runtime: scan register backing store on ia64
[official-gcc.git] / libgo / go / runtime / mprof.go
blobf31c88c5caedf7e0bb8a298cae7d6772f0d07bce
1 // Copyright 2009 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Malloc profiling.
6 // Patterned after tcmalloc's algorithms; shorter code.
8 package runtime
10 import (
11 "runtime/internal/atomic"
12 "unsafe"
15 // NOTE(rsc): Everything here could use cas if contention became an issue.
16 var proflock mutex
18 // All memory allocations are local and do not escape outside of the profiler.
19 // The profiler is forbidden from referring to garbage-collected memory.
21 const (
22 // profile types
23 memProfile bucketType = 1 + iota
24 blockProfile
25 mutexProfile
27 // size of bucket hash table
28 buckHashSize = 179999
30 // max depth of stack to record in bucket
31 maxStack = 32
34 type bucketType int
36 // A bucket holds per-call-stack profiling information.
37 // The representation is a bit sleazy, inherited from C.
38 // This struct defines the bucket header. It is followed in
39 // memory by the stack words and then the actual record
40 // data, either a memRecord or a blockRecord.
42 // Per-call-stack profiling information.
43 // Lookup by hashing call stack into a linked-list hash table.
45 // No heap pointers.
47 //go:notinheap
48 type bucket struct {
49 next *bucket
50 allnext *bucket
51 typ bucketType // memBucket or blockBucket (includes mutexProfile)
52 hash uintptr
53 size uintptr
54 nstk uintptr
57 // A memRecord is the bucket data for a bucket of type memProfile,
58 // part of the memory profile.
59 type memRecord struct {
60 // The following complex 3-stage scheme of stats accumulation
61 // is required to obtain a consistent picture of mallocs and frees
62 // for some point in time.
63 // The problem is that mallocs come in real time, while frees
64 // come only after a GC during concurrent sweeping. So if we would
65 // naively count them, we would get a skew toward mallocs.
67 // Hence, we delay information to get consistent snapshots as
68 // of mark termination. Allocations count toward the next mark
69 // termination's snapshot, while sweep frees count toward the
70 // previous mark termination's snapshot:
72 // MT MT MT MT
73 // .·| .·| .·| .·|
74 // .·˙ | .·˙ | .·˙ | .·˙ |
75 // .·˙ | .·˙ | .·˙ | .·˙ |
76 // .·˙ |.·˙ |.·˙ |.·˙ |
78 // alloc → ▲ ← free
79 // ┠┅┅┅┅┅┅┅┅┅┅┅P
80 // C+2 → C+1 → C
82 // alloc → ▲ ← free
83 // ┠┅┅┅┅┅┅┅┅┅┅┅P
84 // C+2 → C+1 → C
86 // Since we can't publish a consistent snapshot until all of
87 // the sweep frees are accounted for, we wait until the next
88 // mark termination ("MT" above) to publish the previous mark
89 // termination's snapshot ("P" above). To do this, allocation
90 // and free events are accounted to *future* heap profile
91 // cycles ("C+n" above) and we only publish a cycle once all
92 // of the events from that cycle must be done. Specifically:
94 // Mallocs are accounted to cycle C+2.
95 // Explicit frees are accounted to cycle C+2.
96 // GC frees (done during sweeping) are accounted to cycle C+1.
98 // After mark termination, we increment the global heap
99 // profile cycle counter and accumulate the stats from cycle C
100 // into the active profile.
102 // active is the currently published profile. A profiling
103 // cycle can be accumulated into active once its complete.
104 active memRecordCycle
106 // future records the profile events we're counting for cycles
107 // that have not yet been published. This is ring buffer
108 // indexed by the global heap profile cycle C and stores
109 // cycles C, C+1, and C+2. Unlike active, these counts are
110 // only for a single cycle; they are not cumulative across
111 // cycles.
113 // We store cycle C here because there's a window between when
114 // C becomes the active cycle and when we've flushed it to
115 // active.
116 future [3]memRecordCycle
119 // memRecordCycle
120 type memRecordCycle struct {
121 allocs, frees uintptr
122 alloc_bytes, free_bytes uintptr
125 // add accumulates b into a. It does not zero b.
126 func (a *memRecordCycle) add(b *memRecordCycle) {
127 a.allocs += b.allocs
128 a.frees += b.frees
129 a.alloc_bytes += b.alloc_bytes
130 a.free_bytes += b.free_bytes
133 // A blockRecord is the bucket data for a bucket of type blockProfile,
134 // which is used in blocking and mutex profiles.
135 type blockRecord struct {
136 count int64
137 cycles int64
140 var (
141 mbuckets *bucket // memory profile buckets
142 bbuckets *bucket // blocking profile buckets
143 xbuckets *bucket // mutex profile buckets
144 buckhash *[179999]*bucket
145 bucketmem uintptr
147 mProf struct {
148 // All fields in mProf are protected by proflock.
150 // cycle is the global heap profile cycle. This wraps
151 // at mProfCycleWrap.
152 cycle uint32
153 // flushed indicates that future[cycle] in all buckets
154 // has been flushed to the active profile.
155 flushed bool
159 const mProfCycleWrap = uint32(len(memRecord{}.future)) * (2 << 24)
161 // newBucket allocates a bucket with the given type and number of stack entries.
162 func newBucket(typ bucketType, nstk int) *bucket {
163 size := unsafe.Sizeof(bucket{}) + uintptr(nstk)*unsafe.Sizeof(location{})
164 switch typ {
165 default:
166 throw("invalid profile bucket type")
167 case memProfile:
168 size += unsafe.Sizeof(memRecord{})
169 case blockProfile, mutexProfile:
170 size += unsafe.Sizeof(blockRecord{})
173 b := (*bucket)(persistentalloc(size, 0, &memstats.buckhash_sys))
174 bucketmem += size
175 b.typ = typ
176 b.nstk = uintptr(nstk)
177 return b
180 // stk returns the slice in b holding the stack.
181 func (b *bucket) stk() []location {
182 stk := (*[maxStack]location)(add(unsafe.Pointer(b), unsafe.Sizeof(*b)))
183 return stk[:b.nstk:b.nstk]
186 // mp returns the memRecord associated with the memProfile bucket b.
187 func (b *bucket) mp() *memRecord {
188 if b.typ != memProfile {
189 throw("bad use of bucket.mp")
191 data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(location{}))
192 return (*memRecord)(data)
195 // bp returns the blockRecord associated with the blockProfile bucket b.
196 func (b *bucket) bp() *blockRecord {
197 if b.typ != blockProfile && b.typ != mutexProfile {
198 throw("bad use of bucket.bp")
200 data := add(unsafe.Pointer(b), unsafe.Sizeof(*b)+b.nstk*unsafe.Sizeof(location{}))
201 return (*blockRecord)(data)
204 // Return the bucket for stk[0:nstk], allocating new bucket if needed.
205 func stkbucket(typ bucketType, size uintptr, stk []location, alloc bool) *bucket {
206 if buckhash == nil {
207 buckhash = (*[buckHashSize]*bucket)(sysAlloc(unsafe.Sizeof(*buckhash), &memstats.buckhash_sys))
208 if buckhash == nil {
209 throw("runtime: cannot allocate memory")
213 // Hash stack.
214 var h uintptr
215 for _, loc := range stk {
216 h += loc.pc
217 h += h << 10
218 h ^= h >> 6
220 // hash in size
221 h += size
222 h += h << 10
223 h ^= h >> 6
224 // finalize
225 h += h << 3
226 h ^= h >> 11
228 i := int(h % buckHashSize)
229 for b := buckhash[i]; b != nil; b = b.next {
230 if b.typ == typ && b.hash == h && b.size == size && eqslice(b.stk(), stk) {
231 return b
235 if !alloc {
236 return nil
239 // Create new bucket.
240 b := newBucket(typ, len(stk))
241 copy(b.stk(), stk)
242 b.hash = h
243 b.size = size
244 b.next = buckhash[i]
245 buckhash[i] = b
246 if typ == memProfile {
247 b.allnext = mbuckets
248 mbuckets = b
249 } else if typ == mutexProfile {
250 b.allnext = xbuckets
251 xbuckets = b
252 } else {
253 b.allnext = bbuckets
254 bbuckets = b
256 return b
259 func eqslice(x, y []location) bool {
260 if len(x) != len(y) {
261 return false
263 for i, xi := range x {
264 if xi != y[i] {
265 return false
268 return true
271 // mProf_NextCycle publishes the next heap profile cycle and creates a
272 // fresh heap profile cycle. This operation is fast and can be done
273 // during STW. The caller must call mProf_Flush before calling
274 // mProf_NextCycle again.
276 // This is called by mark termination during STW so allocations and
277 // frees after the world is started again count towards a new heap
278 // profiling cycle.
279 func mProf_NextCycle() {
280 lock(&proflock)
281 // We explicitly wrap mProf.cycle rather than depending on
282 // uint wraparound because the memRecord.future ring does not
283 // itself wrap at a power of two.
284 mProf.cycle = (mProf.cycle + 1) % mProfCycleWrap
285 mProf.flushed = false
286 unlock(&proflock)
289 // mProf_Flush flushes the events from the current heap profiling
290 // cycle into the active profile. After this it is safe to start a new
291 // heap profiling cycle with mProf_NextCycle.
293 // This is called by GC after mark termination starts the world. In
294 // contrast with mProf_NextCycle, this is somewhat expensive, but safe
295 // to do concurrently.
296 func mProf_Flush() {
297 lock(&proflock)
298 if !mProf.flushed {
299 mProf_FlushLocked()
300 mProf.flushed = true
302 unlock(&proflock)
305 func mProf_FlushLocked() {
306 c := mProf.cycle
307 for b := mbuckets; b != nil; b = b.allnext {
308 mp := b.mp()
310 // Flush cycle C into the published profile and clear
311 // it for reuse.
312 mpc := &mp.future[c%uint32(len(mp.future))]
313 mp.active.add(mpc)
314 *mpc = memRecordCycle{}
318 // mProf_PostSweep records that all sweep frees for this GC cycle have
319 // completed. This has the effect of publishing the heap profile
320 // snapshot as of the last mark termination without advancing the heap
321 // profile cycle.
322 func mProf_PostSweep() {
323 lock(&proflock)
324 // Flush cycle C+1 to the active profile so everything as of
325 // the last mark termination becomes visible. *Don't* advance
326 // the cycle, since we're still accumulating allocs in cycle
327 // C+2, which have to become C+1 in the next mark termination
328 // and so on.
329 c := mProf.cycle
330 for b := mbuckets; b != nil; b = b.allnext {
331 mp := b.mp()
332 mpc := &mp.future[(c+1)%uint32(len(mp.future))]
333 mp.active.add(mpc)
334 *mpc = memRecordCycle{}
336 unlock(&proflock)
339 // Called by malloc to record a profiled block.
340 func mProf_Malloc(p unsafe.Pointer, size uintptr) {
341 var stk [maxStack]location
342 nstk := callers(4, stk[:])
343 lock(&proflock)
344 b := stkbucket(memProfile, size, stk[:nstk], true)
345 c := mProf.cycle
346 mp := b.mp()
347 mpc := &mp.future[(c+2)%uint32(len(mp.future))]
348 mpc.allocs++
349 mpc.alloc_bytes += size
350 unlock(&proflock)
352 // Setprofilebucket locks a bunch of other mutexes, so we call it outside of proflock.
353 // This reduces potential contention and chances of deadlocks.
354 // Since the object must be alive during call to mProf_Malloc,
355 // it's fine to do this non-atomically.
356 systemstack(func() {
357 setprofilebucket(p, b)
361 // Called when freeing a profiled block.
362 func mProf_Free(b *bucket, size uintptr) {
363 lock(&proflock)
364 c := mProf.cycle
365 mp := b.mp()
366 mpc := &mp.future[(c+1)%uint32(len(mp.future))]
367 mpc.frees++
368 mpc.free_bytes += size
369 unlock(&proflock)
372 var blockprofilerate uint64 // in CPU ticks
374 // SetBlockProfileRate controls the fraction of goroutine blocking events
375 // that are reported in the blocking profile. The profiler aims to sample
376 // an average of one blocking event per rate nanoseconds spent blocked.
378 // To include every blocking event in the profile, pass rate = 1.
379 // To turn off profiling entirely, pass rate <= 0.
380 func SetBlockProfileRate(rate int) {
381 var r int64
382 if rate <= 0 {
383 r = 0 // disable profiling
384 } else if rate == 1 {
385 r = 1 // profile everything
386 } else {
387 // convert ns to cycles, use float64 to prevent overflow during multiplication
388 r = int64(float64(rate) * float64(tickspersecond()) / (1000 * 1000 * 1000))
389 if r == 0 {
390 r = 1
394 atomic.Store64(&blockprofilerate, uint64(r))
397 func blockevent(cycles int64, skip int) {
398 if cycles <= 0 {
399 cycles = 1
401 if blocksampled(cycles) {
402 saveblockevent(cycles, skip+1, blockProfile)
406 func blocksampled(cycles int64) bool {
407 rate := int64(atomic.Load64(&blockprofilerate))
408 if rate <= 0 || (rate > cycles && int64(fastrand())%rate > cycles) {
409 return false
411 return true
414 func saveblockevent(cycles int64, skip int, which bucketType) {
415 gp := getg()
416 var nstk int
417 var stk [maxStack]location
418 if gp.m.curg == nil || gp.m.curg == gp {
419 nstk = callers(skip, stk[:])
420 } else {
421 // FIXME: This should get a traceback of gp.m.curg.
422 // nstk = gcallers(gp.m.curg, skip, stk[:])
423 nstk = callers(skip, stk[:])
425 lock(&proflock)
426 b := stkbucket(which, 0, stk[:nstk], true)
427 b.bp().count++
428 b.bp().cycles += cycles
429 unlock(&proflock)
432 var mutexprofilerate uint64 // fraction sampled
434 // SetMutexProfileFraction controls the fraction of mutex contention events
435 // that are reported in the mutex profile. On average 1/rate events are
436 // reported. The previous rate is returned.
438 // To turn off profiling entirely, pass rate 0.
439 // To just read the current rate, pass rate -1.
440 // (For n>1 the details of sampling may change.)
441 func SetMutexProfileFraction(rate int) int {
442 if rate < 0 {
443 return int(mutexprofilerate)
445 old := mutexprofilerate
446 atomic.Store64(&mutexprofilerate, uint64(rate))
447 return int(old)
450 //go:linkname mutexevent sync.event
451 func mutexevent(cycles int64, skip int) {
452 if cycles < 0 {
453 cycles = 0
455 rate := int64(atomic.Load64(&mutexprofilerate))
456 // TODO(pjw): measure impact of always calling fastrand vs using something
457 // like malloc.go:nextSample()
458 if rate > 0 && int64(fastrand())%rate == 0 {
459 saveblockevent(cycles, skip+1, mutexProfile)
463 // Go interface to profile data.
465 // A StackRecord describes a single execution stack.
466 type StackRecord struct {
467 Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
470 // Stack returns the stack trace associated with the record,
471 // a prefix of r.Stack0.
472 func (r *StackRecord) Stack() []uintptr {
473 for i, v := range r.Stack0 {
474 if v == 0 {
475 return r.Stack0[0:i]
478 return r.Stack0[0:]
481 // MemProfileRate controls the fraction of memory allocations
482 // that are recorded and reported in the memory profile.
483 // The profiler aims to sample an average of
484 // one allocation per MemProfileRate bytes allocated.
486 // To include every allocated block in the profile, set MemProfileRate to 1.
487 // To turn off profiling entirely, set MemProfileRate to 0.
489 // The tools that process the memory profiles assume that the
490 // profile rate is constant across the lifetime of the program
491 // and equal to the current value. Programs that change the
492 // memory profiling rate should do so just once, as early as
493 // possible in the execution of the program (for example,
494 // at the beginning of main).
495 var MemProfileRate int = 512 * 1024
497 // A MemProfileRecord describes the live objects allocated
498 // by a particular call sequence (stack trace).
499 type MemProfileRecord struct {
500 AllocBytes, FreeBytes int64 // number of bytes allocated, freed
501 AllocObjects, FreeObjects int64 // number of objects allocated, freed
502 Stack0 [32]uintptr // stack trace for this record; ends at first 0 entry
505 // InUseBytes returns the number of bytes in use (AllocBytes - FreeBytes).
506 func (r *MemProfileRecord) InUseBytes() int64 { return r.AllocBytes - r.FreeBytes }
508 // InUseObjects returns the number of objects in use (AllocObjects - FreeObjects).
509 func (r *MemProfileRecord) InUseObjects() int64 {
510 return r.AllocObjects - r.FreeObjects
513 // Stack returns the stack trace associated with the record,
514 // a prefix of r.Stack0.
515 func (r *MemProfileRecord) Stack() []uintptr {
516 for i, v := range r.Stack0 {
517 if v == 0 {
518 return r.Stack0[0:i]
521 return r.Stack0[0:]
524 // MemProfile returns a profile of memory allocated and freed per allocation
525 // site.
527 // MemProfile returns n, the number of records in the current memory profile.
528 // If len(p) >= n, MemProfile copies the profile into p and returns n, true.
529 // If len(p) < n, MemProfile does not change p and returns n, false.
531 // If inuseZero is true, the profile includes allocation records
532 // where r.AllocBytes > 0 but r.AllocBytes == r.FreeBytes.
533 // These are sites where memory was allocated, but it has all
534 // been released back to the runtime.
536 // The returned profile may be up to two garbage collection cycles old.
537 // This is to avoid skewing the profile toward allocations; because
538 // allocations happen in real time but frees are delayed until the garbage
539 // collector performs sweeping, the profile only accounts for allocations
540 // that have had a chance to be freed by the garbage collector.
542 // Most clients should use the runtime/pprof package or
543 // the testing package's -test.memprofile flag instead
544 // of calling MemProfile directly.
545 func MemProfile(p []MemProfileRecord, inuseZero bool) (n int, ok bool) {
546 lock(&proflock)
547 // If we're between mProf_NextCycle and mProf_Flush, take care
548 // of flushing to the active profile so we only have to look
549 // at the active profile below.
550 mProf_FlushLocked()
551 clear := true
552 for b := mbuckets; b != nil; b = b.allnext {
553 mp := b.mp()
554 if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
557 if mp.active.allocs != 0 || mp.active.frees != 0 {
558 clear = false
561 if clear {
562 // Absolutely no data, suggesting that a garbage collection
563 // has not yet happened. In order to allow profiling when
564 // garbage collection is disabled from the beginning of execution,
565 // accumulate all of the cycles, and recount buckets.
566 n = 0
567 for b := mbuckets; b != nil; b = b.allnext {
568 mp := b.mp()
569 for c := range mp.future {
570 mp.active.add(&mp.future[c])
571 mp.future[c] = memRecordCycle{}
573 if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
578 if n <= len(p) {
579 ok = true
580 idx := 0
581 for b := mbuckets; b != nil; b = b.allnext {
582 mp := b.mp()
583 if inuseZero || mp.active.alloc_bytes != mp.active.free_bytes {
584 record(&p[idx], b)
585 idx++
589 unlock(&proflock)
590 return
593 // Write b's data to r.
594 func record(r *MemProfileRecord, b *bucket) {
595 mp := b.mp()
596 r.AllocBytes = int64(mp.active.alloc_bytes)
597 r.FreeBytes = int64(mp.active.free_bytes)
598 r.AllocObjects = int64(mp.active.allocs)
599 r.FreeObjects = int64(mp.active.frees)
600 for i, loc := range b.stk() {
601 if i >= len(r.Stack0) {
602 break
604 r.Stack0[i] = loc.pc
606 for i := int(b.nstk); i < len(r.Stack0); i++ {
607 r.Stack0[i] = 0
611 func iterate_memprof(fn func(*bucket, uintptr, *location, uintptr, uintptr, uintptr)) {
612 lock(&proflock)
613 for b := mbuckets; b != nil; b = b.allnext {
614 mp := b.mp()
615 fn(b, b.nstk, &b.stk()[0], b.size, mp.active.allocs, mp.active.frees)
617 unlock(&proflock)
620 // BlockProfileRecord describes blocking events originated
621 // at a particular call sequence (stack trace).
622 type BlockProfileRecord struct {
623 Count int64
624 Cycles int64
625 StackRecord
628 // BlockProfile returns n, the number of records in the current blocking profile.
629 // If len(p) >= n, BlockProfile copies the profile into p and returns n, true.
630 // If len(p) < n, BlockProfile does not change p and returns n, false.
632 // Most clients should use the runtime/pprof package or
633 // the testing package's -test.blockprofile flag instead
634 // of calling BlockProfile directly.
635 func BlockProfile(p []BlockProfileRecord) (n int, ok bool) {
636 lock(&proflock)
637 for b := bbuckets; b != nil; b = b.allnext {
640 if n <= len(p) {
641 ok = true
642 for b := bbuckets; b != nil; b = b.allnext {
643 bp := b.bp()
644 r := &p[0]
645 r.Count = bp.count
646 r.Cycles = bp.cycles
647 i := 0
648 var loc location
649 for i, loc = range b.stk() {
650 if i >= len(r.Stack0) {
651 break
653 r.Stack0[i] = loc.pc
655 for ; i < len(r.Stack0); i++ {
656 r.Stack0[i] = 0
658 p = p[1:]
661 unlock(&proflock)
662 return
665 // MutexProfile returns n, the number of records in the current mutex profile.
666 // If len(p) >= n, MutexProfile copies the profile into p and returns n, true.
667 // Otherwise, MutexProfile does not change p, and returns n, false.
669 // Most clients should use the runtime/pprof package
670 // instead of calling MutexProfile directly.
671 func MutexProfile(p []BlockProfileRecord) (n int, ok bool) {
672 lock(&proflock)
673 for b := xbuckets; b != nil; b = b.allnext {
676 if n <= len(p) {
677 ok = true
678 for b := xbuckets; b != nil; b = b.allnext {
679 bp := b.bp()
680 r := &p[0]
681 r.Count = int64(bp.count)
682 r.Cycles = bp.cycles
683 i := 0
684 var loc location
685 for i, loc = range b.stk() {
686 if i >= len(r.Stack0) {
687 break
689 r.Stack0[i] = loc.pc
691 for ; i < len(r.Stack0); i++ {
692 r.Stack0[i] = 0
694 p = p[1:]
697 unlock(&proflock)
698 return
701 // ThreadCreateProfile returns n, the number of records in the thread creation profile.
702 // If len(p) >= n, ThreadCreateProfile copies the profile into p and returns n, true.
703 // If len(p) < n, ThreadCreateProfile does not change p and returns n, false.
705 // Most clients should use the runtime/pprof package instead
706 // of calling ThreadCreateProfile directly.
707 func ThreadCreateProfile(p []StackRecord) (n int, ok bool) {
708 first := (*m)(atomic.Loadp(unsafe.Pointer(&allm)))
709 for mp := first; mp != nil; mp = mp.alllink {
712 if n <= len(p) {
713 ok = true
714 i := 0
715 for mp := first; mp != nil; mp = mp.alllink {
716 for j := range mp.createstack {
717 p[i].Stack0[j] = mp.createstack[j].pc
722 return
725 // GoroutineProfile returns n, the number of records in the active goroutine stack profile.
726 // If len(p) >= n, GoroutineProfile copies the profile into p and returns n, true.
727 // If len(p) < n, GoroutineProfile does not change p and returns n, false.
729 // Most clients should use the runtime/pprof package instead
730 // of calling GoroutineProfile directly.
731 func GoroutineProfile(p []StackRecord) (n int, ok bool) {
732 gp := getg()
734 isOK := func(gp1 *g) bool {
735 // Checking isSystemGoroutine here makes GoroutineProfile
736 // consistent with both NumGoroutine and Stack.
737 return gp1 != gp && readgstatus(gp1) != _Gdead && !isSystemGoroutine(gp1)
740 stopTheWorld("profile")
742 n = 1
743 for _, gp1 := range allgs {
744 if isOK(gp1) {
749 if n <= len(p) {
750 ok = true
751 r := p
753 // Save current goroutine.
754 saveg(gp, &r[0])
755 r = r[1:]
757 // Save other goroutines.
758 for _, gp1 := range allgs {
759 if isOK(gp1) {
760 if len(r) == 0 {
761 // Should be impossible, but better to return a
762 // truncated profile than to crash the entire process.
763 break
765 saveg(gp1, &r[0])
766 r = r[1:]
771 startTheWorld()
773 return n, ok
776 func saveg(gp *g, r *StackRecord) {
777 if gp == getg() {
778 var locbuf [32]location
779 n := callers(1, locbuf[:])
780 for i := 0; i < n; i++ {
781 r.Stack0[i] = locbuf[i].pc
783 if n < len(r.Stack0) {
784 r.Stack0[n] = 0
786 } else {
787 // FIXME: Not implemented.
788 r.Stack0[0] = 0
792 // Stack formats a stack trace of the calling goroutine into buf
793 // and returns the number of bytes written to buf.
794 // If all is true, Stack formats stack traces of all other goroutines
795 // into buf after the trace for the current goroutine.
796 func Stack(buf []byte, all bool) int {
797 if all {
798 stopTheWorld("stack trace")
801 n := 0
802 if len(buf) > 0 {
803 gp := getg()
804 // Force traceback=1 to override GOTRACEBACK setting,
805 // so that Stack's results are consistent.
806 // GOTRACEBACK is only about crash dumps.
807 gp.m.traceback = 1
808 gp.writebuf = buf[0:0:len(buf)]
809 goroutineheader(gp)
810 traceback(1)
811 if all {
812 tracebackothers(gp)
814 gp.m.traceback = 0
815 n = len(gp.writebuf)
816 gp.writebuf = nil
819 if all {
820 startTheWorld()
822 return n
825 // Tracing of alloc/free/gc.
827 var tracelock mutex
829 func tracealloc(p unsafe.Pointer, size uintptr, typ *_type) {
830 lock(&tracelock)
831 gp := getg()
832 gp.m.traceback = 2
833 if typ == nil {
834 print("tracealloc(", p, ", ", hex(size), ")\n")
835 } else {
836 print("tracealloc(", p, ", ", hex(size), ", ", *typ.string, ")\n")
838 if gp.m.curg == nil || gp == gp.m.curg {
839 goroutineheader(gp)
840 traceback(1)
841 } else {
842 goroutineheader(gp.m.curg)
843 // FIXME: Can't do traceback of other g.
845 print("\n")
846 gp.m.traceback = 0
847 unlock(&tracelock)
850 func tracefree(p unsafe.Pointer, size uintptr) {
851 lock(&tracelock)
852 gp := getg()
853 gp.m.traceback = 2
854 print("tracefree(", p, ", ", hex(size), ")\n")
855 goroutineheader(gp)
856 traceback(1)
857 print("\n")
858 gp.m.traceback = 0
859 unlock(&tracelock)
862 func tracegc() {
863 lock(&tracelock)
864 gp := getg()
865 gp.m.traceback = 2
866 print("tracegc()\n")
867 // running on m->g0 stack; show all non-g0 goroutines
868 tracebackothers(gp)
869 print("end tracegc\n")
870 print("\n")
871 gp.m.traceback = 0
872 unlock(&tracelock)