libgo: update to 1.8.3 release
[official-gcc.git] / libgo / go / runtime / malloc.go
blob05a69c98aadde8786d004657edc8cb381cf560b5
1 // Copyright 2014 The Go Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style
3 // license that can be found in the LICENSE file.
5 // Memory allocator.
6 //
7 // This was originally based on tcmalloc, but has diverged quite a bit.
8 // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
10 // The main allocator works in runs of pages.
11 // Small allocation sizes (up to and including 32 kB) are
12 // rounded to one of about 70 size classes, each of which
13 // has its own free set of objects of exactly that size.
14 // Any free page of memory can be split into a set of objects
15 // of one size class, which are then managed using a free bitmap.
17 // The allocator's data structures are:
19 // fixalloc: a free-list allocator for fixed-size off-heap objects,
20 // used to manage storage used by the allocator.
21 // mheap: the malloc heap, managed at page (8192-byte) granularity.
22 // mspan: a run of pages managed by the mheap.
23 // mcentral: collects all spans of a given size class.
24 // mcache: a per-P cache of mspans with free space.
25 // mstats: allocation statistics.
27 // Allocating a small object proceeds up a hierarchy of caches:
29 // 1. Round the size up to one of the small size classes
30 // and look in the corresponding mspan in this P's mcache.
31 // Scan the mspan's free bitmap to find a free slot.
32 // If there is a free slot, allocate it.
33 // This can all be done without acquiring a lock.
35 // 2. If the mspan has no free slots, obtain a new mspan
36 // from the mcentral's list of mspans of the required size
37 // class that have free space.
38 // Obtaining a whole span amortizes the cost of locking
39 // the mcentral.
41 // 3. If the mcentral's mspan list is empty, obtain a run
42 // of pages from the mheap to use for the mspan.
44 // 4. If the mheap is empty or has no page runs large enough,
45 // allocate a new group of pages (at least 1MB) from the
46 // operating system. Allocating a large run of pages
47 // amortizes the cost of talking to the operating system.
49 // Sweeping an mspan and freeing objects on it proceeds up a similar
50 // hierarchy:
52 // 1. If the mspan is being swept in response to allocation, it
53 // is returned to the mcache to satisfy the allocation.
55 // 2. Otherwise, if the mspan still has allocated objects in it,
56 // it is placed on the mcentral free list for the mspan's size
57 // class.
59 // 3. Otherwise, if all objects in the mspan are free, the mspan
60 // is now "idle", so it is returned to the mheap and no longer
61 // has a size class.
62 // This may coalesce it with adjacent idle mspans.
64 // 4. If an mspan remains idle for long enough, return its pages
65 // to the operating system.
67 // Allocating and freeing a large object uses the mheap
68 // directly, bypassing the mcache and mcentral.
70 // Free object slots in an mspan are zeroed only if mspan.needzero is
71 // false. If needzero is true, objects are zeroed as they are
72 // allocated. There are various benefits to delaying zeroing this way:
74 // 1. Stack frame allocation can avoid zeroing altogether.
76 // 2. It exhibits better temporal locality, since the program is
77 // probably about to write to the memory.
79 // 3. We don't zero pages that never get reused.
81 package runtime
83 import (
84 "runtime/internal/sys"
85 "unsafe"
88 // C function to get the end of the program's memory.
89 func getEnd() uintptr
91 // For gccgo, use go:linkname to rename compiler-called functions to
92 // themselves, so that the compiler will export them.
94 //go:linkname newobject runtime.newobject
96 // Functions called by C code.
97 //go:linkname mallocgc runtime.mallocgc
99 const (
100 debugMalloc = false
102 maxTinySize = _TinySize
103 tinySizeClass = _TinySizeClass
104 maxSmallSize = _MaxSmallSize
106 pageShift = _PageShift
107 pageSize = _PageSize
108 pageMask = _PageMask
109 // By construction, single page spans of the smallest object class
110 // have the most objects per span.
111 maxObjsPerSpan = pageSize / 8
113 mSpanInUse = _MSpanInUse
115 concurrentSweep = _ConcurrentSweep
117 _PageSize = 1 << _PageShift
118 _PageMask = _PageSize - 1
120 // _64bit = 1 on 64-bit systems, 0 on 32-bit systems
121 _64bit = 1 << (^uintptr(0) >> 63) / 2
123 // Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
124 _TinySize = 16
125 _TinySizeClass = 2
127 _FixAllocChunk = 16 << 10 // Chunk size for FixAlloc
128 _MaxMHeapList = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap.
129 _HeapAllocChunk = 1 << 20 // Chunk size for heap growth
131 // Per-P, per order stack segment cache size.
132 _StackCacheSize = 32 * 1024
134 // Number of orders that get caching. Order 0 is FixedStack
135 // and each successive order is twice as large.
136 // We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
137 // will be allocated directly.
138 // Since FixedStack is different on different systems, we
139 // must vary NumStackOrders to keep the same maximum cached size.
140 // OS | FixedStack | NumStackOrders
141 // -----------------+------------+---------------
142 // linux/darwin/bsd | 2KB | 4
143 // windows/32 | 4KB | 3
144 // windows/64 | 8KB | 2
145 // plan9 | 4KB | 3
146 _NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9
148 // Number of bits in page to span calculations (4k pages).
149 // On Windows 64-bit we limit the arena to 32GB or 35 bits.
150 // Windows counts memory used by page table into committed memory
151 // of the process, so we can't reserve too much memory.
152 // See https://golang.org/issue/5402 and https://golang.org/issue/5236.
153 // On other 64-bit platforms, we limit the arena to 512GB, or 39 bits.
154 // On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
155 // The only exception is mips32 which only has access to low 2GB of virtual memory.
156 // On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory,
157 // but as most devices have less than 4GB of physical memory anyway, we
158 // try to be conservative here, and only ask for a 2GB heap.
159 _MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*(32-(sys.GoarchMips+sys.GoarchMipsle))
160 _MHeapMap_Bits = _MHeapMap_TotalBits - _PageShift
162 _MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1)
164 // Max number of threads to run garbage collection.
165 // 2, 3, and 4 are all plausible maximums depending
166 // on the hardware details of the machine. The garbage
167 // collector scales well to 32 cpus.
168 _MaxGcproc = 32
170 _MaxArena32 = 1<<32 - 1
172 // minLegalPointer is the smallest possible legal pointer.
173 // This is the smallest possible architectural page size,
174 // since we assume that the first page is never mapped.
176 // This should agree with minZeroPage in the compiler.
177 minLegalPointer uintptr = 4096
180 // physPageSize is the size in bytes of the OS's physical pages.
181 // Mapping and unmapping operations must be done at multiples of
182 // physPageSize.
184 // This must be set by the OS init code (typically in osinit) before
185 // mallocinit.
186 var physPageSize uintptr
188 // OS-defined helpers:
190 // sysAlloc obtains a large chunk of zeroed memory from the
191 // operating system, typically on the order of a hundred kilobytes
192 // or a megabyte.
193 // NOTE: sysAlloc returns OS-aligned memory, but the heap allocator
194 // may use larger alignment, so the caller must be careful to realign the
195 // memory obtained by sysAlloc.
197 // SysUnused notifies the operating system that the contents
198 // of the memory region are no longer needed and can be reused
199 // for other purposes.
200 // SysUsed notifies the operating system that the contents
201 // of the memory region are needed again.
203 // SysFree returns it unconditionally; this is only used if
204 // an out-of-memory error has been detected midway through
205 // an allocation. It is okay if SysFree is a no-op.
207 // SysReserve reserves address space without allocating memory.
208 // If the pointer passed to it is non-nil, the caller wants the
209 // reservation there, but SysReserve can still choose another
210 // location if that one is unavailable. On some systems and in some
211 // cases SysReserve will simply check that the address space is
212 // available and not actually reserve it. If SysReserve returns
213 // non-nil, it sets *reserved to true if the address space is
214 // reserved, false if it has merely been checked.
215 // NOTE: SysReserve returns OS-aligned memory, but the heap allocator
216 // may use larger alignment, so the caller must be careful to realign the
217 // memory obtained by sysAlloc.
219 // SysMap maps previously reserved address space for use.
220 // The reserved argument is true if the address space was really
221 // reserved, not merely checked.
223 // SysFault marks a (already sysAlloc'd) region to fault
224 // if accessed. Used only for debugging the runtime.
226 func mallocinit() {
227 if class_to_size[_TinySizeClass] != _TinySize {
228 throw("bad TinySizeClass")
231 // Not used for gccgo.
232 // testdefersizes()
234 // Copy class sizes out for statistics table.
235 for i := range class_to_size {
236 memstats.by_size[i].size = uint32(class_to_size[i])
239 // Check physPageSize.
240 if physPageSize == 0 {
241 // The OS init code failed to fetch the physical page size.
242 throw("failed to get system page size")
244 if physPageSize < minPhysPageSize {
245 print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
246 throw("bad system page size")
248 if physPageSize&(physPageSize-1) != 0 {
249 print("system page size (", physPageSize, ") must be a power of 2\n")
250 throw("bad system page size")
253 var p, bitmapSize, spansSize, pSize, limit uintptr
254 var reserved bool
256 // limit = runtime.memlimit();
257 // See https://golang.org/issue/5049
258 // TODO(rsc): Fix after 1.1.
259 limit = 0
261 // Set up the allocation arena, a contiguous area of memory where
262 // allocated data will be found. The arena begins with a bitmap large
263 // enough to hold 2 bits per allocated word.
264 if sys.PtrSize == 8 && (limit == 0 || limit > 1<<30) {
265 // On a 64-bit machine, allocate from a single contiguous reservation.
266 // 512 GB (MaxMem) should be big enough for now.
268 // The code will work with the reservation at any address, but ask
269 // SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
270 // Allocating a 512 GB region takes away 39 bits, and the amd64
271 // doesn't let us choose the top 17 bits, so that leaves the 9 bits
272 // in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
273 // that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
274 // In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
275 // UTF-8 sequences, and they are otherwise as far away from
276 // ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
277 // addresses. An earlier attempt to use 0x11f8 caused out of memory errors
278 // on OS X during thread allocations. 0x00c0 causes conflicts with
279 // AddressSanitizer which reserves all memory up to 0x0100.
280 // These choices are both for debuggability and to reduce the
281 // odds of a conservative garbage collector (as is still used in gccgo)
282 // not collecting memory because some non-pointer block of memory
283 // had a bit pattern that matched a memory address.
285 // Actually we reserve 544 GB (because the bitmap ends up being 32 GB)
286 // but it hardly matters: e0 00 is not valid UTF-8 either.
288 // If this fails we fall back to the 32 bit memory mechanism
290 // However, on arm64, we ignore all this advice above and slam the
291 // allocation at 0x40 << 32 because when using 4k pages with 3-level
292 // translation buffers, the user address space is limited to 39 bits
293 // On darwin/arm64, the address space is even smaller.
294 arenaSize := round(_MaxMem, _PageSize)
295 bitmapSize = arenaSize / (sys.PtrSize * 8 / 2)
296 spansSize = arenaSize / _PageSize * sys.PtrSize
297 spansSize = round(spansSize, _PageSize)
298 for i := 0; i <= 0x7f; i++ {
299 switch {
300 case GOARCH == "arm64" && GOOS == "darwin":
301 p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
302 case GOARCH == "arm64":
303 p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
304 default:
305 p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
307 pSize = bitmapSize + spansSize + arenaSize + _PageSize
308 p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
309 if p != 0 {
310 break
315 if p == 0 {
316 // On a 32-bit machine, we can't typically get away
317 // with a giant virtual address space reservation.
318 // Instead we map the memory information bitmap
319 // immediately after the data segment, large enough
320 // to handle the entire 4GB address space (256 MB),
321 // along with a reservation for an initial arena.
322 // When that gets used up, we'll start asking the kernel
323 // for any memory anywhere.
325 // If we fail to allocate, try again with a smaller arena.
326 // This is necessary on Android L where we share a process
327 // with ART, which reserves virtual memory aggressively.
328 // In the worst case, fall back to a 0-sized initial arena,
329 // in the hope that subsequent reservations will succeed.
330 arenaSizes := [...]uintptr{
331 512 << 20,
332 256 << 20,
333 128 << 20,
337 for _, arenaSize := range &arenaSizes {
338 bitmapSize = (_MaxArena32 + 1) / (sys.PtrSize * 8 / 2)
339 spansSize = (_MaxArena32 + 1) / _PageSize * sys.PtrSize
340 if limit > 0 && arenaSize+bitmapSize+spansSize > limit {
341 bitmapSize = (limit / 9) &^ ((1 << _PageShift) - 1)
342 arenaSize = bitmapSize * 8
343 spansSize = arenaSize / _PageSize * sys.PtrSize
345 spansSize = round(spansSize, _PageSize)
347 // SysReserve treats the address we ask for, end, as a hint,
348 // not as an absolute requirement. If we ask for the end
349 // of the data segment but the operating system requires
350 // a little more space before we can start allocating, it will
351 // give out a slightly higher pointer. Except QEMU, which
352 // is buggy, as usual: it won't adjust the pointer upward.
353 // So adjust it upward a little bit ourselves: 1/4 MB to get
354 // away from the running binary image and then round up
355 // to a MB boundary.
356 p = round(getEnd()+(1<<18), 1<<20)
357 pSize = bitmapSize + spansSize + arenaSize + _PageSize
358 p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
359 if p != 0 {
360 break
363 if p == 0 {
364 throw("runtime: cannot reserve arena virtual address space")
368 // PageSize can be larger than OS definition of page size,
369 // so SysReserve can give us a PageSize-unaligned pointer.
370 // To overcome this we ask for PageSize more and round up the pointer.
371 p1 := round(p, _PageSize)
373 spansStart := p1
374 mheap_.bitmap = p1 + spansSize + bitmapSize
375 if sys.PtrSize == 4 {
376 // Set arena_start such that we can accept memory
377 // reservations located anywhere in the 4GB virtual space.
378 mheap_.arena_start = 0
379 } else {
380 mheap_.arena_start = p1 + (spansSize + bitmapSize)
382 mheap_.arena_end = p + pSize
383 mheap_.arena_used = p1 + (spansSize + bitmapSize)
384 mheap_.arena_reserved = reserved
386 if mheap_.arena_start&(_PageSize-1) != 0 {
387 println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start))
388 throw("misrounded allocation in mallocinit")
391 // Initialize the rest of the allocator.
392 mheap_.init(spansStart, spansSize)
393 _g_ := getg()
394 _g_.m.mcache = allocmcache()
397 // sysAlloc allocates the next n bytes from the heap arena. The
398 // returned pointer is always _PageSize aligned and between
399 // h.arena_start and h.arena_end. sysAlloc returns nil on failure.
400 // There is no corresponding free function.
401 func (h *mheap) sysAlloc(n uintptr) unsafe.Pointer {
402 if n > h.arena_end-h.arena_used {
403 // We are in 32-bit mode, maybe we didn't use all possible address space yet.
404 // Reserve some more space.
405 p_size := round(n+_PageSize, 256<<20)
406 new_end := h.arena_end + p_size // Careful: can overflow
407 if h.arena_end <= new_end && new_end-h.arena_start-1 <= _MaxArena32 {
408 // TODO: It would be bad if part of the arena
409 // is reserved and part is not.
410 var reserved bool
411 p := uintptr(sysReserve(unsafe.Pointer(h.arena_end), p_size, &reserved))
412 if p == 0 {
413 return nil
415 // p can be just about anywhere in the address
416 // space, including before arena_end.
417 if p == h.arena_end {
418 h.arena_end = new_end
419 h.arena_reserved = reserved
420 } else if h.arena_end < p && p+p_size-h.arena_start-1 <= _MaxArena32 {
421 // Keep everything page-aligned.
422 // Our pages are bigger than hardware pages.
423 h.arena_end = p + p_size
424 used := p + (-p & (_PageSize - 1))
425 h.mapBits(used)
426 h.mapSpans(used)
427 h.arena_used = used
428 h.arena_reserved = reserved
429 } else {
430 // We got a mapping, but it's not
431 // linear with our current arena, so
432 // we can't use it.
434 // TODO: Make it possible to allocate
435 // from this. We can't decrease
436 // arena_used, but we could introduce
437 // a new variable for the current
438 // allocation position.
440 // We haven't added this allocation to
441 // the stats, so subtract it from a
442 // fake stat (but avoid underflow).
443 stat := uint64(p_size)
444 sysFree(unsafe.Pointer(p), p_size, &stat)
449 if n <= h.arena_end-h.arena_used {
450 // Keep taking from our reservation.
451 p := h.arena_used
452 sysMap(unsafe.Pointer(p), n, h.arena_reserved, &memstats.heap_sys)
453 h.mapBits(p + n)
454 h.mapSpans(p + n)
455 h.arena_used = p + n
456 if raceenabled {
457 racemapshadow(unsafe.Pointer(p), n)
460 if p&(_PageSize-1) != 0 {
461 throw("misrounded allocation in MHeap_SysAlloc")
463 return unsafe.Pointer(p)
466 // If using 64-bit, our reservation is all we have.
467 if h.arena_end-h.arena_start > _MaxArena32 {
468 return nil
471 // On 32-bit, once the reservation is gone we can
472 // try to get memory at a location chosen by the OS.
473 p_size := round(n, _PageSize) + _PageSize
474 p := uintptr(sysAlloc(p_size, &memstats.heap_sys))
475 if p == 0 {
476 return nil
479 if p < h.arena_start || p+p_size-h.arena_start > _MaxArena32 {
480 top := ^uintptr(0)
481 if top-h.arena_start-1 > _MaxArena32 {
482 top = h.arena_start + _MaxArena32 + 1
484 print("runtime: memory allocated by OS (", hex(p), ") not in usable range [", hex(h.arena_start), ",", hex(top), ")\n")
485 sysFree(unsafe.Pointer(p), p_size, &memstats.heap_sys)
486 return nil
489 p_end := p + p_size
490 p += -p & (_PageSize - 1)
491 if p+n > h.arena_used {
492 h.mapBits(p + n)
493 h.mapSpans(p + n)
494 h.arena_used = p + n
495 if p_end > h.arena_end {
496 h.arena_end = p_end
498 if raceenabled {
499 racemapshadow(unsafe.Pointer(p), n)
503 if p&(_PageSize-1) != 0 {
504 throw("misrounded allocation in MHeap_SysAlloc")
506 return unsafe.Pointer(p)
509 // base address for all 0-byte allocations
510 var zerobase uintptr
512 // nextFreeFast returns the next free object if one is quickly available.
513 // Otherwise it returns 0.
514 func nextFreeFast(s *mspan) gclinkptr {
515 theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache?
516 if theBit < 64 {
517 result := s.freeindex + uintptr(theBit)
518 if result < s.nelems {
519 freeidx := result + 1
520 if freeidx%64 == 0 && freeidx != s.nelems {
521 return 0
523 s.allocCache >>= (theBit + 1)
524 s.freeindex = freeidx
525 v := gclinkptr(result*s.elemsize + s.base())
526 s.allocCount++
527 return v
530 return 0
533 // nextFree returns the next free object from the cached span if one is available.
534 // Otherwise it refills the cache with a span with an available object and
535 // returns that object along with a flag indicating that this was a heavy
536 // weight allocation. If it is a heavy weight allocation the caller must
537 // determine whether a new GC cycle needs to be started or if the GC is active
538 // whether this goroutine needs to assist the GC.
539 func (c *mcache) nextFree(sizeclass uint8) (v gclinkptr, s *mspan, shouldhelpgc bool) {
540 s = c.alloc[sizeclass]
541 shouldhelpgc = false
542 freeIndex := s.nextFreeIndex()
543 if freeIndex == s.nelems {
544 // The span is full.
545 if uintptr(s.allocCount) != s.nelems {
546 println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
547 throw("s.allocCount != s.nelems && freeIndex == s.nelems")
549 systemstack(func() {
550 c.refill(int32(sizeclass))
552 shouldhelpgc = true
553 s = c.alloc[sizeclass]
555 freeIndex = s.nextFreeIndex()
558 if freeIndex >= s.nelems {
559 throw("freeIndex is not valid")
562 v = gclinkptr(freeIndex*s.elemsize + s.base())
563 s.allocCount++
564 if uintptr(s.allocCount) > s.nelems {
565 println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
566 throw("s.allocCount > s.nelems")
568 return
571 // Allocate an object of size bytes.
572 // Small objects are allocated from the per-P cache's free lists.
573 // Large objects (> 32 kB) are allocated straight from the heap.
574 func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
575 if gcphase == _GCmarktermination {
576 throw("mallocgc called with gcphase == _GCmarktermination")
579 if size == 0 {
580 return unsafe.Pointer(&zerobase)
583 if debug.sbrk != 0 {
584 align := uintptr(16)
585 if typ != nil {
586 align = uintptr(typ.align)
588 return persistentalloc(size, align, &memstats.other_sys)
591 // When using gccgo, when a cgo or SWIG function has an
592 // interface return type and the function returns a
593 // non-pointer, memory allocation occurs after syscall.Cgocall
594 // but before syscall.CgocallDone. Treat this allocation as a
595 // callback.
596 incallback := false
597 if gomcache() == nil && getg().m.ncgo > 0 {
598 exitsyscall(0)
599 incallback = true
602 // assistG is the G to charge for this allocation, or nil if
603 // GC is not currently active.
604 var assistG *g
605 if gcBlackenEnabled != 0 {
606 // Charge the current user G for this allocation.
607 assistG = getg()
608 if assistG.m.curg != nil {
609 assistG = assistG.m.curg
611 // Charge the allocation against the G. We'll account
612 // for internal fragmentation at the end of mallocgc.
613 assistG.gcAssistBytes -= int64(size)
615 if assistG.gcAssistBytes < 0 {
616 // This G is in debt. Assist the GC to correct
617 // this before allocating. This must happen
618 // before disabling preemption.
619 gcAssistAlloc(assistG)
623 // Set mp.mallocing to keep from being preempted by GC.
624 mp := acquirem()
625 if mp.mallocing != 0 {
626 throw("malloc deadlock")
628 if mp.gsignal == getg() {
629 throw("malloc during signal")
631 mp.mallocing = 1
633 shouldhelpgc := false
634 dataSize := size
635 c := gomcache()
636 var x unsafe.Pointer
637 noscan := typ == nil || typ.kind&kindNoPointers != 0
638 if size <= maxSmallSize {
639 if noscan && size < maxTinySize {
640 // Tiny allocator.
642 // Tiny allocator combines several tiny allocation requests
643 // into a single memory block. The resulting memory block
644 // is freed when all subobjects are unreachable. The subobjects
645 // must be noscan (don't have pointers), this ensures that
646 // the amount of potentially wasted memory is bounded.
648 // Size of the memory block used for combining (maxTinySize) is tunable.
649 // Current setting is 16 bytes, which relates to 2x worst case memory
650 // wastage (when all but one subobjects are unreachable).
651 // 8 bytes would result in no wastage at all, but provides less
652 // opportunities for combining.
653 // 32 bytes provides more opportunities for combining,
654 // but can lead to 4x worst case wastage.
655 // The best case winning is 8x regardless of block size.
657 // Objects obtained from tiny allocator must not be freed explicitly.
658 // So when an object will be freed explicitly, we ensure that
659 // its size >= maxTinySize.
661 // SetFinalizer has a special case for objects potentially coming
662 // from tiny allocator, it such case it allows to set finalizers
663 // for an inner byte of a memory block.
665 // The main targets of tiny allocator are small strings and
666 // standalone escaping variables. On a json benchmark
667 // the allocator reduces number of allocations by ~12% and
668 // reduces heap size by ~20%.
669 off := c.tinyoffset
670 // Align tiny pointer for required (conservative) alignment.
671 if size&7 == 0 {
672 off = round(off, 8)
673 } else if size&3 == 0 {
674 off = round(off, 4)
675 } else if size&1 == 0 {
676 off = round(off, 2)
678 if off+size <= maxTinySize && c.tiny != 0 {
679 // The object fits into existing tiny block.
680 x = unsafe.Pointer(c.tiny + off)
681 c.tinyoffset = off + size
682 c.local_tinyallocs++
683 mp.mallocing = 0
684 releasem(mp)
685 if incallback {
686 entersyscall(0)
688 return x
690 // Allocate a new maxTinySize block.
691 span := c.alloc[tinySizeClass]
692 v := nextFreeFast(span)
693 if v == 0 {
694 v, _, shouldhelpgc = c.nextFree(tinySizeClass)
696 x = unsafe.Pointer(v)
697 (*[2]uint64)(x)[0] = 0
698 (*[2]uint64)(x)[1] = 0
699 // See if we need to replace the existing tiny block with the new one
700 // based on amount of remaining free space.
701 if size < c.tinyoffset || c.tiny == 0 {
702 c.tiny = uintptr(x)
703 c.tinyoffset = size
705 size = maxTinySize
706 } else {
707 var sizeclass uint8
708 if size <= smallSizeMax-8 {
709 sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
710 } else {
711 sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
713 size = uintptr(class_to_size[sizeclass])
714 span := c.alloc[sizeclass]
715 v := nextFreeFast(span)
716 if v == 0 {
717 v, span, shouldhelpgc = c.nextFree(sizeclass)
719 x = unsafe.Pointer(v)
720 if needzero && span.needzero != 0 {
721 memclrNoHeapPointers(unsafe.Pointer(v), size)
724 } else {
725 var s *mspan
726 shouldhelpgc = true
727 systemstack(func() {
728 s = largeAlloc(size, needzero)
730 s.freeindex = 1
731 s.allocCount = 1
732 x = unsafe.Pointer(s.base())
733 size = s.elemsize
736 var scanSize uintptr
737 if noscan {
738 heapBitsSetTypeNoScan(uintptr(x))
739 } else {
740 heapBitsSetType(uintptr(x), size, dataSize, typ)
741 if dataSize > typ.size {
742 // Array allocation. If there are any
743 // pointers, GC has to scan to the last
744 // element.
745 if typ.ptrdata != 0 {
746 scanSize = dataSize - typ.size + typ.ptrdata
748 } else {
749 scanSize = typ.ptrdata
751 c.local_scan += scanSize
754 // Ensure that the stores above that initialize x to
755 // type-safe memory and set the heap bits occur before
756 // the caller can make x observable to the garbage
757 // collector. Otherwise, on weakly ordered machines,
758 // the garbage collector could follow a pointer to x,
759 // but see uninitialized memory or stale heap bits.
760 publicationBarrier()
762 // Allocate black during GC.
763 // All slots hold nil so no scanning is needed.
764 // This may be racing with GC so do it atomically if there can be
765 // a race marking the bit.
766 if gcphase != _GCoff {
767 gcmarknewobject(uintptr(x), size, scanSize)
770 if raceenabled {
771 racemalloc(x, size)
774 if msanenabled {
775 msanmalloc(x, size)
778 mp.mallocing = 0
779 releasem(mp)
781 if debug.allocfreetrace != 0 {
782 tracealloc(x, size, typ)
785 if rate := MemProfileRate; rate > 0 {
786 if size < uintptr(rate) && int32(size) < c.next_sample {
787 c.next_sample -= int32(size)
788 } else {
789 mp := acquirem()
790 profilealloc(mp, x, size)
791 releasem(mp)
795 if assistG != nil {
796 // Account for internal fragmentation in the assist
797 // debt now that we know it.
798 assistG.gcAssistBytes -= int64(size - dataSize)
801 if shouldhelpgc && gcShouldStart(false) {
802 gcStart(gcBackgroundMode, false)
805 if getg().preempt {
806 checkPreempt()
809 if incallback {
810 entersyscall(0)
813 return x
816 func largeAlloc(size uintptr, needzero bool) *mspan {
817 // print("largeAlloc size=", size, "\n")
819 if size+_PageSize < size {
820 throw("out of memory")
822 npages := size >> _PageShift
823 if size&_PageMask != 0 {
824 npages++
827 // Deduct credit for this span allocation and sweep if
828 // necessary. mHeap_Alloc will also sweep npages, so this only
829 // pays the debt down to npage pages.
830 deductSweepCredit(npages*_PageSize, npages)
832 s := mheap_.alloc(npages, 0, true, needzero)
833 if s == nil {
834 throw("out of memory")
836 s.limit = s.base() + size
837 heapBitsForSpan(s.base()).initSpan(s)
838 return s
841 // implementation of new builtin
842 // compiler (both frontend and SSA backend) knows the signature
843 // of this function
844 func newobject(typ *_type) unsafe.Pointer {
845 return mallocgc(typ.size, typ, true)
848 //go:linkname reflect_unsafe_New reflect.unsafe_New
849 func reflect_unsafe_New(typ *_type) unsafe.Pointer {
850 return newobject(typ)
853 // newarray allocates an array of n elements of type typ.
854 func newarray(typ *_type, n int) unsafe.Pointer {
855 if n < 0 || uintptr(n) > maxSliceCap(typ.size) {
856 panic(plainError("runtime: allocation size out of range"))
858 return mallocgc(typ.size*uintptr(n), typ, true)
861 //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
862 func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
863 return newarray(typ, n)
866 func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
867 mp.mcache.next_sample = nextSample()
868 mProf_Malloc(x, size)
871 // nextSample returns the next sampling point for heap profiling.
872 // It produces a random variable with a geometric distribution and
873 // mean MemProfileRate. This is done by generating a uniformly
874 // distributed random number and applying the cumulative distribution
875 // function for an exponential.
876 func nextSample() int32 {
877 if GOOS == "plan9" {
878 // Plan 9 doesn't support floating point in note handler.
879 if g := getg(); g == g.m.gsignal {
880 return nextSampleNoFP()
884 period := MemProfileRate
886 // make nextSample not overflow. Maximum possible step is
887 // -ln(1/(1<<kRandomBitCount)) * period, approximately 20 * period.
888 switch {
889 case period > 0x7000000:
890 period = 0x7000000
891 case period == 0:
892 return 0
895 // Let m be the sample rate,
896 // the probability distribution function is m*exp(-mx), so the CDF is
897 // p = 1 - exp(-mx), so
898 // q = 1 - p == exp(-mx)
899 // log_e(q) = -mx
900 // -log_e(q)/m = x
901 // x = -log_e(q) * period
902 // x = log_2(q) * (-log_e(2)) * period ; Using log_2 for efficiency
903 const randomBitCount = 26
904 q := fastrand()%(1<<randomBitCount) + 1
905 qlog := fastlog2(float64(q)) - randomBitCount
906 if qlog > 0 {
907 qlog = 0
909 const minusLog2 = -0.6931471805599453 // -ln(2)
910 return int32(qlog*(minusLog2*float64(period))) + 1
913 // nextSampleNoFP is similar to nextSample, but uses older,
914 // simpler code to avoid floating point.
915 func nextSampleNoFP() int32 {
916 // Set first allocation sample size.
917 rate := MemProfileRate
918 if rate > 0x3fffffff { // make 2*rate not overflow
919 rate = 0x3fffffff
921 if rate != 0 {
922 return int32(int(fastrand()) % (2 * rate))
924 return 0
927 type persistentAlloc struct {
928 base unsafe.Pointer
929 off uintptr
932 var globalAlloc struct {
933 mutex
934 persistentAlloc
937 // Wrapper around sysAlloc that can allocate small chunks.
938 // There is no associated free operation.
939 // Intended for things like function/type/debug-related persistent data.
940 // If align is 0, uses default align (currently 8).
941 // The returned memory will be zeroed.
943 // Consider marking persistentalloc'd types go:notinheap.
944 func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
945 var p unsafe.Pointer
946 systemstack(func() {
947 p = persistentalloc1(size, align, sysStat)
949 return p
952 // Must run on system stack because stack growth can (re)invoke it.
953 // See issue 9174.
954 //go:systemstack
955 func persistentalloc1(size, align uintptr, sysStat *uint64) unsafe.Pointer {
956 const (
957 chunk = 256 << 10
958 maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
961 if size == 0 {
962 throw("persistentalloc: size == 0")
964 if align != 0 {
965 if align&(align-1) != 0 {
966 throw("persistentalloc: align is not a power of 2")
968 if align > _PageSize {
969 throw("persistentalloc: align is too large")
971 } else {
972 align = 8
975 if size >= maxBlock {
976 return sysAlloc(size, sysStat)
979 mp := acquirem()
980 var persistent *persistentAlloc
981 if mp != nil && mp.p != 0 {
982 persistent = &mp.p.ptr().palloc
983 } else {
984 lock(&globalAlloc.mutex)
985 persistent = &globalAlloc.persistentAlloc
987 persistent.off = round(persistent.off, align)
988 if persistent.off+size > chunk || persistent.base == nil {
989 persistent.base = sysAlloc(chunk, &memstats.other_sys)
990 if persistent.base == nil {
991 if persistent == &globalAlloc.persistentAlloc {
992 unlock(&globalAlloc.mutex)
994 throw("runtime: cannot allocate memory")
996 persistent.off = 0
998 p := add(persistent.base, persistent.off)
999 persistent.off += size
1000 releasem(mp)
1001 if persistent == &globalAlloc.persistentAlloc {
1002 unlock(&globalAlloc.mutex)
1005 if sysStat != &memstats.other_sys {
1006 mSysStatInc(sysStat, size)
1007 mSysStatDec(&memstats.other_sys, size)
1009 return p