predict.c: merge multi-edges
[official-gcc.git] / gcc / predict.c
blobca320cde68ddf7657531f756c9ecaadbba3637c5
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
20 /* References:
22 [1] "Branch Prediction for Free"
23 Ball and Larus; PLDI '93.
24 [2] "Static Branch Frequency and Program Profile Analysis"
25 Wu and Larus; MICRO-27.
26 [3] "Corpus-based Static Branch Prediction"
27 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
30 #include "config.h"
31 #include "system.h"
32 #include "coretypes.h"
33 #include "backend.h"
34 #include "rtl.h"
35 #include "tree.h"
36 #include "gimple.h"
37 #include "cfghooks.h"
38 #include "tree-pass.h"
39 #include "ssa.h"
40 #include "emit-rtl.h"
41 #include "cgraph.h"
42 #include "coverage.h"
43 #include "diagnostic-core.h"
44 #include "gimple-predict.h"
45 #include "fold-const.h"
46 #include "calls.h"
47 #include "cfganal.h"
48 #include "profile.h"
49 #include "sreal.h"
50 #include "params.h"
51 #include "cfgloop.h"
52 #include "gimple-iterator.h"
53 #include "tree-cfg.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-ssa-loop.h"
56 #include "tree-scalar-evolution.h"
57 #include "ipa-utils.h"
58 #include "gimple-pretty-print.h"
60 /* Enum with reasons why a predictor is ignored. */
62 enum predictor_reason
64 REASON_NONE,
65 REASON_IGNORED,
66 REASON_SINGLE_EDGE_DUPLICATE,
67 REASON_EDGE_PAIR_DUPLICATE
70 /* String messages for the aforementioned enum. */
72 static const char *reason_messages[] = {"", " (ignored)",
73 " (single edge duplicate)", " (edge pair duplicate)"};
75 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
76 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
77 static sreal real_almost_one, real_br_prob_base,
78 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
80 static void combine_predictions_for_insn (rtx_insn *, basic_block);
81 static void dump_prediction (FILE *, enum br_predictor, int, basic_block,
82 enum predictor_reason, edge);
83 static void predict_paths_leading_to (basic_block, enum br_predictor,
84 enum prediction,
85 struct loop *in_loop = NULL);
86 static void predict_paths_leading_to_edge (edge, enum br_predictor,
87 enum prediction,
88 struct loop *in_loop = NULL);
89 static bool can_predict_insn_p (const rtx_insn *);
91 /* Information we hold about each branch predictor.
92 Filled using information from predict.def. */
94 struct predictor_info
96 const char *const name; /* Name used in the debugging dumps. */
97 const int hitrate; /* Expected hitrate used by
98 predict_insn_def call. */
99 const int flags;
102 /* Use given predictor without Dempster-Shaffer theory if it matches
103 using first_match heuristics. */
104 #define PRED_FLAG_FIRST_MATCH 1
106 /* Recompute hitrate in percent to our representation. */
108 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
110 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
111 static const struct predictor_info predictor_info[]= {
112 #include "predict.def"
114 /* Upper bound on predictors. */
115 {NULL, 0, 0}
117 #undef DEF_PREDICTOR
119 /* Return TRUE if frequency FREQ is considered to be hot. */
121 static inline bool
122 maybe_hot_frequency_p (struct function *fun, int freq)
124 struct cgraph_node *node = cgraph_node::get (fun->decl);
125 if (!profile_info
126 || !opt_for_fn (fun->decl, flag_branch_probabilities))
128 if (node->frequency == NODE_FREQUENCY_UNLIKELY_EXECUTED)
129 return false;
130 if (node->frequency == NODE_FREQUENCY_HOT)
131 return true;
133 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
134 return true;
135 if (node->frequency == NODE_FREQUENCY_EXECUTED_ONCE
136 && freq < (ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency * 2 / 3))
137 return false;
138 if (PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION) == 0)
139 return false;
140 if (freq * PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)
141 < ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
142 return false;
143 return true;
146 static gcov_type min_count = -1;
148 /* Determine the threshold for hot BB counts. */
150 gcov_type
151 get_hot_bb_threshold ()
153 gcov_working_set_t *ws;
154 if (min_count == -1)
156 ws = find_working_set (PARAM_VALUE (HOT_BB_COUNT_WS_PERMILLE));
157 gcc_assert (ws);
158 min_count = ws->min_counter;
160 return min_count;
163 /* Set the threshold for hot BB counts. */
165 void
166 set_hot_bb_threshold (gcov_type min)
168 min_count = min;
171 /* Return TRUE if frequency FREQ is considered to be hot. */
173 bool
174 maybe_hot_count_p (struct function *fun, gcov_type count)
176 if (fun && profile_status_for_fn (fun) != PROFILE_READ)
177 return true;
178 /* Code executed at most once is not hot. */
179 if (profile_info->runs >= count)
180 return false;
181 return (count >= get_hot_bb_threshold ());
184 /* Return true in case BB can be CPU intensive and should be optimized
185 for maximal performance. */
187 bool
188 maybe_hot_bb_p (struct function *fun, const_basic_block bb)
190 gcc_checking_assert (fun);
191 if (profile_status_for_fn (fun) == PROFILE_READ)
192 return maybe_hot_count_p (fun, bb->count);
193 return maybe_hot_frequency_p (fun, bb->frequency);
196 /* Return true in case BB can be CPU intensive and should be optimized
197 for maximal performance. */
199 bool
200 maybe_hot_edge_p (edge e)
202 if (profile_status_for_fn (cfun) == PROFILE_READ)
203 return maybe_hot_count_p (cfun, e->count);
204 return maybe_hot_frequency_p (cfun, EDGE_FREQUENCY (e));
207 /* Return true if profile COUNT and FREQUENCY, or function FUN static
208 node frequency reflects never being executed. */
210 static bool
211 probably_never_executed (struct function *fun,
212 gcov_type count, int frequency)
214 gcc_checking_assert (fun);
215 if (profile_status_for_fn (fun) == PROFILE_READ)
217 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
218 if (count * unlikely_count_fraction >= profile_info->runs)
219 return false;
220 if (!frequency)
221 return true;
222 if (!ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency)
223 return false;
224 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count)
226 gcov_type computed_count;
227 /* Check for possibility of overflow, in which case entry bb count
228 is large enough to do the division first without losing much
229 precision. */
230 if (ENTRY_BLOCK_PTR_FOR_FN (fun)->count < REG_BR_PROB_BASE *
231 REG_BR_PROB_BASE)
233 gcov_type scaled_count
234 = frequency * ENTRY_BLOCK_PTR_FOR_FN (fun)->count *
235 unlikely_count_fraction;
236 computed_count = RDIV (scaled_count,
237 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
239 else
241 computed_count = RDIV (ENTRY_BLOCK_PTR_FOR_FN (fun)->count,
242 ENTRY_BLOCK_PTR_FOR_FN (fun)->frequency);
243 computed_count *= frequency * unlikely_count_fraction;
245 if (computed_count >= profile_info->runs)
246 return false;
248 return true;
250 if ((!profile_info || !(opt_for_fn (fun->decl, flag_branch_probabilities)))
251 && (cgraph_node::get (fun->decl)->frequency
252 == NODE_FREQUENCY_UNLIKELY_EXECUTED))
253 return true;
254 return false;
258 /* Return true in case BB is probably never executed. */
260 bool
261 probably_never_executed_bb_p (struct function *fun, const_basic_block bb)
263 return probably_never_executed (fun, bb->count, bb->frequency);
267 /* Return true in case edge E is probably never executed. */
269 bool
270 probably_never_executed_edge_p (struct function *fun, edge e)
272 return probably_never_executed (fun, e->count, EDGE_FREQUENCY (e));
275 /* Return true when current function should always be optimized for size. */
277 bool
278 optimize_function_for_size_p (struct function *fun)
280 if (!fun || !fun->decl)
281 return optimize_size;
282 cgraph_node *n = cgraph_node::get (fun->decl);
283 return n && n->optimize_for_size_p ();
286 /* Return true when current function should always be optimized for speed. */
288 bool
289 optimize_function_for_speed_p (struct function *fun)
291 return !optimize_function_for_size_p (fun);
294 /* Return the optimization type that should be used for the function FUN. */
296 optimization_type
297 function_optimization_type (struct function *fun)
299 return (optimize_function_for_speed_p (fun)
300 ? OPTIMIZE_FOR_SPEED
301 : OPTIMIZE_FOR_SIZE);
304 /* Return TRUE when BB should be optimized for size. */
306 bool
307 optimize_bb_for_size_p (const_basic_block bb)
309 return (optimize_function_for_size_p (cfun)
310 || (bb && !maybe_hot_bb_p (cfun, bb)));
313 /* Return TRUE when BB should be optimized for speed. */
315 bool
316 optimize_bb_for_speed_p (const_basic_block bb)
318 return !optimize_bb_for_size_p (bb);
321 /* Return the optimization type that should be used for block BB. */
323 optimization_type
324 bb_optimization_type (const_basic_block bb)
326 return (optimize_bb_for_speed_p (bb)
327 ? OPTIMIZE_FOR_SPEED
328 : OPTIMIZE_FOR_SIZE);
331 /* Return TRUE when BB should be optimized for size. */
333 bool
334 optimize_edge_for_size_p (edge e)
336 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
339 /* Return TRUE when BB should be optimized for speed. */
341 bool
342 optimize_edge_for_speed_p (edge e)
344 return !optimize_edge_for_size_p (e);
347 /* Return TRUE when BB should be optimized for size. */
349 bool
350 optimize_insn_for_size_p (void)
352 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
355 /* Return TRUE when BB should be optimized for speed. */
357 bool
358 optimize_insn_for_speed_p (void)
360 return !optimize_insn_for_size_p ();
363 /* Return TRUE when LOOP should be optimized for size. */
365 bool
366 optimize_loop_for_size_p (struct loop *loop)
368 return optimize_bb_for_size_p (loop->header);
371 /* Return TRUE when LOOP should be optimized for speed. */
373 bool
374 optimize_loop_for_speed_p (struct loop *loop)
376 return optimize_bb_for_speed_p (loop->header);
379 /* Return TRUE when LOOP nest should be optimized for speed. */
381 bool
382 optimize_loop_nest_for_speed_p (struct loop *loop)
384 struct loop *l = loop;
385 if (optimize_loop_for_speed_p (loop))
386 return true;
387 l = loop->inner;
388 while (l && l != loop)
390 if (optimize_loop_for_speed_p (l))
391 return true;
392 if (l->inner)
393 l = l->inner;
394 else if (l->next)
395 l = l->next;
396 else
398 while (l != loop && !l->next)
399 l = loop_outer (l);
400 if (l != loop)
401 l = l->next;
404 return false;
407 /* Return TRUE when LOOP nest should be optimized for size. */
409 bool
410 optimize_loop_nest_for_size_p (struct loop *loop)
412 return !optimize_loop_nest_for_speed_p (loop);
415 /* Return true when edge E is likely to be well predictable by branch
416 predictor. */
418 bool
419 predictable_edge_p (edge e)
421 if (profile_status_for_fn (cfun) == PROFILE_ABSENT)
422 return false;
423 if ((e->probability
424 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
425 || (REG_BR_PROB_BASE - e->probability
426 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
427 return true;
428 return false;
432 /* Set RTL expansion for BB profile. */
434 void
435 rtl_profile_for_bb (basic_block bb)
437 crtl->maybe_hot_insn_p = maybe_hot_bb_p (cfun, bb);
440 /* Set RTL expansion for edge profile. */
442 void
443 rtl_profile_for_edge (edge e)
445 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
448 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
449 void
450 default_rtl_profile (void)
452 crtl->maybe_hot_insn_p = true;
455 /* Return true if the one of outgoing edges is already predicted by
456 PREDICTOR. */
458 bool
459 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
461 rtx note;
462 if (!INSN_P (BB_END (bb)))
463 return false;
464 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
465 if (REG_NOTE_KIND (note) == REG_BR_PRED
466 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
467 return true;
468 return false;
471 /* Structure representing predictions in tree level. */
473 struct edge_prediction {
474 struct edge_prediction *ep_next;
475 edge ep_edge;
476 enum br_predictor ep_predictor;
477 int ep_probability;
480 /* This map contains for a basic block the list of predictions for the
481 outgoing edges. */
483 static hash_map<const_basic_block, edge_prediction *> *bb_predictions;
485 /* Return true if the one of outgoing edges is already predicted by
486 PREDICTOR. */
488 bool
489 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
491 struct edge_prediction *i;
492 edge_prediction **preds = bb_predictions->get (bb);
494 if (!preds)
495 return false;
497 for (i = *preds; i; i = i->ep_next)
498 if (i->ep_predictor == predictor)
499 return true;
500 return false;
503 /* Return true if the one of outgoing edges is already predicted by
504 PREDICTOR for edge E predicted as TAKEN. */
506 bool
507 edge_predicted_by_p (edge e, enum br_predictor predictor, bool taken)
509 struct edge_prediction *i;
510 basic_block bb = e->src;
511 edge_prediction **preds = bb_predictions->get (bb);
512 if (!preds)
513 return false;
515 int probability = predictor_info[(int) predictor].hitrate;
517 if (taken != TAKEN)
518 probability = REG_BR_PROB_BASE - probability;
520 for (i = *preds; i; i = i->ep_next)
521 if (i->ep_predictor == predictor
522 && i->ep_edge == e
523 && i->ep_probability == probability)
524 return true;
525 return false;
528 /* Return true when the probability of edge is reliable.
530 The profile guessing code is good at predicting branch outcome (ie.
531 taken/not taken), that is predicted right slightly over 75% of time.
532 It is however notoriously poor on predicting the probability itself.
533 In general the profile appear a lot flatter (with probabilities closer
534 to 50%) than the reality so it is bad idea to use it to drive optimization
535 such as those disabling dynamic branch prediction for well predictable
536 branches.
538 There are two exceptions - edges leading to noreturn edges and edges
539 predicted by number of iterations heuristics are predicted well. This macro
540 should be able to distinguish those, but at the moment it simply check for
541 noreturn heuristic that is only one giving probability over 99% or bellow
542 1%. In future we might want to propagate reliability information across the
543 CFG if we find this information useful on multiple places. */
544 static bool
545 probability_reliable_p (int prob)
547 return (profile_status_for_fn (cfun) == PROFILE_READ
548 || (profile_status_for_fn (cfun) == PROFILE_GUESSED
549 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
552 /* Same predicate as above, working on edges. */
553 bool
554 edge_probability_reliable_p (const_edge e)
556 return probability_reliable_p (e->probability);
559 /* Same predicate as edge_probability_reliable_p, working on notes. */
560 bool
561 br_prob_note_reliable_p (const_rtx note)
563 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
564 return probability_reliable_p (XINT (note, 0));
567 static void
568 predict_insn (rtx_insn *insn, enum br_predictor predictor, int probability)
570 gcc_assert (any_condjump_p (insn));
571 if (!flag_guess_branch_prob)
572 return;
574 add_reg_note (insn, REG_BR_PRED,
575 gen_rtx_CONCAT (VOIDmode,
576 GEN_INT ((int) predictor),
577 GEN_INT ((int) probability)));
580 /* Predict insn by given predictor. */
582 void
583 predict_insn_def (rtx_insn *insn, enum br_predictor predictor,
584 enum prediction taken)
586 int probability = predictor_info[(int) predictor].hitrate;
588 if (taken != TAKEN)
589 probability = REG_BR_PROB_BASE - probability;
591 predict_insn (insn, predictor, probability);
594 /* Predict edge E with given probability if possible. */
596 void
597 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
599 rtx_insn *last_insn;
600 last_insn = BB_END (e->src);
602 /* We can store the branch prediction information only about
603 conditional jumps. */
604 if (!any_condjump_p (last_insn))
605 return;
607 /* We always store probability of branching. */
608 if (e->flags & EDGE_FALLTHRU)
609 probability = REG_BR_PROB_BASE - probability;
611 predict_insn (last_insn, predictor, probability);
614 /* Predict edge E with the given PROBABILITY. */
615 void
616 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
618 if (e->src != ENTRY_BLOCK_PTR_FOR_FN (cfun)
619 && EDGE_COUNT (e->src->succs) > 1
620 && flag_guess_branch_prob
621 && optimize)
623 struct edge_prediction *i = XNEW (struct edge_prediction);
624 edge_prediction *&preds = bb_predictions->get_or_insert (e->src);
626 i->ep_next = preds;
627 preds = i;
628 i->ep_probability = probability;
629 i->ep_predictor = predictor;
630 i->ep_edge = e;
634 /* Filter edge predictions PREDS by a function FILTER. DATA are passed
635 to the filter function. */
637 void
638 filter_predictions (edge_prediction **preds,
639 bool (*filter) (edge_prediction *, void *), void *data)
641 if (!bb_predictions)
642 return;
644 if (preds)
646 struct edge_prediction **prediction = preds;
647 struct edge_prediction *next;
649 while (*prediction)
651 if ((*filter) (*prediction, data))
652 prediction = &((*prediction)->ep_next);
653 else
655 next = (*prediction)->ep_next;
656 free (*prediction);
657 *prediction = next;
663 /* Filter function predicate that returns true for a edge predicate P
664 if its edge is equal to DATA. */
666 bool
667 equal_edge_p (edge_prediction *p, void *data)
669 return p->ep_edge == (edge)data;
672 /* Remove all predictions on given basic block that are attached
673 to edge E. */
674 void
675 remove_predictions_associated_with_edge (edge e)
677 if (!bb_predictions)
678 return;
680 edge_prediction **preds = bb_predictions->get (e->src);
681 filter_predictions (preds, equal_edge_p, e);
684 /* Clears the list of predictions stored for BB. */
686 static void
687 clear_bb_predictions (basic_block bb)
689 edge_prediction **preds = bb_predictions->get (bb);
690 struct edge_prediction *pred, *next;
692 if (!preds)
693 return;
695 for (pred = *preds; pred; pred = next)
697 next = pred->ep_next;
698 free (pred);
700 *preds = NULL;
703 /* Return true when we can store prediction on insn INSN.
704 At the moment we represent predictions only on conditional
705 jumps, not at computed jump or other complicated cases. */
706 static bool
707 can_predict_insn_p (const rtx_insn *insn)
709 return (JUMP_P (insn)
710 && any_condjump_p (insn)
711 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
714 /* Predict edge E by given predictor if possible. */
716 void
717 predict_edge_def (edge e, enum br_predictor predictor,
718 enum prediction taken)
720 int probability = predictor_info[(int) predictor].hitrate;
722 if (taken != TAKEN)
723 probability = REG_BR_PROB_BASE - probability;
725 predict_edge (e, predictor, probability);
728 /* Invert all branch predictions or probability notes in the INSN. This needs
729 to be done each time we invert the condition used by the jump. */
731 void
732 invert_br_probabilities (rtx insn)
734 rtx note;
736 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
737 if (REG_NOTE_KIND (note) == REG_BR_PROB)
738 XINT (note, 0) = REG_BR_PROB_BASE - XINT (note, 0);
739 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
740 XEXP (XEXP (note, 0), 1)
741 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
744 /* Dump information about the branch prediction to the output file. */
746 static void
747 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
748 basic_block bb, enum predictor_reason reason = REASON_NONE,
749 edge ep_edge = NULL)
751 edge e = ep_edge;
752 edge_iterator ei;
754 if (!file)
755 return;
757 if (e == NULL)
758 FOR_EACH_EDGE (e, ei, bb->succs)
759 if (! (e->flags & EDGE_FALLTHRU))
760 break;
762 char edge_info_str[128];
763 if (ep_edge)
764 sprintf (edge_info_str, " of edge %d->%d", ep_edge->src->index,
765 ep_edge->dest->index);
766 else
767 edge_info_str[0] = '\0';
769 fprintf (file, " %s heuristics%s%s: %.1f%%",
770 predictor_info[predictor].name,
771 edge_info_str, reason_messages[reason],
772 probability * 100.0 / REG_BR_PROB_BASE);
774 if (bb->count)
776 fprintf (file, " exec %" PRId64, bb->count);
777 if (e)
779 fprintf (file, " hit %" PRId64, e->count);
780 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
784 fprintf (file, "\n");
787 /* We can not predict the probabilities of outgoing edges of bb. Set them
788 evenly and hope for the best. If UNLIKELY_EDGES is not null, distribute
789 even probability for all edges not mentioned in the set. These edges
790 are given PROB_VERY_UNLIKELY probability. */
792 static void
793 set_even_probabilities (basic_block bb,
794 hash_set<edge> *unlikely_edges = NULL)
796 int nedges = 0;
797 edge e;
798 edge_iterator ei;
800 FOR_EACH_EDGE (e, ei, bb->succs)
801 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
802 nedges ++;
804 /* Make the distribution even if all edges are unlikely. */
805 unsigned unlikely_count = unlikely_edges ? unlikely_edges->elements () : 0;
806 if (unlikely_count == nedges)
808 unlikely_edges = NULL;
809 unlikely_count = 0;
812 unsigned c = nedges - unlikely_count;
814 FOR_EACH_EDGE (e, ei, bb->succs)
815 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
817 if (unlikely_edges != NULL && unlikely_edges->contains (e))
818 e->probability = PROB_VERY_UNLIKELY;
819 else
820 e->probability = (REG_BR_PROB_BASE + c / 2) / c;
822 else
823 e->probability = 0;
826 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
827 note if not already present. Remove now useless REG_BR_PRED notes. */
829 static void
830 combine_predictions_for_insn (rtx_insn *insn, basic_block bb)
832 rtx prob_note;
833 rtx *pnote;
834 rtx note;
835 int best_probability = PROB_EVEN;
836 enum br_predictor best_predictor = END_PREDICTORS;
837 int combined_probability = REG_BR_PROB_BASE / 2;
838 int d;
839 bool first_match = false;
840 bool found = false;
842 if (!can_predict_insn_p (insn))
844 set_even_probabilities (bb);
845 return;
848 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
849 pnote = &REG_NOTES (insn);
850 if (dump_file)
851 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
852 bb->index);
854 /* We implement "first match" heuristics and use probability guessed
855 by predictor with smallest index. */
856 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
857 if (REG_NOTE_KIND (note) == REG_BR_PRED)
859 enum br_predictor predictor = ((enum br_predictor)
860 INTVAL (XEXP (XEXP (note, 0), 0)));
861 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
863 found = true;
864 if (best_predictor > predictor
865 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
866 best_probability = probability, best_predictor = predictor;
868 d = (combined_probability * probability
869 + (REG_BR_PROB_BASE - combined_probability)
870 * (REG_BR_PROB_BASE - probability));
872 /* Use FP math to avoid overflows of 32bit integers. */
873 if (d == 0)
874 /* If one probability is 0% and one 100%, avoid division by zero. */
875 combined_probability = REG_BR_PROB_BASE / 2;
876 else
877 combined_probability = (((double) combined_probability) * probability
878 * REG_BR_PROB_BASE / d + 0.5);
881 /* Decide which heuristic to use. In case we didn't match anything,
882 use no_prediction heuristic, in case we did match, use either
883 first match or Dempster-Shaffer theory depending on the flags. */
885 if (best_predictor != END_PREDICTORS)
886 first_match = true;
888 if (!found)
889 dump_prediction (dump_file, PRED_NO_PREDICTION,
890 combined_probability, bb);
891 else
893 if (!first_match)
894 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
895 bb, !first_match ? REASON_NONE : REASON_IGNORED);
896 else
897 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
898 bb, first_match ? REASON_NONE : REASON_IGNORED);
901 if (first_match)
902 combined_probability = best_probability;
903 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
905 while (*pnote)
907 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
909 enum br_predictor predictor = ((enum br_predictor)
910 INTVAL (XEXP (XEXP (*pnote, 0), 0)));
911 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
913 dump_prediction (dump_file, predictor, probability, bb,
914 (!first_match || best_predictor == predictor)
915 ? REASON_NONE : REASON_IGNORED);
916 *pnote = XEXP (*pnote, 1);
918 else
919 pnote = &XEXP (*pnote, 1);
922 if (!prob_note)
924 add_int_reg_note (insn, REG_BR_PROB, combined_probability);
926 /* Save the prediction into CFG in case we are seeing non-degenerated
927 conditional jump. */
928 if (!single_succ_p (bb))
930 BRANCH_EDGE (bb)->probability = combined_probability;
931 FALLTHRU_EDGE (bb)->probability
932 = REG_BR_PROB_BASE - combined_probability;
935 else if (!single_succ_p (bb))
937 int prob = XINT (prob_note, 0);
939 BRANCH_EDGE (bb)->probability = prob;
940 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
942 else
943 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
946 /* Edge prediction hash traits. */
948 struct predictor_hash: pointer_hash <edge_prediction>
951 static inline hashval_t hash (const edge_prediction *);
952 static inline bool equal (const edge_prediction *, const edge_prediction *);
955 /* Calculate hash value of an edge prediction P based on predictor and
956 normalized probability. */
958 inline hashval_t
959 predictor_hash::hash (const edge_prediction *p)
961 inchash::hash hstate;
962 hstate.add_int (p->ep_predictor);
964 int prob = p->ep_probability;
965 if (prob > REG_BR_PROB_BASE / 2)
966 prob = REG_BR_PROB_BASE - prob;
968 hstate.add_int (prob);
970 return hstate.end ();
973 /* Return true whether edge predictions P1 and P2 use the same predictor and
974 have equal (or opposed probability). */
976 inline bool
977 predictor_hash::equal (const edge_prediction *p1, const edge_prediction *p2)
979 return (p1->ep_predictor == p2->ep_predictor
980 && (p1->ep_probability == p2->ep_probability
981 || p1->ep_probability == REG_BR_PROB_BASE - p2->ep_probability));
984 struct predictor_hash_traits: predictor_hash,
985 typed_noop_remove <edge_prediction *> {};
987 /* Return true if edge prediction P is not in DATA hash set. */
989 static bool
990 not_removed_prediction_p (edge_prediction *p, void *data)
992 hash_set<edge_prediction *> *remove = (hash_set<edge_prediction *> *) data;
993 return !remove->contains (p);
996 /* Prune predictions for a basic block BB. Currently we do following
997 clean-up steps:
999 1) remove duplicate prediction that is guessed with the same probability
1000 (different than 1/2) to both edge
1001 2) remove duplicates for a prediction that belongs with the same probability
1002 to a single edge
1006 static void
1007 prune_predictions_for_bb (basic_block bb)
1009 edge_prediction **preds = bb_predictions->get (bb);
1011 if (preds)
1013 hash_table <predictor_hash_traits> s (13);
1014 hash_set <edge_prediction *> remove;
1016 /* Step 1: identify predictors that should be removed. */
1017 for (edge_prediction *pred = *preds; pred; pred = pred->ep_next)
1019 edge_prediction *existing = s.find (pred);
1020 if (existing)
1022 if (pred->ep_edge == existing->ep_edge
1023 && pred->ep_probability == existing->ep_probability)
1025 /* Remove a duplicate predictor. */
1026 dump_prediction (dump_file, pred->ep_predictor,
1027 pred->ep_probability, bb,
1028 REASON_SINGLE_EDGE_DUPLICATE, pred->ep_edge);
1030 remove.add (pred);
1032 else if (pred->ep_edge != existing->ep_edge
1033 && pred->ep_probability == existing->ep_probability
1034 && pred->ep_probability != REG_BR_PROB_BASE / 2)
1036 /* Remove both predictors as they predict the same
1037 for both edges. */
1038 dump_prediction (dump_file, existing->ep_predictor,
1039 pred->ep_probability, bb,
1040 REASON_EDGE_PAIR_DUPLICATE,
1041 existing->ep_edge);
1042 dump_prediction (dump_file, pred->ep_predictor,
1043 pred->ep_probability, bb,
1044 REASON_EDGE_PAIR_DUPLICATE,
1045 pred->ep_edge);
1047 remove.add (existing);
1048 remove.add (pred);
1052 edge_prediction **slot2 = s.find_slot (pred, INSERT);
1053 *slot2 = pred;
1056 /* Step 2: Remove predictors. */
1057 filter_predictions (preds, not_removed_prediction_p, &remove);
1061 /* Combine predictions into single probability and store them into CFG.
1062 Remove now useless prediction entries.
1063 If DRY_RUN is set, only produce dumps and do not modify profile. */
1065 static void
1066 combine_predictions_for_bb (basic_block bb, bool dry_run)
1068 int best_probability = PROB_EVEN;
1069 enum br_predictor best_predictor = END_PREDICTORS;
1070 int combined_probability = REG_BR_PROB_BASE / 2;
1071 int d;
1072 bool first_match = false;
1073 bool found = false;
1074 struct edge_prediction *pred;
1075 int nedges = 0;
1076 edge e, first = NULL, second = NULL;
1077 edge_iterator ei;
1079 FOR_EACH_EDGE (e, ei, bb->succs)
1080 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
1082 nedges ++;
1083 if (first && !second)
1084 second = e;
1085 if (!first)
1086 first = e;
1089 /* When there is no successor or only one choice, prediction is easy.
1091 When we have a basic block with more than 2 successors, the situation
1092 is more complicated as DS theory cannot be used literally.
1093 More precisely, let's assume we predicted edge e1 with probability p1,
1094 thus: m1({b1}) = p1. As we're going to combine more than 2 edges, we
1095 need to find probability of e.g. m1({b2}), which we don't know.
1096 The only approximation is to equally distribute 1-p1 to all edges
1097 different from b1.
1099 According to numbers we've got from SPEC2006 benchark, there's only
1100 one interesting reliable predictor (noreturn call), which can be
1101 handled with a bit easier approach. */
1102 if (nedges != 2)
1104 hash_set<edge> unlikely_edges (4);
1106 /* Identify all edges that have a probability close to very unlikely.
1107 Doing the approach for very unlikely doesn't worth for doing as
1108 there's no such probability in SPEC2006 benchmark. */
1109 edge_prediction **preds = bb_predictions->get (bb);
1110 if (preds)
1111 for (pred = *preds; pred; pred = pred->ep_next)
1112 if (pred->ep_probability <= PROB_VERY_UNLIKELY)
1113 unlikely_edges.add (pred->ep_edge);
1115 if (!bb->count && !dry_run)
1116 set_even_probabilities (bb, &unlikely_edges);
1117 clear_bb_predictions (bb);
1118 if (dump_file)
1120 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1121 if (unlikely_edges.elements () == 0)
1122 fprintf (dump_file,
1123 "%i edges in bb %i predicted to even probabilities\n",
1124 nedges, bb->index);
1125 else
1127 fprintf (dump_file,
1128 "%i edges in bb %i predicted with some unlikely edges\n",
1129 nedges, bb->index);
1130 FOR_EACH_EDGE (e, ei, bb->succs)
1131 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
1132 dump_prediction (dump_file, PRED_COMBINED, e->probability,
1133 bb, REASON_NONE, e);
1136 return;
1139 if (dump_file)
1140 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
1142 prune_predictions_for_bb (bb);
1144 edge_prediction **preds = bb_predictions->get (bb);
1146 if (preds)
1148 /* We implement "first match" heuristics and use probability guessed
1149 by predictor with smallest index. */
1150 for (pred = *preds; pred; pred = pred->ep_next)
1152 enum br_predictor predictor = pred->ep_predictor;
1153 int probability = pred->ep_probability;
1155 if (pred->ep_edge != first)
1156 probability = REG_BR_PROB_BASE - probability;
1158 found = true;
1159 /* First match heuristics would be widly confused if we predicted
1160 both directions. */
1161 if (best_predictor > predictor
1162 && predictor_info[predictor].flags & PRED_FLAG_FIRST_MATCH)
1164 struct edge_prediction *pred2;
1165 int prob = probability;
1167 for (pred2 = (struct edge_prediction *) *preds;
1168 pred2; pred2 = pred2->ep_next)
1169 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
1171 int probability2 = pred2->ep_probability;
1173 if (pred2->ep_edge != first)
1174 probability2 = REG_BR_PROB_BASE - probability2;
1176 if ((probability < REG_BR_PROB_BASE / 2) !=
1177 (probability2 < REG_BR_PROB_BASE / 2))
1178 break;
1180 /* If the same predictor later gave better result, go for it! */
1181 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
1182 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
1183 prob = probability2;
1185 if (!pred2)
1186 best_probability = prob, best_predictor = predictor;
1189 d = (combined_probability * probability
1190 + (REG_BR_PROB_BASE - combined_probability)
1191 * (REG_BR_PROB_BASE - probability));
1193 /* Use FP math to avoid overflows of 32bit integers. */
1194 if (d == 0)
1195 /* If one probability is 0% and one 100%, avoid division by zero. */
1196 combined_probability = REG_BR_PROB_BASE / 2;
1197 else
1198 combined_probability = (((double) combined_probability)
1199 * probability
1200 * REG_BR_PROB_BASE / d + 0.5);
1204 /* Decide which heuristic to use. In case we didn't match anything,
1205 use no_prediction heuristic, in case we did match, use either
1206 first match or Dempster-Shaffer theory depending on the flags. */
1208 if (best_predictor != END_PREDICTORS)
1209 first_match = true;
1211 if (!found)
1212 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb);
1213 else
1215 if (!first_match)
1216 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
1217 !first_match ? REASON_NONE : REASON_IGNORED);
1218 else
1219 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
1220 first_match ? REASON_NONE : REASON_IGNORED);
1223 if (first_match)
1224 combined_probability = best_probability;
1225 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb);
1227 if (preds)
1229 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
1231 enum br_predictor predictor = pred->ep_predictor;
1232 int probability = pred->ep_probability;
1234 dump_prediction (dump_file, predictor, probability, bb,
1235 (!first_match || best_predictor == predictor)
1236 ? REASON_NONE : REASON_IGNORED, pred->ep_edge);
1239 clear_bb_predictions (bb);
1241 if (!bb->count && !dry_run)
1243 first->probability = combined_probability;
1244 second->probability = REG_BR_PROB_BASE - combined_probability;
1248 /* Check if T1 and T2 satisfy the IV_COMPARE condition.
1249 Return the SSA_NAME if the condition satisfies, NULL otherwise.
1251 T1 and T2 should be one of the following cases:
1252 1. T1 is SSA_NAME, T2 is NULL
1253 2. T1 is SSA_NAME, T2 is INTEGER_CST between [-4, 4]
1254 3. T2 is SSA_NAME, T1 is INTEGER_CST between [-4, 4] */
1256 static tree
1257 strips_small_constant (tree t1, tree t2)
1259 tree ret = NULL;
1260 int value = 0;
1262 if (!t1)
1263 return NULL;
1264 else if (TREE_CODE (t1) == SSA_NAME)
1265 ret = t1;
1266 else if (tree_fits_shwi_p (t1))
1267 value = tree_to_shwi (t1);
1268 else
1269 return NULL;
1271 if (!t2)
1272 return ret;
1273 else if (tree_fits_shwi_p (t2))
1274 value = tree_to_shwi (t2);
1275 else if (TREE_CODE (t2) == SSA_NAME)
1277 if (ret)
1278 return NULL;
1279 else
1280 ret = t2;
1283 if (value <= 4 && value >= -4)
1284 return ret;
1285 else
1286 return NULL;
1289 /* Return the SSA_NAME in T or T's operands.
1290 Return NULL if SSA_NAME cannot be found. */
1292 static tree
1293 get_base_value (tree t)
1295 if (TREE_CODE (t) == SSA_NAME)
1296 return t;
1298 if (!BINARY_CLASS_P (t))
1299 return NULL;
1301 switch (TREE_OPERAND_LENGTH (t))
1303 case 1:
1304 return strips_small_constant (TREE_OPERAND (t, 0), NULL);
1305 case 2:
1306 return strips_small_constant (TREE_OPERAND (t, 0),
1307 TREE_OPERAND (t, 1));
1308 default:
1309 return NULL;
1313 /* Check the compare STMT in LOOP. If it compares an induction
1314 variable to a loop invariant, return true, and save
1315 LOOP_INVARIANT, COMPARE_CODE and LOOP_STEP.
1316 Otherwise return false and set LOOP_INVAIANT to NULL. */
1318 static bool
1319 is_comparison_with_loop_invariant_p (gcond *stmt, struct loop *loop,
1320 tree *loop_invariant,
1321 enum tree_code *compare_code,
1322 tree *loop_step,
1323 tree *loop_iv_base)
1325 tree op0, op1, bound, base;
1326 affine_iv iv0, iv1;
1327 enum tree_code code;
1328 tree step;
1330 code = gimple_cond_code (stmt);
1331 *loop_invariant = NULL;
1333 switch (code)
1335 case GT_EXPR:
1336 case GE_EXPR:
1337 case NE_EXPR:
1338 case LT_EXPR:
1339 case LE_EXPR:
1340 case EQ_EXPR:
1341 break;
1343 default:
1344 return false;
1347 op0 = gimple_cond_lhs (stmt);
1348 op1 = gimple_cond_rhs (stmt);
1350 if ((TREE_CODE (op0) != SSA_NAME && TREE_CODE (op0) != INTEGER_CST)
1351 || (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op1) != INTEGER_CST))
1352 return false;
1353 if (!simple_iv (loop, loop_containing_stmt (stmt), op0, &iv0, true))
1354 return false;
1355 if (!simple_iv (loop, loop_containing_stmt (stmt), op1, &iv1, true))
1356 return false;
1357 if (TREE_CODE (iv0.step) != INTEGER_CST
1358 || TREE_CODE (iv1.step) != INTEGER_CST)
1359 return false;
1360 if ((integer_zerop (iv0.step) && integer_zerop (iv1.step))
1361 || (!integer_zerop (iv0.step) && !integer_zerop (iv1.step)))
1362 return false;
1364 if (integer_zerop (iv0.step))
1366 if (code != NE_EXPR && code != EQ_EXPR)
1367 code = invert_tree_comparison (code, false);
1368 bound = iv0.base;
1369 base = iv1.base;
1370 if (tree_fits_shwi_p (iv1.step))
1371 step = iv1.step;
1372 else
1373 return false;
1375 else
1377 bound = iv1.base;
1378 base = iv0.base;
1379 if (tree_fits_shwi_p (iv0.step))
1380 step = iv0.step;
1381 else
1382 return false;
1385 if (TREE_CODE (bound) != INTEGER_CST)
1386 bound = get_base_value (bound);
1387 if (!bound)
1388 return false;
1389 if (TREE_CODE (base) != INTEGER_CST)
1390 base = get_base_value (base);
1391 if (!base)
1392 return false;
1394 *loop_invariant = bound;
1395 *compare_code = code;
1396 *loop_step = step;
1397 *loop_iv_base = base;
1398 return true;
1401 /* Compare two SSA_NAMEs: returns TRUE if T1 and T2 are value coherent. */
1403 static bool
1404 expr_coherent_p (tree t1, tree t2)
1406 gimple *stmt;
1407 tree ssa_name_1 = NULL;
1408 tree ssa_name_2 = NULL;
1410 gcc_assert (TREE_CODE (t1) == SSA_NAME || TREE_CODE (t1) == INTEGER_CST);
1411 gcc_assert (TREE_CODE (t2) == SSA_NAME || TREE_CODE (t2) == INTEGER_CST);
1413 if (t1 == t2)
1414 return true;
1416 if (TREE_CODE (t1) == INTEGER_CST && TREE_CODE (t2) == INTEGER_CST)
1417 return true;
1418 if (TREE_CODE (t1) == INTEGER_CST || TREE_CODE (t2) == INTEGER_CST)
1419 return false;
1421 /* Check to see if t1 is expressed/defined with t2. */
1422 stmt = SSA_NAME_DEF_STMT (t1);
1423 gcc_assert (stmt != NULL);
1424 if (is_gimple_assign (stmt))
1426 ssa_name_1 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1427 if (ssa_name_1 && ssa_name_1 == t2)
1428 return true;
1431 /* Check to see if t2 is expressed/defined with t1. */
1432 stmt = SSA_NAME_DEF_STMT (t2);
1433 gcc_assert (stmt != NULL);
1434 if (is_gimple_assign (stmt))
1436 ssa_name_2 = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
1437 if (ssa_name_2 && ssa_name_2 == t1)
1438 return true;
1441 /* Compare if t1 and t2's def_stmts are identical. */
1442 if (ssa_name_2 != NULL && ssa_name_1 == ssa_name_2)
1443 return true;
1444 else
1445 return false;
1448 /* Return true if E is predicted by one of loop heuristics. */
1450 static bool
1451 predicted_by_loop_heuristics_p (basic_block bb)
1453 struct edge_prediction *i;
1454 edge_prediction **preds = bb_predictions->get (bb);
1456 if (!preds)
1457 return false;
1459 for (i = *preds; i; i = i->ep_next)
1460 if (i->ep_predictor == PRED_LOOP_ITERATIONS_GUESSED
1461 || i->ep_predictor == PRED_LOOP_ITERATIONS_MAX
1462 || i->ep_predictor == PRED_LOOP_ITERATIONS
1463 || i->ep_predictor == PRED_LOOP_EXIT
1464 || i->ep_predictor == PRED_LOOP_EXIT_WITH_RECURSION
1465 || i->ep_predictor == PRED_LOOP_EXTRA_EXIT)
1466 return true;
1467 return false;
1470 /* Predict branch probability of BB when BB contains a branch that compares
1471 an induction variable in LOOP with LOOP_IV_BASE_VAR to LOOP_BOUND_VAR. The
1472 loop exit is compared using LOOP_BOUND_CODE, with step of LOOP_BOUND_STEP.
1474 E.g.
1475 for (int i = 0; i < bound; i++) {
1476 if (i < bound - 2)
1477 computation_1();
1478 else
1479 computation_2();
1482 In this loop, we will predict the branch inside the loop to be taken. */
1484 static void
1485 predict_iv_comparison (struct loop *loop, basic_block bb,
1486 tree loop_bound_var,
1487 tree loop_iv_base_var,
1488 enum tree_code loop_bound_code,
1489 int loop_bound_step)
1491 gimple *stmt;
1492 tree compare_var, compare_base;
1493 enum tree_code compare_code;
1494 tree compare_step_var;
1495 edge then_edge;
1496 edge_iterator ei;
1498 if (predicted_by_loop_heuristics_p (bb))
1499 return;
1501 stmt = last_stmt (bb);
1502 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1503 return;
1504 if (!is_comparison_with_loop_invariant_p (as_a <gcond *> (stmt),
1505 loop, &compare_var,
1506 &compare_code,
1507 &compare_step_var,
1508 &compare_base))
1509 return;
1511 /* Find the taken edge. */
1512 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1513 if (then_edge->flags & EDGE_TRUE_VALUE)
1514 break;
1516 /* When comparing an IV to a loop invariant, NE is more likely to be
1517 taken while EQ is more likely to be not-taken. */
1518 if (compare_code == NE_EXPR)
1520 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1521 return;
1523 else if (compare_code == EQ_EXPR)
1525 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1526 return;
1529 if (!expr_coherent_p (loop_iv_base_var, compare_base))
1530 return;
1532 /* If loop bound, base and compare bound are all constants, we can
1533 calculate the probability directly. */
1534 if (tree_fits_shwi_p (loop_bound_var)
1535 && tree_fits_shwi_p (compare_var)
1536 && tree_fits_shwi_p (compare_base))
1538 int probability;
1539 bool overflow, overall_overflow = false;
1540 widest_int compare_count, tem;
1542 /* (loop_bound - base) / compare_step */
1543 tem = wi::sub (wi::to_widest (loop_bound_var),
1544 wi::to_widest (compare_base), SIGNED, &overflow);
1545 overall_overflow |= overflow;
1546 widest_int loop_count = wi::div_trunc (tem,
1547 wi::to_widest (compare_step_var),
1548 SIGNED, &overflow);
1549 overall_overflow |= overflow;
1551 if (!wi::neg_p (wi::to_widest (compare_step_var))
1552 ^ (compare_code == LT_EXPR || compare_code == LE_EXPR))
1554 /* (loop_bound - compare_bound) / compare_step */
1555 tem = wi::sub (wi::to_widest (loop_bound_var),
1556 wi::to_widest (compare_var), SIGNED, &overflow);
1557 overall_overflow |= overflow;
1558 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1559 SIGNED, &overflow);
1560 overall_overflow |= overflow;
1562 else
1564 /* (compare_bound - base) / compare_step */
1565 tem = wi::sub (wi::to_widest (compare_var),
1566 wi::to_widest (compare_base), SIGNED, &overflow);
1567 overall_overflow |= overflow;
1568 compare_count = wi::div_trunc (tem, wi::to_widest (compare_step_var),
1569 SIGNED, &overflow);
1570 overall_overflow |= overflow;
1572 if (compare_code == LE_EXPR || compare_code == GE_EXPR)
1573 ++compare_count;
1574 if (loop_bound_code == LE_EXPR || loop_bound_code == GE_EXPR)
1575 ++loop_count;
1576 if (wi::neg_p (compare_count))
1577 compare_count = 0;
1578 if (wi::neg_p (loop_count))
1579 loop_count = 0;
1580 if (loop_count == 0)
1581 probability = 0;
1582 else if (wi::cmps (compare_count, loop_count) == 1)
1583 probability = REG_BR_PROB_BASE;
1584 else
1586 tem = compare_count * REG_BR_PROB_BASE;
1587 tem = wi::udiv_trunc (tem, loop_count);
1588 probability = tem.to_uhwi ();
1591 /* FIXME: The branch prediction seems broken. It has only 20% hitrate. */
1592 if (!overall_overflow)
1593 predict_edge (then_edge, PRED_LOOP_IV_COMPARE, probability);
1595 return;
1598 if (expr_coherent_p (loop_bound_var, compare_var))
1600 if ((loop_bound_code == LT_EXPR || loop_bound_code == LE_EXPR)
1601 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1602 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1603 else if ((loop_bound_code == GT_EXPR || loop_bound_code == GE_EXPR)
1604 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1605 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1606 else if (loop_bound_code == NE_EXPR)
1608 /* If the loop backedge condition is "(i != bound)", we do
1609 the comparison based on the step of IV:
1610 * step < 0 : backedge condition is like (i > bound)
1611 * step > 0 : backedge condition is like (i < bound) */
1612 gcc_assert (loop_bound_step != 0);
1613 if (loop_bound_step > 0
1614 && (compare_code == LT_EXPR
1615 || compare_code == LE_EXPR))
1616 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1617 else if (loop_bound_step < 0
1618 && (compare_code == GT_EXPR
1619 || compare_code == GE_EXPR))
1620 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1621 else
1622 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1624 else
1625 /* The branch is predicted not-taken if loop_bound_code is
1626 opposite with compare_code. */
1627 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1629 else if (expr_coherent_p (loop_iv_base_var, compare_var))
1631 /* For cases like:
1632 for (i = s; i < h; i++)
1633 if (i > s + 2) ....
1634 The branch should be predicted taken. */
1635 if (loop_bound_step > 0
1636 && (compare_code == GT_EXPR || compare_code == GE_EXPR))
1637 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1638 else if (loop_bound_step < 0
1639 && (compare_code == LT_EXPR || compare_code == LE_EXPR))
1640 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, TAKEN);
1641 else
1642 predict_edge_def (then_edge, PRED_LOOP_IV_COMPARE_GUESS, NOT_TAKEN);
1646 /* Predict for extra loop exits that will lead to EXIT_EDGE. The extra loop
1647 exits are resulted from short-circuit conditions that will generate an
1648 if_tmp. E.g.:
1650 if (foo() || global > 10)
1651 break;
1653 This will be translated into:
1655 BB3:
1656 loop header...
1657 BB4:
1658 if foo() goto BB6 else goto BB5
1659 BB5:
1660 if global > 10 goto BB6 else goto BB7
1661 BB6:
1662 goto BB7
1663 BB7:
1664 iftmp = (PHI 0(BB5), 1(BB6))
1665 if iftmp == 1 goto BB8 else goto BB3
1666 BB8:
1667 outside of the loop...
1669 The edge BB7->BB8 is loop exit because BB8 is outside of the loop.
1670 From the dataflow, we can infer that BB4->BB6 and BB5->BB6 are also loop
1671 exits. This function takes BB7->BB8 as input, and finds out the extra loop
1672 exits to predict them using PRED_LOOP_EXTRA_EXIT. */
1674 static void
1675 predict_extra_loop_exits (edge exit_edge)
1677 unsigned i;
1678 bool check_value_one;
1679 gimple *lhs_def_stmt;
1680 gphi *phi_stmt;
1681 tree cmp_rhs, cmp_lhs;
1682 gimple *last;
1683 gcond *cmp_stmt;
1685 last = last_stmt (exit_edge->src);
1686 if (!last)
1687 return;
1688 cmp_stmt = dyn_cast <gcond *> (last);
1689 if (!cmp_stmt)
1690 return;
1692 cmp_rhs = gimple_cond_rhs (cmp_stmt);
1693 cmp_lhs = gimple_cond_lhs (cmp_stmt);
1694 if (!TREE_CONSTANT (cmp_rhs)
1695 || !(integer_zerop (cmp_rhs) || integer_onep (cmp_rhs)))
1696 return;
1697 if (TREE_CODE (cmp_lhs) != SSA_NAME)
1698 return;
1700 /* If check_value_one is true, only the phi_args with value '1' will lead
1701 to loop exit. Otherwise, only the phi_args with value '0' will lead to
1702 loop exit. */
1703 check_value_one = (((integer_onep (cmp_rhs))
1704 ^ (gimple_cond_code (cmp_stmt) == EQ_EXPR))
1705 ^ ((exit_edge->flags & EDGE_TRUE_VALUE) != 0));
1707 lhs_def_stmt = SSA_NAME_DEF_STMT (cmp_lhs);
1708 if (!lhs_def_stmt)
1709 return;
1711 phi_stmt = dyn_cast <gphi *> (lhs_def_stmt);
1712 if (!phi_stmt)
1713 return;
1715 for (i = 0; i < gimple_phi_num_args (phi_stmt); i++)
1717 edge e1;
1718 edge_iterator ei;
1719 tree val = gimple_phi_arg_def (phi_stmt, i);
1720 edge e = gimple_phi_arg_edge (phi_stmt, i);
1722 if (!TREE_CONSTANT (val) || !(integer_zerop (val) || integer_onep (val)))
1723 continue;
1724 if ((check_value_one ^ integer_onep (val)) == 1)
1725 continue;
1726 if (EDGE_COUNT (e->src->succs) != 1)
1728 predict_paths_leading_to_edge (e, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1729 continue;
1732 FOR_EACH_EDGE (e1, ei, e->src->preds)
1733 predict_paths_leading_to_edge (e1, PRED_LOOP_EXTRA_EXIT, NOT_TAKEN);
1738 /* Predict edge probabilities by exploiting loop structure. */
1740 static void
1741 predict_loops (void)
1743 struct loop *loop;
1744 basic_block bb;
1745 hash_set <struct loop *> with_recursion(10);
1747 FOR_EACH_BB_FN (bb, cfun)
1749 gimple_stmt_iterator gsi;
1750 tree decl;
1752 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1753 if (is_gimple_call (gsi_stmt (gsi))
1754 && (decl = gimple_call_fndecl (gsi_stmt (gsi))) != NULL
1755 && recursive_call_p (current_function_decl, decl))
1757 loop = bb->loop_father;
1758 while (loop && !with_recursion.add (loop))
1759 loop = loop_outer (loop);
1763 /* Try to predict out blocks in a loop that are not part of a
1764 natural loop. */
1765 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1767 basic_block bb, *bbs;
1768 unsigned j, n_exits = 0;
1769 vec<edge> exits;
1770 struct tree_niter_desc niter_desc;
1771 edge ex;
1772 struct nb_iter_bound *nb_iter;
1773 enum tree_code loop_bound_code = ERROR_MARK;
1774 tree loop_bound_step = NULL;
1775 tree loop_bound_var = NULL;
1776 tree loop_iv_base = NULL;
1777 gcond *stmt = NULL;
1778 bool recursion = with_recursion.contains (loop);
1780 exits = get_loop_exit_edges (loop);
1781 FOR_EACH_VEC_ELT (exits, j, ex)
1782 if (!(ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL | EDGE_FAKE)))
1783 n_exits ++;
1784 if (!n_exits)
1786 exits.release ();
1787 continue;
1790 if (dump_file && (dump_flags & TDF_DETAILS))
1791 fprintf (dump_file, "Predicting loop %i%s with %i exits.\n",
1792 loop->num, recursion ? " (with recursion)":"", n_exits);
1793 if (dump_file && (dump_flags & TDF_DETAILS)
1794 && max_loop_iterations_int (loop) >= 0)
1796 fprintf (dump_file,
1797 "Loop %d iterates at most %i times.\n", loop->num,
1798 (int)max_loop_iterations_int (loop));
1800 if (dump_file && (dump_flags & TDF_DETAILS)
1801 && likely_max_loop_iterations_int (loop) >= 0)
1803 fprintf (dump_file, "Loop %d likely iterates at most %i times.\n",
1804 loop->num, (int)likely_max_loop_iterations_int (loop));
1807 FOR_EACH_VEC_ELT (exits, j, ex)
1809 tree niter = NULL;
1810 HOST_WIDE_INT nitercst;
1811 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
1812 int probability;
1813 enum br_predictor predictor;
1814 widest_int nit;
1816 if (ex->flags & (EDGE_EH | EDGE_ABNORMAL_CALL | EDGE_FAKE))
1817 continue;
1818 /* Loop heuristics do not expect exit conditional to be inside
1819 inner loop. We predict from innermost to outermost loop. */
1820 if (predicted_by_loop_heuristics_p (ex->src))
1822 if (dump_file && (dump_flags & TDF_DETAILS))
1823 fprintf (dump_file, "Skipping exit %i->%i because "
1824 "it is already predicted.\n",
1825 ex->src->index, ex->dest->index);
1826 continue;
1828 predict_extra_loop_exits (ex);
1830 if (number_of_iterations_exit (loop, ex, &niter_desc, false, false))
1831 niter = niter_desc.niter;
1832 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
1833 niter = loop_niter_by_eval (loop, ex);
1834 if (dump_file && (dump_flags & TDF_DETAILS)
1835 && TREE_CODE (niter) == INTEGER_CST)
1837 fprintf (dump_file, "Exit %i->%i %d iterates ",
1838 ex->src->index, ex->dest->index,
1839 loop->num);
1840 print_generic_expr (dump_file, niter, TDF_SLIM);
1841 fprintf (dump_file, " times.\n");
1844 if (TREE_CODE (niter) == INTEGER_CST)
1846 if (tree_fits_uhwi_p (niter)
1847 && max
1848 && compare_tree_int (niter, max - 1) == -1)
1849 nitercst = tree_to_uhwi (niter) + 1;
1850 else
1851 nitercst = max;
1852 predictor = PRED_LOOP_ITERATIONS;
1854 /* If we have just one exit and we can derive some information about
1855 the number of iterations of the loop from the statements inside
1856 the loop, use it to predict this exit. */
1857 else if (n_exits == 1
1858 && estimated_stmt_executions (loop, &nit))
1860 if (wi::gtu_p (nit, max))
1861 nitercst = max;
1862 else
1863 nitercst = nit.to_shwi ();
1864 predictor = PRED_LOOP_ITERATIONS_GUESSED;
1866 /* If we have likely upper bound, trust it for very small iteration
1867 counts. Such loops would otherwise get mispredicted by standard
1868 LOOP_EXIT heuristics. */
1869 else if (n_exits == 1
1870 && likely_max_stmt_executions (loop, &nit)
1871 && wi::ltu_p (nit,
1872 RDIV (REG_BR_PROB_BASE,
1873 REG_BR_PROB_BASE
1874 - predictor_info
1875 [recursion
1876 ? PRED_LOOP_EXIT_WITH_RECURSION
1877 : PRED_LOOP_EXIT].hitrate)))
1879 nitercst = nit.to_shwi ();
1880 predictor = PRED_LOOP_ITERATIONS_MAX;
1882 else
1884 if (dump_file && (dump_flags & TDF_DETAILS))
1885 fprintf (dump_file, "Nothing known about exit %i->%i.\n",
1886 ex->src->index, ex->dest->index);
1887 continue;
1890 if (dump_file && (dump_flags & TDF_DETAILS))
1891 fprintf (dump_file, "Recording prediction to %i iterations by %s.\n",
1892 (int)nitercst, predictor_info[predictor].name);
1893 /* If the prediction for number of iterations is zero, do not
1894 predict the exit edges. */
1895 if (nitercst == 0)
1896 continue;
1898 probability = RDIV (REG_BR_PROB_BASE, nitercst);
1899 predict_edge (ex, predictor, probability);
1901 exits.release ();
1903 /* Find information about loop bound variables. */
1904 for (nb_iter = loop->bounds; nb_iter;
1905 nb_iter = nb_iter->next)
1906 if (nb_iter->stmt
1907 && gimple_code (nb_iter->stmt) == GIMPLE_COND)
1909 stmt = as_a <gcond *> (nb_iter->stmt);
1910 break;
1912 if (!stmt && last_stmt (loop->header)
1913 && gimple_code (last_stmt (loop->header)) == GIMPLE_COND)
1914 stmt = as_a <gcond *> (last_stmt (loop->header));
1915 if (stmt)
1916 is_comparison_with_loop_invariant_p (stmt, loop,
1917 &loop_bound_var,
1918 &loop_bound_code,
1919 &loop_bound_step,
1920 &loop_iv_base);
1922 bbs = get_loop_body (loop);
1924 for (j = 0; j < loop->num_nodes; j++)
1926 edge e;
1927 edge_iterator ei;
1929 bb = bbs[j];
1931 /* Bypass loop heuristics on continue statement. These
1932 statements construct loops via "non-loop" constructs
1933 in the source language and are better to be handled
1934 separately. */
1935 if (predicted_by_p (bb, PRED_CONTINUE))
1937 if (dump_file && (dump_flags & TDF_DETAILS))
1938 fprintf (dump_file, "BB %i predicted by continue.\n",
1939 bb->index);
1940 continue;
1943 /* If we already used more reliable loop exit predictors, do not
1944 bother with PRED_LOOP_EXIT. */
1945 if (!predicted_by_loop_heuristics_p (bb))
1947 /* For loop with many exits we don't want to predict all exits
1948 with the pretty large probability, because if all exits are
1949 considered in row, the loop would be predicted to iterate
1950 almost never. The code to divide probability by number of
1951 exits is very rough. It should compute the number of exits
1952 taken in each patch through function (not the overall number
1953 of exits that might be a lot higher for loops with wide switch
1954 statements in them) and compute n-th square root.
1956 We limit the minimal probability by 2% to avoid
1957 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1958 as this was causing regression in perl benchmark containing such
1959 a wide loop. */
1961 int probability = ((REG_BR_PROB_BASE
1962 - predictor_info
1963 [recursion
1964 ? PRED_LOOP_EXIT_WITH_RECURSION
1965 : PRED_LOOP_EXIT].hitrate)
1966 / n_exits);
1967 if (probability < HITRATE (2))
1968 probability = HITRATE (2);
1969 FOR_EACH_EDGE (e, ei, bb->succs)
1970 if (e->dest->index < NUM_FIXED_BLOCKS
1971 || !flow_bb_inside_loop_p (loop, e->dest))
1973 if (dump_file && (dump_flags & TDF_DETAILS))
1974 fprintf (dump_file,
1975 "Predicting exit %i->%i with prob %i.\n",
1976 e->src->index, e->dest->index, probability);
1977 predict_edge (e,
1978 recursion ? PRED_LOOP_EXIT_WITH_RECURSION
1979 : PRED_LOOP_EXIT, probability);
1982 if (loop_bound_var)
1983 predict_iv_comparison (loop, bb, loop_bound_var, loop_iv_base,
1984 loop_bound_code,
1985 tree_to_shwi (loop_bound_step));
1988 /* In the following code
1989 for (loop1)
1990 if (cond)
1991 for (loop2)
1992 body;
1993 guess that cond is unlikely. */
1994 if (loop_outer (loop)->num)
1996 basic_block bb = NULL;
1997 edge preheader_edge = loop_preheader_edge (loop);
1999 if (single_pred_p (preheader_edge->src)
2000 && single_succ_p (preheader_edge->src))
2001 preheader_edge = single_pred_edge (preheader_edge->src);
2003 gimple *stmt = last_stmt (preheader_edge->src);
2004 /* Pattern match fortran loop preheader:
2005 _16 = BUILTIN_EXPECT (_15, 1, PRED_FORTRAN_LOOP_PREHEADER);
2006 _17 = (logical(kind=4)) _16;
2007 if (_17 != 0)
2008 goto <bb 11>;
2009 else
2010 goto <bb 13>;
2012 Loop guard branch prediction says nothing about duplicated loop
2013 headers produced by fortran frontend and in this case we want
2014 to predict paths leading to this preheader. */
2016 if (stmt
2017 && gimple_code (stmt) == GIMPLE_COND
2018 && gimple_cond_code (stmt) == NE_EXPR
2019 && TREE_CODE (gimple_cond_lhs (stmt)) == SSA_NAME
2020 && integer_zerop (gimple_cond_rhs (stmt)))
2022 gimple *call_stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
2023 if (gimple_code (call_stmt) == GIMPLE_ASSIGN
2024 && gimple_expr_code (call_stmt) == NOP_EXPR
2025 && TREE_CODE (gimple_assign_rhs1 (call_stmt)) == SSA_NAME)
2026 call_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (call_stmt));
2027 if (gimple_code (call_stmt) == GIMPLE_CALL
2028 && gimple_call_internal_p (call_stmt)
2029 && gimple_call_internal_fn (call_stmt) == IFN_BUILTIN_EXPECT
2030 && TREE_CODE (gimple_call_arg (call_stmt, 2)) == INTEGER_CST
2031 && tree_fits_uhwi_p (gimple_call_arg (call_stmt, 2))
2032 && tree_to_uhwi (gimple_call_arg (call_stmt, 2))
2033 == PRED_FORTRAN_LOOP_PREHEADER)
2034 bb = preheader_edge->src;
2036 if (!bb)
2038 if (!dominated_by_p (CDI_DOMINATORS,
2039 loop_outer (loop)->latch, loop->header))
2040 predict_paths_leading_to_edge (loop_preheader_edge (loop),
2041 recursion
2042 ? PRED_LOOP_GUARD_WITH_RECURSION
2043 : PRED_LOOP_GUARD,
2044 NOT_TAKEN,
2045 loop_outer (loop));
2047 else
2049 if (!dominated_by_p (CDI_DOMINATORS,
2050 loop_outer (loop)->latch, bb))
2051 predict_paths_leading_to (bb,
2052 recursion
2053 ? PRED_LOOP_GUARD_WITH_RECURSION
2054 : PRED_LOOP_GUARD,
2055 NOT_TAKEN,
2056 loop_outer (loop));
2060 /* Free basic blocks from get_loop_body. */
2061 free (bbs);
2065 /* Attempt to predict probabilities of BB outgoing edges using local
2066 properties. */
2067 static void
2068 bb_estimate_probability_locally (basic_block bb)
2070 rtx_insn *last_insn = BB_END (bb);
2071 rtx cond;
2073 if (! can_predict_insn_p (last_insn))
2074 return;
2075 cond = get_condition (last_insn, NULL, false, false);
2076 if (! cond)
2077 return;
2079 /* Try "pointer heuristic."
2080 A comparison ptr == 0 is predicted as false.
2081 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2082 if (COMPARISON_P (cond)
2083 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
2084 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
2086 if (GET_CODE (cond) == EQ)
2087 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
2088 else if (GET_CODE (cond) == NE)
2089 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
2091 else
2093 /* Try "opcode heuristic."
2094 EQ tests are usually false and NE tests are usually true. Also,
2095 most quantities are positive, so we can make the appropriate guesses
2096 about signed comparisons against zero. */
2097 switch (GET_CODE (cond))
2099 case CONST_INT:
2100 /* Unconditional branch. */
2101 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
2102 cond == const0_rtx ? NOT_TAKEN : TAKEN);
2103 break;
2105 case EQ:
2106 case UNEQ:
2107 /* Floating point comparisons appears to behave in a very
2108 unpredictable way because of special role of = tests in
2109 FP code. */
2110 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2112 /* Comparisons with 0 are often used for booleans and there is
2113 nothing useful to predict about them. */
2114 else if (XEXP (cond, 1) == const0_rtx
2115 || XEXP (cond, 0) == const0_rtx)
2117 else
2118 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
2119 break;
2121 case NE:
2122 case LTGT:
2123 /* Floating point comparisons appears to behave in a very
2124 unpredictable way because of special role of = tests in
2125 FP code. */
2126 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
2128 /* Comparisons with 0 are often used for booleans and there is
2129 nothing useful to predict about them. */
2130 else if (XEXP (cond, 1) == const0_rtx
2131 || XEXP (cond, 0) == const0_rtx)
2133 else
2134 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
2135 break;
2137 case ORDERED:
2138 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
2139 break;
2141 case UNORDERED:
2142 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
2143 break;
2145 case LE:
2146 case LT:
2147 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2148 || XEXP (cond, 1) == constm1_rtx)
2149 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
2150 break;
2152 case GE:
2153 case GT:
2154 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
2155 || XEXP (cond, 1) == constm1_rtx)
2156 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
2157 break;
2159 default:
2160 break;
2164 /* Set edge->probability for each successor edge of BB. */
2165 void
2166 guess_outgoing_edge_probabilities (basic_block bb)
2168 bb_estimate_probability_locally (bb);
2169 combine_predictions_for_insn (BB_END (bb), bb);
2172 static tree expr_expected_value (tree, bitmap, enum br_predictor *predictor);
2174 /* Helper function for expr_expected_value. */
2176 static tree
2177 expr_expected_value_1 (tree type, tree op0, enum tree_code code,
2178 tree op1, bitmap visited, enum br_predictor *predictor)
2180 gimple *def;
2182 if (predictor)
2183 *predictor = PRED_UNCONDITIONAL;
2185 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
2187 if (TREE_CONSTANT (op0))
2188 return op0;
2190 if (code == IMAGPART_EXPR)
2192 if (TREE_CODE (TREE_OPERAND (op0, 0)) == SSA_NAME)
2194 def = SSA_NAME_DEF_STMT (TREE_OPERAND (op0, 0));
2195 if (is_gimple_call (def)
2196 && gimple_call_internal_p (def)
2197 && (gimple_call_internal_fn (def)
2198 == IFN_ATOMIC_COMPARE_EXCHANGE))
2200 /* Assume that any given atomic operation has low contention,
2201 and thus the compare-and-swap operation succeeds. */
2202 if (predictor)
2203 *predictor = PRED_COMPARE_AND_SWAP;
2204 return build_one_cst (TREE_TYPE (op0));
2209 if (code != SSA_NAME)
2210 return NULL_TREE;
2212 def = SSA_NAME_DEF_STMT (op0);
2214 /* If we were already here, break the infinite cycle. */
2215 if (!bitmap_set_bit (visited, SSA_NAME_VERSION (op0)))
2216 return NULL;
2218 if (gimple_code (def) == GIMPLE_PHI)
2220 /* All the arguments of the PHI node must have the same constant
2221 length. */
2222 int i, n = gimple_phi_num_args (def);
2223 tree val = NULL, new_val;
2225 for (i = 0; i < n; i++)
2227 tree arg = PHI_ARG_DEF (def, i);
2228 enum br_predictor predictor2;
2230 /* If this PHI has itself as an argument, we cannot
2231 determine the string length of this argument. However,
2232 if we can find an expected constant value for the other
2233 PHI args then we can still be sure that this is
2234 likely a constant. So be optimistic and just
2235 continue with the next argument. */
2236 if (arg == PHI_RESULT (def))
2237 continue;
2239 new_val = expr_expected_value (arg, visited, &predictor2);
2241 /* It is difficult to combine value predictors. Simply assume
2242 that later predictor is weaker and take its prediction. */
2243 if (predictor && *predictor < predictor2)
2244 *predictor = predictor2;
2245 if (!new_val)
2246 return NULL;
2247 if (!val)
2248 val = new_val;
2249 else if (!operand_equal_p (val, new_val, false))
2250 return NULL;
2252 return val;
2254 if (is_gimple_assign (def))
2256 if (gimple_assign_lhs (def) != op0)
2257 return NULL;
2259 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
2260 gimple_assign_rhs1 (def),
2261 gimple_assign_rhs_code (def),
2262 gimple_assign_rhs2 (def),
2263 visited, predictor);
2266 if (is_gimple_call (def))
2268 tree decl = gimple_call_fndecl (def);
2269 if (!decl)
2271 if (gimple_call_internal_p (def)
2272 && gimple_call_internal_fn (def) == IFN_BUILTIN_EXPECT)
2274 gcc_assert (gimple_call_num_args (def) == 3);
2275 tree val = gimple_call_arg (def, 0);
2276 if (TREE_CONSTANT (val))
2277 return val;
2278 if (predictor)
2280 tree val2 = gimple_call_arg (def, 2);
2281 gcc_assert (TREE_CODE (val2) == INTEGER_CST
2282 && tree_fits_uhwi_p (val2)
2283 && tree_to_uhwi (val2) < END_PREDICTORS);
2284 *predictor = (enum br_predictor) tree_to_uhwi (val2);
2286 return gimple_call_arg (def, 1);
2288 return NULL;
2290 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
2291 switch (DECL_FUNCTION_CODE (decl))
2293 case BUILT_IN_EXPECT:
2295 tree val;
2296 if (gimple_call_num_args (def) != 2)
2297 return NULL;
2298 val = gimple_call_arg (def, 0);
2299 if (TREE_CONSTANT (val))
2300 return val;
2301 if (predictor)
2302 *predictor = PRED_BUILTIN_EXPECT;
2303 return gimple_call_arg (def, 1);
2306 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_N:
2307 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_1:
2308 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_2:
2309 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_4:
2310 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_8:
2311 case BUILT_IN_SYNC_BOOL_COMPARE_AND_SWAP_16:
2312 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE:
2313 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_N:
2314 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_1:
2315 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_2:
2316 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_4:
2317 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_8:
2318 case BUILT_IN_ATOMIC_COMPARE_EXCHANGE_16:
2319 /* Assume that any given atomic operation has low contention,
2320 and thus the compare-and-swap operation succeeds. */
2321 if (predictor)
2322 *predictor = PRED_COMPARE_AND_SWAP;
2323 return boolean_true_node;
2324 default:
2325 break;
2329 return NULL;
2332 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
2334 tree res;
2335 enum br_predictor predictor2;
2336 op0 = expr_expected_value (op0, visited, predictor);
2337 if (!op0)
2338 return NULL;
2339 op1 = expr_expected_value (op1, visited, &predictor2);
2340 if (predictor && *predictor < predictor2)
2341 *predictor = predictor2;
2342 if (!op1)
2343 return NULL;
2344 res = fold_build2 (code, type, op0, op1);
2345 if (TREE_CONSTANT (res))
2346 return res;
2347 return NULL;
2349 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
2351 tree res;
2352 op0 = expr_expected_value (op0, visited, predictor);
2353 if (!op0)
2354 return NULL;
2355 res = fold_build1 (code, type, op0);
2356 if (TREE_CONSTANT (res))
2357 return res;
2358 return NULL;
2360 return NULL;
2363 /* Return constant EXPR will likely have at execution time, NULL if unknown.
2364 The function is used by builtin_expect branch predictor so the evidence
2365 must come from this construct and additional possible constant folding.
2367 We may want to implement more involved value guess (such as value range
2368 propagation based prediction), but such tricks shall go to new
2369 implementation. */
2371 static tree
2372 expr_expected_value (tree expr, bitmap visited,
2373 enum br_predictor *predictor)
2375 enum tree_code code;
2376 tree op0, op1;
2378 if (TREE_CONSTANT (expr))
2380 if (predictor)
2381 *predictor = PRED_UNCONDITIONAL;
2382 return expr;
2385 extract_ops_from_tree (expr, &code, &op0, &op1);
2386 return expr_expected_value_1 (TREE_TYPE (expr),
2387 op0, code, op1, visited, predictor);
2390 /* Predict using opcode of the last statement in basic block. */
2391 static void
2392 tree_predict_by_opcode (basic_block bb)
2394 gimple *stmt = last_stmt (bb);
2395 edge then_edge;
2396 tree op0, op1;
2397 tree type;
2398 tree val;
2399 enum tree_code cmp;
2400 bitmap visited;
2401 edge_iterator ei;
2402 enum br_predictor predictor;
2404 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
2405 return;
2406 FOR_EACH_EDGE (then_edge, ei, bb->succs)
2407 if (then_edge->flags & EDGE_TRUE_VALUE)
2408 break;
2409 op0 = gimple_cond_lhs (stmt);
2410 op1 = gimple_cond_rhs (stmt);
2411 cmp = gimple_cond_code (stmt);
2412 type = TREE_TYPE (op0);
2413 visited = BITMAP_ALLOC (NULL);
2414 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited,
2415 &predictor);
2416 BITMAP_FREE (visited);
2417 if (val && TREE_CODE (val) == INTEGER_CST)
2419 if (predictor == PRED_BUILTIN_EXPECT)
2421 int percent = PARAM_VALUE (BUILTIN_EXPECT_PROBABILITY);
2423 gcc_assert (percent >= 0 && percent <= 100);
2424 if (integer_zerop (val))
2425 percent = 100 - percent;
2426 predict_edge (then_edge, PRED_BUILTIN_EXPECT, HITRATE (percent));
2428 else
2429 predict_edge_def (then_edge, predictor,
2430 integer_zerop (val) ? NOT_TAKEN : TAKEN);
2432 /* Try "pointer heuristic."
2433 A comparison ptr == 0 is predicted as false.
2434 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
2435 if (POINTER_TYPE_P (type))
2437 if (cmp == EQ_EXPR)
2438 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
2439 else if (cmp == NE_EXPR)
2440 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
2442 else
2444 /* Try "opcode heuristic."
2445 EQ tests are usually false and NE tests are usually true. Also,
2446 most quantities are positive, so we can make the appropriate guesses
2447 about signed comparisons against zero. */
2448 switch (cmp)
2450 case EQ_EXPR:
2451 case UNEQ_EXPR:
2452 /* Floating point comparisons appears to behave in a very
2453 unpredictable way because of special role of = tests in
2454 FP code. */
2455 if (FLOAT_TYPE_P (type))
2457 /* Comparisons with 0 are often used for booleans and there is
2458 nothing useful to predict about them. */
2459 else if (integer_zerop (op0) || integer_zerop (op1))
2461 else
2462 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
2463 break;
2465 case NE_EXPR:
2466 case LTGT_EXPR:
2467 /* Floating point comparisons appears to behave in a very
2468 unpredictable way because of special role of = tests in
2469 FP code. */
2470 if (FLOAT_TYPE_P (type))
2472 /* Comparisons with 0 are often used for booleans and there is
2473 nothing useful to predict about them. */
2474 else if (integer_zerop (op0)
2475 || integer_zerop (op1))
2477 else
2478 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
2479 break;
2481 case ORDERED_EXPR:
2482 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
2483 break;
2485 case UNORDERED_EXPR:
2486 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
2487 break;
2489 case LE_EXPR:
2490 case LT_EXPR:
2491 if (integer_zerop (op1)
2492 || integer_onep (op1)
2493 || integer_all_onesp (op1)
2494 || real_zerop (op1)
2495 || real_onep (op1)
2496 || real_minus_onep (op1))
2497 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
2498 break;
2500 case GE_EXPR:
2501 case GT_EXPR:
2502 if (integer_zerop (op1)
2503 || integer_onep (op1)
2504 || integer_all_onesp (op1)
2505 || real_zerop (op1)
2506 || real_onep (op1)
2507 || real_minus_onep (op1))
2508 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
2509 break;
2511 default:
2512 break;
2516 /* Try to guess whether the value of return means error code. */
2518 static enum br_predictor
2519 return_prediction (tree val, enum prediction *prediction)
2521 /* VOID. */
2522 if (!val)
2523 return PRED_NO_PREDICTION;
2524 /* Different heuristics for pointers and scalars. */
2525 if (POINTER_TYPE_P (TREE_TYPE (val)))
2527 /* NULL is usually not returned. */
2528 if (integer_zerop (val))
2530 *prediction = NOT_TAKEN;
2531 return PRED_NULL_RETURN;
2534 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
2536 /* Negative return values are often used to indicate
2537 errors. */
2538 if (TREE_CODE (val) == INTEGER_CST
2539 && tree_int_cst_sgn (val) < 0)
2541 *prediction = NOT_TAKEN;
2542 return PRED_NEGATIVE_RETURN;
2544 /* Constant return values seems to be commonly taken.
2545 Zero/one often represent booleans so exclude them from the
2546 heuristics. */
2547 if (TREE_CONSTANT (val)
2548 && (!integer_zerop (val) && !integer_onep (val)))
2550 *prediction = NOT_TAKEN;
2551 return PRED_CONST_RETURN;
2554 return PRED_NO_PREDICTION;
2557 /* Find the basic block with return expression and look up for possible
2558 return value trying to apply RETURN_PREDICTION heuristics. */
2559 static void
2560 apply_return_prediction (void)
2562 greturn *return_stmt = NULL;
2563 tree return_val;
2564 edge e;
2565 gphi *phi;
2566 int phi_num_args, i;
2567 enum br_predictor pred;
2568 enum prediction direction;
2569 edge_iterator ei;
2571 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2573 gimple *last = last_stmt (e->src);
2574 if (last
2575 && gimple_code (last) == GIMPLE_RETURN)
2577 return_stmt = as_a <greturn *> (last);
2578 break;
2581 if (!e)
2582 return;
2583 return_val = gimple_return_retval (return_stmt);
2584 if (!return_val)
2585 return;
2586 if (TREE_CODE (return_val) != SSA_NAME
2587 || !SSA_NAME_DEF_STMT (return_val)
2588 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
2589 return;
2590 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (return_val));
2591 phi_num_args = gimple_phi_num_args (phi);
2592 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
2594 /* Avoid the degenerate case where all return values form the function
2595 belongs to same category (ie they are all positive constants)
2596 so we can hardly say something about them. */
2597 for (i = 1; i < phi_num_args; i++)
2598 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
2599 break;
2600 if (i != phi_num_args)
2601 for (i = 0; i < phi_num_args; i++)
2603 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
2604 if (pred != PRED_NO_PREDICTION)
2605 predict_paths_leading_to_edge (gimple_phi_arg_edge (phi, i), pred,
2606 direction);
2610 /* Look for basic block that contains unlikely to happen events
2611 (such as noreturn calls) and mark all paths leading to execution
2612 of this basic blocks as unlikely. */
2614 static void
2615 tree_bb_level_predictions (void)
2617 basic_block bb;
2618 bool has_return_edges = false;
2619 edge e;
2620 edge_iterator ei;
2622 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
2623 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
2625 has_return_edges = true;
2626 break;
2629 apply_return_prediction ();
2631 FOR_EACH_BB_FN (bb, cfun)
2633 gimple_stmt_iterator gsi;
2635 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2637 gimple *stmt = gsi_stmt (gsi);
2638 tree decl;
2640 if (is_gimple_call (stmt))
2642 if ((gimple_call_flags (stmt) & ECF_NORETURN)
2643 && has_return_edges)
2644 predict_paths_leading_to (bb, PRED_NORETURN,
2645 NOT_TAKEN);
2646 decl = gimple_call_fndecl (stmt);
2647 if (decl
2648 && lookup_attribute ("cold",
2649 DECL_ATTRIBUTES (decl)))
2650 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
2651 NOT_TAKEN);
2652 if (decl && recursive_call_p (current_function_decl, decl))
2653 predict_paths_leading_to (bb, PRED_RECURSIVE_CALL,
2654 NOT_TAKEN);
2656 else if (gimple_code (stmt) == GIMPLE_PREDICT)
2658 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
2659 gimple_predict_outcome (stmt));
2660 /* Keep GIMPLE_PREDICT around so early inlining will propagate
2661 hints to callers. */
2667 /* Callback for hash_map::traverse, asserts that the pointer map is
2668 empty. */
2670 bool
2671 assert_is_empty (const_basic_block const &, edge_prediction *const &value,
2672 void *)
2674 gcc_assert (!value);
2675 return false;
2678 /* Predict branch probabilities and estimate profile for basic block BB. */
2680 static void
2681 tree_estimate_probability_bb (basic_block bb)
2683 edge e;
2684 edge_iterator ei;
2685 gimple *last;
2687 FOR_EACH_EDGE (e, ei, bb->succs)
2689 /* Predict edges to user labels with attributes. */
2690 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2692 gimple_stmt_iterator gi;
2693 for (gi = gsi_start_bb (e->dest); !gsi_end_p (gi); gsi_next (&gi))
2695 glabel *label_stmt = dyn_cast <glabel *> (gsi_stmt (gi));
2696 tree decl;
2698 if (!label_stmt)
2699 break;
2700 decl = gimple_label_label (label_stmt);
2701 if (DECL_ARTIFICIAL (decl))
2702 continue;
2704 /* Finally, we have a user-defined label. */
2705 if (lookup_attribute ("cold", DECL_ATTRIBUTES (decl)))
2706 predict_edge_def (e, PRED_COLD_LABEL, NOT_TAKEN);
2707 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (decl)))
2708 predict_edge_def (e, PRED_HOT_LABEL, TAKEN);
2712 /* Predict early returns to be probable, as we've already taken
2713 care for error returns and other cases are often used for
2714 fast paths through function.
2716 Since we've already removed the return statements, we are
2717 looking for CFG like:
2719 if (conditional)
2722 goto return_block
2724 some other blocks
2725 return_block:
2726 return_stmt. */
2727 if (e->dest != bb->next_bb
2728 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
2729 && single_succ_p (e->dest)
2730 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2731 && (last = last_stmt (e->dest)) != NULL
2732 && gimple_code (last) == GIMPLE_RETURN)
2734 edge e1;
2735 edge_iterator ei1;
2737 if (single_succ_p (bb))
2739 FOR_EACH_EDGE (e1, ei1, bb->preds)
2740 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
2741 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
2742 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
2743 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2745 else
2746 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
2747 && !predicted_by_p (e->src, PRED_CONST_RETURN)
2748 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
2749 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
2752 /* Look for block we are guarding (ie we dominate it,
2753 but it doesn't postdominate us). */
2754 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun) && e->dest != bb
2755 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
2756 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
2758 gimple_stmt_iterator bi;
2760 /* The call heuristic claims that a guarded function call
2761 is improbable. This is because such calls are often used
2762 to signal exceptional situations such as printing error
2763 messages. */
2764 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
2765 gsi_next (&bi))
2767 gimple *stmt = gsi_stmt (bi);
2768 if (is_gimple_call (stmt)
2769 && !gimple_inexpensive_call_p (as_a <gcall *> (stmt))
2770 /* Constant and pure calls are hardly used to signalize
2771 something exceptional. */
2772 && gimple_has_side_effects (stmt))
2774 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
2775 break;
2780 tree_predict_by_opcode (bb);
2783 /* Predict branch probabilities and estimate profile of the tree CFG.
2784 This function can be called from the loop optimizers to recompute
2785 the profile information.
2786 If DRY_RUN is set, do not modify CFG and only produce dump files. */
2788 void
2789 tree_estimate_probability (bool dry_run)
2791 basic_block bb;
2793 add_noreturn_fake_exit_edges ();
2794 connect_infinite_loops_to_exit ();
2795 /* We use loop_niter_by_eval, which requires that the loops have
2796 preheaders. */
2797 create_preheaders (CP_SIMPLE_PREHEADERS);
2798 calculate_dominance_info (CDI_POST_DOMINATORS);
2800 bb_predictions = new hash_map<const_basic_block, edge_prediction *>;
2801 tree_bb_level_predictions ();
2802 record_loop_exits ();
2804 if (number_of_loops (cfun) > 1)
2805 predict_loops ();
2807 FOR_EACH_BB_FN (bb, cfun)
2808 tree_estimate_probability_bb (bb);
2810 FOR_EACH_BB_FN (bb, cfun)
2811 combine_predictions_for_bb (bb, dry_run);
2813 if (flag_checking)
2814 bb_predictions->traverse<void *, assert_is_empty> (NULL);
2816 delete bb_predictions;
2817 bb_predictions = NULL;
2819 if (!dry_run)
2820 estimate_bb_frequencies (false);
2821 free_dominance_info (CDI_POST_DOMINATORS);
2822 remove_fake_exit_edges ();
2825 /* Predict edges to successors of CUR whose sources are not postdominated by
2826 BB by PRED and recurse to all postdominators. */
2828 static void
2829 predict_paths_for_bb (basic_block cur, basic_block bb,
2830 enum br_predictor pred,
2831 enum prediction taken,
2832 bitmap visited, struct loop *in_loop = NULL)
2834 edge e;
2835 edge_iterator ei;
2836 basic_block son;
2838 /* If we exited the loop or CUR is unconditional in the loop, there is
2839 nothing to do. */
2840 if (in_loop
2841 && (!flow_bb_inside_loop_p (in_loop, cur)
2842 || dominated_by_p (CDI_DOMINATORS, in_loop->latch, cur)))
2843 return;
2845 /* We are looking for all edges forming edge cut induced by
2846 set of all blocks postdominated by BB. */
2847 FOR_EACH_EDGE (e, ei, cur->preds)
2848 if (e->src->index >= NUM_FIXED_BLOCKS
2849 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
2851 edge e2;
2852 edge_iterator ei2;
2853 bool found = false;
2855 /* Ignore fake edges and eh, we predict them as not taken anyway. */
2856 if (e->flags & (EDGE_EH | EDGE_FAKE))
2857 continue;
2858 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
2860 /* See if there is an edge from e->src that is not abnormal
2861 and does not lead to BB and does not exit the loop. */
2862 FOR_EACH_EDGE (e2, ei2, e->src->succs)
2863 if (e2 != e
2864 && !(e2->flags & (EDGE_EH | EDGE_FAKE))
2865 && !dominated_by_p (CDI_POST_DOMINATORS, e2->dest, bb)
2866 && (!in_loop || !loop_exit_edge_p (in_loop, e2)))
2868 found = true;
2869 break;
2872 /* If there is non-abnormal path leaving e->src, predict edge
2873 using predictor. Otherwise we need to look for paths
2874 leading to e->src.
2876 The second may lead to infinite loop in the case we are predicitng
2877 regions that are only reachable by abnormal edges. We simply
2878 prevent visiting given BB twice. */
2879 if (found)
2881 if (!edge_predicted_by_p (e, pred, taken))
2882 predict_edge_def (e, pred, taken);
2884 else if (bitmap_set_bit (visited, e->src->index))
2885 predict_paths_for_bb (e->src, e->src, pred, taken, visited, in_loop);
2887 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
2888 son;
2889 son = next_dom_son (CDI_POST_DOMINATORS, son))
2890 predict_paths_for_bb (son, bb, pred, taken, visited, in_loop);
2893 /* Sets branch probabilities according to PREDiction and
2894 FLAGS. */
2896 static void
2897 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
2898 enum prediction taken, struct loop *in_loop)
2900 bitmap visited = BITMAP_ALLOC (NULL);
2901 predict_paths_for_bb (bb, bb, pred, taken, visited, in_loop);
2902 BITMAP_FREE (visited);
2905 /* Like predict_paths_leading_to but take edge instead of basic block. */
2907 static void
2908 predict_paths_leading_to_edge (edge e, enum br_predictor pred,
2909 enum prediction taken, struct loop *in_loop)
2911 bool has_nonloop_edge = false;
2912 edge_iterator ei;
2913 edge e2;
2915 basic_block bb = e->src;
2916 FOR_EACH_EDGE (e2, ei, bb->succs)
2917 if (e2->dest != e->src && e2->dest != e->dest
2918 && !(e->flags & (EDGE_EH | EDGE_FAKE))
2919 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e2->dest))
2921 has_nonloop_edge = true;
2922 break;
2924 if (!has_nonloop_edge)
2926 bitmap visited = BITMAP_ALLOC (NULL);
2927 predict_paths_for_bb (bb, bb, pred, taken, visited, in_loop);
2928 BITMAP_FREE (visited);
2930 else
2931 predict_edge_def (e, pred, taken);
2934 /* This is used to carry information about basic blocks. It is
2935 attached to the AUX field of the standard CFG block. */
2937 struct block_info
2939 /* Estimated frequency of execution of basic_block. */
2940 sreal frequency;
2942 /* To keep queue of basic blocks to process. */
2943 basic_block next;
2945 /* Number of predecessors we need to visit first. */
2946 int npredecessors;
2949 /* Similar information for edges. */
2950 struct edge_prob_info
2952 /* In case edge is a loopback edge, the probability edge will be reached
2953 in case header is. Estimated number of iterations of the loop can be
2954 then computed as 1 / (1 - back_edge_prob). */
2955 sreal back_edge_prob;
2956 /* True if the edge is a loopback edge in the natural loop. */
2957 unsigned int back_edge:1;
2960 #define BLOCK_INFO(B) ((block_info *) (B)->aux)
2961 #undef EDGE_INFO
2962 #define EDGE_INFO(E) ((edge_prob_info *) (E)->aux)
2964 /* Helper function for estimate_bb_frequencies.
2965 Propagate the frequencies in blocks marked in
2966 TOVISIT, starting in HEAD. */
2968 static void
2969 propagate_freq (basic_block head, bitmap tovisit)
2971 basic_block bb;
2972 basic_block last;
2973 unsigned i;
2974 edge e;
2975 basic_block nextbb;
2976 bitmap_iterator bi;
2978 /* For each basic block we need to visit count number of his predecessors
2979 we need to visit first. */
2980 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
2982 edge_iterator ei;
2983 int count = 0;
2985 bb = BASIC_BLOCK_FOR_FN (cfun, i);
2987 FOR_EACH_EDGE (e, ei, bb->preds)
2989 bool visit = bitmap_bit_p (tovisit, e->src->index);
2991 if (visit && !(e->flags & EDGE_DFS_BACK))
2992 count++;
2993 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
2994 fprintf (dump_file,
2995 "Irreducible region hit, ignoring edge to %i->%i\n",
2996 e->src->index, bb->index);
2998 BLOCK_INFO (bb)->npredecessors = count;
2999 /* When function never returns, we will never process exit block. */
3000 if (!count && bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
3001 bb->count = bb->frequency = 0;
3004 BLOCK_INFO (head)->frequency = 1;
3005 last = head;
3006 for (bb = head; bb; bb = nextbb)
3008 edge_iterator ei;
3009 sreal cyclic_probability = 0;
3010 sreal frequency = 0;
3012 nextbb = BLOCK_INFO (bb)->next;
3013 BLOCK_INFO (bb)->next = NULL;
3015 /* Compute frequency of basic block. */
3016 if (bb != head)
3018 if (flag_checking)
3019 FOR_EACH_EDGE (e, ei, bb->preds)
3020 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
3021 || (e->flags & EDGE_DFS_BACK));
3023 FOR_EACH_EDGE (e, ei, bb->preds)
3024 if (EDGE_INFO (e)->back_edge)
3026 cyclic_probability += EDGE_INFO (e)->back_edge_prob;
3028 else if (!(e->flags & EDGE_DFS_BACK))
3030 /* frequency += (e->probability
3031 * BLOCK_INFO (e->src)->frequency /
3032 REG_BR_PROB_BASE); */
3034 sreal tmp = e->probability;
3035 tmp *= BLOCK_INFO (e->src)->frequency;
3036 tmp *= real_inv_br_prob_base;
3037 frequency += tmp;
3040 if (cyclic_probability == 0)
3042 BLOCK_INFO (bb)->frequency = frequency;
3044 else
3046 if (cyclic_probability > real_almost_one)
3047 cyclic_probability = real_almost_one;
3049 /* BLOCK_INFO (bb)->frequency = frequency
3050 / (1 - cyclic_probability) */
3052 cyclic_probability = sreal (1) - cyclic_probability;
3053 BLOCK_INFO (bb)->frequency = frequency / cyclic_probability;
3057 bitmap_clear_bit (tovisit, bb->index);
3059 e = find_edge (bb, head);
3060 if (e)
3062 /* EDGE_INFO (e)->back_edge_prob
3063 = ((e->probability * BLOCK_INFO (bb)->frequency)
3064 / REG_BR_PROB_BASE); */
3066 sreal tmp = e->probability;
3067 tmp *= BLOCK_INFO (bb)->frequency;
3068 EDGE_INFO (e)->back_edge_prob = tmp * real_inv_br_prob_base;
3071 /* Propagate to successor blocks. */
3072 FOR_EACH_EDGE (e, ei, bb->succs)
3073 if (!(e->flags & EDGE_DFS_BACK)
3074 && BLOCK_INFO (e->dest)->npredecessors)
3076 BLOCK_INFO (e->dest)->npredecessors--;
3077 if (!BLOCK_INFO (e->dest)->npredecessors)
3079 if (!nextbb)
3080 nextbb = e->dest;
3081 else
3082 BLOCK_INFO (last)->next = e->dest;
3084 last = e->dest;
3090 /* Estimate frequencies in loops at same nest level. */
3092 static void
3093 estimate_loops_at_level (struct loop *first_loop)
3095 struct loop *loop;
3097 for (loop = first_loop; loop; loop = loop->next)
3099 edge e;
3100 basic_block *bbs;
3101 unsigned i;
3102 bitmap tovisit = BITMAP_ALLOC (NULL);
3104 estimate_loops_at_level (loop->inner);
3106 /* Find current loop back edge and mark it. */
3107 e = loop_latch_edge (loop);
3108 EDGE_INFO (e)->back_edge = 1;
3110 bbs = get_loop_body (loop);
3111 for (i = 0; i < loop->num_nodes; i++)
3112 bitmap_set_bit (tovisit, bbs[i]->index);
3113 free (bbs);
3114 propagate_freq (loop->header, tovisit);
3115 BITMAP_FREE (tovisit);
3119 /* Propagates frequencies through structure of loops. */
3121 static void
3122 estimate_loops (void)
3124 bitmap tovisit = BITMAP_ALLOC (NULL);
3125 basic_block bb;
3127 /* Start by estimating the frequencies in the loops. */
3128 if (number_of_loops (cfun) > 1)
3129 estimate_loops_at_level (current_loops->tree_root->inner);
3131 /* Now propagate the frequencies through all the blocks. */
3132 FOR_ALL_BB_FN (bb, cfun)
3134 bitmap_set_bit (tovisit, bb->index);
3136 propagate_freq (ENTRY_BLOCK_PTR_FOR_FN (cfun), tovisit);
3137 BITMAP_FREE (tovisit);
3140 /* Drop the profile for NODE to guessed, and update its frequency based on
3141 whether it is expected to be hot given the CALL_COUNT. */
3143 static void
3144 drop_profile (struct cgraph_node *node, gcov_type call_count)
3146 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3147 /* In the case where this was called by another function with a
3148 dropped profile, call_count will be 0. Since there are no
3149 non-zero call counts to this function, we don't know for sure
3150 whether it is hot, and therefore it will be marked normal below. */
3151 bool hot = maybe_hot_count_p (NULL, call_count);
3153 if (dump_file)
3154 fprintf (dump_file,
3155 "Dropping 0 profile for %s/%i. %s based on calls.\n",
3156 node->name (), node->order,
3157 hot ? "Function is hot" : "Function is normal");
3158 /* We only expect to miss profiles for functions that are reached
3159 via non-zero call edges in cases where the function may have
3160 been linked from another module or library (COMDATs and extern
3161 templates). See the comments below for handle_missing_profiles.
3162 Also, only warn in cases where the missing counts exceed the
3163 number of training runs. In certain cases with an execv followed
3164 by a no-return call the profile for the no-return call is not
3165 dumped and there can be a mismatch. */
3166 if (!DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl)
3167 && call_count > profile_info->runs)
3169 if (flag_profile_correction)
3171 if (dump_file)
3172 fprintf (dump_file,
3173 "Missing counts for called function %s/%i\n",
3174 node->name (), node->order);
3176 else
3177 warning (0, "Missing counts for called function %s/%i",
3178 node->name (), node->order);
3181 profile_status_for_fn (fn)
3182 = (flag_guess_branch_prob ? PROFILE_GUESSED : PROFILE_ABSENT);
3183 node->frequency
3184 = hot ? NODE_FREQUENCY_HOT : NODE_FREQUENCY_NORMAL;
3187 /* In the case of COMDAT routines, multiple object files will contain the same
3188 function and the linker will select one for the binary. In that case
3189 all the other copies from the profile instrument binary will be missing
3190 profile counts. Look for cases where this happened, due to non-zero
3191 call counts going to 0-count functions, and drop the profile to guessed
3192 so that we can use the estimated probabilities and avoid optimizing only
3193 for size.
3195 The other case where the profile may be missing is when the routine
3196 is not going to be emitted to the object file, e.g. for "extern template"
3197 class methods. Those will be marked DECL_EXTERNAL. Emit a warning in
3198 all other cases of non-zero calls to 0-count functions. */
3200 void
3201 handle_missing_profiles (void)
3203 struct cgraph_node *node;
3204 int unlikely_count_fraction = PARAM_VALUE (UNLIKELY_BB_COUNT_FRACTION);
3205 auto_vec<struct cgraph_node *, 64> worklist;
3207 /* See if 0 count function has non-0 count callers. In this case we
3208 lost some profile. Drop its function profile to PROFILE_GUESSED. */
3209 FOR_EACH_DEFINED_FUNCTION (node)
3211 struct cgraph_edge *e;
3212 gcov_type call_count = 0;
3213 gcov_type max_tp_first_run = 0;
3214 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
3216 if (node->count)
3217 continue;
3218 for (e = node->callers; e; e = e->next_caller)
3220 call_count += e->count;
3222 if (e->caller->tp_first_run > max_tp_first_run)
3223 max_tp_first_run = e->caller->tp_first_run;
3226 /* If time profile is missing, let assign the maximum that comes from
3227 caller functions. */
3228 if (!node->tp_first_run && max_tp_first_run)
3229 node->tp_first_run = max_tp_first_run + 1;
3231 if (call_count
3232 && fn && fn->cfg
3233 && (call_count * unlikely_count_fraction >= profile_info->runs))
3235 drop_profile (node, call_count);
3236 worklist.safe_push (node);
3240 /* Propagate the profile dropping to other 0-count COMDATs that are
3241 potentially called by COMDATs we already dropped the profile on. */
3242 while (worklist.length () > 0)
3244 struct cgraph_edge *e;
3246 node = worklist.pop ();
3247 for (e = node->callees; e; e = e->next_caller)
3249 struct cgraph_node *callee = e->callee;
3250 struct function *fn = DECL_STRUCT_FUNCTION (callee->decl);
3252 if (callee->count > 0)
3253 continue;
3254 if (DECL_COMDAT (callee->decl) && fn && fn->cfg
3255 && profile_status_for_fn (fn) == PROFILE_READ)
3257 drop_profile (node, 0);
3258 worklist.safe_push (callee);
3264 /* Convert counts measured by profile driven feedback to frequencies.
3265 Return nonzero iff there was any nonzero execution count. */
3268 counts_to_freqs (void)
3270 gcov_type count_max, true_count_max = 0;
3271 basic_block bb;
3273 /* Don't overwrite the estimated frequencies when the profile for
3274 the function is missing. We may drop this function PROFILE_GUESSED
3275 later in drop_profile (). */
3276 if (!flag_auto_profile && !ENTRY_BLOCK_PTR_FOR_FN (cfun)->count)
3277 return 0;
3279 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3280 true_count_max = MAX (bb->count, true_count_max);
3282 count_max = MAX (true_count_max, 1);
3283 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3284 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
3286 return true_count_max;
3289 /* Return true if function is likely to be expensive, so there is no point to
3290 optimize performance of prologue, epilogue or do inlining at the expense
3291 of code size growth. THRESHOLD is the limit of number of instructions
3292 function can execute at average to be still considered not expensive. */
3294 bool
3295 expensive_function_p (int threshold)
3297 unsigned int sum = 0;
3298 basic_block bb;
3299 unsigned int limit;
3301 /* We can not compute accurately for large thresholds due to scaled
3302 frequencies. */
3303 gcc_assert (threshold <= BB_FREQ_MAX);
3305 /* Frequencies are out of range. This either means that function contains
3306 internal loop executing more than BB_FREQ_MAX times or profile feedback
3307 is available and function has not been executed at all. */
3308 if (ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency == 0)
3309 return true;
3311 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
3312 limit = ENTRY_BLOCK_PTR_FOR_FN (cfun)->frequency * threshold;
3313 FOR_EACH_BB_FN (bb, cfun)
3315 rtx_insn *insn;
3317 FOR_BB_INSNS (bb, insn)
3318 if (active_insn_p (insn))
3320 sum += bb->frequency;
3321 if (sum > limit)
3322 return true;
3326 return false;
3329 /* Estimate and propagate basic block frequencies using the given branch
3330 probabilities. If FORCE is true, the frequencies are used to estimate
3331 the counts even when there are already non-zero profile counts. */
3333 void
3334 estimate_bb_frequencies (bool force)
3336 basic_block bb;
3337 sreal freq_max;
3339 if (force || profile_status_for_fn (cfun) != PROFILE_READ || !counts_to_freqs ())
3341 static int real_values_initialized = 0;
3343 if (!real_values_initialized)
3345 real_values_initialized = 1;
3346 real_br_prob_base = REG_BR_PROB_BASE;
3347 real_bb_freq_max = BB_FREQ_MAX;
3348 real_one_half = sreal (1, -1);
3349 real_inv_br_prob_base = sreal (1) / real_br_prob_base;
3350 real_almost_one = sreal (1) - real_inv_br_prob_base;
3353 mark_dfs_back_edges ();
3355 single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun))->probability =
3356 REG_BR_PROB_BASE;
3358 /* Set up block info for each basic block. */
3359 alloc_aux_for_blocks (sizeof (block_info));
3360 alloc_aux_for_edges (sizeof (edge_prob_info));
3361 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3363 edge e;
3364 edge_iterator ei;
3366 FOR_EACH_EDGE (e, ei, bb->succs)
3368 EDGE_INFO (e)->back_edge_prob = e->probability;
3369 EDGE_INFO (e)->back_edge_prob *= real_inv_br_prob_base;
3373 /* First compute frequencies locally for each loop from innermost
3374 to outermost to examine frequencies for back edges. */
3375 estimate_loops ();
3377 freq_max = 0;
3378 FOR_EACH_BB_FN (bb, cfun)
3379 if (freq_max < BLOCK_INFO (bb)->frequency)
3380 freq_max = BLOCK_INFO (bb)->frequency;
3382 freq_max = real_bb_freq_max / freq_max;
3383 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3385 sreal tmp = BLOCK_INFO (bb)->frequency * freq_max + real_one_half;
3386 bb->frequency = tmp.to_int ();
3389 free_aux_for_blocks ();
3390 free_aux_for_edges ();
3392 compute_function_frequency ();
3395 /* Decide whether function is hot, cold or unlikely executed. */
3396 void
3397 compute_function_frequency (void)
3399 basic_block bb;
3400 struct cgraph_node *node = cgraph_node::get (current_function_decl);
3402 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3403 || MAIN_NAME_P (DECL_NAME (current_function_decl)))
3404 node->only_called_at_startup = true;
3405 if (DECL_STATIC_DESTRUCTOR (current_function_decl))
3406 node->only_called_at_exit = true;
3408 if (profile_status_for_fn (cfun) != PROFILE_READ)
3410 int flags = flags_from_decl_or_type (current_function_decl);
3411 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
3412 != NULL)
3413 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3414 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
3415 != NULL)
3416 node->frequency = NODE_FREQUENCY_HOT;
3417 else if (flags & ECF_NORETURN)
3418 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3419 else if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
3420 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3421 else if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
3422 || DECL_STATIC_DESTRUCTOR (current_function_decl))
3423 node->frequency = NODE_FREQUENCY_EXECUTED_ONCE;
3424 return;
3427 /* Only first time try to drop function into unlikely executed.
3428 After inlining the roundoff errors may confuse us.
3429 Ipa-profile pass will drop functions only called from unlikely
3430 functions to unlikely and that is most of what we care about. */
3431 if (!cfun->after_inlining)
3432 node->frequency = NODE_FREQUENCY_UNLIKELY_EXECUTED;
3433 FOR_EACH_BB_FN (bb, cfun)
3435 if (maybe_hot_bb_p (cfun, bb))
3437 node->frequency = NODE_FREQUENCY_HOT;
3438 return;
3440 if (!probably_never_executed_bb_p (cfun, bb))
3441 node->frequency = NODE_FREQUENCY_NORMAL;
3445 /* Build PREDICT_EXPR. */
3446 tree
3447 build_predict_expr (enum br_predictor predictor, enum prediction taken)
3449 tree t = build1 (PREDICT_EXPR, void_type_node,
3450 build_int_cst (integer_type_node, predictor));
3451 SET_PREDICT_EXPR_OUTCOME (t, taken);
3452 return t;
3455 const char *
3456 predictor_name (enum br_predictor predictor)
3458 return predictor_info[predictor].name;
3461 /* Predict branch probabilities and estimate profile of the tree CFG. */
3463 namespace {
3465 const pass_data pass_data_profile =
3467 GIMPLE_PASS, /* type */
3468 "profile_estimate", /* name */
3469 OPTGROUP_NONE, /* optinfo_flags */
3470 TV_BRANCH_PROB, /* tv_id */
3471 PROP_cfg, /* properties_required */
3472 0, /* properties_provided */
3473 0, /* properties_destroyed */
3474 0, /* todo_flags_start */
3475 0, /* todo_flags_finish */
3478 class pass_profile : public gimple_opt_pass
3480 public:
3481 pass_profile (gcc::context *ctxt)
3482 : gimple_opt_pass (pass_data_profile, ctxt)
3485 /* opt_pass methods: */
3486 virtual bool gate (function *) { return flag_guess_branch_prob; }
3487 virtual unsigned int execute (function *);
3489 }; // class pass_profile
3491 unsigned int
3492 pass_profile::execute (function *fun)
3494 unsigned nb_loops;
3496 if (profile_status_for_fn (cfun) == PROFILE_GUESSED)
3497 return 0;
3499 loop_optimizer_init (LOOPS_NORMAL);
3500 if (dump_file && (dump_flags & TDF_DETAILS))
3501 flow_loops_dump (dump_file, NULL, 0);
3503 mark_irreducible_loops ();
3505 nb_loops = number_of_loops (fun);
3506 if (nb_loops > 1)
3507 scev_initialize ();
3509 tree_estimate_probability (false);
3511 if (nb_loops > 1)
3512 scev_finalize ();
3514 loop_optimizer_finalize ();
3515 if (dump_file && (dump_flags & TDF_DETAILS))
3516 gimple_dump_cfg (dump_file, dump_flags);
3517 if (profile_status_for_fn (fun) == PROFILE_ABSENT)
3518 profile_status_for_fn (fun) = PROFILE_GUESSED;
3519 if (dump_file && (dump_flags & TDF_DETAILS))
3521 struct loop *loop;
3522 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
3523 if (loop->header->frequency)
3524 fprintf (dump_file, "Loop got predicted %d to iterate %i times.\n",
3525 loop->num,
3526 (int)expected_loop_iterations_unbounded (loop));
3528 return 0;
3531 } // anon namespace
3533 gimple_opt_pass *
3534 make_pass_profile (gcc::context *ctxt)
3536 return new pass_profile (ctxt);
3539 namespace {
3541 const pass_data pass_data_strip_predict_hints =
3543 GIMPLE_PASS, /* type */
3544 "*strip_predict_hints", /* name */
3545 OPTGROUP_NONE, /* optinfo_flags */
3546 TV_BRANCH_PROB, /* tv_id */
3547 PROP_cfg, /* properties_required */
3548 0, /* properties_provided */
3549 0, /* properties_destroyed */
3550 0, /* todo_flags_start */
3551 0, /* todo_flags_finish */
3554 class pass_strip_predict_hints : public gimple_opt_pass
3556 public:
3557 pass_strip_predict_hints (gcc::context *ctxt)
3558 : gimple_opt_pass (pass_data_strip_predict_hints, ctxt)
3561 /* opt_pass methods: */
3562 opt_pass * clone () { return new pass_strip_predict_hints (m_ctxt); }
3563 virtual unsigned int execute (function *);
3565 }; // class pass_strip_predict_hints
3567 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
3568 we no longer need. */
3569 unsigned int
3570 pass_strip_predict_hints::execute (function *fun)
3572 basic_block bb;
3573 gimple *ass_stmt;
3574 tree var;
3575 bool changed = false;
3577 FOR_EACH_BB_FN (bb, fun)
3579 gimple_stmt_iterator bi;
3580 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
3582 gimple *stmt = gsi_stmt (bi);
3584 if (gimple_code (stmt) == GIMPLE_PREDICT)
3586 gsi_remove (&bi, true);
3587 changed = true;
3588 continue;
3590 else if (is_gimple_call (stmt))
3592 tree fndecl = gimple_call_fndecl (stmt);
3594 if ((fndecl
3595 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
3596 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
3597 && gimple_call_num_args (stmt) == 2)
3598 || (gimple_call_internal_p (stmt)
3599 && gimple_call_internal_fn (stmt) == IFN_BUILTIN_EXPECT))
3601 var = gimple_call_lhs (stmt);
3602 changed = true;
3603 if (var)
3605 ass_stmt
3606 = gimple_build_assign (var, gimple_call_arg (stmt, 0));
3607 gsi_replace (&bi, ass_stmt, true);
3609 else
3611 gsi_remove (&bi, true);
3612 continue;
3616 gsi_next (&bi);
3619 return changed ? TODO_cleanup_cfg : 0;
3622 } // anon namespace
3624 gimple_opt_pass *
3625 make_pass_strip_predict_hints (gcc::context *ctxt)
3627 return new pass_strip_predict_hints (ctxt);
3630 /* Rebuild function frequencies. Passes are in general expected to
3631 maintain profile by hand, however in some cases this is not possible:
3632 for example when inlining several functions with loops freuqencies might run
3633 out of scale and thus needs to be recomputed. */
3635 void
3636 rebuild_frequencies (void)
3638 timevar_push (TV_REBUILD_FREQUENCIES);
3640 /* When the max bb count in the function is small, there is a higher
3641 chance that there were truncation errors in the integer scaling
3642 of counts by inlining and other optimizations. This could lead
3643 to incorrect classification of code as being cold when it isn't.
3644 In that case, force the estimation of bb counts/frequencies from the
3645 branch probabilities, rather than computing frequencies from counts,
3646 which may also lead to frequencies incorrectly reduced to 0. There
3647 is less precision in the probabilities, so we only do this for small
3648 max counts. */
3649 gcov_type count_max = 0;
3650 basic_block bb;
3651 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun), NULL, next_bb)
3652 count_max = MAX (bb->count, count_max);
3654 if (profile_status_for_fn (cfun) == PROFILE_GUESSED
3655 || (!flag_auto_profile && profile_status_for_fn (cfun) == PROFILE_READ
3656 && count_max < REG_BR_PROB_BASE/10))
3658 loop_optimizer_init (0);
3659 add_noreturn_fake_exit_edges ();
3660 mark_irreducible_loops ();
3661 connect_infinite_loops_to_exit ();
3662 estimate_bb_frequencies (true);
3663 remove_fake_exit_edges ();
3664 loop_optimizer_finalize ();
3666 else if (profile_status_for_fn (cfun) == PROFILE_READ)
3667 counts_to_freqs ();
3668 else
3669 gcc_unreachable ();
3670 timevar_pop (TV_REBUILD_FREQUENCIES);
3673 /* Perform a dry run of the branch prediction pass and report comparsion of
3674 the predicted and real profile into the dump file. */
3676 void
3677 report_predictor_hitrates (void)
3679 unsigned nb_loops;
3681 loop_optimizer_init (LOOPS_NORMAL);
3682 if (dump_file && (dump_flags & TDF_DETAILS))
3683 flow_loops_dump (dump_file, NULL, 0);
3685 mark_irreducible_loops ();
3687 nb_loops = number_of_loops (cfun);
3688 if (nb_loops > 1)
3689 scev_initialize ();
3691 tree_estimate_probability (true);
3693 if (nb_loops > 1)
3694 scev_finalize ();
3696 loop_optimizer_finalize ();
3699 /* Force edge E to be cold.
3700 If IMPOSSIBLE is true, for edge to have count and probability 0 otherwise
3701 keep low probability to represent possible error in a guess. This is used
3702 i.e. in case we predict loop to likely iterate given number of times but
3703 we are not 100% sure.
3705 This function locally updates profile without attempt to keep global
3706 consistency which can not be reached in full generality without full profile
3707 rebuild from probabilities alone. Doing so is not necessarily a good idea
3708 because frequencies and counts may be more realistic then probabilities.
3710 In some cases (such as for elimination of early exits during full loop
3711 unrolling) the caller can ensure that profile will get consistent
3712 afterwards. */
3714 void
3715 force_edge_cold (edge e, bool impossible)
3717 gcov_type count_sum = 0;
3718 int prob_sum = 0;
3719 edge_iterator ei;
3720 edge e2;
3721 gcov_type old_count = e->count;
3722 int old_probability = e->probability;
3723 gcov_type gcov_scale = REG_BR_PROB_BASE;
3724 int prob_scale = REG_BR_PROB_BASE;
3726 /* If edge is already improbably or cold, just return. */
3727 if (e->probability <= impossible ? PROB_VERY_UNLIKELY : 0
3728 && (!impossible || !e->count))
3729 return;
3730 FOR_EACH_EDGE (e2, ei, e->src->succs)
3731 if (e2 != e)
3733 count_sum += e2->count;
3734 prob_sum += e2->probability;
3737 /* If there are other edges out of e->src, redistribute probabilitity
3738 there. */
3739 if (prob_sum)
3741 e->probability
3742 = MIN (e->probability, impossible ? 0 : PROB_VERY_UNLIKELY);
3743 if (old_probability)
3744 e->count = RDIV (e->count * e->probability, old_probability);
3745 else
3746 e->count = MIN (e->count, impossible ? 0 : 1);
3748 if (count_sum)
3749 gcov_scale = RDIV ((count_sum + old_count - e->count) * REG_BR_PROB_BASE,
3750 count_sum);
3751 prob_scale = RDIV ((REG_BR_PROB_BASE - e->probability) * REG_BR_PROB_BASE,
3752 prob_sum);
3753 if (dump_file && (dump_flags & TDF_DETAILS))
3754 fprintf (dump_file, "Making edge %i->%i %s by redistributing "
3755 "probability to other edges.\n",
3756 e->src->index, e->dest->index,
3757 impossible ? "impossible" : "cold");
3758 FOR_EACH_EDGE (e2, ei, e->src->succs)
3759 if (e2 != e)
3761 e2->count = RDIV (e2->count * gcov_scale, REG_BR_PROB_BASE);
3762 e2->probability = RDIV (e2->probability * prob_scale,
3763 REG_BR_PROB_BASE);
3766 /* If all edges out of e->src are unlikely, the basic block itself
3767 is unlikely. */
3768 else
3770 e->probability = REG_BR_PROB_BASE;
3772 /* If we did not adjusting, the source basic block has no likely edeges
3773 leaving other direction. In that case force that bb cold, too.
3774 This in general is difficult task to do, but handle special case when
3775 BB has only one predecestor. This is common case when we are updating
3776 after loop transforms. */
3777 if (!prob_sum && !count_sum && single_pred_p (e->src)
3778 && e->src->frequency > (impossible ? 0 : 1))
3780 int old_frequency = e->src->frequency;
3781 if (dump_file && (dump_flags & TDF_DETAILS))
3782 fprintf (dump_file, "Making bb %i %s.\n", e->src->index,
3783 impossible ? "impossible" : "cold");
3784 e->src->frequency = MIN (e->src->frequency, impossible ? 0 : 1);
3785 e->src->count = e->count = RDIV (e->src->count * e->src->frequency,
3786 old_frequency);
3787 force_edge_cold (single_pred_edge (e->src), impossible);
3789 else if (dump_file && (dump_flags & TDF_DETAILS)
3790 && maybe_hot_bb_p (cfun, e->src))
3791 fprintf (dump_file, "Giving up on making bb %i %s.\n", e->src->index,
3792 impossible ? "impossible" : "cold");