2014-10-31 Hristian Kirtchev <kirtchev@adacore.com>
[official-gcc.git] / gcc / ada / sem_ch5.adb
blob0e09a02acf739537982e2a41e6ead943c9e4f2eb
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT COMPILER COMPONENTS --
4 -- --
5 -- S E M _ C H 5 --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2014, Free Software Foundation, Inc. --
10 -- --
11 -- GNAT is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License --
17 -- for more details. You should have received a copy of the GNU General --
18 -- Public License distributed with GNAT; see file COPYING3. If not, go to --
19 -- http://www.gnu.org/licenses for a complete copy of the license. --
20 -- --
21 -- GNAT was originally developed by the GNAT team at New York University. --
22 -- Extensive contributions were provided by Ada Core Technologies Inc. --
23 -- --
24 ------------------------------------------------------------------------------
26 with Aspects; use Aspects;
27 with Atree; use Atree;
28 with Checks; use Checks;
29 with Einfo; use Einfo;
30 with Errout; use Errout;
31 with Expander; use Expander;
32 with Exp_Ch6; use Exp_Ch6;
33 with Exp_Util; use Exp_Util;
34 with Freeze; use Freeze;
35 with Lib; use Lib;
36 with Lib.Xref; use Lib.Xref;
37 with Namet; use Namet;
38 with Nlists; use Nlists;
39 with Nmake; use Nmake;
40 with Opt; use Opt;
41 with Restrict; use Restrict;
42 with Rident; use Rident;
43 with Rtsfind; use Rtsfind;
44 with Sem; use Sem;
45 with Sem_Aux; use Sem_Aux;
46 with Sem_Case; use Sem_Case;
47 with Sem_Ch3; use Sem_Ch3;
48 with Sem_Ch6; use Sem_Ch6;
49 with Sem_Ch8; use Sem_Ch8;
50 with Sem_Dim; use Sem_Dim;
51 with Sem_Disp; use Sem_Disp;
52 with Sem_Elab; use Sem_Elab;
53 with Sem_Eval; use Sem_Eval;
54 with Sem_Res; use Sem_Res;
55 with Sem_Type; use Sem_Type;
56 with Sem_Util; use Sem_Util;
57 with Sem_Warn; use Sem_Warn;
58 with Snames; use Snames;
59 with Stand; use Stand;
60 with Sinfo; use Sinfo;
61 with Targparm; use Targparm;
62 with Tbuild; use Tbuild;
63 with Uintp; use Uintp;
65 package body Sem_Ch5 is
67 Unblocked_Exit_Count : Nat := 0;
68 -- This variable is used when processing if statements, case statements,
69 -- and block statements. It counts the number of exit points that are not
70 -- blocked by unconditional transfer instructions: for IF and CASE, these
71 -- are the branches of the conditional; for a block, they are the statement
72 -- sequence of the block, and the statement sequences of any exception
73 -- handlers that are part of the block. When processing is complete, if
74 -- this count is zero, it means that control cannot fall through the IF,
75 -- CASE or block statement. This is used for the generation of warning
76 -- messages. This variable is recursively saved on entry to processing the
77 -- construct, and restored on exit.
79 procedure Preanalyze_Range (R_Copy : Node_Id);
80 -- Determine expected type of range or domain of iteration of Ada 2012
81 -- loop by analyzing separate copy. Do the analysis and resolution of the
82 -- copy of the bound(s) with expansion disabled, to prevent the generation
83 -- of finalization actions. This prevents memory leaks when the bounds
84 -- contain calls to functions returning controlled arrays or when the
85 -- domain of iteration is a container.
87 ------------------------
88 -- Analyze_Assignment --
89 ------------------------
91 procedure Analyze_Assignment (N : Node_Id) is
92 Lhs : constant Node_Id := Name (N);
93 Rhs : constant Node_Id := Expression (N);
94 T1 : Entity_Id;
95 T2 : Entity_Id;
96 Decl : Node_Id;
98 procedure Diagnose_Non_Variable_Lhs (N : Node_Id);
99 -- N is the node for the left hand side of an assignment, and it is not
100 -- a variable. This routine issues an appropriate diagnostic.
102 procedure Kill_Lhs;
103 -- This is called to kill current value settings of a simple variable
104 -- on the left hand side. We call it if we find any error in analyzing
105 -- the assignment, and at the end of processing before setting any new
106 -- current values in place.
108 procedure Set_Assignment_Type
109 (Opnd : Node_Id;
110 Opnd_Type : in out Entity_Id);
111 -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type is the
112 -- nominal subtype. This procedure is used to deal with cases where the
113 -- nominal subtype must be replaced by the actual subtype.
115 -------------------------------
116 -- Diagnose_Non_Variable_Lhs --
117 -------------------------------
119 procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is
120 begin
121 -- Not worth posting another error if left hand side already flagged
122 -- as being illegal in some respect.
124 if Error_Posted (N) then
125 return;
127 -- Some special bad cases of entity names
129 elsif Is_Entity_Name (N) then
130 declare
131 Ent : constant Entity_Id := Entity (N);
133 begin
134 if Ekind (Ent) = E_In_Parameter then
135 Error_Msg_N
136 ("assignment to IN mode parameter not allowed", N);
137 return;
139 -- Renamings of protected private components are turned into
140 -- constants when compiling a protected function. In the case
141 -- of single protected types, the private component appears
142 -- directly.
144 elsif (Is_Prival (Ent)
145 and then
146 (Ekind (Current_Scope) = E_Function
147 or else Ekind (Enclosing_Dynamic_Scope
148 (Current_Scope)) = E_Function))
149 or else
150 (Ekind (Ent) = E_Component
151 and then Is_Protected_Type (Scope (Ent)))
152 then
153 Error_Msg_N
154 ("protected function cannot modify protected object", N);
155 return;
157 elsif Ekind (Ent) = E_Loop_Parameter then
158 Error_Msg_N ("assignment to loop parameter not allowed", N);
159 return;
160 end if;
161 end;
163 -- For indexed components, test prefix if it is in array. We do not
164 -- want to recurse for cases where the prefix is a pointer, since we
165 -- may get a message confusing the pointer and what it references.
167 elsif Nkind (N) = N_Indexed_Component
168 and then Is_Array_Type (Etype (Prefix (N)))
169 then
170 Diagnose_Non_Variable_Lhs (Prefix (N));
171 return;
173 -- Another special case for assignment to discriminant
175 elsif Nkind (N) = N_Selected_Component then
176 if Present (Entity (Selector_Name (N)))
177 and then Ekind (Entity (Selector_Name (N))) = E_Discriminant
178 then
179 Error_Msg_N ("assignment to discriminant not allowed", N);
180 return;
182 -- For selection from record, diagnose prefix, but note that again
183 -- we only do this for a record, not e.g. for a pointer.
185 elsif Is_Record_Type (Etype (Prefix (N))) then
186 Diagnose_Non_Variable_Lhs (Prefix (N));
187 return;
188 end if;
189 end if;
191 -- If we fall through, we have no special message to issue
193 Error_Msg_N ("left hand side of assignment must be a variable", N);
194 end Diagnose_Non_Variable_Lhs;
196 --------------
197 -- Kill_Lhs --
198 --------------
200 procedure Kill_Lhs is
201 begin
202 if Is_Entity_Name (Lhs) then
203 declare
204 Ent : constant Entity_Id := Entity (Lhs);
205 begin
206 if Present (Ent) then
207 Kill_Current_Values (Ent);
208 end if;
209 end;
210 end if;
211 end Kill_Lhs;
213 -------------------------
214 -- Set_Assignment_Type --
215 -------------------------
217 procedure Set_Assignment_Type
218 (Opnd : Node_Id;
219 Opnd_Type : in out Entity_Id)
221 begin
222 Require_Entity (Opnd);
224 -- If the assignment operand is an in-out or out parameter, then we
225 -- get the actual subtype (needed for the unconstrained case). If the
226 -- operand is the actual in an entry declaration, then within the
227 -- accept statement it is replaced with a local renaming, which may
228 -- also have an actual subtype.
230 if Is_Entity_Name (Opnd)
231 and then (Ekind (Entity (Opnd)) = E_Out_Parameter
232 or else Ekind_In (Entity (Opnd),
233 E_In_Out_Parameter,
234 E_Generic_In_Out_Parameter)
235 or else
236 (Ekind (Entity (Opnd)) = E_Variable
237 and then Nkind (Parent (Entity (Opnd))) =
238 N_Object_Renaming_Declaration
239 and then Nkind (Parent (Parent (Entity (Opnd)))) =
240 N_Accept_Statement))
241 then
242 Opnd_Type := Get_Actual_Subtype (Opnd);
244 -- If assignment operand is a component reference, then we get the
245 -- actual subtype of the component for the unconstrained case.
247 elsif Nkind_In (Opnd, N_Selected_Component, N_Explicit_Dereference)
248 and then not Is_Unchecked_Union (Opnd_Type)
249 then
250 Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd);
252 if Present (Decl) then
253 Insert_Action (N, Decl);
254 Mark_Rewrite_Insertion (Decl);
255 Analyze (Decl);
256 Opnd_Type := Defining_Identifier (Decl);
257 Set_Etype (Opnd, Opnd_Type);
258 Freeze_Itype (Opnd_Type, N);
260 elsif Is_Constrained (Etype (Opnd)) then
261 Opnd_Type := Etype (Opnd);
262 end if;
264 -- For slice, use the constrained subtype created for the slice
266 elsif Nkind (Opnd) = N_Slice then
267 Opnd_Type := Etype (Opnd);
268 end if;
269 end Set_Assignment_Type;
271 -- Start of processing for Analyze_Assignment
273 begin
274 Mark_Coextensions (N, Rhs);
276 -- Analyze the target of the assignment first in case the expression
277 -- contains references to Ghost entities. The checks that verify the
278 -- proper use of a Ghost entity need to know the enclosing context.
280 Analyze (Lhs);
281 Analyze (Rhs);
283 -- Ensure that we never do an assignment on a variable marked as
284 -- as Safe_To_Reevaluate.
286 pragma Assert (not Is_Entity_Name (Lhs)
287 or else Ekind (Entity (Lhs)) /= E_Variable
288 or else not Is_Safe_To_Reevaluate (Entity (Lhs)));
290 -- Start type analysis for assignment
292 T1 := Etype (Lhs);
294 -- In the most general case, both Lhs and Rhs can be overloaded, and we
295 -- must compute the intersection of the possible types on each side.
297 if Is_Overloaded (Lhs) then
298 declare
299 I : Interp_Index;
300 It : Interp;
302 begin
303 T1 := Any_Type;
304 Get_First_Interp (Lhs, I, It);
306 while Present (It.Typ) loop
307 if Has_Compatible_Type (Rhs, It.Typ) then
308 if T1 /= Any_Type then
310 -- An explicit dereference is overloaded if the prefix
311 -- is. Try to remove the ambiguity on the prefix, the
312 -- error will be posted there if the ambiguity is real.
314 if Nkind (Lhs) = N_Explicit_Dereference then
315 declare
316 PI : Interp_Index;
317 PI1 : Interp_Index := 0;
318 PIt : Interp;
319 Found : Boolean;
321 begin
322 Found := False;
323 Get_First_Interp (Prefix (Lhs), PI, PIt);
325 while Present (PIt.Typ) loop
326 if Is_Access_Type (PIt.Typ)
327 and then Has_Compatible_Type
328 (Rhs, Designated_Type (PIt.Typ))
329 then
330 if Found then
331 PIt :=
332 Disambiguate (Prefix (Lhs),
333 PI1, PI, Any_Type);
335 if PIt = No_Interp then
336 Error_Msg_N
337 ("ambiguous left-hand side"
338 & " in assignment", Lhs);
339 exit;
340 else
341 Resolve (Prefix (Lhs), PIt.Typ);
342 end if;
344 exit;
345 else
346 Found := True;
347 PI1 := PI;
348 end if;
349 end if;
351 Get_Next_Interp (PI, PIt);
352 end loop;
353 end;
355 else
356 Error_Msg_N
357 ("ambiguous left-hand side in assignment", Lhs);
358 exit;
359 end if;
360 else
361 T1 := It.Typ;
362 end if;
363 end if;
365 Get_Next_Interp (I, It);
366 end loop;
367 end;
369 if T1 = Any_Type then
370 Error_Msg_N
371 ("no valid types for left-hand side for assignment", Lhs);
372 Kill_Lhs;
373 return;
374 end if;
375 end if;
377 -- The resulting assignment type is T1, so now we will resolve the left
378 -- hand side of the assignment using this determined type.
380 Resolve (Lhs, T1);
382 -- Cases where Lhs is not a variable
384 if not Is_Variable (Lhs) then
386 -- Ada 2005 (AI-327): Check assignment to the attribute Priority of a
387 -- protected object.
389 declare
390 Ent : Entity_Id;
391 S : Entity_Id;
393 begin
394 if Ada_Version >= Ada_2005 then
396 -- Handle chains of renamings
398 Ent := Lhs;
399 while Nkind (Ent) in N_Has_Entity
400 and then Present (Entity (Ent))
401 and then Present (Renamed_Object (Entity (Ent)))
402 loop
403 Ent := Renamed_Object (Entity (Ent));
404 end loop;
406 if (Nkind (Ent) = N_Attribute_Reference
407 and then Attribute_Name (Ent) = Name_Priority)
409 -- Renamings of the attribute Priority applied to protected
410 -- objects have been previously expanded into calls to the
411 -- Get_Ceiling run-time subprogram.
413 or else
414 (Nkind (Ent) = N_Function_Call
415 and then (Entity (Name (Ent)) = RTE (RE_Get_Ceiling)
416 or else
417 Entity (Name (Ent)) = RTE (RO_PE_Get_Ceiling)))
418 then
419 -- The enclosing subprogram cannot be a protected function
421 S := Current_Scope;
422 while not (Is_Subprogram (S)
423 and then Convention (S) = Convention_Protected)
424 and then S /= Standard_Standard
425 loop
426 S := Scope (S);
427 end loop;
429 if Ekind (S) = E_Function
430 and then Convention (S) = Convention_Protected
431 then
432 Error_Msg_N
433 ("protected function cannot modify protected object",
434 Lhs);
435 end if;
437 -- Changes of the ceiling priority of the protected object
438 -- are only effective if the Ceiling_Locking policy is in
439 -- effect (AARM D.5.2 (5/2)).
441 if Locking_Policy /= 'C' then
442 Error_Msg_N ("assignment to the attribute PRIORITY has " &
443 "no effect??", Lhs);
444 Error_Msg_N ("\since no Locking_Policy has been " &
445 "specified??", Lhs);
446 end if;
448 return;
449 end if;
450 end if;
451 end;
453 Diagnose_Non_Variable_Lhs (Lhs);
454 return;
456 -- Error of assigning to limited type. We do however allow this in
457 -- certain cases where the front end generates the assignments.
459 elsif Is_Limited_Type (T1)
460 and then not Assignment_OK (Lhs)
461 and then not Assignment_OK (Original_Node (Lhs))
462 and then not Is_Value_Type (T1)
463 then
464 -- CPP constructors can only be called in declarations
466 if Is_CPP_Constructor_Call (Rhs) then
467 Error_Msg_N ("invalid use of 'C'P'P constructor", Rhs);
468 else
469 Error_Msg_N
470 ("left hand of assignment must not be limited type", Lhs);
471 Explain_Limited_Type (T1, Lhs);
472 end if;
473 return;
475 -- Enforce RM 3.9.3 (8): the target of an assignment operation cannot be
476 -- abstract. This is only checked when the assignment Comes_From_Source,
477 -- because in some cases the expander generates such assignments (such
478 -- in the _assign operation for an abstract type).
480 elsif Is_Abstract_Type (T1) and then Comes_From_Source (N) then
481 Error_Msg_N
482 ("target of assignment operation must not be abstract", Lhs);
483 end if;
485 -- Resolution may have updated the subtype, in case the left-hand side
486 -- is a private protected component. Use the correct subtype to avoid
487 -- scoping issues in the back-end.
489 T1 := Etype (Lhs);
491 -- Ada 2005 (AI-50217, AI-326): Check wrong dereference of incomplete
492 -- type. For example:
494 -- limited with P;
495 -- package Pkg is
496 -- type Acc is access P.T;
497 -- end Pkg;
499 -- with Pkg; use Acc;
500 -- procedure Example is
501 -- A, B : Acc;
502 -- begin
503 -- A.all := B.all; -- ERROR
504 -- end Example;
506 if Nkind (Lhs) = N_Explicit_Dereference
507 and then Ekind (T1) = E_Incomplete_Type
508 then
509 Error_Msg_N ("invalid use of incomplete type", Lhs);
510 Kill_Lhs;
511 return;
512 end if;
514 -- Now we can complete the resolution of the right hand side
516 Set_Assignment_Type (Lhs, T1);
517 Resolve (Rhs, T1);
519 -- This is the point at which we check for an unset reference
521 Check_Unset_Reference (Rhs);
522 Check_Unprotected_Access (Lhs, Rhs);
524 -- Remaining steps are skipped if Rhs was syntactically in error
526 if Rhs = Error then
527 Kill_Lhs;
528 return;
529 end if;
531 T2 := Etype (Rhs);
533 if not Covers (T1, T2) then
534 Wrong_Type (Rhs, Etype (Lhs));
535 Kill_Lhs;
536 return;
537 end if;
539 -- Ada 2005 (AI-326): In case of explicit dereference of incomplete
540 -- types, use the non-limited view if available
542 if Nkind (Rhs) = N_Explicit_Dereference
543 and then Ekind (T2) = E_Incomplete_Type
544 and then Is_Tagged_Type (T2)
545 and then Present (Non_Limited_View (T2))
546 then
547 T2 := Non_Limited_View (T2);
548 end if;
550 Set_Assignment_Type (Rhs, T2);
552 if Total_Errors_Detected /= 0 then
553 if No (T1) then
554 T1 := Any_Type;
555 end if;
557 if No (T2) then
558 T2 := Any_Type;
559 end if;
560 end if;
562 if T1 = Any_Type or else T2 = Any_Type then
563 Kill_Lhs;
564 return;
565 end if;
567 -- If the rhs is class-wide or dynamically tagged, then require the lhs
568 -- to be class-wide. The case where the rhs is a dynamically tagged call
569 -- to a dispatching operation with a controlling access result is
570 -- excluded from this check, since the target has an access type (and
571 -- no tag propagation occurs in that case).
573 if (Is_Class_Wide_Type (T2)
574 or else (Is_Dynamically_Tagged (Rhs)
575 and then not Is_Access_Type (T1)))
576 and then not Is_Class_Wide_Type (T1)
577 then
578 Error_Msg_N ("dynamically tagged expression not allowed!", Rhs);
580 elsif Is_Class_Wide_Type (T1)
581 and then not Is_Class_Wide_Type (T2)
582 and then not Is_Tag_Indeterminate (Rhs)
583 and then not Is_Dynamically_Tagged (Rhs)
584 then
585 Error_Msg_N ("dynamically tagged expression required!", Rhs);
586 end if;
588 -- Propagate the tag from a class-wide target to the rhs when the rhs
589 -- is a tag-indeterminate call.
591 if Is_Tag_Indeterminate (Rhs) then
592 if Is_Class_Wide_Type (T1) then
593 Propagate_Tag (Lhs, Rhs);
595 elsif Nkind (Rhs) = N_Function_Call
596 and then Is_Entity_Name (Name (Rhs))
597 and then Is_Abstract_Subprogram (Entity (Name (Rhs)))
598 then
599 Error_Msg_N
600 ("call to abstract function must be dispatching", Name (Rhs));
602 elsif Nkind (Rhs) = N_Qualified_Expression
603 and then Nkind (Expression (Rhs)) = N_Function_Call
604 and then Is_Entity_Name (Name (Expression (Rhs)))
605 and then
606 Is_Abstract_Subprogram (Entity (Name (Expression (Rhs))))
607 then
608 Error_Msg_N
609 ("call to abstract function must be dispatching",
610 Name (Expression (Rhs)));
611 end if;
612 end if;
614 -- Ada 2005 (AI-385): When the lhs type is an anonymous access type,
615 -- apply an implicit conversion of the rhs to that type to force
616 -- appropriate static and run-time accessibility checks. This applies
617 -- as well to anonymous access-to-subprogram types that are component
618 -- subtypes or formal parameters.
620 if Ada_Version >= Ada_2005 and then Is_Access_Type (T1) then
621 if Is_Local_Anonymous_Access (T1)
622 or else Ekind (T2) = E_Anonymous_Access_Subprogram_Type
624 -- Handle assignment to an Ada 2012 stand-alone object
625 -- of an anonymous access type.
627 or else (Ekind (T1) = E_Anonymous_Access_Type
628 and then Nkind (Associated_Node_For_Itype (T1)) =
629 N_Object_Declaration)
631 then
632 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
633 Analyze_And_Resolve (Rhs, T1);
634 end if;
635 end if;
637 -- Ada 2005 (AI-231): Assignment to not null variable
639 if Ada_Version >= Ada_2005
640 and then Can_Never_Be_Null (T1)
641 and then not Assignment_OK (Lhs)
642 then
643 -- Case where we know the right hand side is null
645 if Known_Null (Rhs) then
646 Apply_Compile_Time_Constraint_Error
647 (N => Rhs,
648 Msg =>
649 "(Ada 2005) null not allowed in null-excluding objects??",
650 Reason => CE_Null_Not_Allowed);
652 -- We still mark this as a possible modification, that's necessary
653 -- to reset Is_True_Constant, and desirable for xref purposes.
655 Note_Possible_Modification (Lhs, Sure => True);
656 return;
658 -- If we know the right hand side is non-null, then we convert to the
659 -- target type, since we don't need a run time check in that case.
661 elsif not Can_Never_Be_Null (T2) then
662 Rewrite (Rhs, Convert_To (T1, Relocate_Node (Rhs)));
663 Analyze_And_Resolve (Rhs, T1);
664 end if;
665 end if;
667 if Is_Scalar_Type (T1) then
668 Apply_Scalar_Range_Check (Rhs, Etype (Lhs));
670 -- For array types, verify that lengths match. If the right hand side
671 -- is a function call that has been inlined, the assignment has been
672 -- rewritten as a block, and the constraint check will be applied to the
673 -- assignment within the block.
675 elsif Is_Array_Type (T1)
676 and then (Nkind (Rhs) /= N_Type_Conversion
677 or else Is_Constrained (Etype (Rhs)))
678 and then (Nkind (Rhs) /= N_Function_Call
679 or else Nkind (N) /= N_Block_Statement)
680 then
681 -- Assignment verifies that the length of the Lsh and Rhs are equal,
682 -- but of course the indexes do not have to match. If the right-hand
683 -- side is a type conversion to an unconstrained type, a length check
684 -- is performed on the expression itself during expansion. In rare
685 -- cases, the redundant length check is computed on an index type
686 -- with a different representation, triggering incorrect code in the
687 -- back end.
689 Apply_Length_Check (Rhs, Etype (Lhs));
691 else
692 -- Discriminant checks are applied in the course of expansion
694 null;
695 end if;
697 -- Note: modifications of the Lhs may only be recorded after
698 -- checks have been applied.
700 Note_Possible_Modification (Lhs, Sure => True);
702 -- ??? a real accessibility check is needed when ???
704 -- Post warning for redundant assignment or variable to itself
706 if Warn_On_Redundant_Constructs
708 -- We only warn for source constructs
710 and then Comes_From_Source (N)
712 -- Where the object is the same on both sides
714 and then Same_Object (Lhs, Original_Node (Rhs))
716 -- But exclude the case where the right side was an operation that
717 -- got rewritten (e.g. JUNK + K, where K was known to be zero). We
718 -- don't want to warn in such a case, since it is reasonable to write
719 -- such expressions especially when K is defined symbolically in some
720 -- other package.
722 and then Nkind (Original_Node (Rhs)) not in N_Op
723 then
724 if Nkind (Lhs) in N_Has_Entity then
725 Error_Msg_NE -- CODEFIX
726 ("?r?useless assignment of & to itself!", N, Entity (Lhs));
727 else
728 Error_Msg_N -- CODEFIX
729 ("?r?useless assignment of object to itself!", N);
730 end if;
731 end if;
733 -- Check for non-allowed composite assignment
735 if not Support_Composite_Assign_On_Target
736 and then (Is_Array_Type (T1) or else Is_Record_Type (T1))
737 and then (not Has_Size_Clause (T1) or else Esize (T1) > 64)
738 then
739 Error_Msg_CRT ("composite assignment", N);
740 end if;
742 -- Check elaboration warning for left side if not in elab code
744 if not In_Subprogram_Or_Concurrent_Unit then
745 Check_Elab_Assign (Lhs);
746 end if;
748 -- Set Referenced_As_LHS if appropriate. We only set this flag if the
749 -- assignment is a source assignment in the extended main source unit.
750 -- We are not interested in any reference information outside this
751 -- context, or in compiler generated assignment statements.
753 if Comes_From_Source (N)
754 and then In_Extended_Main_Source_Unit (Lhs)
755 then
756 Set_Referenced_Modified (Lhs, Out_Param => False);
757 end if;
759 -- Final step. If left side is an entity, then we may be able to reset
760 -- the current tracked values to new safe values. We only have something
761 -- to do if the left side is an entity name, and expansion has not
762 -- modified the node into something other than an assignment, and of
763 -- course we only capture values if it is safe to do so.
765 if Is_Entity_Name (Lhs)
766 and then Nkind (N) = N_Assignment_Statement
767 then
768 declare
769 Ent : constant Entity_Id := Entity (Lhs);
771 begin
772 if Safe_To_Capture_Value (N, Ent) then
774 -- If simple variable on left side, warn if this assignment
775 -- blots out another one (rendering it useless). We only do
776 -- this for source assignments, otherwise we can generate bogus
777 -- warnings when an assignment is rewritten as another
778 -- assignment, and gets tied up with itself.
780 if Warn_On_Modified_Unread
781 and then Is_Assignable (Ent)
782 and then Comes_From_Source (N)
783 and then In_Extended_Main_Source_Unit (Ent)
784 then
785 Warn_On_Useless_Assignment (Ent, N);
786 end if;
788 -- If we are assigning an access type and the left side is an
789 -- entity, then make sure that the Is_Known_[Non_]Null flags
790 -- properly reflect the state of the entity after assignment.
792 if Is_Access_Type (T1) then
793 if Known_Non_Null (Rhs) then
794 Set_Is_Known_Non_Null (Ent, True);
796 elsif Known_Null (Rhs)
797 and then not Can_Never_Be_Null (Ent)
798 then
799 Set_Is_Known_Null (Ent, True);
801 else
802 Set_Is_Known_Null (Ent, False);
804 if not Can_Never_Be_Null (Ent) then
805 Set_Is_Known_Non_Null (Ent, False);
806 end if;
807 end if;
809 -- For discrete types, we may be able to set the current value
810 -- if the value is known at compile time.
812 elsif Is_Discrete_Type (T1)
813 and then Compile_Time_Known_Value (Rhs)
814 then
815 Set_Current_Value (Ent, Rhs);
816 else
817 Set_Current_Value (Ent, Empty);
818 end if;
820 -- If not safe to capture values, kill them
822 else
823 Kill_Lhs;
824 end if;
825 end;
826 end if;
828 -- If assigning to an object in whole or in part, note location of
829 -- assignment in case no one references value. We only do this for
830 -- source assignments, otherwise we can generate bogus warnings when an
831 -- assignment is rewritten as another assignment, and gets tied up with
832 -- itself.
834 declare
835 Ent : constant Entity_Id := Get_Enclosing_Object (Lhs);
836 begin
837 if Present (Ent)
838 and then Safe_To_Capture_Value (N, Ent)
839 and then Nkind (N) = N_Assignment_Statement
840 and then Warn_On_Modified_Unread
841 and then Is_Assignable (Ent)
842 and then Comes_From_Source (N)
843 and then In_Extended_Main_Source_Unit (Ent)
844 then
845 Set_Last_Assignment (Ent, Lhs);
846 end if;
847 end;
849 Analyze_Dimension (N);
850 end Analyze_Assignment;
852 -----------------------------
853 -- Analyze_Block_Statement --
854 -----------------------------
856 procedure Analyze_Block_Statement (N : Node_Id) is
857 procedure Install_Return_Entities (Scop : Entity_Id);
858 -- Install all entities of return statement scope Scop in the visibility
859 -- chain except for the return object since its entity is reused in a
860 -- renaming.
862 -----------------------------
863 -- Install_Return_Entities --
864 -----------------------------
866 procedure Install_Return_Entities (Scop : Entity_Id) is
867 Id : Entity_Id;
869 begin
870 Id := First_Entity (Scop);
871 while Present (Id) loop
873 -- Do not install the return object
875 if not Ekind_In (Id, E_Constant, E_Variable)
876 or else not Is_Return_Object (Id)
877 then
878 Install_Entity (Id);
879 end if;
881 Next_Entity (Id);
882 end loop;
883 end Install_Return_Entities;
885 -- Local constants and variables
887 Decls : constant List_Id := Declarations (N);
888 Id : constant Node_Id := Identifier (N);
889 HSS : constant Node_Id := Handled_Statement_Sequence (N);
891 Is_BIP_Return_Statement : Boolean;
893 -- Start of processing for Analyze_Block_Statement
895 begin
896 -- In SPARK mode, we reject block statements. Note that the case of
897 -- block statements generated by the expander is fine.
899 if Nkind (Original_Node (N)) = N_Block_Statement then
900 Check_SPARK_05_Restriction ("block statement is not allowed", N);
901 end if;
903 -- If no handled statement sequence is present, things are really messed
904 -- up, and we just return immediately (defence against previous errors).
906 if No (HSS) then
907 Check_Error_Detected;
908 return;
909 end if;
911 -- Detect whether the block is actually a rewritten return statement of
912 -- a build-in-place function.
914 Is_BIP_Return_Statement :=
915 Present (Id)
916 and then Present (Entity (Id))
917 and then Ekind (Entity (Id)) = E_Return_Statement
918 and then Is_Build_In_Place_Function
919 (Return_Applies_To (Entity (Id)));
921 -- Normal processing with HSS present
923 declare
924 EH : constant List_Id := Exception_Handlers (HSS);
925 Ent : Entity_Id := Empty;
926 S : Entity_Id;
928 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
929 -- Recursively save value of this global, will be restored on exit
931 begin
932 -- Initialize unblocked exit count for statements of begin block
933 -- plus one for each exception handler that is present.
935 Unblocked_Exit_Count := 1;
937 if Present (EH) then
938 Unblocked_Exit_Count := Unblocked_Exit_Count + List_Length (EH);
939 end if;
941 -- If a label is present analyze it and mark it as referenced
943 if Present (Id) then
944 Analyze (Id);
945 Ent := Entity (Id);
947 -- An error defense. If we have an identifier, but no entity, then
948 -- something is wrong. If previous errors, then just remove the
949 -- identifier and continue, otherwise raise an exception.
951 if No (Ent) then
952 Check_Error_Detected;
953 Set_Identifier (N, Empty);
955 else
956 Set_Ekind (Ent, E_Block);
957 Generate_Reference (Ent, N, ' ');
958 Generate_Definition (Ent);
960 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
961 Set_Label_Construct (Parent (Ent), N);
962 end if;
963 end if;
964 end if;
966 -- If no entity set, create a label entity
968 if No (Ent) then
969 Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B');
970 Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N)));
971 Set_Parent (Ent, N);
972 end if;
974 Set_Etype (Ent, Standard_Void_Type);
975 Set_Block_Node (Ent, Identifier (N));
976 Push_Scope (Ent);
978 -- The block served as an extended return statement. Ensure that any
979 -- entities created during the analysis and expansion of the return
980 -- object declaration are once again visible.
982 if Is_BIP_Return_Statement then
983 Install_Return_Entities (Ent);
984 end if;
986 if Present (Decls) then
987 Analyze_Declarations (Decls);
988 Check_Completion;
989 Inspect_Deferred_Constant_Completion (Decls);
990 end if;
992 Analyze (HSS);
993 Process_End_Label (HSS, 'e', Ent);
995 -- If exception handlers are present, then we indicate that enclosing
996 -- scopes contain a block with handlers. We only need to mark non-
997 -- generic scopes.
999 if Present (EH) then
1000 S := Scope (Ent);
1001 loop
1002 Set_Has_Nested_Block_With_Handler (S);
1003 exit when Is_Overloadable (S)
1004 or else Ekind (S) = E_Package
1005 or else Is_Generic_Unit (S);
1006 S := Scope (S);
1007 end loop;
1008 end if;
1010 Check_References (Ent);
1011 Warn_On_Useless_Assignments (Ent);
1012 End_Scope;
1014 if Unblocked_Exit_Count = 0 then
1015 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1016 Check_Unreachable_Code (N);
1017 else
1018 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1019 end if;
1020 end;
1021 end Analyze_Block_Statement;
1023 --------------------------------
1024 -- Analyze_Compound_Statement --
1025 --------------------------------
1027 procedure Analyze_Compound_Statement (N : Node_Id) is
1028 begin
1029 Analyze_List (Actions (N));
1030 end Analyze_Compound_Statement;
1032 ----------------------------
1033 -- Analyze_Case_Statement --
1034 ----------------------------
1036 procedure Analyze_Case_Statement (N : Node_Id) is
1037 Exp : Node_Id;
1038 Exp_Type : Entity_Id;
1039 Exp_Btype : Entity_Id;
1040 Last_Choice : Nat;
1042 Others_Present : Boolean;
1043 -- Indicates if Others was present
1045 pragma Warnings (Off, Last_Choice);
1046 -- Don't care about assigned value
1048 Statements_Analyzed : Boolean := False;
1049 -- Set True if at least some statement sequences get analyzed. If False
1050 -- on exit, means we had a serious error that prevented full analysis of
1051 -- the case statement, and as a result it is not a good idea to output
1052 -- warning messages about unreachable code.
1054 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1055 -- Recursively save value of this global, will be restored on exit
1057 procedure Non_Static_Choice_Error (Choice : Node_Id);
1058 -- Error routine invoked by the generic instantiation below when the
1059 -- case statement has a non static choice.
1061 procedure Process_Statements (Alternative : Node_Id);
1062 -- Analyzes the statements associated with a case alternative. Needed
1063 -- by instantiation below.
1065 package Analyze_Case_Choices is new
1066 Generic_Analyze_Choices
1067 (Process_Associated_Node => Process_Statements);
1068 use Analyze_Case_Choices;
1069 -- Instantiation of the generic choice analysis package
1071 package Check_Case_Choices is new
1072 Generic_Check_Choices
1073 (Process_Empty_Choice => No_OP,
1074 Process_Non_Static_Choice => Non_Static_Choice_Error,
1075 Process_Associated_Node => No_OP);
1076 use Check_Case_Choices;
1077 -- Instantiation of the generic choice processing package
1079 -----------------------------
1080 -- Non_Static_Choice_Error --
1081 -----------------------------
1083 procedure Non_Static_Choice_Error (Choice : Node_Id) is
1084 begin
1085 Flag_Non_Static_Expr
1086 ("choice given in case statement is not static!", Choice);
1087 end Non_Static_Choice_Error;
1089 ------------------------
1090 -- Process_Statements --
1091 ------------------------
1093 procedure Process_Statements (Alternative : Node_Id) is
1094 Choices : constant List_Id := Discrete_Choices (Alternative);
1095 Ent : Entity_Id;
1097 begin
1098 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1099 Statements_Analyzed := True;
1101 -- An interesting optimization. If the case statement expression
1102 -- is a simple entity, then we can set the current value within an
1103 -- alternative if the alternative has one possible value.
1105 -- case N is
1106 -- when 1 => alpha
1107 -- when 2 | 3 => beta
1108 -- when others => gamma
1110 -- Here we know that N is initially 1 within alpha, but for beta and
1111 -- gamma, we do not know anything more about the initial value.
1113 if Is_Entity_Name (Exp) then
1114 Ent := Entity (Exp);
1116 if Ekind_In (Ent, E_Variable,
1117 E_In_Out_Parameter,
1118 E_Out_Parameter)
1119 then
1120 if List_Length (Choices) = 1
1121 and then Nkind (First (Choices)) in N_Subexpr
1122 and then Compile_Time_Known_Value (First (Choices))
1123 then
1124 Set_Current_Value (Entity (Exp), First (Choices));
1125 end if;
1127 Analyze_Statements (Statements (Alternative));
1129 -- After analyzing the case, set the current value to empty
1130 -- since we won't know what it is for the next alternative
1131 -- (unless reset by this same circuit), or after the case.
1133 Set_Current_Value (Entity (Exp), Empty);
1134 return;
1135 end if;
1136 end if;
1138 -- Case where expression is not an entity name of a variable
1140 Analyze_Statements (Statements (Alternative));
1141 end Process_Statements;
1143 -- Start of processing for Analyze_Case_Statement
1145 begin
1146 Unblocked_Exit_Count := 0;
1147 Exp := Expression (N);
1148 Analyze (Exp);
1150 -- The expression must be of any discrete type. In rare cases, the
1151 -- expander constructs a case statement whose expression has a private
1152 -- type whose full view is discrete. This can happen when generating
1153 -- a stream operation for a variant type after the type is frozen,
1154 -- when the partial of view of the type of the discriminant is private.
1155 -- In that case, use the full view to analyze case alternatives.
1157 if not Is_Overloaded (Exp)
1158 and then not Comes_From_Source (N)
1159 and then Is_Private_Type (Etype (Exp))
1160 and then Present (Full_View (Etype (Exp)))
1161 and then Is_Discrete_Type (Full_View (Etype (Exp)))
1162 then
1163 Resolve (Exp, Etype (Exp));
1164 Exp_Type := Full_View (Etype (Exp));
1166 else
1167 Analyze_And_Resolve (Exp, Any_Discrete);
1168 Exp_Type := Etype (Exp);
1169 end if;
1171 Check_Unset_Reference (Exp);
1172 Exp_Btype := Base_Type (Exp_Type);
1174 -- The expression must be of a discrete type which must be determinable
1175 -- independently of the context in which the expression occurs, but
1176 -- using the fact that the expression must be of a discrete type.
1177 -- Moreover, the type this expression must not be a character literal
1178 -- (which is always ambiguous) or, for Ada-83, a generic formal type.
1180 -- If error already reported by Resolve, nothing more to do
1182 if Exp_Btype = Any_Discrete or else Exp_Btype = Any_Type then
1183 return;
1185 elsif Exp_Btype = Any_Character then
1186 Error_Msg_N
1187 ("character literal as case expression is ambiguous", Exp);
1188 return;
1190 elsif Ada_Version = Ada_83
1191 and then (Is_Generic_Type (Exp_Btype)
1192 or else Is_Generic_Type (Root_Type (Exp_Btype)))
1193 then
1194 Error_Msg_N
1195 ("(Ada 83) case expression cannot be of a generic type", Exp);
1196 return;
1197 end if;
1199 -- If the case expression is a formal object of mode in out, then treat
1200 -- it as having a nonstatic subtype by forcing use of the base type
1201 -- (which has to get passed to Check_Case_Choices below). Also use base
1202 -- type when the case expression is parenthesized.
1204 if Paren_Count (Exp) > 0
1205 or else (Is_Entity_Name (Exp)
1206 and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter)
1207 then
1208 Exp_Type := Exp_Btype;
1209 end if;
1211 -- Call instantiated procedures to analyzwe and check discrete choices
1213 Analyze_Choices (Alternatives (N), Exp_Type);
1214 Check_Choices (N, Alternatives (N), Exp_Type, Others_Present);
1216 -- Case statement with single OTHERS alternative not allowed in SPARK
1218 if Others_Present and then List_Length (Alternatives (N)) = 1 then
1219 Check_SPARK_05_Restriction
1220 ("OTHERS as unique case alternative is not allowed", N);
1221 end if;
1223 if Exp_Type = Universal_Integer and then not Others_Present then
1224 Error_Msg_N ("case on universal integer requires OTHERS choice", Exp);
1225 end if;
1227 -- If all our exits were blocked by unconditional transfers of control,
1228 -- then the entire CASE statement acts as an unconditional transfer of
1229 -- control, so treat it like one, and check unreachable code. Skip this
1230 -- test if we had serious errors preventing any statement analysis.
1232 if Unblocked_Exit_Count = 0 and then Statements_Analyzed then
1233 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1234 Check_Unreachable_Code (N);
1235 else
1236 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1237 end if;
1239 -- If the expander is active it will detect the case of a statically
1240 -- determined single alternative and remove warnings for the case, but
1241 -- if we are not doing expansion, that circuit won't be active. Here we
1242 -- duplicate the effect of removing warnings in the same way, so that
1243 -- we will get the same set of warnings in -gnatc mode.
1245 if not Expander_Active
1246 and then Compile_Time_Known_Value (Expression (N))
1247 and then Serious_Errors_Detected = 0
1248 then
1249 declare
1250 Chosen : constant Node_Id := Find_Static_Alternative (N);
1251 Alt : Node_Id;
1253 begin
1254 Alt := First (Alternatives (N));
1255 while Present (Alt) loop
1256 if Alt /= Chosen then
1257 Remove_Warning_Messages (Statements (Alt));
1258 end if;
1260 Next (Alt);
1261 end loop;
1262 end;
1263 end if;
1264 end Analyze_Case_Statement;
1266 ----------------------------
1267 -- Analyze_Exit_Statement --
1268 ----------------------------
1270 -- If the exit includes a name, it must be the name of a currently open
1271 -- loop. Otherwise there must be an innermost open loop on the stack, to
1272 -- which the statement implicitly refers.
1274 -- Additionally, in SPARK mode:
1276 -- The exit can only name the closest enclosing loop;
1278 -- An exit with a when clause must be directly contained in a loop;
1280 -- An exit without a when clause must be directly contained in an
1281 -- if-statement with no elsif or else, which is itself directly contained
1282 -- in a loop. The exit must be the last statement in the if-statement.
1284 procedure Analyze_Exit_Statement (N : Node_Id) is
1285 Target : constant Node_Id := Name (N);
1286 Cond : constant Node_Id := Condition (N);
1287 Scope_Id : Entity_Id;
1288 U_Name : Entity_Id;
1289 Kind : Entity_Kind;
1291 begin
1292 if No (Cond) then
1293 Check_Unreachable_Code (N);
1294 end if;
1296 if Present (Target) then
1297 Analyze (Target);
1298 U_Name := Entity (Target);
1300 if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then
1301 Error_Msg_N ("invalid loop name in exit statement", N);
1302 return;
1304 else
1305 if Has_Loop_In_Inner_Open_Scopes (U_Name) then
1306 Check_SPARK_05_Restriction
1307 ("exit label must name the closest enclosing loop", N);
1308 end if;
1310 Set_Has_Exit (U_Name);
1311 end if;
1313 else
1314 U_Name := Empty;
1315 end if;
1317 for J in reverse 0 .. Scope_Stack.Last loop
1318 Scope_Id := Scope_Stack.Table (J).Entity;
1319 Kind := Ekind (Scope_Id);
1321 if Kind = E_Loop and then (No (Target) or else Scope_Id = U_Name) then
1322 Set_Has_Exit (Scope_Id);
1323 exit;
1325 elsif Kind = E_Block
1326 or else Kind = E_Loop
1327 or else Kind = E_Return_Statement
1328 then
1329 null;
1331 else
1332 Error_Msg_N
1333 ("cannot exit from program unit or accept statement", N);
1334 return;
1335 end if;
1336 end loop;
1338 -- Verify that if present the condition is a Boolean expression
1340 if Present (Cond) then
1341 Analyze_And_Resolve (Cond, Any_Boolean);
1342 Check_Unset_Reference (Cond);
1343 end if;
1345 -- In SPARK mode, verify that the exit statement respects the SPARK
1346 -- restrictions.
1348 if Present (Cond) then
1349 if Nkind (Parent (N)) /= N_Loop_Statement then
1350 Check_SPARK_05_Restriction
1351 ("exit with when clause must be directly in loop", N);
1352 end if;
1354 else
1355 if Nkind (Parent (N)) /= N_If_Statement then
1356 if Nkind (Parent (N)) = N_Elsif_Part then
1357 Check_SPARK_05_Restriction
1358 ("exit must be in IF without ELSIF", N);
1359 else
1360 Check_SPARK_05_Restriction ("exit must be directly in IF", N);
1361 end if;
1363 elsif Nkind (Parent (Parent (N))) /= N_Loop_Statement then
1364 Check_SPARK_05_Restriction
1365 ("exit must be in IF directly in loop", N);
1367 -- First test the presence of ELSE, so that an exit in an ELSE leads
1368 -- to an error mentioning the ELSE.
1370 elsif Present (Else_Statements (Parent (N))) then
1371 Check_SPARK_05_Restriction ("exit must be in IF without ELSE", N);
1373 -- An exit in an ELSIF does not reach here, as it would have been
1374 -- detected in the case (Nkind (Parent (N)) /= N_If_Statement).
1376 elsif Present (Elsif_Parts (Parent (N))) then
1377 Check_SPARK_05_Restriction ("exit must be in IF without ELSIF", N);
1378 end if;
1379 end if;
1381 -- Chain exit statement to associated loop entity
1383 Set_Next_Exit_Statement (N, First_Exit_Statement (Scope_Id));
1384 Set_First_Exit_Statement (Scope_Id, N);
1386 -- Since the exit may take us out of a loop, any previous assignment
1387 -- statement is not useless, so clear last assignment indications. It
1388 -- is OK to keep other current values, since if the exit statement
1389 -- does not exit, then the current values are still valid.
1391 Kill_Current_Values (Last_Assignment_Only => True);
1392 end Analyze_Exit_Statement;
1394 ----------------------------
1395 -- Analyze_Goto_Statement --
1396 ----------------------------
1398 procedure Analyze_Goto_Statement (N : Node_Id) is
1399 Label : constant Node_Id := Name (N);
1400 Scope_Id : Entity_Id;
1401 Label_Scope : Entity_Id;
1402 Label_Ent : Entity_Id;
1404 begin
1405 Check_SPARK_05_Restriction ("goto statement is not allowed", N);
1407 -- Actual semantic checks
1409 Check_Unreachable_Code (N);
1410 Kill_Current_Values (Last_Assignment_Only => True);
1412 Analyze (Label);
1413 Label_Ent := Entity (Label);
1415 -- Ignore previous error
1417 if Label_Ent = Any_Id then
1418 Check_Error_Detected;
1419 return;
1421 -- We just have a label as the target of a goto
1423 elsif Ekind (Label_Ent) /= E_Label then
1424 Error_Msg_N ("target of goto statement must be a label", Label);
1425 return;
1427 -- Check that the target of the goto is reachable according to Ada
1428 -- scoping rules. Note: the special gotos we generate for optimizing
1429 -- local handling of exceptions would violate these rules, but we mark
1430 -- such gotos as analyzed when built, so this code is never entered.
1432 elsif not Reachable (Label_Ent) then
1433 Error_Msg_N ("target of goto statement is not reachable", Label);
1434 return;
1435 end if;
1437 -- Here if goto passes initial validity checks
1439 Label_Scope := Enclosing_Scope (Label_Ent);
1441 for J in reverse 0 .. Scope_Stack.Last loop
1442 Scope_Id := Scope_Stack.Table (J).Entity;
1444 if Label_Scope = Scope_Id
1445 or else not Ekind_In (Scope_Id, E_Block, E_Loop, E_Return_Statement)
1446 then
1447 if Scope_Id /= Label_Scope then
1448 Error_Msg_N
1449 ("cannot exit from program unit or accept statement", N);
1450 end if;
1452 return;
1453 end if;
1454 end loop;
1456 raise Program_Error;
1457 end Analyze_Goto_Statement;
1459 --------------------------
1460 -- Analyze_If_Statement --
1461 --------------------------
1463 -- A special complication arises in the analysis of if statements
1465 -- The expander has circuitry to completely delete code that it can tell
1466 -- will not be executed (as a result of compile time known conditions). In
1467 -- the analyzer, we ensure that code that will be deleted in this manner
1468 -- is analyzed but not expanded. This is obviously more efficient, but
1469 -- more significantly, difficulties arise if code is expanded and then
1470 -- eliminated (e.g. exception table entries disappear). Similarly, itypes
1471 -- generated in deleted code must be frozen from start, because the nodes
1472 -- on which they depend will not be available at the freeze point.
1474 procedure Analyze_If_Statement (N : Node_Id) is
1475 E : Node_Id;
1477 Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count;
1478 -- Recursively save value of this global, will be restored on exit
1480 Save_In_Deleted_Code : Boolean;
1482 Del : Boolean := False;
1483 -- This flag gets set True if a True condition has been found, which
1484 -- means that remaining ELSE/ELSIF parts are deleted.
1486 procedure Analyze_Cond_Then (Cnode : Node_Id);
1487 -- This is applied to either the N_If_Statement node itself or to an
1488 -- N_Elsif_Part node. It deals with analyzing the condition and the THEN
1489 -- statements associated with it.
1491 -----------------------
1492 -- Analyze_Cond_Then --
1493 -----------------------
1495 procedure Analyze_Cond_Then (Cnode : Node_Id) is
1496 Cond : constant Node_Id := Condition (Cnode);
1497 Tstm : constant List_Id := Then_Statements (Cnode);
1499 begin
1500 Unblocked_Exit_Count := Unblocked_Exit_Count + 1;
1501 Analyze_And_Resolve (Cond, Any_Boolean);
1502 Check_Unset_Reference (Cond);
1503 Set_Current_Value_Condition (Cnode);
1505 -- If already deleting, then just analyze then statements
1507 if Del then
1508 Analyze_Statements (Tstm);
1510 -- Compile time known value, not deleting yet
1512 elsif Compile_Time_Known_Value (Cond) then
1513 Save_In_Deleted_Code := In_Deleted_Code;
1515 -- If condition is True, then analyze the THEN statements and set
1516 -- no expansion for ELSE and ELSIF parts.
1518 if Is_True (Expr_Value (Cond)) then
1519 Analyze_Statements (Tstm);
1520 Del := True;
1521 Expander_Mode_Save_And_Set (False);
1522 In_Deleted_Code := True;
1524 -- If condition is False, analyze THEN with expansion off
1526 else -- Is_False (Expr_Value (Cond))
1527 Expander_Mode_Save_And_Set (False);
1528 In_Deleted_Code := True;
1529 Analyze_Statements (Tstm);
1530 Expander_Mode_Restore;
1531 In_Deleted_Code := Save_In_Deleted_Code;
1532 end if;
1534 -- Not known at compile time, not deleting, normal analysis
1536 else
1537 Analyze_Statements (Tstm);
1538 end if;
1539 end Analyze_Cond_Then;
1541 -- Start of Analyze_If_Statement
1543 begin
1544 -- Initialize exit count for else statements. If there is no else part,
1545 -- this count will stay non-zero reflecting the fact that the uncovered
1546 -- else case is an unblocked exit.
1548 Unblocked_Exit_Count := 1;
1549 Analyze_Cond_Then (N);
1551 -- Now to analyze the elsif parts if any are present
1553 if Present (Elsif_Parts (N)) then
1554 E := First (Elsif_Parts (N));
1555 while Present (E) loop
1556 Analyze_Cond_Then (E);
1557 Next (E);
1558 end loop;
1559 end if;
1561 if Present (Else_Statements (N)) then
1562 Analyze_Statements (Else_Statements (N));
1563 end if;
1565 -- If all our exits were blocked by unconditional transfers of control,
1566 -- then the entire IF statement acts as an unconditional transfer of
1567 -- control, so treat it like one, and check unreachable code.
1569 if Unblocked_Exit_Count = 0 then
1570 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1571 Check_Unreachable_Code (N);
1572 else
1573 Unblocked_Exit_Count := Save_Unblocked_Exit_Count;
1574 end if;
1576 if Del then
1577 Expander_Mode_Restore;
1578 In_Deleted_Code := Save_In_Deleted_Code;
1579 end if;
1581 if not Expander_Active
1582 and then Compile_Time_Known_Value (Condition (N))
1583 and then Serious_Errors_Detected = 0
1584 then
1585 if Is_True (Expr_Value (Condition (N))) then
1586 Remove_Warning_Messages (Else_Statements (N));
1588 if Present (Elsif_Parts (N)) then
1589 E := First (Elsif_Parts (N));
1590 while Present (E) loop
1591 Remove_Warning_Messages (Then_Statements (E));
1592 Next (E);
1593 end loop;
1594 end if;
1596 else
1597 Remove_Warning_Messages (Then_Statements (N));
1598 end if;
1599 end if;
1601 -- Warn on redundant if statement that has no effect
1603 -- Note, we could also check empty ELSIF parts ???
1605 if Warn_On_Redundant_Constructs
1607 -- If statement must be from source
1609 and then Comes_From_Source (N)
1611 -- Condition must not have obvious side effect
1613 and then Has_No_Obvious_Side_Effects (Condition (N))
1615 -- No elsif parts of else part
1617 and then No (Elsif_Parts (N))
1618 and then No (Else_Statements (N))
1620 -- Then must be a single null statement
1622 and then List_Length (Then_Statements (N)) = 1
1623 then
1624 -- Go to original node, since we may have rewritten something as
1625 -- a null statement (e.g. a case we could figure the outcome of).
1627 declare
1628 T : constant Node_Id := First (Then_Statements (N));
1629 S : constant Node_Id := Original_Node (T);
1631 begin
1632 if Comes_From_Source (S) and then Nkind (S) = N_Null_Statement then
1633 Error_Msg_N ("if statement has no effect?r?", N);
1634 end if;
1635 end;
1636 end if;
1637 end Analyze_If_Statement;
1639 ----------------------------------------
1640 -- Analyze_Implicit_Label_Declaration --
1641 ----------------------------------------
1643 -- An implicit label declaration is generated in the innermost enclosing
1644 -- declarative part. This is done for labels, and block and loop names.
1646 -- Note: any changes in this routine may need to be reflected in
1647 -- Analyze_Label_Entity.
1649 procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is
1650 Id : constant Node_Id := Defining_Identifier (N);
1651 begin
1652 Enter_Name (Id);
1653 Set_Ekind (Id, E_Label);
1654 Set_Etype (Id, Standard_Void_Type);
1655 Set_Enclosing_Scope (Id, Current_Scope);
1656 end Analyze_Implicit_Label_Declaration;
1658 ------------------------------
1659 -- Analyze_Iteration_Scheme --
1660 ------------------------------
1662 procedure Analyze_Iteration_Scheme (N : Node_Id) is
1663 Cond : Node_Id;
1664 Iter_Spec : Node_Id;
1665 Loop_Spec : Node_Id;
1667 begin
1668 -- For an infinite loop, there is no iteration scheme
1670 if No (N) then
1671 return;
1672 end if;
1674 Cond := Condition (N);
1675 Iter_Spec := Iterator_Specification (N);
1676 Loop_Spec := Loop_Parameter_Specification (N);
1678 if Present (Cond) then
1679 Analyze_And_Resolve (Cond, Any_Boolean);
1680 Check_Unset_Reference (Cond);
1681 Set_Current_Value_Condition (N);
1683 elsif Present (Iter_Spec) then
1684 Analyze_Iterator_Specification (Iter_Spec);
1686 else
1687 Analyze_Loop_Parameter_Specification (Loop_Spec);
1688 end if;
1689 end Analyze_Iteration_Scheme;
1691 ------------------------------------
1692 -- Analyze_Iterator_Specification --
1693 ------------------------------------
1695 procedure Analyze_Iterator_Specification (N : Node_Id) is
1696 Loc : constant Source_Ptr := Sloc (N);
1697 Def_Id : constant Node_Id := Defining_Identifier (N);
1698 Subt : constant Node_Id := Subtype_Indication (N);
1699 Iter_Name : constant Node_Id := Name (N);
1701 Ent : Entity_Id;
1702 Typ : Entity_Id;
1703 Bas : Entity_Id;
1705 procedure Check_Reverse_Iteration (Typ : Entity_Id);
1706 -- For an iteration over a container, if the loop carries the Reverse
1707 -- indicator, verify that the container type has an Iterate aspect that
1708 -- implements the reversible iterator interface.
1710 -----------------------------
1711 -- Check_Reverse_Iteration --
1712 -----------------------------
1714 procedure Check_Reverse_Iteration (Typ : Entity_Id) is
1715 begin
1716 if Reverse_Present (N)
1717 and then not Is_Array_Type (Typ)
1718 and then not Is_Reversible_Iterator (Typ)
1719 then
1720 Error_Msg_NE
1721 ("container type does not support reverse iteration", N, Typ);
1722 end if;
1723 end Check_Reverse_Iteration;
1725 -- Start of processing for Analyze_iterator_Specification
1727 begin
1728 Enter_Name (Def_Id);
1730 if Present (Subt) then
1731 Analyze (Subt);
1733 -- Save type of subtype indication for subsequent check
1735 if Nkind (Subt) = N_Subtype_Indication then
1736 Bas := Entity (Subtype_Mark (Subt));
1737 else
1738 Bas := Entity (Subt);
1739 end if;
1740 end if;
1742 Preanalyze_Range (Iter_Name);
1744 -- Set the kind of the loop variable, which is not visible within
1745 -- the iterator name.
1747 Set_Ekind (Def_Id, E_Variable);
1749 -- Provide a link between the iterator variable and the container, for
1750 -- subsequent use in cross-reference and modification information.
1752 if Of_Present (N) then
1753 Set_Related_Expression (Def_Id, Iter_Name);
1755 -- For a container, the iterator is specified through the aspect.
1757 if not Is_Array_Type (Etype (Iter_Name)) then
1758 declare
1759 Iterator : constant Entity_Id :=
1760 Find_Value_Of_Aspect
1761 (Etype (Iter_Name), Aspect_Default_Iterator);
1763 I : Interp_Index;
1764 It : Interp;
1766 begin
1767 if No (Iterator) then
1768 null; -- error reported below.
1770 elsif not Is_Overloaded (Iterator) then
1771 Check_Reverse_Iteration (Etype (Iterator));
1773 -- If Iterator is overloaded, use reversible iterator if
1774 -- one is available.
1776 elsif Is_Overloaded (Iterator) then
1777 Get_First_Interp (Iterator, I, It);
1778 while Present (It.Nam) loop
1779 if Ekind (It.Nam) = E_Function
1780 and then Is_Reversible_Iterator (Etype (It.Nam))
1781 then
1782 Set_Etype (Iterator, It.Typ);
1783 Set_Entity (Iterator, It.Nam);
1784 exit;
1785 end if;
1787 Get_Next_Interp (I, It);
1788 end loop;
1790 Check_Reverse_Iteration (Etype (Iterator));
1791 end if;
1792 end;
1793 end if;
1794 end if;
1796 -- If the domain of iteration is an expression, create a declaration for
1797 -- it, so that finalization actions are introduced outside of the loop.
1798 -- The declaration must be a renaming because the body of the loop may
1799 -- assign to elements.
1801 if not Is_Entity_Name (Iter_Name)
1803 -- When the context is a quantified expression, the renaming
1804 -- declaration is delayed until the expansion phase if we are
1805 -- doing expansion.
1807 and then (Nkind (Parent (N)) /= N_Quantified_Expression
1808 or else Operating_Mode = Check_Semantics)
1810 -- Do not perform this expansion in SPARK mode, since the formal
1811 -- verification directly deals with the source form of the iterator.
1812 -- Ditto for ASIS, where the temporary may hide the transformation
1813 -- of a selected component into a prefixed function call.
1815 and then not GNATprove_Mode
1816 and then not ASIS_Mode
1817 then
1818 declare
1819 Id : constant Entity_Id := Make_Temporary (Loc, 'R', Iter_Name);
1820 Decl : Node_Id;
1821 Act_S : Node_Id;
1823 begin
1825 -- If the domain of iteration is an array component that depends
1826 -- on a discriminant, create actual subtype for it. Pre-analysis
1827 -- does not generate the actual subtype of a selected component.
1829 if Nkind (Iter_Name) = N_Selected_Component
1830 and then Is_Array_Type (Etype (Iter_Name))
1831 then
1832 Act_S :=
1833 Build_Actual_Subtype_Of_Component
1834 (Etype (Selector_Name (Iter_Name)), Iter_Name);
1835 Insert_Action (N, Act_S);
1837 if Present (Act_S) then
1838 Typ := Defining_Identifier (Act_S);
1839 else
1840 Typ := Etype (Iter_Name);
1841 end if;
1843 else
1844 Typ := Etype (Iter_Name);
1846 -- Verify that the expression produces an iterator
1848 if not Of_Present (N) and then not Is_Iterator (Typ)
1849 and then not Is_Array_Type (Typ)
1850 and then No (Find_Aspect (Typ, Aspect_Iterable))
1851 then
1852 Error_Msg_N
1853 ("expect object that implements iterator interface",
1854 Iter_Name);
1855 end if;
1856 end if;
1858 -- Protect against malformed iterator
1860 if Typ = Any_Type then
1861 Error_Msg_N ("invalid expression in loop iterator", Iter_Name);
1862 return;
1863 end if;
1865 if not Of_Present (N) then
1866 Check_Reverse_Iteration (Typ);
1867 end if;
1869 -- The name in the renaming declaration may be a function call.
1870 -- Indicate that it does not come from source, to suppress
1871 -- spurious warnings on renamings of parameterless functions,
1872 -- a common enough idiom in user-defined iterators.
1874 Decl :=
1875 Make_Object_Renaming_Declaration (Loc,
1876 Defining_Identifier => Id,
1877 Subtype_Mark => New_Occurrence_Of (Typ, Loc),
1878 Name =>
1879 New_Copy_Tree (Iter_Name, New_Sloc => Loc));
1881 Insert_Actions (Parent (Parent (N)), New_List (Decl));
1882 Rewrite (Name (N), New_Occurrence_Of (Id, Loc));
1883 Set_Etype (Id, Typ);
1884 Set_Etype (Name (N), Typ);
1885 end;
1887 -- Container is an entity or an array with uncontrolled components, or
1888 -- else it is a container iterator given by a function call, typically
1889 -- called Iterate in the case of predefined containers, even though
1890 -- Iterate is not a reserved name. What matters is that the return type
1891 -- of the function is an iterator type.
1893 elsif Is_Entity_Name (Iter_Name) then
1894 Analyze (Iter_Name);
1896 if Nkind (Iter_Name) = N_Function_Call then
1897 declare
1898 C : constant Node_Id := Name (Iter_Name);
1899 I : Interp_Index;
1900 It : Interp;
1902 begin
1903 if not Is_Overloaded (Iter_Name) then
1904 Resolve (Iter_Name, Etype (C));
1906 else
1907 Get_First_Interp (C, I, It);
1908 while It.Typ /= Empty loop
1909 if Reverse_Present (N) then
1910 if Is_Reversible_Iterator (It.Typ) then
1911 Resolve (Iter_Name, It.Typ);
1912 exit;
1913 end if;
1915 elsif Is_Iterator (It.Typ) then
1916 Resolve (Iter_Name, It.Typ);
1917 exit;
1918 end if;
1920 Get_Next_Interp (I, It);
1921 end loop;
1922 end if;
1923 end;
1925 -- Domain of iteration is not overloaded
1927 else
1928 Resolve (Iter_Name, Etype (Iter_Name));
1929 end if;
1931 if not Of_Present (N) then
1932 Check_Reverse_Iteration (Etype (Iter_Name));
1933 end if;
1934 end if;
1936 -- Get base type of container, for proper retrieval of Cursor type
1937 -- and primitive operations.
1939 Typ := Base_Type (Etype (Iter_Name));
1941 if Is_Array_Type (Typ) then
1942 if Of_Present (N) then
1943 Set_Etype (Def_Id, Component_Type (Typ));
1945 if Present (Subt)
1946 and then Base_Type (Bas) /= Base_Type (Component_Type (Typ))
1947 then
1948 Error_Msg_N
1949 ("subtype indication does not match component type", Subt);
1950 end if;
1952 -- Here we have a missing Range attribute
1954 else
1955 Error_Msg_N
1956 ("missing Range attribute in iteration over an array", N);
1958 -- In Ada 2012 mode, this may be an attempt at an iterator
1960 if Ada_Version >= Ada_2012 then
1961 Error_Msg_NE
1962 ("\if& is meant to designate an element of the array, use OF",
1963 N, Def_Id);
1964 end if;
1966 -- Prevent cascaded errors
1968 Set_Ekind (Def_Id, E_Loop_Parameter);
1969 Set_Etype (Def_Id, Etype (First_Index (Typ)));
1970 end if;
1972 -- Check for type error in iterator
1974 elsif Typ = Any_Type then
1975 return;
1977 -- Iteration over a container
1979 else
1980 Set_Ekind (Def_Id, E_Loop_Parameter);
1981 Error_Msg_Ada_2012_Feature ("container iterator", Sloc (N));
1983 -- OF present
1985 if Of_Present (N) then
1986 if Has_Aspect (Typ, Aspect_Iterable) then
1987 declare
1988 Elt : constant Entity_Id :=
1989 Get_Iterable_Type_Primitive (Typ, Name_Element);
1990 begin
1991 if No (Elt) then
1992 Error_Msg_N
1993 ("missing Element primitive for iteration", N);
1994 else
1995 Set_Etype (Def_Id, Etype (Elt));
1996 end if;
1997 end;
1999 -- For a predefined container, The type of the loop variable is
2000 -- the Iterator_Element aspect of the container type.
2002 else
2003 declare
2004 Element : constant Entity_Id :=
2005 Find_Value_Of_Aspect (Typ, Aspect_Iterator_Element);
2007 begin
2008 if No (Element) then
2009 Error_Msg_NE ("cannot iterate over&", N, Typ);
2010 return;
2012 else
2013 Set_Etype (Def_Id, Entity (Element));
2015 -- If subtype indication was given, verify that it
2016 -- covers the element type of the container.
2018 if Present (Subt)
2019 and then not Covers (Bas, Etype (Def_Id))
2020 then
2021 Error_Msg_N
2022 ("subtype indication does not match element type",
2023 Subt);
2024 end if;
2026 -- If the container has a variable indexing aspect, the
2027 -- element is a variable and is modifiable in the loop.
2029 if Has_Aspect (Typ, Aspect_Variable_Indexing) then
2030 Set_Ekind (Def_Id, E_Variable);
2031 end if;
2032 end if;
2033 end;
2034 end if;
2036 -- OF not present
2038 else
2039 -- For an iteration of the form IN, the name must denote an
2040 -- iterator, typically the result of a call to Iterate. Give a
2041 -- useful error message when the name is a container by itself.
2043 -- The type may be a formal container type, which has to have
2044 -- an Iterable aspect detailing the required primitives.
2046 if Is_Entity_Name (Original_Node (Name (N)))
2047 and then not Is_Iterator (Typ)
2048 then
2049 if Has_Aspect (Typ, Aspect_Iterable) then
2050 null;
2052 elsif not Has_Aspect (Typ, Aspect_Iterator_Element) then
2053 Error_Msg_NE
2054 ("cannot iterate over&", Name (N), Typ);
2055 else
2056 Error_Msg_N
2057 ("name must be an iterator, not a container", Name (N));
2058 end if;
2060 if Has_Aspect (Typ, Aspect_Iterable) then
2061 null;
2062 else
2063 Error_Msg_NE
2064 ("\to iterate directly over the elements of a container, "
2065 & "write `of &`", Name (N), Original_Node (Name (N)));
2066 end if;
2067 end if;
2069 -- The result type of Iterate function is the classwide type of
2070 -- the interface parent. We need the specific Cursor type defined
2071 -- in the container package. We obtain it by name for a predefined
2072 -- container, or through the Iterable aspect for a formal one.
2074 if Has_Aspect (Typ, Aspect_Iterable) then
2075 Set_Etype (Def_Id,
2076 Get_Cursor_Type
2077 (Parent (Find_Value_Of_Aspect (Typ, Aspect_Iterable)),
2078 Typ));
2079 Ent := Etype (Def_Id);
2081 else
2082 Ent := First_Entity (Scope (Typ));
2083 while Present (Ent) loop
2084 if Chars (Ent) = Name_Cursor then
2085 Set_Etype (Def_Id, Etype (Ent));
2086 exit;
2087 end if;
2089 Next_Entity (Ent);
2090 end loop;
2091 end if;
2092 end if;
2093 end if;
2095 -- A loop parameter cannot be effectively volatile. This check is
2096 -- peformed only when SPARK_Mode is on as it is not a standard Ada
2097 -- legality check (SPARK RM 7.1.3(6)).
2099 -- Not clear whether this applies to element iterators, where the
2100 -- cursor is not an explicit entity ???
2102 if SPARK_Mode = On
2103 and then not Of_Present (N)
2104 and then Is_Effectively_Volatile (Ent)
2105 then
2106 Error_Msg_N ("loop parameter cannot be volatile", Ent);
2107 end if;
2108 end Analyze_Iterator_Specification;
2110 -------------------
2111 -- Analyze_Label --
2112 -------------------
2114 -- Note: the semantic work required for analyzing labels (setting them as
2115 -- reachable) was done in a prepass through the statements in the block,
2116 -- so that forward gotos would be properly handled. See Analyze_Statements
2117 -- for further details. The only processing required here is to deal with
2118 -- optimizations that depend on an assumption of sequential control flow,
2119 -- since of course the occurrence of a label breaks this assumption.
2121 procedure Analyze_Label (N : Node_Id) is
2122 pragma Warnings (Off, N);
2123 begin
2124 Kill_Current_Values;
2125 end Analyze_Label;
2127 --------------------------
2128 -- Analyze_Label_Entity --
2129 --------------------------
2131 procedure Analyze_Label_Entity (E : Entity_Id) is
2132 begin
2133 Set_Ekind (E, E_Label);
2134 Set_Etype (E, Standard_Void_Type);
2135 Set_Enclosing_Scope (E, Current_Scope);
2136 Set_Reachable (E, True);
2137 end Analyze_Label_Entity;
2139 ------------------------------------------
2140 -- Analyze_Loop_Parameter_Specification --
2141 ------------------------------------------
2143 procedure Analyze_Loop_Parameter_Specification (N : Node_Id) is
2144 Loop_Nod : constant Node_Id := Parent (Parent (N));
2146 procedure Check_Controlled_Array_Attribute (DS : Node_Id);
2147 -- If the bounds are given by a 'Range reference on a function call
2148 -- that returns a controlled array, introduce an explicit declaration
2149 -- to capture the bounds, so that the function result can be finalized
2150 -- in timely fashion.
2152 procedure Check_Predicate_Use (T : Entity_Id);
2153 -- Diagnose Attempt to iterate through non-static predicate. Note that
2154 -- a type with inherited predicates may have both static and dynamic
2155 -- forms. In this case it is not sufficent to check the static predicate
2156 -- function only, look for a dynamic predicate aspect as well.
2158 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean;
2159 -- N is the node for an arbitrary construct. This function searches the
2160 -- construct N to see if any expressions within it contain function
2161 -- calls that use the secondary stack, returning True if any such call
2162 -- is found, and False otherwise.
2164 procedure Process_Bounds (R : Node_Id);
2165 -- If the iteration is given by a range, create temporaries and
2166 -- assignment statements block to capture the bounds and perform
2167 -- required finalization actions in case a bound includes a function
2168 -- call that uses the temporary stack. We first pre-analyze a copy of
2169 -- the range in order to determine the expected type, and analyze and
2170 -- resolve the original bounds.
2172 --------------------------------------
2173 -- Check_Controlled_Array_Attribute --
2174 --------------------------------------
2176 procedure Check_Controlled_Array_Attribute (DS : Node_Id) is
2177 begin
2178 if Nkind (DS) = N_Attribute_Reference
2179 and then Is_Entity_Name (Prefix (DS))
2180 and then Ekind (Entity (Prefix (DS))) = E_Function
2181 and then Is_Array_Type (Etype (Entity (Prefix (DS))))
2182 and then
2183 Is_Controlled (Component_Type (Etype (Entity (Prefix (DS)))))
2184 and then Expander_Active
2185 then
2186 declare
2187 Loc : constant Source_Ptr := Sloc (N);
2188 Arr : constant Entity_Id := Etype (Entity (Prefix (DS)));
2189 Indx : constant Entity_Id :=
2190 Base_Type (Etype (First_Index (Arr)));
2191 Subt : constant Entity_Id := Make_Temporary (Loc, 'S');
2192 Decl : Node_Id;
2194 begin
2195 Decl :=
2196 Make_Subtype_Declaration (Loc,
2197 Defining_Identifier => Subt,
2198 Subtype_Indication =>
2199 Make_Subtype_Indication (Loc,
2200 Subtype_Mark => New_Occurrence_Of (Indx, Loc),
2201 Constraint =>
2202 Make_Range_Constraint (Loc, Relocate_Node (DS))));
2203 Insert_Before (Loop_Nod, Decl);
2204 Analyze (Decl);
2206 Rewrite (DS,
2207 Make_Attribute_Reference (Loc,
2208 Prefix => New_Occurrence_Of (Subt, Loc),
2209 Attribute_Name => Attribute_Name (DS)));
2211 Analyze (DS);
2212 end;
2213 end if;
2214 end Check_Controlled_Array_Attribute;
2216 -------------------------
2217 -- Check_Predicate_Use --
2218 -------------------------
2220 procedure Check_Predicate_Use (T : Entity_Id) is
2221 begin
2222 -- A predicated subtype is illegal in loops and related constructs
2223 -- if the predicate is not static, or if it is a non-static subtype
2224 -- of a statically predicated subtype.
2226 if Is_Discrete_Type (T)
2227 and then Has_Predicates (T)
2228 and then (not Has_Static_Predicate (T)
2229 or else not Is_Static_Subtype (T)
2230 or else Has_Dynamic_Predicate_Aspect (T))
2231 then
2232 -- Seems a confusing message for the case of a static predicate
2233 -- with a non-static subtype???
2235 Bad_Predicated_Subtype_Use
2236 ("cannot use subtype& with non-static predicate for loop "
2237 & "iteration", Discrete_Subtype_Definition (N),
2238 T, Suggest_Static => True);
2240 elsif Inside_A_Generic and then Is_Generic_Formal (T) then
2241 Set_No_Dynamic_Predicate_On_Actual (T);
2242 end if;
2243 end Check_Predicate_Use;
2245 ------------------------------------
2246 -- Has_Call_Using_Secondary_Stack --
2247 ------------------------------------
2249 function Has_Call_Using_Secondary_Stack (N : Node_Id) return Boolean is
2251 function Check_Call (N : Node_Id) return Traverse_Result;
2252 -- Check if N is a function call which uses the secondary stack
2254 ----------------
2255 -- Check_Call --
2256 ----------------
2258 function Check_Call (N : Node_Id) return Traverse_Result is
2259 Nam : Node_Id;
2260 Subp : Entity_Id;
2261 Return_Typ : Entity_Id;
2263 begin
2264 if Nkind (N) = N_Function_Call then
2265 Nam := Name (N);
2267 -- Call using access to subprogram with explicit dereference
2269 if Nkind (Nam) = N_Explicit_Dereference then
2270 Subp := Etype (Nam);
2272 -- Call using a selected component notation or Ada 2005 object
2273 -- operation notation
2275 elsif Nkind (Nam) = N_Selected_Component then
2276 Subp := Entity (Selector_Name (Nam));
2278 -- Common case
2280 else
2281 Subp := Entity (Nam);
2282 end if;
2284 Return_Typ := Etype (Subp);
2286 if Is_Composite_Type (Return_Typ)
2287 and then not Is_Constrained (Return_Typ)
2288 then
2289 return Abandon;
2291 elsif Sec_Stack_Needed_For_Return (Subp) then
2292 return Abandon;
2293 end if;
2294 end if;
2296 -- Continue traversing the tree
2298 return OK;
2299 end Check_Call;
2301 function Check_Calls is new Traverse_Func (Check_Call);
2303 -- Start of processing for Has_Call_Using_Secondary_Stack
2305 begin
2306 return Check_Calls (N) = Abandon;
2307 end Has_Call_Using_Secondary_Stack;
2309 --------------------
2310 -- Process_Bounds --
2311 --------------------
2313 procedure Process_Bounds (R : Node_Id) is
2314 Loc : constant Source_Ptr := Sloc (N);
2316 function One_Bound
2317 (Original_Bound : Node_Id;
2318 Analyzed_Bound : Node_Id;
2319 Typ : Entity_Id) return Node_Id;
2320 -- Capture value of bound and return captured value
2322 ---------------
2323 -- One_Bound --
2324 ---------------
2326 function One_Bound
2327 (Original_Bound : Node_Id;
2328 Analyzed_Bound : Node_Id;
2329 Typ : Entity_Id) return Node_Id
2331 Assign : Node_Id;
2332 Decl : Node_Id;
2333 Id : Entity_Id;
2335 begin
2336 -- If the bound is a constant or an object, no need for a separate
2337 -- declaration. If the bound is the result of previous expansion
2338 -- it is already analyzed and should not be modified. Note that
2339 -- the Bound will be resolved later, if needed, as part of the
2340 -- call to Make_Index (literal bounds may need to be resolved to
2341 -- type Integer).
2343 if Analyzed (Original_Bound) then
2344 return Original_Bound;
2346 elsif Nkind_In (Analyzed_Bound, N_Integer_Literal,
2347 N_Character_Literal)
2348 or else Is_Entity_Name (Analyzed_Bound)
2349 then
2350 Analyze_And_Resolve (Original_Bound, Typ);
2351 return Original_Bound;
2352 end if;
2354 -- Normally, the best approach is simply to generate a constant
2355 -- declaration that captures the bound. However, there is a nasty
2356 -- case where this is wrong. If the bound is complex, and has a
2357 -- possible use of the secondary stack, we need to generate a
2358 -- separate assignment statement to ensure the creation of a block
2359 -- which will release the secondary stack.
2361 -- We prefer the constant declaration, since it leaves us with a
2362 -- proper trace of the value, useful in optimizations that get rid
2363 -- of junk range checks.
2365 if not Has_Call_Using_Secondary_Stack (Analyzed_Bound) then
2366 Analyze_And_Resolve (Original_Bound, Typ);
2368 -- Ensure that the bound is valid. This check should not be
2369 -- generated when the range belongs to a quantified expression
2370 -- as the construct is still not expanded into its final form.
2372 if Nkind (Parent (R)) /= N_Loop_Parameter_Specification
2373 or else Nkind (Parent (Parent (R))) /= N_Quantified_Expression
2374 then
2375 Ensure_Valid (Original_Bound);
2376 end if;
2378 Force_Evaluation (Original_Bound);
2379 return Original_Bound;
2380 end if;
2382 Id := Make_Temporary (Loc, 'R', Original_Bound);
2384 -- Here we make a declaration with a separate assignment
2385 -- statement, and insert before loop header.
2387 Decl :=
2388 Make_Object_Declaration (Loc,
2389 Defining_Identifier => Id,
2390 Object_Definition => New_Occurrence_Of (Typ, Loc));
2392 Assign :=
2393 Make_Assignment_Statement (Loc,
2394 Name => New_Occurrence_Of (Id, Loc),
2395 Expression => Relocate_Node (Original_Bound));
2397 Insert_Actions (Loop_Nod, New_List (Decl, Assign));
2399 -- Now that this temporary variable is initialized we decorate it
2400 -- as safe-to-reevaluate to inform to the backend that no further
2401 -- asignment will be issued and hence it can be handled as side
2402 -- effect free. Note that this decoration must be done when the
2403 -- assignment has been analyzed because otherwise it will be
2404 -- rejected (see Analyze_Assignment).
2406 Set_Is_Safe_To_Reevaluate (Id);
2408 Rewrite (Original_Bound, New_Occurrence_Of (Id, Loc));
2410 if Nkind (Assign) = N_Assignment_Statement then
2411 return Expression (Assign);
2412 else
2413 return Original_Bound;
2414 end if;
2415 end One_Bound;
2417 Hi : constant Node_Id := High_Bound (R);
2418 Lo : constant Node_Id := Low_Bound (R);
2419 R_Copy : constant Node_Id := New_Copy_Tree (R);
2420 New_Hi : Node_Id;
2421 New_Lo : Node_Id;
2422 Typ : Entity_Id;
2424 -- Start of processing for Process_Bounds
2426 begin
2427 Set_Parent (R_Copy, Parent (R));
2428 Preanalyze_Range (R_Copy);
2429 Typ := Etype (R_Copy);
2431 -- If the type of the discrete range is Universal_Integer, then the
2432 -- bound's type must be resolved to Integer, and any object used to
2433 -- hold the bound must also have type Integer, unless the literal
2434 -- bounds are constant-folded expressions with a user-defined type.
2436 if Typ = Universal_Integer then
2437 if Nkind (Lo) = N_Integer_Literal
2438 and then Present (Etype (Lo))
2439 and then Scope (Etype (Lo)) /= Standard_Standard
2440 then
2441 Typ := Etype (Lo);
2443 elsif Nkind (Hi) = N_Integer_Literal
2444 and then Present (Etype (Hi))
2445 and then Scope (Etype (Hi)) /= Standard_Standard
2446 then
2447 Typ := Etype (Hi);
2449 else
2450 Typ := Standard_Integer;
2451 end if;
2452 end if;
2454 Set_Etype (R, Typ);
2456 New_Lo := One_Bound (Lo, Low_Bound (R_Copy), Typ);
2457 New_Hi := One_Bound (Hi, High_Bound (R_Copy), Typ);
2459 -- Propagate staticness to loop range itself, in case the
2460 -- corresponding subtype is static.
2462 if New_Lo /= Lo and then Is_OK_Static_Expression (New_Lo) then
2463 Rewrite (Low_Bound (R), New_Copy (New_Lo));
2464 end if;
2466 if New_Hi /= Hi and then Is_OK_Static_Expression (New_Hi) then
2467 Rewrite (High_Bound (R), New_Copy (New_Hi));
2468 end if;
2469 end Process_Bounds;
2471 -- Local variables
2473 DS : constant Node_Id := Discrete_Subtype_Definition (N);
2474 Id : constant Entity_Id := Defining_Identifier (N);
2476 DS_Copy : Node_Id;
2478 -- Start of processing for Analyze_Loop_Parameter_Specification
2480 begin
2481 Enter_Name (Id);
2483 -- We always consider the loop variable to be referenced, since the loop
2484 -- may be used just for counting purposes.
2486 Generate_Reference (Id, N, ' ');
2488 -- Check for the case of loop variable hiding a local variable (used
2489 -- later on to give a nice warning if the hidden variable is never
2490 -- assigned).
2492 declare
2493 H : constant Entity_Id := Homonym (Id);
2494 begin
2495 if Present (H)
2496 and then Ekind (H) = E_Variable
2497 and then Is_Discrete_Type (Etype (H))
2498 and then Enclosing_Dynamic_Scope (H) = Enclosing_Dynamic_Scope (Id)
2499 then
2500 Set_Hiding_Loop_Variable (H, Id);
2501 end if;
2502 end;
2504 -- Loop parameter specification must include subtype mark in SPARK
2506 if Nkind (DS) = N_Range then
2507 Check_SPARK_05_Restriction
2508 ("loop parameter specification must include subtype mark", N);
2509 end if;
2511 -- Analyze the subtype definition and create temporaries for the bounds.
2512 -- Do not evaluate the range when preanalyzing a quantified expression
2513 -- because bounds expressed as function calls with side effects will be
2514 -- incorrectly replicated.
2516 if Nkind (DS) = N_Range
2517 and then Expander_Active
2518 and then Nkind (Parent (N)) /= N_Quantified_Expression
2519 then
2520 Process_Bounds (DS);
2522 -- Either the expander not active or the range of iteration is a subtype
2523 -- indication, an entity, or a function call that yields an aggregate or
2524 -- a container.
2526 else
2527 DS_Copy := New_Copy_Tree (DS);
2528 Set_Parent (DS_Copy, Parent (DS));
2529 Preanalyze_Range (DS_Copy);
2531 -- Ada 2012: If the domain of iteration is:
2533 -- a) a function call,
2534 -- b) an identifier that is not a type,
2535 -- c) an attribute reference 'Old (within a postcondition)
2536 -- d) an unchecked conversion
2538 -- then it is an iteration over a container. It was classified as
2539 -- a loop specification by the parser, and must be rewritten now
2540 -- to activate container iteration. The last case will occur within
2541 -- an expanded inlined call, where the expansion wraps an actual in
2542 -- an unchecked conversion when needed. The expression of the
2543 -- conversion is always an object.
2545 if Nkind (DS_Copy) = N_Function_Call
2546 or else (Is_Entity_Name (DS_Copy)
2547 and then not Is_Type (Entity (DS_Copy)))
2548 or else (Nkind (DS_Copy) = N_Attribute_Reference
2549 and then Nam_In (Attribute_Name (DS_Copy),
2550 Name_Old, Name_Loop_Entry))
2551 or else Nkind (DS_Copy) = N_Unchecked_Type_Conversion
2552 or else Has_Aspect (Etype (DS_Copy), Aspect_Iterable)
2553 then
2554 -- This is an iterator specification. Rewrite it as such and
2555 -- analyze it to capture function calls that may require
2556 -- finalization actions.
2558 declare
2559 I_Spec : constant Node_Id :=
2560 Make_Iterator_Specification (Sloc (N),
2561 Defining_Identifier => Relocate_Node (Id),
2562 Name => DS_Copy,
2563 Subtype_Indication => Empty,
2564 Reverse_Present => Reverse_Present (N));
2565 Scheme : constant Node_Id := Parent (N);
2567 begin
2568 Set_Iterator_Specification (Scheme, I_Spec);
2569 Set_Loop_Parameter_Specification (Scheme, Empty);
2570 Analyze_Iterator_Specification (I_Spec);
2572 -- In a generic context, analyze the original domain of
2573 -- iteration, for name capture.
2575 if not Expander_Active then
2576 Analyze (DS);
2577 end if;
2579 -- Set kind of loop parameter, which may be used in the
2580 -- subsequent analysis of the condition in a quantified
2581 -- expression.
2583 Set_Ekind (Id, E_Loop_Parameter);
2584 return;
2585 end;
2587 -- Domain of iteration is not a function call, and is side-effect
2588 -- free.
2590 else
2591 -- A quantified expression that appears in a pre/post condition
2592 -- is pre-analyzed several times. If the range is given by an
2593 -- attribute reference it is rewritten as a range, and this is
2594 -- done even with expansion disabled. If the type is already set
2595 -- do not reanalyze, because a range with static bounds may be
2596 -- typed Integer by default.
2598 if Nkind (Parent (N)) = N_Quantified_Expression
2599 and then Present (Etype (DS))
2600 then
2601 null;
2602 else
2603 Analyze (DS);
2604 end if;
2605 end if;
2606 end if;
2608 if DS = Error then
2609 return;
2610 end if;
2612 -- Some additional checks if we are iterating through a type
2614 if Is_Entity_Name (DS)
2615 and then Present (Entity (DS))
2616 and then Is_Type (Entity (DS))
2617 then
2618 -- The subtype indication may denote the completion of an incomplete
2619 -- type declaration.
2621 if Ekind (Entity (DS)) = E_Incomplete_Type then
2622 Set_Entity (DS, Get_Full_View (Entity (DS)));
2623 Set_Etype (DS, Entity (DS));
2624 end if;
2626 Check_Predicate_Use (Entity (DS));
2627 end if;
2629 -- Error if not discrete type
2631 if not Is_Discrete_Type (Etype (DS)) then
2632 Wrong_Type (DS, Any_Discrete);
2633 Set_Etype (DS, Any_Type);
2634 end if;
2636 Check_Controlled_Array_Attribute (DS);
2638 if Nkind (DS) = N_Subtype_Indication then
2639 Check_Predicate_Use (Entity (Subtype_Mark (DS)));
2640 end if;
2642 Make_Index (DS, N, In_Iter_Schm => True);
2643 Set_Ekind (Id, E_Loop_Parameter);
2645 -- A quantified expression which appears in a pre- or post-condition may
2646 -- be analyzed multiple times. The analysis of the range creates several
2647 -- itypes which reside in different scopes depending on whether the pre-
2648 -- or post-condition has been expanded. Update the type of the loop
2649 -- variable to reflect the proper itype at each stage of analysis.
2651 if No (Etype (Id))
2652 or else Etype (Id) = Any_Type
2653 or else
2654 (Present (Etype (Id))
2655 and then Is_Itype (Etype (Id))
2656 and then Nkind (Parent (Loop_Nod)) = N_Expression_With_Actions
2657 and then Nkind (Original_Node (Parent (Loop_Nod))) =
2658 N_Quantified_Expression)
2659 then
2660 Set_Etype (Id, Etype (DS));
2661 end if;
2663 -- Treat a range as an implicit reference to the type, to inhibit
2664 -- spurious warnings.
2666 Generate_Reference (Base_Type (Etype (DS)), N, ' ');
2667 Set_Is_Known_Valid (Id, True);
2669 -- The loop is not a declarative part, so the loop variable must be
2670 -- frozen explicitly. Do not freeze while preanalyzing a quantified
2671 -- expression because the freeze node will not be inserted into the
2672 -- tree due to flag Is_Spec_Expression being set.
2674 if Nkind (Parent (N)) /= N_Quantified_Expression then
2675 declare
2676 Flist : constant List_Id := Freeze_Entity (Id, N);
2677 begin
2678 if Is_Non_Empty_List (Flist) then
2679 Insert_Actions (N, Flist);
2680 end if;
2681 end;
2682 end if;
2684 -- Case where we have a range or a subtype, get type bounds
2686 if Nkind_In (DS, N_Range, N_Subtype_Indication)
2687 and then not Error_Posted (DS)
2688 and then Etype (DS) /= Any_Type
2689 and then Is_Discrete_Type (Etype (DS))
2690 then
2691 declare
2692 L : Node_Id;
2693 H : Node_Id;
2695 begin
2696 if Nkind (DS) = N_Range then
2697 L := Low_Bound (DS);
2698 H := High_Bound (DS);
2699 else
2700 L :=
2701 Type_Low_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2702 H :=
2703 Type_High_Bound (Underlying_Type (Etype (Subtype_Mark (DS))));
2704 end if;
2706 -- Check for null or possibly null range and issue warning. We
2707 -- suppress such messages in generic templates and instances,
2708 -- because in practice they tend to be dubious in these cases. The
2709 -- check applies as well to rewritten array element loops where a
2710 -- null range may be detected statically.
2712 if Compile_Time_Compare (L, H, Assume_Valid => True) = GT then
2714 -- Suppress the warning if inside a generic template or
2715 -- instance, since in practice they tend to be dubious in these
2716 -- cases since they can result from intended parameterization.
2718 if not Inside_A_Generic and then not In_Instance then
2720 -- Specialize msg if invalid values could make the loop
2721 -- non-null after all.
2723 if Compile_Time_Compare
2724 (L, H, Assume_Valid => False) = GT
2725 then
2726 -- Since we know the range of the loop is null, set the
2727 -- appropriate flag to remove the loop entirely during
2728 -- expansion.
2730 Set_Is_Null_Loop (Loop_Nod);
2732 if Comes_From_Source (N) then
2733 Error_Msg_N
2734 ("??loop range is null, loop will not execute", DS);
2735 end if;
2737 -- Here is where the loop could execute because of
2738 -- invalid values, so issue appropriate message and in
2739 -- this case we do not set the Is_Null_Loop flag since
2740 -- the loop may execute.
2742 elsif Comes_From_Source (N) then
2743 Error_Msg_N
2744 ("??loop range may be null, loop may not execute",
2745 DS);
2746 Error_Msg_N
2747 ("??can only execute if invalid values are present",
2748 DS);
2749 end if;
2750 end if;
2752 -- In either case, suppress warnings in the body of the loop,
2753 -- since it is likely that these warnings will be inappropriate
2754 -- if the loop never actually executes, which is likely.
2756 Set_Suppress_Loop_Warnings (Loop_Nod);
2758 -- The other case for a warning is a reverse loop where the
2759 -- upper bound is the integer literal zero or one, and the
2760 -- lower bound may exceed this value.
2762 -- For example, we have
2764 -- for J in reverse N .. 1 loop
2766 -- In practice, this is very likely to be a case of reversing
2767 -- the bounds incorrectly in the range.
2769 elsif Reverse_Present (N)
2770 and then Nkind (Original_Node (H)) = N_Integer_Literal
2771 and then
2772 (Intval (Original_Node (H)) = Uint_0
2773 or else
2774 Intval (Original_Node (H)) = Uint_1)
2775 then
2776 -- Lower bound may in fact be known and known not to exceed
2777 -- upper bound (e.g. reverse 0 .. 1) and that's OK.
2779 if Compile_Time_Known_Value (L)
2780 and then Expr_Value (L) <= Expr_Value (H)
2781 then
2782 null;
2784 -- Otherwise warning is warranted
2786 else
2787 Error_Msg_N ("??loop range may be null", DS);
2788 Error_Msg_N ("\??bounds may be wrong way round", DS);
2789 end if;
2790 end if;
2792 -- Check if either bound is known to be outside the range of the
2793 -- loop parameter type, this is e.g. the case of a loop from
2794 -- 20..X where the type is 1..19.
2796 -- Such a loop is dubious since either it raises CE or it executes
2797 -- zero times, and that cannot be useful!
2799 if Etype (DS) /= Any_Type
2800 and then not Error_Posted (DS)
2801 and then Nkind (DS) = N_Subtype_Indication
2802 and then Nkind (Constraint (DS)) = N_Range_Constraint
2803 then
2804 declare
2805 LLo : constant Node_Id :=
2806 Low_Bound (Range_Expression (Constraint (DS)));
2807 LHi : constant Node_Id :=
2808 High_Bound (Range_Expression (Constraint (DS)));
2810 Bad_Bound : Node_Id := Empty;
2811 -- Suspicious loop bound
2813 begin
2814 -- At this stage L, H are the bounds of the type, and LLo
2815 -- Lhi are the low bound and high bound of the loop.
2817 if Compile_Time_Compare (LLo, L, Assume_Valid => True) = LT
2818 or else
2819 Compile_Time_Compare (LLo, H, Assume_Valid => True) = GT
2820 then
2821 Bad_Bound := LLo;
2822 end if;
2824 if Compile_Time_Compare (LHi, L, Assume_Valid => True) = LT
2825 or else
2826 Compile_Time_Compare (LHi, H, Assume_Valid => True) = GT
2827 then
2828 Bad_Bound := LHi;
2829 end if;
2831 if Present (Bad_Bound) then
2832 Error_Msg_N
2833 ("suspicious loop bound out of range of "
2834 & "loop subtype??", Bad_Bound);
2835 Error_Msg_N
2836 ("\loop executes zero times or raises "
2837 & "Constraint_Error??", Bad_Bound);
2838 end if;
2839 end;
2840 end if;
2842 -- This declare block is about warnings, if we get an exception while
2843 -- testing for warnings, we simply abandon the attempt silently. This
2844 -- most likely occurs as the result of a previous error, but might
2845 -- just be an obscure case we have missed. In either case, not giving
2846 -- the warning is perfectly acceptable.
2848 exception
2849 when others => null;
2850 end;
2851 end if;
2853 -- A loop parameter cannot be effectively volatile. This check is
2854 -- peformed only when SPARK_Mode is on as it is not a standard Ada
2855 -- legality check (SPARK RM 7.1.3(6)).
2857 if SPARK_Mode = On and then Is_Effectively_Volatile (Id) then
2858 Error_Msg_N ("loop parameter cannot be volatile", Id);
2859 end if;
2860 end Analyze_Loop_Parameter_Specification;
2862 ----------------------------
2863 -- Analyze_Loop_Statement --
2864 ----------------------------
2866 procedure Analyze_Loop_Statement (N : Node_Id) is
2868 function Is_Container_Iterator (Iter : Node_Id) return Boolean;
2869 -- Given a loop iteration scheme, determine whether it is an Ada 2012
2870 -- container iteration.
2872 function Is_Wrapped_In_Block (N : Node_Id) return Boolean;
2873 -- Determine whether loop statement N has been wrapped in a block to
2874 -- capture finalization actions that may be generated for container
2875 -- iterators. Prevents infinite recursion when block is analyzed.
2876 -- Routine is a noop if loop is single statement within source block.
2878 ---------------------------
2879 -- Is_Container_Iterator --
2880 ---------------------------
2882 function Is_Container_Iterator (Iter : Node_Id) return Boolean is
2883 begin
2884 -- Infinite loop
2886 if No (Iter) then
2887 return False;
2889 -- While loop
2891 elsif Present (Condition (Iter)) then
2892 return False;
2894 -- for Def_Id in [reverse] Name loop
2895 -- for Def_Id [: Subtype_Indication] of [reverse] Name loop
2897 elsif Present (Iterator_Specification (Iter)) then
2898 declare
2899 Nam : constant Node_Id := Name (Iterator_Specification (Iter));
2900 Nam_Copy : Node_Id;
2902 begin
2903 Nam_Copy := New_Copy_Tree (Nam);
2904 Set_Parent (Nam_Copy, Parent (Nam));
2905 Preanalyze_Range (Nam_Copy);
2907 -- The only two options here are iteration over a container or
2908 -- an array.
2910 return not Is_Array_Type (Etype (Nam_Copy));
2911 end;
2913 -- for Def_Id in [reverse] Discrete_Subtype_Definition loop
2915 else
2916 declare
2917 LP : constant Node_Id := Loop_Parameter_Specification (Iter);
2918 DS : constant Node_Id := Discrete_Subtype_Definition (LP);
2919 DS_Copy : Node_Id;
2921 begin
2922 DS_Copy := New_Copy_Tree (DS);
2923 Set_Parent (DS_Copy, Parent (DS));
2924 Preanalyze_Range (DS_Copy);
2926 -- Check for a call to Iterate ()
2928 return
2929 Nkind (DS_Copy) = N_Function_Call
2930 and then Needs_Finalization (Etype (DS_Copy));
2931 end;
2932 end if;
2933 end Is_Container_Iterator;
2935 -------------------------
2936 -- Is_Wrapped_In_Block --
2937 -------------------------
2939 function Is_Wrapped_In_Block (N : Node_Id) return Boolean is
2940 HSS : Node_Id;
2941 Stat : Node_Id;
2943 begin
2945 -- Check if current scope is a block that is not a transient block.
2947 if Ekind (Current_Scope) /= E_Block
2948 or else No (Block_Node (Current_Scope))
2949 then
2950 return False;
2952 else
2953 HSS :=
2954 Handled_Statement_Sequence (Parent (Block_Node (Current_Scope)));
2956 -- Skip leading pragmas that may be introduced for invariant and
2957 -- predicate checks.
2959 Stat := First (Statements (HSS));
2960 while Present (Stat) and then Nkind (Stat) = N_Pragma loop
2961 Stat := Next (Stat);
2962 end loop;
2964 return Stat = N and then No (Next (Stat));
2965 end if;
2966 end Is_Wrapped_In_Block;
2968 -- Local declarations
2970 Id : constant Node_Id := Identifier (N);
2971 Iter : constant Node_Id := Iteration_Scheme (N);
2972 Loc : constant Source_Ptr := Sloc (N);
2973 Ent : Entity_Id;
2974 Stmt : Node_Id;
2976 -- Start of processing for Analyze_Loop_Statement
2978 begin
2979 if Present (Id) then
2981 -- Make name visible, e.g. for use in exit statements. Loop labels
2982 -- are always considered to be referenced.
2984 Analyze (Id);
2985 Ent := Entity (Id);
2987 -- Guard against serious error (typically, a scope mismatch when
2988 -- semantic analysis is requested) by creating loop entity to
2989 -- continue analysis.
2991 if No (Ent) then
2992 if Total_Errors_Detected /= 0 then
2993 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
2994 else
2995 raise Program_Error;
2996 end if;
2998 -- Verify that the loop name is hot hidden by an unrelated
2999 -- declaration in an inner scope.
3001 elsif Ekind (Ent) /= E_Label and then Ekind (Ent) /= E_Loop then
3002 Error_Msg_Sloc := Sloc (Ent);
3003 Error_Msg_N ("implicit label declaration for & is hidden#", Id);
3005 if Present (Homonym (Ent))
3006 and then Ekind (Homonym (Ent)) = E_Label
3007 then
3008 Set_Entity (Id, Ent);
3009 Set_Ekind (Ent, E_Loop);
3010 end if;
3012 else
3013 Generate_Reference (Ent, N, ' ');
3014 Generate_Definition (Ent);
3016 -- If we found a label, mark its type. If not, ignore it, since it
3017 -- means we have a conflicting declaration, which would already
3018 -- have been diagnosed at declaration time. Set Label_Construct
3019 -- of the implicit label declaration, which is not created by the
3020 -- parser for generic units.
3022 if Ekind (Ent) = E_Label then
3023 Set_Ekind (Ent, E_Loop);
3025 if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then
3026 Set_Label_Construct (Parent (Ent), N);
3027 end if;
3028 end if;
3029 end if;
3031 -- Case of no identifier present
3033 else
3034 Ent := New_Internal_Entity (E_Loop, Current_Scope, Loc, 'L');
3035 Set_Etype (Ent, Standard_Void_Type);
3036 Set_Parent (Ent, N);
3037 end if;
3039 -- Iteration over a container in Ada 2012 involves the creation of a
3040 -- controlled iterator object. Wrap the loop in a block to ensure the
3041 -- timely finalization of the iterator and release of container locks.
3042 -- The same applies to the use of secondary stack when obtaining an
3043 -- iterator.
3045 if Ada_Version >= Ada_2012
3046 and then Is_Container_Iterator (Iter)
3047 and then not Is_Wrapped_In_Block (N)
3048 then
3049 declare
3050 Block_Nod : Node_Id;
3051 Block_Id : Entity_Id;
3053 begin
3054 Block_Nod :=
3055 Make_Block_Statement (Loc,
3056 Declarations => New_List,
3057 Handled_Statement_Sequence =>
3058 Make_Handled_Sequence_Of_Statements (Loc,
3059 Statements => New_List (Relocate_Node (N))));
3061 Add_Block_Identifier (Block_Nod, Block_Id);
3063 -- The expansion of iterator loops generates an iterator in order
3064 -- to traverse the elements of a container:
3066 -- Iter : <iterator type> := Iterate (Container)'reference;
3068 -- The iterator is controlled and returned on the secondary stack.
3069 -- The analysis of the call to Iterate establishes a transient
3070 -- scope to deal with the secondary stack management, but never
3071 -- really creates a physical block as this would kill the iterator
3072 -- too early (see Wrap_Transient_Declaration). To address this
3073 -- case, mark the generated block as needing secondary stack
3074 -- management.
3076 Set_Uses_Sec_Stack (Block_Id);
3078 Rewrite (N, Block_Nod);
3079 Analyze (N);
3080 return;
3081 end;
3082 end if;
3084 -- Kill current values on entry to loop, since statements in the body of
3085 -- the loop may have been executed before the loop is entered. Similarly
3086 -- we kill values after the loop, since we do not know that the body of
3087 -- the loop was executed.
3089 Kill_Current_Values;
3090 Push_Scope (Ent);
3091 Analyze_Iteration_Scheme (Iter);
3093 -- Check for following case which merits a warning if the type E of is
3094 -- a multi-dimensional array (and no explicit subscript ranges present).
3096 -- for J in E'Range
3097 -- for K in E'Range
3099 if Present (Iter)
3100 and then Present (Loop_Parameter_Specification (Iter))
3101 then
3102 declare
3103 LPS : constant Node_Id := Loop_Parameter_Specification (Iter);
3104 DSD : constant Node_Id :=
3105 Original_Node (Discrete_Subtype_Definition (LPS));
3106 begin
3107 if Nkind (DSD) = N_Attribute_Reference
3108 and then Attribute_Name (DSD) = Name_Range
3109 and then No (Expressions (DSD))
3110 then
3111 declare
3112 Typ : constant Entity_Id := Etype (Prefix (DSD));
3113 begin
3114 if Is_Array_Type (Typ)
3115 and then Number_Dimensions (Typ) > 1
3116 and then Nkind (Parent (N)) = N_Loop_Statement
3117 and then Present (Iteration_Scheme (Parent (N)))
3118 then
3119 declare
3120 OIter : constant Node_Id :=
3121 Iteration_Scheme (Parent (N));
3122 OLPS : constant Node_Id :=
3123 Loop_Parameter_Specification (OIter);
3124 ODSD : constant Node_Id :=
3125 Original_Node (Discrete_Subtype_Definition (OLPS));
3126 begin
3127 if Nkind (ODSD) = N_Attribute_Reference
3128 and then Attribute_Name (ODSD) = Name_Range
3129 and then No (Expressions (ODSD))
3130 and then Etype (Prefix (ODSD)) = Typ
3131 then
3132 Error_Msg_Sloc := Sloc (ODSD);
3133 Error_Msg_N
3134 ("inner range same as outer range#??", DSD);
3135 end if;
3136 end;
3137 end if;
3138 end;
3139 end if;
3140 end;
3141 end if;
3143 -- Analyze the statements of the body except in the case of an Ada 2012
3144 -- iterator with the expander active. In this case the expander will do
3145 -- a rewrite of the loop into a while loop. We will then analyze the
3146 -- loop body when we analyze this while loop.
3148 -- We need to do this delay because if the container is for indefinite
3149 -- types the actual subtype of the components will only be determined
3150 -- when the cursor declaration is analyzed.
3152 -- If the expander is not active, or in SPARK mode, then we want to
3153 -- analyze the loop body now even in the Ada 2012 iterator case, since
3154 -- the rewriting will not be done. Insert the loop variable in the
3155 -- current scope, if not done when analysing the iteration scheme.
3156 -- Set its kind properly to detect improper uses in the loop body.
3158 if Present (Iter)
3159 and then Present (Iterator_Specification (Iter))
3160 then
3161 if not Expander_Active then
3162 declare
3163 I_Spec : constant Node_Id := Iterator_Specification (Iter);
3164 Id : constant Entity_Id := Defining_Identifier (I_Spec);
3166 begin
3167 if Scope (Id) /= Current_Scope then
3168 Enter_Name (Id);
3169 end if;
3171 -- In an element iterator, The loop parameter is a variable if
3172 -- the domain of iteration (container or array) is a variable.
3174 if not Of_Present (I_Spec)
3175 or else not Is_Variable (Name (I_Spec))
3176 then
3177 Set_Ekind (Id, E_Loop_Parameter);
3178 end if;
3179 end;
3181 Analyze_Statements (Statements (N));
3182 end if;
3184 else
3186 -- Pre-Ada2012 for-loops and while loops.
3188 Analyze_Statements (Statements (N));
3189 end if;
3191 -- When the iteration scheme of a loop contains attribute 'Loop_Entry,
3192 -- the loop is transformed into a conditional block. Retrieve the loop.
3194 Stmt := N;
3196 if Subject_To_Loop_Entry_Attributes (Stmt) then
3197 Stmt := Find_Loop_In_Conditional_Block (Stmt);
3198 end if;
3200 -- Finish up processing for the loop. We kill all current values, since
3201 -- in general we don't know if the statements in the loop have been
3202 -- executed. We could do a bit better than this with a loop that we
3203 -- know will execute at least once, but it's not worth the trouble and
3204 -- the front end is not in the business of flow tracing.
3206 Process_End_Label (Stmt, 'e', Ent);
3207 End_Scope;
3208 Kill_Current_Values;
3210 -- Check for infinite loop. Skip check for generated code, since it
3211 -- justs waste time and makes debugging the routine called harder.
3213 -- Note that we have to wait till the body of the loop is fully analyzed
3214 -- before making this call, since Check_Infinite_Loop_Warning relies on
3215 -- being able to use semantic visibility information to find references.
3217 if Comes_From_Source (Stmt) then
3218 Check_Infinite_Loop_Warning (Stmt);
3219 end if;
3221 -- Code after loop is unreachable if the loop has no WHILE or FOR and
3222 -- contains no EXIT statements within the body of the loop.
3224 if No (Iter) and then not Has_Exit (Ent) then
3225 Check_Unreachable_Code (Stmt);
3226 end if;
3227 end Analyze_Loop_Statement;
3229 ----------------------------
3230 -- Analyze_Null_Statement --
3231 ----------------------------
3233 -- Note: the semantics of the null statement is implemented by a single
3234 -- null statement, too bad everything isn't as simple as this.
3236 procedure Analyze_Null_Statement (N : Node_Id) is
3237 pragma Warnings (Off, N);
3238 begin
3239 null;
3240 end Analyze_Null_Statement;
3242 ------------------------
3243 -- Analyze_Statements --
3244 ------------------------
3246 procedure Analyze_Statements (L : List_Id) is
3247 S : Node_Id;
3248 Lab : Entity_Id;
3250 begin
3251 -- The labels declared in the statement list are reachable from
3252 -- statements in the list. We do this as a prepass so that any goto
3253 -- statement will be properly flagged if its target is not reachable.
3254 -- This is not required, but is nice behavior.
3256 S := First (L);
3257 while Present (S) loop
3258 if Nkind (S) = N_Label then
3259 Analyze (Identifier (S));
3260 Lab := Entity (Identifier (S));
3262 -- If we found a label mark it as reachable
3264 if Ekind (Lab) = E_Label then
3265 Generate_Definition (Lab);
3266 Set_Reachable (Lab);
3268 if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then
3269 Set_Label_Construct (Parent (Lab), S);
3270 end if;
3272 -- If we failed to find a label, it means the implicit declaration
3273 -- of the label was hidden. A for-loop parameter can do this to
3274 -- a label with the same name inside the loop, since the implicit
3275 -- label declaration is in the innermost enclosing body or block
3276 -- statement.
3278 else
3279 Error_Msg_Sloc := Sloc (Lab);
3280 Error_Msg_N
3281 ("implicit label declaration for & is hidden#",
3282 Identifier (S));
3283 end if;
3284 end if;
3286 Next (S);
3287 end loop;
3289 -- Perform semantic analysis on all statements
3291 Conditional_Statements_Begin;
3293 S := First (L);
3294 while Present (S) loop
3295 Analyze (S);
3297 -- Remove dimension in all statements
3299 Remove_Dimension_In_Statement (S);
3300 Next (S);
3301 end loop;
3303 Conditional_Statements_End;
3305 -- Make labels unreachable. Visibility is not sufficient, because labels
3306 -- in one if-branch for example are not reachable from the other branch,
3307 -- even though their declarations are in the enclosing declarative part.
3309 S := First (L);
3310 while Present (S) loop
3311 if Nkind (S) = N_Label then
3312 Set_Reachable (Entity (Identifier (S)), False);
3313 end if;
3315 Next (S);
3316 end loop;
3317 end Analyze_Statements;
3319 ----------------------------
3320 -- Check_Unreachable_Code --
3321 ----------------------------
3323 procedure Check_Unreachable_Code (N : Node_Id) is
3324 Error_Node : Node_Id;
3325 P : Node_Id;
3327 begin
3328 if Is_List_Member (N) and then Comes_From_Source (N) then
3329 declare
3330 Nxt : Node_Id;
3332 begin
3333 Nxt := Original_Node (Next (N));
3335 -- Skip past pragmas
3337 while Nkind (Nxt) = N_Pragma loop
3338 Nxt := Original_Node (Next (Nxt));
3339 end loop;
3341 -- If a label follows us, then we never have dead code, since
3342 -- someone could branch to the label, so we just ignore it, unless
3343 -- we are in formal mode where goto statements are not allowed.
3345 if Nkind (Nxt) = N_Label
3346 and then not Restriction_Check_Required (SPARK_05)
3347 then
3348 return;
3350 -- Otherwise see if we have a real statement following us
3352 elsif Present (Nxt)
3353 and then Comes_From_Source (Nxt)
3354 and then Is_Statement (Nxt)
3355 then
3356 -- Special very annoying exception. If we have a return that
3357 -- follows a raise, then we allow it without a warning, since
3358 -- the Ada RM annoyingly requires a useless return here.
3360 if Nkind (Original_Node (N)) /= N_Raise_Statement
3361 or else Nkind (Nxt) /= N_Simple_Return_Statement
3362 then
3363 -- The rather strange shenanigans with the warning message
3364 -- here reflects the fact that Kill_Dead_Code is very good
3365 -- at removing warnings in deleted code, and this is one
3366 -- warning we would prefer NOT to have removed.
3368 Error_Node := Nxt;
3370 -- If we have unreachable code, analyze and remove the
3371 -- unreachable code, since it is useless and we don't
3372 -- want to generate junk warnings.
3374 -- We skip this step if we are not in code generation mode
3375 -- or CodePeer mode.
3377 -- This is the one case where we remove dead code in the
3378 -- semantics as opposed to the expander, and we do not want
3379 -- to remove code if we are not in code generation mode,
3380 -- since this messes up the ASIS trees or loses useful
3381 -- information in the CodePeer tree.
3383 -- Note that one might react by moving the whole circuit to
3384 -- exp_ch5, but then we lose the warning in -gnatc mode.
3386 if Operating_Mode = Generate_Code
3387 and then not CodePeer_Mode
3388 then
3389 loop
3390 Nxt := Next (N);
3392 -- Quit deleting when we have nothing more to delete
3393 -- or if we hit a label (since someone could transfer
3394 -- control to a label, so we should not delete it).
3396 exit when No (Nxt) or else Nkind (Nxt) = N_Label;
3398 -- Statement/declaration is to be deleted
3400 Analyze (Nxt);
3401 Remove (Nxt);
3402 Kill_Dead_Code (Nxt);
3403 end loop;
3404 end if;
3406 -- Now issue the warning (or error in formal mode)
3408 if Restriction_Check_Required (SPARK_05) then
3409 Check_SPARK_05_Restriction
3410 ("unreachable code is not allowed", Error_Node);
3411 else
3412 Error_Msg ("??unreachable code!", Sloc (Error_Node));
3413 end if;
3414 end if;
3416 -- If the unconditional transfer of control instruction is the
3417 -- last statement of a sequence, then see if our parent is one of
3418 -- the constructs for which we count unblocked exits, and if so,
3419 -- adjust the count.
3421 else
3422 P := Parent (N);
3424 -- Statements in THEN part or ELSE part of IF statement
3426 if Nkind (P) = N_If_Statement then
3427 null;
3429 -- Statements in ELSIF part of an IF statement
3431 elsif Nkind (P) = N_Elsif_Part then
3432 P := Parent (P);
3433 pragma Assert (Nkind (P) = N_If_Statement);
3435 -- Statements in CASE statement alternative
3437 elsif Nkind (P) = N_Case_Statement_Alternative then
3438 P := Parent (P);
3439 pragma Assert (Nkind (P) = N_Case_Statement);
3441 -- Statements in body of block
3443 elsif Nkind (P) = N_Handled_Sequence_Of_Statements
3444 and then Nkind (Parent (P)) = N_Block_Statement
3445 then
3446 -- The original loop is now placed inside a block statement
3447 -- due to the expansion of attribute 'Loop_Entry. Return as
3448 -- this is not a "real" block for the purposes of exit
3449 -- counting.
3451 if Nkind (N) = N_Loop_Statement
3452 and then Subject_To_Loop_Entry_Attributes (N)
3453 then
3454 return;
3455 end if;
3457 -- Statements in exception handler in a block
3459 elsif Nkind (P) = N_Exception_Handler
3460 and then Nkind (Parent (P)) = N_Handled_Sequence_Of_Statements
3461 and then Nkind (Parent (Parent (P))) = N_Block_Statement
3462 then
3463 null;
3465 -- None of these cases, so return
3467 else
3468 return;
3469 end if;
3471 -- This was one of the cases we are looking for (i.e. the
3472 -- parent construct was IF, CASE or block) so decrement count.
3474 Unblocked_Exit_Count := Unblocked_Exit_Count - 1;
3475 end if;
3476 end;
3477 end if;
3478 end Check_Unreachable_Code;
3480 ----------------------
3481 -- Preanalyze_Range --
3482 ----------------------
3484 procedure Preanalyze_Range (R_Copy : Node_Id) is
3485 Save_Analysis : constant Boolean := Full_Analysis;
3486 Typ : Entity_Id;
3488 begin
3489 Full_Analysis := False;
3490 Expander_Mode_Save_And_Set (False);
3492 Analyze (R_Copy);
3494 if Nkind (R_Copy) in N_Subexpr and then Is_Overloaded (R_Copy) then
3496 -- Apply preference rules for range of predefined integer types, or
3497 -- diagnose true ambiguity.
3499 declare
3500 I : Interp_Index;
3501 It : Interp;
3502 Found : Entity_Id := Empty;
3504 begin
3505 Get_First_Interp (R_Copy, I, It);
3506 while Present (It.Typ) loop
3507 if Is_Discrete_Type (It.Typ) then
3508 if No (Found) then
3509 Found := It.Typ;
3510 else
3511 if Scope (Found) = Standard_Standard then
3512 null;
3514 elsif Scope (It.Typ) = Standard_Standard then
3515 Found := It.Typ;
3517 else
3518 -- Both of them are user-defined
3520 Error_Msg_N
3521 ("ambiguous bounds in range of iteration", R_Copy);
3522 Error_Msg_N ("\possible interpretations:", R_Copy);
3523 Error_Msg_NE ("\\} ", R_Copy, Found);
3524 Error_Msg_NE ("\\} ", R_Copy, It.Typ);
3525 exit;
3526 end if;
3527 end if;
3528 end if;
3530 Get_Next_Interp (I, It);
3531 end loop;
3532 end;
3533 end if;
3535 -- Subtype mark in iteration scheme
3537 if Is_Entity_Name (R_Copy) and then Is_Type (Entity (R_Copy)) then
3538 null;
3540 -- Expression in range, or Ada 2012 iterator
3542 elsif Nkind (R_Copy) in N_Subexpr then
3543 Resolve (R_Copy);
3544 Typ := Etype (R_Copy);
3546 if Is_Discrete_Type (Typ) then
3547 null;
3549 -- Check that the resulting object is an iterable container
3551 elsif Has_Aspect (Typ, Aspect_Iterator_Element)
3552 or else Has_Aspect (Typ, Aspect_Constant_Indexing)
3553 or else Has_Aspect (Typ, Aspect_Variable_Indexing)
3554 then
3555 null;
3557 -- The expression may yield an implicit reference to an iterable
3558 -- container. Insert explicit dereference so that proper type is
3559 -- visible in the loop.
3561 elsif Has_Implicit_Dereference (Etype (R_Copy)) then
3562 declare
3563 Disc : Entity_Id;
3565 begin
3566 Disc := First_Discriminant (Typ);
3567 while Present (Disc) loop
3568 if Has_Implicit_Dereference (Disc) then
3569 Build_Explicit_Dereference (R_Copy, Disc);
3570 exit;
3571 end if;
3573 Next_Discriminant (Disc);
3574 end loop;
3575 end;
3577 end if;
3578 end if;
3580 Expander_Mode_Restore;
3581 Full_Analysis := Save_Analysis;
3582 end Preanalyze_Range;
3584 end Sem_Ch5;