* de.po: Update.
[official-gcc.git] / gcc / stor-layout.c
blobd0beebf06868545442f2b6431ae034a04252db8c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
4 This file is part of GCC.
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "target.h"
25 #include "function.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "stringpool.h"
31 #include "regs.h"
32 #include "emit-rtl.h"
33 #include "cgraph.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "varasm.h"
38 #include "print-tree.h"
39 #include "langhooks.h"
40 #include "tree-inline.h"
41 #include "tree-dump.h"
42 #include "gimplify.h"
43 #include "debug.h"
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
53 static tree self_referential_size (tree);
54 static void finalize_record_size (record_layout_info);
55 static void finalize_type_size (tree);
56 static void place_union_field (record_layout_info, tree);
57 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
58 HOST_WIDE_INT, tree);
59 extern void debug_rli (record_layout_info);
61 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
62 to serve as the actual size-expression for a type or decl. */
64 tree
65 variable_size (tree size)
67 /* Obviously. */
68 if (TREE_CONSTANT (size))
69 return size;
71 /* If the size is self-referential, we can't make a SAVE_EXPR (see
72 save_expr for the rationale). But we can do something else. */
73 if (CONTAINS_PLACEHOLDER_P (size))
74 return self_referential_size (size);
76 /* If we are in the global binding level, we can't make a SAVE_EXPR
77 since it may end up being shared across functions, so it is up
78 to the front-end to deal with this case. */
79 if (lang_hooks.decls.global_bindings_p ())
80 return size;
82 return save_expr (size);
85 /* An array of functions used for self-referential size computation. */
86 static GTY(()) vec<tree, va_gc> *size_functions;
88 /* Return true if T is a self-referential component reference. */
90 static bool
91 self_referential_component_ref_p (tree t)
93 if (TREE_CODE (t) != COMPONENT_REF)
94 return false;
96 while (REFERENCE_CLASS_P (t))
97 t = TREE_OPERAND (t, 0);
99 return (TREE_CODE (t) == PLACEHOLDER_EXPR);
102 /* Similar to copy_tree_r but do not copy component references involving
103 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
104 and substituted in substitute_in_expr. */
106 static tree
107 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
109 enum tree_code code = TREE_CODE (*tp);
111 /* Stop at types, decls, constants like copy_tree_r. */
112 if (TREE_CODE_CLASS (code) == tcc_type
113 || TREE_CODE_CLASS (code) == tcc_declaration
114 || TREE_CODE_CLASS (code) == tcc_constant)
116 *walk_subtrees = 0;
117 return NULL_TREE;
120 /* This is the pattern built in ada/make_aligning_type. */
121 else if (code == ADDR_EXPR
122 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
124 *walk_subtrees = 0;
125 return NULL_TREE;
128 /* Default case: the component reference. */
129 else if (self_referential_component_ref_p (*tp))
131 *walk_subtrees = 0;
132 return NULL_TREE;
135 /* We're not supposed to have them in self-referential size trees
136 because we wouldn't properly control when they are evaluated.
137 However, not creating superfluous SAVE_EXPRs requires accurate
138 tracking of readonly-ness all the way down to here, which we
139 cannot always guarantee in practice. So punt in this case. */
140 else if (code == SAVE_EXPR)
141 return error_mark_node;
143 else if (code == STATEMENT_LIST)
144 gcc_unreachable ();
146 return copy_tree_r (tp, walk_subtrees, data);
149 /* Given a SIZE expression that is self-referential, return an equivalent
150 expression to serve as the actual size expression for a type. */
152 static tree
153 self_referential_size (tree size)
155 static unsigned HOST_WIDE_INT fnno = 0;
156 vec<tree> self_refs = vNULL;
157 tree param_type_list = NULL, param_decl_list = NULL;
158 tree t, ref, return_type, fntype, fnname, fndecl;
159 unsigned int i;
160 char buf[128];
161 vec<tree, va_gc> *args = NULL;
163 /* Do not factor out simple operations. */
164 t = skip_simple_constant_arithmetic (size);
165 if (TREE_CODE (t) == CALL_EXPR || self_referential_component_ref_p (t))
166 return size;
168 /* Collect the list of self-references in the expression. */
169 find_placeholder_in_expr (size, &self_refs);
170 gcc_assert (self_refs.length () > 0);
172 /* Obtain a private copy of the expression. */
173 t = size;
174 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
175 return size;
176 size = t;
178 /* Build the parameter and argument lists in parallel; also
179 substitute the former for the latter in the expression. */
180 vec_alloc (args, self_refs.length ());
181 FOR_EACH_VEC_ELT (self_refs, i, ref)
183 tree subst, param_name, param_type, param_decl;
185 if (DECL_P (ref))
187 /* We shouldn't have true variables here. */
188 gcc_assert (TREE_READONLY (ref));
189 subst = ref;
191 /* This is the pattern built in ada/make_aligning_type. */
192 else if (TREE_CODE (ref) == ADDR_EXPR)
193 subst = ref;
194 /* Default case: the component reference. */
195 else
196 subst = TREE_OPERAND (ref, 1);
198 sprintf (buf, "p%d", i);
199 param_name = get_identifier (buf);
200 param_type = TREE_TYPE (ref);
201 param_decl
202 = build_decl (input_location, PARM_DECL, param_name, param_type);
203 DECL_ARG_TYPE (param_decl) = param_type;
204 DECL_ARTIFICIAL (param_decl) = 1;
205 TREE_READONLY (param_decl) = 1;
207 size = substitute_in_expr (size, subst, param_decl);
209 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
210 param_decl_list = chainon (param_decl, param_decl_list);
211 args->quick_push (ref);
214 self_refs.release ();
216 /* Append 'void' to indicate that the number of parameters is fixed. */
217 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
219 /* The 3 lists have been created in reverse order. */
220 param_type_list = nreverse (param_type_list);
221 param_decl_list = nreverse (param_decl_list);
223 /* Build the function type. */
224 return_type = TREE_TYPE (size);
225 fntype = build_function_type (return_type, param_type_list);
227 /* Build the function declaration. */
228 sprintf (buf, "SZ" HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
229 fnname = get_file_function_name (buf);
230 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
231 for (t = param_decl_list; t; t = DECL_CHAIN (t))
232 DECL_CONTEXT (t) = fndecl;
233 DECL_ARGUMENTS (fndecl) = param_decl_list;
234 DECL_RESULT (fndecl)
235 = build_decl (input_location, RESULT_DECL, 0, return_type);
236 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
238 /* The function has been created by the compiler and we don't
239 want to emit debug info for it. */
240 DECL_ARTIFICIAL (fndecl) = 1;
241 DECL_IGNORED_P (fndecl) = 1;
243 /* It is supposed to be "const" and never throw. */
244 TREE_READONLY (fndecl) = 1;
245 TREE_NOTHROW (fndecl) = 1;
247 /* We want it to be inlined when this is deemed profitable, as
248 well as discarded if every call has been integrated. */
249 DECL_DECLARED_INLINE_P (fndecl) = 1;
251 /* It is made up of a unique return statement. */
252 DECL_INITIAL (fndecl) = make_node (BLOCK);
253 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
254 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
255 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
256 TREE_STATIC (fndecl) = 1;
258 /* Put it onto the list of size functions. */
259 vec_safe_push (size_functions, fndecl);
261 /* Replace the original expression with a call to the size function. */
262 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
265 /* Take, queue and compile all the size functions. It is essential that
266 the size functions be gimplified at the very end of the compilation
267 in order to guarantee transparent handling of self-referential sizes.
268 Otherwise the GENERIC inliner would not be able to inline them back
269 at each of their call sites, thus creating artificial non-constant
270 size expressions which would trigger nasty problems later on. */
272 void
273 finalize_size_functions (void)
275 unsigned int i;
276 tree fndecl;
278 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
280 allocate_struct_function (fndecl, false);
281 set_cfun (NULL);
282 dump_function (TDI_original, fndecl);
284 /* As these functions are used to describe the layout of variable-length
285 structures, debug info generation needs their implementation. */
286 debug_hooks->size_function (fndecl);
287 gimplify_function_tree (fndecl);
288 cgraph_node::finalize_function (fndecl, false);
291 vec_free (size_functions);
294 /* Return the machine mode to use for a nonscalar of SIZE bits. The
295 mode must be in class MCLASS, and have exactly that many value bits;
296 it may have padding as well. If LIMIT is nonzero, modes of wider
297 than MAX_FIXED_MODE_SIZE will not be used. */
299 machine_mode
300 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
302 machine_mode mode;
303 int i;
305 if (limit && size > MAX_FIXED_MODE_SIZE)
306 return BLKmode;
308 /* Get the first mode which has this size, in the specified class. */
309 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
310 mode = GET_MODE_WIDER_MODE (mode))
311 if (GET_MODE_PRECISION (mode) == size)
312 return mode;
314 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
315 for (i = 0; i < NUM_INT_N_ENTS; i ++)
316 if (int_n_data[i].bitsize == size
317 && int_n_enabled_p[i])
318 return int_n_data[i].m;
320 return BLKmode;
323 /* Similar, except passed a tree node. */
325 machine_mode
326 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
328 unsigned HOST_WIDE_INT uhwi;
329 unsigned int ui;
331 if (!tree_fits_uhwi_p (size))
332 return BLKmode;
333 uhwi = tree_to_uhwi (size);
334 ui = uhwi;
335 if (uhwi != ui)
336 return BLKmode;
337 return mode_for_size (ui, mclass, limit);
340 /* Similar, but never return BLKmode; return the narrowest mode that
341 contains at least the requested number of value bits. */
343 machine_mode
344 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
346 machine_mode mode = VOIDmode;
347 int i;
349 /* Get the first mode which has at least this size, in the
350 specified class. */
351 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
352 mode = GET_MODE_WIDER_MODE (mode))
353 if (GET_MODE_PRECISION (mode) >= size)
354 break;
356 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
357 for (i = 0; i < NUM_INT_N_ENTS; i ++)
358 if (int_n_data[i].bitsize >= size
359 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
360 && int_n_enabled_p[i])
361 mode = int_n_data[i].m;
363 if (mode == VOIDmode)
364 gcc_unreachable ();
366 return mode;
369 /* Find an integer mode of the exact same size, or BLKmode on failure. */
371 machine_mode
372 int_mode_for_mode (machine_mode mode)
374 switch (GET_MODE_CLASS (mode))
376 case MODE_INT:
377 case MODE_PARTIAL_INT:
378 break;
380 case MODE_COMPLEX_INT:
381 case MODE_COMPLEX_FLOAT:
382 case MODE_FLOAT:
383 case MODE_DECIMAL_FLOAT:
384 case MODE_VECTOR_INT:
385 case MODE_VECTOR_FLOAT:
386 case MODE_FRACT:
387 case MODE_ACCUM:
388 case MODE_UFRACT:
389 case MODE_UACCUM:
390 case MODE_VECTOR_FRACT:
391 case MODE_VECTOR_ACCUM:
392 case MODE_VECTOR_UFRACT:
393 case MODE_VECTOR_UACCUM:
394 case MODE_POINTER_BOUNDS:
395 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
396 break;
398 case MODE_RANDOM:
399 if (mode == BLKmode)
400 break;
402 /* fall through */
404 case MODE_CC:
405 default:
406 gcc_unreachable ();
409 return mode;
412 /* Find a mode that can be used for efficient bitwise operations on MODE.
413 Return BLKmode if no such mode exists. */
415 machine_mode
416 bitwise_mode_for_mode (machine_mode mode)
418 /* Quick exit if we already have a suitable mode. */
419 unsigned int bitsize = GET_MODE_BITSIZE (mode);
420 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
421 return mode;
423 /* Reuse the sanity checks from int_mode_for_mode. */
424 gcc_checking_assert ((int_mode_for_mode (mode), true));
426 /* Try to replace complex modes with complex modes. In general we
427 expect both components to be processed independently, so we only
428 care whether there is a register for the inner mode. */
429 if (COMPLEX_MODE_P (mode))
431 machine_mode trial = mode;
432 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
433 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
434 if (trial != BLKmode
435 && have_regs_of_mode[GET_MODE_INNER (trial)])
436 return trial;
439 /* Try to replace vector modes with vector modes. Also try using vector
440 modes if an integer mode would be too big. */
441 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
443 machine_mode trial = mode;
444 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
445 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
446 if (trial != BLKmode
447 && have_regs_of_mode[trial]
448 && targetm.vector_mode_supported_p (trial))
449 return trial;
452 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
453 return mode_for_size (bitsize, MODE_INT, true);
456 /* Find a type that can be used for efficient bitwise operations on MODE.
457 Return null if no such mode exists. */
459 tree
460 bitwise_type_for_mode (machine_mode mode)
462 mode = bitwise_mode_for_mode (mode);
463 if (mode == BLKmode)
464 return NULL_TREE;
466 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
467 tree inner_type = build_nonstandard_integer_type (inner_size, true);
469 if (VECTOR_MODE_P (mode))
470 return build_vector_type_for_mode (inner_type, mode);
472 if (COMPLEX_MODE_P (mode))
473 return build_complex_type (inner_type);
475 gcc_checking_assert (GET_MODE_INNER (mode) == mode);
476 return inner_type;
479 /* Find a mode that is suitable for representing a vector with
480 NUNITS elements of mode INNERMODE. Returns BLKmode if there
481 is no suitable mode. */
483 machine_mode
484 mode_for_vector (machine_mode innermode, unsigned nunits)
486 machine_mode mode;
488 /* First, look for a supported vector type. */
489 if (SCALAR_FLOAT_MODE_P (innermode))
490 mode = MIN_MODE_VECTOR_FLOAT;
491 else if (SCALAR_FRACT_MODE_P (innermode))
492 mode = MIN_MODE_VECTOR_FRACT;
493 else if (SCALAR_UFRACT_MODE_P (innermode))
494 mode = MIN_MODE_VECTOR_UFRACT;
495 else if (SCALAR_ACCUM_MODE_P (innermode))
496 mode = MIN_MODE_VECTOR_ACCUM;
497 else if (SCALAR_UACCUM_MODE_P (innermode))
498 mode = MIN_MODE_VECTOR_UACCUM;
499 else
500 mode = MIN_MODE_VECTOR_INT;
502 /* Do not check vector_mode_supported_p here. We'll do that
503 later in vector_type_mode. */
504 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
505 if (GET_MODE_NUNITS (mode) == nunits
506 && GET_MODE_INNER (mode) == innermode)
507 break;
509 /* For integers, try mapping it to a same-sized scalar mode. */
510 if (mode == VOIDmode
511 && GET_MODE_CLASS (innermode) == MODE_INT)
512 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
513 MODE_INT, 0);
515 if (mode == VOIDmode
516 || (GET_MODE_CLASS (mode) == MODE_INT
517 && !have_regs_of_mode[mode]))
518 return BLKmode;
520 return mode;
523 /* Return the alignment of MODE. This will be bounded by 1 and
524 BIGGEST_ALIGNMENT. */
526 unsigned int
527 get_mode_alignment (machine_mode mode)
529 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
532 /* Return the natural mode of an array, given that it is SIZE bytes in
533 total and has elements of type ELEM_TYPE. */
535 static machine_mode
536 mode_for_array (tree elem_type, tree size)
538 tree elem_size;
539 unsigned HOST_WIDE_INT int_size, int_elem_size;
540 bool limit_p;
542 /* One-element arrays get the component type's mode. */
543 elem_size = TYPE_SIZE (elem_type);
544 if (simple_cst_equal (size, elem_size))
545 return TYPE_MODE (elem_type);
547 limit_p = true;
548 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
550 int_size = tree_to_uhwi (size);
551 int_elem_size = tree_to_uhwi (elem_size);
552 if (int_elem_size > 0
553 && int_size % int_elem_size == 0
554 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
555 int_size / int_elem_size))
556 limit_p = false;
558 return mode_for_size_tree (size, MODE_INT, limit_p);
561 /* Subroutine of layout_decl: Force alignment required for the data type.
562 But if the decl itself wants greater alignment, don't override that. */
564 static inline void
565 do_type_align (tree type, tree decl)
567 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
569 SET_DECL_ALIGN (decl, TYPE_ALIGN (type));
570 if (TREE_CODE (decl) == FIELD_DECL)
571 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
575 /* Set the size, mode and alignment of a ..._DECL node.
576 TYPE_DECL does need this for C++.
577 Note that LABEL_DECL and CONST_DECL nodes do not need this,
578 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
579 Don't call layout_decl for them.
581 KNOWN_ALIGN is the amount of alignment we can assume this
582 decl has with no special effort. It is relevant only for FIELD_DECLs
583 and depends on the previous fields.
584 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
585 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
586 the record will be aligned to suit. */
588 void
589 layout_decl (tree decl, unsigned int known_align)
591 tree type = TREE_TYPE (decl);
592 enum tree_code code = TREE_CODE (decl);
593 rtx rtl = NULL_RTX;
594 location_t loc = DECL_SOURCE_LOCATION (decl);
596 if (code == CONST_DECL)
597 return;
599 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
600 || code == TYPE_DECL || code == FIELD_DECL);
602 rtl = DECL_RTL_IF_SET (decl);
604 if (type == error_mark_node)
605 type = void_type_node;
607 /* Usually the size and mode come from the data type without change,
608 however, the front-end may set the explicit width of the field, so its
609 size may not be the same as the size of its type. This happens with
610 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
611 also happens with other fields. For example, the C++ front-end creates
612 zero-sized fields corresponding to empty base classes, and depends on
613 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
614 size in bytes from the size in bits. If we have already set the mode,
615 don't set it again since we can be called twice for FIELD_DECLs. */
617 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
618 if (DECL_MODE (decl) == VOIDmode)
619 SET_DECL_MODE (decl, TYPE_MODE (type));
621 if (DECL_SIZE (decl) == 0)
623 DECL_SIZE (decl) = TYPE_SIZE (type);
624 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
626 else if (DECL_SIZE_UNIT (decl) == 0)
627 DECL_SIZE_UNIT (decl)
628 = fold_convert_loc (loc, sizetype,
629 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
630 bitsize_unit_node));
632 if (code != FIELD_DECL)
633 /* For non-fields, update the alignment from the type. */
634 do_type_align (type, decl);
635 else
636 /* For fields, it's a bit more complicated... */
638 bool old_user_align = DECL_USER_ALIGN (decl);
639 bool zero_bitfield = false;
640 bool packed_p = DECL_PACKED (decl);
641 unsigned int mfa;
643 if (DECL_BIT_FIELD (decl))
645 DECL_BIT_FIELD_TYPE (decl) = type;
647 /* A zero-length bit-field affects the alignment of the next
648 field. In essence such bit-fields are not influenced by
649 any packing due to #pragma pack or attribute packed. */
650 if (integer_zerop (DECL_SIZE (decl))
651 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
653 zero_bitfield = true;
654 packed_p = false;
655 if (PCC_BITFIELD_TYPE_MATTERS)
656 do_type_align (type, decl);
657 else
659 #ifdef EMPTY_FIELD_BOUNDARY
660 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
662 SET_DECL_ALIGN (decl, EMPTY_FIELD_BOUNDARY);
663 DECL_USER_ALIGN (decl) = 0;
665 #endif
669 /* See if we can use an ordinary integer mode for a bit-field.
670 Conditions are: a fixed size that is correct for another mode,
671 occupying a complete byte or bytes on proper boundary. */
672 if (TYPE_SIZE (type) != 0
673 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
674 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
676 machine_mode xmode
677 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
678 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
680 if (xmode != BLKmode
681 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
682 && (known_align == 0 || known_align >= xalign))
684 SET_DECL_ALIGN (decl, MAX (xalign, DECL_ALIGN (decl)));
685 SET_DECL_MODE (decl, xmode);
686 DECL_BIT_FIELD (decl) = 0;
690 /* Turn off DECL_BIT_FIELD if we won't need it set. */
691 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
692 && known_align >= TYPE_ALIGN (type)
693 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
694 DECL_BIT_FIELD (decl) = 0;
696 else if (packed_p && DECL_USER_ALIGN (decl))
697 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
698 round up; we'll reduce it again below. We want packing to
699 supersede USER_ALIGN inherited from the type, but defer to
700 alignment explicitly specified on the field decl. */;
701 else
702 do_type_align (type, decl);
704 /* If the field is packed and not explicitly aligned, give it the
705 minimum alignment. Note that do_type_align may set
706 DECL_USER_ALIGN, so we need to check old_user_align instead. */
707 if (packed_p
708 && !old_user_align)
709 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), BITS_PER_UNIT));
711 if (! packed_p && ! DECL_USER_ALIGN (decl))
713 /* Some targets (i.e. i386, VMS) limit struct field alignment
714 to a lower boundary than alignment of variables unless
715 it was overridden by attribute aligned. */
716 #ifdef BIGGEST_FIELD_ALIGNMENT
717 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl),
718 (unsigned) BIGGEST_FIELD_ALIGNMENT));
719 #endif
720 #ifdef ADJUST_FIELD_ALIGN
721 SET_DECL_ALIGN (decl, ADJUST_FIELD_ALIGN (decl, TREE_TYPE (decl),
722 DECL_ALIGN (decl)));
723 #endif
726 if (zero_bitfield)
727 mfa = initial_max_fld_align * BITS_PER_UNIT;
728 else
729 mfa = maximum_field_alignment;
730 /* Should this be controlled by DECL_USER_ALIGN, too? */
731 if (mfa != 0)
732 SET_DECL_ALIGN (decl, MIN (DECL_ALIGN (decl), mfa));
735 /* Evaluate nonconstant size only once, either now or as soon as safe. */
736 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
737 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
738 if (DECL_SIZE_UNIT (decl) != 0
739 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
740 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
742 /* If requested, warn about definitions of large data objects. */
743 if (warn_larger_than
744 && (code == VAR_DECL || code == PARM_DECL)
745 && ! DECL_EXTERNAL (decl))
747 tree size = DECL_SIZE_UNIT (decl);
749 if (size != 0 && TREE_CODE (size) == INTEGER_CST
750 && compare_tree_int (size, larger_than_size) > 0)
752 int size_as_int = TREE_INT_CST_LOW (size);
754 if (compare_tree_int (size, size_as_int) == 0)
755 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
756 else
757 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
758 decl, larger_than_size);
762 /* If the RTL was already set, update its mode and mem attributes. */
763 if (rtl)
765 PUT_MODE (rtl, DECL_MODE (decl));
766 SET_DECL_RTL (decl, 0);
767 if (MEM_P (rtl))
768 set_mem_attributes (rtl, decl, 1);
769 SET_DECL_RTL (decl, rtl);
773 /* Given a VAR_DECL, PARM_DECL, RESULT_DECL, or FIELD_DECL, clears the
774 results of a previous call to layout_decl and calls it again. */
776 void
777 relayout_decl (tree decl)
779 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
780 SET_DECL_MODE (decl, VOIDmode);
781 if (!DECL_USER_ALIGN (decl))
782 SET_DECL_ALIGN (decl, 0);
783 if (DECL_RTL_SET_P (decl))
784 SET_DECL_RTL (decl, 0);
786 layout_decl (decl, 0);
789 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
790 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
791 is to be passed to all other layout functions for this record. It is the
792 responsibility of the caller to call `free' for the storage returned.
793 Note that garbage collection is not permitted until we finish laying
794 out the record. */
796 record_layout_info
797 start_record_layout (tree t)
799 record_layout_info rli = XNEW (struct record_layout_info_s);
801 rli->t = t;
803 /* If the type has a minimum specified alignment (via an attribute
804 declaration, for example) use it -- otherwise, start with a
805 one-byte alignment. */
806 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
807 rli->unpacked_align = rli->record_align;
808 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
810 #ifdef STRUCTURE_SIZE_BOUNDARY
811 /* Packed structures don't need to have minimum size. */
812 if (! TYPE_PACKED (t))
814 unsigned tmp;
816 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
817 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
818 if (maximum_field_alignment != 0)
819 tmp = MIN (tmp, maximum_field_alignment);
820 rli->record_align = MAX (rli->record_align, tmp);
822 #endif
824 rli->offset = size_zero_node;
825 rli->bitpos = bitsize_zero_node;
826 rli->prev_field = 0;
827 rli->pending_statics = 0;
828 rli->packed_maybe_necessary = 0;
829 rli->remaining_in_alignment = 0;
831 return rli;
834 /* Return the combined bit position for the byte offset OFFSET and the
835 bit position BITPOS.
837 These functions operate on byte and bit positions present in FIELD_DECLs
838 and assume that these expressions result in no (intermediate) overflow.
839 This assumption is necessary to fold the expressions as much as possible,
840 so as to avoid creating artificially variable-sized types in languages
841 supporting variable-sized types like Ada. */
843 tree
844 bit_from_pos (tree offset, tree bitpos)
846 if (TREE_CODE (offset) == PLUS_EXPR)
847 offset = size_binop (PLUS_EXPR,
848 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
849 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
850 else
851 offset = fold_convert (bitsizetype, offset);
852 return size_binop (PLUS_EXPR, bitpos,
853 size_binop (MULT_EXPR, offset, bitsize_unit_node));
856 /* Return the combined truncated byte position for the byte offset OFFSET and
857 the bit position BITPOS. */
859 tree
860 byte_from_pos (tree offset, tree bitpos)
862 tree bytepos;
863 if (TREE_CODE (bitpos) == MULT_EXPR
864 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
865 bytepos = TREE_OPERAND (bitpos, 0);
866 else
867 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
868 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
871 /* Split the bit position POS into a byte offset *POFFSET and a bit
872 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
874 void
875 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
876 tree pos)
878 tree toff_align = bitsize_int (off_align);
879 if (TREE_CODE (pos) == MULT_EXPR
880 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
882 *poffset = size_binop (MULT_EXPR,
883 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
884 size_int (off_align / BITS_PER_UNIT));
885 *pbitpos = bitsize_zero_node;
887 else
889 *poffset = size_binop (MULT_EXPR,
890 fold_convert (sizetype,
891 size_binop (FLOOR_DIV_EXPR, pos,
892 toff_align)),
893 size_int (off_align / BITS_PER_UNIT));
894 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
898 /* Given a pointer to bit and byte offsets and an offset alignment,
899 normalize the offsets so they are within the alignment. */
901 void
902 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
904 /* If the bit position is now larger than it should be, adjust it
905 downwards. */
906 if (compare_tree_int (*pbitpos, off_align) >= 0)
908 tree offset, bitpos;
909 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
910 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
911 *pbitpos = bitpos;
915 /* Print debugging information about the information in RLI. */
917 DEBUG_FUNCTION void
918 debug_rli (record_layout_info rli)
920 print_node_brief (stderr, "type", rli->t, 0);
921 print_node_brief (stderr, "\noffset", rli->offset, 0);
922 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
924 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
925 rli->record_align, rli->unpacked_align,
926 rli->offset_align);
928 /* The ms_struct code is the only that uses this. */
929 if (targetm.ms_bitfield_layout_p (rli->t))
930 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
932 if (rli->packed_maybe_necessary)
933 fprintf (stderr, "packed may be necessary\n");
935 if (!vec_safe_is_empty (rli->pending_statics))
937 fprintf (stderr, "pending statics:\n");
938 debug_vec_tree (rli->pending_statics);
942 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
943 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
945 void
946 normalize_rli (record_layout_info rli)
948 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
951 /* Returns the size in bytes allocated so far. */
953 tree
954 rli_size_unit_so_far (record_layout_info rli)
956 return byte_from_pos (rli->offset, rli->bitpos);
959 /* Returns the size in bits allocated so far. */
961 tree
962 rli_size_so_far (record_layout_info rli)
964 return bit_from_pos (rli->offset, rli->bitpos);
967 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
968 the next available location within the record is given by KNOWN_ALIGN.
969 Update the variable alignment fields in RLI, and return the alignment
970 to give the FIELD. */
972 unsigned int
973 update_alignment_for_field (record_layout_info rli, tree field,
974 unsigned int known_align)
976 /* The alignment required for FIELD. */
977 unsigned int desired_align;
978 /* The type of this field. */
979 tree type = TREE_TYPE (field);
980 /* True if the field was explicitly aligned by the user. */
981 bool user_align;
982 bool is_bitfield;
984 /* Do not attempt to align an ERROR_MARK node */
985 if (TREE_CODE (type) == ERROR_MARK)
986 return 0;
988 /* Lay out the field so we know what alignment it needs. */
989 layout_decl (field, known_align);
990 desired_align = DECL_ALIGN (field);
991 user_align = DECL_USER_ALIGN (field);
993 is_bitfield = (type != error_mark_node
994 && DECL_BIT_FIELD_TYPE (field)
995 && ! integer_zerop (TYPE_SIZE (type)));
997 /* Record must have at least as much alignment as any field.
998 Otherwise, the alignment of the field within the record is
999 meaningless. */
1000 if (targetm.ms_bitfield_layout_p (rli->t))
1002 /* Here, the alignment of the underlying type of a bitfield can
1003 affect the alignment of a record; even a zero-sized field
1004 can do this. The alignment should be to the alignment of
1005 the type, except that for zero-size bitfields this only
1006 applies if there was an immediately prior, nonzero-size
1007 bitfield. (That's the way it is, experimentally.) */
1008 if ((!is_bitfield && !DECL_PACKED (field))
1009 || ((DECL_SIZE (field) == NULL_TREE
1010 || !integer_zerop (DECL_SIZE (field)))
1011 ? !DECL_PACKED (field)
1012 : (rli->prev_field
1013 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1014 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1016 unsigned int type_align = TYPE_ALIGN (type);
1017 type_align = MAX (type_align, desired_align);
1018 if (maximum_field_alignment != 0)
1019 type_align = MIN (type_align, maximum_field_alignment);
1020 rli->record_align = MAX (rli->record_align, type_align);
1021 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1024 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1026 /* Named bit-fields cause the entire structure to have the
1027 alignment implied by their type. Some targets also apply the same
1028 rules to unnamed bitfields. */
1029 if (DECL_NAME (field) != 0
1030 || targetm.align_anon_bitfield ())
1032 unsigned int type_align = TYPE_ALIGN (type);
1034 #ifdef ADJUST_FIELD_ALIGN
1035 if (! TYPE_USER_ALIGN (type))
1036 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1037 #endif
1039 /* Targets might chose to handle unnamed and hence possibly
1040 zero-width bitfield. Those are not influenced by #pragmas
1041 or packed attributes. */
1042 if (integer_zerop (DECL_SIZE (field)))
1044 if (initial_max_fld_align)
1045 type_align = MIN (type_align,
1046 initial_max_fld_align * BITS_PER_UNIT);
1048 else if (maximum_field_alignment != 0)
1049 type_align = MIN (type_align, maximum_field_alignment);
1050 else if (DECL_PACKED (field))
1051 type_align = MIN (type_align, BITS_PER_UNIT);
1053 /* The alignment of the record is increased to the maximum
1054 of the current alignment, the alignment indicated on the
1055 field (i.e., the alignment specified by an __aligned__
1056 attribute), and the alignment indicated by the type of
1057 the field. */
1058 rli->record_align = MAX (rli->record_align, desired_align);
1059 rli->record_align = MAX (rli->record_align, type_align);
1061 if (warn_packed)
1062 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1063 user_align |= TYPE_USER_ALIGN (type);
1066 else
1068 rli->record_align = MAX (rli->record_align, desired_align);
1069 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1072 TYPE_USER_ALIGN (rli->t) |= user_align;
1074 return desired_align;
1077 /* Called from place_field to handle unions. */
1079 static void
1080 place_union_field (record_layout_info rli, tree field)
1082 update_alignment_for_field (rli, field, /*known_align=*/0);
1084 DECL_FIELD_OFFSET (field) = size_zero_node;
1085 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1086 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1088 /* If this is an ERROR_MARK return *after* having set the
1089 field at the start of the union. This helps when parsing
1090 invalid fields. */
1091 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1092 return;
1094 /* We assume the union's size will be a multiple of a byte so we don't
1095 bother with BITPOS. */
1096 if (TREE_CODE (rli->t) == UNION_TYPE)
1097 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1098 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1099 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1100 DECL_SIZE_UNIT (field), rli->offset);
1103 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1104 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1105 units of alignment than the underlying TYPE. */
1106 static int
1107 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1108 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1110 /* Note that the calculation of OFFSET might overflow; we calculate it so
1111 that we still get the right result as long as ALIGN is a power of two. */
1112 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1114 offset = offset % align;
1115 return ((offset + size + align - 1) / align
1116 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1119 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1120 is a FIELD_DECL to be added after those fields already present in
1121 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1122 callers that desire that behavior must manually perform that step.) */
1124 void
1125 place_field (record_layout_info rli, tree field)
1127 /* The alignment required for FIELD. */
1128 unsigned int desired_align;
1129 /* The alignment FIELD would have if we just dropped it into the
1130 record as it presently stands. */
1131 unsigned int known_align;
1132 unsigned int actual_align;
1133 /* The type of this field. */
1134 tree type = TREE_TYPE (field);
1136 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1138 /* If FIELD is static, then treat it like a separate variable, not
1139 really like a structure field. If it is a FUNCTION_DECL, it's a
1140 method. In both cases, all we do is lay out the decl, and we do
1141 it *after* the record is laid out. */
1142 if (VAR_P (field))
1144 vec_safe_push (rli->pending_statics, field);
1145 return;
1148 /* Enumerators and enum types which are local to this class need not
1149 be laid out. Likewise for initialized constant fields. */
1150 else if (TREE_CODE (field) != FIELD_DECL)
1151 return;
1153 /* Unions are laid out very differently than records, so split
1154 that code off to another function. */
1155 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1157 place_union_field (rli, field);
1158 return;
1161 else if (TREE_CODE (type) == ERROR_MARK)
1163 /* Place this field at the current allocation position, so we
1164 maintain monotonicity. */
1165 DECL_FIELD_OFFSET (field) = rli->offset;
1166 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1167 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1168 return;
1171 /* Work out the known alignment so far. Note that A & (-A) is the
1172 value of the least-significant bit in A that is one. */
1173 if (! integer_zerop (rli->bitpos))
1174 known_align = least_bit_hwi (tree_to_uhwi (rli->bitpos));
1175 else if (integer_zerop (rli->offset))
1176 known_align = 0;
1177 else if (tree_fits_uhwi_p (rli->offset))
1178 known_align = (BITS_PER_UNIT
1179 * least_bit_hwi (tree_to_uhwi (rli->offset)));
1180 else
1181 known_align = rli->offset_align;
1183 desired_align = update_alignment_for_field (rli, field, known_align);
1184 if (known_align == 0)
1185 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1187 if (warn_packed && DECL_PACKED (field))
1189 if (known_align >= TYPE_ALIGN (type))
1191 if (TYPE_ALIGN (type) > desired_align)
1193 if (STRICT_ALIGNMENT)
1194 warning (OPT_Wattributes, "packed attribute causes "
1195 "inefficient alignment for %q+D", field);
1196 /* Don't warn if DECL_PACKED was set by the type. */
1197 else if (!TYPE_PACKED (rli->t))
1198 warning (OPT_Wattributes, "packed attribute is "
1199 "unnecessary for %q+D", field);
1202 else
1203 rli->packed_maybe_necessary = 1;
1206 /* Does this field automatically have alignment it needs by virtue
1207 of the fields that precede it and the record's own alignment? */
1208 if (known_align < desired_align)
1210 /* No, we need to skip space before this field.
1211 Bump the cumulative size to multiple of field alignment. */
1213 if (!targetm.ms_bitfield_layout_p (rli->t)
1214 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1215 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1217 /* If the alignment is still within offset_align, just align
1218 the bit position. */
1219 if (desired_align < rli->offset_align)
1220 rli->bitpos = round_up (rli->bitpos, desired_align);
1221 else
1223 /* First adjust OFFSET by the partial bits, then align. */
1224 rli->offset
1225 = size_binop (PLUS_EXPR, rli->offset,
1226 fold_convert (sizetype,
1227 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1228 bitsize_unit_node)));
1229 rli->bitpos = bitsize_zero_node;
1231 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1234 if (! TREE_CONSTANT (rli->offset))
1235 rli->offset_align = desired_align;
1236 if (targetm.ms_bitfield_layout_p (rli->t))
1237 rli->prev_field = NULL;
1240 /* Handle compatibility with PCC. Note that if the record has any
1241 variable-sized fields, we need not worry about compatibility. */
1242 if (PCC_BITFIELD_TYPE_MATTERS
1243 && ! targetm.ms_bitfield_layout_p (rli->t)
1244 && TREE_CODE (field) == FIELD_DECL
1245 && type != error_mark_node
1246 && DECL_BIT_FIELD (field)
1247 && (! DECL_PACKED (field)
1248 /* Enter for these packed fields only to issue a warning. */
1249 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1250 && maximum_field_alignment == 0
1251 && ! integer_zerop (DECL_SIZE (field))
1252 && tree_fits_uhwi_p (DECL_SIZE (field))
1253 && tree_fits_uhwi_p (rli->offset)
1254 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1256 unsigned int type_align = TYPE_ALIGN (type);
1257 tree dsize = DECL_SIZE (field);
1258 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1259 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1260 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1262 #ifdef ADJUST_FIELD_ALIGN
1263 if (! TYPE_USER_ALIGN (type))
1264 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1265 #endif
1267 /* A bit field may not span more units of alignment of its type
1268 than its type itself. Advance to next boundary if necessary. */
1269 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1271 if (DECL_PACKED (field))
1273 if (warn_packed_bitfield_compat == 1)
1274 inform
1275 (input_location,
1276 "offset of packed bit-field %qD has changed in GCC 4.4",
1277 field);
1279 else
1280 rli->bitpos = round_up (rli->bitpos, type_align);
1283 if (! DECL_PACKED (field))
1284 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1287 #ifdef BITFIELD_NBYTES_LIMITED
1288 if (BITFIELD_NBYTES_LIMITED
1289 && ! targetm.ms_bitfield_layout_p (rli->t)
1290 && TREE_CODE (field) == FIELD_DECL
1291 && type != error_mark_node
1292 && DECL_BIT_FIELD_TYPE (field)
1293 && ! DECL_PACKED (field)
1294 && ! integer_zerop (DECL_SIZE (field))
1295 && tree_fits_uhwi_p (DECL_SIZE (field))
1296 && tree_fits_uhwi_p (rli->offset)
1297 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1299 unsigned int type_align = TYPE_ALIGN (type);
1300 tree dsize = DECL_SIZE (field);
1301 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1302 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1303 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1305 #ifdef ADJUST_FIELD_ALIGN
1306 if (! TYPE_USER_ALIGN (type))
1307 type_align = ADJUST_FIELD_ALIGN (field, type, type_align);
1308 #endif
1310 if (maximum_field_alignment != 0)
1311 type_align = MIN (type_align, maximum_field_alignment);
1312 /* ??? This test is opposite the test in the containing if
1313 statement, so this code is unreachable currently. */
1314 else if (DECL_PACKED (field))
1315 type_align = MIN (type_align, BITS_PER_UNIT);
1317 /* A bit field may not span the unit of alignment of its type.
1318 Advance to next boundary if necessary. */
1319 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1320 rli->bitpos = round_up (rli->bitpos, type_align);
1322 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1324 #endif
1326 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1327 A subtlety:
1328 When a bit field is inserted into a packed record, the whole
1329 size of the underlying type is used by one or more same-size
1330 adjacent bitfields. (That is, if its long:3, 32 bits is
1331 used in the record, and any additional adjacent long bitfields are
1332 packed into the same chunk of 32 bits. However, if the size
1333 changes, a new field of that size is allocated.) In an unpacked
1334 record, this is the same as using alignment, but not equivalent
1335 when packing.
1337 Note: for compatibility, we use the type size, not the type alignment
1338 to determine alignment, since that matches the documentation */
1340 if (targetm.ms_bitfield_layout_p (rli->t))
1342 tree prev_saved = rli->prev_field;
1343 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1345 /* This is a bitfield if it exists. */
1346 if (rli->prev_field)
1348 /* If both are bitfields, nonzero, and the same size, this is
1349 the middle of a run. Zero declared size fields are special
1350 and handled as "end of run". (Note: it's nonzero declared
1351 size, but equal type sizes!) (Since we know that both
1352 the current and previous fields are bitfields by the
1353 time we check it, DECL_SIZE must be present for both.) */
1354 if (DECL_BIT_FIELD_TYPE (field)
1355 && !integer_zerop (DECL_SIZE (field))
1356 && !integer_zerop (DECL_SIZE (rli->prev_field))
1357 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1358 && tree_fits_uhwi_p (TYPE_SIZE (type))
1359 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1361 /* We're in the middle of a run of equal type size fields; make
1362 sure we realign if we run out of bits. (Not decl size,
1363 type size!) */
1364 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1366 if (rli->remaining_in_alignment < bitsize)
1368 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1370 /* out of bits; bump up to next 'word'. */
1371 rli->bitpos
1372 = size_binop (PLUS_EXPR, rli->bitpos,
1373 bitsize_int (rli->remaining_in_alignment));
1374 rli->prev_field = field;
1375 if (typesize < bitsize)
1376 rli->remaining_in_alignment = 0;
1377 else
1378 rli->remaining_in_alignment = typesize - bitsize;
1380 else
1381 rli->remaining_in_alignment -= bitsize;
1383 else
1385 /* End of a run: if leaving a run of bitfields of the same type
1386 size, we have to "use up" the rest of the bits of the type
1387 size.
1389 Compute the new position as the sum of the size for the prior
1390 type and where we first started working on that type.
1391 Note: since the beginning of the field was aligned then
1392 of course the end will be too. No round needed. */
1394 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1396 rli->bitpos
1397 = size_binop (PLUS_EXPR, rli->bitpos,
1398 bitsize_int (rli->remaining_in_alignment));
1400 else
1401 /* We "use up" size zero fields; the code below should behave
1402 as if the prior field was not a bitfield. */
1403 prev_saved = NULL;
1405 /* Cause a new bitfield to be captured, either this time (if
1406 currently a bitfield) or next time we see one. */
1407 if (!DECL_BIT_FIELD_TYPE (field)
1408 || integer_zerop (DECL_SIZE (field)))
1409 rli->prev_field = NULL;
1412 normalize_rli (rli);
1415 /* If we're starting a new run of same type size bitfields
1416 (or a run of non-bitfields), set up the "first of the run"
1417 fields.
1419 That is, if the current field is not a bitfield, or if there
1420 was a prior bitfield the type sizes differ, or if there wasn't
1421 a prior bitfield the size of the current field is nonzero.
1423 Note: we must be sure to test ONLY the type size if there was
1424 a prior bitfield and ONLY for the current field being zero if
1425 there wasn't. */
1427 if (!DECL_BIT_FIELD_TYPE (field)
1428 || (prev_saved != NULL
1429 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1430 : !integer_zerop (DECL_SIZE (field)) ))
1432 /* Never smaller than a byte for compatibility. */
1433 unsigned int type_align = BITS_PER_UNIT;
1435 /* (When not a bitfield), we could be seeing a flex array (with
1436 no DECL_SIZE). Since we won't be using remaining_in_alignment
1437 until we see a bitfield (and come by here again) we just skip
1438 calculating it. */
1439 if (DECL_SIZE (field) != NULL
1440 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1441 && tree_fits_uhwi_p (DECL_SIZE (field)))
1443 unsigned HOST_WIDE_INT bitsize
1444 = tree_to_uhwi (DECL_SIZE (field));
1445 unsigned HOST_WIDE_INT typesize
1446 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1448 if (typesize < bitsize)
1449 rli->remaining_in_alignment = 0;
1450 else
1451 rli->remaining_in_alignment = typesize - bitsize;
1454 /* Now align (conventionally) for the new type. */
1455 type_align = TYPE_ALIGN (TREE_TYPE (field));
1457 if (maximum_field_alignment != 0)
1458 type_align = MIN (type_align, maximum_field_alignment);
1460 rli->bitpos = round_up (rli->bitpos, type_align);
1462 /* If we really aligned, don't allow subsequent bitfields
1463 to undo that. */
1464 rli->prev_field = NULL;
1468 /* Offset so far becomes the position of this field after normalizing. */
1469 normalize_rli (rli);
1470 DECL_FIELD_OFFSET (field) = rli->offset;
1471 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1472 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1474 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1475 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1476 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1478 /* If this field ended up more aligned than we thought it would be (we
1479 approximate this by seeing if its position changed), lay out the field
1480 again; perhaps we can use an integral mode for it now. */
1481 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1482 actual_align = least_bit_hwi (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1483 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1484 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1485 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1486 actual_align = (BITS_PER_UNIT
1487 * least_bit_hwi (tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1488 else
1489 actual_align = DECL_OFFSET_ALIGN (field);
1490 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1491 store / extract bit field operations will check the alignment of the
1492 record against the mode of bit fields. */
1494 if (known_align != actual_align)
1495 layout_decl (field, actual_align);
1497 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1498 rli->prev_field = field;
1500 /* Now add size of this field to the size of the record. If the size is
1501 not constant, treat the field as being a multiple of bytes and just
1502 adjust the offset, resetting the bit position. Otherwise, apportion the
1503 size amongst the bit position and offset. First handle the case of an
1504 unspecified size, which can happen when we have an invalid nested struct
1505 definition, such as struct j { struct j { int i; } }. The error message
1506 is printed in finish_struct. */
1507 if (DECL_SIZE (field) == 0)
1508 /* Do nothing. */;
1509 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1510 || TREE_OVERFLOW (DECL_SIZE (field)))
1512 rli->offset
1513 = size_binop (PLUS_EXPR, rli->offset,
1514 fold_convert (sizetype,
1515 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1516 bitsize_unit_node)));
1517 rli->offset
1518 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1519 rli->bitpos = bitsize_zero_node;
1520 rli->offset_align = MIN (rli->offset_align, desired_align);
1522 else if (targetm.ms_bitfield_layout_p (rli->t))
1524 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1526 /* If we ended a bitfield before the full length of the type then
1527 pad the struct out to the full length of the last type. */
1528 if ((DECL_CHAIN (field) == NULL
1529 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1530 && DECL_BIT_FIELD_TYPE (field)
1531 && !integer_zerop (DECL_SIZE (field)))
1532 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1533 bitsize_int (rli->remaining_in_alignment));
1535 normalize_rli (rli);
1537 else
1539 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1540 normalize_rli (rli);
1544 /* Assuming that all the fields have been laid out, this function uses
1545 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1546 indicated by RLI. */
1548 static void
1549 finalize_record_size (record_layout_info rli)
1551 tree unpadded_size, unpadded_size_unit;
1553 /* Now we want just byte and bit offsets, so set the offset alignment
1554 to be a byte and then normalize. */
1555 rli->offset_align = BITS_PER_UNIT;
1556 normalize_rli (rli);
1558 /* Determine the desired alignment. */
1559 #ifdef ROUND_TYPE_ALIGN
1560 SET_TYPE_ALIGN (rli->t, ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1561 rli->record_align));
1562 #else
1563 SET_TYPE_ALIGN (rli->t, MAX (TYPE_ALIGN (rli->t), rli->record_align));
1564 #endif
1566 /* Compute the size so far. Be sure to allow for extra bits in the
1567 size in bytes. We have guaranteed above that it will be no more
1568 than a single byte. */
1569 unpadded_size = rli_size_so_far (rli);
1570 unpadded_size_unit = rli_size_unit_so_far (rli);
1571 if (! integer_zerop (rli->bitpos))
1572 unpadded_size_unit
1573 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1575 /* Round the size up to be a multiple of the required alignment. */
1576 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1577 TYPE_SIZE_UNIT (rli->t)
1578 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1580 if (TREE_CONSTANT (unpadded_size)
1581 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1582 && input_location != BUILTINS_LOCATION)
1583 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1585 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1586 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1587 && TREE_CONSTANT (unpadded_size))
1589 tree unpacked_size;
1591 #ifdef ROUND_TYPE_ALIGN
1592 rli->unpacked_align
1593 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1594 #else
1595 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1596 #endif
1598 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1599 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1601 if (TYPE_NAME (rli->t))
1603 tree name;
1605 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1606 name = TYPE_NAME (rli->t);
1607 else
1608 name = DECL_NAME (TYPE_NAME (rli->t));
1610 if (STRICT_ALIGNMENT)
1611 warning (OPT_Wpacked, "packed attribute causes inefficient "
1612 "alignment for %qE", name);
1613 else
1614 warning (OPT_Wpacked,
1615 "packed attribute is unnecessary for %qE", name);
1617 else
1619 if (STRICT_ALIGNMENT)
1620 warning (OPT_Wpacked,
1621 "packed attribute causes inefficient alignment");
1622 else
1623 warning (OPT_Wpacked, "packed attribute is unnecessary");
1629 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1631 void
1632 compute_record_mode (tree type)
1634 tree field;
1635 machine_mode mode = VOIDmode;
1637 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1638 However, if possible, we use a mode that fits in a register
1639 instead, in order to allow for better optimization down the
1640 line. */
1641 SET_TYPE_MODE (type, BLKmode);
1643 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1644 return;
1646 /* A record which has any BLKmode members must itself be
1647 BLKmode; it can't go in a register. Unless the member is
1648 BLKmode only because it isn't aligned. */
1649 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1651 if (TREE_CODE (field) != FIELD_DECL)
1652 continue;
1654 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1655 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1656 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1657 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1658 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1659 || ! tree_fits_uhwi_p (bit_position (field))
1660 || DECL_SIZE (field) == 0
1661 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1662 return;
1664 /* If this field is the whole struct, remember its mode so
1665 that, say, we can put a double in a class into a DF
1666 register instead of forcing it to live in the stack. */
1667 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1668 mode = DECL_MODE (field);
1670 /* With some targets, it is sub-optimal to access an aligned
1671 BLKmode structure as a scalar. */
1672 if (targetm.member_type_forces_blk (field, mode))
1673 return;
1676 /* If we only have one real field; use its mode if that mode's size
1677 matches the type's size. This only applies to RECORD_TYPE. This
1678 does not apply to unions. */
1679 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1680 && tree_fits_uhwi_p (TYPE_SIZE (type))
1681 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1682 SET_TYPE_MODE (type, mode);
1683 else
1684 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1686 /* If structure's known alignment is less than what the scalar
1687 mode would need, and it matters, then stick with BLKmode. */
1688 if (TYPE_MODE (type) != BLKmode
1689 && STRICT_ALIGNMENT
1690 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1691 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1693 /* If this is the only reason this type is BLKmode, then
1694 don't force containing types to be BLKmode. */
1695 TYPE_NO_FORCE_BLK (type) = 1;
1696 SET_TYPE_MODE (type, BLKmode);
1700 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1701 out. */
1703 static void
1704 finalize_type_size (tree type)
1706 /* Normally, use the alignment corresponding to the mode chosen.
1707 However, where strict alignment is not required, avoid
1708 over-aligning structures, since most compilers do not do this
1709 alignment. */
1710 if (TYPE_MODE (type) != BLKmode
1711 && TYPE_MODE (type) != VOIDmode
1712 && (STRICT_ALIGNMENT || !AGGREGATE_TYPE_P (type)))
1714 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1716 /* Don't override a larger alignment requirement coming from a user
1717 alignment of one of the fields. */
1718 if (mode_align >= TYPE_ALIGN (type))
1720 SET_TYPE_ALIGN (type, mode_align);
1721 TYPE_USER_ALIGN (type) = 0;
1725 /* Do machine-dependent extra alignment. */
1726 #ifdef ROUND_TYPE_ALIGN
1727 SET_TYPE_ALIGN (type,
1728 ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT));
1729 #endif
1731 /* If we failed to find a simple way to calculate the unit size
1732 of the type, find it by division. */
1733 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1734 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1735 result will fit in sizetype. We will get more efficient code using
1736 sizetype, so we force a conversion. */
1737 TYPE_SIZE_UNIT (type)
1738 = fold_convert (sizetype,
1739 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1740 bitsize_unit_node));
1742 if (TYPE_SIZE (type) != 0)
1744 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1745 TYPE_SIZE_UNIT (type)
1746 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1749 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1750 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1751 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1752 if (TYPE_SIZE_UNIT (type) != 0
1753 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1754 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1756 /* Also layout any other variants of the type. */
1757 if (TYPE_NEXT_VARIANT (type)
1758 || type != TYPE_MAIN_VARIANT (type))
1760 tree variant;
1761 /* Record layout info of this variant. */
1762 tree size = TYPE_SIZE (type);
1763 tree size_unit = TYPE_SIZE_UNIT (type);
1764 unsigned int align = TYPE_ALIGN (type);
1765 unsigned int precision = TYPE_PRECISION (type);
1766 unsigned int user_align = TYPE_USER_ALIGN (type);
1767 machine_mode mode = TYPE_MODE (type);
1769 /* Copy it into all variants. */
1770 for (variant = TYPE_MAIN_VARIANT (type);
1771 variant != 0;
1772 variant = TYPE_NEXT_VARIANT (variant))
1774 TYPE_SIZE (variant) = size;
1775 TYPE_SIZE_UNIT (variant) = size_unit;
1776 unsigned valign = align;
1777 if (TYPE_USER_ALIGN (variant))
1778 valign = MAX (valign, TYPE_ALIGN (variant));
1779 else
1780 TYPE_USER_ALIGN (variant) = user_align;
1781 SET_TYPE_ALIGN (variant, valign);
1782 TYPE_PRECISION (variant) = precision;
1783 SET_TYPE_MODE (variant, mode);
1788 /* Return a new underlying object for a bitfield started with FIELD. */
1790 static tree
1791 start_bitfield_representative (tree field)
1793 tree repr = make_node (FIELD_DECL);
1794 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1795 /* Force the representative to begin at a BITS_PER_UNIT aligned
1796 boundary - C++ may use tail-padding of a base object to
1797 continue packing bits so the bitfield region does not start
1798 at bit zero (see g++.dg/abi/bitfield5.C for example).
1799 Unallocated bits may happen for other reasons as well,
1800 for example Ada which allows explicit bit-granular structure layout. */
1801 DECL_FIELD_BIT_OFFSET (repr)
1802 = size_binop (BIT_AND_EXPR,
1803 DECL_FIELD_BIT_OFFSET (field),
1804 bitsize_int (~(BITS_PER_UNIT - 1)));
1805 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1806 DECL_SIZE (repr) = DECL_SIZE (field);
1807 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1808 DECL_PACKED (repr) = DECL_PACKED (field);
1809 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1810 /* There are no indirect accesses to this field. If we introduce
1811 some then they have to use the record alias set. This makes
1812 sure to properly conflict with [indirect] accesses to addressable
1813 fields of the bitfield group. */
1814 DECL_NONADDRESSABLE_P (repr) = 1;
1815 return repr;
1818 /* Finish up a bitfield group that was started by creating the underlying
1819 object REPR with the last field in the bitfield group FIELD. */
1821 static void
1822 finish_bitfield_representative (tree repr, tree field)
1824 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1825 machine_mode mode;
1826 tree nextf, size;
1828 size = size_diffop (DECL_FIELD_OFFSET (field),
1829 DECL_FIELD_OFFSET (repr));
1830 while (TREE_CODE (size) == COMPOUND_EXPR)
1831 size = TREE_OPERAND (size, 1);
1832 gcc_assert (tree_fits_uhwi_p (size));
1833 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1834 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1835 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1836 + tree_to_uhwi (DECL_SIZE (field)));
1838 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1839 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1841 /* Now nothing tells us how to pad out bitsize ... */
1842 nextf = DECL_CHAIN (field);
1843 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1844 nextf = DECL_CHAIN (nextf);
1845 if (nextf)
1847 tree maxsize;
1848 /* If there was an error, the field may be not laid out
1849 correctly. Don't bother to do anything. */
1850 if (TREE_TYPE (nextf) == error_mark_node)
1851 return;
1852 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1853 DECL_FIELD_OFFSET (repr));
1854 if (tree_fits_uhwi_p (maxsize))
1856 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1857 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1858 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1859 /* If the group ends within a bitfield nextf does not need to be
1860 aligned to BITS_PER_UNIT. Thus round up. */
1861 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1863 else
1864 maxbitsize = bitsize;
1866 else
1868 /* Note that if the C++ FE sets up tail-padding to be re-used it
1869 creates a as-base variant of the type with TYPE_SIZE adjusted
1870 accordingly. So it is safe to include tail-padding here. */
1871 tree aggsize = lang_hooks.types.unit_size_without_reusable_padding
1872 (DECL_CONTEXT (field));
1873 tree maxsize = size_diffop (aggsize, DECL_FIELD_OFFSET (repr));
1874 /* We cannot generally rely on maxsize to fold to an integer constant,
1875 so use bitsize as fallback for this case. */
1876 if (tree_fits_uhwi_p (maxsize))
1877 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1878 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1879 else
1880 maxbitsize = bitsize;
1883 /* Only if we don't artificially break up the representative in
1884 the middle of a large bitfield with different possibly
1885 overlapping representatives. And all representatives start
1886 at byte offset. */
1887 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1889 /* Find the smallest nice mode to use. */
1890 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1891 mode = GET_MODE_WIDER_MODE (mode))
1892 if (GET_MODE_BITSIZE (mode) >= bitsize)
1893 break;
1894 if (mode != VOIDmode
1895 && (GET_MODE_BITSIZE (mode) > maxbitsize
1896 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1897 mode = VOIDmode;
1899 if (mode == VOIDmode)
1901 /* We really want a BLKmode representative only as a last resort,
1902 considering the member b in
1903 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1904 Otherwise we simply want to split the representative up
1905 allowing for overlaps within the bitfield region as required for
1906 struct { int a : 7; int b : 7;
1907 int c : 10; int d; } __attribute__((packed));
1908 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1909 DECL_SIZE (repr) = bitsize_int (bitsize);
1910 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1911 SET_DECL_MODE (repr, BLKmode);
1912 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1913 bitsize / BITS_PER_UNIT);
1915 else
1917 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1918 DECL_SIZE (repr) = bitsize_int (modesize);
1919 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1920 SET_DECL_MODE (repr, mode);
1921 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1924 /* Remember whether the bitfield group is at the end of the
1925 structure or not. */
1926 DECL_CHAIN (repr) = nextf;
1929 /* Compute and set FIELD_DECLs for the underlying objects we should
1930 use for bitfield access for the structure T. */
1932 void
1933 finish_bitfield_layout (tree t)
1935 tree field, prev;
1936 tree repr = NULL_TREE;
1938 /* Unions would be special, for the ease of type-punning optimizations
1939 we could use the underlying type as hint for the representative
1940 if the bitfield would fit and the representative would not exceed
1941 the union in size. */
1942 if (TREE_CODE (t) != RECORD_TYPE)
1943 return;
1945 for (prev = NULL_TREE, field = TYPE_FIELDS (t);
1946 field; field = DECL_CHAIN (field))
1948 if (TREE_CODE (field) != FIELD_DECL)
1949 continue;
1951 /* In the C++ memory model, consecutive bit fields in a structure are
1952 considered one memory location and updating a memory location
1953 may not store into adjacent memory locations. */
1954 if (!repr
1955 && DECL_BIT_FIELD_TYPE (field))
1957 /* Start new representative. */
1958 repr = start_bitfield_representative (field);
1960 else if (repr
1961 && ! DECL_BIT_FIELD_TYPE (field))
1963 /* Finish off new representative. */
1964 finish_bitfield_representative (repr, prev);
1965 repr = NULL_TREE;
1967 else if (DECL_BIT_FIELD_TYPE (field))
1969 gcc_assert (repr != NULL_TREE);
1971 /* Zero-size bitfields finish off a representative and
1972 do not have a representative themselves. This is
1973 required by the C++ memory model. */
1974 if (integer_zerop (DECL_SIZE (field)))
1976 finish_bitfield_representative (repr, prev);
1977 repr = NULL_TREE;
1980 /* We assume that either DECL_FIELD_OFFSET of the representative
1981 and each bitfield member is a constant or they are equal.
1982 This is because we need to be able to compute the bit-offset
1983 of each field relative to the representative in get_bit_range
1984 during RTL expansion.
1985 If these constraints are not met, simply force a new
1986 representative to be generated. That will at most
1987 generate worse code but still maintain correctness with
1988 respect to the C++ memory model. */
1989 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
1990 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1991 || operand_equal_p (DECL_FIELD_OFFSET (repr),
1992 DECL_FIELD_OFFSET (field), 0)))
1994 finish_bitfield_representative (repr, prev);
1995 repr = start_bitfield_representative (field);
1998 else
1999 continue;
2001 if (repr)
2002 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2004 prev = field;
2007 if (repr)
2008 finish_bitfield_representative (repr, prev);
2011 /* Do all of the work required to layout the type indicated by RLI,
2012 once the fields have been laid out. This function will call `free'
2013 for RLI, unless FREE_P is false. Passing a value other than false
2014 for FREE_P is bad practice; this option only exists to support the
2015 G++ 3.2 ABI. */
2017 void
2018 finish_record_layout (record_layout_info rli, int free_p)
2020 tree variant;
2022 /* Compute the final size. */
2023 finalize_record_size (rli);
2025 /* Compute the TYPE_MODE for the record. */
2026 compute_record_mode (rli->t);
2028 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2029 finalize_type_size (rli->t);
2031 /* Compute bitfield representatives. */
2032 finish_bitfield_layout (rli->t);
2034 /* Propagate TYPE_PACKED and TYPE_REVERSE_STORAGE_ORDER to variants.
2035 With C++ templates, it is too early to do this when the attribute
2036 is being parsed. */
2037 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2038 variant = TYPE_NEXT_VARIANT (variant))
2040 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2041 TYPE_REVERSE_STORAGE_ORDER (variant)
2042 = TYPE_REVERSE_STORAGE_ORDER (rli->t);
2045 /* Lay out any static members. This is done now because their type
2046 may use the record's type. */
2047 while (!vec_safe_is_empty (rli->pending_statics))
2048 layout_decl (rli->pending_statics->pop (), 0);
2050 /* Clean up. */
2051 if (free_p)
2053 vec_free (rli->pending_statics);
2054 free (rli);
2059 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2060 NAME, its fields are chained in reverse on FIELDS.
2062 If ALIGN_TYPE is non-null, it is given the same alignment as
2063 ALIGN_TYPE. */
2065 void
2066 finish_builtin_struct (tree type, const char *name, tree fields,
2067 tree align_type)
2069 tree tail, next;
2071 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2073 DECL_FIELD_CONTEXT (fields) = type;
2074 next = DECL_CHAIN (fields);
2075 DECL_CHAIN (fields) = tail;
2077 TYPE_FIELDS (type) = tail;
2079 if (align_type)
2081 SET_TYPE_ALIGN (type, TYPE_ALIGN (align_type));
2082 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2085 layout_type (type);
2086 #if 0 /* not yet, should get fixed properly later */
2087 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2088 #else
2089 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2090 TYPE_DECL, get_identifier (name), type);
2091 #endif
2092 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2093 layout_decl (TYPE_NAME (type), 0);
2096 /* Calculate the mode, size, and alignment for TYPE.
2097 For an array type, calculate the element separation as well.
2098 Record TYPE on the chain of permanent or temporary types
2099 so that dbxout will find out about it.
2101 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2102 layout_type does nothing on such a type.
2104 If the type is incomplete, its TYPE_SIZE remains zero. */
2106 void
2107 layout_type (tree type)
2109 gcc_assert (type);
2111 if (type == error_mark_node)
2112 return;
2114 /* We don't want finalize_type_size to copy an alignment attribute to
2115 variants that don't have it. */
2116 type = TYPE_MAIN_VARIANT (type);
2118 /* Do nothing if type has been laid out before. */
2119 if (TYPE_SIZE (type))
2120 return;
2122 switch (TREE_CODE (type))
2124 case LANG_TYPE:
2125 /* This kind of type is the responsibility
2126 of the language-specific code. */
2127 gcc_unreachable ();
2129 case BOOLEAN_TYPE:
2130 case INTEGER_TYPE:
2131 case ENUMERAL_TYPE:
2132 SET_TYPE_MODE (type,
2133 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2134 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2135 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2136 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2137 break;
2139 case REAL_TYPE:
2140 /* Allow the caller to choose the type mode, which is how decimal
2141 floats are distinguished from binary ones. */
2142 if (TYPE_MODE (type) == VOIDmode)
2143 SET_TYPE_MODE (type,
2144 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2145 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2146 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2147 break;
2149 case FIXED_POINT_TYPE:
2150 /* TYPE_MODE (type) has been set already. */
2151 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2152 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2153 break;
2155 case COMPLEX_TYPE:
2156 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2157 SET_TYPE_MODE (type,
2158 GET_MODE_COMPLEX_MODE (TYPE_MODE (TREE_TYPE (type))));
2160 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2161 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2162 break;
2164 case VECTOR_TYPE:
2166 int nunits = TYPE_VECTOR_SUBPARTS (type);
2167 tree innertype = TREE_TYPE (type);
2169 gcc_assert (!(nunits & (nunits - 1)));
2171 /* Find an appropriate mode for the vector type. */
2172 if (TYPE_MODE (type) == VOIDmode)
2173 SET_TYPE_MODE (type,
2174 mode_for_vector (TYPE_MODE (innertype), nunits));
2176 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2177 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2178 /* Several boolean vector elements may fit in a single unit. */
2179 if (VECTOR_BOOLEAN_TYPE_P (type)
2180 && type->type_common.mode != BLKmode)
2181 TYPE_SIZE_UNIT (type)
2182 = size_int (GET_MODE_SIZE (type->type_common.mode));
2183 else
2184 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2185 TYPE_SIZE_UNIT (innertype),
2186 size_int (nunits));
2187 TYPE_SIZE (type) = int_const_binop (MULT_EXPR,
2188 TYPE_SIZE (innertype),
2189 bitsize_int (nunits));
2191 /* For vector types, we do not default to the mode's alignment.
2192 Instead, query a target hook, defaulting to natural alignment.
2193 This prevents ABI changes depending on whether or not native
2194 vector modes are supported. */
2195 SET_TYPE_ALIGN (type, targetm.vector_alignment (type));
2197 /* However, if the underlying mode requires a bigger alignment than
2198 what the target hook provides, we cannot use the mode. For now,
2199 simply reject that case. */
2200 gcc_assert (TYPE_ALIGN (type)
2201 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2202 break;
2205 case VOID_TYPE:
2206 /* This is an incomplete type and so doesn't have a size. */
2207 SET_TYPE_ALIGN (type, 1);
2208 TYPE_USER_ALIGN (type) = 0;
2209 SET_TYPE_MODE (type, VOIDmode);
2210 break;
2212 case POINTER_BOUNDS_TYPE:
2213 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2214 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2215 break;
2217 case OFFSET_TYPE:
2218 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2219 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2220 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2221 integral, which may be an __intN. */
2222 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2223 TYPE_PRECISION (type) = POINTER_SIZE;
2224 break;
2226 case FUNCTION_TYPE:
2227 case METHOD_TYPE:
2228 /* It's hard to see what the mode and size of a function ought to
2229 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2230 make it consistent with that. */
2231 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2232 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2233 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2234 break;
2236 case POINTER_TYPE:
2237 case REFERENCE_TYPE:
2239 machine_mode mode = TYPE_MODE (type);
2240 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2241 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2242 TYPE_UNSIGNED (type) = 1;
2243 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2245 break;
2247 case ARRAY_TYPE:
2249 tree index = TYPE_DOMAIN (type);
2250 tree element = TREE_TYPE (type);
2252 /* We need to know both bounds in order to compute the size. */
2253 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2254 && TYPE_SIZE (element))
2256 tree ub = TYPE_MAX_VALUE (index);
2257 tree lb = TYPE_MIN_VALUE (index);
2258 tree element_size = TYPE_SIZE (element);
2259 tree length;
2261 /* Make sure that an array of zero-sized element is zero-sized
2262 regardless of its extent. */
2263 if (integer_zerop (element_size))
2264 length = size_zero_node;
2266 /* The computation should happen in the original signedness so
2267 that (possible) negative values are handled appropriately
2268 when determining overflow. */
2269 else
2271 /* ??? When it is obvious that the range is signed
2272 represent it using ssizetype. */
2273 if (TREE_CODE (lb) == INTEGER_CST
2274 && TREE_CODE (ub) == INTEGER_CST
2275 && TYPE_UNSIGNED (TREE_TYPE (lb))
2276 && tree_int_cst_lt (ub, lb))
2278 lb = wide_int_to_tree (ssizetype,
2279 offset_int::from (lb, SIGNED));
2280 ub = wide_int_to_tree (ssizetype,
2281 offset_int::from (ub, SIGNED));
2283 length
2284 = fold_convert (sizetype,
2285 size_binop (PLUS_EXPR,
2286 build_int_cst (TREE_TYPE (lb), 1),
2287 size_binop (MINUS_EXPR, ub, lb)));
2290 /* ??? We have no way to distinguish a null-sized array from an
2291 array spanning the whole sizetype range, so we arbitrarily
2292 decide that [0, -1] is the only valid representation. */
2293 if (integer_zerop (length)
2294 && TREE_OVERFLOW (length)
2295 && integer_zerop (lb))
2296 length = size_zero_node;
2298 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2299 fold_convert (bitsizetype,
2300 length));
2302 /* If we know the size of the element, calculate the total size
2303 directly, rather than do some division thing below. This
2304 optimization helps Fortran assumed-size arrays (where the
2305 size of the array is determined at runtime) substantially. */
2306 if (TYPE_SIZE_UNIT (element))
2307 TYPE_SIZE_UNIT (type)
2308 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2311 /* Now round the alignment and size,
2312 using machine-dependent criteria if any. */
2314 unsigned align = TYPE_ALIGN (element);
2315 if (TYPE_USER_ALIGN (type))
2316 align = MAX (align, TYPE_ALIGN (type));
2317 else
2318 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2319 #ifdef ROUND_TYPE_ALIGN
2320 align = ROUND_TYPE_ALIGN (type, align, BITS_PER_UNIT);
2321 #else
2322 align = MAX (align, BITS_PER_UNIT);
2323 #endif
2324 SET_TYPE_ALIGN (type, align);
2325 SET_TYPE_MODE (type, BLKmode);
2326 if (TYPE_SIZE (type) != 0
2327 && ! targetm.member_type_forces_blk (type, VOIDmode)
2328 /* BLKmode elements force BLKmode aggregate;
2329 else extract/store fields may lose. */
2330 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2331 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2333 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2334 TYPE_SIZE (type)));
2335 if (TYPE_MODE (type) != BLKmode
2336 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2337 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2339 TYPE_NO_FORCE_BLK (type) = 1;
2340 SET_TYPE_MODE (type, BLKmode);
2343 /* When the element size is constant, check that it is at least as
2344 large as the element alignment. */
2345 if (TYPE_SIZE_UNIT (element)
2346 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2347 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2348 TYPE_ALIGN_UNIT. */
2349 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2350 && !integer_zerop (TYPE_SIZE_UNIT (element))
2351 && compare_tree_int (TYPE_SIZE_UNIT (element),
2352 TYPE_ALIGN_UNIT (element)) < 0)
2353 error ("alignment of array elements is greater than element size");
2354 break;
2357 case RECORD_TYPE:
2358 case UNION_TYPE:
2359 case QUAL_UNION_TYPE:
2361 tree field;
2362 record_layout_info rli;
2364 /* Initialize the layout information. */
2365 rli = start_record_layout (type);
2367 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2368 in the reverse order in building the COND_EXPR that denotes
2369 its size. We reverse them again later. */
2370 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2371 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2373 /* Place all the fields. */
2374 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2375 place_field (rli, field);
2377 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2378 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2380 /* Finish laying out the record. */
2381 finish_record_layout (rli, /*free_p=*/true);
2383 break;
2385 default:
2386 gcc_unreachable ();
2389 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2390 records and unions, finish_record_layout already called this
2391 function. */
2392 if (!RECORD_OR_UNION_TYPE_P (type))
2393 finalize_type_size (type);
2395 /* We should never see alias sets on incomplete aggregates. And we
2396 should not call layout_type on not incomplete aggregates. */
2397 if (AGGREGATE_TYPE_P (type))
2398 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2401 /* Return the least alignment required for type TYPE. */
2403 unsigned int
2404 min_align_of_type (tree type)
2406 unsigned int align = TYPE_ALIGN (type);
2407 if (!TYPE_USER_ALIGN (type))
2409 align = MIN (align, BIGGEST_ALIGNMENT);
2410 #ifdef BIGGEST_FIELD_ALIGNMENT
2411 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2412 #endif
2413 unsigned int field_align = align;
2414 #ifdef ADJUST_FIELD_ALIGN
2415 field_align = ADJUST_FIELD_ALIGN (NULL_TREE, type, field_align);
2416 #endif
2417 align = MIN (align, field_align);
2419 return align / BITS_PER_UNIT;
2422 /* Vector types need to re-check the target flags each time we report
2423 the machine mode. We need to do this because attribute target can
2424 change the result of vector_mode_supported_p and have_regs_of_mode
2425 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2426 change on a per-function basis. */
2427 /* ??? Possibly a better solution is to run through all the types
2428 referenced by a function and re-compute the TYPE_MODE once, rather
2429 than make the TYPE_MODE macro call a function. */
2431 machine_mode
2432 vector_type_mode (const_tree t)
2434 machine_mode mode;
2436 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2438 mode = t->type_common.mode;
2439 if (VECTOR_MODE_P (mode)
2440 && (!targetm.vector_mode_supported_p (mode)
2441 || !have_regs_of_mode[mode]))
2443 machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2445 /* For integers, try mapping it to a same-sized scalar mode. */
2446 if (GET_MODE_CLASS (innermode) == MODE_INT)
2448 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2449 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2451 if (mode != VOIDmode && have_regs_of_mode[mode])
2452 return mode;
2455 return BLKmode;
2458 return mode;
2461 /* Create and return a type for signed integers of PRECISION bits. */
2463 tree
2464 make_signed_type (int precision)
2466 tree type = make_node (INTEGER_TYPE);
2468 TYPE_PRECISION (type) = precision;
2470 fixup_signed_type (type);
2471 return type;
2474 /* Create and return a type for unsigned integers of PRECISION bits. */
2476 tree
2477 make_unsigned_type (int precision)
2479 tree type = make_node (INTEGER_TYPE);
2481 TYPE_PRECISION (type) = precision;
2483 fixup_unsigned_type (type);
2484 return type;
2487 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2488 and SATP. */
2490 tree
2491 make_fract_type (int precision, int unsignedp, int satp)
2493 tree type = make_node (FIXED_POINT_TYPE);
2495 TYPE_PRECISION (type) = precision;
2497 if (satp)
2498 TYPE_SATURATING (type) = 1;
2500 /* Lay out the type: set its alignment, size, etc. */
2501 if (unsignedp)
2503 TYPE_UNSIGNED (type) = 1;
2504 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2506 else
2507 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2508 layout_type (type);
2510 return type;
2513 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2514 and SATP. */
2516 tree
2517 make_accum_type (int precision, int unsignedp, int satp)
2519 tree type = make_node (FIXED_POINT_TYPE);
2521 TYPE_PRECISION (type) = precision;
2523 if (satp)
2524 TYPE_SATURATING (type) = 1;
2526 /* Lay out the type: set its alignment, size, etc. */
2527 if (unsignedp)
2529 TYPE_UNSIGNED (type) = 1;
2530 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2532 else
2533 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2534 layout_type (type);
2536 return type;
2539 /* Initialize sizetypes so layout_type can use them. */
2541 void
2542 initialize_sizetypes (void)
2544 int precision, bprecision;
2546 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2547 if (strcmp (SIZETYPE, "unsigned int") == 0)
2548 precision = INT_TYPE_SIZE;
2549 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2550 precision = LONG_TYPE_SIZE;
2551 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2552 precision = LONG_LONG_TYPE_SIZE;
2553 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2554 precision = SHORT_TYPE_SIZE;
2555 else
2557 int i;
2559 precision = -1;
2560 for (i = 0; i < NUM_INT_N_ENTS; i++)
2561 if (int_n_enabled_p[i])
2563 char name[50];
2564 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2566 if (strcmp (name, SIZETYPE) == 0)
2568 precision = int_n_data[i].bitsize;
2571 if (precision == -1)
2572 gcc_unreachable ();
2575 bprecision
2576 = MIN (precision + LOG2_BITS_PER_UNIT + 1, MAX_FIXED_MODE_SIZE);
2577 bprecision
2578 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2579 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2580 bprecision = HOST_BITS_PER_DOUBLE_INT;
2582 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2583 sizetype = make_node (INTEGER_TYPE);
2584 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2585 TYPE_PRECISION (sizetype) = precision;
2586 TYPE_UNSIGNED (sizetype) = 1;
2587 bitsizetype = make_node (INTEGER_TYPE);
2588 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2589 TYPE_PRECISION (bitsizetype) = bprecision;
2590 TYPE_UNSIGNED (bitsizetype) = 1;
2592 /* Now layout both types manually. */
2593 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2594 SET_TYPE_ALIGN (sizetype, GET_MODE_ALIGNMENT (TYPE_MODE (sizetype)));
2595 TYPE_SIZE (sizetype) = bitsize_int (precision);
2596 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2597 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2599 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2600 SET_TYPE_ALIGN (bitsizetype, GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype)));
2601 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2602 TYPE_SIZE_UNIT (bitsizetype)
2603 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2604 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2606 /* Create the signed variants of *sizetype. */
2607 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2608 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2609 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2610 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2613 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2614 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2615 for TYPE, based on the PRECISION and whether or not the TYPE
2616 IS_UNSIGNED. PRECISION need not correspond to a width supported
2617 natively by the hardware; for example, on a machine with 8-bit,
2618 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2619 61. */
2621 void
2622 set_min_and_max_values_for_integral_type (tree type,
2623 int precision,
2624 signop sgn)
2626 /* For bitfields with zero width we end up creating integer types
2627 with zero precision. Don't assign any minimum/maximum values
2628 to those types, they don't have any valid value. */
2629 if (precision < 1)
2630 return;
2632 TYPE_MIN_VALUE (type)
2633 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2634 TYPE_MAX_VALUE (type)
2635 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2638 /* Set the extreme values of TYPE based on its precision in bits,
2639 then lay it out. Used when make_signed_type won't do
2640 because the tree code is not INTEGER_TYPE.
2641 E.g. for Pascal, when the -fsigned-char option is given. */
2643 void
2644 fixup_signed_type (tree type)
2646 int precision = TYPE_PRECISION (type);
2648 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2650 /* Lay out the type: set its alignment, size, etc. */
2651 layout_type (type);
2654 /* Set the extreme values of TYPE based on its precision in bits,
2655 then lay it out. This is used both in `make_unsigned_type'
2656 and for enumeral types. */
2658 void
2659 fixup_unsigned_type (tree type)
2661 int precision = TYPE_PRECISION (type);
2663 TYPE_UNSIGNED (type) = 1;
2665 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2667 /* Lay out the type: set its alignment, size, etc. */
2668 layout_type (type);
2671 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2672 starting at BITPOS.
2674 BITREGION_START is the bit position of the first bit in this
2675 sequence of bit fields. BITREGION_END is the last bit in this
2676 sequence. If these two fields are non-zero, we should restrict the
2677 memory access to that range. Otherwise, we are allowed to touch
2678 any adjacent non bit-fields.
2680 ALIGN is the alignment of the underlying object in bits.
2681 VOLATILEP says whether the bitfield is volatile. */
2683 bit_field_mode_iterator
2684 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2685 HOST_WIDE_INT bitregion_start,
2686 HOST_WIDE_INT bitregion_end,
2687 unsigned int align, bool volatilep)
2688 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2689 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2690 m_bitregion_end (bitregion_end), m_align (align),
2691 m_volatilep (volatilep), m_count (0)
2693 if (!m_bitregion_end)
2695 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2696 the bitfield is mapped and won't trap, provided that ALIGN isn't
2697 too large. The cap is the biggest required alignment for data,
2698 or at least the word size. And force one such chunk at least. */
2699 unsigned HOST_WIDE_INT units
2700 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2701 if (bitsize <= 0)
2702 bitsize = 1;
2703 m_bitregion_end = bitpos + bitsize + units - 1;
2704 m_bitregion_end -= m_bitregion_end % units + 1;
2708 /* Calls to this function return successively larger modes that can be used
2709 to represent the bitfield. Return true if another bitfield mode is
2710 available, storing it in *OUT_MODE if so. */
2712 bool
2713 bit_field_mode_iterator::next_mode (machine_mode *out_mode)
2715 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2717 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2719 /* Skip modes that don't have full precision. */
2720 if (unit != GET_MODE_PRECISION (m_mode))
2721 continue;
2723 /* Stop if the mode is too wide to handle efficiently. */
2724 if (unit > MAX_FIXED_MODE_SIZE)
2725 break;
2727 /* Don't deliver more than one multiword mode; the smallest one
2728 should be used. */
2729 if (m_count > 0 && unit > BITS_PER_WORD)
2730 break;
2732 /* Skip modes that are too small. */
2733 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2734 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2735 if (subend > unit)
2736 continue;
2738 /* Stop if the mode goes outside the bitregion. */
2739 HOST_WIDE_INT start = m_bitpos - substart;
2740 if (m_bitregion_start && start < m_bitregion_start)
2741 break;
2742 HOST_WIDE_INT end = start + unit;
2743 if (end > m_bitregion_end + 1)
2744 break;
2746 /* Stop if the mode requires too much alignment. */
2747 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2748 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2749 break;
2751 *out_mode = m_mode;
2752 m_mode = GET_MODE_WIDER_MODE (m_mode);
2753 m_count++;
2754 return true;
2756 return false;
2759 /* Return true if smaller modes are generally preferred for this kind
2760 of bitfield. */
2762 bool
2763 bit_field_mode_iterator::prefer_smaller_modes ()
2765 return (m_volatilep
2766 ? targetm.narrow_volatile_bitfield ()
2767 : !SLOW_BYTE_ACCESS);
2770 /* Find the best machine mode to use when referencing a bit field of length
2771 BITSIZE bits starting at BITPOS.
2773 BITREGION_START is the bit position of the first bit in this
2774 sequence of bit fields. BITREGION_END is the last bit in this
2775 sequence. If these two fields are non-zero, we should restrict the
2776 memory access to that range. Otherwise, we are allowed to touch
2777 any adjacent non bit-fields.
2779 The underlying object is known to be aligned to a boundary of ALIGN bits.
2780 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2781 larger than LARGEST_MODE (usually SImode).
2783 If no mode meets all these conditions, we return VOIDmode.
2785 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2786 smallest mode meeting these conditions.
2788 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2789 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2790 all the conditions.
2792 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2793 decide which of the above modes should be used. */
2795 machine_mode
2796 get_best_mode (int bitsize, int bitpos,
2797 unsigned HOST_WIDE_INT bitregion_start,
2798 unsigned HOST_WIDE_INT bitregion_end,
2799 unsigned int align,
2800 machine_mode largest_mode, bool volatilep)
2802 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2803 bitregion_end, align, volatilep);
2804 machine_mode widest_mode = VOIDmode;
2805 machine_mode mode;
2806 while (iter.next_mode (&mode)
2807 /* ??? For historical reasons, reject modes that would normally
2808 receive greater alignment, even if unaligned accesses are
2809 acceptable. This has both advantages and disadvantages.
2810 Removing this check means that something like:
2812 struct s { unsigned int x; unsigned int y; };
2813 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2815 can be implemented using a single load and compare on
2816 64-bit machines that have no alignment restrictions.
2817 For example, on powerpc64-linux-gnu, we would generate:
2819 ld 3,0(3)
2820 cntlzd 3,3
2821 srdi 3,3,6
2824 rather than:
2826 lwz 9,0(3)
2827 cmpwi 7,9,0
2828 bne 7,.L3
2829 lwz 3,4(3)
2830 cntlzw 3,3
2831 srwi 3,3,5
2832 extsw 3,3
2834 .p2align 4,,15
2835 .L3:
2836 li 3,0
2839 However, accessing more than one field can make life harder
2840 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2841 has a series of unsigned short copies followed by a series of
2842 unsigned short comparisons. With this check, both the copies
2843 and comparisons remain 16-bit accesses and FRE is able
2844 to eliminate the latter. Without the check, the comparisons
2845 can be done using 2 64-bit operations, which FRE isn't able
2846 to handle in the same way.
2848 Either way, it would probably be worth disabling this check
2849 during expand. One particular example where removing the
2850 check would help is the get_best_mode call in store_bit_field.
2851 If we are given a memory bitregion of 128 bits that is aligned
2852 to a 64-bit boundary, and the bitfield we want to modify is
2853 in the second half of the bitregion, this check causes
2854 store_bitfield to turn the memory into a 64-bit reference
2855 to the _first_ half of the region. We later use
2856 adjust_bitfield_address to get a reference to the correct half,
2857 but doing so looks to adjust_bitfield_address as though we are
2858 moving past the end of the original object, so it drops the
2859 associated MEM_EXPR and MEM_OFFSET. Removing the check
2860 causes store_bit_field to keep a 128-bit memory reference,
2861 so that the final bitfield reference still has a MEM_EXPR
2862 and MEM_OFFSET. */
2863 && GET_MODE_ALIGNMENT (mode) <= align
2864 && (largest_mode == VOIDmode
2865 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2867 widest_mode = mode;
2868 if (iter.prefer_smaller_modes ())
2869 break;
2871 return widest_mode;
2874 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2875 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2877 void
2878 get_mode_bounds (machine_mode mode, int sign,
2879 machine_mode target_mode,
2880 rtx *mmin, rtx *mmax)
2882 unsigned size = GET_MODE_PRECISION (mode);
2883 unsigned HOST_WIDE_INT min_val, max_val;
2885 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2887 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2888 if (mode == BImode)
2890 if (STORE_FLAG_VALUE < 0)
2892 min_val = STORE_FLAG_VALUE;
2893 max_val = 0;
2895 else
2897 min_val = 0;
2898 max_val = STORE_FLAG_VALUE;
2901 else if (sign)
2903 min_val = -(HOST_WIDE_INT_1U << (size - 1));
2904 max_val = (HOST_WIDE_INT_1U << (size - 1)) - 1;
2906 else
2908 min_val = 0;
2909 max_val = (HOST_WIDE_INT_1U << (size - 1) << 1) - 1;
2912 *mmin = gen_int_mode (min_val, target_mode);
2913 *mmax = gen_int_mode (max_val, target_mode);
2916 #include "gt-stor-layout.h"