diagnostic-show-locus.c: remove unused field from class colorizer
[official-gcc.git] / gcc / ira-build.c
blob308a286a1f20c6cde17e293f89cacadab56ae325
1 /* Building internal representation for IRA.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5 This file is part of GCC.
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "insn-config.h"
30 #include "regs.h"
31 #include "memmodel.h"
32 #include "ira.h"
33 #include "ira-int.h"
34 #include "params.h"
35 #include "sparseset.h"
36 #include "cfgloop.h"
38 static ira_copy_t find_allocno_copy (ira_allocno_t, ira_allocno_t, rtx_insn *,
39 ira_loop_tree_node_t);
41 /* The root of the loop tree corresponding to the all function. */
42 ira_loop_tree_node_t ira_loop_tree_root;
44 /* Height of the loop tree. */
45 int ira_loop_tree_height;
47 /* All nodes representing basic blocks are referred through the
48 following array. We can not use basic block member `aux' for this
49 because it is used for insertion of insns on edges. */
50 ira_loop_tree_node_t ira_bb_nodes;
52 /* All nodes representing loops are referred through the following
53 array. */
54 ira_loop_tree_node_t ira_loop_nodes;
56 /* And size of the ira_loop_nodes array. */
57 unsigned int ira_loop_nodes_count;
59 /* Map regno -> allocnos with given regno (see comments for
60 allocno member `next_regno_allocno'). */
61 ira_allocno_t *ira_regno_allocno_map;
63 /* Array of references to all allocnos. The order number of the
64 allocno corresponds to the index in the array. Removed allocnos
65 have NULL element value. */
66 ira_allocno_t *ira_allocnos;
68 /* Sizes of the previous array. */
69 int ira_allocnos_num;
71 /* Count of conflict record structures we've created, used when creating
72 a new conflict id. */
73 int ira_objects_num;
75 /* Map a conflict id to its conflict record. */
76 ira_object_t *ira_object_id_map;
78 /* Array of references to all allocno preferences. The order number
79 of the preference corresponds to the index in the array. */
80 ira_pref_t *ira_prefs;
82 /* Size of the previous array. */
83 int ira_prefs_num;
85 /* Array of references to all copies. The order number of the copy
86 corresponds to the index in the array. Removed copies have NULL
87 element value. */
88 ira_copy_t *ira_copies;
90 /* Size of the previous array. */
91 int ira_copies_num;
95 /* LAST_BASIC_BLOCK before generating additional insns because of live
96 range splitting. Emitting insns on a critical edge creates a new
97 basic block. */
98 static int last_basic_block_before_change;
100 /* Initialize some members in loop tree node NODE. Use LOOP_NUM for
101 the member loop_num. */
102 static void
103 init_loop_tree_node (struct ira_loop_tree_node *node, int loop_num)
105 int max_regno = max_reg_num ();
107 node->regno_allocno_map
108 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t) * max_regno);
109 memset (node->regno_allocno_map, 0, sizeof (ira_allocno_t) * max_regno);
110 memset (node->reg_pressure, 0, sizeof (node->reg_pressure));
111 node->all_allocnos = ira_allocate_bitmap ();
112 node->modified_regnos = ira_allocate_bitmap ();
113 node->border_allocnos = ira_allocate_bitmap ();
114 node->local_copies = ira_allocate_bitmap ();
115 node->loop_num = loop_num;
116 node->children = NULL;
117 node->subloops = NULL;
121 /* The following function allocates the loop tree nodes. If
122 CURRENT_LOOPS is NULL, the nodes corresponding to the loops (except
123 the root which corresponds the all function) will be not allocated
124 but nodes will still be allocated for basic blocks. */
125 static void
126 create_loop_tree_nodes (void)
128 unsigned int i, j;
129 bool skip_p;
130 edge_iterator ei;
131 edge e;
132 vec<edge> edges;
133 loop_p loop;
135 ira_bb_nodes
136 = ((struct ira_loop_tree_node *)
137 ira_allocate (sizeof (struct ira_loop_tree_node)
138 * last_basic_block_for_fn (cfun)));
139 last_basic_block_before_change = last_basic_block_for_fn (cfun);
140 for (i = 0; i < (unsigned int) last_basic_block_for_fn (cfun); i++)
142 ira_bb_nodes[i].regno_allocno_map = NULL;
143 memset (ira_bb_nodes[i].reg_pressure, 0,
144 sizeof (ira_bb_nodes[i].reg_pressure));
145 ira_bb_nodes[i].all_allocnos = NULL;
146 ira_bb_nodes[i].modified_regnos = NULL;
147 ira_bb_nodes[i].border_allocnos = NULL;
148 ira_bb_nodes[i].local_copies = NULL;
150 if (current_loops == NULL)
152 ira_loop_nodes_count = 1;
153 ira_loop_nodes = ((struct ira_loop_tree_node *)
154 ira_allocate (sizeof (struct ira_loop_tree_node)));
155 init_loop_tree_node (ira_loop_nodes, 0);
156 return;
158 ira_loop_nodes_count = number_of_loops (cfun);
159 ira_loop_nodes = ((struct ira_loop_tree_node *)
160 ira_allocate (sizeof (struct ira_loop_tree_node)
161 * ira_loop_nodes_count));
162 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
164 if (loop_outer (loop) != NULL)
166 ira_loop_nodes[i].regno_allocno_map = NULL;
167 skip_p = false;
168 FOR_EACH_EDGE (e, ei, loop->header->preds)
169 if (e->src != loop->latch
170 && (e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
172 skip_p = true;
173 break;
175 if (skip_p)
176 continue;
177 edges = get_loop_exit_edges (loop);
178 FOR_EACH_VEC_ELT (edges, j, e)
179 if ((e->flags & EDGE_ABNORMAL) && EDGE_CRITICAL_P (e))
181 skip_p = true;
182 break;
184 edges.release ();
185 if (skip_p)
186 continue;
188 init_loop_tree_node (&ira_loop_nodes[i], loop->num);
192 /* The function returns TRUE if there are more one allocation
193 region. */
194 static bool
195 more_one_region_p (void)
197 unsigned int i;
198 loop_p loop;
200 if (current_loops != NULL)
201 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
202 if (ira_loop_nodes[i].regno_allocno_map != NULL
203 && ira_loop_tree_root != &ira_loop_nodes[i])
204 return true;
205 return false;
208 /* Free the loop tree node of a loop. */
209 static void
210 finish_loop_tree_node (ira_loop_tree_node_t loop)
212 if (loop->regno_allocno_map != NULL)
214 ira_assert (loop->bb == NULL);
215 ira_free_bitmap (loop->local_copies);
216 ira_free_bitmap (loop->border_allocnos);
217 ira_free_bitmap (loop->modified_regnos);
218 ira_free_bitmap (loop->all_allocnos);
219 ira_free (loop->regno_allocno_map);
220 loop->regno_allocno_map = NULL;
224 /* Free the loop tree nodes. */
225 static void
226 finish_loop_tree_nodes (void)
228 unsigned int i;
230 for (i = 0; i < ira_loop_nodes_count; i++)
231 finish_loop_tree_node (&ira_loop_nodes[i]);
232 ira_free (ira_loop_nodes);
233 for (i = 0; i < (unsigned int) last_basic_block_before_change; i++)
235 if (ira_bb_nodes[i].local_copies != NULL)
236 ira_free_bitmap (ira_bb_nodes[i].local_copies);
237 if (ira_bb_nodes[i].border_allocnos != NULL)
238 ira_free_bitmap (ira_bb_nodes[i].border_allocnos);
239 if (ira_bb_nodes[i].modified_regnos != NULL)
240 ira_free_bitmap (ira_bb_nodes[i].modified_regnos);
241 if (ira_bb_nodes[i].all_allocnos != NULL)
242 ira_free_bitmap (ira_bb_nodes[i].all_allocnos);
243 if (ira_bb_nodes[i].regno_allocno_map != NULL)
244 ira_free (ira_bb_nodes[i].regno_allocno_map);
246 ira_free (ira_bb_nodes);
251 /* The following recursive function adds LOOP to the loop tree
252 hierarchy. LOOP is added only once. If LOOP is NULL we adding
253 loop designating the whole function when CFG loops are not
254 built. */
255 static void
256 add_loop_to_tree (struct loop *loop)
258 int loop_num;
259 struct loop *parent;
260 ira_loop_tree_node_t loop_node, parent_node;
262 /* We can not use loop node access macros here because of potential
263 checking and because the nodes are not initialized enough
264 yet. */
265 if (loop != NULL && loop_outer (loop) != NULL)
266 add_loop_to_tree (loop_outer (loop));
267 loop_num = loop != NULL ? loop->num : 0;
268 if (ira_loop_nodes[loop_num].regno_allocno_map != NULL
269 && ira_loop_nodes[loop_num].children == NULL)
271 /* We have not added loop node to the tree yet. */
272 loop_node = &ira_loop_nodes[loop_num];
273 loop_node->loop = loop;
274 loop_node->bb = NULL;
275 if (loop == NULL)
276 parent = NULL;
277 else
279 for (parent = loop_outer (loop);
280 parent != NULL;
281 parent = loop_outer (parent))
282 if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
283 break;
285 if (parent == NULL)
287 loop_node->next = NULL;
288 loop_node->subloop_next = NULL;
289 loop_node->parent = NULL;
291 else
293 parent_node = &ira_loop_nodes[parent->num];
294 loop_node->next = parent_node->children;
295 parent_node->children = loop_node;
296 loop_node->subloop_next = parent_node->subloops;
297 parent_node->subloops = loop_node;
298 loop_node->parent = parent_node;
303 /* The following recursive function sets up levels of nodes of the
304 tree given its root LOOP_NODE. The enumeration starts with LEVEL.
305 The function returns maximal value of level in the tree + 1. */
306 static int
307 setup_loop_tree_level (ira_loop_tree_node_t loop_node, int level)
309 int height, max_height;
310 ira_loop_tree_node_t subloop_node;
312 ira_assert (loop_node->bb == NULL);
313 loop_node->level = level;
314 max_height = level + 1;
315 for (subloop_node = loop_node->subloops;
316 subloop_node != NULL;
317 subloop_node = subloop_node->subloop_next)
319 ira_assert (subloop_node->bb == NULL);
320 height = setup_loop_tree_level (subloop_node, level + 1);
321 if (height > max_height)
322 max_height = height;
324 return max_height;
327 /* Create the loop tree. The algorithm is designed to provide correct
328 order of loops (they are ordered by their last loop BB) and basic
329 blocks in the chain formed by member next. */
330 static void
331 form_loop_tree (void)
333 basic_block bb;
334 struct loop *parent;
335 ira_loop_tree_node_t bb_node, loop_node;
337 /* We can not use loop/bb node access macros because of potential
338 checking and because the nodes are not initialized enough
339 yet. */
340 FOR_EACH_BB_FN (bb, cfun)
342 bb_node = &ira_bb_nodes[bb->index];
343 bb_node->bb = bb;
344 bb_node->loop = NULL;
345 bb_node->subloops = NULL;
346 bb_node->children = NULL;
347 bb_node->subloop_next = NULL;
348 bb_node->next = NULL;
349 if (current_loops == NULL)
350 parent = NULL;
351 else
353 for (parent = bb->loop_father;
354 parent != NULL;
355 parent = loop_outer (parent))
356 if (ira_loop_nodes[parent->num].regno_allocno_map != NULL)
357 break;
359 add_loop_to_tree (parent);
360 loop_node = &ira_loop_nodes[parent == NULL ? 0 : parent->num];
361 bb_node->next = loop_node->children;
362 bb_node->parent = loop_node;
363 loop_node->children = bb_node;
365 ira_loop_tree_root = IRA_LOOP_NODE_BY_INDEX (0);
366 ira_loop_tree_height = setup_loop_tree_level (ira_loop_tree_root, 0);
367 ira_assert (ira_loop_tree_root->regno_allocno_map != NULL);
372 /* Rebuild IRA_REGNO_ALLOCNO_MAP and REGNO_ALLOCNO_MAPs of the loop
373 tree nodes. */
374 static void
375 rebuild_regno_allocno_maps (void)
377 unsigned int l;
378 int max_regno, regno;
379 ira_allocno_t a;
380 ira_loop_tree_node_t loop_tree_node;
381 loop_p loop;
382 ira_allocno_iterator ai;
384 ira_assert (current_loops != NULL);
385 max_regno = max_reg_num ();
386 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), l, loop)
387 if (ira_loop_nodes[l].regno_allocno_map != NULL)
389 ira_free (ira_loop_nodes[l].regno_allocno_map);
390 ira_loop_nodes[l].regno_allocno_map
391 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
392 * max_regno);
393 memset (ira_loop_nodes[l].regno_allocno_map, 0,
394 sizeof (ira_allocno_t) * max_regno);
396 ira_free (ira_regno_allocno_map);
397 ira_regno_allocno_map
398 = (ira_allocno_t *) ira_allocate (max_regno * sizeof (ira_allocno_t));
399 memset (ira_regno_allocno_map, 0, max_regno * sizeof (ira_allocno_t));
400 FOR_EACH_ALLOCNO (a, ai)
402 if (ALLOCNO_CAP_MEMBER (a) != NULL)
403 /* Caps are not in the regno allocno maps. */
404 continue;
405 regno = ALLOCNO_REGNO (a);
406 loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
407 ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
408 ira_regno_allocno_map[regno] = a;
409 if (loop_tree_node->regno_allocno_map[regno] == NULL)
410 /* Remember that we can create temporary allocnos to break
411 cycles in register shuffle. */
412 loop_tree_node->regno_allocno_map[regno] = a;
417 /* Pools for allocnos, allocno live ranges and objects. */
418 static object_allocator<live_range> live_range_pool ("live ranges");
419 static object_allocator<ira_allocno> allocno_pool ("allocnos");
420 static object_allocator<ira_object> object_pool ("objects");
422 /* Vec containing references to all created allocnos. It is a
423 container of array allocnos. */
424 static vec<ira_allocno_t> allocno_vec;
426 /* Vec containing references to all created ira_objects. It is a
427 container of ira_object_id_map. */
428 static vec<ira_object_t> ira_object_id_map_vec;
430 /* Initialize data concerning allocnos. */
431 static void
432 initiate_allocnos (void)
434 allocno_vec.create (max_reg_num () * 2);
435 ira_allocnos = NULL;
436 ira_allocnos_num = 0;
437 ira_objects_num = 0;
438 ira_object_id_map_vec.create (max_reg_num () * 2);
439 ira_object_id_map = NULL;
440 ira_regno_allocno_map
441 = (ira_allocno_t *) ira_allocate (max_reg_num ()
442 * sizeof (ira_allocno_t));
443 memset (ira_regno_allocno_map, 0, max_reg_num () * sizeof (ira_allocno_t));
446 /* Create and return an object corresponding to a new allocno A. */
447 static ira_object_t
448 ira_create_object (ira_allocno_t a, int subword)
450 enum reg_class aclass = ALLOCNO_CLASS (a);
451 ira_object_t obj = object_pool.allocate ();
453 OBJECT_ALLOCNO (obj) = a;
454 OBJECT_SUBWORD (obj) = subword;
455 OBJECT_CONFLICT_ID (obj) = ira_objects_num;
456 OBJECT_CONFLICT_VEC_P (obj) = false;
457 OBJECT_CONFLICT_ARRAY (obj) = NULL;
458 OBJECT_NUM_CONFLICTS (obj) = 0;
459 COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
460 COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), ira_no_alloc_regs);
461 IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
462 reg_class_contents[aclass]);
463 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
464 reg_class_contents[aclass]);
465 OBJECT_MIN (obj) = INT_MAX;
466 OBJECT_MAX (obj) = -1;
467 OBJECT_LIVE_RANGES (obj) = NULL;
469 ira_object_id_map_vec.safe_push (obj);
470 ira_object_id_map
471 = ira_object_id_map_vec.address ();
472 ira_objects_num = ira_object_id_map_vec.length ();
474 return obj;
477 /* Create and return the allocno corresponding to REGNO in
478 LOOP_TREE_NODE. Add the allocno to the list of allocnos with the
479 same regno if CAP_P is FALSE. */
480 ira_allocno_t
481 ira_create_allocno (int regno, bool cap_p,
482 ira_loop_tree_node_t loop_tree_node)
484 ira_allocno_t a;
486 a = allocno_pool.allocate ();
487 ALLOCNO_REGNO (a) = regno;
488 ALLOCNO_LOOP_TREE_NODE (a) = loop_tree_node;
489 if (! cap_p)
491 ALLOCNO_NEXT_REGNO_ALLOCNO (a) = ira_regno_allocno_map[regno];
492 ira_regno_allocno_map[regno] = a;
493 if (loop_tree_node->regno_allocno_map[regno] == NULL)
494 /* Remember that we can create temporary allocnos to break
495 cycles in register shuffle on region borders (see
496 ira-emit.c). */
497 loop_tree_node->regno_allocno_map[regno] = a;
499 ALLOCNO_CAP (a) = NULL;
500 ALLOCNO_CAP_MEMBER (a) = NULL;
501 ALLOCNO_NUM (a) = ira_allocnos_num;
502 bitmap_set_bit (loop_tree_node->all_allocnos, ALLOCNO_NUM (a));
503 ALLOCNO_NREFS (a) = 0;
504 ALLOCNO_FREQ (a) = 0;
505 ALLOCNO_HARD_REGNO (a) = -1;
506 ALLOCNO_CALL_FREQ (a) = 0;
507 ALLOCNO_CALLS_CROSSED_NUM (a) = 0;
508 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a) = 0;
509 CLEAR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
510 #ifdef STACK_REGS
511 ALLOCNO_NO_STACK_REG_P (a) = false;
512 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = false;
513 #endif
514 ALLOCNO_DONT_REASSIGN_P (a) = false;
515 ALLOCNO_BAD_SPILL_P (a) = false;
516 ALLOCNO_ASSIGNED_P (a) = false;
517 ALLOCNO_MODE (a) = (regno < 0 ? VOIDmode : PSEUDO_REGNO_MODE (regno));
518 ALLOCNO_WMODE (a) = ALLOCNO_MODE (a);
519 ALLOCNO_PREFS (a) = NULL;
520 ALLOCNO_COPIES (a) = NULL;
521 ALLOCNO_HARD_REG_COSTS (a) = NULL;
522 ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
523 ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
524 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
525 ALLOCNO_CLASS (a) = NO_REGS;
526 ALLOCNO_UPDATED_CLASS_COST (a) = 0;
527 ALLOCNO_CLASS_COST (a) = 0;
528 ALLOCNO_MEMORY_COST (a) = 0;
529 ALLOCNO_UPDATED_MEMORY_COST (a) = 0;
530 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) = 0;
531 ALLOCNO_NUM_OBJECTS (a) = 0;
533 ALLOCNO_ADD_DATA (a) = NULL;
534 allocno_vec.safe_push (a);
535 ira_allocnos = allocno_vec.address ();
536 ira_allocnos_num = allocno_vec.length ();
538 return a;
541 /* Set up register class for A and update its conflict hard
542 registers. */
543 void
544 ira_set_allocno_class (ira_allocno_t a, enum reg_class aclass)
546 ira_allocno_object_iterator oi;
547 ira_object_t obj;
549 ALLOCNO_CLASS (a) = aclass;
550 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
552 IOR_COMPL_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
553 reg_class_contents[aclass]);
554 IOR_COMPL_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
555 reg_class_contents[aclass]);
559 /* Determine the number of objects we should associate with allocno A
560 and allocate them. */
561 void
562 ira_create_allocno_objects (ira_allocno_t a)
564 machine_mode mode = ALLOCNO_MODE (a);
565 enum reg_class aclass = ALLOCNO_CLASS (a);
566 int n = ira_reg_class_max_nregs[aclass][mode];
567 int i;
569 if (GET_MODE_SIZE (mode) != 2 * UNITS_PER_WORD || n != 2)
570 n = 1;
572 ALLOCNO_NUM_OBJECTS (a) = n;
573 for (i = 0; i < n; i++)
574 ALLOCNO_OBJECT (a, i) = ira_create_object (a, i);
577 /* For each allocno, set ALLOCNO_NUM_OBJECTS and create the
578 ALLOCNO_OBJECT structures. This must be called after the allocno
579 classes are known. */
580 static void
581 create_allocno_objects (void)
583 ira_allocno_t a;
584 ira_allocno_iterator ai;
586 FOR_EACH_ALLOCNO (a, ai)
587 ira_create_allocno_objects (a);
590 /* Merge hard register conflict information for all objects associated with
591 allocno TO into the corresponding objects associated with FROM.
592 If TOTAL_ONLY is true, we only merge OBJECT_TOTAL_CONFLICT_HARD_REGS. */
593 static void
594 merge_hard_reg_conflicts (ira_allocno_t from, ira_allocno_t to,
595 bool total_only)
597 int i;
598 gcc_assert (ALLOCNO_NUM_OBJECTS (to) == ALLOCNO_NUM_OBJECTS (from));
599 for (i = 0; i < ALLOCNO_NUM_OBJECTS (to); i++)
601 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
602 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
604 if (!total_only)
605 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (to_obj),
606 OBJECT_CONFLICT_HARD_REGS (from_obj));
607 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (to_obj),
608 OBJECT_TOTAL_CONFLICT_HARD_REGS (from_obj));
610 #ifdef STACK_REGS
611 if (!total_only && ALLOCNO_NO_STACK_REG_P (from))
612 ALLOCNO_NO_STACK_REG_P (to) = true;
613 if (ALLOCNO_TOTAL_NO_STACK_REG_P (from))
614 ALLOCNO_TOTAL_NO_STACK_REG_P (to) = true;
615 #endif
618 /* Update hard register conflict information for all objects associated with
619 A to include the regs in SET. */
620 void
621 ior_hard_reg_conflicts (ira_allocno_t a, HARD_REG_SET *set)
623 ira_allocno_object_iterator i;
624 ira_object_t obj;
626 FOR_EACH_ALLOCNO_OBJECT (a, obj, i)
628 IOR_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj), *set);
629 IOR_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), *set);
633 /* Return TRUE if a conflict vector with NUM elements is more
634 profitable than a conflict bit vector for OBJ. */
635 bool
636 ira_conflict_vector_profitable_p (ira_object_t obj, int num)
638 int nw;
639 int max = OBJECT_MAX (obj);
640 int min = OBJECT_MIN (obj);
642 if (max < min)
643 /* We prefer a bit vector in such case because it does not result
644 in allocation. */
645 return false;
647 nw = (max - min + IRA_INT_BITS) / IRA_INT_BITS;
648 return (2 * sizeof (ira_object_t) * (num + 1)
649 < 3 * nw * sizeof (IRA_INT_TYPE));
652 /* Allocates and initialize the conflict vector of OBJ for NUM
653 conflicting objects. */
654 void
655 ira_allocate_conflict_vec (ira_object_t obj, int num)
657 int size;
658 ira_object_t *vec;
660 ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
661 num++; /* for NULL end marker */
662 size = sizeof (ira_object_t) * num;
663 OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
664 vec = (ira_object_t *) OBJECT_CONFLICT_ARRAY (obj);
665 vec[0] = NULL;
666 OBJECT_NUM_CONFLICTS (obj) = 0;
667 OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
668 OBJECT_CONFLICT_VEC_P (obj) = true;
671 /* Allocate and initialize the conflict bit vector of OBJ. */
672 static void
673 allocate_conflict_bit_vec (ira_object_t obj)
675 unsigned int size;
677 ira_assert (OBJECT_CONFLICT_ARRAY (obj) == NULL);
678 size = ((OBJECT_MAX (obj) - OBJECT_MIN (obj) + IRA_INT_BITS)
679 / IRA_INT_BITS * sizeof (IRA_INT_TYPE));
680 OBJECT_CONFLICT_ARRAY (obj) = ira_allocate (size);
681 memset (OBJECT_CONFLICT_ARRAY (obj), 0, size);
682 OBJECT_CONFLICT_ARRAY_SIZE (obj) = size;
683 OBJECT_CONFLICT_VEC_P (obj) = false;
686 /* Allocate and initialize the conflict vector or conflict bit vector
687 of OBJ for NUM conflicting allocnos whatever is more profitable. */
688 void
689 ira_allocate_object_conflicts (ira_object_t obj, int num)
691 if (ira_conflict_vector_profitable_p (obj, num))
692 ira_allocate_conflict_vec (obj, num);
693 else
694 allocate_conflict_bit_vec (obj);
697 /* Add OBJ2 to the conflicts of OBJ1. */
698 static void
699 add_to_conflicts (ira_object_t obj1, ira_object_t obj2)
701 int num;
702 unsigned int size;
704 if (OBJECT_CONFLICT_VEC_P (obj1))
706 ira_object_t *vec = OBJECT_CONFLICT_VEC (obj1);
707 int curr_num = OBJECT_NUM_CONFLICTS (obj1);
708 num = curr_num + 2;
709 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < num * sizeof (ira_object_t))
711 ira_object_t *newvec;
712 size = (3 * num / 2 + 1) * sizeof (ira_allocno_t);
713 newvec = (ira_object_t *) ira_allocate (size);
714 memcpy (newvec, vec, curr_num * sizeof (ira_object_t));
715 ira_free (vec);
716 vec = newvec;
717 OBJECT_CONFLICT_ARRAY (obj1) = vec;
718 OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
720 vec[num - 2] = obj2;
721 vec[num - 1] = NULL;
722 OBJECT_NUM_CONFLICTS (obj1)++;
724 else
726 int nw, added_head_nw, id;
727 IRA_INT_TYPE *vec = OBJECT_CONFLICT_BITVEC (obj1);
729 id = OBJECT_CONFLICT_ID (obj2);
730 if (OBJECT_MIN (obj1) > id)
732 /* Expand head of the bit vector. */
733 added_head_nw = (OBJECT_MIN (obj1) - id - 1) / IRA_INT_BITS + 1;
734 nw = (OBJECT_MAX (obj1) - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
735 size = (nw + added_head_nw) * sizeof (IRA_INT_TYPE);
736 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) >= size)
738 memmove ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
739 vec, nw * sizeof (IRA_INT_TYPE));
740 memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
742 else
744 size
745 = (3 * (nw + added_head_nw) / 2 + 1) * sizeof (IRA_INT_TYPE);
746 vec = (IRA_INT_TYPE *) ira_allocate (size);
747 memcpy ((char *) vec + added_head_nw * sizeof (IRA_INT_TYPE),
748 OBJECT_CONFLICT_ARRAY (obj1), nw * sizeof (IRA_INT_TYPE));
749 memset (vec, 0, added_head_nw * sizeof (IRA_INT_TYPE));
750 memset ((char *) vec
751 + (nw + added_head_nw) * sizeof (IRA_INT_TYPE),
752 0, size - (nw + added_head_nw) * sizeof (IRA_INT_TYPE));
753 ira_free (OBJECT_CONFLICT_ARRAY (obj1));
754 OBJECT_CONFLICT_ARRAY (obj1) = vec;
755 OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
757 OBJECT_MIN (obj1) -= added_head_nw * IRA_INT_BITS;
759 else if (OBJECT_MAX (obj1) < id)
761 nw = (id - OBJECT_MIN (obj1)) / IRA_INT_BITS + 1;
762 size = nw * sizeof (IRA_INT_TYPE);
763 if (OBJECT_CONFLICT_ARRAY_SIZE (obj1) < size)
765 /* Expand tail of the bit vector. */
766 size = (3 * nw / 2 + 1) * sizeof (IRA_INT_TYPE);
767 vec = (IRA_INT_TYPE *) ira_allocate (size);
768 memcpy (vec, OBJECT_CONFLICT_ARRAY (obj1), OBJECT_CONFLICT_ARRAY_SIZE (obj1));
769 memset ((char *) vec + OBJECT_CONFLICT_ARRAY_SIZE (obj1),
770 0, size - OBJECT_CONFLICT_ARRAY_SIZE (obj1));
771 ira_free (OBJECT_CONFLICT_ARRAY (obj1));
772 OBJECT_CONFLICT_ARRAY (obj1) = vec;
773 OBJECT_CONFLICT_ARRAY_SIZE (obj1) = size;
775 OBJECT_MAX (obj1) = id;
777 SET_MINMAX_SET_BIT (vec, id, OBJECT_MIN (obj1), OBJECT_MAX (obj1));
781 /* Add OBJ1 to the conflicts of OBJ2 and vice versa. */
782 static void
783 ira_add_conflict (ira_object_t obj1, ira_object_t obj2)
785 add_to_conflicts (obj1, obj2);
786 add_to_conflicts (obj2, obj1);
789 /* Clear all conflicts of OBJ. */
790 static void
791 clear_conflicts (ira_object_t obj)
793 if (OBJECT_CONFLICT_VEC_P (obj))
795 OBJECT_NUM_CONFLICTS (obj) = 0;
796 OBJECT_CONFLICT_VEC (obj)[0] = NULL;
798 else if (OBJECT_CONFLICT_ARRAY_SIZE (obj) != 0)
800 int nw;
802 nw = (OBJECT_MAX (obj) - OBJECT_MIN (obj)) / IRA_INT_BITS + 1;
803 memset (OBJECT_CONFLICT_BITVEC (obj), 0, nw * sizeof (IRA_INT_TYPE));
807 /* The array used to find duplications in conflict vectors of
808 allocnos. */
809 static int *conflict_check;
811 /* The value used to mark allocation presence in conflict vector of
812 the current allocno. */
813 static int curr_conflict_check_tick;
815 /* Remove duplications in conflict vector of OBJ. */
816 static void
817 compress_conflict_vec (ira_object_t obj)
819 ira_object_t *vec, conflict_obj;
820 int i, j;
822 ira_assert (OBJECT_CONFLICT_VEC_P (obj));
823 vec = OBJECT_CONFLICT_VEC (obj);
824 curr_conflict_check_tick++;
825 for (i = j = 0; (conflict_obj = vec[i]) != NULL; i++)
827 int id = OBJECT_CONFLICT_ID (conflict_obj);
828 if (conflict_check[id] != curr_conflict_check_tick)
830 conflict_check[id] = curr_conflict_check_tick;
831 vec[j++] = conflict_obj;
834 OBJECT_NUM_CONFLICTS (obj) = j;
835 vec[j] = NULL;
838 /* Remove duplications in conflict vectors of all allocnos. */
839 static void
840 compress_conflict_vecs (void)
842 ira_object_t obj;
843 ira_object_iterator oi;
845 conflict_check = (int *) ira_allocate (sizeof (int) * ira_objects_num);
846 memset (conflict_check, 0, sizeof (int) * ira_objects_num);
847 curr_conflict_check_tick = 0;
848 FOR_EACH_OBJECT (obj, oi)
850 if (OBJECT_CONFLICT_VEC_P (obj))
851 compress_conflict_vec (obj);
853 ira_free (conflict_check);
856 /* This recursive function outputs allocno A and if it is a cap the
857 function outputs its members. */
858 void
859 ira_print_expanded_allocno (ira_allocno_t a)
861 basic_block bb;
863 fprintf (ira_dump_file, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
864 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
865 fprintf (ira_dump_file, ",b%d", bb->index);
866 else
867 fprintf (ira_dump_file, ",l%d", ALLOCNO_LOOP_TREE_NODE (a)->loop_num);
868 if (ALLOCNO_CAP_MEMBER (a) != NULL)
870 fprintf (ira_dump_file, ":");
871 ira_print_expanded_allocno (ALLOCNO_CAP_MEMBER (a));
873 fprintf (ira_dump_file, ")");
876 /* Create and return the cap representing allocno A in the
877 parent loop. */
878 static ira_allocno_t
879 create_cap_allocno (ira_allocno_t a)
881 ira_allocno_t cap;
882 ira_loop_tree_node_t parent;
883 enum reg_class aclass;
885 parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
886 cap = ira_create_allocno (ALLOCNO_REGNO (a), true, parent);
887 ALLOCNO_MODE (cap) = ALLOCNO_MODE (a);
888 ALLOCNO_WMODE (cap) = ALLOCNO_WMODE (a);
889 aclass = ALLOCNO_CLASS (a);
890 ira_set_allocno_class (cap, aclass);
891 ira_create_allocno_objects (cap);
892 ALLOCNO_CAP_MEMBER (cap) = a;
893 ALLOCNO_CAP (a) = cap;
894 ALLOCNO_CLASS_COST (cap) = ALLOCNO_CLASS_COST (a);
895 ALLOCNO_MEMORY_COST (cap) = ALLOCNO_MEMORY_COST (a);
896 ira_allocate_and_copy_costs
897 (&ALLOCNO_HARD_REG_COSTS (cap), aclass, ALLOCNO_HARD_REG_COSTS (a));
898 ira_allocate_and_copy_costs
899 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (cap), aclass,
900 ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
901 ALLOCNO_BAD_SPILL_P (cap) = ALLOCNO_BAD_SPILL_P (a);
902 ALLOCNO_NREFS (cap) = ALLOCNO_NREFS (a);
903 ALLOCNO_FREQ (cap) = ALLOCNO_FREQ (a);
904 ALLOCNO_CALL_FREQ (cap) = ALLOCNO_CALL_FREQ (a);
906 merge_hard_reg_conflicts (a, cap, false);
908 ALLOCNO_CALLS_CROSSED_NUM (cap) = ALLOCNO_CALLS_CROSSED_NUM (a);
909 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (cap) = ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
910 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (cap),
911 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
912 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
914 fprintf (ira_dump_file, " Creating cap ");
915 ira_print_expanded_allocno (cap);
916 fprintf (ira_dump_file, "\n");
918 return cap;
921 /* Create and return a live range for OBJECT with given attributes. */
922 live_range_t
923 ira_create_live_range (ira_object_t obj, int start, int finish,
924 live_range_t next)
926 live_range_t p;
928 p = live_range_pool.allocate ();
929 p->object = obj;
930 p->start = start;
931 p->finish = finish;
932 p->next = next;
933 return p;
936 /* Create a new live range for OBJECT and queue it at the head of its
937 live range list. */
938 void
939 ira_add_live_range_to_object (ira_object_t object, int start, int finish)
941 live_range_t p;
942 p = ira_create_live_range (object, start, finish,
943 OBJECT_LIVE_RANGES (object));
944 OBJECT_LIVE_RANGES (object) = p;
947 /* Copy allocno live range R and return the result. */
948 static live_range_t
949 copy_live_range (live_range_t r)
951 live_range_t p;
953 p = live_range_pool.allocate ();
954 *p = *r;
955 return p;
958 /* Copy allocno live range list given by its head R and return the
959 result. */
960 live_range_t
961 ira_copy_live_range_list (live_range_t r)
963 live_range_t p, first, last;
965 if (r == NULL)
966 return NULL;
967 for (first = last = NULL; r != NULL; r = r->next)
969 p = copy_live_range (r);
970 if (first == NULL)
971 first = p;
972 else
973 last->next = p;
974 last = p;
976 return first;
979 /* Merge ranges R1 and R2 and returns the result. The function
980 maintains the order of ranges and tries to minimize number of the
981 result ranges. */
982 live_range_t
983 ira_merge_live_ranges (live_range_t r1, live_range_t r2)
985 live_range_t first, last;
987 if (r1 == NULL)
988 return r2;
989 if (r2 == NULL)
990 return r1;
991 for (first = last = NULL; r1 != NULL && r2 != NULL;)
993 if (r1->start < r2->start)
994 std::swap (r1, r2);
995 if (r1->start <= r2->finish + 1)
997 /* Intersected ranges: merge r1 and r2 into r1. */
998 r1->start = r2->start;
999 if (r1->finish < r2->finish)
1000 r1->finish = r2->finish;
1001 live_range_t temp = r2;
1002 r2 = r2->next;
1003 ira_finish_live_range (temp);
1004 if (r2 == NULL)
1006 /* To try to merge with subsequent ranges in r1. */
1007 r2 = r1->next;
1008 r1->next = NULL;
1011 else
1013 /* Add r1 to the result. */
1014 if (first == NULL)
1015 first = last = r1;
1016 else
1018 last->next = r1;
1019 last = r1;
1021 r1 = r1->next;
1022 if (r1 == NULL)
1024 /* To try to merge with subsequent ranges in r2. */
1025 r1 = r2->next;
1026 r2->next = NULL;
1030 if (r1 != NULL)
1032 if (first == NULL)
1033 first = r1;
1034 else
1035 last->next = r1;
1036 ira_assert (r1->next == NULL);
1038 else if (r2 != NULL)
1040 if (first == NULL)
1041 first = r2;
1042 else
1043 last->next = r2;
1044 ira_assert (r2->next == NULL);
1046 else
1048 ira_assert (last->next == NULL);
1050 return first;
1053 /* Return TRUE if live ranges R1 and R2 intersect. */
1054 bool
1055 ira_live_ranges_intersect_p (live_range_t r1, live_range_t r2)
1057 /* Remember the live ranges are always kept ordered. */
1058 while (r1 != NULL && r2 != NULL)
1060 if (r1->start > r2->finish)
1061 r1 = r1->next;
1062 else if (r2->start > r1->finish)
1063 r2 = r2->next;
1064 else
1065 return true;
1067 return false;
1070 /* Free allocno live range R. */
1071 void
1072 ira_finish_live_range (live_range_t r)
1074 live_range_pool.remove (r);
1077 /* Free list of allocno live ranges starting with R. */
1078 void
1079 ira_finish_live_range_list (live_range_t r)
1081 live_range_t next_r;
1083 for (; r != NULL; r = next_r)
1085 next_r = r->next;
1086 ira_finish_live_range (r);
1090 /* Free updated register costs of allocno A. */
1091 void
1092 ira_free_allocno_updated_costs (ira_allocno_t a)
1094 enum reg_class aclass;
1096 aclass = ALLOCNO_CLASS (a);
1097 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
1098 ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
1099 ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
1100 if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
1101 ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
1102 aclass);
1103 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
1106 /* Free and nullify all cost vectors allocated earlier for allocno
1107 A. */
1108 static void
1109 ira_free_allocno_costs (ira_allocno_t a)
1111 enum reg_class aclass = ALLOCNO_CLASS (a);
1112 ira_object_t obj;
1113 ira_allocno_object_iterator oi;
1115 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
1117 ira_finish_live_range_list (OBJECT_LIVE_RANGES (obj));
1118 ira_object_id_map[OBJECT_CONFLICT_ID (obj)] = NULL;
1119 if (OBJECT_CONFLICT_ARRAY (obj) != NULL)
1120 ira_free (OBJECT_CONFLICT_ARRAY (obj));
1121 object_pool.remove (obj);
1124 ira_allocnos[ALLOCNO_NUM (a)] = NULL;
1125 if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1126 ira_free_cost_vector (ALLOCNO_HARD_REG_COSTS (a), aclass);
1127 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL)
1128 ira_free_cost_vector (ALLOCNO_CONFLICT_HARD_REG_COSTS (a), aclass);
1129 if (ALLOCNO_UPDATED_HARD_REG_COSTS (a) != NULL)
1130 ira_free_cost_vector (ALLOCNO_UPDATED_HARD_REG_COSTS (a), aclass);
1131 if (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) != NULL)
1132 ira_free_cost_vector (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a),
1133 aclass);
1134 ALLOCNO_HARD_REG_COSTS (a) = NULL;
1135 ALLOCNO_CONFLICT_HARD_REG_COSTS (a) = NULL;
1136 ALLOCNO_UPDATED_HARD_REG_COSTS (a) = NULL;
1137 ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) = NULL;
1140 /* Free the memory allocated for allocno A. */
1141 static void
1142 finish_allocno (ira_allocno_t a)
1144 ira_free_allocno_costs (a);
1145 allocno_pool.remove (a);
1148 /* Free the memory allocated for all allocnos. */
1149 static void
1150 finish_allocnos (void)
1152 ira_allocno_t a;
1153 ira_allocno_iterator ai;
1155 FOR_EACH_ALLOCNO (a, ai)
1156 finish_allocno (a);
1157 ira_free (ira_regno_allocno_map);
1158 ira_object_id_map_vec.release ();
1159 allocno_vec.release ();
1160 allocno_pool.release ();
1161 object_pool.release ();
1162 live_range_pool.release ();
1167 /* Pools for allocno preferences. */
1168 static object_allocator <ira_allocno_pref> pref_pool ("prefs");
1170 /* Vec containing references to all created preferences. It is a
1171 container of array ira_prefs. */
1172 static vec<ira_pref_t> pref_vec;
1174 /* The function initializes data concerning allocno prefs. */
1175 static void
1176 initiate_prefs (void)
1178 pref_vec.create (get_max_uid ());
1179 ira_prefs = NULL;
1180 ira_prefs_num = 0;
1183 /* Return pref for A and HARD_REGNO if any. */
1184 static ira_pref_t
1185 find_allocno_pref (ira_allocno_t a, int hard_regno)
1187 ira_pref_t pref;
1189 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
1190 if (pref->allocno == a && pref->hard_regno == hard_regno)
1191 return pref;
1192 return NULL;
1195 /* Create and return pref with given attributes A, HARD_REGNO, and FREQ. */
1196 ira_pref_t
1197 ira_create_pref (ira_allocno_t a, int hard_regno, int freq)
1199 ira_pref_t pref;
1201 pref = pref_pool.allocate ();
1202 pref->num = ira_prefs_num;
1203 pref->allocno = a;
1204 pref->hard_regno = hard_regno;
1205 pref->freq = freq;
1206 pref_vec.safe_push (pref);
1207 ira_prefs = pref_vec.address ();
1208 ira_prefs_num = pref_vec.length ();
1209 return pref;
1212 /* Attach a pref PREF to the corresponding allocno. */
1213 static void
1214 add_allocno_pref_to_list (ira_pref_t pref)
1216 ira_allocno_t a = pref->allocno;
1218 pref->next_pref = ALLOCNO_PREFS (a);
1219 ALLOCNO_PREFS (a) = pref;
1222 /* Create (or update frequency if the pref already exists) the pref of
1223 allocnos A preferring HARD_REGNO with frequency FREQ. */
1224 void
1225 ira_add_allocno_pref (ira_allocno_t a, int hard_regno, int freq)
1227 ira_pref_t pref;
1229 if (freq <= 0)
1230 return;
1231 if ((pref = find_allocno_pref (a, hard_regno)) != NULL)
1233 pref->freq += freq;
1234 return;
1236 pref = ira_create_pref (a, hard_regno, freq);
1237 ira_assert (a != NULL);
1238 add_allocno_pref_to_list (pref);
1241 /* Print info about PREF into file F. */
1242 static void
1243 print_pref (FILE *f, ira_pref_t pref)
1245 fprintf (f, " pref%d:a%d(r%d)<-hr%d@%d\n", pref->num,
1246 ALLOCNO_NUM (pref->allocno), ALLOCNO_REGNO (pref->allocno),
1247 pref->hard_regno, pref->freq);
1250 /* Print info about PREF into stderr. */
1251 void
1252 ira_debug_pref (ira_pref_t pref)
1254 print_pref (stderr, pref);
1257 /* Print info about all prefs into file F. */
1258 static void
1259 print_prefs (FILE *f)
1261 ira_pref_t pref;
1262 ira_pref_iterator pi;
1264 FOR_EACH_PREF (pref, pi)
1265 print_pref (f, pref);
1268 /* Print info about all prefs into stderr. */
1269 void
1270 ira_debug_prefs (void)
1272 print_prefs (stderr);
1275 /* Print info about prefs involving allocno A into file F. */
1276 static void
1277 print_allocno_prefs (FILE *f, ira_allocno_t a)
1279 ira_pref_t pref;
1281 fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1282 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = pref->next_pref)
1283 fprintf (f, " pref%d:hr%d@%d", pref->num, pref->hard_regno, pref->freq);
1284 fprintf (f, "\n");
1287 /* Print info about prefs involving allocno A into stderr. */
1288 void
1289 ira_debug_allocno_prefs (ira_allocno_t a)
1291 print_allocno_prefs (stderr, a);
1294 /* The function frees memory allocated for PREF. */
1295 static void
1296 finish_pref (ira_pref_t pref)
1298 ira_prefs[pref->num] = NULL;
1299 pref_pool.remove (pref);
1302 /* Remove PREF from the list of allocno prefs and free memory for
1303 it. */
1304 void
1305 ira_remove_pref (ira_pref_t pref)
1307 ira_pref_t cpref, prev;
1309 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
1310 fprintf (ira_dump_file, " Removing pref%d:hr%d@%d\n",
1311 pref->num, pref->hard_regno, pref->freq);
1312 for (prev = NULL, cpref = ALLOCNO_PREFS (pref->allocno);
1313 cpref != NULL;
1314 prev = cpref, cpref = cpref->next_pref)
1315 if (cpref == pref)
1316 break;
1317 ira_assert (cpref != NULL);
1318 if (prev == NULL)
1319 ALLOCNO_PREFS (pref->allocno) = pref->next_pref;
1320 else
1321 prev->next_pref = pref->next_pref;
1322 finish_pref (pref);
1325 /* Remove all prefs of allocno A. */
1326 void
1327 ira_remove_allocno_prefs (ira_allocno_t a)
1329 ira_pref_t pref, next_pref;
1331 for (pref = ALLOCNO_PREFS (a); pref != NULL; pref = next_pref)
1333 next_pref = pref->next_pref;
1334 finish_pref (pref);
1336 ALLOCNO_PREFS (a) = NULL;
1339 /* Free memory allocated for all prefs. */
1340 static void
1341 finish_prefs (void)
1343 ira_pref_t pref;
1344 ira_pref_iterator pi;
1346 FOR_EACH_PREF (pref, pi)
1347 finish_pref (pref);
1348 pref_vec.release ();
1349 pref_pool.release ();
1354 /* Pools for copies. */
1355 static object_allocator<ira_allocno_copy> copy_pool ("copies");
1357 /* Vec containing references to all created copies. It is a
1358 container of array ira_copies. */
1359 static vec<ira_copy_t> copy_vec;
1361 /* The function initializes data concerning allocno copies. */
1362 static void
1363 initiate_copies (void)
1365 copy_vec.create (get_max_uid ());
1366 ira_copies = NULL;
1367 ira_copies_num = 0;
1370 /* Return copy connecting A1 and A2 and originated from INSN of
1371 LOOP_TREE_NODE if any. */
1372 static ira_copy_t
1373 find_allocno_copy (ira_allocno_t a1, ira_allocno_t a2, rtx_insn *insn,
1374 ira_loop_tree_node_t loop_tree_node)
1376 ira_copy_t cp, next_cp;
1377 ira_allocno_t another_a;
1379 for (cp = ALLOCNO_COPIES (a1); cp != NULL; cp = next_cp)
1381 if (cp->first == a1)
1383 next_cp = cp->next_first_allocno_copy;
1384 another_a = cp->second;
1386 else if (cp->second == a1)
1388 next_cp = cp->next_second_allocno_copy;
1389 another_a = cp->first;
1391 else
1392 gcc_unreachable ();
1393 if (another_a == a2 && cp->insn == insn
1394 && cp->loop_tree_node == loop_tree_node)
1395 return cp;
1397 return NULL;
1400 /* Create and return copy with given attributes LOOP_TREE_NODE, FIRST,
1401 SECOND, FREQ, CONSTRAINT_P, and INSN. */
1402 ira_copy_t
1403 ira_create_copy (ira_allocno_t first, ira_allocno_t second, int freq,
1404 bool constraint_p, rtx_insn *insn,
1405 ira_loop_tree_node_t loop_tree_node)
1407 ira_copy_t cp;
1409 cp = copy_pool.allocate ();
1410 cp->num = ira_copies_num;
1411 cp->first = first;
1412 cp->second = second;
1413 cp->freq = freq;
1414 cp->constraint_p = constraint_p;
1415 cp->insn = insn;
1416 cp->loop_tree_node = loop_tree_node;
1417 copy_vec.safe_push (cp);
1418 ira_copies = copy_vec.address ();
1419 ira_copies_num = copy_vec.length ();
1420 return cp;
1423 /* Attach a copy CP to allocnos involved into the copy. */
1424 static void
1425 add_allocno_copy_to_list (ira_copy_t cp)
1427 ira_allocno_t first = cp->first, second = cp->second;
1429 cp->prev_first_allocno_copy = NULL;
1430 cp->prev_second_allocno_copy = NULL;
1431 cp->next_first_allocno_copy = ALLOCNO_COPIES (first);
1432 if (cp->next_first_allocno_copy != NULL)
1434 if (cp->next_first_allocno_copy->first == first)
1435 cp->next_first_allocno_copy->prev_first_allocno_copy = cp;
1436 else
1437 cp->next_first_allocno_copy->prev_second_allocno_copy = cp;
1439 cp->next_second_allocno_copy = ALLOCNO_COPIES (second);
1440 if (cp->next_second_allocno_copy != NULL)
1442 if (cp->next_second_allocno_copy->second == second)
1443 cp->next_second_allocno_copy->prev_second_allocno_copy = cp;
1444 else
1445 cp->next_second_allocno_copy->prev_first_allocno_copy = cp;
1447 ALLOCNO_COPIES (first) = cp;
1448 ALLOCNO_COPIES (second) = cp;
1451 /* Make a copy CP a canonical copy where number of the
1452 first allocno is less than the second one. */
1453 static void
1454 swap_allocno_copy_ends_if_necessary (ira_copy_t cp)
1456 if (ALLOCNO_NUM (cp->first) <= ALLOCNO_NUM (cp->second))
1457 return;
1459 std::swap (cp->first, cp->second);
1460 std::swap (cp->prev_first_allocno_copy, cp->prev_second_allocno_copy);
1461 std::swap (cp->next_first_allocno_copy, cp->next_second_allocno_copy);
1464 /* Create (or update frequency if the copy already exists) and return
1465 the copy of allocnos FIRST and SECOND with frequency FREQ
1466 corresponding to move insn INSN (if any) and originated from
1467 LOOP_TREE_NODE. */
1468 ira_copy_t
1469 ira_add_allocno_copy (ira_allocno_t first, ira_allocno_t second, int freq,
1470 bool constraint_p, rtx_insn *insn,
1471 ira_loop_tree_node_t loop_tree_node)
1473 ira_copy_t cp;
1475 if ((cp = find_allocno_copy (first, second, insn, loop_tree_node)) != NULL)
1477 cp->freq += freq;
1478 return cp;
1480 cp = ira_create_copy (first, second, freq, constraint_p, insn,
1481 loop_tree_node);
1482 ira_assert (first != NULL && second != NULL);
1483 add_allocno_copy_to_list (cp);
1484 swap_allocno_copy_ends_if_necessary (cp);
1485 return cp;
1488 /* Print info about copy CP into file F. */
1489 static void
1490 print_copy (FILE *f, ira_copy_t cp)
1492 fprintf (f, " cp%d:a%d(r%d)<->a%d(r%d)@%d:%s\n", cp->num,
1493 ALLOCNO_NUM (cp->first), ALLOCNO_REGNO (cp->first),
1494 ALLOCNO_NUM (cp->second), ALLOCNO_REGNO (cp->second), cp->freq,
1495 cp->insn != NULL
1496 ? "move" : cp->constraint_p ? "constraint" : "shuffle");
1499 DEBUG_FUNCTION void
1500 debug (ira_allocno_copy &ref)
1502 print_copy (stderr, &ref);
1505 DEBUG_FUNCTION void
1506 debug (ira_allocno_copy *ptr)
1508 if (ptr)
1509 debug (*ptr);
1510 else
1511 fprintf (stderr, "<nil>\n");
1514 /* Print info about copy CP into stderr. */
1515 void
1516 ira_debug_copy (ira_copy_t cp)
1518 print_copy (stderr, cp);
1521 /* Print info about all copies into file F. */
1522 static void
1523 print_copies (FILE *f)
1525 ira_copy_t cp;
1526 ira_copy_iterator ci;
1528 FOR_EACH_COPY (cp, ci)
1529 print_copy (f, cp);
1532 /* Print info about all copies into stderr. */
1533 void
1534 ira_debug_copies (void)
1536 print_copies (stderr);
1539 /* Print info about copies involving allocno A into file F. */
1540 static void
1541 print_allocno_copies (FILE *f, ira_allocno_t a)
1543 ira_allocno_t another_a;
1544 ira_copy_t cp, next_cp;
1546 fprintf (f, " a%d(r%d):", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
1547 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1549 if (cp->first == a)
1551 next_cp = cp->next_first_allocno_copy;
1552 another_a = cp->second;
1554 else if (cp->second == a)
1556 next_cp = cp->next_second_allocno_copy;
1557 another_a = cp->first;
1559 else
1560 gcc_unreachable ();
1561 fprintf (f, " cp%d:a%d(r%d)@%d", cp->num,
1562 ALLOCNO_NUM (another_a), ALLOCNO_REGNO (another_a), cp->freq);
1564 fprintf (f, "\n");
1567 DEBUG_FUNCTION void
1568 debug (ira_allocno &ref)
1570 print_allocno_copies (stderr, &ref);
1573 DEBUG_FUNCTION void
1574 debug (ira_allocno *ptr)
1576 if (ptr)
1577 debug (*ptr);
1578 else
1579 fprintf (stderr, "<nil>\n");
1583 /* Print info about copies involving allocno A into stderr. */
1584 void
1585 ira_debug_allocno_copies (ira_allocno_t a)
1587 print_allocno_copies (stderr, a);
1590 /* The function frees memory allocated for copy CP. */
1591 static void
1592 finish_copy (ira_copy_t cp)
1594 copy_pool.remove (cp);
1598 /* Free memory allocated for all copies. */
1599 static void
1600 finish_copies (void)
1602 ira_copy_t cp;
1603 ira_copy_iterator ci;
1605 FOR_EACH_COPY (cp, ci)
1606 finish_copy (cp);
1607 copy_vec.release ();
1608 copy_pool.release ();
1613 /* Pools for cost vectors. It is defined only for allocno classes. */
1614 static pool_allocator *cost_vector_pool[N_REG_CLASSES];
1616 /* The function initiates work with hard register cost vectors. It
1617 creates allocation pool for each allocno class. */
1618 static void
1619 initiate_cost_vectors (void)
1621 int i;
1622 enum reg_class aclass;
1624 for (i = 0; i < ira_allocno_classes_num; i++)
1626 aclass = ira_allocno_classes[i];
1627 cost_vector_pool[aclass] = new pool_allocator
1628 ("cost vectors", sizeof (int) * (ira_class_hard_regs_num[aclass]));
1632 /* Allocate and return a cost vector VEC for ACLASS. */
1633 int *
1634 ira_allocate_cost_vector (reg_class_t aclass)
1636 return (int*) cost_vector_pool[(int) aclass]->allocate ();
1639 /* Free a cost vector VEC for ACLASS. */
1640 void
1641 ira_free_cost_vector (int *vec, reg_class_t aclass)
1643 ira_assert (vec != NULL);
1644 cost_vector_pool[(int) aclass]->remove (vec);
1647 /* Finish work with hard register cost vectors. Release allocation
1648 pool for each allocno class. */
1649 static void
1650 finish_cost_vectors (void)
1652 int i;
1653 enum reg_class aclass;
1655 for (i = 0; i < ira_allocno_classes_num; i++)
1657 aclass = ira_allocno_classes[i];
1658 delete cost_vector_pool[aclass];
1664 /* Compute a post-ordering of the reverse control flow of the loop body
1665 designated by the children nodes of LOOP_NODE, whose body nodes in
1666 pre-order are input as LOOP_PREORDER. Return a VEC with a post-order
1667 of the reverse loop body.
1669 For the post-order of the reverse CFG, we visit the basic blocks in
1670 LOOP_PREORDER array in the reverse order of where they appear.
1671 This is important: We do not just want to compute a post-order of
1672 the reverse CFG, we want to make a best-guess for a visiting order that
1673 minimizes the number of chain elements per allocno live range. If the
1674 blocks would be visited in a different order, we would still compute a
1675 correct post-ordering but it would be less likely that two nodes
1676 connected by an edge in the CFG are neighbors in the topsort. */
1678 static vec<ira_loop_tree_node_t>
1679 ira_loop_tree_body_rev_postorder (ira_loop_tree_node_t loop_node ATTRIBUTE_UNUSED,
1680 vec<ira_loop_tree_node_t> loop_preorder)
1682 vec<ira_loop_tree_node_t> topsort_nodes = vNULL;
1683 unsigned int n_loop_preorder;
1685 n_loop_preorder = loop_preorder.length ();
1686 if (n_loop_preorder != 0)
1688 ira_loop_tree_node_t subloop_node;
1689 unsigned int i;
1690 auto_vec<ira_loop_tree_node_t> dfs_stack;
1692 /* This is a bit of strange abuse of the BB_VISITED flag: We use
1693 the flag to mark blocks we still have to visit to add them to
1694 our post-order. Define an alias to avoid confusion. */
1695 #define BB_TO_VISIT BB_VISITED
1697 FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node)
1699 gcc_checking_assert (! (subloop_node->bb->flags & BB_TO_VISIT));
1700 subloop_node->bb->flags |= BB_TO_VISIT;
1703 topsort_nodes.create (n_loop_preorder);
1704 dfs_stack.create (n_loop_preorder);
1706 FOR_EACH_VEC_ELT_REVERSE (loop_preorder, i, subloop_node)
1708 if (! (subloop_node->bb->flags & BB_TO_VISIT))
1709 continue;
1711 subloop_node->bb->flags &= ~BB_TO_VISIT;
1712 dfs_stack.quick_push (subloop_node);
1713 while (! dfs_stack.is_empty ())
1715 edge e;
1716 edge_iterator ei;
1718 ira_loop_tree_node_t n = dfs_stack.last ();
1719 FOR_EACH_EDGE (e, ei, n->bb->preds)
1721 ira_loop_tree_node_t pred_node;
1722 basic_block pred_bb = e->src;
1724 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1725 continue;
1727 pred_node = IRA_BB_NODE_BY_INDEX (pred_bb->index);
1728 if (pred_node != n
1729 && (pred_node->bb->flags & BB_TO_VISIT))
1731 pred_node->bb->flags &= ~BB_TO_VISIT;
1732 dfs_stack.quick_push (pred_node);
1735 if (n == dfs_stack.last ())
1737 dfs_stack.pop ();
1738 topsort_nodes.quick_push (n);
1743 #undef BB_TO_VISIT
1746 gcc_assert (topsort_nodes.length () == n_loop_preorder);
1747 return topsort_nodes;
1750 /* The current loop tree node and its regno allocno map. */
1751 ira_loop_tree_node_t ira_curr_loop_tree_node;
1752 ira_allocno_t *ira_curr_regno_allocno_map;
1754 /* This recursive function traverses loop tree with root LOOP_NODE
1755 calling non-null functions PREORDER_FUNC and POSTORDER_FUNC
1756 correspondingly in preorder and postorder. The function sets up
1757 IRA_CURR_LOOP_TREE_NODE and IRA_CURR_REGNO_ALLOCNO_MAP. If BB_P,
1758 basic block nodes of LOOP_NODE is also processed (before its
1759 subloop nodes).
1761 If BB_P is set and POSTORDER_FUNC is given, the basic blocks in
1762 the loop are passed in the *reverse* post-order of the *reverse*
1763 CFG. This is only used by ira_create_allocno_live_ranges, which
1764 wants to visit basic blocks in this order to minimize the number
1765 of elements per live range chain.
1766 Note that the loop tree nodes are still visited in the normal,
1767 forward post-order of the loop tree. */
1769 void
1770 ira_traverse_loop_tree (bool bb_p, ira_loop_tree_node_t loop_node,
1771 void (*preorder_func) (ira_loop_tree_node_t),
1772 void (*postorder_func) (ira_loop_tree_node_t))
1774 ira_loop_tree_node_t subloop_node;
1776 ira_assert (loop_node->bb == NULL);
1777 ira_curr_loop_tree_node = loop_node;
1778 ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
1780 if (preorder_func != NULL)
1781 (*preorder_func) (loop_node);
1783 if (bb_p)
1785 auto_vec<ira_loop_tree_node_t> loop_preorder;
1786 unsigned int i;
1788 /* Add all nodes to the set of nodes to visit. The IRA loop tree
1789 is set up such that nodes in the loop body appear in a pre-order
1790 of their place in the CFG. */
1791 for (subloop_node = loop_node->children;
1792 subloop_node != NULL;
1793 subloop_node = subloop_node->next)
1794 if (subloop_node->bb != NULL)
1795 loop_preorder.safe_push (subloop_node);
1797 if (preorder_func != NULL)
1798 FOR_EACH_VEC_ELT (loop_preorder, i, subloop_node)
1799 (*preorder_func) (subloop_node);
1801 if (postorder_func != NULL)
1803 vec<ira_loop_tree_node_t> loop_rev_postorder =
1804 ira_loop_tree_body_rev_postorder (loop_node, loop_preorder);
1805 FOR_EACH_VEC_ELT_REVERSE (loop_rev_postorder, i, subloop_node)
1806 (*postorder_func) (subloop_node);
1807 loop_rev_postorder.release ();
1811 for (subloop_node = loop_node->subloops;
1812 subloop_node != NULL;
1813 subloop_node = subloop_node->subloop_next)
1815 ira_assert (subloop_node->bb == NULL);
1816 ira_traverse_loop_tree (bb_p, subloop_node,
1817 preorder_func, postorder_func);
1820 ira_curr_loop_tree_node = loop_node;
1821 ira_curr_regno_allocno_map = ira_curr_loop_tree_node->regno_allocno_map;
1823 if (postorder_func != NULL)
1824 (*postorder_func) (loop_node);
1829 /* The basic block currently being processed. */
1830 static basic_block curr_bb;
1832 /* This recursive function creates allocnos corresponding to
1833 pseudo-registers containing in X. True OUTPUT_P means that X is
1834 an lvalue. PARENT corresponds to the parent expression of X. */
1835 static void
1836 create_insn_allocnos (rtx x, rtx outer, bool output_p)
1838 int i, j;
1839 const char *fmt;
1840 enum rtx_code code = GET_CODE (x);
1842 if (code == REG)
1844 int regno;
1846 if ((regno = REGNO (x)) >= FIRST_PSEUDO_REGISTER)
1848 ira_allocno_t a;
1850 if ((a = ira_curr_regno_allocno_map[regno]) == NULL)
1852 a = ira_create_allocno (regno, false, ira_curr_loop_tree_node);
1853 if (outer != NULL && GET_CODE (outer) == SUBREG)
1855 machine_mode wmode = GET_MODE (outer);
1856 if (GET_MODE_SIZE (wmode) > GET_MODE_SIZE (ALLOCNO_WMODE (a)))
1857 ALLOCNO_WMODE (a) = wmode;
1861 ALLOCNO_NREFS (a)++;
1862 ALLOCNO_FREQ (a) += REG_FREQ_FROM_BB (curr_bb);
1863 if (output_p)
1864 bitmap_set_bit (ira_curr_loop_tree_node->modified_regnos, regno);
1866 return;
1868 else if (code == SET)
1870 create_insn_allocnos (SET_DEST (x), NULL, true);
1871 create_insn_allocnos (SET_SRC (x), NULL, false);
1872 return;
1874 else if (code == CLOBBER)
1876 create_insn_allocnos (XEXP (x, 0), NULL, true);
1877 return;
1879 else if (code == MEM)
1881 create_insn_allocnos (XEXP (x, 0), NULL, false);
1882 return;
1884 else if (code == PRE_DEC || code == POST_DEC || code == PRE_INC ||
1885 code == POST_INC || code == POST_MODIFY || code == PRE_MODIFY)
1887 create_insn_allocnos (XEXP (x, 0), NULL, true);
1888 create_insn_allocnos (XEXP (x, 0), NULL, false);
1889 return;
1892 fmt = GET_RTX_FORMAT (code);
1893 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1895 if (fmt[i] == 'e')
1896 create_insn_allocnos (XEXP (x, i), x, output_p);
1897 else if (fmt[i] == 'E')
1898 for (j = 0; j < XVECLEN (x, i); j++)
1899 create_insn_allocnos (XVECEXP (x, i, j), x, output_p);
1903 /* Create allocnos corresponding to pseudo-registers living in the
1904 basic block represented by the corresponding loop tree node
1905 BB_NODE. */
1906 static void
1907 create_bb_allocnos (ira_loop_tree_node_t bb_node)
1909 basic_block bb;
1910 rtx_insn *insn;
1911 unsigned int i;
1912 bitmap_iterator bi;
1914 curr_bb = bb = bb_node->bb;
1915 ira_assert (bb != NULL);
1916 FOR_BB_INSNS_REVERSE (bb, insn)
1917 if (NONDEBUG_INSN_P (insn))
1918 create_insn_allocnos (PATTERN (insn), NULL, false);
1919 /* It might be a allocno living through from one subloop to
1920 another. */
1921 EXECUTE_IF_SET_IN_REG_SET (df_get_live_in (bb), FIRST_PSEUDO_REGISTER, i, bi)
1922 if (ira_curr_regno_allocno_map[i] == NULL)
1923 ira_create_allocno (i, false, ira_curr_loop_tree_node);
1926 /* Create allocnos corresponding to pseudo-registers living on edge E
1927 (a loop entry or exit). Also mark the allocnos as living on the
1928 loop border. */
1929 static void
1930 create_loop_allocnos (edge e)
1932 unsigned int i;
1933 bitmap live_in_regs, border_allocnos;
1934 bitmap_iterator bi;
1935 ira_loop_tree_node_t parent;
1937 live_in_regs = df_get_live_in (e->dest);
1938 border_allocnos = ira_curr_loop_tree_node->border_allocnos;
1939 EXECUTE_IF_SET_IN_REG_SET (df_get_live_out (e->src),
1940 FIRST_PSEUDO_REGISTER, i, bi)
1941 if (bitmap_bit_p (live_in_regs, i))
1943 if (ira_curr_regno_allocno_map[i] == NULL)
1945 /* The order of creations is important for right
1946 ira_regno_allocno_map. */
1947 if ((parent = ira_curr_loop_tree_node->parent) != NULL
1948 && parent->regno_allocno_map[i] == NULL)
1949 ira_create_allocno (i, false, parent);
1950 ira_create_allocno (i, false, ira_curr_loop_tree_node);
1952 bitmap_set_bit (border_allocnos,
1953 ALLOCNO_NUM (ira_curr_regno_allocno_map[i]));
1957 /* Create allocnos corresponding to pseudo-registers living in loop
1958 represented by the corresponding loop tree node LOOP_NODE. This
1959 function is called by ira_traverse_loop_tree. */
1960 static void
1961 create_loop_tree_node_allocnos (ira_loop_tree_node_t loop_node)
1963 if (loop_node->bb != NULL)
1964 create_bb_allocnos (loop_node);
1965 else if (loop_node != ira_loop_tree_root)
1967 int i;
1968 edge_iterator ei;
1969 edge e;
1970 vec<edge> edges;
1972 ira_assert (current_loops != NULL);
1973 FOR_EACH_EDGE (e, ei, loop_node->loop->header->preds)
1974 if (e->src != loop_node->loop->latch)
1975 create_loop_allocnos (e);
1977 edges = get_loop_exit_edges (loop_node->loop);
1978 FOR_EACH_VEC_ELT (edges, i, e)
1979 create_loop_allocnos (e);
1980 edges.release ();
1984 /* Propagate information about allocnos modified inside the loop given
1985 by its LOOP_TREE_NODE to its parent. */
1986 static void
1987 propagate_modified_regnos (ira_loop_tree_node_t loop_tree_node)
1989 if (loop_tree_node == ira_loop_tree_root)
1990 return;
1991 ira_assert (loop_tree_node->bb == NULL);
1992 bitmap_ior_into (loop_tree_node->parent->modified_regnos,
1993 loop_tree_node->modified_regnos);
1996 /* Propagate new info about allocno A (see comments about accumulated
1997 info in allocno definition) to the corresponding allocno on upper
1998 loop tree level. So allocnos on upper levels accumulate
1999 information about the corresponding allocnos in nested regions.
2000 The new info means allocno info finally calculated in this
2001 file. */
2002 static void
2003 propagate_allocno_info (void)
2005 int i;
2006 ira_allocno_t a, parent_a;
2007 ira_loop_tree_node_t parent;
2008 enum reg_class aclass;
2010 if (flag_ira_region != IRA_REGION_ALL
2011 && flag_ira_region != IRA_REGION_MIXED)
2012 return;
2013 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2014 for (a = ira_regno_allocno_map[i];
2015 a != NULL;
2016 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2017 if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) != NULL
2018 && (parent_a = parent->regno_allocno_map[i]) != NULL
2019 /* There are no caps yet at this point. So use
2020 border_allocnos to find allocnos for the propagation. */
2021 && bitmap_bit_p (ALLOCNO_LOOP_TREE_NODE (a)->border_allocnos,
2022 ALLOCNO_NUM (a)))
2024 if (! ALLOCNO_BAD_SPILL_P (a))
2025 ALLOCNO_BAD_SPILL_P (parent_a) = false;
2026 ALLOCNO_NREFS (parent_a) += ALLOCNO_NREFS (a);
2027 ALLOCNO_FREQ (parent_a) += ALLOCNO_FREQ (a);
2028 ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
2029 merge_hard_reg_conflicts (a, parent_a, true);
2030 ALLOCNO_CALLS_CROSSED_NUM (parent_a)
2031 += ALLOCNO_CALLS_CROSSED_NUM (a);
2032 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
2033 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
2034 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a),
2035 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
2036 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
2037 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
2038 aclass = ALLOCNO_CLASS (a);
2039 ira_assert (aclass == ALLOCNO_CLASS (parent_a));
2040 ira_allocate_and_accumulate_costs
2041 (&ALLOCNO_HARD_REG_COSTS (parent_a), aclass,
2042 ALLOCNO_HARD_REG_COSTS (a));
2043 ira_allocate_and_accumulate_costs
2044 (&ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a),
2045 aclass,
2046 ALLOCNO_CONFLICT_HARD_REG_COSTS (a));
2047 ALLOCNO_CLASS_COST (parent_a)
2048 += ALLOCNO_CLASS_COST (a);
2049 ALLOCNO_MEMORY_COST (parent_a) += ALLOCNO_MEMORY_COST (a);
2053 /* Create allocnos corresponding to pseudo-registers in the current
2054 function. Traverse the loop tree for this. */
2055 static void
2056 create_allocnos (void)
2058 /* We need to process BB first to correctly link allocnos by member
2059 next_regno_allocno. */
2060 ira_traverse_loop_tree (true, ira_loop_tree_root,
2061 create_loop_tree_node_allocnos, NULL);
2062 if (optimize)
2063 ira_traverse_loop_tree (false, ira_loop_tree_root, NULL,
2064 propagate_modified_regnos);
2069 /* The page contains function to remove some regions from a separate
2070 register allocation. We remove regions whose separate allocation
2071 will hardly improve the result. As a result we speed up regional
2072 register allocation. */
2074 /* The function changes the object in range list given by R to OBJ. */
2075 static void
2076 change_object_in_range_list (live_range_t r, ira_object_t obj)
2078 for (; r != NULL; r = r->next)
2079 r->object = obj;
2082 /* Move all live ranges associated with allocno FROM to allocno TO. */
2083 static void
2084 move_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
2086 int i;
2087 int n = ALLOCNO_NUM_OBJECTS (from);
2089 gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
2091 for (i = 0; i < n; i++)
2093 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
2094 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
2095 live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
2097 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
2099 fprintf (ira_dump_file,
2100 " Moving ranges of a%dr%d to a%dr%d: ",
2101 ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
2102 ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
2103 ira_print_live_range_list (ira_dump_file, lr);
2105 change_object_in_range_list (lr, to_obj);
2106 OBJECT_LIVE_RANGES (to_obj)
2107 = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
2108 OBJECT_LIVE_RANGES (from_obj) = NULL;
2112 static void
2113 copy_allocno_live_ranges (ira_allocno_t from, ira_allocno_t to)
2115 int i;
2116 int n = ALLOCNO_NUM_OBJECTS (from);
2118 gcc_assert (n == ALLOCNO_NUM_OBJECTS (to));
2120 for (i = 0; i < n; i++)
2122 ira_object_t from_obj = ALLOCNO_OBJECT (from, i);
2123 ira_object_t to_obj = ALLOCNO_OBJECT (to, i);
2124 live_range_t lr = OBJECT_LIVE_RANGES (from_obj);
2126 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
2128 fprintf (ira_dump_file, " Copying ranges of a%dr%d to a%dr%d: ",
2129 ALLOCNO_NUM (from), ALLOCNO_REGNO (from),
2130 ALLOCNO_NUM (to), ALLOCNO_REGNO (to));
2131 ira_print_live_range_list (ira_dump_file, lr);
2133 lr = ira_copy_live_range_list (lr);
2134 change_object_in_range_list (lr, to_obj);
2135 OBJECT_LIVE_RANGES (to_obj)
2136 = ira_merge_live_ranges (lr, OBJECT_LIVE_RANGES (to_obj));
2140 /* Return TRUE if NODE represents a loop with low register
2141 pressure. */
2142 static bool
2143 low_pressure_loop_node_p (ira_loop_tree_node_t node)
2145 int i;
2146 enum reg_class pclass;
2148 if (node->bb != NULL)
2149 return false;
2151 for (i = 0; i < ira_pressure_classes_num; i++)
2153 pclass = ira_pressure_classes[i];
2154 if (node->reg_pressure[pclass] > ira_class_hard_regs_num[pclass]
2155 && ira_class_hard_regs_num[pclass] > 1)
2156 return false;
2158 return true;
2161 #ifdef STACK_REGS
2162 /* Return TRUE if LOOP has a complex enter or exit edge. We don't
2163 form a region from such loop if the target use stack register
2164 because reg-stack.c can not deal with such edges. */
2165 static bool
2166 loop_with_complex_edge_p (struct loop *loop)
2168 int i;
2169 edge_iterator ei;
2170 edge e;
2171 vec<edge> edges;
2172 bool res;
2174 FOR_EACH_EDGE (e, ei, loop->header->preds)
2175 if (e->flags & EDGE_EH)
2176 return true;
2177 edges = get_loop_exit_edges (loop);
2178 res = false;
2179 FOR_EACH_VEC_ELT (edges, i, e)
2180 if (e->flags & EDGE_COMPLEX)
2182 res = true;
2183 break;
2185 edges.release ();
2186 return res;
2188 #endif
2190 /* Sort loops for marking them for removal. We put already marked
2191 loops first, then less frequent loops next, and then outer loops
2192 next. */
2193 static int
2194 loop_compare_func (const void *v1p, const void *v2p)
2196 int diff;
2197 ira_loop_tree_node_t l1 = *(const ira_loop_tree_node_t *) v1p;
2198 ira_loop_tree_node_t l2 = *(const ira_loop_tree_node_t *) v2p;
2200 ira_assert (l1->parent != NULL && l2->parent != NULL);
2201 if (l1->to_remove_p && ! l2->to_remove_p)
2202 return -1;
2203 if (! l1->to_remove_p && l2->to_remove_p)
2204 return 1;
2205 if ((diff = l1->loop->header->frequency - l2->loop->header->frequency) != 0)
2206 return diff;
2207 if ((diff = (int) loop_depth (l1->loop) - (int) loop_depth (l2->loop)) != 0)
2208 return diff;
2209 /* Make sorting stable. */
2210 return l1->loop_num - l2->loop_num;
2213 /* Mark loops which should be removed from regional allocation. We
2214 remove a loop with low register pressure inside another loop with
2215 register pressure. In this case a separate allocation of the loop
2216 hardly helps (for irregular register file architecture it could
2217 help by choosing a better hard register in the loop but we prefer
2218 faster allocation even in this case). We also remove cheap loops
2219 if there are more than IRA_MAX_LOOPS_NUM of them. Loop with EH
2220 exit or enter edges are removed too because the allocation might
2221 require put pseudo moves on the EH edges (we could still do this
2222 for pseudos with caller saved hard registers in some cases but it
2223 is impossible to say here or during top-down allocation pass what
2224 hard register the pseudos get finally). */
2225 static void
2226 mark_loops_for_removal (void)
2228 int i, n;
2229 ira_loop_tree_node_t *sorted_loops;
2230 loop_p loop;
2232 ira_assert (current_loops != NULL);
2233 sorted_loops
2234 = (ira_loop_tree_node_t *) ira_allocate (sizeof (ira_loop_tree_node_t)
2235 * number_of_loops (cfun));
2236 for (n = i = 0; vec_safe_iterate (get_loops (cfun), i, &loop); i++)
2237 if (ira_loop_nodes[i].regno_allocno_map != NULL)
2239 if (ira_loop_nodes[i].parent == NULL)
2241 /* Don't remove the root. */
2242 ira_loop_nodes[i].to_remove_p = false;
2243 continue;
2245 sorted_loops[n++] = &ira_loop_nodes[i];
2246 ira_loop_nodes[i].to_remove_p
2247 = ((low_pressure_loop_node_p (ira_loop_nodes[i].parent)
2248 && low_pressure_loop_node_p (&ira_loop_nodes[i]))
2249 #ifdef STACK_REGS
2250 || loop_with_complex_edge_p (ira_loop_nodes[i].loop)
2251 #endif
2254 qsort (sorted_loops, n, sizeof (ira_loop_tree_node_t), loop_compare_func);
2255 for (i = 0; i < n - IRA_MAX_LOOPS_NUM; i++)
2257 sorted_loops[i]->to_remove_p = true;
2258 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
2259 fprintf
2260 (ira_dump_file,
2261 " Mark loop %d (header %d, freq %d, depth %d) for removal (%s)\n",
2262 sorted_loops[i]->loop_num, sorted_loops[i]->loop->header->index,
2263 sorted_loops[i]->loop->header->frequency,
2264 loop_depth (sorted_loops[i]->loop),
2265 low_pressure_loop_node_p (sorted_loops[i]->parent)
2266 && low_pressure_loop_node_p (sorted_loops[i])
2267 ? "low pressure" : "cheap loop");
2269 ira_free (sorted_loops);
2272 /* Mark all loops but root for removing. */
2273 static void
2274 mark_all_loops_for_removal (void)
2276 int i;
2277 loop_p loop;
2279 ira_assert (current_loops != NULL);
2280 FOR_EACH_VEC_SAFE_ELT (get_loops (cfun), i, loop)
2281 if (ira_loop_nodes[i].regno_allocno_map != NULL)
2283 if (ira_loop_nodes[i].parent == NULL)
2285 /* Don't remove the root. */
2286 ira_loop_nodes[i].to_remove_p = false;
2287 continue;
2289 ira_loop_nodes[i].to_remove_p = true;
2290 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
2291 fprintf
2292 (ira_dump_file,
2293 " Mark loop %d (header %d, freq %d, depth %d) for removal\n",
2294 ira_loop_nodes[i].loop_num,
2295 ira_loop_nodes[i].loop->header->index,
2296 ira_loop_nodes[i].loop->header->frequency,
2297 loop_depth (ira_loop_nodes[i].loop));
2301 /* Definition of vector of loop tree nodes. */
2303 /* Vec containing references to all removed loop tree nodes. */
2304 static vec<ira_loop_tree_node_t> removed_loop_vec;
2306 /* Vec containing references to all children of loop tree nodes. */
2307 static vec<ira_loop_tree_node_t> children_vec;
2309 /* Remove subregions of NODE if their separate allocation will not
2310 improve the result. */
2311 static void
2312 remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_node_t node)
2314 unsigned int start;
2315 bool remove_p;
2316 ira_loop_tree_node_t subnode;
2318 remove_p = node->to_remove_p;
2319 if (! remove_p)
2320 children_vec.safe_push (node);
2321 start = children_vec.length ();
2322 for (subnode = node->children; subnode != NULL; subnode = subnode->next)
2323 if (subnode->bb == NULL)
2324 remove_uneccesary_loop_nodes_from_loop_tree (subnode);
2325 else
2326 children_vec.safe_push (subnode);
2327 node->children = node->subloops = NULL;
2328 if (remove_p)
2330 removed_loop_vec.safe_push (node);
2331 return;
2333 while (children_vec.length () > start)
2335 subnode = children_vec.pop ();
2336 subnode->parent = node;
2337 subnode->next = node->children;
2338 node->children = subnode;
2339 if (subnode->bb == NULL)
2341 subnode->subloop_next = node->subloops;
2342 node->subloops = subnode;
2347 /* Return TRUE if NODE is inside PARENT. */
2348 static bool
2349 loop_is_inside_p (ira_loop_tree_node_t node, ira_loop_tree_node_t parent)
2351 for (node = node->parent; node != NULL; node = node->parent)
2352 if (node == parent)
2353 return true;
2354 return false;
2357 /* Sort allocnos according to their order in regno allocno list. */
2358 static int
2359 regno_allocno_order_compare_func (const void *v1p, const void *v2p)
2361 ira_allocno_t a1 = *(const ira_allocno_t *) v1p;
2362 ira_allocno_t a2 = *(const ira_allocno_t *) v2p;
2363 ira_loop_tree_node_t n1 = ALLOCNO_LOOP_TREE_NODE (a1);
2364 ira_loop_tree_node_t n2 = ALLOCNO_LOOP_TREE_NODE (a2);
2366 if (loop_is_inside_p (n1, n2))
2367 return -1;
2368 else if (loop_is_inside_p (n2, n1))
2369 return 1;
2370 /* If allocnos are equally good, sort by allocno numbers, so that
2371 the results of qsort leave nothing to chance. We put allocnos
2372 with higher number first in the list because it is the original
2373 order for allocnos from loops on the same levels. */
2374 return ALLOCNO_NUM (a2) - ALLOCNO_NUM (a1);
2377 /* This array is used to sort allocnos to restore allocno order in
2378 the regno allocno list. */
2379 static ira_allocno_t *regno_allocnos;
2381 /* Restore allocno order for REGNO in the regno allocno list. */
2382 static void
2383 ira_rebuild_regno_allocno_list (int regno)
2385 int i, n;
2386 ira_allocno_t a;
2388 for (n = 0, a = ira_regno_allocno_map[regno];
2389 a != NULL;
2390 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2391 regno_allocnos[n++] = a;
2392 ira_assert (n > 0);
2393 qsort (regno_allocnos, n, sizeof (ira_allocno_t),
2394 regno_allocno_order_compare_func);
2395 for (i = 1; i < n; i++)
2396 ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[i - 1]) = regno_allocnos[i];
2397 ALLOCNO_NEXT_REGNO_ALLOCNO (regno_allocnos[n - 1]) = NULL;
2398 ira_regno_allocno_map[regno] = regno_allocnos[0];
2399 if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
2400 fprintf (ira_dump_file, " Rebuilding regno allocno list for %d\n", regno);
2403 /* Propagate info from allocno FROM_A to allocno A. */
2404 static void
2405 propagate_some_info_from_allocno (ira_allocno_t a, ira_allocno_t from_a)
2407 enum reg_class aclass;
2409 merge_hard_reg_conflicts (from_a, a, false);
2410 ALLOCNO_NREFS (a) += ALLOCNO_NREFS (from_a);
2411 ALLOCNO_FREQ (a) += ALLOCNO_FREQ (from_a);
2412 ALLOCNO_CALL_FREQ (a) += ALLOCNO_CALL_FREQ (from_a);
2413 ALLOCNO_CALLS_CROSSED_NUM (a) += ALLOCNO_CALLS_CROSSED_NUM (from_a);
2414 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)
2415 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (from_a);
2416 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a),
2417 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (from_a));
2419 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a)
2420 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (from_a);
2421 if (! ALLOCNO_BAD_SPILL_P (from_a))
2422 ALLOCNO_BAD_SPILL_P (a) = false;
2423 aclass = ALLOCNO_CLASS (from_a);
2424 ira_assert (aclass == ALLOCNO_CLASS (a));
2425 ira_allocate_and_accumulate_costs (&ALLOCNO_HARD_REG_COSTS (a), aclass,
2426 ALLOCNO_HARD_REG_COSTS (from_a));
2427 ira_allocate_and_accumulate_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
2428 aclass,
2429 ALLOCNO_CONFLICT_HARD_REG_COSTS (from_a));
2430 ALLOCNO_CLASS_COST (a) += ALLOCNO_CLASS_COST (from_a);
2431 ALLOCNO_MEMORY_COST (a) += ALLOCNO_MEMORY_COST (from_a);
2434 /* Remove allocnos from loops removed from the allocation
2435 consideration. */
2436 static void
2437 remove_unnecessary_allocnos (void)
2439 int regno;
2440 bool merged_p, rebuild_p;
2441 ira_allocno_t a, prev_a, next_a, parent_a;
2442 ira_loop_tree_node_t a_node, parent;
2444 merged_p = false;
2445 regno_allocnos = NULL;
2446 for (regno = max_reg_num () - 1; regno >= FIRST_PSEUDO_REGISTER; regno--)
2448 rebuild_p = false;
2449 for (prev_a = NULL, a = ira_regno_allocno_map[regno];
2450 a != NULL;
2451 a = next_a)
2453 next_a = ALLOCNO_NEXT_REGNO_ALLOCNO (a);
2454 a_node = ALLOCNO_LOOP_TREE_NODE (a);
2455 if (! a_node->to_remove_p)
2456 prev_a = a;
2457 else
2459 for (parent = a_node->parent;
2460 (parent_a = parent->regno_allocno_map[regno]) == NULL
2461 && parent->to_remove_p;
2462 parent = parent->parent)
2464 if (parent_a == NULL)
2466 /* There are no allocnos with the same regno in
2467 upper region -- just move the allocno to the
2468 upper region. */
2469 prev_a = a;
2470 ALLOCNO_LOOP_TREE_NODE (a) = parent;
2471 parent->regno_allocno_map[regno] = a;
2472 bitmap_set_bit (parent->all_allocnos, ALLOCNO_NUM (a));
2473 rebuild_p = true;
2475 else
2477 /* Remove the allocno and update info of allocno in
2478 the upper region. */
2479 if (prev_a == NULL)
2480 ira_regno_allocno_map[regno] = next_a;
2481 else
2482 ALLOCNO_NEXT_REGNO_ALLOCNO (prev_a) = next_a;
2483 move_allocno_live_ranges (a, parent_a);
2484 merged_p = true;
2485 propagate_some_info_from_allocno (parent_a, a);
2486 /* Remove it from the corresponding regno allocno
2487 map to avoid info propagation of subsequent
2488 allocno into this already removed allocno. */
2489 a_node->regno_allocno_map[regno] = NULL;
2490 ira_remove_allocno_prefs (a);
2491 finish_allocno (a);
2495 if (rebuild_p)
2496 /* We need to restore the order in regno allocno list. */
2498 if (regno_allocnos == NULL)
2499 regno_allocnos
2500 = (ira_allocno_t *) ira_allocate (sizeof (ira_allocno_t)
2501 * ira_allocnos_num);
2502 ira_rebuild_regno_allocno_list (regno);
2505 if (merged_p)
2506 ira_rebuild_start_finish_chains ();
2507 if (regno_allocnos != NULL)
2508 ira_free (regno_allocnos);
2511 /* Remove allocnos from all loops but the root. */
2512 static void
2513 remove_low_level_allocnos (void)
2515 int regno;
2516 bool merged_p, propagate_p;
2517 ira_allocno_t a, top_a;
2518 ira_loop_tree_node_t a_node, parent;
2519 ira_allocno_iterator ai;
2521 merged_p = false;
2522 FOR_EACH_ALLOCNO (a, ai)
2524 a_node = ALLOCNO_LOOP_TREE_NODE (a);
2525 if (a_node == ira_loop_tree_root || ALLOCNO_CAP_MEMBER (a) != NULL)
2526 continue;
2527 regno = ALLOCNO_REGNO (a);
2528 if ((top_a = ira_loop_tree_root->regno_allocno_map[regno]) == NULL)
2530 ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
2531 ira_loop_tree_root->regno_allocno_map[regno] = a;
2532 continue;
2534 propagate_p = a_node->parent->regno_allocno_map[regno] == NULL;
2535 /* Remove the allocno and update info of allocno in the upper
2536 region. */
2537 move_allocno_live_ranges (a, top_a);
2538 merged_p = true;
2539 if (propagate_p)
2540 propagate_some_info_from_allocno (top_a, a);
2542 FOR_EACH_ALLOCNO (a, ai)
2544 a_node = ALLOCNO_LOOP_TREE_NODE (a);
2545 if (a_node == ira_loop_tree_root)
2546 continue;
2547 parent = a_node->parent;
2548 regno = ALLOCNO_REGNO (a);
2549 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2550 ira_assert (ALLOCNO_CAP (a) != NULL);
2551 else if (ALLOCNO_CAP (a) == NULL)
2552 ira_assert (parent->regno_allocno_map[regno] != NULL);
2554 FOR_EACH_ALLOCNO (a, ai)
2556 regno = ALLOCNO_REGNO (a);
2557 if (ira_loop_tree_root->regno_allocno_map[regno] == a)
2559 ira_object_t obj;
2560 ira_allocno_object_iterator oi;
2562 ira_regno_allocno_map[regno] = a;
2563 ALLOCNO_NEXT_REGNO_ALLOCNO (a) = NULL;
2564 ALLOCNO_CAP_MEMBER (a) = NULL;
2565 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2566 COPY_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj),
2567 OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
2568 #ifdef STACK_REGS
2569 if (ALLOCNO_TOTAL_NO_STACK_REG_P (a))
2570 ALLOCNO_NO_STACK_REG_P (a) = true;
2571 #endif
2573 else
2575 ira_remove_allocno_prefs (a);
2576 finish_allocno (a);
2579 if (merged_p)
2580 ira_rebuild_start_finish_chains ();
2583 /* Remove loops from consideration. We remove all loops except for
2584 root if ALL_P or loops for which a separate allocation will not
2585 improve the result. We have to do this after allocno creation and
2586 their costs and allocno class evaluation because only after that
2587 the register pressure can be known and is calculated. */
2588 static void
2589 remove_unnecessary_regions (bool all_p)
2591 if (current_loops == NULL)
2592 return;
2593 if (all_p)
2594 mark_all_loops_for_removal ();
2595 else
2596 mark_loops_for_removal ();
2597 children_vec.create (last_basic_block_for_fn (cfun)
2598 + number_of_loops (cfun));
2599 removed_loop_vec.create (last_basic_block_for_fn (cfun)
2600 + number_of_loops (cfun));
2601 remove_uneccesary_loop_nodes_from_loop_tree (ira_loop_tree_root);
2602 children_vec.release ();
2603 if (all_p)
2604 remove_low_level_allocnos ();
2605 else
2606 remove_unnecessary_allocnos ();
2607 while (removed_loop_vec.length () > 0)
2608 finish_loop_tree_node (removed_loop_vec.pop ());
2609 removed_loop_vec.release ();
2614 /* At this point true value of allocno attribute bad_spill_p means
2615 that there is an insn where allocno occurs and where the allocno
2616 can not be used as memory. The function updates the attribute, now
2617 it can be true only for allocnos which can not be used as memory in
2618 an insn and in whose live ranges there is other allocno deaths.
2619 Spilling allocnos with true value will not improve the code because
2620 it will not make other allocnos colorable and additional reloads
2621 for the corresponding pseudo will be generated in reload pass for
2622 each insn it occurs.
2624 This is a trick mentioned in one classic article of Chaitin etc
2625 which is frequently omitted in other implementations of RA based on
2626 graph coloring. */
2627 static void
2628 update_bad_spill_attribute (void)
2630 int i;
2631 ira_allocno_t a;
2632 ira_allocno_iterator ai;
2633 ira_allocno_object_iterator aoi;
2634 ira_object_t obj;
2635 live_range_t r;
2636 enum reg_class aclass;
2637 bitmap_head dead_points[N_REG_CLASSES];
2639 for (i = 0; i < ira_allocno_classes_num; i++)
2641 aclass = ira_allocno_classes[i];
2642 bitmap_initialize (&dead_points[aclass], &reg_obstack);
2644 FOR_EACH_ALLOCNO (a, ai)
2646 aclass = ALLOCNO_CLASS (a);
2647 if (aclass == NO_REGS)
2648 continue;
2649 FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
2650 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
2651 bitmap_set_bit (&dead_points[aclass], r->finish);
2653 FOR_EACH_ALLOCNO (a, ai)
2655 aclass = ALLOCNO_CLASS (a);
2656 if (aclass == NO_REGS)
2657 continue;
2658 if (! ALLOCNO_BAD_SPILL_P (a))
2659 continue;
2660 FOR_EACH_ALLOCNO_OBJECT (a, obj, aoi)
2662 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
2664 for (i = r->start + 1; i < r->finish; i++)
2665 if (bitmap_bit_p (&dead_points[aclass], i))
2666 break;
2667 if (i < r->finish)
2668 break;
2670 if (r != NULL)
2672 ALLOCNO_BAD_SPILL_P (a) = false;
2673 break;
2677 for (i = 0; i < ira_allocno_classes_num; i++)
2679 aclass = ira_allocno_classes[i];
2680 bitmap_clear (&dead_points[aclass]);
2686 /* Set up minimal and maximal live range points for allocnos. */
2687 static void
2688 setup_min_max_allocno_live_range_point (void)
2690 int i;
2691 ira_allocno_t a, parent_a, cap;
2692 ira_allocno_iterator ai;
2693 #ifdef ENABLE_IRA_CHECKING
2694 ira_object_iterator oi;
2695 ira_object_t obj;
2696 #endif
2697 live_range_t r;
2698 ira_loop_tree_node_t parent;
2700 FOR_EACH_ALLOCNO (a, ai)
2702 int n = ALLOCNO_NUM_OBJECTS (a);
2704 for (i = 0; i < n; i++)
2706 ira_object_t obj = ALLOCNO_OBJECT (a, i);
2707 r = OBJECT_LIVE_RANGES (obj);
2708 if (r == NULL)
2709 continue;
2710 OBJECT_MAX (obj) = r->finish;
2711 for (; r->next != NULL; r = r->next)
2713 OBJECT_MIN (obj) = r->start;
2716 for (i = max_reg_num () - 1; i >= FIRST_PSEUDO_REGISTER; i--)
2717 for (a = ira_regno_allocno_map[i];
2718 a != NULL;
2719 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
2721 int j;
2722 int n = ALLOCNO_NUM_OBJECTS (a);
2724 for (j = 0; j < n; j++)
2726 ira_object_t obj = ALLOCNO_OBJECT (a, j);
2727 ira_object_t parent_obj;
2729 if (OBJECT_MAX (obj) < 0)
2730 continue;
2731 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
2732 /* Accumulation of range info. */
2733 if (ALLOCNO_CAP (a) != NULL)
2735 for (cap = ALLOCNO_CAP (a); cap != NULL; cap = ALLOCNO_CAP (cap))
2737 ira_object_t cap_obj = ALLOCNO_OBJECT (cap, j);
2738 if (OBJECT_MAX (cap_obj) < OBJECT_MAX (obj))
2739 OBJECT_MAX (cap_obj) = OBJECT_MAX (obj);
2740 if (OBJECT_MIN (cap_obj) > OBJECT_MIN (obj))
2741 OBJECT_MIN (cap_obj) = OBJECT_MIN (obj);
2743 continue;
2745 if ((parent = ALLOCNO_LOOP_TREE_NODE (a)->parent) == NULL)
2746 continue;
2747 parent_a = parent->regno_allocno_map[i];
2748 parent_obj = ALLOCNO_OBJECT (parent_a, j);
2749 if (OBJECT_MAX (parent_obj) < OBJECT_MAX (obj))
2750 OBJECT_MAX (parent_obj) = OBJECT_MAX (obj);
2751 if (OBJECT_MIN (parent_obj) > OBJECT_MIN (obj))
2752 OBJECT_MIN (parent_obj) = OBJECT_MIN (obj);
2755 #ifdef ENABLE_IRA_CHECKING
2756 FOR_EACH_OBJECT (obj, oi)
2758 if ((0 <= OBJECT_MIN (obj) && OBJECT_MIN (obj) <= ira_max_point)
2759 && (0 <= OBJECT_MAX (obj) && OBJECT_MAX (obj) <= ira_max_point))
2760 continue;
2761 gcc_unreachable ();
2763 #endif
2766 /* Sort allocnos according to their live ranges. Allocnos with
2767 smaller allocno class are put first unless we use priority
2768 coloring. Allocnos with the same class are ordered according
2769 their start (min). Allocnos with the same start are ordered
2770 according their finish (max). */
2771 static int
2772 object_range_compare_func (const void *v1p, const void *v2p)
2774 int diff;
2775 ira_object_t obj1 = *(const ira_object_t *) v1p;
2776 ira_object_t obj2 = *(const ira_object_t *) v2p;
2777 ira_allocno_t a1 = OBJECT_ALLOCNO (obj1);
2778 ira_allocno_t a2 = OBJECT_ALLOCNO (obj2);
2780 if ((diff = OBJECT_MIN (obj1) - OBJECT_MIN (obj2)) != 0)
2781 return diff;
2782 if ((diff = OBJECT_MAX (obj1) - OBJECT_MAX (obj2)) != 0)
2783 return diff;
2784 return ALLOCNO_NUM (a1) - ALLOCNO_NUM (a2);
2787 /* Sort ira_object_id_map and set up conflict id of allocnos. */
2788 static void
2789 sort_conflict_id_map (void)
2791 int i, num;
2792 ira_allocno_t a;
2793 ira_allocno_iterator ai;
2795 num = 0;
2796 FOR_EACH_ALLOCNO (a, ai)
2798 ira_allocno_object_iterator oi;
2799 ira_object_t obj;
2801 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
2802 ira_object_id_map[num++] = obj;
2804 if (num > 1)
2805 qsort (ira_object_id_map, num, sizeof (ira_object_t),
2806 object_range_compare_func);
2807 for (i = 0; i < num; i++)
2809 ira_object_t obj = ira_object_id_map[i];
2811 gcc_assert (obj != NULL);
2812 OBJECT_CONFLICT_ID (obj) = i;
2814 for (i = num; i < ira_objects_num; i++)
2815 ira_object_id_map[i] = NULL;
2818 /* Set up minimal and maximal conflict ids of allocnos with which
2819 given allocno can conflict. */
2820 static void
2821 setup_min_max_conflict_allocno_ids (void)
2823 int aclass;
2824 int i, j, min, max, start, finish, first_not_finished, filled_area_start;
2825 int *live_range_min, *last_lived;
2826 int word0_min, word0_max;
2827 ira_allocno_t a;
2828 ira_allocno_iterator ai;
2830 live_range_min = (int *) ira_allocate (sizeof (int) * ira_objects_num);
2831 aclass = -1;
2832 first_not_finished = -1;
2833 for (i = 0; i < ira_objects_num; i++)
2835 ira_object_t obj = ira_object_id_map[i];
2837 if (obj == NULL)
2838 continue;
2840 a = OBJECT_ALLOCNO (obj);
2842 if (aclass < 0)
2844 aclass = ALLOCNO_CLASS (a);
2845 min = i;
2846 first_not_finished = i;
2848 else
2850 start = OBJECT_MIN (obj);
2851 /* If we skip an allocno, the allocno with smaller ids will
2852 be also skipped because of the secondary sorting the
2853 range finishes (see function
2854 object_range_compare_func). */
2855 while (first_not_finished < i
2856 && start > OBJECT_MAX (ira_object_id_map
2857 [first_not_finished]))
2858 first_not_finished++;
2859 min = first_not_finished;
2861 if (min == i)
2862 /* We could increase min further in this case but it is good
2863 enough. */
2864 min++;
2865 live_range_min[i] = OBJECT_MIN (obj);
2866 OBJECT_MIN (obj) = min;
2868 last_lived = (int *) ira_allocate (sizeof (int) * ira_max_point);
2869 aclass = -1;
2870 filled_area_start = -1;
2871 for (i = ira_objects_num - 1; i >= 0; i--)
2873 ira_object_t obj = ira_object_id_map[i];
2875 if (obj == NULL)
2876 continue;
2878 a = OBJECT_ALLOCNO (obj);
2879 if (aclass < 0)
2881 aclass = ALLOCNO_CLASS (a);
2882 for (j = 0; j < ira_max_point; j++)
2883 last_lived[j] = -1;
2884 filled_area_start = ira_max_point;
2886 min = live_range_min[i];
2887 finish = OBJECT_MAX (obj);
2888 max = last_lived[finish];
2889 if (max < 0)
2890 /* We could decrease max further in this case but it is good
2891 enough. */
2892 max = OBJECT_CONFLICT_ID (obj) - 1;
2893 OBJECT_MAX (obj) = max;
2894 /* In filling, we can go further A range finish to recognize
2895 intersection quickly because if the finish of subsequently
2896 processed allocno (it has smaller conflict id) range is
2897 further A range finish than they are definitely intersected
2898 (the reason for this is the allocnos with bigger conflict id
2899 have their range starts not smaller than allocnos with
2900 smaller ids. */
2901 for (j = min; j < filled_area_start; j++)
2902 last_lived[j] = i;
2903 filled_area_start = min;
2905 ira_free (last_lived);
2906 ira_free (live_range_min);
2908 /* For allocnos with more than one object, we may later record extra conflicts in
2909 subobject 0 that we cannot really know about here.
2910 For now, simply widen the min/max range of these subobjects. */
2912 word0_min = INT_MAX;
2913 word0_max = INT_MIN;
2915 FOR_EACH_ALLOCNO (a, ai)
2917 int n = ALLOCNO_NUM_OBJECTS (a);
2918 ira_object_t obj0;
2920 if (n < 2)
2921 continue;
2922 obj0 = ALLOCNO_OBJECT (a, 0);
2923 if (OBJECT_CONFLICT_ID (obj0) < word0_min)
2924 word0_min = OBJECT_CONFLICT_ID (obj0);
2925 if (OBJECT_CONFLICT_ID (obj0) > word0_max)
2926 word0_max = OBJECT_CONFLICT_ID (obj0);
2928 FOR_EACH_ALLOCNO (a, ai)
2930 int n = ALLOCNO_NUM_OBJECTS (a);
2931 ira_object_t obj0;
2933 if (n < 2)
2934 continue;
2935 obj0 = ALLOCNO_OBJECT (a, 0);
2936 if (OBJECT_MIN (obj0) > word0_min)
2937 OBJECT_MIN (obj0) = word0_min;
2938 if (OBJECT_MAX (obj0) < word0_max)
2939 OBJECT_MAX (obj0) = word0_max;
2945 static void
2946 create_caps (void)
2948 ira_allocno_t a;
2949 ira_allocno_iterator ai;
2950 ira_loop_tree_node_t loop_tree_node;
2952 FOR_EACH_ALLOCNO (a, ai)
2954 if (ALLOCNO_LOOP_TREE_NODE (a) == ira_loop_tree_root)
2955 continue;
2956 if (ALLOCNO_CAP_MEMBER (a) != NULL)
2957 create_cap_allocno (a);
2958 else if (ALLOCNO_CAP (a) == NULL)
2960 loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
2961 if (!bitmap_bit_p (loop_tree_node->border_allocnos, ALLOCNO_NUM (a)))
2962 create_cap_allocno (a);
2969 /* The page contains code transforming more one region internal
2970 representation (IR) to one region IR which is necessary for reload.
2971 This transformation is called IR flattening. We might just rebuild
2972 the IR for one region but we don't do it because it takes a lot of
2973 time. */
2975 /* Map: regno -> allocnos which will finally represent the regno for
2976 IR with one region. */
2977 static ira_allocno_t *regno_top_level_allocno_map;
2979 /* Find the allocno that corresponds to A at a level one higher up in the
2980 loop tree. Returns NULL if A is a cap, or if it has no parent. */
2981 ira_allocno_t
2982 ira_parent_allocno (ira_allocno_t a)
2984 ira_loop_tree_node_t parent;
2986 if (ALLOCNO_CAP (a) != NULL)
2987 return NULL;
2989 parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
2990 if (parent == NULL)
2991 return NULL;
2993 return parent->regno_allocno_map[ALLOCNO_REGNO (a)];
2996 /* Find the allocno that corresponds to A at a level one higher up in the
2997 loop tree. If ALLOCNO_CAP is set for A, return that. */
2998 ira_allocno_t
2999 ira_parent_or_cap_allocno (ira_allocno_t a)
3001 if (ALLOCNO_CAP (a) != NULL)
3002 return ALLOCNO_CAP (a);
3004 return ira_parent_allocno (a);
3007 /* Process all allocnos originated from pseudo REGNO and copy live
3008 ranges, hard reg conflicts, and allocno stack reg attributes from
3009 low level allocnos to final allocnos which are destinations of
3010 removed stores at a loop exit. Return true if we copied live
3011 ranges. */
3012 static bool
3013 copy_info_to_removed_store_destinations (int regno)
3015 ira_allocno_t a;
3016 ira_allocno_t parent_a = NULL;
3017 ira_loop_tree_node_t parent;
3018 bool merged_p;
3020 merged_p = false;
3021 for (a = ira_regno_allocno_map[regno];
3022 a != NULL;
3023 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
3025 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))])
3026 /* This allocno will be removed. */
3027 continue;
3029 /* Caps will be removed. */
3030 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
3031 for (parent = ALLOCNO_LOOP_TREE_NODE (a)->parent;
3032 parent != NULL;
3033 parent = parent->parent)
3034 if ((parent_a = parent->regno_allocno_map[regno]) == NULL
3035 || (parent_a
3036 == regno_top_level_allocno_map[REGNO
3037 (allocno_emit_reg (parent_a))]
3038 && ALLOCNO_EMIT_DATA (parent_a)->mem_optimized_dest_p))
3039 break;
3040 if (parent == NULL || parent_a == NULL)
3041 continue;
3043 copy_allocno_live_ranges (a, parent_a);
3044 merge_hard_reg_conflicts (a, parent_a, true);
3046 ALLOCNO_CALL_FREQ (parent_a) += ALLOCNO_CALL_FREQ (a);
3047 ALLOCNO_CALLS_CROSSED_NUM (parent_a)
3048 += ALLOCNO_CALLS_CROSSED_NUM (a);
3049 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
3050 += ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
3051 IOR_HARD_REG_SET (ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (parent_a),
3052 ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a));
3053 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
3054 += ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
3055 merged_p = true;
3057 return merged_p;
3060 /* Flatten the IR. In other words, this function transforms IR as if
3061 it were built with one region (without loops). We could make it
3062 much simpler by rebuilding IR with one region, but unfortunately it
3063 takes a lot of time. MAX_REGNO_BEFORE_EMIT and
3064 IRA_MAX_POINT_BEFORE_EMIT are correspondingly MAX_REG_NUM () and
3065 IRA_MAX_POINT before emitting insns on the loop borders. */
3066 void
3067 ira_flattening (int max_regno_before_emit, int ira_max_point_before_emit)
3069 int i, j;
3070 bool keep_p;
3071 int hard_regs_num;
3072 bool new_pseudos_p, merged_p, mem_dest_p;
3073 unsigned int n;
3074 enum reg_class aclass;
3075 ira_allocno_t a, parent_a, first, second, node_first, node_second;
3076 ira_copy_t cp;
3077 ira_loop_tree_node_t node;
3078 live_range_t r;
3079 ira_allocno_iterator ai;
3080 ira_copy_iterator ci;
3082 regno_top_level_allocno_map
3083 = (ira_allocno_t *) ira_allocate (max_reg_num ()
3084 * sizeof (ira_allocno_t));
3085 memset (regno_top_level_allocno_map, 0,
3086 max_reg_num () * sizeof (ira_allocno_t));
3087 new_pseudos_p = merged_p = false;
3088 FOR_EACH_ALLOCNO (a, ai)
3090 ira_allocno_object_iterator oi;
3091 ira_object_t obj;
3093 if (ALLOCNO_CAP_MEMBER (a) != NULL)
3094 /* Caps are not in the regno allocno maps and they are never
3095 will be transformed into allocnos existing after IR
3096 flattening. */
3097 continue;
3098 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
3099 COPY_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj),
3100 OBJECT_CONFLICT_HARD_REGS (obj));
3101 #ifdef STACK_REGS
3102 ALLOCNO_TOTAL_NO_STACK_REG_P (a) = ALLOCNO_NO_STACK_REG_P (a);
3103 #endif
3105 /* Fix final allocno attributes. */
3106 for (i = max_regno_before_emit - 1; i >= FIRST_PSEUDO_REGISTER; i--)
3108 mem_dest_p = false;
3109 for (a = ira_regno_allocno_map[i];
3110 a != NULL;
3111 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
3113 ira_emit_data_t parent_data, data = ALLOCNO_EMIT_DATA (a);
3115 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
3116 if (data->somewhere_renamed_p)
3117 new_pseudos_p = true;
3118 parent_a = ira_parent_allocno (a);
3119 if (parent_a == NULL)
3121 ALLOCNO_COPIES (a) = NULL;
3122 regno_top_level_allocno_map[REGNO (data->reg)] = a;
3123 continue;
3125 ira_assert (ALLOCNO_CAP_MEMBER (parent_a) == NULL);
3127 if (data->mem_optimized_dest != NULL)
3128 mem_dest_p = true;
3129 parent_data = ALLOCNO_EMIT_DATA (parent_a);
3130 if (REGNO (data->reg) == REGNO (parent_data->reg))
3132 merge_hard_reg_conflicts (a, parent_a, true);
3133 move_allocno_live_ranges (a, parent_a);
3134 merged_p = true;
3135 parent_data->mem_optimized_dest_p
3136 = (parent_data->mem_optimized_dest_p
3137 || data->mem_optimized_dest_p);
3138 continue;
3140 new_pseudos_p = true;
3141 for (;;)
3143 ALLOCNO_NREFS (parent_a) -= ALLOCNO_NREFS (a);
3144 ALLOCNO_FREQ (parent_a) -= ALLOCNO_FREQ (a);
3145 ALLOCNO_CALL_FREQ (parent_a) -= ALLOCNO_CALL_FREQ (a);
3146 ALLOCNO_CALLS_CROSSED_NUM (parent_a)
3147 -= ALLOCNO_CALLS_CROSSED_NUM (a);
3148 ALLOCNO_CHEAP_CALLS_CROSSED_NUM (parent_a)
3149 -= ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a);
3150 ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (parent_a)
3151 -= ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a);
3152 ira_assert (ALLOCNO_CALLS_CROSSED_NUM (parent_a) >= 0
3153 && ALLOCNO_NREFS (parent_a) >= 0
3154 && ALLOCNO_FREQ (parent_a) >= 0);
3155 aclass = ALLOCNO_CLASS (parent_a);
3156 hard_regs_num = ira_class_hard_regs_num[aclass];
3157 if (ALLOCNO_HARD_REG_COSTS (a) != NULL
3158 && ALLOCNO_HARD_REG_COSTS (parent_a) != NULL)
3159 for (j = 0; j < hard_regs_num; j++)
3160 ALLOCNO_HARD_REG_COSTS (parent_a)[j]
3161 -= ALLOCNO_HARD_REG_COSTS (a)[j];
3162 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) != NULL
3163 && ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a) != NULL)
3164 for (j = 0; j < hard_regs_num; j++)
3165 ALLOCNO_CONFLICT_HARD_REG_COSTS (parent_a)[j]
3166 -= ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[j];
3167 ALLOCNO_CLASS_COST (parent_a)
3168 -= ALLOCNO_CLASS_COST (a);
3169 ALLOCNO_MEMORY_COST (parent_a) -= ALLOCNO_MEMORY_COST (a);
3170 parent_a = ira_parent_allocno (parent_a);
3171 if (parent_a == NULL)
3172 break;
3174 ALLOCNO_COPIES (a) = NULL;
3175 regno_top_level_allocno_map[REGNO (data->reg)] = a;
3177 if (mem_dest_p && copy_info_to_removed_store_destinations (i))
3178 merged_p = true;
3180 ira_assert (new_pseudos_p || ira_max_point_before_emit == ira_max_point);
3181 if (merged_p || ira_max_point_before_emit != ira_max_point)
3182 ira_rebuild_start_finish_chains ();
3183 if (new_pseudos_p)
3185 sparseset objects_live;
3187 /* Rebuild conflicts. */
3188 FOR_EACH_ALLOCNO (a, ai)
3190 ira_allocno_object_iterator oi;
3191 ira_object_t obj;
3193 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
3194 || ALLOCNO_CAP_MEMBER (a) != NULL)
3195 continue;
3196 FOR_EACH_ALLOCNO_OBJECT (a, obj, oi)
3198 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
3199 ira_assert (r->object == obj);
3200 clear_conflicts (obj);
3203 objects_live = sparseset_alloc (ira_objects_num);
3204 for (i = 0; i < ira_max_point; i++)
3206 for (r = ira_start_point_ranges[i]; r != NULL; r = r->start_next)
3208 ira_object_t obj = r->object;
3210 a = OBJECT_ALLOCNO (obj);
3211 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
3212 || ALLOCNO_CAP_MEMBER (a) != NULL)
3213 continue;
3215 aclass = ALLOCNO_CLASS (a);
3216 EXECUTE_IF_SET_IN_SPARSESET (objects_live, n)
3218 ira_object_t live_obj = ira_object_id_map[n];
3219 ira_allocno_t live_a = OBJECT_ALLOCNO (live_obj);
3220 enum reg_class live_aclass = ALLOCNO_CLASS (live_a);
3222 if (ira_reg_classes_intersect_p[aclass][live_aclass]
3223 /* Don't set up conflict for the allocno with itself. */
3224 && live_a != a)
3225 ira_add_conflict (obj, live_obj);
3227 sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
3230 for (r = ira_finish_point_ranges[i]; r != NULL; r = r->finish_next)
3231 sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (r->object));
3233 sparseset_free (objects_live);
3234 compress_conflict_vecs ();
3236 /* Mark some copies for removing and change allocnos in the rest
3237 copies. */
3238 FOR_EACH_COPY (cp, ci)
3240 if (ALLOCNO_CAP_MEMBER (cp->first) != NULL
3241 || ALLOCNO_CAP_MEMBER (cp->second) != NULL)
3243 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
3244 fprintf
3245 (ira_dump_file, " Remove cp%d:%c%dr%d-%c%dr%d\n",
3246 cp->num, ALLOCNO_CAP_MEMBER (cp->first) != NULL ? 'c' : 'a',
3247 ALLOCNO_NUM (cp->first),
3248 REGNO (allocno_emit_reg (cp->first)),
3249 ALLOCNO_CAP_MEMBER (cp->second) != NULL ? 'c' : 'a',
3250 ALLOCNO_NUM (cp->second),
3251 REGNO (allocno_emit_reg (cp->second)));
3252 cp->loop_tree_node = NULL;
3253 continue;
3255 first
3256 = regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->first))];
3257 second
3258 = regno_top_level_allocno_map[REGNO (allocno_emit_reg (cp->second))];
3259 node = cp->loop_tree_node;
3260 if (node == NULL)
3261 keep_p = true; /* It copy generated in ira-emit.c. */
3262 else
3264 /* Check that the copy was not propagated from level on
3265 which we will have different pseudos. */
3266 node_first = node->regno_allocno_map[ALLOCNO_REGNO (cp->first)];
3267 node_second = node->regno_allocno_map[ALLOCNO_REGNO (cp->second)];
3268 keep_p = ((REGNO (allocno_emit_reg (first))
3269 == REGNO (allocno_emit_reg (node_first)))
3270 && (REGNO (allocno_emit_reg (second))
3271 == REGNO (allocno_emit_reg (node_second))));
3273 if (keep_p)
3275 cp->loop_tree_node = ira_loop_tree_root;
3276 cp->first = first;
3277 cp->second = second;
3279 else
3281 cp->loop_tree_node = NULL;
3282 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
3283 fprintf (ira_dump_file, " Remove cp%d:a%dr%d-a%dr%d\n",
3284 cp->num, ALLOCNO_NUM (cp->first),
3285 REGNO (allocno_emit_reg (cp->first)),
3286 ALLOCNO_NUM (cp->second),
3287 REGNO (allocno_emit_reg (cp->second)));
3290 /* Remove unnecessary allocnos on lower levels of the loop tree. */
3291 FOR_EACH_ALLOCNO (a, ai)
3293 if (a != regno_top_level_allocno_map[REGNO (allocno_emit_reg (a))]
3294 || ALLOCNO_CAP_MEMBER (a) != NULL)
3296 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL)
3297 fprintf (ira_dump_file, " Remove a%dr%d\n",
3298 ALLOCNO_NUM (a), REGNO (allocno_emit_reg (a)));
3299 ira_remove_allocno_prefs (a);
3300 finish_allocno (a);
3301 continue;
3303 ALLOCNO_LOOP_TREE_NODE (a) = ira_loop_tree_root;
3304 ALLOCNO_REGNO (a) = REGNO (allocno_emit_reg (a));
3305 ALLOCNO_CAP (a) = NULL;
3306 /* Restore updated costs for assignments from reload. */
3307 ALLOCNO_UPDATED_MEMORY_COST (a) = ALLOCNO_MEMORY_COST (a);
3308 ALLOCNO_UPDATED_CLASS_COST (a) = ALLOCNO_CLASS_COST (a);
3309 if (! ALLOCNO_ASSIGNED_P (a))
3310 ira_free_allocno_updated_costs (a);
3311 ira_assert (ALLOCNO_UPDATED_HARD_REG_COSTS (a) == NULL);
3312 ira_assert (ALLOCNO_UPDATED_CONFLICT_HARD_REG_COSTS (a) == NULL);
3314 /* Remove unnecessary copies. */
3315 FOR_EACH_COPY (cp, ci)
3317 if (cp->loop_tree_node == NULL)
3319 ira_copies[cp->num] = NULL;
3320 finish_copy (cp);
3321 continue;
3323 ira_assert
3324 (ALLOCNO_LOOP_TREE_NODE (cp->first) == ira_loop_tree_root
3325 && ALLOCNO_LOOP_TREE_NODE (cp->second) == ira_loop_tree_root);
3326 add_allocno_copy_to_list (cp);
3327 swap_allocno_copy_ends_if_necessary (cp);
3329 rebuild_regno_allocno_maps ();
3330 if (ira_max_point != ira_max_point_before_emit)
3331 ira_compress_allocno_live_ranges ();
3332 ira_free (regno_top_level_allocno_map);
3337 #ifdef ENABLE_IRA_CHECKING
3338 /* Check creation of all allocnos. Allocnos on lower levels should
3339 have allocnos or caps on all upper levels. */
3340 static void
3341 check_allocno_creation (void)
3343 ira_allocno_t a;
3344 ira_allocno_iterator ai;
3345 ira_loop_tree_node_t loop_tree_node;
3347 FOR_EACH_ALLOCNO (a, ai)
3349 loop_tree_node = ALLOCNO_LOOP_TREE_NODE (a);
3350 ira_assert (bitmap_bit_p (loop_tree_node->all_allocnos,
3351 ALLOCNO_NUM (a)));
3352 if (loop_tree_node == ira_loop_tree_root)
3353 continue;
3354 if (ALLOCNO_CAP_MEMBER (a) != NULL)
3355 ira_assert (ALLOCNO_CAP (a) != NULL);
3356 else if (ALLOCNO_CAP (a) == NULL)
3357 ira_assert (loop_tree_node->parent
3358 ->regno_allocno_map[ALLOCNO_REGNO (a)] != NULL
3359 && bitmap_bit_p (loop_tree_node->border_allocnos,
3360 ALLOCNO_NUM (a)));
3363 #endif
3365 /* Identify allocnos which prefer a register class with a single hard register.
3366 Adjust ALLOCNO_CONFLICT_HARD_REG_COSTS so that conflicting allocnos are
3367 less likely to use the preferred singleton register. */
3368 static void
3369 update_conflict_hard_reg_costs (void)
3371 ira_allocno_t a;
3372 ira_allocno_iterator ai;
3373 int i, index, min;
3375 FOR_EACH_ALLOCNO (a, ai)
3377 reg_class_t aclass = ALLOCNO_CLASS (a);
3378 reg_class_t pref = reg_preferred_class (ALLOCNO_REGNO (a));
3379 int singleton = ira_class_singleton[pref][ALLOCNO_MODE (a)];
3380 if (singleton < 0)
3381 continue;
3382 index = ira_class_hard_reg_index[(int) aclass][singleton];
3383 if (index < 0)
3384 continue;
3385 if (ALLOCNO_CONFLICT_HARD_REG_COSTS (a) == NULL
3386 || ALLOCNO_HARD_REG_COSTS (a) == NULL)
3387 continue;
3388 min = INT_MAX;
3389 for (i = ira_class_hard_regs_num[(int) aclass] - 1; i >= 0; i--)
3390 if (ALLOCNO_HARD_REG_COSTS (a)[i] > ALLOCNO_CLASS_COST (a)
3391 && min > ALLOCNO_HARD_REG_COSTS (a)[i])
3392 min = ALLOCNO_HARD_REG_COSTS (a)[i];
3393 if (min == INT_MAX)
3394 continue;
3395 ira_allocate_and_set_costs (&ALLOCNO_CONFLICT_HARD_REG_COSTS (a),
3396 aclass, 0);
3397 ALLOCNO_CONFLICT_HARD_REG_COSTS (a)[index]
3398 -= min - ALLOCNO_CLASS_COST (a);
3402 /* Create a internal representation (IR) for IRA (allocnos, copies,
3403 loop tree nodes). The function returns TRUE if we generate loop
3404 structure (besides nodes representing all function and the basic
3405 blocks) for regional allocation. A true return means that we
3406 really need to flatten IR before the reload. */
3407 bool
3408 ira_build (void)
3410 bool loops_p;
3412 df_analyze ();
3413 initiate_cost_vectors ();
3414 initiate_allocnos ();
3415 initiate_prefs ();
3416 initiate_copies ();
3417 create_loop_tree_nodes ();
3418 form_loop_tree ();
3419 create_allocnos ();
3420 ira_costs ();
3421 create_allocno_objects ();
3422 ira_create_allocno_live_ranges ();
3423 remove_unnecessary_regions (false);
3424 ira_compress_allocno_live_ranges ();
3425 update_bad_spill_attribute ();
3426 loops_p = more_one_region_p ();
3427 if (loops_p)
3429 propagate_allocno_info ();
3430 create_caps ();
3432 ira_tune_allocno_costs ();
3433 #ifdef ENABLE_IRA_CHECKING
3434 check_allocno_creation ();
3435 #endif
3436 setup_min_max_allocno_live_range_point ();
3437 sort_conflict_id_map ();
3438 setup_min_max_conflict_allocno_ids ();
3439 ira_build_conflicts ();
3440 update_conflict_hard_reg_costs ();
3441 if (! ira_conflicts_p)
3443 ira_allocno_t a;
3444 ira_allocno_iterator ai;
3446 /* Remove all regions but root one. */
3447 if (loops_p)
3449 remove_unnecessary_regions (true);
3450 loops_p = false;
3452 /* We don't save hard registers around calls for fast allocation
3453 -- add caller clobbered registers as conflicting ones to
3454 allocno crossing calls. */
3455 FOR_EACH_ALLOCNO (a, ai)
3456 if (ALLOCNO_CALLS_CROSSED_NUM (a) != 0)
3457 ior_hard_reg_conflicts (a, &call_used_reg_set);
3459 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3460 print_copies (ira_dump_file);
3461 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
3462 print_prefs (ira_dump_file);
3463 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3465 int n, nr, nr_big;
3466 ira_allocno_t a;
3467 live_range_t r;
3468 ira_allocno_iterator ai;
3470 n = 0;
3471 nr = 0;
3472 nr_big = 0;
3473 FOR_EACH_ALLOCNO (a, ai)
3475 int j, nobj = ALLOCNO_NUM_OBJECTS (a);
3477 if (nobj > 1)
3478 nr_big++;
3479 for (j = 0; j < nobj; j++)
3481 ira_object_t obj = ALLOCNO_OBJECT (a, j);
3482 n += OBJECT_NUM_CONFLICTS (obj);
3483 for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
3484 nr++;
3487 fprintf (ira_dump_file, " regions=%d, blocks=%d, points=%d\n",
3488 current_loops == NULL ? 1 : number_of_loops (cfun),
3489 n_basic_blocks_for_fn (cfun), ira_max_point);
3490 fprintf (ira_dump_file,
3491 " allocnos=%d (big %d), copies=%d, conflicts=%d, ranges=%d\n",
3492 ira_allocnos_num, nr_big, ira_copies_num, n, nr);
3494 return loops_p;
3497 /* Release the data created by function ira_build. */
3498 void
3499 ira_destroy (void)
3501 finish_loop_tree_nodes ();
3502 finish_prefs ();
3503 finish_copies ();
3504 finish_allocnos ();
3505 finish_cost_vectors ();
3506 ira_finish_allocno_live_ranges ();