* inclhack.def (aix_null): New.
[official-gcc.git] / gcc / df-core.c
blobe602290d8f4a63d07d484c110797ee6eb7bd6bf0
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999-2013 Free Software Foundation, Inc.
3 Originally contributed by Michael P. Hayes
4 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
5 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
6 and Kenneth Zadeck (zadeck@naturalbridge.com).
8 This file is part of GCC.
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
25 OVERVIEW:
27 The files in this collection (df*.c,df.h) provide a general framework
28 for solving dataflow problems. The global dataflow is performed using
29 a good implementation of iterative dataflow analysis.
31 The file df-problems.c provides problem instance for the most common
32 dataflow problems: reaching defs, upward exposed uses, live variables,
33 uninitialized variables, def-use chains, and use-def chains. However,
34 the interface allows other dataflow problems to be defined as well.
36 Dataflow analysis is available in most of the rtl backend (the parts
37 between pass_df_initialize and pass_df_finish). It is quite likely
38 that these boundaries will be expanded in the future. The only
39 requirement is that there be a correct control flow graph.
41 There are three variations of the live variable problem that are
42 available whenever dataflow is available. The LR problem finds the
43 areas that can reach a use of a variable, the UR problems finds the
44 areas that can be reached from a definition of a variable. The LIVE
45 problem finds the intersection of these two areas.
47 There are several optional problems. These can be enabled when they
48 are needed and disabled when they are not needed.
50 Dataflow problems are generally solved in three layers. The bottom
51 layer is called scanning where a data structure is built for each rtl
52 insn that describes the set of defs and uses of that insn. Scanning
53 is generally kept up to date, i.e. as the insns changes, the scanned
54 version of that insn changes also. There are various mechanisms for
55 making this happen and are described in the INCREMENTAL SCANNING
56 section.
58 In the middle layer, basic blocks are scanned to produce transfer
59 functions which describe the effects of that block on the global
60 dataflow solution. The transfer functions are only rebuilt if the
61 some instruction within the block has changed.
63 The top layer is the dataflow solution itself. The dataflow solution
64 is computed by using an efficient iterative solver and the transfer
65 functions. The dataflow solution must be recomputed whenever the
66 control changes or if one of the transfer function changes.
69 USAGE:
71 Here is an example of using the dataflow routines.
73 df_[chain,live,note,rd]_add_problem (flags);
75 df_set_blocks (blocks);
77 df_analyze ();
79 df_dump (stderr);
81 df_finish_pass (false);
83 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
84 instance to struct df_problem, to the set of problems solved in this
85 instance of df. All calls to add a problem for a given instance of df
86 must occur before the first call to DF_ANALYZE.
88 Problems can be dependent on other problems. For instance, solving
89 def-use or use-def chains is dependent on solving reaching
90 definitions. As long as these dependencies are listed in the problem
91 definition, the order of adding the problems is not material.
92 Otherwise, the problems will be solved in the order of calls to
93 df_add_problem. Note that it is not necessary to have a problem. In
94 that case, df will just be used to do the scanning.
98 DF_SET_BLOCKS is an optional call used to define a region of the
99 function on which the analysis will be performed. The normal case is
100 to analyze the entire function and no call to df_set_blocks is made.
101 DF_SET_BLOCKS only effects the blocks that are effected when computing
102 the transfer functions and final solution. The insn level information
103 is always kept up to date.
105 When a subset is given, the analysis behaves as if the function only
106 contains those blocks and any edges that occur directly between the
107 blocks in the set. Care should be taken to call df_set_blocks right
108 before the call to analyze in order to eliminate the possibility that
109 optimizations that reorder blocks invalidate the bitvector.
111 DF_ANALYZE causes all of the defined problems to be (re)solved. When
112 DF_ANALYZE is completes, the IN and OUT sets for each basic block
113 contain the computer information. The DF_*_BB_INFO macros can be used
114 to access these bitvectors. All deferred rescannings are down before
115 the transfer functions are recomputed.
117 DF_DUMP can then be called to dump the information produce to some
118 file. This calls DF_DUMP_START, to print the information that is not
119 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
120 for each block to print the basic specific information. These parts
121 can all be called separately as part of a larger dump function.
124 DF_FINISH_PASS causes df_remove_problem to be called on all of the
125 optional problems. It also causes any insns whose scanning has been
126 deferred to be rescanned as well as clears all of the changeable flags.
127 Setting the pass manager TODO_df_finish flag causes this function to
128 be run. However, the pass manager will call df_finish_pass AFTER the
129 pass dumping has been done, so if you want to see the results of the
130 optional problems in the pass dumps, use the TODO flag rather than
131 calling the function yourself.
133 INCREMENTAL SCANNING
135 There are four ways of doing the incremental scanning:
137 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
138 df_bb_delete, df_insn_change_bb have been added to most of
139 the low level service functions that maintain the cfg and change
140 rtl. Calling and of these routines many cause some number of insns
141 to be rescanned.
143 For most modern rtl passes, this is certainly the easiest way to
144 manage rescanning the insns. This technique also has the advantage
145 that the scanning information is always correct and can be relied
146 upon even after changes have been made to the instructions. This
147 technique is contra indicated in several cases:
149 a) If def-use chains OR use-def chains (but not both) are built,
150 using this is SIMPLY WRONG. The problem is that when a ref is
151 deleted that is the target of an edge, there is not enough
152 information to efficiently find the source of the edge and
153 delete the edge. This leaves a dangling reference that may
154 cause problems.
156 b) If def-use chains AND use-def chains are built, this may
157 produce unexpected results. The problem is that the incremental
158 scanning of an insn does not know how to repair the chains that
159 point into an insn when the insn changes. So the incremental
160 scanning just deletes the chains that enter and exit the insn
161 being changed. The dangling reference issue in (a) is not a
162 problem here, but if the pass is depending on the chains being
163 maintained after insns have been modified, this technique will
164 not do the correct thing.
166 c) If the pass modifies insns several times, this incremental
167 updating may be expensive.
169 d) If the pass modifies all of the insns, as does register
170 allocation, it is simply better to rescan the entire function.
172 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
173 df_insn_delete do not immediately change the insn but instead make
174 a note that the insn needs to be rescanned. The next call to
175 df_analyze, df_finish_pass, or df_process_deferred_rescans will
176 cause all of the pending rescans to be processed.
178 This is the technique of choice if either 1a, 1b, or 1c are issues
179 in the pass. In the case of 1a or 1b, a call to df_finish_pass
180 (either manually or via TODO_df_finish) should be made before the
181 next call to df_analyze or df_process_deferred_rescans.
183 This mode is also used by a few passes that still rely on note_uses,
184 note_stores and for_each_rtx instead of using the DF data. This
185 can be said to fall under case 1c.
187 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
188 (This mode can be cleared by calling df_clear_flags
189 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
190 be rescanned.
192 3) Total rescanning - In this mode the rescanning is disabled.
193 Only when insns are deleted is the df information associated with
194 it also deleted. At the end of the pass, a call must be made to
195 df_insn_rescan_all. This method is used by the register allocator
196 since it generally changes each insn multiple times (once for each ref)
197 and does not need to make use of the updated scanning information.
199 4) Do it yourself - In this mechanism, the pass updates the insns
200 itself using the low level df primitives. Currently no pass does
201 this, but it has the advantage that it is quite efficient given
202 that the pass generally has exact knowledge of what it is changing.
204 DATA STRUCTURES
206 Scanning produces a `struct df_ref' data structure (ref) is allocated
207 for every register reference (def or use) and this records the insn
208 and bb the ref is found within. The refs are linked together in
209 chains of uses and defs for each insn and for each register. Each ref
210 also has a chain field that links all the use refs for a def or all
211 the def refs for a use. This is used to create use-def or def-use
212 chains.
214 Different optimizations have different needs. Ultimately, only
215 register allocation and schedulers should be using the bitmaps
216 produced for the live register and uninitialized register problems.
217 The rest of the backend should be upgraded to using and maintaining
218 the linked information such as def use or use def chains.
221 PHILOSOPHY:
223 While incremental bitmaps are not worthwhile to maintain, incremental
224 chains may be perfectly reasonable. The fastest way to build chains
225 from scratch or after significant modifications is to build reaching
226 definitions (RD) and build the chains from this.
228 However, general algorithms for maintaining use-def or def-use chains
229 are not practical. The amount of work to recompute the chain any
230 chain after an arbitrary change is large. However, with a modest
231 amount of work it is generally possible to have the application that
232 uses the chains keep them up to date. The high level knowledge of
233 what is really happening is essential to crafting efficient
234 incremental algorithms.
236 As for the bit vector problems, there is no interface to give a set of
237 blocks over with to resolve the iteration. In general, restarting a
238 dataflow iteration is difficult and expensive. Again, the best way to
239 keep the dataflow information up to data (if this is really what is
240 needed) it to formulate a problem specific solution.
242 There are fine grained calls for creating and deleting references from
243 instructions in df-scan.c. However, these are not currently connected
244 to the engine that resolves the dataflow equations.
247 DATA STRUCTURES:
249 The basic object is a DF_REF (reference) and this may either be a
250 DEF (definition) or a USE of a register.
252 These are linked into a variety of lists; namely reg-def, reg-use,
253 insn-def, insn-use, def-use, and use-def lists. For example, the
254 reg-def lists contain all the locations that define a given register
255 while the insn-use lists contain all the locations that use a
256 register.
258 Note that the reg-def and reg-use chains are generally short for
259 pseudos and long for the hard registers.
261 ACCESSING INSNS:
263 1) The df insn information is kept in an array of DF_INSN_INFO objects.
264 The array is indexed by insn uid, and every DF_REF points to the
265 DF_INSN_INFO object of the insn that contains the reference.
267 2) Each insn has three sets of refs, which are linked into one of three
268 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
269 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
270 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
271 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
272 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
273 The latter list are the list of references in REG_EQUAL or REG_EQUIV
274 notes. These macros produce a ref (or NULL), the rest of the list
275 can be obtained by traversal of the NEXT_REF field (accessed by the
276 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
277 the uses or refs in an instruction.
279 3) Each insn has a logical uid field (LUID) which is stored in the
280 DF_INSN_INFO object for the insn. The LUID field is accessed by
281 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
282 When properly set, the LUID is an integer that numbers each insn in
283 the basic block, in order from the start of the block.
284 The numbers are only correct after a call to df_analyze. They will
285 rot after insns are added deleted or moved round.
287 ACCESSING REFS:
289 There are 4 ways to obtain access to refs:
291 1) References are divided into two categories, REAL and ARTIFICIAL.
293 REAL refs are associated with instructions.
295 ARTIFICIAL refs are associated with basic blocks. The heads of
296 these lists can be accessed by calling df_get_artificial_defs or
297 df_get_artificial_uses for the particular basic block.
299 Artificial defs and uses occur both at the beginning and ends of blocks.
301 For blocks that area at the destination of eh edges, the
302 artificial uses and defs occur at the beginning. The defs relate
303 to the registers specified in EH_RETURN_DATA_REGNO and the uses
304 relate to the registers specified in ED_USES. Logically these
305 defs and uses should really occur along the eh edge, but there is
306 no convenient way to do this. Artificial edges that occur at the
307 beginning of the block have the DF_REF_AT_TOP flag set.
309 Artificial uses occur at the end of all blocks. These arise from
310 the hard registers that are always live, such as the stack
311 register and are put there to keep the code from forgetting about
312 them.
314 Artificial defs occur at the end of the entry block. These arise
315 from registers that are live at entry to the function.
317 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
318 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
320 All of the eq_uses, uses and defs associated with each pseudo or
321 hard register may be linked in a bidirectional chain. These are
322 called reg-use or reg_def chains. If the changeable flag
323 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
324 treated like uses. If it is not set they are ignored.
326 The first use, eq_use or def for a register can be obtained using
327 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
328 macros. Subsequent uses for the same regno can be obtained by
329 following the next_reg field of the ref. The number of elements in
330 each of the chains can be found by using the DF_REG_USE_COUNT,
331 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
333 In previous versions of this code, these chains were ordered. It
334 has not been practical to continue this practice.
336 3) If def-use or use-def chains are built, these can be traversed to
337 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
338 include the eq_uses. Otherwise these are ignored when building the
339 chains.
341 4) An array of all of the uses (and an array of all of the defs) can
342 be built. These arrays are indexed by the value in the id
343 structure. These arrays are only lazily kept up to date, and that
344 process can be expensive. To have these arrays built, call
345 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
346 has been set the array will contain the eq_uses. Otherwise these
347 are ignored when building the array and assigning the ids. Note
348 that the values in the id field of a ref may change across calls to
349 df_analyze or df_reorganize_defs or df_reorganize_uses.
351 If the only use of this array is to find all of the refs, it is
352 better to traverse all of the registers and then traverse all of
353 reg-use or reg-def chains.
355 NOTES:
357 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
358 both a use and a def. These are both marked read/write to show that they
359 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
360 will generate a use of reg 42 followed by a def of reg 42 (both marked
361 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
362 generates a use of reg 41 then a def of reg 41 (both marked read/write),
363 even though reg 41 is decremented before it is used for the memory
364 address in this second example.
366 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
367 for which the number of word_mode units covered by the outer mode is
368 smaller than that covered by the inner mode, invokes a read-modify-write
369 operation. We generate both a use and a def and again mark them
370 read/write.
372 Paradoxical subreg writes do not leave a trace of the old content, so they
373 are write-only operations.
377 #include "config.h"
378 #include "system.h"
379 #include "coretypes.h"
380 #include "tm.h"
381 #include "rtl.h"
382 #include "tm_p.h"
383 #include "insn-config.h"
384 #include "recog.h"
385 #include "function.h"
386 #include "regs.h"
387 #include "alloc-pool.h"
388 #include "flags.h"
389 #include "hard-reg-set.h"
390 #include "basic-block.h"
391 #include "sbitmap.h"
392 #include "bitmap.h"
393 #include "df.h"
394 #include "tree-pass.h"
395 #include "params.h"
397 static void *df_get_bb_info (struct dataflow *, unsigned int);
398 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
399 static void df_clear_bb_info (struct dataflow *, unsigned int);
400 #ifdef DF_DEBUG_CFG
401 static void df_set_clean_cfg (void);
402 #endif
404 /* The obstack on which regsets are allocated. */
405 struct bitmap_obstack reg_obstack;
407 /* An obstack for bitmap not related to specific dataflow problems.
408 This obstack should e.g. be used for bitmaps with a short life time
409 such as temporary bitmaps. */
411 bitmap_obstack df_bitmap_obstack;
414 /*----------------------------------------------------------------------------
415 Functions to create, destroy and manipulate an instance of df.
416 ----------------------------------------------------------------------------*/
418 struct df_d *df;
420 /* Add PROBLEM (and any dependent problems) to the DF instance. */
422 void
423 df_add_problem (struct df_problem *problem)
425 struct dataflow *dflow;
426 int i;
428 /* First try to add the dependent problem. */
429 if (problem->dependent_problem)
430 df_add_problem (problem->dependent_problem);
432 /* Check to see if this problem has already been defined. If it
433 has, just return that instance, if not, add it to the end of the
434 vector. */
435 dflow = df->problems_by_index[problem->id];
436 if (dflow)
437 return;
439 /* Make a new one and add it to the end. */
440 dflow = XCNEW (struct dataflow);
441 dflow->problem = problem;
442 dflow->computed = false;
443 dflow->solutions_dirty = true;
444 df->problems_by_index[dflow->problem->id] = dflow;
446 /* Keep the defined problems ordered by index. This solves the
447 problem that RI will use the information from UREC if UREC has
448 been defined, or from LIVE if LIVE is defined and otherwise LR.
449 However for this to work, the computation of RI must be pushed
450 after which ever of those problems is defined, but we do not
451 require any of those except for LR to have actually been
452 defined. */
453 df->num_problems_defined++;
454 for (i = df->num_problems_defined - 2; i >= 0; i--)
456 if (problem->id < df->problems_in_order[i]->problem->id)
457 df->problems_in_order[i+1] = df->problems_in_order[i];
458 else
460 df->problems_in_order[i+1] = dflow;
461 return;
464 df->problems_in_order[0] = dflow;
468 /* Set the MASK flags in the DFLOW problem. The old flags are
469 returned. If a flag is not allowed to be changed this will fail if
470 checking is enabled. */
472 df_set_flags (int changeable_flags)
474 int old_flags = df->changeable_flags;
475 df->changeable_flags |= changeable_flags;
476 return old_flags;
480 /* Clear the MASK flags in the DFLOW problem. The old flags are
481 returned. If a flag is not allowed to be changed this will fail if
482 checking is enabled. */
484 df_clear_flags (int changeable_flags)
486 int old_flags = df->changeable_flags;
487 df->changeable_flags &= ~changeable_flags;
488 return old_flags;
492 /* Set the blocks that are to be considered for analysis. If this is
493 not called or is called with null, the entire function in
494 analyzed. */
496 void
497 df_set_blocks (bitmap blocks)
499 if (blocks)
501 if (dump_file)
502 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
503 if (df->blocks_to_analyze)
505 /* This block is called to change the focus from one subset
506 to another. */
507 int p;
508 bitmap_head diff;
509 bitmap_initialize (&diff, &df_bitmap_obstack);
510 bitmap_and_compl (&diff, df->blocks_to_analyze, blocks);
511 for (p = 0; p < df->num_problems_defined; p++)
513 struct dataflow *dflow = df->problems_in_order[p];
514 if (dflow->optional_p && dflow->problem->reset_fun)
515 dflow->problem->reset_fun (df->blocks_to_analyze);
516 else if (dflow->problem->free_blocks_on_set_blocks)
518 bitmap_iterator bi;
519 unsigned int bb_index;
521 EXECUTE_IF_SET_IN_BITMAP (&diff, 0, bb_index, bi)
523 basic_block bb = BASIC_BLOCK (bb_index);
524 if (bb)
526 void *bb_info = df_get_bb_info (dflow, bb_index);
527 dflow->problem->free_bb_fun (bb, bb_info);
528 df_clear_bb_info (dflow, bb_index);
534 bitmap_clear (&diff);
536 else
538 /* This block of code is executed to change the focus from
539 the entire function to a subset. */
540 bitmap_head blocks_to_reset;
541 bool initialized = false;
542 int p;
543 for (p = 0; p < df->num_problems_defined; p++)
545 struct dataflow *dflow = df->problems_in_order[p];
546 if (dflow->optional_p && dflow->problem->reset_fun)
548 if (!initialized)
550 basic_block bb;
551 bitmap_initialize (&blocks_to_reset, &df_bitmap_obstack);
552 FOR_ALL_BB(bb)
554 bitmap_set_bit (&blocks_to_reset, bb->index);
557 dflow->problem->reset_fun (&blocks_to_reset);
560 if (initialized)
561 bitmap_clear (&blocks_to_reset);
563 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
565 bitmap_copy (df->blocks_to_analyze, blocks);
566 df->analyze_subset = true;
568 else
570 /* This block is executed to reset the focus to the entire
571 function. */
572 if (dump_file)
573 fprintf (dump_file, "clearing blocks_to_analyze\n");
574 if (df->blocks_to_analyze)
576 BITMAP_FREE (df->blocks_to_analyze);
577 df->blocks_to_analyze = NULL;
579 df->analyze_subset = false;
582 /* Setting the blocks causes the refs to be unorganized since only
583 the refs in the blocks are seen. */
584 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
585 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
586 df_mark_solutions_dirty ();
590 /* Delete a DFLOW problem (and any problems that depend on this
591 problem). */
593 void
594 df_remove_problem (struct dataflow *dflow)
596 struct df_problem *problem;
597 int i;
599 if (!dflow)
600 return;
602 problem = dflow->problem;
603 gcc_assert (problem->remove_problem_fun);
605 /* Delete any problems that depended on this problem first. */
606 for (i = 0; i < df->num_problems_defined; i++)
607 if (df->problems_in_order[i]->problem->dependent_problem == problem)
608 df_remove_problem (df->problems_in_order[i]);
610 /* Now remove this problem. */
611 for (i = 0; i < df->num_problems_defined; i++)
612 if (df->problems_in_order[i] == dflow)
614 int j;
615 for (j = i + 1; j < df->num_problems_defined; j++)
616 df->problems_in_order[j-1] = df->problems_in_order[j];
617 df->problems_in_order[j-1] = NULL;
618 df->num_problems_defined--;
619 break;
622 (problem->remove_problem_fun) ();
623 df->problems_by_index[problem->id] = NULL;
627 /* Remove all of the problems that are not permanent. Scanning, LR
628 and (at -O2 or higher) LIVE are permanent, the rest are removable.
629 Also clear all of the changeable_flags. */
631 void
632 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
634 int i;
635 int removed = 0;
637 #ifdef ENABLE_DF_CHECKING
638 int saved_flags;
639 #endif
641 if (!df)
642 return;
644 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
645 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
647 #ifdef ENABLE_DF_CHECKING
648 saved_flags = df->changeable_flags;
649 #endif
651 for (i = 0; i < df->num_problems_defined; i++)
653 struct dataflow *dflow = df->problems_in_order[i];
654 struct df_problem *problem = dflow->problem;
656 if (dflow->optional_p)
658 gcc_assert (problem->remove_problem_fun);
659 (problem->remove_problem_fun) ();
660 df->problems_in_order[i] = NULL;
661 df->problems_by_index[problem->id] = NULL;
662 removed++;
665 df->num_problems_defined -= removed;
667 /* Clear all of the flags. */
668 df->changeable_flags = 0;
669 df_process_deferred_rescans ();
671 /* Set the focus back to the whole function. */
672 if (df->blocks_to_analyze)
674 BITMAP_FREE (df->blocks_to_analyze);
675 df->blocks_to_analyze = NULL;
676 df_mark_solutions_dirty ();
677 df->analyze_subset = false;
680 #ifdef ENABLE_DF_CHECKING
681 /* Verification will fail in DF_NO_INSN_RESCAN. */
682 if (!(saved_flags & DF_NO_INSN_RESCAN))
684 df_lr_verify_transfer_functions ();
685 if (df_live)
686 df_live_verify_transfer_functions ();
689 #ifdef DF_DEBUG_CFG
690 df_set_clean_cfg ();
691 #endif
692 #endif
694 #ifdef ENABLE_CHECKING
695 if (verify)
696 df->changeable_flags |= DF_VERIFY_SCHEDULED;
697 #endif
701 /* Set up the dataflow instance for the entire back end. */
703 static unsigned int
704 rest_of_handle_df_initialize (void)
706 gcc_assert (!df);
707 df = XCNEW (struct df_d);
708 df->changeable_flags = 0;
710 bitmap_obstack_initialize (&df_bitmap_obstack);
712 /* Set this to a conservative value. Stack_ptr_mod will compute it
713 correctly later. */
714 crtl->sp_is_unchanging = 0;
716 df_scan_add_problem ();
717 df_scan_alloc (NULL);
719 /* These three problems are permanent. */
720 df_lr_add_problem ();
721 if (optimize > 1)
722 df_live_add_problem ();
724 df->postorder = XNEWVEC (int, last_basic_block);
725 df->postorder_inverted = XNEWVEC (int, last_basic_block);
726 df->n_blocks = post_order_compute (df->postorder, true, true);
727 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
728 gcc_assert (df->n_blocks == df->n_blocks_inverted);
730 df->hard_regs_live_count = XCNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
732 df_hard_reg_init ();
733 /* After reload, some ports add certain bits to regs_ever_live so
734 this cannot be reset. */
735 df_compute_regs_ever_live (true);
736 df_scan_blocks ();
737 df_compute_regs_ever_live (false);
738 return 0;
742 static bool
743 gate_opt (void)
745 return optimize > 0;
749 struct rtl_opt_pass pass_df_initialize_opt =
752 RTL_PASS,
753 "dfinit", /* name */
754 OPTGROUP_NONE, /* optinfo_flags */
755 gate_opt, /* gate */
756 rest_of_handle_df_initialize, /* execute */
757 NULL, /* sub */
758 NULL, /* next */
759 0, /* static_pass_number */
760 TV_DF_SCAN, /* tv_id */
761 0, /* properties_required */
762 0, /* properties_provided */
763 0, /* properties_destroyed */
764 0, /* todo_flags_start */
765 0 /* todo_flags_finish */
770 static bool
771 gate_no_opt (void)
773 return optimize == 0;
777 struct rtl_opt_pass pass_df_initialize_no_opt =
780 RTL_PASS,
781 "no-opt dfinit", /* name */
782 OPTGROUP_NONE, /* optinfo_flags */
783 gate_no_opt, /* gate */
784 rest_of_handle_df_initialize, /* execute */
785 NULL, /* sub */
786 NULL, /* next */
787 0, /* static_pass_number */
788 TV_DF_SCAN, /* tv_id */
789 0, /* properties_required */
790 0, /* properties_provided */
791 0, /* properties_destroyed */
792 0, /* todo_flags_start */
793 0 /* todo_flags_finish */
798 /* Free all the dataflow info and the DF structure. This should be
799 called from the df_finish macro which also NULLs the parm. */
801 static unsigned int
802 rest_of_handle_df_finish (void)
804 int i;
806 gcc_assert (df);
808 for (i = 0; i < df->num_problems_defined; i++)
810 struct dataflow *dflow = df->problems_in_order[i];
811 dflow->problem->free_fun ();
814 free (df->postorder);
815 free (df->postorder_inverted);
816 free (df->hard_regs_live_count);
817 free (df);
818 df = NULL;
820 bitmap_obstack_release (&df_bitmap_obstack);
821 return 0;
825 struct rtl_opt_pass pass_df_finish =
828 RTL_PASS,
829 "dfinish", /* name */
830 OPTGROUP_NONE, /* optinfo_flags */
831 NULL, /* gate */
832 rest_of_handle_df_finish, /* execute */
833 NULL, /* sub */
834 NULL, /* next */
835 0, /* static_pass_number */
836 TV_NONE, /* tv_id */
837 0, /* properties_required */
838 0, /* properties_provided */
839 0, /* properties_destroyed */
840 0, /* todo_flags_start */
841 0 /* todo_flags_finish */
849 /*----------------------------------------------------------------------------
850 The general data flow analysis engine.
851 ----------------------------------------------------------------------------*/
853 /* Return time BB when it was visited for last time. */
854 #define BB_LAST_CHANGE_AGE(bb) ((ptrdiff_t)(bb)->aux)
856 /* Helper function for df_worklist_dataflow.
857 Propagate the dataflow forward.
858 Given a BB_INDEX, do the dataflow propagation
859 and set bits on for successors in PENDING
860 if the out set of the dataflow has changed.
862 AGE specify time when BB was visited last time.
863 AGE of 0 means we are visiting for first time and need to
864 compute transfer function to initialize datastructures.
865 Otherwise we re-do transfer function only if something change
866 while computing confluence functions.
867 We need to compute confluence only of basic block that are younger
868 then last visit of the BB.
870 Return true if BB info has changed. This is always the case
871 in the first visit. */
873 static bool
874 df_worklist_propagate_forward (struct dataflow *dataflow,
875 unsigned bb_index,
876 unsigned *bbindex_to_postorder,
877 bitmap pending,
878 sbitmap considered,
879 ptrdiff_t age)
881 edge e;
882 edge_iterator ei;
883 basic_block bb = BASIC_BLOCK (bb_index);
884 bool changed = !age;
886 /* Calculate <conf_op> of incoming edges. */
887 if (EDGE_COUNT (bb->preds) > 0)
888 FOR_EACH_EDGE (e, ei, bb->preds)
890 if (age <= BB_LAST_CHANGE_AGE (e->src)
891 && bitmap_bit_p (considered, e->src->index))
892 changed |= dataflow->problem->con_fun_n (e);
894 else if (dataflow->problem->con_fun_0)
895 dataflow->problem->con_fun_0 (bb);
897 if (changed
898 && dataflow->problem->trans_fun (bb_index))
900 /* The out set of this block has changed.
901 Propagate to the outgoing blocks. */
902 FOR_EACH_EDGE (e, ei, bb->succs)
904 unsigned ob_index = e->dest->index;
906 if (bitmap_bit_p (considered, ob_index))
907 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
909 return true;
911 return false;
915 /* Helper function for df_worklist_dataflow.
916 Propagate the dataflow backward. */
918 static bool
919 df_worklist_propagate_backward (struct dataflow *dataflow,
920 unsigned bb_index,
921 unsigned *bbindex_to_postorder,
922 bitmap pending,
923 sbitmap considered,
924 ptrdiff_t age)
926 edge e;
927 edge_iterator ei;
928 basic_block bb = BASIC_BLOCK (bb_index);
929 bool changed = !age;
931 /* Calculate <conf_op> of incoming edges. */
932 if (EDGE_COUNT (bb->succs) > 0)
933 FOR_EACH_EDGE (e, ei, bb->succs)
935 if (age <= BB_LAST_CHANGE_AGE (e->dest)
936 && bitmap_bit_p (considered, e->dest->index))
937 changed |= dataflow->problem->con_fun_n (e);
939 else if (dataflow->problem->con_fun_0)
940 dataflow->problem->con_fun_0 (bb);
942 if (changed
943 && dataflow->problem->trans_fun (bb_index))
945 /* The out set of this block has changed.
946 Propagate to the outgoing blocks. */
947 FOR_EACH_EDGE (e, ei, bb->preds)
949 unsigned ob_index = e->src->index;
951 if (bitmap_bit_p (considered, ob_index))
952 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
954 return true;
956 return false;
959 /* Main dataflow solver loop.
961 DATAFLOW is problem we are solving, PENDING is worklist of basic blocks we
962 need to visit.
963 BLOCK_IN_POSTORDER is array of size N_BLOCKS specifying postorder in BBs and
964 BBINDEX_TO_POSTORDER is array mapping back BB->index to postorder possition.
965 PENDING will be freed.
967 The worklists are bitmaps indexed by postorder positions.
969 The function implements standard algorithm for dataflow solving with two
970 worklists (we are processing WORKLIST and storing new BBs to visit in
971 PENDING).
973 As an optimization we maintain ages when BB was changed (stored in bb->aux)
974 and when it was last visited (stored in last_visit_age). This avoids need
975 to re-do confluence function for edges to basic blocks whose source
976 did not change since destination was visited last time. */
978 static void
979 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
980 bitmap pending,
981 sbitmap considered,
982 int *blocks_in_postorder,
983 unsigned *bbindex_to_postorder,
984 int n_blocks)
986 enum df_flow_dir dir = dataflow->problem->dir;
987 int dcount = 0;
988 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
989 int age = 0;
990 bool changed;
991 vec<int> last_visit_age = vNULL;
992 int prev_age;
993 basic_block bb;
994 int i;
996 last_visit_age.safe_grow_cleared (n_blocks);
998 /* Double-queueing. Worklist is for the current iteration,
999 and pending is for the next. */
1000 while (!bitmap_empty_p (pending))
1002 bitmap_iterator bi;
1003 unsigned int index;
1005 /* Swap pending and worklist. */
1006 bitmap temp = worklist;
1007 worklist = pending;
1008 pending = temp;
1010 EXECUTE_IF_SET_IN_BITMAP (worklist, 0, index, bi)
1012 unsigned bb_index;
1013 dcount++;
1015 bitmap_clear_bit (pending, index);
1016 bb_index = blocks_in_postorder[index];
1017 bb = BASIC_BLOCK (bb_index);
1018 prev_age = last_visit_age[index];
1019 if (dir == DF_FORWARD)
1020 changed = df_worklist_propagate_forward (dataflow, bb_index,
1021 bbindex_to_postorder,
1022 pending, considered,
1023 prev_age);
1024 else
1025 changed = df_worklist_propagate_backward (dataflow, bb_index,
1026 bbindex_to_postorder,
1027 pending, considered,
1028 prev_age);
1029 last_visit_age[index] = ++age;
1030 if (changed)
1031 bb->aux = (void *)(ptrdiff_t)age;
1033 bitmap_clear (worklist);
1035 for (i = 0; i < n_blocks; i++)
1036 BASIC_BLOCK (blocks_in_postorder[i])->aux = NULL;
1038 BITMAP_FREE (worklist);
1039 BITMAP_FREE (pending);
1040 last_visit_age.release ();
1042 /* Dump statistics. */
1043 if (dump_file)
1044 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
1045 "n_basic_blocks %d n_edges %d"
1046 " count %d (%5.2g)\n",
1047 n_basic_blocks, n_edges,
1048 dcount, dcount / (float)n_basic_blocks);
1051 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1052 with "n"-th bit representing the n-th block in the reverse-postorder order.
1053 The solver is a double-queue algorithm similar to the "double stack" solver
1054 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1055 The only significant difference is that the worklist in this implementation
1056 is always sorted in RPO of the CFG visiting direction. */
1058 void
1059 df_worklist_dataflow (struct dataflow *dataflow,
1060 bitmap blocks_to_consider,
1061 int *blocks_in_postorder,
1062 int n_blocks)
1064 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1065 sbitmap considered = sbitmap_alloc (last_basic_block);
1066 bitmap_iterator bi;
1067 unsigned int *bbindex_to_postorder;
1068 int i;
1069 unsigned int index;
1070 enum df_flow_dir dir = dataflow->problem->dir;
1072 gcc_assert (dir != DF_NONE);
1074 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1075 bbindex_to_postorder = XNEWVEC (unsigned int, last_basic_block);
1077 /* Initialize the array to an out-of-bound value. */
1078 for (i = 0; i < last_basic_block; i++)
1079 bbindex_to_postorder[i] = last_basic_block;
1081 /* Initialize the considered map. */
1082 bitmap_clear (considered);
1083 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1085 bitmap_set_bit (considered, index);
1088 /* Initialize the mapping of block index to postorder. */
1089 for (i = 0; i < n_blocks; i++)
1091 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1092 /* Add all blocks to the worklist. */
1093 bitmap_set_bit (pending, i);
1096 /* Initialize the problem. */
1097 if (dataflow->problem->init_fun)
1098 dataflow->problem->init_fun (blocks_to_consider);
1100 /* Solve it. */
1101 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1102 blocks_in_postorder,
1103 bbindex_to_postorder,
1104 n_blocks);
1105 sbitmap_free (considered);
1106 free (bbindex_to_postorder);
1110 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1111 the order of the remaining entries. Returns the length of the resulting
1112 list. */
1114 static unsigned
1115 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1117 unsigned act, last;
1119 for (act = 0, last = 0; act < len; act++)
1120 if (bitmap_bit_p (blocks, list[act]))
1121 list[last++] = list[act];
1123 return last;
1127 /* Execute dataflow analysis on a single dataflow problem.
1129 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1130 examined or will be computed. For calls from DF_ANALYZE, this is
1131 the set of blocks that has been passed to DF_SET_BLOCKS.
1134 void
1135 df_analyze_problem (struct dataflow *dflow,
1136 bitmap blocks_to_consider,
1137 int *postorder, int n_blocks)
1139 timevar_push (dflow->problem->tv_id);
1141 /* (Re)Allocate the datastructures necessary to solve the problem. */
1142 if (dflow->problem->alloc_fun)
1143 dflow->problem->alloc_fun (blocks_to_consider);
1145 #ifdef ENABLE_DF_CHECKING
1146 if (dflow->problem->verify_start_fun)
1147 dflow->problem->verify_start_fun ();
1148 #endif
1150 /* Set up the problem and compute the local information. */
1151 if (dflow->problem->local_compute_fun)
1152 dflow->problem->local_compute_fun (blocks_to_consider);
1154 /* Solve the equations. */
1155 if (dflow->problem->dataflow_fun)
1156 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1157 postorder, n_blocks);
1159 /* Massage the solution. */
1160 if (dflow->problem->finalize_fun)
1161 dflow->problem->finalize_fun (blocks_to_consider);
1163 #ifdef ENABLE_DF_CHECKING
1164 if (dflow->problem->verify_end_fun)
1165 dflow->problem->verify_end_fun ();
1166 #endif
1168 timevar_pop (dflow->problem->tv_id);
1170 dflow->computed = true;
1174 /* Analyze dataflow info for the basic blocks specified by the bitmap
1175 BLOCKS, or for the whole CFG if BLOCKS is zero. */
1177 void
1178 df_analyze (void)
1180 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1181 bool everything;
1182 int i;
1184 free (df->postorder);
1185 free (df->postorder_inverted);
1186 df->postorder = XNEWVEC (int, last_basic_block);
1187 df->postorder_inverted = XNEWVEC (int, last_basic_block);
1188 df->n_blocks = post_order_compute (df->postorder, true, true);
1189 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1191 /* These should be the same. */
1192 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1194 /* We need to do this before the df_verify_all because this is
1195 not kept incrementally up to date. */
1196 df_compute_regs_ever_live (false);
1197 df_process_deferred_rescans ();
1199 if (dump_file)
1200 fprintf (dump_file, "df_analyze called\n");
1202 #ifndef ENABLE_DF_CHECKING
1203 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1204 #endif
1205 df_verify ();
1207 for (i = 0; i < df->n_blocks; i++)
1208 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1210 #ifdef ENABLE_CHECKING
1211 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1212 the ENTRY block. */
1213 for (i = 0; i < df->n_blocks_inverted; i++)
1214 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1215 #endif
1217 /* Make sure that we have pruned any unreachable blocks from these
1218 sets. */
1219 if (df->analyze_subset)
1221 everything = false;
1222 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1223 df->n_blocks = df_prune_to_subcfg (df->postorder,
1224 df->n_blocks, df->blocks_to_analyze);
1225 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1226 df->n_blocks_inverted,
1227 df->blocks_to_analyze);
1228 BITMAP_FREE (current_all_blocks);
1230 else
1232 everything = true;
1233 df->blocks_to_analyze = current_all_blocks;
1234 current_all_blocks = NULL;
1237 /* Skip over the DF_SCAN problem. */
1238 for (i = 1; i < df->num_problems_defined; i++)
1240 struct dataflow *dflow = df->problems_in_order[i];
1241 if (dflow->solutions_dirty)
1243 if (dflow->problem->dir == DF_FORWARD)
1244 df_analyze_problem (dflow,
1245 df->blocks_to_analyze,
1246 df->postorder_inverted,
1247 df->n_blocks_inverted);
1248 else
1249 df_analyze_problem (dflow,
1250 df->blocks_to_analyze,
1251 df->postorder,
1252 df->n_blocks);
1256 if (everything)
1258 BITMAP_FREE (df->blocks_to_analyze);
1259 df->blocks_to_analyze = NULL;
1262 #ifdef DF_DEBUG_CFG
1263 df_set_clean_cfg ();
1264 #endif
1268 /* Return the number of basic blocks from the last call to df_analyze. */
1271 df_get_n_blocks (enum df_flow_dir dir)
1273 gcc_assert (dir != DF_NONE);
1275 if (dir == DF_FORWARD)
1277 gcc_assert (df->postorder_inverted);
1278 return df->n_blocks_inverted;
1281 gcc_assert (df->postorder);
1282 return df->n_blocks;
1286 /* Return a pointer to the array of basic blocks in the reverse postorder.
1287 Depending on the direction of the dataflow problem,
1288 it returns either the usual reverse postorder array
1289 or the reverse postorder of inverted traversal. */
1290 int *
1291 df_get_postorder (enum df_flow_dir dir)
1293 gcc_assert (dir != DF_NONE);
1295 if (dir == DF_FORWARD)
1297 gcc_assert (df->postorder_inverted);
1298 return df->postorder_inverted;
1300 gcc_assert (df->postorder);
1301 return df->postorder;
1304 static struct df_problem user_problem;
1305 static struct dataflow user_dflow;
1307 /* Interface for calling iterative dataflow with user defined
1308 confluence and transfer functions. All that is necessary is to
1309 supply DIR, a direction, CONF_FUN_0, a confluence function for
1310 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1311 confluence function, TRANS_FUN, the basic block transfer function,
1312 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1313 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1315 void
1316 df_simple_dataflow (enum df_flow_dir dir,
1317 df_init_function init_fun,
1318 df_confluence_function_0 con_fun_0,
1319 df_confluence_function_n con_fun_n,
1320 df_transfer_function trans_fun,
1321 bitmap blocks, int * postorder, int n_blocks)
1323 memset (&user_problem, 0, sizeof (struct df_problem));
1324 user_problem.dir = dir;
1325 user_problem.init_fun = init_fun;
1326 user_problem.con_fun_0 = con_fun_0;
1327 user_problem.con_fun_n = con_fun_n;
1328 user_problem.trans_fun = trans_fun;
1329 user_dflow.problem = &user_problem;
1330 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1335 /*----------------------------------------------------------------------------
1336 Functions to support limited incremental change.
1337 ----------------------------------------------------------------------------*/
1340 /* Get basic block info. */
1342 static void *
1343 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1345 if (dflow->block_info == NULL)
1346 return NULL;
1347 if (index >= dflow->block_info_size)
1348 return NULL;
1349 return (void *)((char *)dflow->block_info
1350 + index * dflow->problem->block_info_elt_size);
1354 /* Set basic block info. */
1356 static void
1357 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1358 void *bb_info)
1360 gcc_assert (dflow->block_info);
1361 memcpy ((char *)dflow->block_info
1362 + index * dflow->problem->block_info_elt_size,
1363 bb_info, dflow->problem->block_info_elt_size);
1367 /* Clear basic block info. */
1369 static void
1370 df_clear_bb_info (struct dataflow *dflow, unsigned int index)
1372 gcc_assert (dflow->block_info);
1373 gcc_assert (dflow->block_info_size > index);
1374 memset ((char *)dflow->block_info
1375 + index * dflow->problem->block_info_elt_size,
1376 0, dflow->problem->block_info_elt_size);
1380 /* Mark the solutions as being out of date. */
1382 void
1383 df_mark_solutions_dirty (void)
1385 if (df)
1387 int p;
1388 for (p = 1; p < df->num_problems_defined; p++)
1389 df->problems_in_order[p]->solutions_dirty = true;
1394 /* Return true if BB needs it's transfer functions recomputed. */
1396 bool
1397 df_get_bb_dirty (basic_block bb)
1399 return bitmap_bit_p ((df_live
1400 ? df_live : df_lr)->out_of_date_transfer_functions,
1401 bb->index);
1405 /* Mark BB as needing it's transfer functions as being out of
1406 date. */
1408 void
1409 df_set_bb_dirty (basic_block bb)
1411 bb->flags |= BB_MODIFIED;
1412 if (df)
1414 int p;
1415 for (p = 1; p < df->num_problems_defined; p++)
1417 struct dataflow *dflow = df->problems_in_order[p];
1418 if (dflow->out_of_date_transfer_functions)
1419 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1421 df_mark_solutions_dirty ();
1426 /* Grow the bb_info array. */
1428 void
1429 df_grow_bb_info (struct dataflow *dflow)
1431 unsigned int new_size = last_basic_block + 1;
1432 if (dflow->block_info_size < new_size)
1434 new_size += new_size / 4;
1435 dflow->block_info
1436 = (void *)XRESIZEVEC (char, (char *)dflow->block_info,
1437 new_size
1438 * dflow->problem->block_info_elt_size);
1439 memset ((char *)dflow->block_info
1440 + dflow->block_info_size
1441 * dflow->problem->block_info_elt_size,
1443 (new_size - dflow->block_info_size)
1444 * dflow->problem->block_info_elt_size);
1445 dflow->block_info_size = new_size;
1450 /* Clear the dirty bits. This is called from places that delete
1451 blocks. */
1452 static void
1453 df_clear_bb_dirty (basic_block bb)
1455 int p;
1456 for (p = 1; p < df->num_problems_defined; p++)
1458 struct dataflow *dflow = df->problems_in_order[p];
1459 if (dflow->out_of_date_transfer_functions)
1460 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1464 /* Called from the rtl_compact_blocks to reorganize the problems basic
1465 block info. */
1467 void
1468 df_compact_blocks (void)
1470 int i, p;
1471 basic_block bb;
1472 void *problem_temps;
1473 bitmap_head tmp;
1475 bitmap_initialize (&tmp, &df_bitmap_obstack);
1476 for (p = 0; p < df->num_problems_defined; p++)
1478 struct dataflow *dflow = df->problems_in_order[p];
1480 /* Need to reorganize the out_of_date_transfer_functions for the
1481 dflow problem. */
1482 if (dflow->out_of_date_transfer_functions)
1484 bitmap_copy (&tmp, dflow->out_of_date_transfer_functions);
1485 bitmap_clear (dflow->out_of_date_transfer_functions);
1486 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1487 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1488 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1489 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1491 i = NUM_FIXED_BLOCKS;
1492 FOR_EACH_BB (bb)
1494 if (bitmap_bit_p (&tmp, bb->index))
1495 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1496 i++;
1500 /* Now shuffle the block info for the problem. */
1501 if (dflow->problem->free_bb_fun)
1503 int size = last_basic_block * dflow->problem->block_info_elt_size;
1504 problem_temps = XNEWVAR (char, size);
1505 df_grow_bb_info (dflow);
1506 memcpy (problem_temps, dflow->block_info, size);
1508 /* Copy the bb info from the problem tmps to the proper
1509 place in the block_info vector. Null out the copied
1510 item. The entry and exit blocks never move. */
1511 i = NUM_FIXED_BLOCKS;
1512 FOR_EACH_BB (bb)
1514 df_set_bb_info (dflow, i,
1515 (char *)problem_temps
1516 + bb->index * dflow->problem->block_info_elt_size);
1517 i++;
1519 memset ((char *)dflow->block_info
1520 + i * dflow->problem->block_info_elt_size, 0,
1521 (last_basic_block - i)
1522 * dflow->problem->block_info_elt_size);
1523 free (problem_temps);
1527 /* Shuffle the bits in the basic_block indexed arrays. */
1529 if (df->blocks_to_analyze)
1531 if (bitmap_bit_p (&tmp, ENTRY_BLOCK))
1532 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1533 if (bitmap_bit_p (&tmp, EXIT_BLOCK))
1534 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1535 bitmap_copy (&tmp, df->blocks_to_analyze);
1536 bitmap_clear (df->blocks_to_analyze);
1537 i = NUM_FIXED_BLOCKS;
1538 FOR_EACH_BB (bb)
1540 if (bitmap_bit_p (&tmp, bb->index))
1541 bitmap_set_bit (df->blocks_to_analyze, i);
1542 i++;
1546 bitmap_clear (&tmp);
1548 i = NUM_FIXED_BLOCKS;
1549 FOR_EACH_BB (bb)
1551 SET_BASIC_BLOCK (i, bb);
1552 bb->index = i;
1553 i++;
1556 gcc_assert (i == n_basic_blocks);
1558 for (; i < last_basic_block; i++)
1559 SET_BASIC_BLOCK (i, NULL);
1561 #ifdef DF_DEBUG_CFG
1562 if (!df_lr->solutions_dirty)
1563 df_set_clean_cfg ();
1564 #endif
1568 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1569 block. There is no excuse for people to do this kind of thing. */
1571 void
1572 df_bb_replace (int old_index, basic_block new_block)
1574 int new_block_index = new_block->index;
1575 int p;
1577 if (dump_file)
1578 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1580 gcc_assert (df);
1581 gcc_assert (BASIC_BLOCK (old_index) == NULL);
1583 for (p = 0; p < df->num_problems_defined; p++)
1585 struct dataflow *dflow = df->problems_in_order[p];
1586 if (dflow->block_info)
1588 df_grow_bb_info (dflow);
1589 df_set_bb_info (dflow, old_index,
1590 df_get_bb_info (dflow, new_block_index));
1594 df_clear_bb_dirty (new_block);
1595 SET_BASIC_BLOCK (old_index, new_block);
1596 new_block->index = old_index;
1597 df_set_bb_dirty (BASIC_BLOCK (old_index));
1598 SET_BASIC_BLOCK (new_block_index, NULL);
1602 /* Free all of the per basic block dataflow from all of the problems.
1603 This is typically called before a basic block is deleted and the
1604 problem will be reanalyzed. */
1606 void
1607 df_bb_delete (int bb_index)
1609 basic_block bb = BASIC_BLOCK (bb_index);
1610 int i;
1612 if (!df)
1613 return;
1615 for (i = 0; i < df->num_problems_defined; i++)
1617 struct dataflow *dflow = df->problems_in_order[i];
1618 if (dflow->problem->free_bb_fun)
1620 void *bb_info = df_get_bb_info (dflow, bb_index);
1621 if (bb_info)
1623 dflow->problem->free_bb_fun (bb, bb_info);
1624 df_clear_bb_info (dflow, bb_index);
1628 df_clear_bb_dirty (bb);
1629 df_mark_solutions_dirty ();
1633 /* Verify that there is a place for everything and everything is in
1634 its place. This is too expensive to run after every pass in the
1635 mainline. However this is an excellent debugging tool if the
1636 dataflow information is not being updated properly. You can just
1637 sprinkle calls in until you find the place that is changing an
1638 underlying structure without calling the proper updating
1639 routine. */
1641 void
1642 df_verify (void)
1644 df_scan_verify ();
1645 #ifdef ENABLE_DF_CHECKING
1646 df_lr_verify_transfer_functions ();
1647 if (df_live)
1648 df_live_verify_transfer_functions ();
1649 #endif
1652 #ifdef DF_DEBUG_CFG
1654 /* Compute an array of ints that describes the cfg. This can be used
1655 to discover places where the cfg is modified by the appropriate
1656 calls have not been made to the keep df informed. The internals of
1657 this are unexciting, the key is that two instances of this can be
1658 compared to see if any changes have been made to the cfg. */
1660 static int *
1661 df_compute_cfg_image (void)
1663 basic_block bb;
1664 int size = 2 + (2 * n_basic_blocks);
1665 int i;
1666 int * map;
1668 FOR_ALL_BB (bb)
1670 size += EDGE_COUNT (bb->succs);
1673 map = XNEWVEC (int, size);
1674 map[0] = size;
1675 i = 1;
1676 FOR_ALL_BB (bb)
1678 edge_iterator ei;
1679 edge e;
1681 map[i++] = bb->index;
1682 FOR_EACH_EDGE (e, ei, bb->succs)
1683 map[i++] = e->dest->index;
1684 map[i++] = -1;
1686 map[i] = -1;
1687 return map;
1690 static int *saved_cfg = NULL;
1693 /* This function compares the saved version of the cfg with the
1694 current cfg and aborts if the two are identical. The function
1695 silently returns if the cfg has been marked as dirty or the two are
1696 the same. */
1698 void
1699 df_check_cfg_clean (void)
1701 int *new_map;
1703 if (!df)
1704 return;
1706 if (df_lr->solutions_dirty)
1707 return;
1709 if (saved_cfg == NULL)
1710 return;
1712 new_map = df_compute_cfg_image ();
1713 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1714 free (new_map);
1718 /* This function builds a cfg fingerprint and squirrels it away in
1719 saved_cfg. */
1721 static void
1722 df_set_clean_cfg (void)
1724 free (saved_cfg);
1725 saved_cfg = df_compute_cfg_image ();
1728 #endif /* DF_DEBUG_CFG */
1729 /*----------------------------------------------------------------------------
1730 PUBLIC INTERFACES TO QUERY INFORMATION.
1731 ----------------------------------------------------------------------------*/
1734 /* Return first def of REGNO within BB. */
1736 df_ref
1737 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1739 rtx insn;
1740 df_ref *def_rec;
1741 unsigned int uid;
1743 FOR_BB_INSNS (bb, insn)
1745 if (!INSN_P (insn))
1746 continue;
1748 uid = INSN_UID (insn);
1749 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1751 df_ref def = *def_rec;
1752 if (DF_REF_REGNO (def) == regno)
1753 return def;
1756 return NULL;
1760 /* Return last def of REGNO within BB. */
1762 df_ref
1763 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1765 rtx insn;
1766 df_ref *def_rec;
1767 unsigned int uid;
1769 FOR_BB_INSNS_REVERSE (bb, insn)
1771 if (!INSN_P (insn))
1772 continue;
1774 uid = INSN_UID (insn);
1775 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1777 df_ref def = *def_rec;
1778 if (DF_REF_REGNO (def) == regno)
1779 return def;
1783 return NULL;
1786 /* Finds the reference corresponding to the definition of REG in INSN.
1787 DF is the dataflow object. */
1789 df_ref
1790 df_find_def (rtx insn, rtx reg)
1792 unsigned int uid;
1793 df_ref *def_rec;
1795 if (GET_CODE (reg) == SUBREG)
1796 reg = SUBREG_REG (reg);
1797 gcc_assert (REG_P (reg));
1799 uid = INSN_UID (insn);
1800 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1802 df_ref def = *def_rec;
1803 if (DF_REF_REGNO (def) == REGNO (reg))
1804 return def;
1807 return NULL;
1811 /* Return true if REG is defined in INSN, zero otherwise. */
1813 bool
1814 df_reg_defined (rtx insn, rtx reg)
1816 return df_find_def (insn, reg) != NULL;
1820 /* Finds the reference corresponding to the use of REG in INSN.
1821 DF is the dataflow object. */
1823 df_ref
1824 df_find_use (rtx insn, rtx reg)
1826 unsigned int uid;
1827 df_ref *use_rec;
1829 if (GET_CODE (reg) == SUBREG)
1830 reg = SUBREG_REG (reg);
1831 gcc_assert (REG_P (reg));
1833 uid = INSN_UID (insn);
1834 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1836 df_ref use = *use_rec;
1837 if (DF_REF_REGNO (use) == REGNO (reg))
1838 return use;
1840 if (df->changeable_flags & DF_EQ_NOTES)
1841 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1843 df_ref use = *use_rec;
1844 if (DF_REF_REGNO (use) == REGNO (reg))
1845 return use;
1847 return NULL;
1851 /* Return true if REG is referenced in INSN, zero otherwise. */
1853 bool
1854 df_reg_used (rtx insn, rtx reg)
1856 return df_find_use (insn, reg) != NULL;
1860 /*----------------------------------------------------------------------------
1861 Debugging and printing functions.
1862 ----------------------------------------------------------------------------*/
1864 /* Write information about registers and basic blocks into FILE.
1865 This is part of making a debugging dump. */
1867 void
1868 dump_regset (regset r, FILE *outf)
1870 unsigned i;
1871 reg_set_iterator rsi;
1873 if (r == NULL)
1875 fputs (" (nil)", outf);
1876 return;
1879 EXECUTE_IF_SET_IN_REG_SET (r, 0, i, rsi)
1881 fprintf (outf, " %d", i);
1882 if (i < FIRST_PSEUDO_REGISTER)
1883 fprintf (outf, " [%s]",
1884 reg_names[i]);
1888 /* Print a human-readable representation of R on the standard error
1889 stream. This function is designed to be used from within the
1890 debugger. */
1891 extern void debug_regset (regset);
1892 DEBUG_FUNCTION void
1893 debug_regset (regset r)
1895 dump_regset (r, stderr);
1896 putc ('\n', stderr);
1899 /* Write information about registers and basic blocks into FILE.
1900 This is part of making a debugging dump. */
1902 void
1903 df_print_regset (FILE *file, bitmap r)
1905 unsigned int i;
1906 bitmap_iterator bi;
1908 if (r == NULL)
1909 fputs (" (nil)", file);
1910 else
1912 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1914 fprintf (file, " %d", i);
1915 if (i < FIRST_PSEUDO_REGISTER)
1916 fprintf (file, " [%s]", reg_names[i]);
1919 fprintf (file, "\n");
1923 /* Write information about registers and basic blocks into FILE. The
1924 bitmap is in the form used by df_byte_lr. This is part of making a
1925 debugging dump. */
1927 void
1928 df_print_word_regset (FILE *file, bitmap r)
1930 unsigned int max_reg = max_reg_num ();
1932 if (r == NULL)
1933 fputs (" (nil)", file);
1934 else
1936 unsigned int i;
1937 for (i = FIRST_PSEUDO_REGISTER; i < max_reg; i++)
1939 bool found = (bitmap_bit_p (r, 2 * i)
1940 || bitmap_bit_p (r, 2 * i + 1));
1941 if (found)
1943 int word;
1944 const char * sep = "";
1945 fprintf (file, " %d", i);
1946 fprintf (file, "(");
1947 for (word = 0; word < 2; word++)
1948 if (bitmap_bit_p (r, 2 * i + word))
1950 fprintf (file, "%s%d", sep, word);
1951 sep = ", ";
1953 fprintf (file, ")");
1957 fprintf (file, "\n");
1961 /* Dump dataflow info. */
1963 void
1964 df_dump (FILE *file)
1966 basic_block bb;
1967 df_dump_start (file);
1969 FOR_ALL_BB (bb)
1971 df_print_bb_index (bb, file);
1972 df_dump_top (bb, file);
1973 df_dump_bottom (bb, file);
1976 fprintf (file, "\n");
1980 /* Dump dataflow info for df->blocks_to_analyze. */
1982 void
1983 df_dump_region (FILE *file)
1985 if (df->blocks_to_analyze)
1987 bitmap_iterator bi;
1988 unsigned int bb_index;
1990 fprintf (file, "\n\nstarting region dump\n");
1991 df_dump_start (file);
1993 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
1995 basic_block bb = BASIC_BLOCK (bb_index);
1996 dump_bb (file, bb, 0, TDF_DETAILS);
1998 fprintf (file, "\n");
2000 else
2001 df_dump (file);
2005 /* Dump the introductory information for each problem defined. */
2007 void
2008 df_dump_start (FILE *file)
2010 int i;
2012 if (!df || !file)
2013 return;
2015 fprintf (file, "\n\n%s\n", current_function_name ());
2016 fprintf (file, "\nDataflow summary:\n");
2017 if (df->blocks_to_analyze)
2018 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
2019 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
2021 for (i = 0; i < df->num_problems_defined; i++)
2023 struct dataflow *dflow = df->problems_in_order[i];
2024 if (dflow->computed)
2026 df_dump_problem_function fun = dflow->problem->dump_start_fun;
2027 if (fun)
2028 fun(file);
2034 /* Dump the top or bottom of the block information for BB. */
2035 static void
2036 df_dump_bb_problem_data (basic_block bb, FILE *file, bool top)
2038 int i;
2040 if (!df || !file)
2041 return;
2043 for (i = 0; i < df->num_problems_defined; i++)
2045 struct dataflow *dflow = df->problems_in_order[i];
2046 if (dflow->computed)
2048 df_dump_bb_problem_function bbfun;
2050 if (top)
2051 bbfun = dflow->problem->dump_top_fun;
2052 else
2053 bbfun = dflow->problem->dump_bottom_fun;
2055 if (bbfun)
2056 bbfun (bb, file);
2061 /* Dump the top of the block information for BB. */
2063 void
2064 df_dump_top (basic_block bb, FILE *file)
2066 df_dump_bb_problem_data (bb, file, /*top=*/true);
2069 /* Dump the bottom of the block information for BB. */
2071 void
2072 df_dump_bottom (basic_block bb, FILE *file)
2074 df_dump_bb_problem_data (bb, file, /*top=*/false);
2078 /* Dump information about INSN just before or after dumping INSN itself. */
2079 static void
2080 df_dump_insn_problem_data (const_rtx insn, FILE *file, bool top)
2082 int i;
2084 if (!df || !file)
2085 return;
2087 for (i = 0; i < df->num_problems_defined; i++)
2089 struct dataflow *dflow = df->problems_in_order[i];
2090 if (dflow->computed)
2092 df_dump_insn_problem_function insnfun;
2094 if (top)
2095 insnfun = dflow->problem->dump_insn_top_fun;
2096 else
2097 insnfun = dflow->problem->dump_insn_bottom_fun;
2099 if (insnfun)
2100 insnfun (insn, file);
2105 /* Dump information about INSN before dumping INSN itself. */
2107 void
2108 df_dump_insn_top (const_rtx insn, FILE *file)
2110 df_dump_insn_problem_data (insn, file, /*top=*/true);
2113 /* Dump information about INSN after dumping INSN itself. */
2115 void
2116 df_dump_insn_bottom (const_rtx insn, FILE *file)
2118 df_dump_insn_problem_data (insn, file, /*top=*/false);
2122 static void
2123 df_ref_dump (df_ref ref, FILE *file)
2125 fprintf (file, "%c%d(%d)",
2126 DF_REF_REG_DEF_P (ref)
2127 ? 'd'
2128 : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2129 DF_REF_ID (ref),
2130 DF_REF_REGNO (ref));
2133 void
2134 df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
2136 fprintf (file, "{ ");
2137 while (*ref_rec)
2139 df_ref ref = *ref_rec;
2140 df_ref_dump (ref, file);
2141 if (follow_chain)
2142 df_chain_dump (DF_REF_CHAIN (ref), file);
2143 ref_rec++;
2145 fprintf (file, "}");
2149 /* Dump either a ref-def or reg-use chain. */
2151 void
2152 df_regs_chain_dump (df_ref ref, FILE *file)
2154 fprintf (file, "{ ");
2155 while (ref)
2157 df_ref_dump (ref, file);
2158 ref = DF_REF_NEXT_REG (ref);
2160 fprintf (file, "}");
2164 static void
2165 df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
2167 while (*mws)
2169 fprintf (file, "mw %c r[%d..%d]\n",
2170 (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
2171 (*mws)->start_regno, (*mws)->end_regno);
2172 mws++;
2177 static void
2178 df_insn_uid_debug (unsigned int uid,
2179 bool follow_chain, FILE *file)
2181 fprintf (file, "insn %d luid %d",
2182 uid, DF_INSN_UID_LUID (uid));
2184 if (DF_INSN_UID_DEFS (uid))
2186 fprintf (file, " defs ");
2187 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2190 if (DF_INSN_UID_USES (uid))
2192 fprintf (file, " uses ");
2193 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2196 if (DF_INSN_UID_EQ_USES (uid))
2198 fprintf (file, " eq uses ");
2199 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2202 if (DF_INSN_UID_MWS (uid))
2204 fprintf (file, " mws ");
2205 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2207 fprintf (file, "\n");
2211 DEBUG_FUNCTION void
2212 df_insn_debug (rtx insn, bool follow_chain, FILE *file)
2214 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2217 DEBUG_FUNCTION void
2218 df_insn_debug_regno (rtx insn, FILE *file)
2220 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2222 fprintf (file, "insn %d bb %d luid %d defs ",
2223 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2224 DF_INSN_INFO_LUID (insn_info));
2225 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2227 fprintf (file, " uses ");
2228 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2230 fprintf (file, " eq_uses ");
2231 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2232 fprintf (file, "\n");
2235 DEBUG_FUNCTION void
2236 df_regno_debug (unsigned int regno, FILE *file)
2238 fprintf (file, "reg %d defs ", regno);
2239 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2240 fprintf (file, " uses ");
2241 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2242 fprintf (file, " eq_uses ");
2243 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2244 fprintf (file, "\n");
2248 DEBUG_FUNCTION void
2249 df_ref_debug (df_ref ref, FILE *file)
2251 fprintf (file, "%c%d ",
2252 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2253 DF_REF_ID (ref));
2254 fprintf (file, "reg %d bb %d insn %d flag %#x type %#x ",
2255 DF_REF_REGNO (ref),
2256 DF_REF_BBNO (ref),
2257 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2258 DF_REF_FLAGS (ref),
2259 DF_REF_TYPE (ref));
2260 if (DF_REF_LOC (ref))
2262 if (flag_dump_noaddr)
2263 fprintf (file, "loc #(#) chain ");
2264 else
2265 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref),
2266 (void *)*DF_REF_LOC (ref));
2268 else
2269 fprintf (file, "chain ");
2270 df_chain_dump (DF_REF_CHAIN (ref), file);
2271 fprintf (file, "\n");
2274 /* Functions for debugging from GDB. */
2276 DEBUG_FUNCTION void
2277 debug_df_insn (rtx insn)
2279 df_insn_debug (insn, true, stderr);
2280 debug_rtx (insn);
2284 DEBUG_FUNCTION void
2285 debug_df_reg (rtx reg)
2287 df_regno_debug (REGNO (reg), stderr);
2291 DEBUG_FUNCTION void
2292 debug_df_regno (unsigned int regno)
2294 df_regno_debug (regno, stderr);
2298 DEBUG_FUNCTION void
2299 debug_df_ref (df_ref ref)
2301 df_ref_debug (ref, stderr);
2305 DEBUG_FUNCTION void
2306 debug_df_defno (unsigned int defno)
2308 df_ref_debug (DF_DEFS_GET (defno), stderr);
2312 DEBUG_FUNCTION void
2313 debug_df_useno (unsigned int defno)
2315 df_ref_debug (DF_USES_GET (defno), stderr);
2319 DEBUG_FUNCTION void
2320 debug_df_chain (struct df_link *link)
2322 df_chain_dump (link, stderr);
2323 fputc ('\n', stderr);