runtime: scan register backing store on ia64
[official-gcc.git] / libgo / go / runtime / malloc.go
blob88e4ba3657b8a2ed7d78ac101437239577ac178b
1 // Copyright 2014 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Memory allocator.
6 //
7 // This was originally based on tcmalloc, but has diverged quite a bit.
8 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
10 // The main allocator works in runs of pages.
11 // Small allocation sizes (up to and including 32 kB) are
12 // rounded to one of about 70 size classes, each of which
13 // has its own free set of objects of exactly that size.
14 // Any free page of memory can be split into a set of objects
15 // of one size class, which are then managed using a free bitmap.
17 // The allocator's data structures are:
19 // fixalloc: a free-list allocator for fixed-size off-heap objects,
20 // used to manage storage used by the allocator.
21 // mheap: the malloc heap, managed at page (8192-byte) granularity.
22 // mspan: a run of pages managed by the mheap.
23 // mcentral: collects all spans of a given size class.
24 // mcache: a per-P cache of mspans with free space.
25 // mstats: allocation statistics.
27 // Allocating a small object proceeds up a hierarchy of caches:
29 // 1. Round the size up to one of the small size classes
30 // and look in the corresponding mspan in this P's mcache.
31 // Scan the mspan's free bitmap to find a free slot.
32 // If there is a free slot, allocate it.
33 // This can all be done without acquiring a lock.
35 // 2. If the mspan has no free slots, obtain a new mspan
36 // from the mcentral's list of mspans of the required size
37 // class that have free space.
38 // Obtaining a whole span amortizes the cost of locking
39 // the mcentral.
41 // 3. If the mcentral's mspan list is empty, obtain a run
42 // of pages from the mheap to use for the mspan.
44 // 4. If the mheap is empty or has no page runs large enough,
45 // allocate a new group of pages (at least 1MB) from the
46 // operating system. Allocating a large run of pages
47 // amortizes the cost of talking to the operating system.
49 // Sweeping an mspan and freeing objects on it proceeds up a similar
50 // hierarchy:
52 // 1. If the mspan is being swept in response to allocation, it
53 // is returned to the mcache to satisfy the allocation.
55 // 2. Otherwise, if the mspan still has allocated objects in it,
56 // it is placed on the mcentral free list for the mspan's size
57 // class.
59 // 3. Otherwise, if all objects in the mspan are free, the mspan
60 // is now "idle", so it is returned to the mheap and no longer
61 // has a size class.
62 // This may coalesce it with adjacent idle mspans.
64 // 4. If an mspan remains idle for long enough, return its pages
65 // to the operating system.
67 // Allocating and freeing a large object uses the mheap
68 // directly, bypassing the mcache and mcentral.
70 // Free object slots in an mspan are zeroed only if mspan.needzero is
71 // false. If needzero is true, objects are zeroed as they are
72 // allocated. There are various benefits to delaying zeroing this way:
74 // 1. Stack frame allocation can avoid zeroing altogether.
76 // 2. It exhibits better temporal locality, since the program is
77 // probably about to write to the memory.
79 // 3. We don't zero pages that never get reused.
81 package runtime
83 import (
84 "runtime/internal/sys"
85 "unsafe"
88 // C function to get the end of the program's memory.
89 func getEnd() uintptr
91 // For gccgo, use go:linkname to rename compiler-called functions to
92 // themselves, so that the compiler will export them.
94 //go:linkname newobject runtime.newobject
96 // Functions called by C code.
97 //go:linkname mallocgc runtime.mallocgc
99 const (
100 debugMalloc = false
102 maxTinySize = _TinySize
103 tinySizeClass = _TinySizeClass
104 maxSmallSize = _MaxSmallSize
106 pageShift = _PageShift
107 pageSize = _PageSize
108 pageMask = _PageMask
109 // By construction, single page spans of the smallest object class
110 // have the most objects per span.
111 maxObjsPerSpan = pageSize / 8
113 mSpanInUse = _MSpanInUse
115 concurrentSweep = _ConcurrentSweep
117 _PageSize = 1 << _PageShift
118 _PageMask = _PageSize - 1
120 // _64bit = 1 on 64-bit systems, 0 on 32-bit systems
121 _64bit = 1 << (^uintptr(0) >> 63) / 2
123 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
124 _TinySize = 16
125 _TinySizeClass = int8(2)
127 _FixAllocChunk = 16 << 10 // Chunk size for FixAlloc
128 _MaxMHeapList = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap.
129 _HeapAllocChunk = 1 << 20 // Chunk size for heap growth
131 // Per-P, per order stack segment cache size.
132 _StackCacheSize = 32 * 1024
134 // Number of orders that get caching. Order 0 is FixedStack
135 // and each successive order is twice as large.
136 // We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
137 // will be allocated directly.
138 // Since FixedStack is different on different systems, we
139 // must vary NumStackOrders to keep the same maximum cached size.
140 // OS | FixedStack | NumStackOrders
141 // -----------------+------------+---------------
142 // linux/darwin/bsd | 2KB | 4
143 // windows/32 | 4KB | 3
144 // windows/64 | 8KB | 2
145 // plan9 | 4KB | 3
146 _NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9
148 // Number of bits in page to span calculations (4k pages).
149 // On Windows 64-bit we limit the arena to 32GB or 35 bits.
150 // Windows counts memory used by page table into committed memory
151 // of the process, so we can't reserve too much memory.
152 // See https://golang.org/issue/5402 and https://golang.org/issue/5236.
153 // On other 64-bit platforms, we limit the arena to 512GB, or 39 bits.
154 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
155 // The only exception is mips32 which only has access to low 2GB of virtual memory.
156 // On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory,
157 // but as most devices have less than 4GB of physical memory anyway, we
158 // try to be conservative here, and only ask for a 2GB heap.
159 _MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*(32-(sys.GoarchMips+sys.GoarchMipsle))
160 _MHeapMap_Bits = _MHeapMap_TotalBits - _PageShift
162 // _MaxMem is the maximum heap arena size minus 1.
164 // On 32-bit, this is also the maximum heap pointer value,
165 // since the arena starts at address 0.
166 _MaxMem = 1<<_MHeapMap_TotalBits - 1
168 // Max number of threads to run garbage collection.
169 // 2, 3, and 4 are all plausible maximums depending
170 // on the hardware details of the machine. The garbage
171 // collector scales well to 32 cpus.
172 _MaxGcproc = 32
174 // minLegalPointer is the smallest possible legal pointer.
175 // This is the smallest possible architectural page size,
176 // since we assume that the first page is never mapped.
178 // This should agree with minZeroPage in the compiler.
179 minLegalPointer uintptr = 4096
182 // physPageSize is the size in bytes of the OS's physical pages.
183 // Mapping and unmapping operations must be done at multiples of
184 // physPageSize.
186 // This must be set by the OS init code (typically in osinit) before
187 // mallocinit.
188 var physPageSize uintptr
190 // OS-defined helpers:
192 // sysAlloc obtains a large chunk of zeroed memory from the
193 // operating system, typically on the order of a hundred kilobytes
194 // or a megabyte.
195 // NOTE: sysAlloc returns OS-aligned memory, but the heap allocator
196 // may use larger alignment, so the caller must be careful to realign the
197 // memory obtained by sysAlloc.
199 // SysUnused notifies the operating system that the contents
200 // of the memory region are no longer needed and can be reused
201 // for other purposes.
202 // SysUsed notifies the operating system that the contents
203 // of the memory region are needed again.
205 // SysFree returns it unconditionally; this is only used if
206 // an out-of-memory error has been detected midway through
207 // an allocation. It is okay if SysFree is a no-op.
209 // SysReserve reserves address space without allocating memory.
210 // If the pointer passed to it is non-nil, the caller wants the
211 // reservation there, but SysReserve can still choose another
212 // location if that one is unavailable. On some systems and in some
213 // cases SysReserve will simply check that the address space is
214 // available and not actually reserve it. If SysReserve returns
215 // non-nil, it sets *reserved to true if the address space is
216 // reserved, false if it has merely been checked.
217 // NOTE: SysReserve returns OS-aligned memory, but the heap allocator
218 // may use larger alignment, so the caller must be careful to realign the
219 // memory obtained by sysAlloc.
221 // SysMap maps previously reserved address space for use.
222 // The reserved argument is true if the address space was really
223 // reserved, not merely checked.
225 // SysFault marks a (already sysAlloc'd) region to fault
226 // if accessed. Used only for debugging the runtime.
228 func mallocinit() {
229 if class_to_size[_TinySizeClass] != _TinySize {
230 throw("bad TinySizeClass")
233 // Not used for gccgo.
234 // testdefersizes()
236 // Copy class sizes out for statistics table.
237 for i := range class_to_size {
238 memstats.by_size[i].size = uint32(class_to_size[i])
241 // Check physPageSize.
242 if physPageSize == 0 {
243 // The OS init code failed to fetch the physical page size.
244 throw("failed to get system page size")
246 if physPageSize < minPhysPageSize {
247 print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
248 throw("bad system page size")
250 if physPageSize&(physPageSize-1) != 0 {
251 print("system page size (", physPageSize, ") must be a power of 2\n")
252 throw("bad system page size")
255 // The auxiliary regions start at p and are laid out in the
256 // following order: spans, bitmap, arena.
257 var p, pSize uintptr
258 var reserved bool
260 // The spans array holds one *mspan per _PageSize of arena.
261 var spansSize uintptr = (_MaxMem + 1) / _PageSize * sys.PtrSize
262 spansSize = round(spansSize, _PageSize)
263 // The bitmap holds 2 bits per word of arena.
264 var bitmapSize uintptr = (_MaxMem + 1) / (sys.PtrSize * 8 / 2)
265 bitmapSize = round(bitmapSize, _PageSize)
267 // Set up the allocation arena, a contiguous area of memory where
268 // allocated data will be found.
269 if sys.PtrSize == 8 {
270 // On a 64-bit machine, allocate from a single contiguous reservation.
271 // 512 GB (MaxMem) should be big enough for now.
273 // The code will work with the reservation at any address, but ask
274 // SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
275 // Allocating a 512 GB region takes away 39 bits, and the amd64
276 // doesn't let us choose the top 17 bits, so that leaves the 9 bits
277 // in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
278 // that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
279 // In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
280 // UTF-8 sequences, and they are otherwise as far away from
281 // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
282 // addresses. An earlier attempt to use 0x11f8 caused out of memory errors
283 // on OS X during thread allocations. 0x00c0 causes conflicts with
284 // AddressSanitizer which reserves all memory up to 0x0100.
285 // These choices are both for debuggability and to reduce the
286 // odds of a conservative garbage collector (as is still used in gccgo)
287 // not collecting memory because some non-pointer block of memory
288 // had a bit pattern that matched a memory address.
290 // Actually we reserve 544 GB (because the bitmap ends up being 32 GB)
291 // but it hardly matters: e0 00 is not valid UTF-8 either.
293 // If this fails we fall back to the 32 bit memory mechanism
295 // However, on arm64, we ignore all this advice above and slam the
296 // allocation at 0x40 << 32 because when using 4k pages with 3-level
297 // translation buffers, the user address space is limited to 39 bits
298 // On darwin/arm64, the address space is even smaller.
299 // On AIX, mmap adresses range start at 0x07000000_00000000 for 64 bits
300 // processes.
301 arenaSize := round(_MaxMem, _PageSize)
302 pSize = bitmapSize + spansSize + arenaSize + _PageSize
303 for i := 0; i <= 0x7f; i++ {
304 switch {
305 case GOARCH == "arm64" && GOOS == "darwin":
306 p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
307 case GOARCH == "arm64":
308 p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
309 case GOOS == "aix":
310 i = 1
311 p = uintptr(i)<<32 | uintptrMask&(0x70<<52)
312 default:
313 p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
315 p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
316 if p != 0 || GOOS == "aix" { // Useless to loop on AIX, as i is forced to 1
317 break
322 if p == 0 {
323 // On a 32-bit machine, we can't typically get away
324 // with a giant virtual address space reservation.
325 // Instead we map the memory information bitmap
326 // immediately after the data segment, large enough
327 // to handle the entire 4GB address space (256 MB),
328 // along with a reservation for an initial arena.
329 // When that gets used up, we'll start asking the kernel
330 // for any memory anywhere.
332 // We want to start the arena low, but if we're linked
333 // against C code, it's possible global constructors
334 // have called malloc and adjusted the process' brk.
335 // Query the brk so we can avoid trying to map the
336 // arena over it (which will cause the kernel to put
337 // the arena somewhere else, likely at a high
338 // address).
339 procBrk := sbrk0()
341 // If we fail to allocate, try again with a smaller arena.
342 // This is necessary on Android L where we share a process
343 // with ART, which reserves virtual memory aggressively.
344 // In the worst case, fall back to a 0-sized initial arena,
345 // in the hope that subsequent reservations will succeed.
346 arenaSizes := [...]uintptr{
347 512 << 20,
348 256 << 20,
349 128 << 20,
353 for _, arenaSize := range &arenaSizes {
354 // SysReserve treats the address we ask for, end, as a hint,
355 // not as an absolute requirement. If we ask for the end
356 // of the data segment but the operating system requires
357 // a little more space before we can start allocating, it will
358 // give out a slightly higher pointer. Except QEMU, which
359 // is buggy, as usual: it won't adjust the pointer upward.
360 // So adjust it upward a little bit ourselves: 1/4 MB to get
361 // away from the running binary image and then round up
362 // to a MB boundary.
363 p = round(getEnd()+(1<<18), 1<<20)
364 pSize = bitmapSize + spansSize + arenaSize + _PageSize
365 if p <= procBrk && procBrk < p+pSize {
366 // Move the start above the brk,
367 // leaving some room for future brk
368 // expansion.
369 p = round(procBrk+(1<<20), 1<<20)
371 p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
372 if p != 0 {
373 break
376 if p == 0 {
377 throw("runtime: cannot reserve arena virtual address space")
381 // PageSize can be larger than OS definition of page size,
382 // so SysReserve can give us a PageSize-unaligned pointer.
383 // To overcome this we ask for PageSize more and round up the pointer.
384 p1 := round(p, _PageSize)
385 pSize -= p1 - p
387 spansStart := p1
388 p1 += spansSize
389 mheap_.bitmap = p1 + bitmapSize
390 p1 += bitmapSize
391 if sys.PtrSize == 4 {
392 // Set arena_start such that we can accept memory
393 // reservations located anywhere in the 4GB virtual space.
394 mheap_.arena_start = 0
395 } else {
396 mheap_.arena_start = p1
398 mheap_.arena_end = p + pSize
399 mheap_.arena_used = p1
400 mheap_.arena_alloc = p1
401 mheap_.arena_reserved = reserved
403 if mheap_.arena_start&(_PageSize-1) != 0 {
404 println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start))
405 throw("misrounded allocation in mallocinit")
408 // Initialize the rest of the allocator.
409 mheap_.init(spansStart, spansSize)
410 _g_ := getg()
411 _g_.m.mcache = allocmcache()
414 // sysAlloc allocates the next n bytes from the heap arena. The
415 // returned pointer is always _PageSize aligned and between
416 // h.arena_start and h.arena_end. sysAlloc returns nil on failure.
417 // There is no corresponding free function.
418 func (h *mheap) sysAlloc(n uintptr) unsafe.Pointer {
419 // strandLimit is the maximum number of bytes to strand from
420 // the current arena block. If we would need to strand more
421 // than this, we fall back to sysAlloc'ing just enough for
422 // this allocation.
423 const strandLimit = 16 << 20
425 if n > h.arena_end-h.arena_alloc {
426 // If we haven't grown the arena to _MaxMem yet, try
427 // to reserve some more address space.
428 p_size := round(n+_PageSize, 256<<20)
429 new_end := h.arena_end + p_size // Careful: can overflow
430 if h.arena_end <= new_end && new_end-h.arena_start-1 <= _MaxMem {
431 // TODO: It would be bad if part of the arena
432 // is reserved and part is not.
433 var reserved bool
434 p := uintptr(sysReserve(unsafe.Pointer(h.arena_end), p_size, &reserved))
435 if p == 0 {
436 // TODO: Try smaller reservation
437 // growths in case we're in a crowded
438 // 32-bit address space.
439 goto reservationFailed
441 // p can be just about anywhere in the address
442 // space, including before arena_end.
443 if p == h.arena_end {
444 // The new block is contiguous with
445 // the current block. Extend the
446 // current arena block.
447 h.arena_end = new_end
448 h.arena_reserved = reserved
449 } else if h.arena_start <= p && p+p_size-h.arena_start-1 <= _MaxMem && h.arena_end-h.arena_alloc < strandLimit {
450 // We were able to reserve more memory
451 // within the arena space, but it's
452 // not contiguous with our previous
453 // reservation. It could be before or
454 // after our current arena_used.
456 // Keep everything page-aligned.
457 // Our pages are bigger than hardware pages.
458 h.arena_end = p + p_size
459 p = round(p, _PageSize)
460 h.arena_alloc = p
461 h.arena_reserved = reserved
462 } else {
463 // We got a mapping, but either
465 // 1) It's not in the arena, so we
466 // can't use it. (This should never
467 // happen on 32-bit.)
469 // 2) We would need to discard too
470 // much of our current arena block to
471 // use it.
473 // We haven't added this allocation to
474 // the stats, so subtract it from a
475 // fake stat (but avoid underflow).
477 // We'll fall back to a small sysAlloc.
478 stat := uint64(p_size)
479 sysFree(unsafe.Pointer(p), p_size, &stat)
484 if n <= h.arena_end-h.arena_alloc {
485 // Keep taking from our reservation.
486 p := h.arena_alloc
487 sysMap(unsafe.Pointer(p), n, h.arena_reserved, &memstats.heap_sys)
488 h.arena_alloc += n
489 if h.arena_alloc > h.arena_used {
490 h.setArenaUsed(h.arena_alloc, true)
493 if p&(_PageSize-1) != 0 {
494 throw("misrounded allocation in MHeap_SysAlloc")
496 return unsafe.Pointer(p)
499 reservationFailed:
500 // If using 64-bit, our reservation is all we have.
501 if sys.PtrSize != 4 {
502 return nil
505 // On 32-bit, once the reservation is gone we can
506 // try to get memory at a location chosen by the OS.
507 p_size := round(n, _PageSize) + _PageSize
508 p := uintptr(sysAlloc(p_size, &memstats.heap_sys))
509 if p == 0 {
510 return nil
513 if p < h.arena_start || p+p_size-h.arena_start > _MaxMem {
514 // This shouldn't be possible because _MaxMem is the
515 // whole address space on 32-bit.
516 top := uint64(h.arena_start) + _MaxMem
517 print("runtime: memory allocated by OS (", hex(p), ") not in usable range [", hex(h.arena_start), ",", hex(top), ")\n")
518 sysFree(unsafe.Pointer(p), p_size, &memstats.heap_sys)
519 return nil
522 p += -p & (_PageSize - 1)
523 if p+n > h.arena_used {
524 h.setArenaUsed(p+n, true)
527 if p&(_PageSize-1) != 0 {
528 throw("misrounded allocation in MHeap_SysAlloc")
530 return unsafe.Pointer(p)
533 // base address for all 0-byte allocations
534 var zerobase uintptr
536 // nextFreeFast returns the next free object if one is quickly available.
537 // Otherwise it returns 0.
538 func nextFreeFast(s *mspan) gclinkptr {
539 theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache?
540 if theBit < 64 {
541 result := s.freeindex + uintptr(theBit)
542 if result < s.nelems {
543 freeidx := result + 1
544 if freeidx%64 == 0 && freeidx != s.nelems {
545 return 0
547 s.allocCache >>= uint(theBit + 1)
548 s.freeindex = freeidx
549 s.allocCount++
550 return gclinkptr(result*s.elemsize + s.base())
553 return 0
556 // nextFree returns the next free object from the cached span if one is available.
557 // Otherwise it refills the cache with a span with an available object and
558 // returns that object along with a flag indicating that this was a heavy
559 // weight allocation. If it is a heavy weight allocation the caller must
560 // determine whether a new GC cycle needs to be started or if the GC is active
561 // whether this goroutine needs to assist the GC.
562 func (c *mcache) nextFree(spc spanClass) (v gclinkptr, s *mspan, shouldhelpgc bool) {
563 s = c.alloc[spc]
564 shouldhelpgc = false
565 freeIndex := s.nextFreeIndex()
566 if freeIndex == s.nelems {
567 // The span is full.
568 if uintptr(s.allocCount) != s.nelems {
569 println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
570 throw("s.allocCount != s.nelems && freeIndex == s.nelems")
572 systemstack(func() {
573 c.refill(spc)
575 shouldhelpgc = true
576 s = c.alloc[spc]
578 freeIndex = s.nextFreeIndex()
581 if freeIndex >= s.nelems {
582 throw("freeIndex is not valid")
585 v = gclinkptr(freeIndex*s.elemsize + s.base())
586 s.allocCount++
587 if uintptr(s.allocCount) > s.nelems {
588 println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
589 throw("s.allocCount > s.nelems")
591 return
594 // Allocate an object of size bytes.
595 // Small objects are allocated from the per-P cache's free lists.
596 // Large objects (> 32 kB) are allocated straight from the heap.
597 func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
598 if gcphase == _GCmarktermination {
599 throw("mallocgc called with gcphase == _GCmarktermination")
602 if size == 0 {
603 return unsafe.Pointer(&zerobase)
606 if debug.sbrk != 0 {
607 align := uintptr(16)
608 if typ != nil {
609 align = uintptr(typ.align)
611 return persistentalloc(size, align, &memstats.other_sys)
614 // When using gccgo, when a cgo or SWIG function has an
615 // interface return type and the function returns a
616 // non-pointer, memory allocation occurs after syscall.Cgocall
617 // but before syscall.CgocallDone. Treat this allocation as a
618 // callback.
619 incallback := false
620 if gomcache() == nil && getg().m.ncgo > 0 {
621 exitsyscall(0)
622 incallback = true
625 // assistG is the G to charge for this allocation, or nil if
626 // GC is not currently active.
627 var assistG *g
628 if gcBlackenEnabled != 0 {
629 // Charge the current user G for this allocation.
630 assistG = getg()
631 if assistG.m.curg != nil {
632 assistG = assistG.m.curg
634 // Charge the allocation against the G. We'll account
635 // for internal fragmentation at the end of mallocgc.
636 assistG.gcAssistBytes -= int64(size)
638 if assistG.gcAssistBytes < 0 {
639 // This G is in debt. Assist the GC to correct
640 // this before allocating. This must happen
641 // before disabling preemption.
642 gcAssistAlloc(assistG)
646 // Set mp.mallocing to keep from being preempted by GC.
647 mp := acquirem()
648 if mp.mallocing != 0 {
649 throw("malloc deadlock")
651 if mp.gsignal == getg() {
652 throw("malloc during signal")
654 mp.mallocing = 1
656 shouldhelpgc := false
657 dataSize := size
658 c := gomcache()
659 var x unsafe.Pointer
660 noscan := typ == nil || typ.kind&kindNoPointers != 0
661 if size <= maxSmallSize {
662 if noscan && size < maxTinySize {
663 // Tiny allocator.
665 // Tiny allocator combines several tiny allocation requests
666 // into a single memory block. The resulting memory block
667 // is freed when all subobjects are unreachable. The subobjects
668 // must be noscan (don't have pointers), this ensures that
669 // the amount of potentially wasted memory is bounded.
671 // Size of the memory block used for combining (maxTinySize) is tunable.
672 // Current setting is 16 bytes, which relates to 2x worst case memory
673 // wastage (when all but one subobjects are unreachable).
674 // 8 bytes would result in no wastage at all, but provides less
675 // opportunities for combining.
676 // 32 bytes provides more opportunities for combining,
677 // but can lead to 4x worst case wastage.
678 // The best case winning is 8x regardless of block size.
680 // Objects obtained from tiny allocator must not be freed explicitly.
681 // So when an object will be freed explicitly, we ensure that
682 // its size >= maxTinySize.
684 // SetFinalizer has a special case for objects potentially coming
685 // from tiny allocator, it such case it allows to set finalizers
686 // for an inner byte of a memory block.
688 // The main targets of tiny allocator are small strings and
689 // standalone escaping variables. On a json benchmark
690 // the allocator reduces number of allocations by ~12% and
691 // reduces heap size by ~20%.
692 off := c.tinyoffset
693 // Align tiny pointer for required (conservative) alignment.
694 if size&7 == 0 {
695 off = round(off, 8)
696 } else if size&3 == 0 {
697 off = round(off, 4)
698 } else if size&1 == 0 {
699 off = round(off, 2)
701 if off+size <= maxTinySize && c.tiny != 0 {
702 // The object fits into existing tiny block.
703 x = unsafe.Pointer(c.tiny + off)
704 c.tinyoffset = off + size
705 c.local_tinyallocs++
706 mp.mallocing = 0
707 releasem(mp)
708 if incallback {
709 entersyscall(0)
711 return x
713 // Allocate a new maxTinySize block.
714 span := c.alloc[tinySpanClass]
715 v := nextFreeFast(span)
716 if v == 0 {
717 v, _, shouldhelpgc = c.nextFree(tinySpanClass)
719 x = unsafe.Pointer(v)
720 (*[2]uint64)(x)[0] = 0
721 (*[2]uint64)(x)[1] = 0
722 // See if we need to replace the existing tiny block with the new one
723 // based on amount of remaining free space.
724 if size < c.tinyoffset || c.tiny == 0 {
725 c.tiny = uintptr(x)
726 c.tinyoffset = size
728 size = maxTinySize
729 } else {
730 var sizeclass uint8
731 if size <= smallSizeMax-8 {
732 sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
733 } else {
734 sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
736 size = uintptr(class_to_size[sizeclass])
737 spc := makeSpanClass(sizeclass, noscan)
738 span := c.alloc[spc]
739 v := nextFreeFast(span)
740 if v == 0 {
741 v, span, shouldhelpgc = c.nextFree(spc)
743 x = unsafe.Pointer(v)
744 if needzero && span.needzero != 0 {
745 memclrNoHeapPointers(unsafe.Pointer(v), size)
748 } else {
749 var s *mspan
750 shouldhelpgc = true
751 systemstack(func() {
752 s = largeAlloc(size, needzero, noscan)
754 s.freeindex = 1
755 s.allocCount = 1
756 x = unsafe.Pointer(s.base())
757 size = s.elemsize
760 var scanSize uintptr
761 if !noscan {
762 heapBitsSetType(uintptr(x), size, dataSize, typ)
763 if dataSize > typ.size {
764 // Array allocation. If there are any
765 // pointers, GC has to scan to the last
766 // element.
767 if typ.ptrdata != 0 {
768 scanSize = dataSize - typ.size + typ.ptrdata
770 } else {
771 scanSize = typ.ptrdata
773 c.local_scan += scanSize
776 // Ensure that the stores above that initialize x to
777 // type-safe memory and set the heap bits occur before
778 // the caller can make x observable to the garbage
779 // collector. Otherwise, on weakly ordered machines,
780 // the garbage collector could follow a pointer to x,
781 // but see uninitialized memory or stale heap bits.
782 publicationBarrier()
784 // Allocate black during GC.
785 // All slots hold nil so no scanning is needed.
786 // This may be racing with GC so do it atomically if there can be
787 // a race marking the bit.
788 if gcphase != _GCoff {
789 gcmarknewobject(uintptr(x), size, scanSize)
792 if raceenabled {
793 racemalloc(x, size)
796 if msanenabled {
797 msanmalloc(x, size)
800 mp.mallocing = 0
801 releasem(mp)
803 if debug.allocfreetrace != 0 {
804 tracealloc(x, size, typ)
807 if rate := MemProfileRate; rate > 0 {
808 if size < uintptr(rate) && int32(size) < c.next_sample {
809 c.next_sample -= int32(size)
810 } else {
811 mp := acquirem()
812 profilealloc(mp, x, size)
813 releasem(mp)
817 if assistG != nil {
818 // Account for internal fragmentation in the assist
819 // debt now that we know it.
820 assistG.gcAssistBytes -= int64(size - dataSize)
823 if shouldhelpgc {
824 if t := (gcTrigger{kind: gcTriggerHeap}); t.test() {
825 gcStart(gcBackgroundMode, t)
829 if getg().preempt {
830 checkPreempt()
833 if incallback {
834 entersyscall(0)
837 return x
840 func largeAlloc(size uintptr, needzero bool, noscan bool) *mspan {
841 // print("largeAlloc size=", size, "\n")
843 if size+_PageSize < size {
844 throw("out of memory")
846 npages := size >> _PageShift
847 if size&_PageMask != 0 {
848 npages++
851 // Deduct credit for this span allocation and sweep if
852 // necessary. mHeap_Alloc will also sweep npages, so this only
853 // pays the debt down to npage pages.
854 deductSweepCredit(npages*_PageSize, npages)
856 s := mheap_.alloc(npages, makeSpanClass(0, noscan), true, needzero)
857 if s == nil {
858 throw("out of memory")
860 s.limit = s.base() + size
861 heapBitsForSpan(s.base()).initSpan(s)
862 return s
865 // implementation of new builtin
866 // compiler (both frontend and SSA backend) knows the signature
867 // of this function
868 func newobject(typ *_type) unsafe.Pointer {
869 return mallocgc(typ.size, typ, true)
872 //go:linkname reflect_unsafe_New reflect.unsafe_New
873 func reflect_unsafe_New(typ *_type) unsafe.Pointer {
874 return newobject(typ)
877 // newarray allocates an array of n elements of type typ.
878 func newarray(typ *_type, n int) unsafe.Pointer {
879 if n == 1 {
880 return mallocgc(typ.size, typ, true)
882 if n < 0 || uintptr(n) > maxSliceCap(typ.size) {
883 panic(plainError("runtime: allocation size out of range"))
885 return mallocgc(typ.size*uintptr(n), typ, true)
888 //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
889 func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
890 return newarray(typ, n)
893 func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
894 mp.mcache.next_sample = nextSample()
895 mProf_Malloc(x, size)
898 // nextSample returns the next sampling point for heap profiling. The goal is
899 // to sample allocations on average every MemProfileRate bytes, but with a
900 // completely random distribution over the allocation timeline; this
901 // corresponds to a Poisson process with parameter MemProfileRate. In Poisson
902 // processes, the distance between two samples follows the exponential
903 // distribution (exp(MemProfileRate)), so the best return value is a random
904 // number taken from an exponential distribution whose mean is MemProfileRate.
905 func nextSample() int32 {
906 if GOOS == "plan9" {
907 // Plan 9 doesn't support floating point in note handler.
908 if g := getg(); g == g.m.gsignal {
909 return nextSampleNoFP()
913 return fastexprand(MemProfileRate)
916 // fastexprand returns a random number from an exponential distribution with
917 // the specified mean.
918 func fastexprand(mean int) int32 {
919 // Avoid overflow. Maximum possible step is
920 // -ln(1/(1<<randomBitCount)) * mean, approximately 20 * mean.
921 switch {
922 case mean > 0x7000000:
923 mean = 0x7000000
924 case mean == 0:
925 return 0
928 // Take a random sample of the exponential distribution exp(-mean*x).
929 // The probability distribution function is mean*exp(-mean*x), so the CDF is
930 // p = 1 - exp(-mean*x), so
931 // q = 1 - p == exp(-mean*x)
932 // log_e(q) = -mean*x
933 // -log_e(q)/mean = x
934 // x = -log_e(q) * mean
935 // x = log_2(q) * (-log_e(2)) * mean ; Using log_2 for efficiency
936 const randomBitCount = 26
937 q := fastrand()%(1<<randomBitCount) + 1
938 qlog := fastlog2(float64(q)) - randomBitCount
939 if qlog > 0 {
940 qlog = 0
942 const minusLog2 = -0.6931471805599453 // -ln(2)
943 return int32(qlog*(minusLog2*float64(mean))) + 1
946 // nextSampleNoFP is similar to nextSample, but uses older,
947 // simpler code to avoid floating point.
948 func nextSampleNoFP() int32 {
949 // Set first allocation sample size.
950 rate := MemProfileRate
951 if rate > 0x3fffffff { // make 2*rate not overflow
952 rate = 0x3fffffff
954 if rate != 0 {
955 return int32(fastrand() % uint32(2*rate))
957 return 0
960 type persistentAlloc struct {
961 base *notInHeap
962 off uintptr
965 var globalAlloc struct {
966 mutex
967 persistentAlloc
970 // Wrapper around sysAlloc that can allocate small chunks.
971 // There is no associated free operation.
972 // Intended for things like function/type/debug-related persistent data.
973 // If align is 0, uses default align (currently 8).
974 // The returned memory will be zeroed.
976 // Consider marking persistentalloc'd types go:notinheap.
977 func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
978 var p *notInHeap
979 systemstack(func() {
980 p = persistentalloc1(size, align, sysStat)
982 return unsafe.Pointer(p)
985 // Must run on system stack because stack growth can (re)invoke it.
986 // See issue 9174.
987 //go:systemstack
988 func persistentalloc1(size, align uintptr, sysStat *uint64) *notInHeap {
989 const (
990 chunk = 256 << 10
991 maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
994 if size == 0 {
995 throw("persistentalloc: size == 0")
997 if align != 0 {
998 if align&(align-1) != 0 {
999 throw("persistentalloc: align is not a power of 2")
1001 if align > _PageSize {
1002 throw("persistentalloc: align is too large")
1004 } else {
1005 align = 8
1008 if size >= maxBlock {
1009 return (*notInHeap)(sysAlloc(size, sysStat))
1012 mp := acquirem()
1013 var persistent *persistentAlloc
1014 if mp != nil && mp.p != 0 {
1015 persistent = &mp.p.ptr().palloc
1016 } else {
1017 lock(&globalAlloc.mutex)
1018 persistent = &globalAlloc.persistentAlloc
1020 persistent.off = round(persistent.off, align)
1021 if persistent.off+size > chunk || persistent.base == nil {
1022 persistent.base = (*notInHeap)(sysAlloc(chunk, &memstats.other_sys))
1023 if persistent.base == nil {
1024 if persistent == &globalAlloc.persistentAlloc {
1025 unlock(&globalAlloc.mutex)
1027 throw("runtime: cannot allocate memory")
1029 persistent.off = 0
1031 p := persistent.base.add(persistent.off)
1032 persistent.off += size
1033 releasem(mp)
1034 if persistent == &globalAlloc.persistentAlloc {
1035 unlock(&globalAlloc.mutex)
1038 if sysStat != &memstats.other_sys {
1039 mSysStatInc(sysStat, size)
1040 mSysStatDec(&memstats.other_sys, size)
1042 return p
1045 // notInHeap is off-heap memory allocated by a lower-level allocator
1046 // like sysAlloc or persistentAlloc.
1048 // In general, it's better to use real types marked as go:notinheap,
1049 // but this serves as a generic type for situations where that isn't
1050 // possible (like in the allocators).
1052 // TODO: Use this as the return type of sysAlloc, persistentAlloc, etc?
1054 //go:notinheap
1055 type notInHeap struct{}
1057 func (p *notInHeap) add(bytes uintptr) *notInHeap {
1058 return (*notInHeap)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + bytes))