (S);
4535 end if;
4536 end loop;
4538 return False;
4539 end Inside_Init_Proc;
4541 ----------------------------
4542 -- Is_All_Null_Statements --
4543 ----------------------------
4545 function Is_All_Null_Statements (L : List_Id) return Boolean is
4546 Stm : Node_Id;
4548 begin
4549 Stm := First (L);
4550 while Present (Stm) loop
4551 if Nkind (Stm) /= N_Null_Statement then
4552 return False;
4553 end if;
4555 Next (Stm);
4556 end loop;
4558 return True;
4559 end Is_All_Null_Statements;
4561 --------------------------------------------------
4562 -- Is_Displacement_Of_Object_Or_Function_Result --
4563 --------------------------------------------------
4565 function Is_Displacement_Of_Object_Or_Function_Result
4566 (Obj_Id : Entity_Id) return Boolean
4568 function Is_Controlled_Function_Call (N : Node_Id) return Boolean;
4569 -- Determine if particular node denotes a controlled function call. The
4570 -- call may have been heavily expanded.
4572 function Is_Displace_Call (N : Node_Id) return Boolean;
4573 -- Determine whether a particular node is a call to Ada.Tags.Displace.
4574 -- The call might be nested within other actions such as conversions.
4576 function Is_Source_Object (N : Node_Id) return Boolean;
4577 -- Determine whether a particular node denotes a source object
4579 ---------------------------------
4580 -- Is_Controlled_Function_Call --
4581 ---------------------------------
4583 function Is_Controlled_Function_Call (N : Node_Id) return Boolean is
4584 Expr : Node_Id := Original_Node (N);
4586 begin
4587 if Nkind (Expr) = N_Function_Call then
4588 Expr := Name (Expr);
4590 -- When a function call appears in Object.Operation format, the
4591 -- original representation has two possible forms depending on the
4592 -- availability of actual parameters:
4594 -- Obj.Func_Call N_Selected_Component
4595 -- Obj.Func_Call (Param) N_Indexed_Component
4597 else
4598 if Nkind (Expr) = N_Indexed_Component then
4599 Expr := Prefix (Expr);
4600 end if;
4602 if Nkind (Expr) = N_Selected_Component then
4603 Expr := Selector_Name (Expr);
4604 end if;
4605 end if;
4607 return
4608 Nkind_In (Expr, N_Expanded_Name, N_Identifier)
4609 and then Ekind (Entity (Expr)) = E_Function
4610 and then Needs_Finalization (Etype (Entity (Expr)));
4611 end Is_Controlled_Function_Call;
4613 ----------------------
4614 -- Is_Displace_Call --
4615 ----------------------
4617 function Is_Displace_Call (N : Node_Id) return Boolean is
4618 Call : Node_Id := N;
4620 begin
4621 -- Strip various actions which may precede a call to Displace
4623 loop
4624 if Nkind (Call) = N_Explicit_Dereference then
4625 Call := Prefix (Call);
4627 elsif Nkind_In (Call, N_Type_Conversion,
4628 N_Unchecked_Type_Conversion)
4629 then
4630 Call := Expression (Call);
4632 else
4633 exit;
4634 end if;
4635 end loop;
4637 return
4638 Present (Call)
4639 and then Nkind (Call) = N_Function_Call
4640 and then Is_RTE (Entity (Name (Call)), RE_Displace);
4641 end Is_Displace_Call;
4643 ----------------------
4644 -- Is_Source_Object --
4645 ----------------------
4647 function Is_Source_Object (N : Node_Id) return Boolean is
4648 begin
4649 return
4650 Present (N)
4651 and then Nkind (N) in N_Has_Entity
4652 and then Is_Object (Entity (N))
4653 and then Comes_From_Source (N);
4654 end Is_Source_Object;
4656 -- Local variables
4658 Decl : constant Node_Id := Parent (Obj_Id);
4659 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
4660 Orig_Decl : constant Node_Id := Original_Node (Decl);
4662 -- Start of processing for Is_Displacement_Of_Object_Or_Function_Result
4664 begin
4665 -- Case 1:
4667 -- Obj : CW_Type := Function_Call (...);
4669 -- rewritten into:
4671 -- Tmp : ... := Function_Call (...)'reference;
4672 -- Obj : CW_Type renames (... Ada.Tags.Displace (Tmp));
4674 -- where the return type of the function and the class-wide type require
4675 -- dispatch table pointer displacement.
4677 -- Case 2:
4679 -- Obj : CW_Type := Src_Obj;
4681 -- rewritten into:
4683 -- Obj : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
4685 -- where the type of the source object and the class-wide type require
4686 -- dispatch table pointer displacement.
4688 return
4689 Nkind (Decl) = N_Object_Renaming_Declaration
4690 and then Nkind (Orig_Decl) = N_Object_Declaration
4691 and then Comes_From_Source (Orig_Decl)
4692 and then Is_Class_Wide_Type (Obj_Typ)
4693 and then Is_Displace_Call (Renamed_Object (Obj_Id))
4694 and then
4695 (Is_Controlled_Function_Call (Expression (Orig_Decl))
4696 or else Is_Source_Object (Expression (Orig_Decl)));
4697 end Is_Displacement_Of_Object_Or_Function_Result;
4699 ------------------------------
4700 -- Is_Finalizable_Transient --
4701 ------------------------------
4703 function Is_Finalizable_Transient
4704 (Decl : Node_Id;
4705 Rel_Node : Node_Id) return Boolean
4707 Obj_Id : constant Entity_Id := Defining_Identifier (Decl);
4708 Obj_Typ : constant Entity_Id := Base_Type (Etype (Obj_Id));
4709 Desig : Entity_Id := Obj_Typ;
4711 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean;
4712 -- Determine whether transient object Trans_Id is initialized either
4713 -- by a function call which returns an access type or simply renames
4714 -- another pointer.
4716 function Initialized_By_Aliased_BIP_Func_Call
4717 (Trans_Id : Entity_Id) return Boolean;
4718 -- Determine whether transient object Trans_Id is initialized by a
4719 -- build-in-place function call where the BIPalloc parameter is of
4720 -- value 1 and BIPaccess is not null. This case creates an aliasing
4721 -- between the returned value and the value denoted by BIPaccess.
4723 function Is_Aliased
4724 (Trans_Id : Entity_Id;
4725 First_Stmt : Node_Id) return Boolean;
4726 -- Determine whether transient object Trans_Id has been renamed or
4727 -- aliased through 'reference in the statement list starting from
4728 -- First_Stmt.
4730 function Is_Allocated (Trans_Id : Entity_Id) return Boolean;
4731 -- Determine whether transient object Trans_Id is allocated on the heap
4733 function Is_Iterated_Container
4734 (Trans_Id : Entity_Id;
4735 First_Stmt : Node_Id) return Boolean;
4736 -- Determine whether transient object Trans_Id denotes a container which
4737 -- is in the process of being iterated in the statement list starting
4738 -- from First_Stmt.
4740 ---------------------------
4741 -- Initialized_By_Access --
4742 ---------------------------
4744 function Initialized_By_Access (Trans_Id : Entity_Id) return Boolean is
4745 Expr : constant Node_Id := Expression (Parent (Trans_Id));
4747 begin
4748 return
4749 Present (Expr)
4750 and then Nkind (Expr) /= N_Reference
4751 and then Is_Access_Type (Etype (Expr));
4752 end Initialized_By_Access;
4754 ------------------------------------------
4755 -- Initialized_By_Aliased_BIP_Func_Call --
4756 ------------------------------------------
4758 function Initialized_By_Aliased_BIP_Func_Call
4759 (Trans_Id : Entity_Id) return Boolean
4761 Call : Node_Id := Expression (Parent (Trans_Id));
4763 begin
4764 -- Build-in-place calls usually appear in 'reference format
4766 if Nkind (Call) = N_Reference then
4767 Call := Prefix (Call);
4768 end if;
4770 if Is_Build_In_Place_Function_Call (Call) then
4771 declare
4772 Access_Nam : Name_Id := No_Name;
4773 Access_OK : Boolean := False;
4774 Actual : Node_Id;
4775 Alloc_Nam : Name_Id := No_Name;
4776 Alloc_OK : Boolean := False;
4777 Formal : Node_Id;
4778 Func_Id : Entity_Id;
4779 Param : Node_Id;
4781 begin
4782 -- Examine all parameter associations of the function call
4784 Param := First (Parameter_Associations (Call));
4785 while Present (Param) loop
4786 if Nkind (Param) = N_Parameter_Association
4787 and then Nkind (Selector_Name (Param)) = N_Identifier
4788 then
4789 Actual := Explicit_Actual_Parameter (Param);
4790 Formal := Selector_Name (Param);
4792 -- Construct the names of formals BIPaccess and BIPalloc
4793 -- using the function name retrieved from an arbitrary
4794 -- formal.
4796 if Access_Nam = No_Name
4797 and then Alloc_Nam = No_Name
4798 and then Present (Entity (Formal))
4799 then
4800 Func_Id := Scope (Entity (Formal));
4802 Access_Nam :=
4803 New_External_Name (Chars (Func_Id),
4804 BIP_Formal_Suffix (BIP_Object_Access));
4806 Alloc_Nam :=
4807 New_External_Name (Chars (Func_Id),
4808 BIP_Formal_Suffix (BIP_Alloc_Form));
4809 end if;
4811 -- A match for BIPaccess => Temp has been found
4813 if Chars (Formal) = Access_Nam
4814 and then Nkind (Actual) /= N_Null
4815 then
4816 Access_OK := True;
4817 end if;
4819 -- A match for BIPalloc => 1 has been found
4821 if Chars (Formal) = Alloc_Nam
4822 and then Nkind (Actual) = N_Integer_Literal
4823 and then Intval (Actual) = Uint_1
4824 then
4825 Alloc_OK := True;
4826 end if;
4827 end if;
4829 Next (Param);
4830 end loop;
4832 return Access_OK and Alloc_OK;
4833 end;
4834 end if;
4836 return False;
4837 end Initialized_By_Aliased_BIP_Func_Call;
4839 ----------------
4840 -- Is_Aliased --
4841 ----------------
4843 function Is_Aliased
4844 (Trans_Id : Entity_Id;
4845 First_Stmt : Node_Id) return Boolean
4847 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id;
4848 -- Given an object renaming declaration, retrieve the entity of the
4849 -- renamed name. Return Empty if the renamed name is anything other
4850 -- than a variable or a constant.
4852 -------------------------
4853 -- Find_Renamed_Object --
4854 -------------------------
4856 function Find_Renamed_Object (Ren_Decl : Node_Id) return Entity_Id is
4857 Ren_Obj : Node_Id := Empty;
4859 function Find_Object (N : Node_Id) return Traverse_Result;
4860 -- Try to detect an object which is either a constant or a
4861 -- variable.
4863 -----------------
4864 -- Find_Object --
4865 -----------------
4867 function Find_Object (N : Node_Id) return Traverse_Result is
4868 begin
4869 -- Stop the search once a constant or a variable has been
4870 -- detected.
4872 if Nkind (N) = N_Identifier
4873 and then Present (Entity (N))
4874 and then Ekind_In (Entity (N), E_Constant, E_Variable)
4875 then
4876 Ren_Obj := Entity (N);
4877 return Abandon;
4878 end if;
4880 return OK;
4881 end Find_Object;
4883 procedure Search is new Traverse_Proc (Find_Object);
4885 -- Local variables
4887 Typ : constant Entity_Id := Etype (Defining_Identifier (Ren_Decl));
4889 -- Start of processing for Find_Renamed_Object
4891 begin
4892 -- Actions related to dispatching calls may appear as renamings of
4893 -- tags. Do not process this type of renaming because it does not
4894 -- use the actual value of the object.
4896 if not Is_RTE (Typ, RE_Tag_Ptr) then
4897 Search (Name (Ren_Decl));
4898 end if;
4900 return Ren_Obj;
4901 end Find_Renamed_Object;
4903 -- Local variables
4905 Expr : Node_Id;
4906 Ren_Obj : Entity_Id;
4907 Stmt : Node_Id;
4909 -- Start of processing for Is_Aliased
4911 begin
4912 Stmt := First_Stmt;
4913 while Present (Stmt) loop
4914 if Nkind (Stmt) = N_Object_Declaration then
4915 Expr := Expression (Stmt);
4917 if Present (Expr)
4918 and then Nkind (Expr) = N_Reference
4919 and then Nkind (Prefix (Expr)) = N_Identifier
4920 and then Entity (Prefix (Expr)) = Trans_Id
4921 then
4922 return True;
4923 end if;
4925 elsif Nkind (Stmt) = N_Object_Renaming_Declaration then
4926 Ren_Obj := Find_Renamed_Object (Stmt);
4928 if Present (Ren_Obj) and then Ren_Obj = Trans_Id then
4929 return True;
4930 end if;
4931 end if;
4933 Next (Stmt);
4934 end loop;
4936 return False;
4937 end Is_Aliased;
4939 ------------------
4940 -- Is_Allocated --
4941 ------------------
4943 function Is_Allocated (Trans_Id : Entity_Id) return Boolean is
4944 Expr : constant Node_Id := Expression (Parent (Trans_Id));
4945 begin
4946 return
4947 Is_Access_Type (Etype (Trans_Id))
4948 and then Present (Expr)
4949 and then Nkind (Expr) = N_Allocator;
4950 end Is_Allocated;
4952 ---------------------------
4953 -- Is_Iterated_Container --
4954 ---------------------------
4956 function Is_Iterated_Container
4957 (Trans_Id : Entity_Id;
4958 First_Stmt : Node_Id) return Boolean
4960 Aspect : Node_Id;
4961 Call : Node_Id;
4962 Iter : Entity_Id;
4963 Param : Node_Id;
4964 Stmt : Node_Id;
4965 Typ : Entity_Id;
4967 begin
4968 -- It is not possible to iterate over containers in non-Ada 2012 code
4970 if Ada_Version < Ada_2012 then
4971 return False;
4972 end if;
4974 Typ := Etype (Trans_Id);
4976 -- Handle access type created for secondary stack use
4978 if Is_Access_Type (Typ) then
4979 Typ := Designated_Type (Typ);
4980 end if;
4982 -- Look for aspect Default_Iterator. It may be part of a type
4983 -- declaration for a container, or inherited from a base type
4984 -- or parent type.
4986 Aspect := Find_Value_Of_Aspect (Typ, Aspect_Default_Iterator);
4988 if Present (Aspect) then
4989 Iter := Entity (Aspect);
4991 -- Examine the statements following the container object and
4992 -- look for a call to the default iterate routine where the
4993 -- first parameter is the transient. Such a call appears as:
4995 -- It : Access_To_CW_Iterator :=
4996 -- Iterate (Tran_Id.all, ...)'reference;
4998 Stmt := First_Stmt;
4999 while Present (Stmt) loop
5001 -- Detect an object declaration which is initialized by a
5002 -- secondary stack function call.
5004 if Nkind (Stmt) = N_Object_Declaration
5005 and then Present (Expression (Stmt))
5006 and then Nkind (Expression (Stmt)) = N_Reference
5007 and then Nkind (Prefix (Expression (Stmt))) = N_Function_Call
5008 then
5009 Call := Prefix (Expression (Stmt));
5011 -- The call must invoke the default iterate routine of
5012 -- the container and the transient object must appear as
5013 -- the first actual parameter. Skip any calls whose names
5014 -- are not entities.
5016 if Is_Entity_Name (Name (Call))
5017 and then Entity (Name (Call)) = Iter
5018 and then Present (Parameter_Associations (Call))
5019 then
5020 Param := First (Parameter_Associations (Call));
5022 if Nkind (Param) = N_Explicit_Dereference
5023 and then Entity (Prefix (Param)) = Trans_Id
5024 then
5025 return True;
5026 end if;
5027 end if;
5028 end if;
5030 Next (Stmt);
5031 end loop;
5032 end if;
5034 return False;
5035 end Is_Iterated_Container;
5037 -- Start of processing for Is_Finalizable_Transient
5039 begin
5040 -- Handle access types
5042 if Is_Access_Type (Desig) then
5043 Desig := Available_View (Designated_Type (Desig));
5044 end if;
5046 return
5047 Ekind_In (Obj_Id, E_Constant, E_Variable)
5048 and then Needs_Finalization (Desig)
5049 and then Requires_Transient_Scope (Desig)
5050 and then Nkind (Rel_Node) /= N_Simple_Return_Statement
5052 -- Do not consider renamed or 'reference-d transient objects because
5053 -- the act of renaming extends the object's lifetime.
5055 and then not Is_Aliased (Obj_Id, Decl)
5057 -- Do not consider transient objects allocated on the heap since
5058 -- they are attached to a finalization master.
5060 and then not Is_Allocated (Obj_Id)
5062 -- If the transient object is a pointer, check that it is not
5063 -- initialized by a function which returns a pointer or acts as a
5064 -- renaming of another pointer.
5066 and then
5067 (not Is_Access_Type (Obj_Typ)
5068 or else not Initialized_By_Access (Obj_Id))
5070 -- Do not consider transient objects which act as indirect aliases
5071 -- of build-in-place function results.
5073 and then not Initialized_By_Aliased_BIP_Func_Call (Obj_Id)
5075 -- Do not consider conversions of tags to class-wide types
5077 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
5079 -- Do not consider containers in the context of iterator loops. Such
5080 -- transient objects must exist for as long as the loop is around,
5081 -- otherwise any operation carried out by the iterator will fail.
5083 and then not Is_Iterated_Container (Obj_Id, Decl);
5084 end Is_Finalizable_Transient;
5086 ---------------------------------
5087 -- Is_Fully_Repped_Tagged_Type --
5088 ---------------------------------
5090 function Is_Fully_Repped_Tagged_Type (T : Entity_Id) return Boolean is
5091 U : constant Entity_Id := Underlying_Type (T);
5092 Comp : Entity_Id;
5094 begin
5095 if No (U) or else not Is_Tagged_Type (U) then
5096 return False;
5097 elsif Has_Discriminants (U) then
5098 return False;
5099 elsif not Has_Specified_Layout (U) then
5100 return False;
5101 end if;
5103 -- Here we have a tagged type, see if it has any unlayed out fields
5104 -- other than a possible tag and parent fields. If so, we return False.
5106 Comp := First_Component (U);
5107 while Present (Comp) loop
5108 if not Is_Tag (Comp)
5109 and then Chars (Comp) /= Name_uParent
5110 and then No (Component_Clause (Comp))
5111 then
5112 return False;
5113 else
5114 Next_Component (Comp);
5115 end if;
5116 end loop;
5118 -- All components are layed out
5120 return True;
5121 end Is_Fully_Repped_Tagged_Type;
5123 ----------------------------------
5124 -- Is_Library_Level_Tagged_Type --
5125 ----------------------------------
5127 function Is_Library_Level_Tagged_Type (Typ : Entity_Id) return Boolean is
5128 begin
5129 return Is_Tagged_Type (Typ) and then Is_Library_Level_Entity (Typ);
5130 end Is_Library_Level_Tagged_Type;
5132 --------------------------
5133 -- Is_Non_BIP_Func_Call --
5134 --------------------------
5136 function Is_Non_BIP_Func_Call (Expr : Node_Id) return Boolean is
5137 begin
5138 -- The expected call is of the format
5140 -- Func_Call'reference
5142 return
5143 Nkind (Expr) = N_Reference
5144 and then Nkind (Prefix (Expr)) = N_Function_Call
5145 and then not Is_Build_In_Place_Function_Call (Prefix (Expr));
5146 end Is_Non_BIP_Func_Call;
5148 ------------------------------------
5149 -- Is_Object_Access_BIP_Func_Call --
5150 ------------------------------------
5152 function Is_Object_Access_BIP_Func_Call
5153 (Expr : Node_Id;
5154 Obj_Id : Entity_Id) return Boolean
5156 Access_Nam : Name_Id := No_Name;
5157 Actual : Node_Id;
5158 Call : Node_Id;
5159 Formal : Node_Id;
5160 Param : Node_Id;
5162 begin
5163 -- Build-in-place calls usually appear in 'reference format. Note that
5164 -- the accessibility check machinery may add an extra 'reference due to
5165 -- side effect removal.
5167 Call := Expr;
5168 while Nkind (Call) = N_Reference loop
5169 Call := Prefix (Call);
5170 end loop;
5172 if Nkind_In (Call, N_Qualified_Expression,
5173 N_Unchecked_Type_Conversion)
5174 then
5175 Call := Expression (Call);
5176 end if;
5178 if Is_Build_In_Place_Function_Call (Call) then
5180 -- Examine all parameter associations of the function call
5182 Param := First (Parameter_Associations (Call));
5183 while Present (Param) loop
5184 if Nkind (Param) = N_Parameter_Association
5185 and then Nkind (Selector_Name (Param)) = N_Identifier
5186 then
5187 Formal := Selector_Name (Param);
5188 Actual := Explicit_Actual_Parameter (Param);
5190 -- Construct the name of formal BIPaccess. It is much easier to
5191 -- extract the name of the function using an arbitrary formal's
5192 -- scope rather than the Name field of Call.
5194 if Access_Nam = No_Name and then Present (Entity (Formal)) then
5195 Access_Nam :=
5196 New_External_Name
5197 (Chars (Scope (Entity (Formal))),
5198 BIP_Formal_Suffix (BIP_Object_Access));
5199 end if;
5201 -- A match for BIPaccess => Obj_Id'Unrestricted_Access has been
5202 -- found.
5204 if Chars (Formal) = Access_Nam
5205 and then Nkind (Actual) = N_Attribute_Reference
5206 and then Attribute_Name (Actual) = Name_Unrestricted_Access
5207 and then Nkind (Prefix (Actual)) = N_Identifier
5208 and then Entity (Prefix (Actual)) = Obj_Id
5209 then
5210 return True;
5211 end if;
5212 end if;
5214 Next (Param);
5215 end loop;
5216 end if;
5218 return False;
5219 end Is_Object_Access_BIP_Func_Call;
5221 ----------------------------------
5222 -- Is_Possibly_Unaligned_Object --
5223 ----------------------------------
5225 function Is_Possibly_Unaligned_Object (N : Node_Id) return Boolean is
5226 T : constant Entity_Id := Etype (N);
5228 begin
5229 -- Objects are never unaligned on VMs
5231 if VM_Target /= No_VM then
5232 return False;
5233 end if;
5235 -- If renamed object, apply test to underlying object
5237 if Is_Entity_Name (N)
5238 and then Is_Object (Entity (N))
5239 and then Present (Renamed_Object (Entity (N)))
5240 then
5241 return Is_Possibly_Unaligned_Object (Renamed_Object (Entity (N)));
5242 end if;
5244 -- Tagged and controlled types and aliased types are always aligned, as
5245 -- are concurrent types.
5247 if Is_Aliased (T)
5248 or else Has_Controlled_Component (T)
5249 or else Is_Concurrent_Type (T)
5250 or else Is_Tagged_Type (T)
5251 or else Is_Controlled (T)
5252 then
5253 return False;
5254 end if;
5256 -- If this is an element of a packed array, may be unaligned
5258 if Is_Ref_To_Bit_Packed_Array (N) then
5259 return True;
5260 end if;
5262 -- Case of indexed component reference: test whether prefix is unaligned
5264 if Nkind (N) = N_Indexed_Component then
5265 return Is_Possibly_Unaligned_Object (Prefix (N));
5267 -- Case of selected component reference
5269 elsif Nkind (N) = N_Selected_Component then
5270 declare
5271 P : constant Node_Id := Prefix (N);
5272 C : constant Entity_Id := Entity (Selector_Name (N));
5273 M : Nat;
5274 S : Nat;
5276 begin
5277 -- If component reference is for an array with non-static bounds,
5278 -- then it is always aligned: we can only process unaligned arrays
5279 -- with static bounds (more precisely compile time known bounds).
5281 if Is_Array_Type (T)
5282 and then not Compile_Time_Known_Bounds (T)
5283 then
5284 return False;
5285 end if;
5287 -- If component is aliased, it is definitely properly aligned
5289 if Is_Aliased (C) then
5290 return False;
5291 end if;
5293 -- If component is for a type implemented as a scalar, and the
5294 -- record is packed, and the component is other than the first
5295 -- component of the record, then the component may be unaligned.
5297 if Is_Packed (Etype (P))
5298 and then Represented_As_Scalar (Etype (C))
5299 and then First_Entity (Scope (C)) /= C
5300 then
5301 return True;
5302 end if;
5304 -- Compute maximum possible alignment for T
5306 -- If alignment is known, then that settles things
5308 if Known_Alignment (T) then
5309 M := UI_To_Int (Alignment (T));
5311 -- If alignment is not known, tentatively set max alignment
5313 else
5314 M := Ttypes.Maximum_Alignment;
5316 -- We can reduce this if the Esize is known since the default
5317 -- alignment will never be more than the smallest power of 2
5318 -- that does not exceed this Esize value.
5320 if Known_Esize (T) then
5321 S := UI_To_Int (Esize (T));
5323 while (M / 2) >= S loop
5324 M := M / 2;
5325 end loop;
5326 end if;
5327 end if;
5329 -- The following code is historical, it used to be present but it
5330 -- is too cautious, because the front-end does not know the proper
5331 -- default alignments for the target. Also, if the alignment is
5332 -- not known, the front end can't know in any case. If a copy is
5333 -- needed, the back-end will take care of it. This whole section
5334 -- including this comment can be removed later ???
5336 -- If the component reference is for a record that has a specified
5337 -- alignment, and we either know it is too small, or cannot tell,
5338 -- then the component may be unaligned.
5340 -- What is the following commented out code ???
5342 -- if Known_Alignment (Etype (P))
5343 -- and then Alignment (Etype (P)) < Ttypes.Maximum_Alignment
5344 -- and then M > Alignment (Etype (P))
5345 -- then
5346 -- return True;
5347 -- end if;
5349 -- Case of component clause present which may specify an
5350 -- unaligned position.
5352 if Present (Component_Clause (C)) then
5354 -- Otherwise we can do a test to make sure that the actual
5355 -- start position in the record, and the length, are both
5356 -- consistent with the required alignment. If not, we know
5357 -- that we are unaligned.
5359 declare
5360 Align_In_Bits : constant Nat := M * System_Storage_Unit;
5361 begin
5362 if Component_Bit_Offset (C) mod Align_In_Bits /= 0
5363 or else Esize (C) mod Align_In_Bits /= 0
5364 then
5365 return True;
5366 end if;
5367 end;
5368 end if;
5370 -- Otherwise, for a component reference, test prefix
5372 return Is_Possibly_Unaligned_Object (P);
5373 end;
5375 -- If not a component reference, must be aligned
5377 else
5378 return False;
5379 end if;
5380 end Is_Possibly_Unaligned_Object;
5382 ---------------------------------
5383 -- Is_Possibly_Unaligned_Slice --
5384 ---------------------------------
5386 function Is_Possibly_Unaligned_Slice (N : Node_Id) return Boolean is
5387 begin
5388 -- Go to renamed object
5390 if Is_Entity_Name (N)
5391 and then Is_Object (Entity (N))
5392 and then Present (Renamed_Object (Entity (N)))
5393 then
5394 return Is_Possibly_Unaligned_Slice (Renamed_Object (Entity (N)));
5395 end if;
5397 -- The reference must be a slice
5399 if Nkind (N) /= N_Slice then
5400 return False;
5401 end if;
5403 -- We only need to worry if the target has strict alignment
5405 if not Target_Strict_Alignment then
5406 return False;
5407 end if;
5409 -- If it is a slice, then look at the array type being sliced
5411 declare
5412 Sarr : constant Node_Id := Prefix (N);
5413 -- Prefix of the slice, i.e. the array being sliced
5415 Styp : constant Entity_Id := Etype (Prefix (N));
5416 -- Type of the array being sliced
5418 Pref : Node_Id;
5419 Ptyp : Entity_Id;
5421 begin
5422 -- The problems arise if the array object that is being sliced
5423 -- is a component of a record or array, and we cannot guarantee
5424 -- the alignment of the array within its containing object.
5426 -- To investigate this, we look at successive prefixes to see
5427 -- if we have a worrisome indexed or selected component.
5429 Pref := Sarr;
5430 loop
5431 -- Case of array is part of an indexed component reference
5433 if Nkind (Pref) = N_Indexed_Component then
5434 Ptyp := Etype (Prefix (Pref));
5436 -- The only problematic case is when the array is packed, in
5437 -- which case we really know nothing about the alignment of
5438 -- individual components.
5440 if Is_Bit_Packed_Array (Ptyp) then
5441 return True;
5442 end if;
5444 -- Case of array is part of a selected component reference
5446 elsif Nkind (Pref) = N_Selected_Component then
5447 Ptyp := Etype (Prefix (Pref));
5449 -- We are definitely in trouble if the record in question
5450 -- has an alignment, and either we know this alignment is
5451 -- inconsistent with the alignment of the slice, or we don't
5452 -- know what the alignment of the slice should be.
5454 if Known_Alignment (Ptyp)
5455 and then (Unknown_Alignment (Styp)
5456 or else Alignment (Styp) > Alignment (Ptyp))
5457 then
5458 return True;
5459 end if;
5461 -- We are in potential trouble if the record type is packed.
5462 -- We could special case when we know that the array is the
5463 -- first component, but that's not such a simple case ???
5465 if Is_Packed (Ptyp) then
5466 return True;
5467 end if;
5469 -- We are in trouble if there is a component clause, and
5470 -- either we do not know the alignment of the slice, or
5471 -- the alignment of the slice is inconsistent with the
5472 -- bit position specified by the component clause.
5474 declare
5475 Field : constant Entity_Id := Entity (Selector_Name (Pref));
5476 begin
5477 if Present (Component_Clause (Field))
5478 and then
5479 (Unknown_Alignment (Styp)
5480 or else
5481 (Component_Bit_Offset (Field) mod
5482 (System_Storage_Unit * Alignment (Styp))) /= 0)
5483 then
5484 return True;
5485 end if;
5486 end;
5488 -- For cases other than selected or indexed components we know we
5489 -- are OK, since no issues arise over alignment.
5491 else
5492 return False;
5493 end if;
5495 -- We processed an indexed component or selected component
5496 -- reference that looked safe, so keep checking prefixes.
5498 Pref := Prefix (Pref);
5499 end loop;
5500 end;
5501 end Is_Possibly_Unaligned_Slice;
5503 -------------------------------
5504 -- Is_Related_To_Func_Return --
5505 -------------------------------
5507 function Is_Related_To_Func_Return (Id : Entity_Id) return Boolean is
5508 Expr : constant Node_Id := Related_Expression (Id);
5509 begin
5510 return
5511 Present (Expr)
5512 and then Nkind (Expr) = N_Explicit_Dereference
5513 and then Nkind (Parent (Expr)) = N_Simple_Return_Statement;
5514 end Is_Related_To_Func_Return;
5516 --------------------------------
5517 -- Is_Ref_To_Bit_Packed_Array --
5518 --------------------------------
5520 function Is_Ref_To_Bit_Packed_Array (N : Node_Id) return Boolean is
5521 Result : Boolean;
5522 Expr : Node_Id;
5524 begin
5525 if Is_Entity_Name (N)
5526 and then Is_Object (Entity (N))
5527 and then Present (Renamed_Object (Entity (N)))
5528 then
5529 return Is_Ref_To_Bit_Packed_Array (Renamed_Object (Entity (N)));
5530 end if;
5532 if Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5533 if Is_Bit_Packed_Array (Etype (Prefix (N))) then
5534 Result := True;
5535 else
5536 Result := Is_Ref_To_Bit_Packed_Array (Prefix (N));
5537 end if;
5539 if Result and then Nkind (N) = N_Indexed_Component then
5540 Expr := First (Expressions (N));
5541 while Present (Expr) loop
5542 Force_Evaluation (Expr);
5543 Next (Expr);
5544 end loop;
5545 end if;
5547 return Result;
5549 else
5550 return False;
5551 end if;
5552 end Is_Ref_To_Bit_Packed_Array;
5554 --------------------------------
5555 -- Is_Ref_To_Bit_Packed_Slice --
5556 --------------------------------
5558 function Is_Ref_To_Bit_Packed_Slice (N : Node_Id) return Boolean is
5559 begin
5560 if Nkind (N) = N_Type_Conversion then
5561 return Is_Ref_To_Bit_Packed_Slice (Expression (N));
5563 elsif Is_Entity_Name (N)
5564 and then Is_Object (Entity (N))
5565 and then Present (Renamed_Object (Entity (N)))
5566 then
5567 return Is_Ref_To_Bit_Packed_Slice (Renamed_Object (Entity (N)));
5569 elsif Nkind (N) = N_Slice
5570 and then Is_Bit_Packed_Array (Etype (Prefix (N)))
5571 then
5572 return True;
5574 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5575 return Is_Ref_To_Bit_Packed_Slice (Prefix (N));
5577 else
5578 return False;
5579 end if;
5580 end Is_Ref_To_Bit_Packed_Slice;
5582 -----------------------
5583 -- Is_Renamed_Object --
5584 -----------------------
5586 function Is_Renamed_Object (N : Node_Id) return Boolean is
5587 Pnod : constant Node_Id := Parent (N);
5588 Kind : constant Node_Kind := Nkind (Pnod);
5589 begin
5590 if Kind = N_Object_Renaming_Declaration then
5591 return True;
5592 elsif Nkind_In (Kind, N_Indexed_Component, N_Selected_Component) then
5593 return Is_Renamed_Object (Pnod);
5594 else
5595 return False;
5596 end if;
5597 end Is_Renamed_Object;
5599 --------------------------------------
5600 -- Is_Secondary_Stack_BIP_Func_Call --
5601 --------------------------------------
5603 function Is_Secondary_Stack_BIP_Func_Call (Expr : Node_Id) return Boolean is
5604 Alloc_Nam : Name_Id := No_Name;
5605 Actual : Node_Id;
5606 Call : Node_Id := Expr;
5607 Formal : Node_Id;
5608 Param : Node_Id;
5610 begin
5611 -- Build-in-place calls usually appear in 'reference format. Note that
5612 -- the accessibility check machinery may add an extra 'reference due to
5613 -- side effect removal.
5615 while Nkind (Call) = N_Reference loop
5616 Call := Prefix (Call);
5617 end loop;
5619 if Nkind_In (Call, N_Qualified_Expression,
5620 N_Unchecked_Type_Conversion)
5621 then
5622 Call := Expression (Call);
5623 end if;
5625 if Is_Build_In_Place_Function_Call (Call) then
5627 -- Examine all parameter associations of the function call
5629 Param := First (Parameter_Associations (Call));
5630 while Present (Param) loop
5631 if Nkind (Param) = N_Parameter_Association
5632 and then Nkind (Selector_Name (Param)) = N_Identifier
5633 then
5634 Formal := Selector_Name (Param);
5635 Actual := Explicit_Actual_Parameter (Param);
5637 -- Construct the name of formal BIPalloc. It is much easier to
5638 -- extract the name of the function using an arbitrary formal's
5639 -- scope rather than the Name field of Call.
5641 if Alloc_Nam = No_Name and then Present (Entity (Formal)) then
5642 Alloc_Nam :=
5643 New_External_Name
5644 (Chars (Scope (Entity (Formal))),
5645 BIP_Formal_Suffix (BIP_Alloc_Form));
5646 end if;
5648 -- A match for BIPalloc => 2 has been found
5650 if Chars (Formal) = Alloc_Nam
5651 and then Nkind (Actual) = N_Integer_Literal
5652 and then Intval (Actual) = Uint_2
5653 then
5654 return True;
5655 end if;
5656 end if;
5658 Next (Param);
5659 end loop;
5660 end if;
5662 return False;
5663 end Is_Secondary_Stack_BIP_Func_Call;
5665 -------------------------------------
5666 -- Is_Tag_To_Class_Wide_Conversion --
5667 -------------------------------------
5669 function Is_Tag_To_Class_Wide_Conversion
5670 (Obj_Id : Entity_Id) return Boolean
5672 Expr : constant Node_Id := Expression (Parent (Obj_Id));
5674 begin
5675 return
5676 Is_Class_Wide_Type (Etype (Obj_Id))
5677 and then Present (Expr)
5678 and then Nkind (Expr) = N_Unchecked_Type_Conversion
5679 and then Etype (Expression (Expr)) = RTE (RE_Tag);
5680 end Is_Tag_To_Class_Wide_Conversion;
5682 ----------------------------
5683 -- Is_Untagged_Derivation --
5684 ----------------------------
5686 function Is_Untagged_Derivation (T : Entity_Id) return Boolean is
5687 begin
5688 return (not Is_Tagged_Type (T) and then Is_Derived_Type (T))
5689 or else
5690 (Is_Private_Type (T) and then Present (Full_View (T))
5691 and then not Is_Tagged_Type (Full_View (T))
5692 and then Is_Derived_Type (Full_View (T))
5693 and then Etype (Full_View (T)) /= T);
5694 end Is_Untagged_Derivation;
5696 ---------------------------
5697 -- Is_Volatile_Reference --
5698 ---------------------------
5700 function Is_Volatile_Reference (N : Node_Id) return Boolean is
5701 begin
5702 -- Only source references are to be treated as volatile, internally
5703 -- generated stuff cannot have volatile external effects.
5705 if not Comes_From_Source (N) then
5706 return False;
5708 -- Never true for reference to a type
5710 elsif Is_Entity_Name (N) and then Is_Type (Entity (N)) then
5711 return False;
5713 -- Never true for a compile time known constant
5715 elsif Compile_Time_Known_Value (N) then
5716 return False;
5718 -- True if object reference with volatile type
5720 elsif Is_Volatile_Object (N) then
5721 return True;
5723 -- True if reference to volatile entity
5725 elsif Is_Entity_Name (N) then
5726 return Treat_As_Volatile (Entity (N));
5728 -- True for slice of volatile array
5730 elsif Nkind (N) = N_Slice then
5731 return Is_Volatile_Reference (Prefix (N));
5733 -- True if volatile component
5735 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
5736 if (Is_Entity_Name (Prefix (N))
5737 and then Has_Volatile_Components (Entity (Prefix (N))))
5738 or else (Present (Etype (Prefix (N)))
5739 and then Has_Volatile_Components (Etype (Prefix (N))))
5740 then
5741 return True;
5742 else
5743 return Is_Volatile_Reference (Prefix (N));
5744 end if;
5746 -- Otherwise false
5748 else
5749 return False;
5750 end if;
5751 end Is_Volatile_Reference;
5753 --------------------------
5754 -- Is_VM_By_Copy_Actual --
5755 --------------------------
5757 function Is_VM_By_Copy_Actual (N : Node_Id) return Boolean is
5758 begin
5759 return VM_Target /= No_VM
5760 and then (Nkind (N) = N_Slice
5761 or else
5762 (Nkind (N) = N_Identifier
5763 and then Present (Renamed_Object (Entity (N)))
5764 and then Nkind (Renamed_Object (Entity (N))) =
5765 N_Slice));
5766 end Is_VM_By_Copy_Actual;
5768 --------------------
5769 -- Kill_Dead_Code --
5770 --------------------
5772 procedure Kill_Dead_Code (N : Node_Id; Warn : Boolean := False) is
5773 W : Boolean := Warn;
5774 -- Set False if warnings suppressed
5776 begin
5777 if Present (N) then
5778 Remove_Warning_Messages (N);
5780 -- Generate warning if appropriate
5782 if W then
5784 -- We suppress the warning if this code is under control of an
5785 -- if statement, whose condition is a simple identifier, and
5786 -- either we are in an instance, or warnings off is set for this
5787 -- identifier. The reason for killing it in the instance case is
5788 -- that it is common and reasonable for code to be deleted in
5789 -- instances for various reasons.
5791 -- Could we use Is_Statically_Unevaluated here???
5793 if Nkind (Parent (N)) = N_If_Statement then
5794 declare
5795 C : constant Node_Id := Condition (Parent (N));
5796 begin
5797 if Nkind (C) = N_Identifier
5798 and then
5799 (In_Instance
5800 or else (Present (Entity (C))
5801 and then Has_Warnings_Off (Entity (C))))
5802 then
5803 W := False;
5804 end if;
5805 end;
5806 end if;
5808 -- Generate warning if not suppressed
5810 if W then
5811 Error_Msg_F
5812 ("?t?this code can never be executed and has been deleted!",
5814 end if;
5815 end if;
5817 -- Recurse into block statements and bodies to process declarations
5818 -- and statements.
5820 if Nkind (N) = N_Block_Statement
5821 or else Nkind (N) = N_Subprogram_Body
5822 or else Nkind (N) = N_Package_Body
5823 then
5824 Kill_Dead_Code (Declarations (N), False);
5825 Kill_Dead_Code (Statements (Handled_Statement_Sequence (N)));
5827 if Nkind (N) = N_Subprogram_Body then
5828 Set_Is_Eliminated (Defining_Entity (N));
5829 end if;
5831 elsif Nkind (N) = N_Package_Declaration then
5832 Kill_Dead_Code (Visible_Declarations (Specification (N)));
5833 Kill_Dead_Code (Private_Declarations (Specification (N)));
5835 -- ??? After this point, Delete_Tree has been called on all
5836 -- declarations in Specification (N), so references to entities
5837 -- therein look suspicious.
5839 declare
5840 E : Entity_Id := First_Entity (Defining_Entity (N));
5842 begin
5843 while Present (E) loop
5844 if Ekind (E) = E_Operator then
5845 Set_Is_Eliminated (E);
5846 end if;
5848 Next_Entity (E);
5849 end loop;
5850 end;
5852 -- Recurse into composite statement to kill individual statements in
5853 -- particular instantiations.
5855 elsif Nkind (N) = N_If_Statement then
5856 Kill_Dead_Code (Then_Statements (N));
5857 Kill_Dead_Code (Elsif_Parts (N));
5858 Kill_Dead_Code (Else_Statements (N));
5860 elsif Nkind (N) = N_Loop_Statement then
5861 Kill_Dead_Code (Statements (N));
5863 elsif Nkind (N) = N_Case_Statement then
5864 declare
5865 Alt : Node_Id;
5866 begin
5867 Alt := First (Alternatives (N));
5868 while Present (Alt) loop
5869 Kill_Dead_Code (Statements (Alt));
5870 Next (Alt);
5871 end loop;
5872 end;
5874 elsif Nkind (N) = N_Case_Statement_Alternative then
5875 Kill_Dead_Code (Statements (N));
5877 -- Deal with dead instances caused by deleting instantiations
5879 elsif Nkind (N) in N_Generic_Instantiation then
5880 Remove_Dead_Instance (N);
5881 end if;
5882 end if;
5883 end Kill_Dead_Code;
5885 -- Case where argument is a list of nodes to be killed
5887 procedure Kill_Dead_Code (L : List_Id; Warn : Boolean := False) is
5888 N : Node_Id;
5889 W : Boolean;
5891 begin
5892 W := Warn;
5894 if Is_Non_Empty_List (L) then
5895 N := First (L);
5896 while Present (N) loop
5897 Kill_Dead_Code (N, W);
5898 W := False;
5899 Next (N);
5900 end loop;
5901 end if;
5902 end Kill_Dead_Code;
5904 ------------------------
5905 -- Known_Non_Negative --
5906 ------------------------
5908 function Known_Non_Negative (Opnd : Node_Id) return Boolean is
5909 begin
5910 if Is_OK_Static_Expression (Opnd) and then Expr_Value (Opnd) >= 0 then
5911 return True;
5913 else
5914 declare
5915 Lo : constant Node_Id := Type_Low_Bound (Etype (Opnd));
5916 begin
5917 return
5918 Is_OK_Static_Expression (Lo) and then Expr_Value (Lo) >= 0;
5919 end;
5920 end if;
5921 end Known_Non_Negative;
5923 --------------------
5924 -- Known_Non_Null --
5925 --------------------
5927 function Known_Non_Null (N : Node_Id) return Boolean is
5928 begin
5929 -- Checks for case where N is an entity reference
5931 if Is_Entity_Name (N) and then Present (Entity (N)) then
5932 declare
5933 E : constant Entity_Id := Entity (N);
5934 Op : Node_Kind;
5935 Val : Node_Id;
5937 begin
5938 -- First check if we are in decisive conditional
5940 Get_Current_Value_Condition (N, Op, Val);
5942 if Known_Null (Val) then
5943 if Op = N_Op_Eq then
5944 return False;
5945 elsif Op = N_Op_Ne then
5946 return True;
5947 end if;
5948 end if;
5950 -- If OK to do replacement, test Is_Known_Non_Null flag
5952 if OK_To_Do_Constant_Replacement (E) then
5953 return Is_Known_Non_Null (E);
5955 -- Otherwise if not safe to do replacement, then say so
5957 else
5958 return False;
5959 end if;
5960 end;
5962 -- True if access attribute
5964 elsif Nkind (N) = N_Attribute_Reference
5965 and then Nam_In (Attribute_Name (N), Name_Access,
5966 Name_Unchecked_Access,
5967 Name_Unrestricted_Access)
5968 then
5969 return True;
5971 -- True if allocator
5973 elsif Nkind (N) = N_Allocator then
5974 return True;
5976 -- For a conversion, true if expression is known non-null
5978 elsif Nkind (N) = N_Type_Conversion then
5979 return Known_Non_Null (Expression (N));
5981 -- Above are all cases where the value could be determined to be
5982 -- non-null. In all other cases, we don't know, so return False.
5984 else
5985 return False;
5986 end if;
5987 end Known_Non_Null;
5989 ----------------
5990 -- Known_Null --
5991 ----------------
5993 function Known_Null (N : Node_Id) return Boolean is
5994 begin
5995 -- Checks for case where N is an entity reference
5997 if Is_Entity_Name (N) and then Present (Entity (N)) then
5998 declare
5999 E : constant Entity_Id := Entity (N);
6000 Op : Node_Kind;
6001 Val : Node_Id;
6003 begin
6004 -- Constant null value is for sure null
6006 if Ekind (E) = E_Constant
6007 and then Known_Null (Constant_Value (E))
6008 then
6009 return True;
6010 end if;
6012 -- First check if we are in decisive conditional
6014 Get_Current_Value_Condition (N, Op, Val);
6016 if Known_Null (Val) then
6017 if Op = N_Op_Eq then
6018 return True;
6019 elsif Op = N_Op_Ne then
6020 return False;
6021 end if;
6022 end if;
6024 -- If OK to do replacement, test Is_Known_Null flag
6026 if OK_To_Do_Constant_Replacement (E) then
6027 return Is_Known_Null (E);
6029 -- Otherwise if not safe to do replacement, then say so
6031 else
6032 return False;
6033 end if;
6034 end;
6036 -- True if explicit reference to null
6038 elsif Nkind (N) = N_Null then
6039 return True;
6041 -- For a conversion, true if expression is known null
6043 elsif Nkind (N) = N_Type_Conversion then
6044 return Known_Null (Expression (N));
6046 -- Above are all cases where the value could be determined to be null.
6047 -- In all other cases, we don't know, so return False.
6049 else
6050 return False;
6051 end if;
6052 end Known_Null;
6054 -----------------------------
6055 -- Make_CW_Equivalent_Type --
6056 -----------------------------
6058 -- Create a record type used as an equivalent of any member of the class
6059 -- which takes its size from exp.
6061 -- Generate the following code:
6063 -- type Equiv_T is record
6064 -- _parent : T (List of discriminant constraints taken from Exp);
6065 -- Ext__50 : Storage_Array (1 .. (Exp'size - Typ'object_size)/8);
6066 -- end Equiv_T;
6068 -- ??? Note that this type does not guarantee same alignment as all
6069 -- derived types
6071 function Make_CW_Equivalent_Type
6072 (T : Entity_Id;
6073 E : Node_Id) return Entity_Id
6075 Loc : constant Source_Ptr := Sloc (E);
6076 Root_Typ : constant Entity_Id := Root_Type (T);
6077 List_Def : constant List_Id := Empty_List;
6078 Comp_List : constant List_Id := New_List;
6079 Equiv_Type : Entity_Id;
6080 Range_Type : Entity_Id;
6081 Str_Type : Entity_Id;
6082 Constr_Root : Entity_Id;
6083 Sizexpr : Node_Id;
6085 begin
6086 -- If the root type is already constrained, there are no discriminants
6087 -- in the expression.
6089 if not Has_Discriminants (Root_Typ)
6090 or else Is_Constrained (Root_Typ)
6091 then
6092 Constr_Root := Root_Typ;
6094 -- At this point in the expansion, non-limited view of the type
6095 -- must be available, otherwise the error will be reported later.
6097 if From_Limited_With (Constr_Root)
6098 and then Present (Non_Limited_View (Constr_Root))
6099 then
6100 Constr_Root := Non_Limited_View (Constr_Root);
6101 end if;
6103 else
6104 Constr_Root := Make_Temporary (Loc, 'R');
6106 -- subtype cstr__n is T (List of discr constraints taken from Exp)
6108 Append_To (List_Def,
6109 Make_Subtype_Declaration (Loc,
6110 Defining_Identifier => Constr_Root,
6111 Subtype_Indication => Make_Subtype_From_Expr (E, Root_Typ)));
6112 end if;
6114 -- Generate the range subtype declaration
6116 Range_Type := Make_Temporary (Loc, 'G');
6118 if not Is_Interface (Root_Typ) then
6120 -- subtype rg__xx is
6121 -- Storage_Offset range 1 .. (Expr'size - typ'size) / Storage_Unit
6123 Sizexpr :=
6124 Make_Op_Subtract (Loc,
6125 Left_Opnd =>
6126 Make_Attribute_Reference (Loc,
6127 Prefix =>
6128 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
6129 Attribute_Name => Name_Size),
6130 Right_Opnd =>
6131 Make_Attribute_Reference (Loc,
6132 Prefix => New_Occurrence_Of (Constr_Root, Loc),
6133 Attribute_Name => Name_Object_Size));
6134 else
6135 -- subtype rg__xx is
6136 -- Storage_Offset range 1 .. Expr'size / Storage_Unit
6138 Sizexpr :=
6139 Make_Attribute_Reference (Loc,
6140 Prefix =>
6141 OK_Convert_To (T, Duplicate_Subexpr_No_Checks (E)),
6142 Attribute_Name => Name_Size);
6143 end if;
6145 Set_Paren_Count (Sizexpr, 1);
6147 Append_To (List_Def,
6148 Make_Subtype_Declaration (Loc,
6149 Defining_Identifier => Range_Type,
6150 Subtype_Indication =>
6151 Make_Subtype_Indication (Loc,
6152 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Offset), Loc),
6153 Constraint => Make_Range_Constraint (Loc,
6154 Range_Expression =>
6155 Make_Range (Loc,
6156 Low_Bound => Make_Integer_Literal (Loc, 1),
6157 High_Bound =>
6158 Make_Op_Divide (Loc,
6159 Left_Opnd => Sizexpr,
6160 Right_Opnd => Make_Integer_Literal (Loc,
6161 Intval => System_Storage_Unit)))))));
6163 -- subtype str__nn is Storage_Array (rg__x);
6165 Str_Type := Make_Temporary (Loc, 'S');
6166 Append_To (List_Def,
6167 Make_Subtype_Declaration (Loc,
6168 Defining_Identifier => Str_Type,
6169 Subtype_Indication =>
6170 Make_Subtype_Indication (Loc,
6171 Subtype_Mark => New_Occurrence_Of (RTE (RE_Storage_Array), Loc),
6172 Constraint =>
6173 Make_Index_Or_Discriminant_Constraint (Loc,
6174 Constraints =>
6175 New_List (New_Occurrence_Of (Range_Type, Loc))))));
6177 -- type Equiv_T is record
6178 -- [ _parent : Tnn; ]
6179 -- E : Str_Type;
6180 -- end Equiv_T;
6182 Equiv_Type := Make_Temporary (Loc, 'T');
6183 Set_Ekind (Equiv_Type, E_Record_Type);
6184 Set_Parent_Subtype (Equiv_Type, Constr_Root);
6186 -- Set Is_Class_Wide_Equivalent_Type very early to trigger the special
6187 -- treatment for this type. In particular, even though _parent's type
6188 -- is a controlled type or contains controlled components, we do not
6189 -- want to set Has_Controlled_Component on it to avoid making it gain
6190 -- an unwanted _controller component.
6192 Set_Is_Class_Wide_Equivalent_Type (Equiv_Type);
6194 -- A class-wide equivalent type does not require initialization
6196 Set_Suppress_Initialization (Equiv_Type);
6198 if not Is_Interface (Root_Typ) then
6199 Append_To (Comp_List,
6200 Make_Component_Declaration (Loc,
6201 Defining_Identifier =>
6202 Make_Defining_Identifier (Loc, Name_uParent),
6203 Component_Definition =>
6204 Make_Component_Definition (Loc,
6205 Aliased_Present => False,
6206 Subtype_Indication => New_Occurrence_Of (Constr_Root, Loc))));
6207 end if;
6209 Append_To (Comp_List,
6210 Make_Component_Declaration (Loc,
6211 Defining_Identifier => Make_Temporary (Loc, 'C'),
6212 Component_Definition =>
6213 Make_Component_Definition (Loc,
6214 Aliased_Present => False,
6215 Subtype_Indication => New_Occurrence_Of (Str_Type, Loc))));
6217 Append_To (List_Def,
6218 Make_Full_Type_Declaration (Loc,
6219 Defining_Identifier => Equiv_Type,
6220 Type_Definition =>
6221 Make_Record_Definition (Loc,
6222 Component_List =>
6223 Make_Component_List (Loc,
6224 Component_Items => Comp_List,
6225 Variant_Part => Empty))));
6227 -- Suppress all checks during the analysis of the expanded code to avoid
6228 -- the generation of spurious warnings under ZFP run-time.
6230 Insert_Actions (E, List_Def, Suppress => All_Checks);
6231 return Equiv_Type;
6232 end Make_CW_Equivalent_Type;
6234 -------------------------
6235 -- Make_Invariant_Call --
6236 -------------------------
6238 function Make_Invariant_Call (Expr : Node_Id) return Node_Id is
6239 Loc : constant Source_Ptr := Sloc (Expr);
6240 Typ : Entity_Id;
6242 begin
6243 Typ := Etype (Expr);
6245 -- Subtypes may be subject to invariants coming from their respective
6246 -- base types. The subtype may be fully or partially private.
6248 if Ekind_In (Typ, E_Array_Subtype,
6249 E_Private_Subtype,
6250 E_Record_Subtype,
6251 E_Record_Subtype_With_Private)
6252 then
6253 Typ := Base_Type (Typ);
6254 end if;
6256 pragma Assert
6257 (Has_Invariants (Typ) and then Present (Invariant_Procedure (Typ)));
6259 return
6260 Make_Procedure_Call_Statement (Loc,
6261 Name =>
6262 New_Occurrence_Of (Invariant_Procedure (Typ), Loc),
6263 Parameter_Associations => New_List (Relocate_Node (Expr)));
6264 end Make_Invariant_Call;
6266 ------------------------
6267 -- Make_Literal_Range --
6268 ------------------------
6270 function Make_Literal_Range
6271 (Loc : Source_Ptr;
6272 Literal_Typ : Entity_Id) return Node_Id
6274 Lo : constant Node_Id :=
6275 New_Copy_Tree (String_Literal_Low_Bound (Literal_Typ));
6276 Index : constant Entity_Id := Etype (Lo);
6278 Hi : Node_Id;
6279 Length_Expr : constant Node_Id :=
6280 Make_Op_Subtract (Loc,
6281 Left_Opnd =>
6282 Make_Integer_Literal (Loc,
6283 Intval => String_Literal_Length (Literal_Typ)),
6284 Right_Opnd =>
6285 Make_Integer_Literal (Loc, 1));
6287 begin
6288 Set_Analyzed (Lo, False);
6290 if Is_Integer_Type (Index) then
6291 Hi :=
6292 Make_Op_Add (Loc,
6293 Left_Opnd => New_Copy_Tree (Lo),
6294 Right_Opnd => Length_Expr);
6295 else
6296 Hi :=
6297 Make_Attribute_Reference (Loc,
6298 Attribute_Name => Name_Val,
6299 Prefix => New_Occurrence_Of (Index, Loc),
6300 Expressions => New_List (
6301 Make_Op_Add (Loc,
6302 Left_Opnd =>
6303 Make_Attribute_Reference (Loc,
6304 Attribute_Name => Name_Pos,
6305 Prefix => New_Occurrence_Of (Index, Loc),
6306 Expressions => New_List (New_Copy_Tree (Lo))),
6307 Right_Opnd => Length_Expr)));
6308 end if;
6310 return
6311 Make_Range (Loc,
6312 Low_Bound => Lo,
6313 High_Bound => Hi);
6314 end Make_Literal_Range;
6316 --------------------------
6317 -- Make_Non_Empty_Check --
6318 --------------------------
6320 function Make_Non_Empty_Check
6321 (Loc : Source_Ptr;
6322 N : Node_Id) return Node_Id
6324 begin
6325 return
6326 Make_Op_Ne (Loc,
6327 Left_Opnd =>
6328 Make_Attribute_Reference (Loc,
6329 Attribute_Name => Name_Length,
6330 Prefix => Duplicate_Subexpr_No_Checks (N, Name_Req => True)),
6331 Right_Opnd =>
6332 Make_Integer_Literal (Loc, 0));
6333 end Make_Non_Empty_Check;
6335 -------------------------
6336 -- Make_Predicate_Call --
6337 -------------------------
6339 function Make_Predicate_Call
6340 (Typ : Entity_Id;
6341 Expr : Node_Id;
6342 Mem : Boolean := False) return Node_Id
6344 Loc : constant Source_Ptr := Sloc (Expr);
6346 begin
6347 pragma Assert (Present (Predicate_Function (Typ)));
6349 -- Call special membership version if requested and available
6351 if Mem then
6352 declare
6353 PFM : constant Entity_Id := Predicate_Function_M (Typ);
6354 begin
6355 if Present (PFM) then
6356 return
6357 Make_Function_Call (Loc,
6358 Name => New_Occurrence_Of (PFM, Loc),
6359 Parameter_Associations => New_List (Relocate_Node (Expr)));
6360 end if;
6361 end;
6362 end if;
6364 -- Case of calling normal predicate function
6366 return
6367 Make_Function_Call (Loc,
6368 Name =>
6369 New_Occurrence_Of (Predicate_Function (Typ), Loc),
6370 Parameter_Associations => New_List (Relocate_Node (Expr)));
6371 end Make_Predicate_Call;
6373 --------------------------
6374 -- Make_Predicate_Check --
6375 --------------------------
6377 function Make_Predicate_Check
6378 (Typ : Entity_Id;
6379 Expr : Node_Id) return Node_Id
6381 Loc : constant Source_Ptr := Sloc (Expr);
6382 Nam : Name_Id;
6384 begin
6385 -- If predicate checks are suppressed, then return a null statement.
6386 -- For this call, we check only the scope setting. If the caller wants
6387 -- to check a specific entity's setting, they must do it manually.
6389 if Predicate_Checks_Suppressed (Empty) then
6390 return Make_Null_Statement (Loc);
6391 end if;
6393 -- Do not generate a check within an internal subprogram (stream
6394 -- functions and the like, including including predicate functions).
6396 if Within_Internal_Subprogram then
6397 return Make_Null_Statement (Loc);
6398 end if;
6400 -- Compute proper name to use, we need to get this right so that the
6401 -- right set of check policies apply to the Check pragma we are making.
6403 if Has_Dynamic_Predicate_Aspect (Typ) then
6404 Nam := Name_Dynamic_Predicate;
6405 elsif Has_Static_Predicate_Aspect (Typ) then
6406 Nam := Name_Static_Predicate;
6407 else
6408 Nam := Name_Predicate;
6409 end if;
6411 return
6412 Make_Pragma (Loc,
6413 Pragma_Identifier => Make_Identifier (Loc, Name_Check),
6414 Pragma_Argument_Associations => New_List (
6415 Make_Pragma_Argument_Association (Loc,
6416 Expression => Make_Identifier (Loc, Nam)),
6417 Make_Pragma_Argument_Association (Loc,
6418 Expression => Make_Predicate_Call (Typ, Expr))));
6419 end Make_Predicate_Check;
6421 ----------------------------
6422 -- Make_Subtype_From_Expr --
6423 ----------------------------
6425 -- 1. If Expr is an unconstrained array expression, creates
6426 -- Unc_Type(Expr'first(1)..Expr'last(1),..., Expr'first(n)..Expr'last(n))
6428 -- 2. If Expr is a unconstrained discriminated type expression, creates
6429 -- Unc_Type(Expr.Discr1, ... , Expr.Discr_n)
6431 -- 3. If Expr is class-wide, creates an implicit class-wide subtype
6433 function Make_Subtype_From_Expr
6434 (E : Node_Id;
6435 Unc_Typ : Entity_Id) return Node_Id
6437 List_Constr : constant List_Id := New_List;
6438 Loc : constant Source_Ptr := Sloc (E);
6439 D : Entity_Id;
6440 Full_Exp : Node_Id;
6441 Full_Subtyp : Entity_Id;
6442 High_Bound : Entity_Id;
6443 Index_Typ : Entity_Id;
6444 Low_Bound : Entity_Id;
6445 Priv_Subtyp : Entity_Id;
6446 Utyp : Entity_Id;
6448 begin
6449 if Is_Private_Type (Unc_Typ)
6450 and then Has_Unknown_Discriminants (Unc_Typ)
6451 then
6452 -- Prepare the subtype completion. Use the base type to find the
6453 -- underlying type because the type may be a generic actual or an
6454 -- explicit subtype.
6456 Utyp := Underlying_Type (Base_Type (Unc_Typ));
6457 Full_Subtyp := Make_Temporary (Loc, 'C');
6458 Full_Exp :=
6459 Unchecked_Convert_To (Utyp, Duplicate_Subexpr_No_Checks (E));
6460 Set_Parent (Full_Exp, Parent (E));
6462 Priv_Subtyp := Make_Temporary (Loc, 'P');
6464 Insert_Action (E,
6465 Make_Subtype_Declaration (Loc,
6466 Defining_Identifier => Full_Subtyp,
6467 Subtype_Indication => Make_Subtype_From_Expr (Full_Exp, Utyp)));
6469 -- Define the dummy private subtype
6471 Set_Ekind (Priv_Subtyp, Subtype_Kind (Ekind (Unc_Typ)));
6472 Set_Etype (Priv_Subtyp, Base_Type (Unc_Typ));
6473 Set_Scope (Priv_Subtyp, Full_Subtyp);
6474 Set_Is_Constrained (Priv_Subtyp);
6475 Set_Is_Tagged_Type (Priv_Subtyp, Is_Tagged_Type (Unc_Typ));
6476 Set_Is_Itype (Priv_Subtyp);
6477 Set_Associated_Node_For_Itype (Priv_Subtyp, E);
6479 if Is_Tagged_Type (Priv_Subtyp) then
6480 Set_Class_Wide_Type
6481 (Base_Type (Priv_Subtyp), Class_Wide_Type (Unc_Typ));
6482 Set_Direct_Primitive_Operations (Priv_Subtyp,
6483 Direct_Primitive_Operations (Unc_Typ));
6484 end if;
6486 Set_Full_View (Priv_Subtyp, Full_Subtyp);
6488 return New_Occurrence_Of (Priv_Subtyp, Loc);
6490 elsif Is_Array_Type (Unc_Typ) then
6491 Index_Typ := First_Index (Unc_Typ);
6492 for J in 1 .. Number_Dimensions (Unc_Typ) loop
6494 -- Capture the bounds of each index constraint in case the context
6495 -- is an object declaration of an unconstrained type initialized
6496 -- by a function call:
6498 -- Obj : Unconstr_Typ := Func_Call;
6500 -- This scenario requires secondary scope management and the index
6501 -- constraint cannot depend on the temporary used to capture the
6502 -- result of the function call.
6504 -- SS_Mark;
6505 -- Temp : Unconstr_Typ_Ptr := Func_Call'reference;
6506 -- subtype S is Unconstr_Typ (Temp.all'First .. Temp.all'Last);
6507 -- Obj : S := Temp.all;
6508 -- SS_Release; -- Temp is gone at this point, bounds of S are
6509 -- -- non existent.
6511 -- Generate:
6512 -- Low_Bound : constant Base_Type (Index_Typ) := E'First (J);
6514 Low_Bound := Make_Temporary (Loc, 'B');
6515 Insert_Action (E,
6516 Make_Object_Declaration (Loc,
6517 Defining_Identifier => Low_Bound,
6518 Object_Definition =>
6519 New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
6520 Constant_Present => True,
6521 Expression =>
6522 Make_Attribute_Reference (Loc,
6523 Prefix => Duplicate_Subexpr_No_Checks (E),
6524 Attribute_Name => Name_First,
6525 Expressions => New_List (
6526 Make_Integer_Literal (Loc, J)))));
6528 -- Generate:
6529 -- High_Bound : constant Base_Type (Index_Typ) := E'Last (J);
6531 High_Bound := Make_Temporary (Loc, 'B');
6532 Insert_Action (E,
6533 Make_Object_Declaration (Loc,
6534 Defining_Identifier => High_Bound,
6535 Object_Definition =>
6536 New_Occurrence_Of (Base_Type (Etype (Index_Typ)), Loc),
6537 Constant_Present => True,
6538 Expression =>
6539 Make_Attribute_Reference (Loc,
6540 Prefix => Duplicate_Subexpr_No_Checks (E),
6541 Attribute_Name => Name_Last,
6542 Expressions => New_List (
6543 Make_Integer_Literal (Loc, J)))));
6545 Append_To (List_Constr,
6546 Make_Range (Loc,
6547 Low_Bound => New_Occurrence_Of (Low_Bound, Loc),
6548 High_Bound => New_Occurrence_Of (High_Bound, Loc)));
6550 Index_Typ := Next_Index (Index_Typ);
6551 end loop;
6553 elsif Is_Class_Wide_Type (Unc_Typ) then
6554 declare
6555 CW_Subtype : Entity_Id;
6556 EQ_Typ : Entity_Id := Empty;
6558 begin
6559 -- A class-wide equivalent type is not needed when VM_Target
6560 -- because the VM back-ends handle the class-wide object
6561 -- initialization itself (and doesn't need or want the
6562 -- additional intermediate type to handle the assignment).
6564 if Expander_Active and then Tagged_Type_Expansion then
6566 -- If this is the class-wide type of a completion that is a
6567 -- record subtype, set the type of the class-wide type to be
6568 -- the full base type, for use in the expanded code for the
6569 -- equivalent type. Should this be done earlier when the
6570 -- completion is analyzed ???
6572 if Is_Private_Type (Etype (Unc_Typ))
6573 and then
6574 Ekind (Full_View (Etype (Unc_Typ))) = E_Record_Subtype
6575 then
6576 Set_Etype (Unc_Typ, Base_Type (Full_View (Etype (Unc_Typ))));
6577 end if;
6579 EQ_Typ := Make_CW_Equivalent_Type (Unc_Typ, E);
6580 end if;
6582 CW_Subtype := New_Class_Wide_Subtype (Unc_Typ, E);
6583 Set_Equivalent_Type (CW_Subtype, EQ_Typ);
6584 Set_Cloned_Subtype (CW_Subtype, Base_Type (Unc_Typ));
6586 return New_Occurrence_Of (CW_Subtype, Loc);
6587 end;
6589 -- Indefinite record type with discriminants
6591 else
6592 D := First_Discriminant (Unc_Typ);
6593 while Present (D) loop
6594 Append_To (List_Constr,
6595 Make_Selected_Component (Loc,
6596 Prefix => Duplicate_Subexpr_No_Checks (E),
6597 Selector_Name => New_Occurrence_Of (D, Loc)));
6599 Next_Discriminant (D);
6600 end loop;
6601 end if;
6603 return
6604 Make_Subtype_Indication (Loc,
6605 Subtype_Mark => New_Occurrence_Of (Unc_Typ, Loc),
6606 Constraint =>
6607 Make_Index_Or_Discriminant_Constraint (Loc,
6608 Constraints => List_Constr));
6609 end Make_Subtype_From_Expr;
6611 ----------------------------
6612 -- Matching_Standard_Type --
6613 ----------------------------
6615 function Matching_Standard_Type (Typ : Entity_Id) return Entity_Id is
6616 pragma Assert (Is_Scalar_Type (Typ));
6617 Siz : constant Uint := Esize (Typ);
6619 begin
6620 -- Floating-point cases
6622 if Is_Floating_Point_Type (Typ) then
6623 if Siz <= Esize (Standard_Short_Float) then
6624 return Standard_Short_Float;
6625 elsif Siz <= Esize (Standard_Float) then
6626 return Standard_Float;
6627 elsif Siz <= Esize (Standard_Long_Float) then
6628 return Standard_Long_Float;
6629 elsif Siz <= Esize (Standard_Long_Long_Float) then
6630 return Standard_Long_Long_Float;
6631 else
6632 raise Program_Error;
6633 end if;
6635 -- Integer cases (includes fixed-point types)
6637 -- Unsigned integer cases (includes normal enumeration types)
6639 elsif Is_Unsigned_Type (Typ) then
6640 if Siz <= Esize (Standard_Short_Short_Unsigned) then
6641 return Standard_Short_Short_Unsigned;
6642 elsif Siz <= Esize (Standard_Short_Unsigned) then
6643 return Standard_Short_Unsigned;
6644 elsif Siz <= Esize (Standard_Unsigned) then
6645 return Standard_Unsigned;
6646 elsif Siz <= Esize (Standard_Long_Unsigned) then
6647 return Standard_Long_Unsigned;
6648 elsif Siz <= Esize (Standard_Long_Long_Unsigned) then
6649 return Standard_Long_Long_Unsigned;
6650 else
6651 raise Program_Error;
6652 end if;
6654 -- Signed integer cases
6656 else
6657 if Siz <= Esize (Standard_Short_Short_Integer) then
6658 return Standard_Short_Short_Integer;
6659 elsif Siz <= Esize (Standard_Short_Integer) then
6660 return Standard_Short_Integer;
6661 elsif Siz <= Esize (Standard_Integer) then
6662 return Standard_Integer;
6663 elsif Siz <= Esize (Standard_Long_Integer) then
6664 return Standard_Long_Integer;
6665 elsif Siz <= Esize (Standard_Long_Long_Integer) then
6666 return Standard_Long_Long_Integer;
6667 else
6668 raise Program_Error;
6669 end if;
6670 end if;
6671 end Matching_Standard_Type;
6673 -----------------------------
6674 -- May_Generate_Large_Temp --
6675 -----------------------------
6677 -- At the current time, the only types that we return False for (i.e. where
6678 -- we decide we know they cannot generate large temps) are ones where we
6679 -- know the size is 256 bits or less at compile time, and we are still not
6680 -- doing a thorough job on arrays and records ???
6682 function May_Generate_Large_Temp (Typ : Entity_Id) return Boolean is
6683 begin
6684 if not Size_Known_At_Compile_Time (Typ) then
6685 return False;
6687 elsif Esize (Typ) /= 0 and then Esize (Typ) <= 256 then
6688 return False;
6690 elsif Is_Array_Type (Typ)
6691 and then Present (Packed_Array_Impl_Type (Typ))
6692 then
6693 return May_Generate_Large_Temp (Packed_Array_Impl_Type (Typ));
6695 -- We could do more here to find other small types ???
6697 else
6698 return True;
6699 end if;
6700 end May_Generate_Large_Temp;
6702 ------------------------
6703 -- Needs_Finalization --
6704 ------------------------
6706 function Needs_Finalization (T : Entity_Id) return Boolean is
6707 function Has_Some_Controlled_Component (Rec : Entity_Id) return Boolean;
6708 -- If type is not frozen yet, check explicitly among its components,
6709 -- because the Has_Controlled_Component flag is not necessarily set.
6711 -----------------------------------
6712 -- Has_Some_Controlled_Component --
6713 -----------------------------------
6715 function Has_Some_Controlled_Component
6716 (Rec : Entity_Id) return Boolean
6718 Comp : Entity_Id;
6720 begin
6721 if Has_Controlled_Component (Rec) then
6722 return True;
6724 elsif not Is_Frozen (Rec) then
6725 if Is_Record_Type (Rec) then
6726 Comp := First_Entity (Rec);
6728 while Present (Comp) loop
6729 if not Is_Type (Comp)
6730 and then Needs_Finalization (Etype (Comp))
6731 then
6732 return True;
6733 end if;
6735 Next_Entity (Comp);
6736 end loop;
6738 return False;
6740 elsif Is_Array_Type (Rec) then
6741 return Needs_Finalization (Component_Type (Rec));
6743 else
6744 return Has_Controlled_Component (Rec);
6745 end if;
6746 else
6747 return False;
6748 end if;
6749 end Has_Some_Controlled_Component;
6751 -- Start of processing for Needs_Finalization
6753 begin
6754 -- Certain run-time configurations and targets do not provide support
6755 -- for controlled types.
6757 if Restriction_Active (No_Finalization) then
6758 return False;
6760 -- C++, CIL and Java types are not considered controlled. It is assumed
6761 -- that the non-Ada side will handle their clean up.
6763 elsif Convention (T) = Convention_CIL
6764 or else Convention (T) = Convention_CPP
6765 or else Convention (T) = Convention_Java
6766 then
6767 return False;
6769 else
6770 -- Class-wide types are treated as controlled because derivations
6771 -- from the root type can introduce controlled components.
6773 return
6774 Is_Class_Wide_Type (T)
6775 or else Is_Controlled (T)
6776 or else Has_Controlled_Component (T)
6777 or else Has_Some_Controlled_Component (T)
6778 or else
6779 (Is_Concurrent_Type (T)
6780 and then Present (Corresponding_Record_Type (T))
6781 and then Needs_Finalization (Corresponding_Record_Type (T)));
6782 end if;
6783 end Needs_Finalization;
6785 ----------------------------
6786 -- Needs_Constant_Address --
6787 ----------------------------
6789 function Needs_Constant_Address
6790 (Decl : Node_Id;
6791 Typ : Entity_Id) return Boolean
6793 begin
6795 -- If we have no initialization of any kind, then we don't need to place
6796 -- any restrictions on the address clause, because the object will be
6797 -- elaborated after the address clause is evaluated. This happens if the
6798 -- declaration has no initial expression, or the type has no implicit
6799 -- initialization, or the object is imported.
6801 -- The same holds for all initialized scalar types and all access types.
6802 -- Packed bit arrays of size up to 64 are represented using a modular
6803 -- type with an initialization (to zero) and can be processed like other
6804 -- initialized scalar types.
6806 -- If the type is controlled, code to attach the object to a
6807 -- finalization chain is generated at the point of declaration, and
6808 -- therefore the elaboration of the object cannot be delayed: the
6809 -- address expression must be a constant.
6811 if No (Expression (Decl))
6812 and then not Needs_Finalization (Typ)
6813 and then
6814 (not Has_Non_Null_Base_Init_Proc (Typ)
6815 or else Is_Imported (Defining_Identifier (Decl)))
6816 then
6817 return False;
6819 elsif (Present (Expression (Decl)) and then Is_Scalar_Type (Typ))
6820 or else Is_Access_Type (Typ)
6821 or else
6822 (Is_Bit_Packed_Array (Typ)
6823 and then Is_Modular_Integer_Type (Packed_Array_Impl_Type (Typ)))
6824 then
6825 return False;
6827 else
6829 -- Otherwise, we require the address clause to be constant because
6830 -- the call to the initialization procedure (or the attach code) has
6831 -- to happen at the point of the declaration.
6833 -- Actually the IP call has been moved to the freeze actions anyway,
6834 -- so maybe we can relax this restriction???
6836 return True;
6837 end if;
6838 end Needs_Constant_Address;
6840 ----------------------------
6841 -- New_Class_Wide_Subtype --
6842 ----------------------------
6844 function New_Class_Wide_Subtype
6845 (CW_Typ : Entity_Id;
6846 N : Node_Id) return Entity_Id
6848 Res : constant Entity_Id := Create_Itype (E_Void, N);
6849 Res_Name : constant Name_Id := Chars (Res);
6850 Res_Scope : constant Entity_Id := Scope (Res);
6852 begin
6853 Copy_Node (CW_Typ, Res);
6854 Set_Comes_From_Source (Res, False);
6855 Set_Sloc (Res, Sloc (N));
6856 Set_Is_Itype (Res);
6857 Set_Associated_Node_For_Itype (Res, N);
6858 Set_Is_Public (Res, False); -- By default, may be changed below.
6859 Set_Public_Status (Res);
6860 Set_Chars (Res, Res_Name);
6861 Set_Scope (Res, Res_Scope);
6862 Set_Ekind (Res, E_Class_Wide_Subtype);
6863 Set_Next_Entity (Res, Empty);
6864 Set_Etype (Res, Base_Type (CW_Typ));
6865 Set_Is_Frozen (Res, False);
6866 Set_Freeze_Node (Res, Empty);
6867 return (Res);
6868 end New_Class_Wide_Subtype;
6870 --------------------------------
6871 -- Non_Limited_Designated_Type --
6872 ---------------------------------
6874 function Non_Limited_Designated_Type (T : Entity_Id) return Entity_Id is
6875 Desig : constant Entity_Id := Designated_Type (T);
6876 begin
6877 if Ekind (Desig) = E_Incomplete_Type
6878 and then Present (Non_Limited_View (Desig))
6879 then
6880 return Non_Limited_View (Desig);
6881 else
6882 return Desig;
6883 end if;
6884 end Non_Limited_Designated_Type;
6886 -----------------------------------
6887 -- OK_To_Do_Constant_Replacement --
6888 -----------------------------------
6890 function OK_To_Do_Constant_Replacement (E : Entity_Id) return Boolean is
6891 ES : constant Entity_Id := Scope (E);
6892 CS : Entity_Id;
6894 begin
6895 -- Do not replace statically allocated objects, because they may be
6896 -- modified outside the current scope.
6898 if Is_Statically_Allocated (E) then
6899 return False;
6901 -- Do not replace aliased or volatile objects, since we don't know what
6902 -- else might change the value.
6904 elsif Is_Aliased (E) or else Treat_As_Volatile (E) then
6905 return False;
6907 -- Debug flag -gnatdM disconnects this optimization
6909 elsif Debug_Flag_MM then
6910 return False;
6912 -- Otherwise check scopes
6914 else
6915 CS := Current_Scope;
6917 loop
6918 -- If we are in right scope, replacement is safe
6920 if CS = ES then
6921 return True;
6923 -- Packages do not affect the determination of safety
6925 elsif Ekind (CS) = E_Package then
6926 exit when CS = Standard_Standard;
6927 CS := Scope (CS);
6929 -- Blocks do not affect the determination of safety
6931 elsif Ekind (CS) = E_Block then
6932 CS := Scope (CS);
6934 -- Loops do not affect the determination of safety. Note that we
6935 -- kill all current values on entry to a loop, so we are just
6936 -- talking about processing within a loop here.
6938 elsif Ekind (CS) = E_Loop then
6939 CS := Scope (CS);
6941 -- Otherwise, the reference is dubious, and we cannot be sure that
6942 -- it is safe to do the replacement.
6944 else
6945 exit;
6946 end if;
6947 end loop;
6949 return False;
6950 end if;
6951 end OK_To_Do_Constant_Replacement;
6953 ------------------------------------
6954 -- Possible_Bit_Aligned_Component --
6955 ------------------------------------
6957 function Possible_Bit_Aligned_Component (N : Node_Id) return Boolean is
6958 begin
6959 -- Do not process an unanalyzed node because it is not yet decorated and
6960 -- most checks performed below will fail.
6962 if not Analyzed (N) then
6963 return False;
6964 end if;
6966 case Nkind (N) is
6968 -- Case of indexed component
6970 when N_Indexed_Component =>
6971 declare
6972 P : constant Node_Id := Prefix (N);
6973 Ptyp : constant Entity_Id := Etype (P);
6975 begin
6976 -- If we know the component size and it is less than 64, then
6977 -- we are definitely OK. The back end always does assignment of
6978 -- misaligned small objects correctly.
6980 if Known_Static_Component_Size (Ptyp)
6981 and then Component_Size (Ptyp) <= 64
6982 then
6983 return False;
6985 -- Otherwise, we need to test the prefix, to see if we are
6986 -- indexing from a possibly unaligned component.
6988 else
6989 return Possible_Bit_Aligned_Component (P);
6990 end if;
6991 end;
6993 -- Case of selected component
6995 when N_Selected_Component =>
6996 declare
6997 P : constant Node_Id := Prefix (N);
6998 Comp : constant Entity_Id := Entity (Selector_Name (N));
7000 begin
7001 -- If there is no component clause, then we are in the clear
7002 -- since the back end will never misalign a large component
7003 -- unless it is forced to do so. In the clear means we need
7004 -- only the recursive test on the prefix.
7006 if Component_May_Be_Bit_Aligned (Comp) then
7007 return True;
7008 else
7009 return Possible_Bit_Aligned_Component (P);
7010 end if;
7011 end;
7013 -- For a slice, test the prefix, if that is possibly misaligned,
7014 -- then for sure the slice is.
7016 when N_Slice =>
7017 return Possible_Bit_Aligned_Component (Prefix (N));
7019 -- For an unchecked conversion, check whether the expression may
7020 -- be bit-aligned.
7022 when N_Unchecked_Type_Conversion =>
7023 return Possible_Bit_Aligned_Component (Expression (N));
7025 -- If we have none of the above, it means that we have fallen off the
7026 -- top testing prefixes recursively, and we now have a stand alone
7027 -- object, where we don't have a problem, unless this is a renaming,
7028 -- in which case we need to look into the renamed object.
7030 when others =>
7031 if Is_Entity_Name (N)
7032 and then Present (Renamed_Object (Entity (N)))
7033 then
7034 return
7035 Possible_Bit_Aligned_Component (Renamed_Object (Entity (N)));
7036 else
7037 return False;
7038 end if;
7040 end case;
7041 end Possible_Bit_Aligned_Component;
7043 -----------------------------------------------
7044 -- Process_Statements_For_Controlled_Objects --
7045 -----------------------------------------------
7047 procedure Process_Statements_For_Controlled_Objects (N : Node_Id) is
7048 Loc : constant Source_Ptr := Sloc (N);
7050 function Are_Wrapped (L : List_Id) return Boolean;
7051 -- Determine whether list L contains only one statement which is a block
7053 function Wrap_Statements_In_Block
7054 (L : List_Id;
7055 Scop : Entity_Id := Current_Scope) return Node_Id;
7056 -- Given a list of statements L, wrap it in a block statement and return
7057 -- the generated node. Scop is either the current scope or the scope of
7058 -- the context (if applicable).
7060 -----------------
7061 -- Are_Wrapped --
7062 -----------------
7064 function Are_Wrapped (L : List_Id) return Boolean is
7065 Stmt : constant Node_Id := First (L);
7066 begin
7067 return
7068 Present (Stmt)
7069 and then No (Next (Stmt))
7070 and then Nkind (Stmt) = N_Block_Statement;
7071 end Are_Wrapped;
7073 ------------------------------
7074 -- Wrap_Statements_In_Block --
7075 ------------------------------
7077 function Wrap_Statements_In_Block
7078 (L : List_Id;
7079 Scop : Entity_Id := Current_Scope) return Node_Id
7081 Block_Id : Entity_Id;
7082 Block_Nod : Node_Id;
7083 Iter_Loop : Entity_Id;
7085 begin
7086 Block_Nod :=
7087 Make_Block_Statement (Loc,
7088 Declarations => No_List,
7089 Handled_Statement_Sequence =>
7090 Make_Handled_Sequence_Of_Statements (Loc,
7091 Statements => L));
7093 -- Create a label for the block in case the block needs to manage the
7094 -- secondary stack. A label allows for flag Uses_Sec_Stack to be set.
7096 Add_Block_Identifier (Block_Nod, Block_Id);
7098 -- When wrapping the statements of an iterator loop, check whether
7099 -- the loop requires secondary stack management and if so, propagate
7100 -- the appropriate flags to the block. This ensures that the cursor
7101 -- is properly cleaned up at each iteration of the loop.
7103 Iter_Loop := Find_Enclosing_Iterator_Loop (Scop);
7105 if Present (Iter_Loop) then
7106 Set_Uses_Sec_Stack (Block_Id, Uses_Sec_Stack (Iter_Loop));
7108 -- Secondary stack reclamation is suppressed when the associated
7109 -- iterator loop contains a return statement which uses the stack.
7111 Set_Sec_Stack_Needed_For_Return
7112 (Block_Id, Sec_Stack_Needed_For_Return (Iter_Loop));
7113 end if;
7115 return Block_Nod;
7116 end Wrap_Statements_In_Block;
7118 -- Local variables
7120 Block : Node_Id;
7122 -- Start of processing for Process_Statements_For_Controlled_Objects
7124 begin
7125 -- Whenever a non-handled statement list is wrapped in a block, the
7126 -- block must be explicitly analyzed to redecorate all entities in the
7127 -- list and ensure that a finalizer is properly built.
7129 case Nkind (N) is
7130 when N_Elsif_Part |
7131 N_If_Statement |
7132 N_Conditional_Entry_Call |
7133 N_Selective_Accept =>
7135 -- Check the "then statements" for elsif parts and if statements
7137 if Nkind_In (N, N_Elsif_Part, N_If_Statement)
7138 and then not Is_Empty_List (Then_Statements (N))
7139 and then not Are_Wrapped (Then_Statements (N))
7140 and then Requires_Cleanup_Actions
7141 (Then_Statements (N), False, False)
7142 then
7143 Block := Wrap_Statements_In_Block (Then_Statements (N));
7144 Set_Then_Statements (N, New_List (Block));
7146 Analyze (Block);
7147 end if;
7149 -- Check the "else statements" for conditional entry calls, if
7150 -- statements and selective accepts.
7152 if Nkind_In (N, N_Conditional_Entry_Call,
7153 N_If_Statement,
7154 N_Selective_Accept)
7155 and then not Is_Empty_List (Else_Statements (N))
7156 and then not Are_Wrapped (Else_Statements (N))
7157 and then Requires_Cleanup_Actions
7158 (Else_Statements (N), False, False)
7159 then
7160 Block := Wrap_Statements_In_Block (Else_Statements (N));
7161 Set_Else_Statements (N, New_List (Block));
7163 Analyze (Block);
7164 end if;
7166 when N_Abortable_Part |
7167 N_Accept_Alternative |
7168 N_Case_Statement_Alternative |
7169 N_Delay_Alternative |
7170 N_Entry_Call_Alternative |
7171 N_Exception_Handler |
7172 N_Loop_Statement |
7173 N_Triggering_Alternative =>
7175 if not Is_Empty_List (Statements (N))
7176 and then not Are_Wrapped (Statements (N))
7177 and then Requires_Cleanup_Actions (Statements (N), False, False)
7178 then
7179 if Nkind (N) = N_Loop_Statement
7180 and then Present (Identifier (N))
7181 then
7182 Block :=
7183 Wrap_Statements_In_Block
7184 (L => Statements (N),
7185 Scop => Entity (Identifier (N)));
7186 else
7187 Block := Wrap_Statements_In_Block (Statements (N));
7188 end if;
7190 Set_Statements (N, New_List (Block));
7191 Analyze (Block);
7192 end if;
7194 when others =>
7195 null;
7196 end case;
7197 end Process_Statements_For_Controlled_Objects;
7199 ------------------
7200 -- Power_Of_Two --
7201 ------------------
7203 function Power_Of_Two (N : Node_Id) return Nat is
7204 Typ : constant Entity_Id := Etype (N);
7205 pragma Assert (Is_Integer_Type (Typ));
7207 Siz : constant Nat := UI_To_Int (Esize (Typ));
7208 Val : Uint;
7210 begin
7211 if not Compile_Time_Known_Value (N) then
7212 return 0;
7214 else
7215 Val := Expr_Value (N);
7216 for J in 1 .. Siz - 1 loop
7217 if Val = Uint_2 ** J then
7218 return J;
7219 end if;
7220 end loop;
7222 return 0;
7223 end if;
7224 end Power_Of_Two;
7226 ----------------------
7227 -- Remove_Init_Call --
7228 ----------------------
7230 function Remove_Init_Call
7231 (Var : Entity_Id;
7232 Rep_Clause : Node_Id) return Node_Id
7234 Par : constant Node_Id := Parent (Var);
7235 Typ : constant Entity_Id := Etype (Var);
7237 Init_Proc : Entity_Id;
7238 -- Initialization procedure for Typ
7240 function Find_Init_Call_In_List (From : Node_Id) return Node_Id;
7241 -- Look for init call for Var starting at From and scanning the
7242 -- enclosing list until Rep_Clause or the end of the list is reached.
7244 ----------------------------
7245 -- Find_Init_Call_In_List --
7246 ----------------------------
7248 function Find_Init_Call_In_List (From : Node_Id) return Node_Id is
7249 Init_Call : Node_Id;
7251 begin
7252 Init_Call := From;
7253 while Present (Init_Call) and then Init_Call /= Rep_Clause loop
7254 if Nkind (Init_Call) = N_Procedure_Call_Statement
7255 and then Is_Entity_Name (Name (Init_Call))
7256 and then Entity (Name (Init_Call)) = Init_Proc
7257 then
7258 return Init_Call;
7259 end if;
7261 Next (Init_Call);
7262 end loop;
7264 return Empty;
7265 end Find_Init_Call_In_List;
7267 Init_Call : Node_Id;
7269 -- Start of processing for Find_Init_Call
7271 begin
7272 if Present (Initialization_Statements (Var)) then
7273 Init_Call := Initialization_Statements (Var);
7274 Set_Initialization_Statements (Var, Empty);
7276 elsif not Has_Non_Null_Base_Init_Proc (Typ) then
7278 -- No init proc for the type, so obviously no call to be found
7280 return Empty;
7282 else
7283 -- We might be able to handle other cases below by just properly
7284 -- setting Initialization_Statements at the point where the init proc
7285 -- call is generated???
7287 Init_Proc := Base_Init_Proc (Typ);
7289 -- First scan the list containing the declaration of Var
7291 Init_Call := Find_Init_Call_In_List (From => Next (Par));
7293 -- If not found, also look on Var's freeze actions list, if any,
7294 -- since the init call may have been moved there (case of an address
7295 -- clause applying to Var).
7297 if No (Init_Call) and then Present (Freeze_Node (Var)) then
7298 Init_Call :=
7299 Find_Init_Call_In_List (First (Actions (Freeze_Node (Var))));
7300 end if;
7302 -- If the initialization call has actuals that use the secondary
7303 -- stack, the call may have been wrapped into a temporary block, in
7304 -- which case the block itself has to be removed.
7306 if No (Init_Call) and then Nkind (Next (Par)) = N_Block_Statement then
7307 declare
7308 Blk : constant Node_Id := Next (Par);
7309 begin
7310 if Present
7311 (Find_Init_Call_In_List
7312 (First (Statements (Handled_Statement_Sequence (Blk)))))
7313 then
7314 Init_Call := Blk;
7315 end if;
7316 end;
7317 end if;
7318 end if;
7320 if Present (Init_Call) then
7321 Remove (Init_Call);
7322 end if;
7323 return Init_Call;
7324 end Remove_Init_Call;
7326 -------------------------
7327 -- Remove_Side_Effects --
7328 -------------------------
7330 procedure Remove_Side_Effects
7331 (Exp : Node_Id;
7332 Name_Req : Boolean := False;
7333 Renaming_Req : Boolean := False;
7334 Variable_Ref : Boolean := False;
7335 Related_Id : Entity_Id := Empty;
7336 Is_Low_Bound : Boolean := False;
7337 Is_High_Bound : Boolean := False)
7339 function Build_Temporary
7340 (Loc : Source_Ptr;
7341 Id : Character;
7342 Related_Nod : Node_Id := Empty) return Entity_Id;
7343 -- Create an external symbol of the form xxx_FIRST/_LAST if Related_Nod
7344 -- is present (xxx is taken from the Chars field of Related_Nod),
7345 -- otherwise it generates an internal temporary.
7347 ---------------------
7348 -- Build_Temporary --
7349 ---------------------
7351 function Build_Temporary
7352 (Loc : Source_Ptr;
7353 Id : Character;
7354 Related_Nod : Node_Id := Empty) return Entity_Id
7356 Temp_Nam : Name_Id;
7358 begin
7359 -- The context requires an external symbol
7361 if Present (Related_Id) then
7362 if Is_Low_Bound then
7363 Temp_Nam := New_External_Name (Chars (Related_Id), "_FIRST");
7364 else pragma Assert (Is_High_Bound);
7365 Temp_Nam := New_External_Name (Chars (Related_Id), "_LAST");
7366 end if;
7368 return Make_Defining_Identifier (Loc, Temp_Nam);
7370 -- Otherwise generate an internal temporary
7372 else
7373 return Make_Temporary (Loc, Id, Related_Nod);
7374 end if;
7375 end Build_Temporary;
7377 -- Local variables
7379 Loc : constant Source_Ptr := Sloc (Exp);
7380 Exp_Type : constant Entity_Id := Etype (Exp);
7381 Svg_Suppress : constant Suppress_Record := Scope_Suppress;
7382 Def_Id : Entity_Id;
7383 E : Node_Id;
7384 New_Exp : Node_Id;
7385 Ptr_Typ_Decl : Node_Id;
7386 Ref_Type : Entity_Id;
7387 Res : Node_Id;
7389 -- Start of processing for Remove_Side_Effects
7391 begin
7392 -- Handle cases in which there is nothing to do. In GNATprove mode,
7393 -- removal of side effects is useful for the light expansion of
7394 -- renamings. This removal should only occur when not inside a
7395 -- generic and not doing a pre-analysis.
7397 if not Expander_Active
7398 and (Inside_A_Generic or not Full_Analysis or not GNATprove_Mode)
7399 then
7400 return;
7401 end if;
7403 -- Cannot generate temporaries if the invocation to remove side effects
7404 -- was issued too early and the type of the expression is not resolved
7405 -- (this happens because routines Duplicate_Subexpr_XX implicitly invoke
7406 -- Remove_Side_Effects).
7408 if No (Exp_Type) or else Ekind (Exp_Type) = E_Access_Attribute_Type then
7409 return;
7411 -- No action needed for side-effect free expressions
7413 elsif Side_Effect_Free (Exp, Name_Req, Variable_Ref) then
7414 return;
7415 end if;
7417 -- The remaining procesaing is done with all checks suppressed
7419 -- Note: from now on, don't use return statements, instead do a goto
7420 -- Leave, to ensure that we properly restore Scope_Suppress.Suppress.
7422 Scope_Suppress.Suppress := (others => True);
7424 -- If it is a scalar type and we need to capture the value, just make
7425 -- a copy. Likewise for a function call, an attribute reference, a
7426 -- conditional expression, an allocator, or an operator. And if we have
7427 -- a volatile reference and Name_Req is not set (see comments for
7428 -- Side_Effect_Free).
7430 if Is_Elementary_Type (Exp_Type)
7432 -- Note: this test is rather mysterious??? Why can't we just test ONLY
7433 -- Is_Elementary_Type and be done with it. If we try that approach, we
7434 -- get some failures (infinite recursions) from the Duplicate_Subexpr
7435 -- call at the end of Checks.Apply_Predicate_Check. To be
7436 -- investigated ???
7438 and then (Variable_Ref
7439 or else Nkind_In (Exp, N_Attribute_Reference,
7440 N_Allocator,
7441 N_Case_Expression,
7442 N_If_Expression,
7443 N_Function_Call)
7444 or else Nkind (Exp) in N_Op
7445 or else (not Name_Req
7446 and then Is_Volatile_Reference (Exp)))
7447 then
7448 Def_Id := Build_Temporary (Loc, 'R', Exp);
7449 Set_Etype (Def_Id, Exp_Type);
7450 Res := New_Occurrence_Of (Def_Id, Loc);
7452 -- If the expression is a packed reference, it must be reanalyzed and
7453 -- expanded, depending on context. This is the case for actuals where
7454 -- a constraint check may capture the actual before expansion of the
7455 -- call is complete.
7457 if Nkind (Exp) = N_Indexed_Component
7458 and then Is_Packed (Etype (Prefix (Exp)))
7459 then
7460 Set_Analyzed (Exp, False);
7461 Set_Analyzed (Prefix (Exp), False);
7462 end if;
7464 -- Generate:
7465 -- Rnn : Exp_Type renames Expr;
7467 if Renaming_Req then
7468 E :=
7469 Make_Object_Renaming_Declaration (Loc,
7470 Defining_Identifier => Def_Id,
7471 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
7472 Name => Relocate_Node (Exp));
7474 -- Generate:
7475 -- Rnn : constant Exp_Type := Expr;
7477 else
7478 E :=
7479 Make_Object_Declaration (Loc,
7480 Defining_Identifier => Def_Id,
7481 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
7482 Constant_Present => True,
7483 Expression => Relocate_Node (Exp));
7485 Set_Assignment_OK (E);
7486 end if;
7488 Insert_Action (Exp, E);
7490 -- If the expression has the form v.all then we can just capture the
7491 -- pointer, and then do an explicit dereference on the result, but
7492 -- this is not right if this is a volatile reference.
7494 elsif Nkind (Exp) = N_Explicit_Dereference
7495 and then not Is_Volatile_Reference (Exp)
7496 then
7497 Def_Id := Build_Temporary (Loc, 'R', Exp);
7498 Res :=
7499 Make_Explicit_Dereference (Loc, New_Occurrence_Of (Def_Id, Loc));
7501 Insert_Action (Exp,
7502 Make_Object_Declaration (Loc,
7503 Defining_Identifier => Def_Id,
7504 Object_Definition =>
7505 New_Occurrence_Of (Etype (Prefix (Exp)), Loc),
7506 Constant_Present => True,
7507 Expression => Relocate_Node (Prefix (Exp))));
7509 -- Similar processing for an unchecked conversion of an expression of
7510 -- the form v.all, where we want the same kind of treatment.
7512 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
7513 and then Nkind (Expression (Exp)) = N_Explicit_Dereference
7514 then
7515 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
7516 goto Leave;
7518 -- If this is a type conversion, leave the type conversion and remove
7519 -- the side effects in the expression. This is important in several
7520 -- circumstances: for change of representations, and also when this is a
7521 -- view conversion to a smaller object, where gigi can end up creating
7522 -- its own temporary of the wrong size.
7524 elsif Nkind (Exp) = N_Type_Conversion then
7525 Remove_Side_Effects (Expression (Exp), Name_Req, Variable_Ref);
7526 goto Leave;
7528 -- If this is an unchecked conversion that Gigi can't handle, make
7529 -- a copy or a use a renaming to capture the value.
7531 elsif Nkind (Exp) = N_Unchecked_Type_Conversion
7532 and then not Safe_Unchecked_Type_Conversion (Exp)
7533 then
7534 if CW_Or_Has_Controlled_Part (Exp_Type) then
7536 -- Use a renaming to capture the expression, rather than create
7537 -- a controlled temporary.
7539 Def_Id := Build_Temporary (Loc, 'R', Exp);
7540 Res := New_Occurrence_Of (Def_Id, Loc);
7542 Insert_Action (Exp,
7543 Make_Object_Renaming_Declaration (Loc,
7544 Defining_Identifier => Def_Id,
7545 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
7546 Name => Relocate_Node (Exp)));
7548 else
7549 Def_Id := Build_Temporary (Loc, 'R', Exp);
7550 Set_Etype (Def_Id, Exp_Type);
7551 Res := New_Occurrence_Of (Def_Id, Loc);
7553 E :=
7554 Make_Object_Declaration (Loc,
7555 Defining_Identifier => Def_Id,
7556 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
7557 Constant_Present => not Is_Variable (Exp),
7558 Expression => Relocate_Node (Exp));
7560 Set_Assignment_OK (E);
7561 Insert_Action (Exp, E);
7562 end if;
7564 -- For expressions that denote objects, we can use a renaming scheme.
7565 -- This is needed for correctness in the case of a volatile object of
7566 -- a non-volatile type because the Make_Reference call of the "default"
7567 -- approach would generate an illegal access value (an access value
7568 -- cannot designate such an object - see Analyze_Reference).
7570 elsif Is_Object_Reference (Exp)
7571 and then Nkind (Exp) /= N_Function_Call
7573 -- In Ada 2012 a qualified expression is an object, but for purposes
7574 -- of removing side effects it still need to be transformed into a
7575 -- separate declaration, particularly in the case of an aggregate.
7577 and then Nkind (Exp) /= N_Qualified_Expression
7579 -- We skip using this scheme if we have an object of a volatile
7580 -- type and we do not have Name_Req set true (see comments for
7581 -- Side_Effect_Free).
7583 and then (Name_Req or else not Treat_As_Volatile (Exp_Type))
7584 then
7585 Def_Id := Build_Temporary (Loc, 'R', Exp);
7587 if Nkind (Exp) = N_Selected_Component
7588 and then Nkind (Prefix (Exp)) = N_Function_Call
7589 and then Is_Array_Type (Exp_Type)
7590 then
7591 -- Avoid generating a variable-sized temporary, by generating
7592 -- the renaming declaration just for the function call. The
7593 -- transformation could be refined to apply only when the array
7594 -- component is constrained by a discriminant???
7596 Res :=
7597 Make_Selected_Component (Loc,
7598 Prefix => New_Occurrence_Of (Def_Id, Loc),
7599 Selector_Name => Selector_Name (Exp));
7601 Insert_Action (Exp,
7602 Make_Object_Renaming_Declaration (Loc,
7603 Defining_Identifier => Def_Id,
7604 Subtype_Mark =>
7605 New_Occurrence_Of (Base_Type (Etype (Prefix (Exp))), Loc),
7606 Name => Relocate_Node (Prefix (Exp))));
7608 else
7609 Res := New_Occurrence_Of (Def_Id, Loc);
7611 Insert_Action (Exp,
7612 Make_Object_Renaming_Declaration (Loc,
7613 Defining_Identifier => Def_Id,
7614 Subtype_Mark => New_Occurrence_Of (Exp_Type, Loc),
7615 Name => Relocate_Node (Exp)));
7616 end if;
7618 -- If this is a packed reference, or a selected component with
7619 -- a non-standard representation, a reference to the temporary
7620 -- will be replaced by a copy of the original expression (see
7621 -- Exp_Ch2.Expand_Renaming). Otherwise the temporary must be
7622 -- elaborated by gigi, and is of course not to be replaced in-line
7623 -- by the expression it renames, which would defeat the purpose of
7624 -- removing the side-effect.
7626 if Nkind_In (Exp, N_Selected_Component, N_Indexed_Component)
7627 and then Has_Non_Standard_Rep (Etype (Prefix (Exp)))
7628 then
7629 null;
7630 else
7631 Set_Is_Renaming_Of_Object (Def_Id, False);
7632 end if;
7634 -- Otherwise we generate a reference to the value
7636 else
7637 -- An expression which is in SPARK mode is considered side effect
7638 -- free if the resulting value is captured by a variable or a
7639 -- constant.
7641 if GNATprove_Mode
7642 and then Nkind (Parent (Exp)) = N_Object_Declaration
7643 then
7644 goto Leave;
7645 end if;
7647 -- Special processing for function calls that return a limited type.
7648 -- We need to build a declaration that will enable build-in-place
7649 -- expansion of the call. This is not done if the context is already
7650 -- an object declaration, to prevent infinite recursion.
7652 -- This is relevant only in Ada 2005 mode. In Ada 95 programs we have
7653 -- to accommodate functions returning limited objects by reference.
7655 if Ada_Version >= Ada_2005
7656 and then Nkind (Exp) = N_Function_Call
7657 and then Is_Limited_View (Etype (Exp))
7658 and then Nkind (Parent (Exp)) /= N_Object_Declaration
7659 then
7660 declare
7661 Obj : constant Entity_Id := Make_Temporary (Loc, 'F', Exp);
7662 Decl : Node_Id;
7664 begin
7665 Decl :=
7666 Make_Object_Declaration (Loc,
7667 Defining_Identifier => Obj,
7668 Object_Definition => New_Occurrence_Of (Exp_Type, Loc),
7669 Expression => Relocate_Node (Exp));
7671 Insert_Action (Exp, Decl);
7672 Set_Etype (Obj, Exp_Type);
7673 Rewrite (Exp, New_Occurrence_Of (Obj, Loc));
7674 goto Leave;
7675 end;
7676 end if;
7678 Def_Id := Build_Temporary (Loc, 'R', Exp);
7680 -- The regular expansion of functions with side effects involves the
7681 -- generation of an access type to capture the return value found on
7682 -- the secondary stack. Since SPARK (and why) cannot process access
7683 -- types, use a different approach which ignores the secondary stack
7684 -- and "copies" the returned object.
7686 if GNATprove_Mode then
7687 Res := New_Occurrence_Of (Def_Id, Loc);
7688 Ref_Type := Exp_Type;
7690 -- Regular expansion utilizing an access type and 'reference
7692 else
7693 Res :=
7694 Make_Explicit_Dereference (Loc,
7695 Prefix => New_Occurrence_Of (Def_Id, Loc));
7697 -- Generate:
7698 -- type Ann is access all <Exp_Type>;
7700 Ref_Type := Make_Temporary (Loc, 'A');
7702 Ptr_Typ_Decl :=
7703 Make_Full_Type_Declaration (Loc,
7704 Defining_Identifier => Ref_Type,
7705 Type_Definition =>
7706 Make_Access_To_Object_Definition (Loc,
7707 All_Present => True,
7708 Subtype_Indication =>
7709 New_Occurrence_Of (Exp_Type, Loc)));
7711 Insert_Action (Exp, Ptr_Typ_Decl);
7712 end if;
7714 E := Exp;
7715 if Nkind (E) = N_Explicit_Dereference then
7716 New_Exp := Relocate_Node (Prefix (E));
7718 else
7719 E := Relocate_Node (E);
7721 -- Do not generate a 'reference in SPARK mode since the access
7722 -- type is not created in the first place.
7724 if GNATprove_Mode then
7725 New_Exp := E;
7727 -- Otherwise generate reference, marking the value as non-null
7728 -- since we know it cannot be null and we don't want a check.
7730 else
7731 New_Exp := Make_Reference (Loc, E);
7732 Set_Is_Known_Non_Null (Def_Id);
7733 end if;
7734 end if;
7736 if Is_Delayed_Aggregate (E) then
7738 -- The expansion of nested aggregates is delayed until the
7739 -- enclosing aggregate is expanded. As aggregates are often
7740 -- qualified, the predicate applies to qualified expressions as
7741 -- well, indicating that the enclosing aggregate has not been
7742 -- expanded yet. At this point the aggregate is part of a
7743 -- stand-alone declaration, and must be fully expanded.
7745 if Nkind (E) = N_Qualified_Expression then
7746 Set_Expansion_Delayed (Expression (E), False);
7747 Set_Analyzed (Expression (E), False);
7748 else
7749 Set_Expansion_Delayed (E, False);
7750 end if;
7752 Set_Analyzed (E, False);
7753 end if;
7755 Insert_Action (Exp,
7756 Make_Object_Declaration (Loc,
7757 Defining_Identifier => Def_Id,
7758 Object_Definition => New_Occurrence_Of (Ref_Type, Loc),
7759 Constant_Present => True,
7760 Expression => New_Exp));
7761 end if;
7763 -- Preserve the Assignment_OK flag in all copies, since at least one
7764 -- copy may be used in a context where this flag must be set (otherwise
7765 -- why would the flag be set in the first place).
7767 Set_Assignment_OK (Res, Assignment_OK (Exp));
7769 -- Finally rewrite the original expression and we are done
7771 Rewrite (Exp, Res);
7772 Analyze_And_Resolve (Exp, Exp_Type);
7774 <<Leave>>
7775 Scope_Suppress := Svg_Suppress;
7776 end Remove_Side_Effects;
7778 ---------------------------
7779 -- Represented_As_Scalar --
7780 ---------------------------
7782 function Represented_As_Scalar (T : Entity_Id) return Boolean is
7783 UT : constant Entity_Id := Underlying_Type (T);
7784 begin
7785 return Is_Scalar_Type (UT)
7786 or else (Is_Bit_Packed_Array (UT)
7787 and then Is_Scalar_Type (Packed_Array_Impl_Type (UT)));
7788 end Represented_As_Scalar;
7790 ------------------------------
7791 -- Requires_Cleanup_Actions --
7792 ------------------------------
7794 function Requires_Cleanup_Actions
7795 (N : Node_Id;
7796 Lib_Level : Boolean) return Boolean
7798 At_Lib_Level : constant Boolean :=
7799 Lib_Level
7800 and then Nkind_In (N, N_Package_Body,
7801 N_Package_Specification);
7802 -- N is at the library level if the top-most context is a package and
7803 -- the path taken to reach N does not inlcude non-package constructs.
7805 begin
7806 case Nkind (N) is
7807 when N_Accept_Statement |
7808 N_Block_Statement |
7809 N_Entry_Body |
7810 N_Package_Body |
7811 N_Protected_Body |
7812 N_Subprogram_Body |
7813 N_Task_Body =>
7814 return
7815 Requires_Cleanup_Actions (Declarations (N), At_Lib_Level, True)
7816 or else
7817 (Present (Handled_Statement_Sequence (N))
7818 and then
7819 Requires_Cleanup_Actions
7820 (Statements (Handled_Statement_Sequence (N)),
7821 At_Lib_Level, True));
7823 when N_Package_Specification =>
7824 return
7825 Requires_Cleanup_Actions
7826 (Visible_Declarations (N), At_Lib_Level, True)
7827 or else
7828 Requires_Cleanup_Actions
7829 (Private_Declarations (N), At_Lib_Level, True);
7831 when others =>
7832 return False;
7833 end case;
7834 end Requires_Cleanup_Actions;
7836 ------------------------------
7837 -- Requires_Cleanup_Actions --
7838 ------------------------------
7840 function Requires_Cleanup_Actions
7841 (L : List_Id;
7842 Lib_Level : Boolean;
7843 Nested_Constructs : Boolean) return Boolean
7845 Decl : Node_Id;
7846 Expr : Node_Id;
7847 Obj_Id : Entity_Id;
7848 Obj_Typ : Entity_Id;
7849 Pack_Id : Entity_Id;
7850 Typ : Entity_Id;
7852 begin
7853 if No (L)
7854 or else Is_Empty_List (L)
7855 then
7856 return False;
7857 end if;
7859 Decl := First (L);
7860 while Present (Decl) loop
7862 -- Library-level tagged types
7864 if Nkind (Decl) = N_Full_Type_Declaration then
7865 Typ := Defining_Identifier (Decl);
7867 -- Ignored Ghost types do not need any cleanup actions because
7868 -- they will not appear in the final tree.
7870 if Is_Ignored_Ghost_Entity (Typ) then
7871 null;
7873 elsif Is_Tagged_Type (Typ)
7874 and then Is_Library_Level_Entity (Typ)
7875 and then Convention (Typ) = Convention_Ada
7876 and then Present (Access_Disp_Table (Typ))
7877 and then RTE_Available (RE_Unregister_Tag)
7878 and then not Is_Abstract_Type (Typ)
7879 and then not No_Run_Time_Mode
7880 then
7881 return True;
7882 end if;
7884 -- Regular object declarations
7886 elsif Nkind (Decl) = N_Object_Declaration then
7887 Obj_Id := Defining_Identifier (Decl);
7888 Obj_Typ := Base_Type (Etype (Obj_Id));
7889 Expr := Expression (Decl);
7891 -- Bypass any form of processing for objects which have their
7892 -- finalization disabled. This applies only to objects at the
7893 -- library level.
7895 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
7896 null;
7898 -- Transient variables are treated separately in order to minimize
7899 -- the size of the generated code. See Exp_Ch7.Process_Transient_
7900 -- Objects.
7902 elsif Is_Processed_Transient (Obj_Id) then
7903 null;
7905 -- Ignored Ghost objects do not need any cleanup actions because
7906 -- they will not appear in the final tree.
7908 elsif Is_Ignored_Ghost_Entity (Obj_Id) then
7909 null;
7911 -- The object is of the form:
7912 -- Obj : Typ [:= Expr];
7914 -- Do not process the incomplete view of a deferred constant. Do
7915 -- not consider tag-to-class-wide conversions.
7917 elsif not Is_Imported (Obj_Id)
7918 and then Needs_Finalization (Obj_Typ)
7919 and then not (Ekind (Obj_Id) = E_Constant
7920 and then not Has_Completion (Obj_Id))
7921 and then not Is_Tag_To_Class_Wide_Conversion (Obj_Id)
7922 then
7923 return True;
7925 -- The object is of the form:
7926 -- Obj : Access_Typ := Non_BIP_Function_Call'reference;
7928 -- Obj : Access_Typ :=
7929 -- BIP_Function_Call (BIPalloc => 2, ...)'reference;
7931 elsif Is_Access_Type (Obj_Typ)
7932 and then Needs_Finalization
7933 (Available_View (Designated_Type (Obj_Typ)))
7934 and then Present (Expr)
7935 and then
7936 (Is_Secondary_Stack_BIP_Func_Call (Expr)
7937 or else
7938 (Is_Non_BIP_Func_Call (Expr)
7939 and then not Is_Related_To_Func_Return (Obj_Id)))
7940 then
7941 return True;
7943 -- Processing for "hook" objects generated for controlled
7944 -- transients declared inside an Expression_With_Actions.
7946 elsif Is_Access_Type (Obj_Typ)
7947 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
7948 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
7949 N_Object_Declaration
7950 then
7951 return True;
7953 -- Processing for intermediate results of if expressions where
7954 -- one of the alternatives uses a controlled function call.
7956 elsif Is_Access_Type (Obj_Typ)
7957 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
7958 and then Nkind (Status_Flag_Or_Transient_Decl (Obj_Id)) =
7959 N_Defining_Identifier
7960 and then Present (Expr)
7961 and then Nkind (Expr) = N_Null
7962 then
7963 return True;
7965 -- Simple protected objects which use type System.Tasking.
7966 -- Protected_Objects.Protection to manage their locks should be
7967 -- treated as controlled since they require manual cleanup.
7969 elsif Ekind (Obj_Id) = E_Variable
7970 and then (Is_Simple_Protected_Type (Obj_Typ)
7971 or else Has_Simple_Protected_Object (Obj_Typ))
7972 then
7973 return True;
7974 end if;
7976 -- Specific cases of object renamings
7978 elsif Nkind (Decl) = N_Object_Renaming_Declaration then
7979 Obj_Id := Defining_Identifier (Decl);
7980 Obj_Typ := Base_Type (Etype (Obj_Id));
7982 -- Bypass any form of processing for objects which have their
7983 -- finalization disabled. This applies only to objects at the
7984 -- library level.
7986 if Lib_Level and then Finalize_Storage_Only (Obj_Typ) then
7987 null;
7989 -- Ignored Ghost object renamings do not need any cleanup actions
7990 -- because they will not appear in the final tree.
7992 elsif Is_Ignored_Ghost_Entity (Obj_Id) then
7993 null;
7995 -- Return object of a build-in-place function. This case is
7996 -- recognized and marked by the expansion of an extended return
7997 -- statement (see Expand_N_Extended_Return_Statement).
7999 elsif Needs_Finalization (Obj_Typ)
8000 and then Is_Return_Object (Obj_Id)
8001 and then Present (Status_Flag_Or_Transient_Decl (Obj_Id))
8002 then
8003 return True;
8005 -- Detect a case where a source object has been initialized by
8006 -- a controlled function call or another object which was later
8007 -- rewritten as a class-wide conversion of Ada.Tags.Displace.
8009 -- Obj1 : CW_Type := Src_Obj;
8010 -- Obj2 : CW_Type := Function_Call (...);
8012 -- Obj1 : CW_Type renames (... Ada.Tags.Displace (Src_Obj));
8013 -- Tmp : ... := Function_Call (...)'reference;
8014 -- Obj2 : CW_Type renames (... Ada.Tags.Displace (Tmp));
8016 elsif Is_Displacement_Of_Object_Or_Function_Result (Obj_Id) then
8017 return True;
8018 end if;
8020 -- Inspect the freeze node of an access-to-controlled type and look
8021 -- for a delayed finalization master. This case arises when the
8022 -- freeze actions are inserted at a later time than the expansion of
8023 -- the context. Since Build_Finalizer is never called on a single
8024 -- construct twice, the master will be ultimately left out and never
8025 -- finalized. This is also needed for freeze actions of designated
8026 -- types themselves, since in some cases the finalization master is
8027 -- associated with a designated type's freeze node rather than that
8028 -- of the access type (see handling for freeze actions in
8029 -- Build_Finalization_Master).
8031 elsif Nkind (Decl) = N_Freeze_Entity
8032 and then Present (Actions (Decl))
8033 then
8034 Typ := Entity (Decl);
8036 -- Freeze nodes for ignored Ghost types do not need cleanup
8037 -- actions because they will never appear in the final tree.
8039 if Is_Ignored_Ghost_Entity (Typ) then
8040 null;
8042 elsif ((Is_Access_Type (Typ)
8043 and then not Is_Access_Subprogram_Type (Typ)
8044 and then Needs_Finalization
8045 (Available_View (Designated_Type (Typ))))
8046 or else (Is_Type (Typ) and then Needs_Finalization (Typ)))
8047 and then Requires_Cleanup_Actions
8048 (Actions (Decl), Lib_Level, Nested_Constructs)
8049 then
8050 return True;
8051 end if;
8053 -- Nested package declarations
8055 elsif Nested_Constructs
8056 and then Nkind (Decl) = N_Package_Declaration
8057 then
8058 Pack_Id := Defining_Entity (Decl);
8060 -- Do not inspect an ignored Ghost package because all code found
8061 -- within will not appear in the final tree.
8063 if Is_Ignored_Ghost_Entity (Pack_Id) then
8064 null;
8066 elsif Ekind (Pack_Id) /= E_Generic_Package
8067 and then Requires_Cleanup_Actions
8068 (Specification (Decl), Lib_Level)
8069 then
8070 return True;
8071 end if;
8073 -- Nested package bodies
8075 elsif Nested_Constructs and then Nkind (Decl) = N_Package_Body then
8077 -- Do not inspect an ignored Ghost package body because all code
8078 -- found within will not appear in the final tree.
8080 if Is_Ignored_Ghost_Entity (Defining_Entity (Decl)) then
8081 null;
8083 elsif Ekind (Corresponding_Spec (Decl)) /= E_Generic_Package
8084 and then Requires_Cleanup_Actions (Decl, Lib_Level)
8085 then
8086 return True;
8087 end if;
8089 elsif Nkind (Decl) = N_Block_Statement
8090 and then
8092 -- Handle a rare case caused by a controlled transient variable
8093 -- created as part of a record init proc. The variable is wrapped
8094 -- in a block, but the block is not associated with a transient
8095 -- scope.
8097 (Inside_Init_Proc
8099 -- Handle the case where the original context has been wrapped in
8100 -- a block to avoid interference between exception handlers and
8101 -- At_End handlers. Treat the block as transparent and process its
8102 -- contents.
8104 or else Is_Finalization_Wrapper (Decl))
8105 then
8106 if Requires_Cleanup_Actions (Decl, Lib_Level) then
8107 return True;
8108 end if;
8109 end if;
8111 Next (Decl);
8112 end loop;
8114 return False;
8115 end Requires_Cleanup_Actions;
8117 ------------------------------------
8118 -- Safe_Unchecked_Type_Conversion --
8119 ------------------------------------
8121 -- Note: this function knows quite a bit about the exact requirements of
8122 -- Gigi with respect to unchecked type conversions, and its code must be
8123 -- coordinated with any changes in Gigi in this area.
8125 -- The above requirements should be documented in Sinfo ???
8127 function Safe_Unchecked_Type_Conversion (Exp : Node_Id) return Boolean is
8128 Otyp : Entity_Id;
8129 Ityp : Entity_Id;
8130 Oalign : Uint;
8131 Ialign : Uint;
8132 Pexp : constant Node_Id := Parent (Exp);
8134 begin
8135 -- If the expression is the RHS of an assignment or object declaration
8136 -- we are always OK because there will always be a target.
8138 -- Object renaming declarations, (generated for view conversions of
8139 -- actuals in inlined calls), like object declarations, provide an
8140 -- explicit type, and are safe as well.
8142 if (Nkind (Pexp) = N_Assignment_Statement
8143 and then Expression (Pexp) = Exp)
8144 or else Nkind_In (Pexp, N_Object_Declaration,
8145 N_Object_Renaming_Declaration)
8146 then
8147 return True;
8149 -- If the expression is the prefix of an N_Selected_Component we should
8150 -- also be OK because GCC knows to look inside the conversion except if
8151 -- the type is discriminated. We assume that we are OK anyway if the
8152 -- type is not set yet or if it is controlled since we can't afford to
8153 -- introduce a temporary in this case.
8155 elsif Nkind (Pexp) = N_Selected_Component
8156 and then Prefix (Pexp) = Exp
8157 then
8158 if No (Etype (Pexp)) then
8159 return True;
8160 else
8161 return
8162 not Has_Discriminants (Etype (Pexp))
8163 or else Is_Constrained (Etype (Pexp));
8164 end if;
8165 end if;
8167 -- Set the output type, this comes from Etype if it is set, otherwise we
8168 -- take it from the subtype mark, which we assume was already fully
8169 -- analyzed.
8171 if Present (Etype (Exp)) then
8172 Otyp := Etype (Exp);
8173 else
8174 Otyp := Entity (Subtype_Mark (Exp));
8175 end if;
8177 -- The input type always comes from the expression, and we assume
8178 -- this is indeed always analyzed, so we can simply get the Etype.
8180 Ityp := Etype (Expression (Exp));
8182 -- Initialize alignments to unknown so far
8184 Oalign := No_Uint;
8185 Ialign := No_Uint;
8187 -- Replace a concurrent type by its corresponding record type and each
8188 -- type by its underlying type and do the tests on those. The original
8189 -- type may be a private type whose completion is a concurrent type, so
8190 -- find the underlying type first.
8192 if Present (Underlying_Type (Otyp)) then
8193 Otyp := Underlying_Type (Otyp);
8194 end if;
8196 if Present (Underlying_Type (Ityp)) then
8197 Ityp := Underlying_Type (Ityp);
8198 end if;
8200 if Is_Concurrent_Type (Otyp) then
8201 Otyp := Corresponding_Record_Type (Otyp);
8202 end if;
8204 if Is_Concurrent_Type (Ityp) then
8205 Ityp := Corresponding_Record_Type (Ityp);
8206 end if;
8208 -- If the base types are the same, we know there is no problem since
8209 -- this conversion will be a noop.
8211 if Implementation_Base_Type (Otyp) = Implementation_Base_Type (Ityp) then
8212 return True;
8214 -- Same if this is an upwards conversion of an untagged type, and there
8215 -- are no constraints involved (could be more general???)
8217 elsif Etype (Ityp) = Otyp
8218 and then not Is_Tagged_Type (Ityp)
8219 and then not Has_Discriminants (Ityp)
8220 and then No (First_Rep_Item (Base_Type (Ityp)))
8221 then
8222 return True;
8224 -- If the expression has an access type (object or subprogram) we assume
8225 -- that the conversion is safe, because the size of the target is safe,
8226 -- even if it is a record (which might be treated as having unknown size
8227 -- at this point).
8229 elsif Is_Access_Type (Ityp) then
8230 return True;
8232 -- If the size of output type is known at compile time, there is never
8233 -- a problem. Note that unconstrained records are considered to be of
8234 -- known size, but we can't consider them that way here, because we are
8235 -- talking about the actual size of the object.
8237 -- We also make sure that in addition to the size being known, we do not
8238 -- have a case which might generate an embarrassingly large temp in
8239 -- stack checking mode.
8241 elsif Size_Known_At_Compile_Time (Otyp)
8242 and then
8243 (not Stack_Checking_Enabled
8244 or else not May_Generate_Large_Temp (Otyp))
8245 and then not (Is_Record_Type (Otyp) and then not Is_Constrained (Otyp))
8246 then
8247 return True;
8249 -- If either type is tagged, then we know the alignment is OK so
8250 -- Gigi will be able to use pointer punning.
8252 elsif Is_Tagged_Type (Otyp) or else Is_Tagged_Type (Ityp) then
8253 return True;
8255 -- If either type is a limited record type, we cannot do a copy, so say
8256 -- safe since there's nothing else we can do.
8258 elsif Is_Limited_Record (Otyp) or else Is_Limited_Record (Ityp) then
8259 return True;
8261 -- Conversions to and from packed array types are always ignored and
8262 -- hence are safe.
8264 elsif Is_Packed_Array_Impl_Type (Otyp)
8265 or else Is_Packed_Array_Impl_Type (Ityp)
8266 then
8267 return True;
8268 end if;
8270 -- The only other cases known to be safe is if the input type's
8271 -- alignment is known to be at least the maximum alignment for the
8272 -- target or if both alignments are known and the output type's
8273 -- alignment is no stricter than the input's. We can use the component
8274 -- type alignement for an array if a type is an unpacked array type.
8276 if Present (Alignment_Clause (Otyp)) then
8277 Oalign := Expr_Value (Expression (Alignment_Clause (Otyp)));
8279 elsif Is_Array_Type (Otyp)
8280 and then Present (Alignment_Clause (Component_Type (Otyp)))
8281 then
8282 Oalign := Expr_Value (Expression (Alignment_Clause
8283 (Component_Type (Otyp))));
8284 end if;
8286 if Present (Alignment_Clause (Ityp)) then
8287 Ialign := Expr_Value (Expression (Alignment_Clause (Ityp)));
8289 elsif Is_Array_Type (Ityp)
8290 and then Present (Alignment_Clause (Component_Type (Ityp)))
8291 then
8292 Ialign := Expr_Value (Expression (Alignment_Clause
8293 (Component_Type (Ityp))));
8294 end if;
8296 if Ialign /= No_Uint and then Ialign > Maximum_Alignment then
8297 return True;
8299 elsif Ialign /= No_Uint
8300 and then Oalign /= No_Uint
8301 and then Ialign <= Oalign
8302 then
8303 return True;
8305 -- Otherwise, Gigi cannot handle this and we must make a temporary
8307 else
8308 return False;
8309 end if;
8310 end Safe_Unchecked_Type_Conversion;
8312 ---------------------------------
8313 -- Set_Current_Value_Condition --
8314 ---------------------------------
8316 -- Note: the implementation of this procedure is very closely tied to the
8317 -- implementation of Get_Current_Value_Condition. Here we set required
8318 -- Current_Value fields, and in Get_Current_Value_Condition, we interpret
8319 -- them, so they must have a consistent view.
8321 procedure Set_Current_Value_Condition (Cnode : Node_Id) is
8323 procedure Set_Entity_Current_Value (N : Node_Id);
8324 -- If N is an entity reference, where the entity is of an appropriate
8325 -- kind, then set the current value of this entity to Cnode, unless
8326 -- there is already a definite value set there.
8328 procedure Set_Expression_Current_Value (N : Node_Id);
8329 -- If N is of an appropriate form, sets an appropriate entry in current
8330 -- value fields of relevant entities. Multiple entities can be affected
8331 -- in the case of an AND or AND THEN.
8333 ------------------------------
8334 -- Set_Entity_Current_Value --
8335 ------------------------------
8337 procedure Set_Entity_Current_Value (N : Node_Id) is
8338 begin
8339 if Is_Entity_Name (N) then
8340 declare
8341 Ent : constant Entity_Id := Entity (N);
8343 begin
8344 -- Don't capture if not safe to do so
8346 if not Safe_To_Capture_Value (N, Ent, Cond => True) then
8347 return;
8348 end if;
8350 -- Here we have a case where the Current_Value field may need
8351 -- to be set. We set it if it is not already set to a compile
8352 -- time expression value.
8354 -- Note that this represents a decision that one condition
8355 -- blots out another previous one. That's certainly right if
8356 -- they occur at the same level. If the second one is nested,
8357 -- then the decision is neither right nor wrong (it would be
8358 -- equally OK to leave the outer one in place, or take the new
8359 -- inner one. Really we should record both, but our data
8360 -- structures are not that elaborate.
8362 if Nkind (Current_Value (Ent)) not in N_Subexpr then
8363 Set_Current_Value (Ent, Cnode);
8364 end if;
8365 end;
8366 end if;
8367 end Set_Entity_Current_Value;
8369 ----------------------------------
8370 -- Set_Expression_Current_Value --
8371 ----------------------------------
8373 procedure Set_Expression_Current_Value (N : Node_Id) is
8374 Cond : Node_Id;
8376 begin
8377 Cond := N;
8379 -- Loop to deal with (ignore for now) any NOT operators present. The
8380 -- presence of NOT operators will be handled properly when we call
8381 -- Get_Current_Value_Condition.
8383 while Nkind (Cond) = N_Op_Not loop
8384 Cond := Right_Opnd (Cond);
8385 end loop;
8387 -- For an AND or AND THEN, recursively process operands
8389 if Nkind (Cond) = N_Op_And or else Nkind (Cond) = N_And_Then then
8390 Set_Expression_Current_Value (Left_Opnd (Cond));
8391 Set_Expression_Current_Value (Right_Opnd (Cond));
8392 return;
8393 end if;
8395 -- Check possible relational operator
8397 if Nkind (Cond) in N_Op_Compare then
8398 if Compile_Time_Known_Value (Right_Opnd (Cond)) then
8399 Set_Entity_Current_Value (Left_Opnd (Cond));
8400 elsif Compile_Time_Known_Value (Left_Opnd (Cond)) then
8401 Set_Entity_Current_Value (Right_Opnd (Cond));
8402 end if;
8404 elsif Nkind_In (Cond,
8405 N_Type_Conversion,
8406 N_Qualified_Expression,
8407 N_Expression_With_Actions)
8408 then
8409 Set_Expression_Current_Value (Expression (Cond));
8411 -- Check possible boolean variable reference
8413 else
8414 Set_Entity_Current_Value (Cond);
8415 end if;
8416 end Set_Expression_Current_Value;
8418 -- Start of processing for Set_Current_Value_Condition
8420 begin
8421 Set_Expression_Current_Value (Condition (Cnode));
8422 end Set_Current_Value_Condition;
8424 --------------------------
8425 -- Set_Elaboration_Flag --
8426 --------------------------
8428 procedure Set_Elaboration_Flag (N : Node_Id; Spec_Id : Entity_Id) is
8429 Loc : constant Source_Ptr := Sloc (N);
8430 Ent : constant Entity_Id := Elaboration_Entity (Spec_Id);
8431 Asn : Node_Id;
8433 begin
8434 if Present (Ent) then
8436 -- Nothing to do if at the compilation unit level, because in this
8437 -- case the flag is set by the binder generated elaboration routine.
8439 if Nkind (Parent (N)) = N_Compilation_Unit then
8440 null;
8442 -- Here we do need to generate an assignment statement
8444 else
8445 Check_Restriction (No_Elaboration_Code, N);
8446 Asn :=
8447 Make_Assignment_Statement (Loc,
8448 Name => New_Occurrence_Of (Ent, Loc),
8449 Expression => Make_Integer_Literal (Loc, Uint_1));
8451 if Nkind (Parent (N)) = N_Subunit then
8452 Insert_After (Corresponding_Stub (Parent (N)), Asn);
8453 else
8454 Insert_After (N, Asn);
8455 end if;
8457 Analyze (Asn);
8459 -- Kill current value indication. This is necessary because the
8460 -- tests of this flag are inserted out of sequence and must not
8461 -- pick up bogus indications of the wrong constant value.
8463 Set_Current_Value (Ent, Empty);
8465 -- If the subprogram is in the current declarative part and
8466 -- 'access has been applied to it, generate an elaboration
8467 -- check at the beginning of the declarations of the body.
8469 if Nkind (N) = N_Subprogram_Body
8470 and then Address_Taken (Spec_Id)
8471 and then
8472 Ekind_In (Scope (Spec_Id), E_Block, E_Procedure, E_Function)
8473 then
8474 declare
8475 Loc : constant Source_Ptr := Sloc (N);
8476 Decls : constant List_Id := Declarations (N);
8477 Chk : Node_Id;
8479 begin
8480 -- No need to generate this check if first entry in the
8481 -- declaration list is a raise of Program_Error now.
8483 if Present (Decls)
8484 and then Nkind (First (Decls)) = N_Raise_Program_Error
8485 then
8486 return;
8487 end if;
8489 -- Otherwise generate the check
8491 Chk :=
8492 Make_Raise_Program_Error (Loc,
8493 Condition =>
8494 Make_Op_Eq (Loc,
8495 Left_Opnd => New_Occurrence_Of (Ent, Loc),
8496 Right_Opnd => Make_Integer_Literal (Loc, Uint_0)),
8497 Reason => PE_Access_Before_Elaboration);
8499 if No (Decls) then
8500 Set_Declarations (N, New_List (Chk));
8501 else
8502 Prepend (Chk, Decls);
8503 end if;
8505 Analyze (Chk);
8506 end;
8507 end if;
8508 end if;
8509 end if;
8510 end Set_Elaboration_Flag;
8512 ----------------------------
8513 -- Set_Renamed_Subprogram --
8514 ----------------------------
8516 procedure Set_Renamed_Subprogram (N : Node_Id; E : Entity_Id) is
8517 begin
8518 -- If input node is an identifier, we can just reset it
8520 if Nkind (N) = N_Identifier then
8521 Set_Chars (N, Chars (E));
8522 Set_Entity (N, E);
8524 -- Otherwise we have to do a rewrite, preserving Comes_From_Source
8526 else
8527 declare
8528 CS : constant Boolean := Comes_From_Source (N);
8529 begin
8530 Rewrite (N, Make_Identifier (Sloc (N), Chars (E)));
8531 Set_Entity (N, E);
8532 Set_Comes_From_Source (N, CS);
8533 Set_Analyzed (N, True);
8534 end;
8535 end if;
8536 end Set_Renamed_Subprogram;
8538 ----------------------
8539 -- Side_Effect_Free --
8540 ----------------------
8542 function Side_Effect_Free
8543 (N : Node_Id;
8544 Name_Req : Boolean := False;
8545 Variable_Ref : Boolean := False) return Boolean
8547 Typ : constant Entity_Id := Etype (N);
8548 -- Result type of the expression
8550 function Safe_Prefixed_Reference (N : Node_Id) return Boolean;
8551 -- The argument N is a construct where the Prefix is dereferenced if it
8552 -- is an access type and the result is a variable. The call returns True
8553 -- if the construct is side effect free (not considering side effects in
8554 -- other than the prefix which are to be tested by the caller).
8556 function Within_In_Parameter (N : Node_Id) return Boolean;
8557 -- Determines if N is a subcomponent of a composite in-parameter. If so,
8558 -- N is not side-effect free when the actual is global and modifiable
8559 -- indirectly from within a subprogram, because it may be passed by
8560 -- reference. The front-end must be conservative here and assume that
8561 -- this may happen with any array or record type. On the other hand, we
8562 -- cannot create temporaries for all expressions for which this
8563 -- condition is true, for various reasons that might require clearing up
8564 -- ??? For example, discriminant references that appear out of place, or
8565 -- spurious type errors with class-wide expressions. As a result, we
8566 -- limit the transformation to loop bounds, which is so far the only
8567 -- case that requires it.
8569 -----------------------------
8570 -- Safe_Prefixed_Reference --
8571 -----------------------------
8573 function Safe_Prefixed_Reference (N : Node_Id) return Boolean is
8574 begin
8575 -- If prefix is not side effect free, definitely not safe
8577 if not Side_Effect_Free (Prefix (N), Name_Req, Variable_Ref) then
8578 return False;
8580 -- If the prefix is of an access type that is not access-to-constant,
8581 -- then this construct is a variable reference, which means it is to
8582 -- be considered to have side effects if Variable_Ref is set True.
8584 elsif Is_Access_Type (Etype (Prefix (N)))
8585 and then not Is_Access_Constant (Etype (Prefix (N)))
8586 and then Variable_Ref
8587 then
8588 -- Exception is a prefix that is the result of a previous removal
8589 -- of side-effects.
8591 return Is_Entity_Name (Prefix (N))
8592 and then not Comes_From_Source (Prefix (N))
8593 and then Ekind (Entity (Prefix (N))) = E_Constant
8594 and then Is_Internal_Name (Chars (Entity (Prefix (N))));
8596 -- If the prefix is an explicit dereference then this construct is a
8597 -- variable reference, which means it is to be considered to have
8598 -- side effects if Variable_Ref is True.
8600 -- We do NOT exclude dereferences of access-to-constant types because
8601 -- we handle them as constant view of variables.
8603 elsif Nkind (Prefix (N)) = N_Explicit_Dereference
8604 and then Variable_Ref
8605 then
8606 return False;
8608 -- Note: The following test is the simplest way of solving a complex
8609 -- problem uncovered by the following test (Side effect on loop bound
8610 -- that is a subcomponent of a global variable:
8612 -- with Text_Io; use Text_Io;
8613 -- procedure Tloop is
8614 -- type X is
8615 -- record
8616 -- V : Natural := 4;
8617 -- S : String (1..5) := (others => 'a');
8618 -- end record;
8619 -- X1 : X;
8621 -- procedure Modi;
8623 -- generic
8624 -- with procedure Action;
8625 -- procedure Loop_G (Arg : X; Msg : String)
8627 -- procedure Loop_G (Arg : X; Msg : String) is
8628 -- begin
8629 -- Put_Line ("begin loop_g " & Msg & " will loop till: "
8630 -- & Natural'Image (Arg.V));
8631 -- for Index in 1 .. Arg.V loop
8632 -- Text_Io.Put_Line
8633 -- (Natural'Image (Index) & " " & Arg.S (Index));
8634 -- if Index > 2 then
8635 -- Modi;
8636 -- end if;
8637 -- end loop;
8638 -- Put_Line ("end loop_g " & Msg);
8639 -- end;
8641 -- procedure Loop1 is new Loop_G (Modi);
8642 -- procedure Modi is
8643 -- begin
8644 -- X1.V := 1;
8645 -- Loop1 (X1, "from modi");
8646 -- end;
8648 -- begin
8649 -- Loop1 (X1, "initial");
8650 -- end;
8652 -- The output of the above program should be:
8654 -- begin loop_g initial will loop till: 4
8655 -- 1 a
8656 -- 2 a
8657 -- 3 a
8658 -- begin loop_g from modi will loop till: 1
8659 -- 1 a
8660 -- end loop_g from modi
8661 -- 4 a
8662 -- begin loop_g from modi will loop till: 1
8663 -- 1 a
8664 -- end loop_g from modi
8665 -- end loop_g initial
8667 -- If a loop bound is a subcomponent of a global variable, a
8668 -- modification of that variable within the loop may incorrectly
8669 -- affect the execution of the loop.
8671 elsif Nkind (Parent (Parent (N))) = N_Loop_Parameter_Specification
8672 and then Within_In_Parameter (Prefix (N))
8673 and then Variable_Ref
8674 then
8675 return False;
8677 -- All other cases are side effect free
8679 else
8680 return True;
8681 end if;
8682 end Safe_Prefixed_Reference;
8684 -------------------------
8685 -- Within_In_Parameter --
8686 -------------------------
8688 function Within_In_Parameter (N : Node_Id) return Boolean is
8689 begin
8690 if not Comes_From_Source (N) then
8691 return False;
8693 elsif Is_Entity_Name (N) then
8694 return Ekind (Entity (N)) = E_In_Parameter;
8696 elsif Nkind_In (N, N_Indexed_Component, N_Selected_Component) then
8697 return Within_In_Parameter (Prefix (N));
8699 else
8700 return False;
8701 end if;
8702 end Within_In_Parameter;
8704 -- Start of processing for Side_Effect_Free
8706 begin
8707 -- If volatile reference, always consider it to have side effects
8709 if Is_Volatile_Reference (N) then
8710 return False;
8711 end if;
8713 -- Note on checks that could raise Constraint_Error. Strictly, if we
8714 -- take advantage of 11.6, these checks do not count as side effects.
8715 -- However, we would prefer to consider that they are side effects,
8716 -- since the backend CSE does not work very well on expressions which
8717 -- can raise Constraint_Error. On the other hand if we don't consider
8718 -- them to be side effect free, then we get some awkward expansions
8719 -- in -gnato mode, resulting in code insertions at a point where we
8720 -- do not have a clear model for performing the insertions.
8722 -- Special handling for entity names
8724 if Is_Entity_Name (N) then
8726 -- A type reference is always side effect free
8728 if Is_Type (Entity (N)) then
8729 return True;
8731 -- Variables are considered to be a side effect if Variable_Ref
8732 -- is set or if we have a volatile reference and Name_Req is off.
8733 -- If Name_Req is True then we can't help returning a name which
8734 -- effectively allows multiple references in any case.
8736 elsif Is_Variable (N, Use_Original_Node => False) then
8737 return not Variable_Ref
8738 and then (not Is_Volatile_Reference (N) or else Name_Req);
8740 -- Any other entity (e.g. a subtype name) is definitely side
8741 -- effect free.
8743 else
8744 return True;
8745 end if;
8747 -- A value known at compile time is always side effect free
8749 elsif Compile_Time_Known_Value (N) then
8750 return True;
8752 -- A variable renaming is not side-effect free, because the renaming
8753 -- will function like a macro in the front-end in some cases, and an
8754 -- assignment can modify the component designated by N, so we need to
8755 -- create a temporary for it.
8757 -- The guard testing for Entity being present is needed at least in
8758 -- the case of rewritten predicate expressions, and may well also be
8759 -- appropriate elsewhere. Obviously we can't go testing the entity
8760 -- field if it does not exist, so it's reasonable to say that this is
8761 -- not the renaming case if it does not exist.
8763 elsif Is_Entity_Name (Original_Node (N))
8764 and then Present (Entity (Original_Node (N)))
8765 and then Is_Renaming_Of_Object (Entity (Original_Node (N)))
8766 and then Ekind (Entity (Original_Node (N))) /= E_Constant
8767 then
8768 declare
8769 RO : constant Node_Id :=
8770 Renamed_Object (Entity (Original_Node (N)));
8772 begin
8773 -- If the renamed object is an indexed component, or an
8774 -- explicit dereference, then the designated object could
8775 -- be modified by an assignment.
8777 if Nkind_In (RO, N_Indexed_Component,
8778 N_Explicit_Dereference)
8779 then
8780 return False;
8782 -- A selected component must have a safe prefix
8784 elsif Nkind (RO) = N_Selected_Component then
8785 return Safe_Prefixed_Reference (RO);
8787 -- In all other cases, designated object cannot be changed so
8788 -- we are side effect free.
8790 else
8791 return True;
8792 end if;
8793 end;
8795 -- Remove_Side_Effects generates an object renaming declaration to
8796 -- capture the expression of a class-wide expression. In VM targets
8797 -- the frontend performs no expansion for dispatching calls to
8798 -- class- wide types since they are handled by the VM. Hence, we must
8799 -- locate here if this node corresponds to a previous invocation of
8800 -- Remove_Side_Effects to avoid a never ending loop in the frontend.
8802 elsif VM_Target /= No_VM
8803 and then not Comes_From_Source (N)
8804 and then Nkind (Parent (N)) = N_Object_Renaming_Declaration
8805 and then Is_Class_Wide_Type (Typ)
8806 then
8807 return True;
8808 end if;
8810 -- For other than entity names and compile time known values,
8811 -- check the node kind for special processing.
8813 case Nkind (N) is
8815 -- An attribute reference is side effect free if its expressions
8816 -- are side effect free and its prefix is side effect free or
8817 -- is an entity reference.
8819 -- Is this right? what about x'first where x is a variable???
8821 when N_Attribute_Reference =>
8822 return Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
8823 and then Attribute_Name (N) /= Name_Input
8824 and then (Is_Entity_Name (Prefix (N))
8825 or else Side_Effect_Free
8826 (Prefix (N), Name_Req, Variable_Ref));
8828 -- A binary operator is side effect free if and both operands are
8829 -- side effect free. For this purpose binary operators include
8830 -- membership tests and short circuit forms.
8832 when N_Binary_Op | N_Membership_Test | N_Short_Circuit =>
8833 return Side_Effect_Free (Left_Opnd (N), Name_Req, Variable_Ref)
8834 and then
8835 Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
8837 -- An explicit dereference is side effect free only if it is
8838 -- a side effect free prefixed reference.
8840 when N_Explicit_Dereference =>
8841 return Safe_Prefixed_Reference (N);
8843 -- An expression with action is side effect free if its expression
8844 -- is side effect free and it has no actions.
8846 when N_Expression_With_Actions =>
8847 return Is_Empty_List (Actions (N))
8848 and then
8849 Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8851 -- A call to _rep_to_pos is side effect free, since we generate
8852 -- this pure function call ourselves. Moreover it is critically
8853 -- important to make this exception, since otherwise we can have
8854 -- discriminants in array components which don't look side effect
8855 -- free in the case of an array whose index type is an enumeration
8856 -- type with an enumeration rep clause.
8858 -- All other function calls are not side effect free
8860 when N_Function_Call =>
8861 return Nkind (Name (N)) = N_Identifier
8862 and then Is_TSS (Name (N), TSS_Rep_To_Pos)
8863 and then
8864 Side_Effect_Free
8865 (First (Parameter_Associations (N)), Name_Req, Variable_Ref);
8867 -- An IF expression is side effect free if it's of a scalar type, and
8868 -- all its components are all side effect free (conditions and then
8869 -- actions and else actions). We restrict to scalar types, since it
8870 -- is annoying to deal with things like (if A then B else C)'First
8871 -- where the type involved is a string type.
8873 when N_If_Expression =>
8874 return Is_Scalar_Type (Typ)
8875 and then
8876 Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref);
8878 -- An indexed component is side effect free if it is a side
8879 -- effect free prefixed reference and all the indexing
8880 -- expressions are side effect free.
8882 when N_Indexed_Component =>
8883 return Side_Effect_Free (Expressions (N), Name_Req, Variable_Ref)
8884 and then Safe_Prefixed_Reference (N);
8886 -- A type qualification is side effect free if the expression
8887 -- is side effect free.
8889 when N_Qualified_Expression =>
8890 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8892 -- A selected component is side effect free only if it is a side
8893 -- effect free prefixed reference. If it designates a component
8894 -- with a rep. clause it must be treated has having a potential
8895 -- side effect, because it may be modified through a renaming, and
8896 -- a subsequent use of the renaming as a macro will yield the
8897 -- wrong value. This complex interaction between renaming and
8898 -- removing side effects is a reminder that the latter has become
8899 -- a headache to maintain, and that it should be removed in favor
8900 -- of the gcc mechanism to capture values ???
8902 when N_Selected_Component =>
8903 if Nkind (Parent (N)) = N_Explicit_Dereference
8904 and then Has_Non_Standard_Rep (Designated_Type (Typ))
8905 then
8906 return False;
8907 else
8908 return Safe_Prefixed_Reference (N);
8909 end if;
8911 -- A range is side effect free if the bounds are side effect free
8913 when N_Range =>
8914 return Side_Effect_Free (Low_Bound (N), Name_Req, Variable_Ref)
8915 and then
8916 Side_Effect_Free (High_Bound (N), Name_Req, Variable_Ref);
8918 -- A slice is side effect free if it is a side effect free
8919 -- prefixed reference and the bounds are side effect free.
8921 when N_Slice =>
8922 return Side_Effect_Free
8923 (Discrete_Range (N), Name_Req, Variable_Ref)
8924 and then Safe_Prefixed_Reference (N);
8926 -- A type conversion is side effect free if the expression to be
8927 -- converted is side effect free.
8929 when N_Type_Conversion =>
8930 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8932 -- A unary operator is side effect free if the operand
8933 -- is side effect free.
8935 when N_Unary_Op =>
8936 return Side_Effect_Free (Right_Opnd (N), Name_Req, Variable_Ref);
8938 -- An unchecked type conversion is side effect free only if it
8939 -- is safe and its argument is side effect free.
8941 when N_Unchecked_Type_Conversion =>
8942 return Safe_Unchecked_Type_Conversion (N)
8943 and then
8944 Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8946 -- An unchecked expression is side effect free if its expression
8947 -- is side effect free.
8949 when N_Unchecked_Expression =>
8950 return Side_Effect_Free (Expression (N), Name_Req, Variable_Ref);
8952 -- A literal is side effect free
8954 when N_Character_Literal |
8955 N_Integer_Literal |
8956 N_Real_Literal |
8957 N_String_Literal =>
8958 return True;
8960 -- We consider that anything else has side effects. This is a bit
8961 -- crude, but we are pretty close for most common cases, and we
8962 -- are certainly correct (i.e. we never return True when the
8963 -- answer should be False).
8965 when others =>
8966 return False;
8967 end case;
8968 end Side_Effect_Free;
8970 -- A list is side effect free if all elements of the list are side
8971 -- effect free.
8973 function Side_Effect_Free
8974 (L : List_Id;
8975 Name_Req : Boolean := False;
8976 Variable_Ref : Boolean := False) return Boolean
8978 N : Node_Id;
8980 begin
8981 if L = No_List or else L = Error_List then
8982 return True;
8984 else
8985 N := First (L);
8986 while Present (N) loop
8987 if not Side_Effect_Free (N, Name_Req, Variable_Ref) then
8988 return False;
8989 else
8990 Next (N);
8991 end if;
8992 end loop;
8994 return True;
8995 end if;
8996 end Side_Effect_Free;
8998 ----------------------------------
8999 -- Silly_Boolean_Array_Not_Test --
9000 ----------------------------------
9002 -- This procedure implements an odd and silly test. We explicitly check
9003 -- for the case where the 'First of the component type is equal to the
9004 -- 'Last of this component type, and if this is the case, we make sure
9005 -- that constraint error is raised. The reason is that the NOT is bound
9006 -- to cause CE in this case, and we will not otherwise catch it.
9008 -- No such check is required for AND and OR, since for both these cases
9009 -- False op False = False, and True op True = True. For the XOR case,
9010 -- see Silly_Boolean_Array_Xor_Test.
9012 -- Believe it or not, this was reported as a bug. Note that nearly always,
9013 -- the test will evaluate statically to False, so the code will be
9014 -- statically removed, and no extra overhead caused.
9016 procedure Silly_Boolean_Array_Not_Test (N : Node_Id; T : Entity_Id) is
9017 Loc : constant Source_Ptr := Sloc (N);
9018 CT : constant Entity_Id := Component_Type (T);
9020 begin
9021 -- The check we install is
9023 -- constraint_error when
9024 -- component_type'first = component_type'last
9025 -- and then array_type'Length /= 0)
9027 -- We need the last guard because we don't want to raise CE for empty
9028 -- arrays since no out of range values result. (Empty arrays with a
9029 -- component type of True .. True -- very useful -- even the ACATS
9030 -- does not test that marginal case).
9032 Insert_Action (N,
9033 Make_Raise_Constraint_Error (Loc,
9034 Condition =>
9035 Make_And_Then (Loc,
9036 Left_Opnd =>
9037 Make_Op_Eq (Loc,
9038 Left_Opnd =>
9039 Make_Attribute_Reference (Loc,
9040 Prefix => New_Occurrence_Of (CT, Loc),
9041 Attribute_Name => Name_First),
9043 Right_Opnd =>
9044 Make_Attribute_Reference (Loc,
9045 Prefix => New_Occurrence_Of (CT, Loc),
9046 Attribute_Name => Name_Last)),
9048 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
9049 Reason => CE_Range_Check_Failed));
9050 end Silly_Boolean_Array_Not_Test;
9052 ----------------------------------
9053 -- Silly_Boolean_Array_Xor_Test --
9054 ----------------------------------
9056 -- This procedure implements an odd and silly test. We explicitly check
9057 -- for the XOR case where the component type is True .. True, since this
9058 -- will raise constraint error. A special check is required since CE
9059 -- will not be generated otherwise (cf Expand_Packed_Not).
9061 -- No such check is required for AND and OR, since for both these cases
9062 -- False op False = False, and True op True = True, and no check is
9063 -- required for the case of False .. False, since False xor False = False.
9064 -- See also Silly_Boolean_Array_Not_Test
9066 procedure Silly_Boolean_Array_Xor_Test (N : Node_Id; T : Entity_Id) is
9067 Loc : constant Source_Ptr := Sloc (N);
9068 CT : constant Entity_Id := Component_Type (T);
9070 begin
9071 -- The check we install is
9073 -- constraint_error when
9074 -- Boolean (component_type'First)
9075 -- and then Boolean (component_type'Last)
9076 -- and then array_type'Length /= 0)
9078 -- We need the last guard because we don't want to raise CE for empty
9079 -- arrays since no out of range values result (Empty arrays with a
9080 -- component type of True .. True -- very useful -- even the ACATS
9081 -- does not test that marginal case).
9083 Insert_Action (N,
9084 Make_Raise_Constraint_Error (Loc,
9085 Condition =>
9086 Make_And_Then (Loc,
9087 Left_Opnd =>
9088 Make_And_Then (Loc,
9089 Left_Opnd =>
9090 Convert_To (Standard_Boolean,
9091 Make_Attribute_Reference (Loc,
9092 Prefix => New_Occurrence_Of (CT, Loc),
9093 Attribute_Name => Name_First)),
9095 Right_Opnd =>
9096 Convert_To (Standard_Boolean,
9097 Make_Attribute_Reference (Loc,
9098 Prefix => New_Occurrence_Of (CT, Loc),
9099 Attribute_Name => Name_Last))),
9101 Right_Opnd => Make_Non_Empty_Check (Loc, Right_Opnd (N))),
9102 Reason => CE_Range_Check_Failed));
9103 end Silly_Boolean_Array_Xor_Test;
9105 --------------------------
9106 -- Target_Has_Fixed_Ops --
9107 --------------------------
9109 Integer_Sized_Small : Ureal;
9110 -- Set to 2.0 ** -(Integer'Size - 1) the first time that this function is
9111 -- called (we don't want to compute it more than once).
9113 Long_Integer_Sized_Small : Ureal;
9114 -- Set to 2.0 ** -(Long_Integer'Size - 1) the first time that this function
9115 -- is called (we don't want to compute it more than once)
9117 First_Time_For_THFO : Boolean := True;
9118 -- Set to False after first call (if Fractional_Fixed_Ops_On_Target)
9120 function Target_Has_Fixed_Ops
9121 (Left_Typ : Entity_Id;
9122 Right_Typ : Entity_Id;
9123 Result_Typ : Entity_Id) return Boolean
9125 function Is_Fractional_Type (Typ : Entity_Id) return Boolean;
9126 -- Return True if the given type is a fixed-point type with a small
9127 -- value equal to 2 ** (-(T'Object_Size - 1)) and whose values have
9128 -- an absolute value less than 1.0. This is currently limited to
9129 -- fixed-point types that map to Integer or Long_Integer.
9131 ------------------------
9132 -- Is_Fractional_Type --
9133 ------------------------
9135 function Is_Fractional_Type (Typ : Entity_Id) return Boolean is
9136 begin
9137 if Esize (Typ) = Standard_Integer_Size then
9138 return Small_Value (Typ) = Integer_Sized_Small;
9140 elsif Esize (Typ) = Standard_Long_Integer_Size then
9141 return Small_Value (Typ) = Long_Integer_Sized_Small;
9143 else
9144 return False;
9145 end if;
9146 end Is_Fractional_Type;
9148 -- Start of processing for Target_Has_Fixed_Ops
9150 begin
9151 -- Return False if Fractional_Fixed_Ops_On_Target is false
9153 if not Fractional_Fixed_Ops_On_Target then
9154 return False;
9155 end if;
9157 -- Here the target has Fractional_Fixed_Ops, if first time, compute
9158 -- standard constants used by Is_Fractional_Type.
9160 if First_Time_For_THFO then
9161 First_Time_For_THFO := False;
9163 Integer_Sized_Small :=
9164 UR_From_Components
9165 (Num => Uint_1,
9166 Den => UI_From_Int (Standard_Integer_Size - 1),
9167 Rbase => 2);
9169 Long_Integer_Sized_Small :=
9170 UR_From_Components
9171 (Num => Uint_1,
9172 Den => UI_From_Int (Standard_Long_Integer_Size - 1),
9173 Rbase => 2);
9174 end if;
9176 -- Return True if target supports fixed-by-fixed multiply/divide for
9177 -- fractional fixed-point types (see Is_Fractional_Type) and the operand
9178 -- and result types are equivalent fractional types.
9180 return Is_Fractional_Type (Base_Type (Left_Typ))
9181 and then Is_Fractional_Type (Base_Type (Right_Typ))
9182 and then Is_Fractional_Type (Base_Type (Result_Typ))
9183 and then Esize (Left_Typ) = Esize (Right_Typ)
9184 and then Esize (Left_Typ) = Esize (Result_Typ);
9185 end Target_Has_Fixed_Ops;
9187 ------------------------------------------
9188 -- Type_May_Have_Bit_Aligned_Components --
9189 ------------------------------------------
9191 function Type_May_Have_Bit_Aligned_Components
9192 (Typ : Entity_Id) return Boolean
9194 begin
9195 -- Array type, check component type
9197 if Is_Array_Type (Typ) then
9198 return
9199 Type_May_Have_Bit_Aligned_Components (Component_Type (Typ));
9201 -- Record type, check components
9203 elsif Is_Record_Type (Typ) then
9204 declare
9205 E : Entity_Id;
9207 begin
9208 E := First_Component_Or_Discriminant (Typ);
9209 while Present (E) loop
9210 if Component_May_Be_Bit_Aligned (E)
9211 or else Type_May_Have_Bit_Aligned_Components (Etype (E))
9212 then
9213 return True;
9214 end if;
9216 Next_Component_Or_Discriminant (E);
9217 end loop;
9219 return False;
9220 end;
9222 -- Type other than array or record is always OK
9224 else
9225 return False;
9226 end if;
9227 end Type_May_Have_Bit_Aligned_Components;
9229 ----------------------------------
9230 -- Within_Case_Or_If_Expression --
9231 ----------------------------------
9233 function Within_Case_Or_If_Expression (N : Node_Id) return Boolean is
9234 Par : Node_Id;
9236 begin
9237 -- Locate an enclosing case or if expression. Note that these constructs
9238 -- can be expanded into Expression_With_Actions, hence the test of the
9239 -- original node.
9241 Par := Parent (N);
9242 while Present (Par) loop
9243 if Nkind_In (Original_Node (Par), N_Case_Expression,
9244 N_If_Expression)
9245 then
9246 return True;
9248 -- Prevent the search from going too far
9250 elsif Is_Body_Or_Package_Declaration (Par) then
9251 return False;
9252 end if;
9254 Par := Parent (Par);
9255 end loop;
9257 return False;
9258 end Within_Case_Or_If_Expression;
9260 --------------------------------
9261 -- Within_Internal_Subprogram --
9262 --------------------------------
9264 function Within_Internal_Subprogram return Boolean is
9265 S : Entity_Id;
9267 begin
9268 S := Current_Scope;
9269 while Present (S) and then not Is_Subprogram (S) loop
9270 S := Scope (S);
9271 end loop;
9273 return Present (S)
9274 and then Get_TSS_Name (S) /= TSS_Null
9275 and then not Is_Predicate_Function (S);
9276 end Within_Internal_Subprogram;
9278 ----------------------------
9279 -- Wrap_Cleanup_Procedure --
9280 ----------------------------
9282 procedure Wrap_Cleanup_Procedure (N : Node_Id) is
9283 Loc : constant Source_Ptr := Sloc (N);
9284 Stseq : constant Node_Id := Handled_Statement_Sequence (N);
9285 Stmts : constant List_Id := Statements (Stseq);
9286 begin
9287 if Abort_Allowed then
9288 Prepend_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Defer));
9289 Append_To (Stmts, Build_Runtime_Call (Loc, RE_Abort_Undefer));
9290 end if;
9291 end Wrap_Cleanup_Procedure;
9293 end Exp_Util;