* tree-outof-ssa.h (ssaexpand): Add partitions_for_undefined_values.
[official-gcc.git] / gcc / tree-vect-loop-manip.c
blob5787d53a83a4000da30d7415f482a2b5e581ea5a
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
6 This file is part of GCC.
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43 #include "tree-ssa-loop-ivopts.h"
45 /*************************************************************************
46 Simple Loop Peeling Utilities
48 Utilities to support loop peeling for vectorization purposes.
49 *************************************************************************/
52 /* Renames the use *OP_P. */
54 static void
55 rename_use_op (use_operand_p op_p)
57 tree new_name;
59 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
60 return;
62 new_name = get_current_def (USE_FROM_PTR (op_p));
64 /* Something defined outside of the loop. */
65 if (!new_name)
66 return;
68 /* An ordinary ssa name defined in the loop. */
70 SET_USE (op_p, new_name);
74 /* Renames the variables in basic block BB. Allow renaming of PHI arguments
75 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
76 true. */
78 static void
79 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
81 gimple *stmt;
82 use_operand_p use_p;
83 ssa_op_iter iter;
84 edge e;
85 edge_iterator ei;
86 struct loop *loop = bb->loop_father;
87 struct loop *outer_loop = NULL;
89 if (rename_from_outer_loop)
91 gcc_assert (loop);
92 outer_loop = loop_outer (loop);
95 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
96 gsi_next (&gsi))
98 stmt = gsi_stmt (gsi);
99 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
100 rename_use_op (use_p);
103 FOR_EACH_EDGE (e, ei, bb->preds)
105 if (!flow_bb_inside_loop_p (loop, e->src))
107 if (!rename_from_outer_loop)
108 continue;
109 if (e->src != outer_loop->header)
111 if (outer_loop->inner->next)
113 /* If outer_loop has 2 inner loops, allow there to
114 be an extra basic block which decides which of the
115 two loops to use using LOOP_VECTORIZED. */
116 if (!single_pred_p (e->src)
117 || single_pred (e->src) != outer_loop->header)
118 continue;
120 else
121 continue;
124 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
125 gsi_next (&gsi))
126 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
131 struct adjust_info
133 tree from, to;
134 basic_block bb;
137 /* A stack of values to be adjusted in debug stmts. We have to
138 process them LIFO, so that the closest substitution applies. If we
139 processed them FIFO, without the stack, we might substitute uses
140 with a PHI DEF that would soon become non-dominant, and when we got
141 to the suitable one, it wouldn't have anything to substitute any
142 more. */
143 static vec<adjust_info, va_heap> adjust_vec;
145 /* Adjust any debug stmts that referenced AI->from values to use the
146 loop-closed AI->to, if the references are dominated by AI->bb and
147 not by the definition of AI->from. */
149 static void
150 adjust_debug_stmts_now (adjust_info *ai)
152 basic_block bbphi = ai->bb;
153 tree orig_def = ai->from;
154 tree new_def = ai->to;
155 imm_use_iterator imm_iter;
156 gimple *stmt;
157 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
159 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
161 /* Adjust any debug stmts that held onto non-loop-closed
162 references. */
163 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
165 use_operand_p use_p;
166 basic_block bbuse;
168 if (!is_gimple_debug (stmt))
169 continue;
171 gcc_assert (gimple_debug_bind_p (stmt));
173 bbuse = gimple_bb (stmt);
175 if ((bbuse == bbphi
176 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
177 && !(bbuse == bbdef
178 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
180 if (new_def)
181 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
182 SET_USE (use_p, new_def);
183 else
185 gimple_debug_bind_reset_value (stmt);
186 update_stmt (stmt);
192 /* Adjust debug stmts as scheduled before. */
194 static void
195 adjust_vec_debug_stmts (void)
197 if (!MAY_HAVE_DEBUG_STMTS)
198 return;
200 gcc_assert (adjust_vec.exists ());
202 while (!adjust_vec.is_empty ())
204 adjust_debug_stmts_now (&adjust_vec.last ());
205 adjust_vec.pop ();
209 /* Adjust any debug stmts that referenced FROM values to use the
210 loop-closed TO, if the references are dominated by BB and not by
211 the definition of FROM. If adjust_vec is non-NULL, adjustments
212 will be postponed until adjust_vec_debug_stmts is called. */
214 static void
215 adjust_debug_stmts (tree from, tree to, basic_block bb)
217 adjust_info ai;
219 if (MAY_HAVE_DEBUG_STMTS
220 && TREE_CODE (from) == SSA_NAME
221 && ! SSA_NAME_IS_DEFAULT_DEF (from)
222 && ! virtual_operand_p (from))
224 ai.from = from;
225 ai.to = to;
226 ai.bb = bb;
228 if (adjust_vec.exists ())
229 adjust_vec.safe_push (ai);
230 else
231 adjust_debug_stmts_now (&ai);
235 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
236 to adjust any debug stmts that referenced the old phi arg,
237 presumably non-loop-closed references left over from other
238 transformations. */
240 static void
241 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
243 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
245 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
247 if (MAY_HAVE_DEBUG_STMTS)
248 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
249 gimple_bb (update_phi));
252 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
253 that starts at zero, increases by one and its limit is NITERS.
255 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
257 void
258 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
260 tree indx_before_incr, indx_after_incr;
261 gcond *cond_stmt;
262 gcond *orig_cond;
263 edge exit_edge = single_exit (loop);
264 gimple_stmt_iterator loop_cond_gsi;
265 gimple_stmt_iterator incr_gsi;
266 bool insert_after;
267 tree init = build_int_cst (TREE_TYPE (niters), 0);
268 tree step = build_int_cst (TREE_TYPE (niters), 1);
269 source_location loop_loc;
270 enum tree_code code;
272 orig_cond = get_loop_exit_condition (loop);
273 gcc_assert (orig_cond);
274 loop_cond_gsi = gsi_for_stmt (orig_cond);
276 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
277 create_iv (init, step, NULL_TREE, loop,
278 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
280 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
281 true, NULL_TREE, true,
282 GSI_SAME_STMT);
283 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
284 true, GSI_SAME_STMT);
286 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
287 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
288 NULL_TREE);
290 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
292 /* Remove old loop exit test: */
293 gsi_remove (&loop_cond_gsi, true);
294 free_stmt_vec_info (orig_cond);
296 loop_loc = find_loop_location (loop);
297 if (dump_enabled_p ())
299 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
300 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
301 LOCATION_LINE (loop_loc));
302 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
305 /* Record the number of latch iterations. */
306 loop->nb_iterations = fold_build2 (MINUS_EXPR, TREE_TYPE (niters), niters,
307 build_int_cst (TREE_TYPE (niters), 1));
310 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
311 For all PHI arguments in FROM->dest and TO->dest from those
312 edges ensure that TO->dest PHI arguments have current_def
313 to that in from. */
315 static void
316 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
318 gimple_stmt_iterator gsi_from, gsi_to;
320 for (gsi_from = gsi_start_phis (from->dest),
321 gsi_to = gsi_start_phis (to->dest);
322 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
324 gimple *from_phi = gsi_stmt (gsi_from);
325 gimple *to_phi = gsi_stmt (gsi_to);
326 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
327 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
328 if (virtual_operand_p (from_arg))
330 gsi_next (&gsi_from);
331 continue;
333 if (virtual_operand_p (to_arg))
335 gsi_next (&gsi_to);
336 continue;
338 if (TREE_CODE (from_arg) != SSA_NAME)
339 gcc_assert (operand_equal_p (from_arg, to_arg, 0));
340 else
342 if (get_current_def (to_arg) == NULL_TREE)
343 set_current_def (to_arg, get_current_def (from_arg));
345 gsi_next (&gsi_from);
346 gsi_next (&gsi_to);
349 gphi *from_phi = get_virtual_phi (from->dest);
350 gphi *to_phi = get_virtual_phi (to->dest);
351 if (from_phi)
352 set_current_def (PHI_ARG_DEF_FROM_EDGE (to_phi, to),
353 get_current_def (PHI_ARG_DEF_FROM_EDGE (from_phi, from)));
357 /* Given LOOP this function generates a new copy of it and puts it
358 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
359 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
360 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
361 entry or exit of LOOP. */
363 struct loop *
364 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
365 struct loop *scalar_loop, edge e)
367 struct loop *new_loop;
368 basic_block *new_bbs, *bbs, *pbbs;
369 bool at_exit;
370 bool was_imm_dom;
371 basic_block exit_dest;
372 edge exit, new_exit;
373 bool duplicate_outer_loop = false;
375 exit = single_exit (loop);
376 at_exit = (e == exit);
377 if (!at_exit && e != loop_preheader_edge (loop))
378 return NULL;
380 if (scalar_loop == NULL)
381 scalar_loop = loop;
383 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
384 pbbs = bbs + 1;
385 get_loop_body_with_size (scalar_loop, pbbs, scalar_loop->num_nodes);
386 /* Allow duplication of outer loops. */
387 if (scalar_loop->inner)
388 duplicate_outer_loop = true;
389 /* Check whether duplication is possible. */
390 if (!can_copy_bbs_p (pbbs, scalar_loop->num_nodes))
392 free (bbs);
393 return NULL;
396 /* Generate new loop structure. */
397 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
398 duplicate_subloops (scalar_loop, new_loop);
400 exit_dest = exit->dest;
401 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
402 exit_dest) == loop->header ?
403 true : false);
405 /* Also copy the pre-header, this avoids jumping through hoops to
406 duplicate the loop entry PHI arguments. Create an empty
407 pre-header unconditionally for this. */
408 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
409 edge entry_e = single_pred_edge (preheader);
410 bbs[0] = preheader;
411 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
413 exit = single_exit (scalar_loop);
414 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
415 &exit, 1, &new_exit, NULL,
416 at_exit ? loop->latch : e->src, true);
417 exit = single_exit (loop);
418 basic_block new_preheader = new_bbs[0];
420 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
422 if (scalar_loop != loop)
424 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
425 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
426 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
427 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
428 header) to have current_def set, so copy them over. */
429 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
430 exit);
431 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
433 EDGE_SUCC (loop->latch, 0));
436 if (at_exit) /* Add the loop copy at exit. */
438 if (scalar_loop != loop)
440 gphi_iterator gsi;
441 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
443 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
444 gsi_next (&gsi))
446 gphi *phi = gsi.phi ();
447 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
448 location_t orig_locus
449 = gimple_phi_arg_location_from_edge (phi, e);
451 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
454 redirect_edge_and_branch_force (e, new_preheader);
455 flush_pending_stmts (e);
456 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
457 if (was_imm_dom || duplicate_outer_loop)
458 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
460 /* And remove the non-necessary forwarder again. Keep the other
461 one so we have a proper pre-header for the loop at the exit edge. */
462 redirect_edge_pred (single_succ_edge (preheader),
463 single_pred (preheader));
464 delete_basic_block (preheader);
465 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
466 loop_preheader_edge (scalar_loop)->src);
468 else /* Add the copy at entry. */
470 if (scalar_loop != loop)
472 /* Remove the non-necessary forwarder of scalar_loop again. */
473 redirect_edge_pred (single_succ_edge (preheader),
474 single_pred (preheader));
475 delete_basic_block (preheader);
476 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
477 loop_preheader_edge (scalar_loop)->src);
478 preheader = split_edge (loop_preheader_edge (loop));
479 entry_e = single_pred_edge (preheader);
482 redirect_edge_and_branch_force (entry_e, new_preheader);
483 flush_pending_stmts (entry_e);
484 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
486 redirect_edge_and_branch_force (new_exit, preheader);
487 flush_pending_stmts (new_exit);
488 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
490 /* And remove the non-necessary forwarder again. Keep the other
491 one so we have a proper pre-header for the loop at the exit edge. */
492 redirect_edge_pred (single_succ_edge (new_preheader),
493 single_pred (new_preheader));
494 delete_basic_block (new_preheader);
495 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
496 loop_preheader_edge (new_loop)->src);
499 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
500 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
502 if (scalar_loop != loop)
504 /* Update new_loop->header PHIs, so that on the preheader
505 edge they are the ones from loop rather than scalar_loop. */
506 gphi_iterator gsi_orig, gsi_new;
507 edge orig_e = loop_preheader_edge (loop);
508 edge new_e = loop_preheader_edge (new_loop);
510 for (gsi_orig = gsi_start_phis (loop->header),
511 gsi_new = gsi_start_phis (new_loop->header);
512 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
513 gsi_next (&gsi_orig), gsi_next (&gsi_new))
515 gphi *orig_phi = gsi_orig.phi ();
516 gphi *new_phi = gsi_new.phi ();
517 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
518 location_t orig_locus
519 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
521 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
525 free (new_bbs);
526 free (bbs);
528 checking_verify_dominators (CDI_DOMINATORS);
530 return new_loop;
534 /* Given the condition expression COND, put it as the last statement of
535 GUARD_BB; set both edges' probability; set dominator of GUARD_TO to
536 DOM_BB; return the skip edge. GUARD_TO is the target basic block to
537 skip the loop. PROBABILITY is the skip edge's probability. Mark the
538 new edge as irreducible if IRREDUCIBLE_P is true. */
540 static edge
541 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
542 basic_block guard_to, basic_block dom_bb,
543 profile_probability probability, bool irreducible_p)
545 gimple_stmt_iterator gsi;
546 edge new_e, enter_e;
547 gcond *cond_stmt;
548 gimple_seq gimplify_stmt_list = NULL;
550 enter_e = EDGE_SUCC (guard_bb, 0);
551 enter_e->flags &= ~EDGE_FALLTHRU;
552 enter_e->flags |= EDGE_FALSE_VALUE;
553 gsi = gsi_last_bb (guard_bb);
555 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
556 NULL_TREE);
557 if (gimplify_stmt_list)
558 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
560 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
561 gsi = gsi_last_bb (guard_bb);
562 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
564 /* Add new edge to connect guard block to the merge/loop-exit block. */
565 new_e = make_edge (guard_bb, guard_to, EDGE_TRUE_VALUE);
567 new_e->count = guard_bb->count;
568 new_e->probability = probability;
569 new_e->count = enter_e->count.apply_probability (probability);
570 if (irreducible_p)
571 new_e->flags |= EDGE_IRREDUCIBLE_LOOP;
573 enter_e->count -= new_e->count;
574 enter_e->probability = probability.invert ();
575 set_immediate_dominator (CDI_DOMINATORS, guard_to, dom_bb);
577 /* Split enter_e to preserve LOOPS_HAVE_PREHEADERS. */
578 if (enter_e->dest->loop_father->header == enter_e->dest)
579 split_edge (enter_e);
581 return new_e;
585 /* This function verifies that the following restrictions apply to LOOP:
586 (1) it consists of exactly 2 basic blocks - header, and an empty latch
587 for innermost loop and 5 basic blocks for outer-loop.
588 (2) it is single entry, single exit
589 (3) its exit condition is the last stmt in the header
590 (4) E is the entry/exit edge of LOOP.
593 bool
594 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
596 edge exit_e = single_exit (loop);
597 edge entry_e = loop_preheader_edge (loop);
598 gcond *orig_cond = get_loop_exit_condition (loop);
599 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
600 unsigned int num_bb = loop->inner? 5 : 2;
602 /* All loops have an outer scope; the only case loop->outer is NULL is for
603 the function itself. */
604 if (!loop_outer (loop)
605 || loop->num_nodes != num_bb
606 || !empty_block_p (loop->latch)
607 || !single_exit (loop)
608 /* Verify that new loop exit condition can be trivially modified. */
609 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
610 || (e != exit_e && e != entry_e))
611 return false;
613 return true;
616 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
617 in the exit bb and rename all the uses after the loop. This simplifies
618 the *guard[12] routines, which assume loop closed SSA form for all PHIs
619 (but normally loop closed SSA form doesn't require virtual PHIs to be
620 in the same form). Doing this early simplifies the checking what
621 uses should be renamed. */
623 static void
624 create_lcssa_for_virtual_phi (struct loop *loop)
626 gphi_iterator gsi;
627 edge exit_e = single_exit (loop);
629 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
630 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
632 gphi *phi = gsi.phi ();
633 for (gsi = gsi_start_phis (exit_e->dest);
634 !gsi_end_p (gsi); gsi_next (&gsi))
635 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
636 break;
637 if (gsi_end_p (gsi))
639 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
640 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
641 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
642 imm_use_iterator imm_iter;
643 gimple *stmt;
644 use_operand_p use_p;
646 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
647 gimple_phi_set_result (new_phi, new_vop);
648 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
649 if (stmt != new_phi
650 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
651 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
652 SET_USE (use_p, new_vop);
654 break;
659 /* Function vect_get_loop_location.
661 Extract the location of the loop in the source code.
662 If the loop is not well formed for vectorization, an estimated
663 location is calculated.
664 Return the loop location if succeed and NULL if not. */
666 source_location
667 find_loop_location (struct loop *loop)
669 gimple *stmt = NULL;
670 basic_block bb;
671 gimple_stmt_iterator si;
673 if (!loop)
674 return UNKNOWN_LOCATION;
676 stmt = get_loop_exit_condition (loop);
678 if (stmt
679 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
680 return gimple_location (stmt);
682 /* If we got here the loop is probably not "well formed",
683 try to estimate the loop location */
685 if (!loop->header)
686 return UNKNOWN_LOCATION;
688 bb = loop->header;
690 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
692 stmt = gsi_stmt (si);
693 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
694 return gimple_location (stmt);
697 return UNKNOWN_LOCATION;
700 /* Return true if PHI defines an IV of the loop to be vectorized. */
702 static bool
703 iv_phi_p (gphi *phi)
705 if (virtual_operand_p (PHI_RESULT (phi)))
706 return false;
708 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
709 gcc_assert (stmt_info != NULL);
710 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
711 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
712 return false;
714 return true;
717 /* Function vect_can_advance_ivs_p
719 In case the number of iterations that LOOP iterates is unknown at compile
720 time, an epilog loop will be generated, and the loop induction variables
721 (IVs) will be "advanced" to the value they are supposed to take just before
722 the epilog loop. Here we check that the access function of the loop IVs
723 and the expression that represents the loop bound are simple enough.
724 These restrictions will be relaxed in the future. */
726 bool
727 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
729 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
730 basic_block bb = loop->header;
731 gphi_iterator gsi;
733 /* Analyze phi functions of the loop header. */
735 if (dump_enabled_p ())
736 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
737 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
739 tree evolution_part;
741 gphi *phi = gsi.phi ();
742 if (dump_enabled_p ())
744 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
745 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
748 /* Skip virtual phi's. The data dependences that are associated with
749 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere.
751 Skip reduction phis. */
752 if (!iv_phi_p (phi))
754 if (dump_enabled_p ())
755 dump_printf_loc (MSG_NOTE, vect_location,
756 "reduc or virtual phi. skip.\n");
757 continue;
760 /* Analyze the evolution function. */
762 evolution_part
763 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
764 if (evolution_part == NULL_TREE)
766 if (dump_enabled_p ())
767 dump_printf (MSG_MISSED_OPTIMIZATION,
768 "No access function or evolution.\n");
769 return false;
772 /* FORNOW: We do not transform initial conditions of IVs
773 which evolution functions are not invariants in the loop. */
775 if (!expr_invariant_in_loop_p (loop, evolution_part))
777 if (dump_enabled_p ())
778 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
779 "evolution not invariant in loop.\n");
780 return false;
783 /* FORNOW: We do not transform initial conditions of IVs
784 which evolution functions are a polynomial of degree >= 2. */
786 if (tree_is_chrec (evolution_part))
788 if (dump_enabled_p ())
789 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
790 "evolution is chrec.\n");
791 return false;
795 return true;
799 /* Function vect_update_ivs_after_vectorizer.
801 "Advance" the induction variables of LOOP to the value they should take
802 after the execution of LOOP. This is currently necessary because the
803 vectorizer does not handle induction variables that are used after the
804 loop. Such a situation occurs when the last iterations of LOOP are
805 peeled, because:
806 1. We introduced new uses after LOOP for IVs that were not originally used
807 after LOOP: the IVs of LOOP are now used by an epilog loop.
808 2. LOOP is going to be vectorized; this means that it will iterate N/VF
809 times, whereas the loop IVs should be bumped N times.
811 Input:
812 - LOOP - a loop that is going to be vectorized. The last few iterations
813 of LOOP were peeled.
814 - NITERS - the number of iterations that LOOP executes (before it is
815 vectorized). i.e, the number of times the ivs should be bumped.
816 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
817 coming out from LOOP on which there are uses of the LOOP ivs
818 (this is the path from LOOP->exit to epilog_loop->preheader).
820 The new definitions of the ivs are placed in LOOP->exit.
821 The phi args associated with the edge UPDATE_E in the bb
822 UPDATE_E->dest are updated accordingly.
824 Assumption 1: Like the rest of the vectorizer, this function assumes
825 a single loop exit that has a single predecessor.
827 Assumption 2: The phi nodes in the LOOP header and in update_bb are
828 organized in the same order.
830 Assumption 3: The access function of the ivs is simple enough (see
831 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
833 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
834 coming out of LOOP on which the ivs of LOOP are used (this is the path
835 that leads to the epilog loop; other paths skip the epilog loop). This
836 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
837 needs to have its phis updated.
840 static void
841 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo,
842 tree niters, edge update_e)
844 gphi_iterator gsi, gsi1;
845 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
846 basic_block update_bb = update_e->dest;
847 basic_block exit_bb = single_exit (loop)->dest;
849 /* Make sure there exists a single-predecessor exit bb: */
850 gcc_assert (single_pred_p (exit_bb));
851 gcc_assert (single_succ_edge (exit_bb) == update_e);
853 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
854 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
855 gsi_next (&gsi), gsi_next (&gsi1))
857 tree init_expr;
858 tree step_expr, off;
859 tree type;
860 tree var, ni, ni_name;
861 gimple_stmt_iterator last_gsi;
863 gphi *phi = gsi.phi ();
864 gphi *phi1 = gsi1.phi ();
865 if (dump_enabled_p ())
867 dump_printf_loc (MSG_NOTE, vect_location,
868 "vect_update_ivs_after_vectorizer: phi: ");
869 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
872 /* Skip reduction and virtual phis. */
873 if (!iv_phi_p (phi))
875 if (dump_enabled_p ())
876 dump_printf_loc (MSG_NOTE, vect_location,
877 "reduc or virtual phi. skip.\n");
878 continue;
881 type = TREE_TYPE (gimple_phi_result (phi));
882 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
883 step_expr = unshare_expr (step_expr);
885 /* FORNOW: We do not support IVs whose evolution function is a polynomial
886 of degree >= 2 or exponential. */
887 gcc_assert (!tree_is_chrec (step_expr));
889 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
891 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
892 fold_convert (TREE_TYPE (step_expr), niters),
893 step_expr);
894 if (POINTER_TYPE_P (type))
895 ni = fold_build_pointer_plus (init_expr, off);
896 else
897 ni = fold_build2 (PLUS_EXPR, type,
898 init_expr, fold_convert (type, off));
900 var = create_tmp_var (type, "tmp");
902 last_gsi = gsi_last_bb (exit_bb);
903 gimple_seq new_stmts = NULL;
904 ni_name = force_gimple_operand (ni, &new_stmts, false, var);
905 /* Exit_bb shouldn't be empty. */
906 if (!gsi_end_p (last_gsi))
907 gsi_insert_seq_after (&last_gsi, new_stmts, GSI_SAME_STMT);
908 else
909 gsi_insert_seq_before (&last_gsi, new_stmts, GSI_SAME_STMT);
911 /* Fix phi expressions in the successor bb. */
912 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
916 /* Function vect_gen_prolog_loop_niters
918 Generate the number of iterations which should be peeled as prolog for the
919 loop represented by LOOP_VINFO. It is calculated as the misalignment of
920 DR - the data reference recorded in LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO).
921 As a result, after the execution of this loop, the data reference DR will
922 refer to an aligned location. The following computation is generated:
924 If the misalignment of DR is known at compile time:
925 addr_mis = int mis = DR_MISALIGNMENT (dr);
926 Else, compute address misalignment in bytes:
927 addr_mis = addr & (vectype_align - 1)
929 prolog_niters = ((VF - addr_mis/elem_size)&(VF-1))/step
931 (elem_size = element type size; an element is the scalar element whose type
932 is the inner type of the vectype)
934 The computations will be emitted at the end of BB. We also compute and
935 store upper bound (included) of the result in BOUND.
937 When the step of the data-ref in the loop is not 1 (as in interleaved data
938 and SLP), the number of iterations of the prolog must be divided by the step
939 (which is equal to the size of interleaved group).
941 The above formulas assume that VF == number of elements in the vector. This
942 may not hold when there are multiple-types in the loop.
943 In this case, for some data-references in the loop the VF does not represent
944 the number of elements that fit in the vector. Therefore, instead of VF we
945 use TYPE_VECTOR_SUBPARTS. */
947 static tree
948 vect_gen_prolog_loop_niters (loop_vec_info loop_vinfo,
949 basic_block bb, int *bound)
951 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
952 tree var;
953 tree niters_type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
954 gimple_seq stmts = NULL, new_stmts = NULL;
955 tree iters, iters_name;
956 gimple *dr_stmt = DR_STMT (dr);
957 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
958 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
959 unsigned int target_align = DR_TARGET_ALIGNMENT (dr);
961 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
963 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
965 if (dump_enabled_p ())
966 dump_printf_loc (MSG_NOTE, vect_location,
967 "known peeling = %d.\n", npeel);
969 iters = build_int_cst (niters_type, npeel);
970 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
972 else
974 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
975 tree offset = negative
976 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
977 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
978 &stmts, offset);
979 tree type = unsigned_type_for (TREE_TYPE (start_addr));
980 tree target_align_minus_1 = build_int_cst (type, target_align - 1);
981 HOST_WIDE_INT elem_size
982 = int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
983 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
984 HOST_WIDE_INT align_in_elems = target_align / elem_size;
985 tree align_in_elems_minus_1 = build_int_cst (type, align_in_elems - 1);
986 tree align_in_elems_tree = build_int_cst (type, align_in_elems);
987 tree misalign_in_bytes;
988 tree misalign_in_elems;
990 /* Create: misalign_in_bytes = addr & (target_align - 1). */
991 misalign_in_bytes
992 = fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
993 target_align_minus_1);
995 /* Create: misalign_in_elems = misalign_in_bytes / element_size. */
996 misalign_in_elems
997 = fold_build2 (RSHIFT_EXPR, type, misalign_in_bytes, elem_size_log);
999 /* Create: (niters_type) ((align_in_elems - misalign_in_elems)
1000 & (align_in_elems - 1)). */
1001 if (negative)
1002 iters = fold_build2 (MINUS_EXPR, type, misalign_in_elems,
1003 align_in_elems_tree);
1004 else
1005 iters = fold_build2 (MINUS_EXPR, type, align_in_elems_tree,
1006 misalign_in_elems);
1007 iters = fold_build2 (BIT_AND_EXPR, type, iters, align_in_elems_minus_1);
1008 iters = fold_convert (niters_type, iters);
1009 *bound = align_in_elems - 1;
1012 if (dump_enabled_p ())
1014 dump_printf_loc (MSG_NOTE, vect_location,
1015 "niters for prolog loop: ");
1016 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1017 dump_printf (MSG_NOTE, "\n");
1020 var = create_tmp_var (niters_type, "prolog_loop_niters");
1021 iters_name = force_gimple_operand (iters, &new_stmts, false, var);
1023 if (new_stmts)
1024 gimple_seq_add_seq (&stmts, new_stmts);
1025 if (stmts)
1027 gcc_assert (single_succ_p (bb));
1028 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1029 if (gsi_end_p (gsi))
1030 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1031 else
1032 gsi_insert_seq_after (&gsi, stmts, GSI_SAME_STMT);
1034 return iters_name;
1038 /* Function vect_update_init_of_dr
1040 NITERS iterations were peeled from LOOP. DR represents a data reference
1041 in LOOP. This function updates the information recorded in DR to
1042 account for the fact that the first NITERS iterations had already been
1043 executed. Specifically, it updates the OFFSET field of DR. */
1045 static void
1046 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1048 tree offset = DR_OFFSET (dr);
1050 niters = fold_build2 (MULT_EXPR, sizetype,
1051 fold_convert (sizetype, niters),
1052 fold_convert (sizetype, DR_STEP (dr)));
1053 offset = fold_build2 (PLUS_EXPR, sizetype,
1054 fold_convert (sizetype, offset), niters);
1055 DR_OFFSET (dr) = offset;
1059 /* Function vect_update_inits_of_drs
1061 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1062 This function updates the information recorded for the data references in
1063 the loop to account for the fact that the first NITERS iterations had
1064 already been executed. Specifically, it updates the initial_condition of
1065 the access_function of all the data_references in the loop. */
1067 static void
1068 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1070 unsigned int i;
1071 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1072 struct data_reference *dr;
1074 if (dump_enabled_p ())
1075 dump_printf_loc (MSG_NOTE, vect_location,
1076 "=== vect_update_inits_of_dr ===\n");
1078 /* Adjust niters to sizetype and insert stmts on loop preheader edge. */
1079 if (!types_compatible_p (sizetype, TREE_TYPE (niters)))
1081 gimple_seq seq;
1082 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1083 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
1085 niters = fold_convert (sizetype, niters);
1086 niters = force_gimple_operand (niters, &seq, false, var);
1087 if (seq)
1089 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1090 gcc_assert (!new_bb);
1094 FOR_EACH_VEC_ELT (datarefs, i, dr)
1095 vect_update_init_of_dr (dr, niters);
1099 /* This function builds ni_name = number of iterations. Statements
1100 are emitted on the loop preheader edge. If NEW_VAR_P is not NULL, set
1101 it to TRUE if new ssa_var is generated. */
1103 tree
1104 vect_build_loop_niters (loop_vec_info loop_vinfo, bool *new_var_p)
1106 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1107 if (TREE_CODE (ni) == INTEGER_CST)
1108 return ni;
1109 else
1111 tree ni_name, var;
1112 gimple_seq stmts = NULL;
1113 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1115 var = create_tmp_var (TREE_TYPE (ni), "niters");
1116 ni_name = force_gimple_operand (ni, &stmts, false, var);
1117 if (stmts)
1119 gsi_insert_seq_on_edge_immediate (pe, stmts);
1120 if (new_var_p != NULL)
1121 *new_var_p = true;
1124 return ni_name;
1128 /* Calculate the number of iterations above which vectorized loop will be
1129 preferred than scalar loop. NITERS_PROLOG is the number of iterations
1130 of prolog loop. If it's integer const, the integer number is also passed
1131 in INT_NITERS_PROLOG. BOUND_PROLOG is the upper bound (included) of
1132 number of iterations of prolog loop. VFM1 is vector factor minus one.
1133 If CHECK_PROFITABILITY is true, TH is the threshold below which scalar
1134 (rather than vectorized) loop will be executed. This function stores
1135 upper bound (included) of the result in BOUND_SCALAR. */
1137 static tree
1138 vect_gen_scalar_loop_niters (tree niters_prolog, int int_niters_prolog,
1139 int bound_prolog, int vfm1, int th,
1140 int *bound_scalar, bool check_profitability)
1142 tree type = TREE_TYPE (niters_prolog);
1143 tree niters = fold_build2 (PLUS_EXPR, type, niters_prolog,
1144 build_int_cst (type, vfm1));
1146 *bound_scalar = vfm1 + bound_prolog;
1147 if (check_profitability)
1149 /* TH indicates the minimum niters of vectorized loop, while we
1150 compute the maximum niters of scalar loop. */
1151 th--;
1152 /* Peeling for constant times. */
1153 if (int_niters_prolog >= 0)
1155 *bound_scalar = (int_niters_prolog + vfm1 < th
1156 ? th
1157 : vfm1 + int_niters_prolog);
1158 return build_int_cst (type, *bound_scalar);
1160 /* Peeling for unknown times. Note BOUND_PROLOG is the upper
1161 bound (inlcuded) of niters of prolog loop. */
1162 if (th >= vfm1 + bound_prolog)
1164 *bound_scalar = th;
1165 return build_int_cst (type, th);
1167 /* Need to do runtime comparison, but BOUND_SCALAR remains the same. */
1168 else if (th > vfm1)
1169 return fold_build2 (MAX_EXPR, type, build_int_cst (type, th), niters);
1171 return niters;
1174 /* This function generates the following statements:
1176 niters = number of iterations loop executes (after peeling)
1177 niters_vector = niters / vf
1179 and places them on the loop preheader edge. NITERS_NO_OVERFLOW is
1180 true if NITERS doesn't overflow. */
1182 void
1183 vect_gen_vector_loop_niters (loop_vec_info loop_vinfo, tree niters,
1184 tree *niters_vector_ptr, bool niters_no_overflow)
1186 tree ni_minus_gap, var;
1187 tree niters_vector, type = TREE_TYPE (niters);
1188 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1189 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
1190 tree log_vf = build_int_cst (type, exact_log2 (vf));
1192 /* If epilogue loop is required because of data accesses with gaps, we
1193 subtract one iteration from the total number of iterations here for
1194 correct calculation of RATIO. */
1195 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1197 ni_minus_gap = fold_build2 (MINUS_EXPR, type, niters,
1198 build_one_cst (type));
1199 if (!is_gimple_val (ni_minus_gap))
1201 var = create_tmp_var (type, "ni_gap");
1202 gimple *stmts = NULL;
1203 ni_minus_gap = force_gimple_operand (ni_minus_gap, &stmts,
1204 true, var);
1205 gsi_insert_seq_on_edge_immediate (pe, stmts);
1208 else
1209 ni_minus_gap = niters;
1211 /* Create: niters >> log2(vf) */
1212 /* If it's known that niters == number of latch executions + 1 doesn't
1213 overflow, we can generate niters >> log2(vf); otherwise we generate
1214 (niters - vf) >> log2(vf) + 1 by using the fact that we know ratio
1215 will be at least one. */
1216 if (niters_no_overflow)
1217 niters_vector = fold_build2 (RSHIFT_EXPR, type, ni_minus_gap, log_vf);
1218 else
1219 niters_vector
1220 = fold_build2 (PLUS_EXPR, type,
1221 fold_build2 (RSHIFT_EXPR, type,
1222 fold_build2 (MINUS_EXPR, type, ni_minus_gap,
1223 build_int_cst (type, vf)),
1224 log_vf),
1225 build_int_cst (type, 1));
1227 if (!is_gimple_val (niters_vector))
1229 var = create_tmp_var (type, "bnd");
1230 gimple_seq stmts = NULL;
1231 niters_vector = force_gimple_operand (niters_vector, &stmts, true, var);
1232 gsi_insert_seq_on_edge_immediate (pe, stmts);
1233 /* Peeling algorithm guarantees that vector loop bound is at least ONE,
1234 we set range information to make niters analyzer's life easier. */
1235 if (stmts != NULL)
1236 set_range_info (niters_vector, VR_RANGE, build_int_cst (type, 1),
1237 fold_build2 (RSHIFT_EXPR, type,
1238 TYPE_MAX_VALUE (type), log_vf));
1240 *niters_vector_ptr = niters_vector;
1242 return;
1245 /* Given NITERS_VECTOR which is the number of iterations for vectorized
1246 loop specified by LOOP_VINFO after vectorization, compute the number
1247 of iterations before vectorization (niters_vector * vf) and store it
1248 to NITERS_VECTOR_MULT_VF_PTR. */
1250 static void
1251 vect_gen_vector_loop_niters_mult_vf (loop_vec_info loop_vinfo,
1252 tree niters_vector,
1253 tree *niters_vector_mult_vf_ptr)
1255 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1256 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1257 tree type = TREE_TYPE (niters_vector);
1258 tree log_vf = build_int_cst (type, exact_log2 (vf));
1259 basic_block exit_bb = single_exit (loop)->dest;
1261 gcc_assert (niters_vector_mult_vf_ptr != NULL);
1262 tree niters_vector_mult_vf = fold_build2 (LSHIFT_EXPR, type,
1263 niters_vector, log_vf);
1264 if (!is_gimple_val (niters_vector_mult_vf))
1266 tree var = create_tmp_var (type, "niters_vector_mult_vf");
1267 gimple_seq stmts = NULL;
1268 niters_vector_mult_vf = force_gimple_operand (niters_vector_mult_vf,
1269 &stmts, true, var);
1270 gimple_stmt_iterator gsi = gsi_start_bb (exit_bb);
1271 gsi_insert_seq_before (&gsi, stmts, GSI_SAME_STMT);
1273 *niters_vector_mult_vf_ptr = niters_vector_mult_vf;
1276 /* Function slpeel_tree_duplicate_loop_to_edge_cfg duplciates FIRST/SECOND
1277 from SECOND/FIRST and puts it at the original loop's preheader/exit
1278 edge, the two loops are arranged as below:
1280 preheader_a:
1281 first_loop:
1282 header_a:
1283 i_1 = PHI<i_0, i_2>;
1285 i_2 = i_1 + 1;
1286 if (cond_a)
1287 goto latch_a;
1288 else
1289 goto between_bb;
1290 latch_a:
1291 goto header_a;
1293 between_bb:
1294 ;; i_x = PHI<i_2>; ;; LCSSA phi node to be created for FIRST,
1296 second_loop:
1297 header_b:
1298 i_3 = PHI<i_0, i_4>; ;; Use of i_0 to be replaced with i_x,
1299 or with i_2 if no LCSSA phi is created
1300 under condition of CREATE_LCSSA_FOR_IV_PHIS.
1302 i_4 = i_3 + 1;
1303 if (cond_b)
1304 goto latch_b;
1305 else
1306 goto exit_bb;
1307 latch_b:
1308 goto header_b;
1310 exit_bb:
1312 This function creates loop closed SSA for the first loop; update the
1313 second loop's PHI nodes by replacing argument on incoming edge with the
1314 result of newly created lcssa PHI nodes. IF CREATE_LCSSA_FOR_IV_PHIS
1315 is false, Loop closed ssa phis will only be created for non-iv phis for
1316 the first loop.
1318 This function assumes exit bb of the first loop is preheader bb of the
1319 second loop, i.e, between_bb in the example code. With PHIs updated,
1320 the second loop will execute rest iterations of the first. */
1322 static void
1323 slpeel_update_phi_nodes_for_loops (loop_vec_info loop_vinfo,
1324 struct loop *first, struct loop *second,
1325 bool create_lcssa_for_iv_phis)
1327 gphi_iterator gsi_update, gsi_orig;
1328 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1330 edge first_latch_e = EDGE_SUCC (first->latch, 0);
1331 edge second_preheader_e = loop_preheader_edge (second);
1332 basic_block between_bb = single_exit (first)->dest;
1334 gcc_assert (between_bb == second_preheader_e->src);
1335 gcc_assert (single_pred_p (between_bb) && single_succ_p (between_bb));
1336 /* Either the first loop or the second is the loop to be vectorized. */
1337 gcc_assert (loop == first || loop == second);
1339 for (gsi_orig = gsi_start_phis (first->header),
1340 gsi_update = gsi_start_phis (second->header);
1341 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
1342 gsi_next (&gsi_orig), gsi_next (&gsi_update))
1344 gphi *orig_phi = gsi_orig.phi ();
1345 gphi *update_phi = gsi_update.phi ();
1347 tree arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, first_latch_e);
1348 /* Generate lcssa PHI node for the first loop. */
1349 gphi *vect_phi = (loop == first) ? orig_phi : update_phi;
1350 if (create_lcssa_for_iv_phis || !iv_phi_p (vect_phi))
1352 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
1353 gphi *lcssa_phi = create_phi_node (new_res, between_bb);
1354 add_phi_arg (lcssa_phi, arg, single_exit (first), UNKNOWN_LOCATION);
1355 arg = new_res;
1358 /* Update PHI node in the second loop by replacing arg on the loop's
1359 incoming edge. */
1360 adjust_phi_and_debug_stmts (update_phi, second_preheader_e, arg);
1364 /* Function slpeel_add_loop_guard adds guard skipping from the beginning
1365 of SKIP_LOOP to the beginning of UPDATE_LOOP. GUARD_EDGE and MERGE_EDGE
1366 are two pred edges of the merge point before UPDATE_LOOP. The two loops
1367 appear like below:
1369 guard_bb:
1370 if (cond)
1371 goto merge_bb;
1372 else
1373 goto skip_loop;
1375 skip_loop:
1376 header_a:
1377 i_1 = PHI<i_0, i_2>;
1379 i_2 = i_1 + 1;
1380 if (cond_a)
1381 goto latch_a;
1382 else
1383 goto exit_a;
1384 latch_a:
1385 goto header_a;
1387 exit_a:
1388 i_5 = PHI<i_2>;
1390 merge_bb:
1391 ;; PHI (i_x = PHI<i_0, i_5>) to be created at merge point.
1393 update_loop:
1394 header_b:
1395 i_3 = PHI<i_5, i_4>; ;; Use of i_5 to be replaced with i_x.
1397 i_4 = i_3 + 1;
1398 if (cond_b)
1399 goto latch_b;
1400 else
1401 goto exit_bb;
1402 latch_b:
1403 goto header_b;
1405 exit_bb:
1407 This function creates PHI nodes at merge_bb and replaces the use of i_5
1408 in the update_loop's PHI node with the result of new PHI result. */
1410 static void
1411 slpeel_update_phi_nodes_for_guard1 (struct loop *skip_loop,
1412 struct loop *update_loop,
1413 edge guard_edge, edge merge_edge)
1415 source_location merge_loc, guard_loc;
1416 edge orig_e = loop_preheader_edge (skip_loop);
1417 edge update_e = loop_preheader_edge (update_loop);
1418 gphi_iterator gsi_orig, gsi_update;
1420 for ((gsi_orig = gsi_start_phis (skip_loop->header),
1421 gsi_update = gsi_start_phis (update_loop->header));
1422 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
1423 gsi_next (&gsi_orig), gsi_next (&gsi_update))
1425 gphi *orig_phi = gsi_orig.phi ();
1426 gphi *update_phi = gsi_update.phi ();
1428 /* Generate new phi node at merge bb of the guard. */
1429 tree new_res = copy_ssa_name (PHI_RESULT (orig_phi));
1430 gphi *new_phi = create_phi_node (new_res, guard_edge->dest);
1432 /* Merge bb has two incoming edges: GUARD_EDGE and MERGE_EDGE. Set the
1433 args in NEW_PHI for these edges. */
1434 tree merge_arg = PHI_ARG_DEF_FROM_EDGE (update_phi, update_e);
1435 tree guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
1436 merge_loc = gimple_phi_arg_location_from_edge (update_phi, update_e);
1437 guard_loc = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
1438 add_phi_arg (new_phi, merge_arg, merge_edge, merge_loc);
1439 add_phi_arg (new_phi, guard_arg, guard_edge, guard_loc);
1441 /* Update phi in UPDATE_PHI. */
1442 adjust_phi_and_debug_stmts (update_phi, update_e, new_res);
1446 /* LCSSA_PHI is a lcssa phi of EPILOG loop which is copied from LOOP,
1447 this function searches for the corresponding lcssa phi node in exit
1448 bb of LOOP. If it is found, return the phi result; otherwise return
1449 NULL. */
1451 static tree
1452 find_guard_arg (struct loop *loop, struct loop *epilog ATTRIBUTE_UNUSED,
1453 gphi *lcssa_phi)
1455 gphi_iterator gsi;
1456 edge e = single_exit (loop);
1458 gcc_assert (single_pred_p (e->dest));
1459 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
1461 gphi *phi = gsi.phi ();
1462 if (operand_equal_p (PHI_ARG_DEF (phi, 0),
1463 PHI_ARG_DEF (lcssa_phi, 0), 0))
1464 return PHI_RESULT (phi);
1466 return NULL_TREE;
1469 /* LOOP and EPILOG are two consecutive loops in CFG and EPILOG is copied
1470 from LOOP. Function slpeel_add_loop_guard adds guard skipping from a
1471 point between the two loops to the end of EPILOG. Edges GUARD_EDGE
1472 and MERGE_EDGE are the two pred edges of merge_bb at the end of EPILOG.
1473 The CFG looks like:
1475 loop:
1476 header_a:
1477 i_1 = PHI<i_0, i_2>;
1479 i_2 = i_1 + 1;
1480 if (cond_a)
1481 goto latch_a;
1482 else
1483 goto exit_a;
1484 latch_a:
1485 goto header_a;
1487 exit_a:
1489 guard_bb:
1490 if (cond)
1491 goto merge_bb;
1492 else
1493 goto epilog_loop;
1495 ;; fall_through_bb
1497 epilog_loop:
1498 header_b:
1499 i_3 = PHI<i_2, i_4>;
1501 i_4 = i_3 + 1;
1502 if (cond_b)
1503 goto latch_b;
1504 else
1505 goto merge_bb;
1506 latch_b:
1507 goto header_b;
1509 merge_bb:
1510 ; PHI node (i_y = PHI<i_2, i_4>) to be created at merge point.
1512 exit_bb:
1513 i_x = PHI<i_4>; ;Use of i_4 to be replaced with i_y in merge_bb.
1515 For each name used out side EPILOG (i.e - for each name that has a lcssa
1516 phi in exit_bb) we create a new PHI in merge_bb. The new PHI has two
1517 args corresponding to GUARD_EDGE and MERGE_EDGE. Arg for MERGE_EDGE is
1518 the arg of the original PHI in exit_bb, arg for GUARD_EDGE is defined
1519 by LOOP and is found in the exit bb of LOOP. Arg of the original PHI
1520 in exit_bb will also be updated. */
1522 static void
1523 slpeel_update_phi_nodes_for_guard2 (struct loop *loop, struct loop *epilog,
1524 edge guard_edge, edge merge_edge)
1526 gphi_iterator gsi;
1527 basic_block merge_bb = guard_edge->dest;
1529 gcc_assert (single_succ_p (merge_bb));
1530 edge e = single_succ_edge (merge_bb);
1531 basic_block exit_bb = e->dest;
1532 gcc_assert (single_pred_p (exit_bb));
1533 gcc_assert (single_pred (exit_bb) == single_exit (epilog)->dest);
1535 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1537 gphi *update_phi = gsi.phi ();
1538 tree old_arg = PHI_ARG_DEF (update_phi, 0);
1539 /* This loop-closed-phi actually doesn't represent a use out of the
1540 loop - the phi arg is a constant. */
1541 if (TREE_CODE (old_arg) != SSA_NAME)
1542 continue;
1544 tree merge_arg = get_current_def (old_arg);
1545 if (!merge_arg)
1546 merge_arg = old_arg;
1548 tree guard_arg = find_guard_arg (loop, epilog, update_phi);
1549 /* If the var is live after loop but not a reduction, we simply
1550 use the old arg. */
1551 if (!guard_arg)
1552 guard_arg = old_arg;
1554 /* Create new phi node in MERGE_BB: */
1555 tree new_res = copy_ssa_name (PHI_RESULT (update_phi));
1556 gphi *merge_phi = create_phi_node (new_res, merge_bb);
1558 /* MERGE_BB has two incoming edges: GUARD_EDGE and MERGE_EDGE, Set
1559 the two PHI args in merge_phi for these edges. */
1560 add_phi_arg (merge_phi, merge_arg, merge_edge, UNKNOWN_LOCATION);
1561 add_phi_arg (merge_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
1563 /* Update the original phi in exit_bb. */
1564 adjust_phi_and_debug_stmts (update_phi, e, new_res);
1568 /* EPILOG loop is duplicated from the original loop for vectorizing,
1569 the arg of its loop closed ssa PHI needs to be updated. */
1571 static void
1572 slpeel_update_phi_nodes_for_lcssa (struct loop *epilog)
1574 gphi_iterator gsi;
1575 basic_block exit_bb = single_exit (epilog)->dest;
1577 gcc_assert (single_pred_p (exit_bb));
1578 edge e = EDGE_PRED (exit_bb, 0);
1579 for (gsi = gsi_start_phis (exit_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1580 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
1583 /* Function vect_do_peeling.
1585 Input:
1586 - LOOP_VINFO: Represent a loop to be vectorized, which looks like:
1588 preheader:
1589 LOOP:
1590 header_bb:
1591 loop_body
1592 if (exit_loop_cond) goto exit_bb
1593 else goto header_bb
1594 exit_bb:
1596 - NITERS: The number of iterations of the loop.
1597 - NITERSM1: The number of iterations of the loop's latch.
1598 - NITERS_NO_OVERFLOW: No overflow in computing NITERS.
1599 - TH, CHECK_PROFITABILITY: Threshold of niters to vectorize loop if
1600 CHECK_PROFITABILITY is true.
1601 Output:
1602 - NITERS_VECTOR: The number of iterations of loop after vectorization.
1604 This function peels prolog and epilog from the loop, adds guards skipping
1605 PROLOG and EPILOG for various conditions. As a result, the changed CFG
1606 would look like:
1608 guard_bb_1:
1609 if (prefer_scalar_loop) goto merge_bb_1
1610 else goto guard_bb_2
1612 guard_bb_2:
1613 if (skip_prolog) goto merge_bb_2
1614 else goto prolog_preheader
1616 prolog_preheader:
1617 PROLOG:
1618 prolog_header_bb:
1619 prolog_body
1620 if (exit_prolog_cond) goto prolog_exit_bb
1621 else goto prolog_header_bb
1622 prolog_exit_bb:
1624 merge_bb_2:
1626 vector_preheader:
1627 VECTOR LOOP:
1628 vector_header_bb:
1629 vector_body
1630 if (exit_vector_cond) goto vector_exit_bb
1631 else goto vector_header_bb
1632 vector_exit_bb:
1634 guard_bb_3:
1635 if (skip_epilog) goto merge_bb_3
1636 else goto epilog_preheader
1638 merge_bb_1:
1640 epilog_preheader:
1641 EPILOG:
1642 epilog_header_bb:
1643 epilog_body
1644 if (exit_epilog_cond) goto merge_bb_3
1645 else goto epilog_header_bb
1647 merge_bb_3:
1649 Note this function peels prolog and epilog only if it's necessary,
1650 as well as guards.
1651 Returns created epilogue or NULL.
1653 TODO: Guard for prefer_scalar_loop should be emitted along with
1654 versioning conditions if loop versioning is needed. */
1657 struct loop *
1658 vect_do_peeling (loop_vec_info loop_vinfo, tree niters, tree nitersm1,
1659 tree *niters_vector, int th, bool check_profitability,
1660 bool niters_no_overflow)
1662 edge e, guard_e;
1663 tree type = TREE_TYPE (niters), guard_cond;
1664 basic_block guard_bb, guard_to;
1665 profile_probability prob_prolog, prob_vector, prob_epilog;
1666 int bound_prolog = 0, bound_scalar = 0, bound = 0;
1667 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1668 int prolog_peeling = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1669 bool epilog_peeling = (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
1670 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo));
1672 if (!prolog_peeling && !epilog_peeling)
1673 return NULL;
1675 prob_vector = profile_probability::guessed_always ().apply_scale (9, 10);
1676 if ((vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo)) == 2)
1677 vf = 3;
1678 prob_prolog = prob_epilog = profile_probability::guessed_always ()
1679 .apply_scale (vf - 1, vf);
1680 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1682 struct loop *prolog, *epilog = NULL, *loop = LOOP_VINFO_LOOP (loop_vinfo);
1683 struct loop *first_loop = loop;
1684 bool irred_flag = loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP;
1685 create_lcssa_for_virtual_phi (loop);
1686 update_ssa (TODO_update_ssa_only_virtuals);
1688 if (MAY_HAVE_DEBUG_STMTS)
1690 gcc_assert (!adjust_vec.exists ());
1691 adjust_vec.create (32);
1693 initialize_original_copy_tables ();
1695 /* Prolog loop may be skipped. */
1696 bool skip_prolog = (prolog_peeling != 0);
1697 /* Skip to epilog if scalar loop may be preferred. It's only needed
1698 when we peel for epilog loop and when it hasn't been checked with
1699 loop versioning. */
1700 bool skip_vector = (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1701 && !LOOP_REQUIRES_VERSIONING (loop_vinfo));
1702 /* Epilog loop must be executed if the number of iterations for epilog
1703 loop is known at compile time, otherwise we need to add a check at
1704 the end of vector loop and skip to the end of epilog loop. */
1705 bool skip_epilog = (prolog_peeling < 0
1706 || !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo));
1707 /* PEELING_FOR_GAPS is special because epilog loop must be executed. */
1708 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1709 skip_epilog = false;
1711 /* Record the anchor bb at which guard should be placed if scalar loop
1712 may be preferred. */
1713 basic_block anchor = loop_preheader_edge (loop)->src;
1714 if (skip_vector)
1716 split_edge (loop_preheader_edge (loop));
1718 /* Due to the order in which we peel prolog and epilog, we first
1719 propagate probability to the whole loop. The purpose is to
1720 avoid adjusting probabilities of both prolog and vector loops
1721 separately. Note in this case, the probability of epilog loop
1722 needs to be scaled back later. */
1723 basic_block bb_before_loop = loop_preheader_edge (loop)->src;
1724 if (prob_vector.initialized_p ())
1725 scale_bbs_frequencies (&bb_before_loop, 1, prob_vector);
1726 scale_loop_profile (loop, prob_vector, bound);
1729 tree niters_prolog = build_int_cst (type, 0);
1730 source_location loop_loc = find_loop_location (loop);
1731 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1732 if (prolog_peeling)
1734 e = loop_preheader_edge (loop);
1735 if (!slpeel_can_duplicate_loop_p (loop, e))
1737 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1738 "loop can't be duplicated to preheader edge.\n");
1739 gcc_unreachable ();
1741 /* Peel prolog and put it on preheader edge of loop. */
1742 prolog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
1743 if (!prolog)
1745 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1746 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
1747 gcc_unreachable ();
1749 slpeel_update_phi_nodes_for_loops (loop_vinfo, prolog, loop, true);
1750 first_loop = prolog;
1751 reset_original_copy_tables ();
1753 /* Generate and update the number of iterations for prolog loop. */
1754 niters_prolog = vect_gen_prolog_loop_niters (loop_vinfo, anchor,
1755 &bound_prolog);
1756 slpeel_make_loop_iterate_ntimes (prolog, niters_prolog);
1758 /* Skip the prolog loop. */
1759 if (skip_prolog)
1761 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
1762 niters_prolog, build_int_cst (type, 0));
1763 guard_bb = loop_preheader_edge (prolog)->src;
1764 basic_block bb_after_prolog = loop_preheader_edge (loop)->src;
1765 guard_to = split_edge (loop_preheader_edge (loop));
1766 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
1767 guard_to, guard_bb,
1768 prob_prolog.invert (),
1769 irred_flag);
1770 e = EDGE_PRED (guard_to, 0);
1771 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
1772 slpeel_update_phi_nodes_for_guard1 (prolog, loop, guard_e, e);
1774 scale_bbs_frequencies (&bb_after_prolog, 1, prob_prolog);
1775 scale_loop_profile (prolog, prob_prolog, bound_prolog);
1777 /* Update init address of DRs. */
1778 vect_update_inits_of_drs (loop_vinfo, niters_prolog);
1779 /* Update niters for vector loop. */
1780 LOOP_VINFO_NITERS (loop_vinfo)
1781 = fold_build2 (MINUS_EXPR, type, niters, niters_prolog);
1782 LOOP_VINFO_NITERSM1 (loop_vinfo)
1783 = fold_build2 (MINUS_EXPR, type,
1784 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_prolog);
1785 bool new_var_p = false;
1786 niters = vect_build_loop_niters (loop_vinfo, &new_var_p);
1787 /* It's guaranteed that vector loop bound before vectorization is at
1788 least VF, so set range information for newly generated var. */
1789 if (new_var_p)
1790 set_range_info (niters, VR_RANGE,
1791 build_int_cst (type, vf), TYPE_MAX_VALUE (type));
1793 /* Prolog iterates at most bound_prolog times, latch iterates at
1794 most bound_prolog - 1 times. */
1795 record_niter_bound (prolog, bound_prolog - 1, false, true);
1796 delete_update_ssa ();
1797 adjust_vec_debug_stmts ();
1798 scev_reset ();
1801 if (epilog_peeling)
1803 e = single_exit (loop);
1804 if (!slpeel_can_duplicate_loop_p (loop, e))
1806 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1807 "loop can't be duplicated to exit edge.\n");
1808 gcc_unreachable ();
1810 /* Peel epilog and put it on exit edge of loop. */
1811 epilog = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop, e);
1812 if (!epilog)
1814 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1815 "slpeel_tree_duplicate_loop_to_edge_cfg failed.\n");
1816 gcc_unreachable ();
1818 slpeel_update_phi_nodes_for_loops (loop_vinfo, loop, epilog, false);
1820 /* Scalar version loop may be preferred. In this case, add guard
1821 and skip to epilog. Note this only happens when the number of
1822 iterations of loop is unknown at compile time, otherwise this
1823 won't be vectorized. */
1824 if (skip_vector)
1826 /* Additional epilogue iteration is peeled if gap exists. */
1827 bool peel_for_gaps = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo);
1828 tree t = vect_gen_scalar_loop_niters (niters_prolog, prolog_peeling,
1829 bound_prolog,
1830 peel_for_gaps ? vf : vf - 1,
1831 th, &bound_scalar,
1832 check_profitability);
1833 /* Build guard against NITERSM1 since NITERS may overflow. */
1834 guard_cond = fold_build2 (LT_EXPR, boolean_type_node, nitersm1, t);
1835 guard_bb = anchor;
1836 guard_to = split_edge (loop_preheader_edge (epilog));
1837 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond,
1838 guard_to, guard_bb,
1839 prob_vector.invert (),
1840 irred_flag);
1841 e = EDGE_PRED (guard_to, 0);
1842 e = (e != guard_e ? e : EDGE_PRED (guard_to, 1));
1843 slpeel_update_phi_nodes_for_guard1 (first_loop, epilog, guard_e, e);
1845 /* Simply propagate profile info from guard_bb to guard_to which is
1846 a merge point of control flow. */
1847 guard_to->frequency = guard_bb->frequency;
1848 guard_to->count = guard_bb->count;
1849 single_succ_edge (guard_to)->count = guard_to->count;
1850 /* Scale probability of epilog loop back.
1851 FIXME: We should avoid scaling down and back up. Profile may
1852 get lost if we scale down to 0. */
1853 int scale_up = REG_BR_PROB_BASE * REG_BR_PROB_BASE
1854 / prob_vector.to_reg_br_prob_base ();
1855 basic_block *bbs = get_loop_body (epilog);
1856 scale_bbs_frequencies_int (bbs, epilog->num_nodes, scale_up,
1857 REG_BR_PROB_BASE);
1858 free (bbs);
1861 basic_block bb_before_epilog = loop_preheader_edge (epilog)->src;
1862 tree niters_vector_mult_vf;
1863 /* If loop is peeled for non-zero constant times, now niters refers to
1864 orig_niters - prolog_peeling, it won't overflow even the orig_niters
1865 overflows. */
1866 niters_no_overflow |= (prolog_peeling > 0);
1867 vect_gen_vector_loop_niters (loop_vinfo, niters,
1868 niters_vector, niters_no_overflow);
1869 vect_gen_vector_loop_niters_mult_vf (loop_vinfo, *niters_vector,
1870 &niters_vector_mult_vf);
1871 /* Update IVs of original loop as if they were advanced by
1872 niters_vector_mult_vf steps. */
1873 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1874 edge update_e = skip_vector ? e : loop_preheader_edge (epilog);
1875 vect_update_ivs_after_vectorizer (loop_vinfo, niters_vector_mult_vf,
1876 update_e);
1878 if (skip_epilog)
1880 guard_cond = fold_build2 (EQ_EXPR, boolean_type_node,
1881 niters, niters_vector_mult_vf);
1882 guard_bb = single_exit (loop)->dest;
1883 guard_to = split_edge (single_exit (epilog));
1884 guard_e = slpeel_add_loop_guard (guard_bb, guard_cond, guard_to,
1885 skip_vector ? anchor : guard_bb,
1886 prob_epilog.invert (),
1887 irred_flag);
1888 slpeel_update_phi_nodes_for_guard2 (loop, epilog, guard_e,
1889 single_exit (epilog));
1890 /* Only need to handle basic block before epilog loop if it's not
1891 the guard_bb, which is the case when skip_vector is true. */
1892 if (guard_bb != bb_before_epilog)
1894 prob_epilog = prob_vector * prob_epilog + prob_vector.invert ();
1896 scale_bbs_frequencies (&bb_before_epilog, 1, prob_epilog);
1898 scale_loop_profile (epilog, prob_epilog, bound);
1900 else
1901 slpeel_update_phi_nodes_for_lcssa (epilog);
1903 bound = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? vf - 1 : vf - 2;
1904 /* We share epilog loop with scalar version loop. */
1905 bound = MAX (bound, bound_scalar - 1);
1906 record_niter_bound (epilog, bound, false, true);
1908 delete_update_ssa ();
1909 adjust_vec_debug_stmts ();
1910 scev_reset ();
1912 adjust_vec.release ();
1913 free_original_copy_tables ();
1915 return epilog;
1918 /* Function vect_create_cond_for_niters_checks.
1920 Create a conditional expression that represents the run-time checks for
1921 loop's niter. The loop is guaranteed to to terminate if the run-time
1922 checks hold.
1924 Input:
1925 COND_EXPR - input conditional expression. New conditions will be chained
1926 with logical AND operation. If it is NULL, then the function
1927 is used to return the number of alias checks.
1928 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
1929 to be checked.
1931 Output:
1932 COND_EXPR - conditional expression.
1934 The returned COND_EXPR is the conditional expression to be used in the
1935 if statement that controls which version of the loop gets executed at
1936 runtime. */
1938 static void
1939 vect_create_cond_for_niters_checks (loop_vec_info loop_vinfo, tree *cond_expr)
1941 tree part_cond_expr = LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo);
1943 if (*cond_expr)
1944 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1945 *cond_expr, part_cond_expr);
1946 else
1947 *cond_expr = part_cond_expr;
1950 /* Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
1951 and PART_COND_EXPR are true. Treat a null *COND_EXPR as "true". */
1953 static void
1954 chain_cond_expr (tree *cond_expr, tree part_cond_expr)
1956 if (*cond_expr)
1957 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1958 *cond_expr, part_cond_expr);
1959 else
1960 *cond_expr = part_cond_expr;
1963 /* Function vect_create_cond_for_align_checks.
1965 Create a conditional expression that represents the alignment checks for
1966 all of data references (array element references) whose alignment must be
1967 checked at runtime.
1969 Input:
1970 COND_EXPR - input conditional expression. New conditions will be chained
1971 with logical AND operation.
1972 LOOP_VINFO - two fields of the loop information are used.
1973 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
1974 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
1976 Output:
1977 COND_EXPR_STMT_LIST - statements needed to construct the conditional
1978 expression.
1979 The returned value is the conditional expression to be used in the if
1980 statement that controls which version of the loop gets executed at runtime.
1982 The algorithm makes two assumptions:
1983 1) The number of bytes "n" in a vector is a power of 2.
1984 2) An address "a" is aligned if a%n is zero and that this
1985 test can be done as a&(n-1) == 0. For example, for 16
1986 byte vectors the test is a&0xf == 0. */
1988 static void
1989 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
1990 tree *cond_expr,
1991 gimple_seq *cond_expr_stmt_list)
1993 vec<gimple *> may_misalign_stmts
1994 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1995 gimple *ref_stmt;
1996 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
1997 tree mask_cst;
1998 unsigned int i;
1999 tree int_ptrsize_type;
2000 char tmp_name[20];
2001 tree or_tmp_name = NULL_TREE;
2002 tree and_tmp_name;
2003 gimple *and_stmt;
2004 tree ptrsize_zero;
2005 tree part_cond_expr;
2007 /* Check that mask is one less than a power of 2, i.e., mask is
2008 all zeros followed by all ones. */
2009 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2011 int_ptrsize_type = signed_type_for (ptr_type_node);
2013 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2014 of the first vector of the i'th data reference. */
2016 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2018 gimple_seq new_stmt_list = NULL;
2019 tree addr_base;
2020 tree addr_tmp_name;
2021 tree new_or_tmp_name;
2022 gimple *addr_stmt, *or_stmt;
2023 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2024 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2025 bool negative = tree_int_cst_compare
2026 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2027 tree offset = negative
2028 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2030 /* create: addr_tmp = (int)(address_of_first_vector) */
2031 addr_base =
2032 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2033 offset);
2034 if (new_stmt_list != NULL)
2035 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2037 sprintf (tmp_name, "addr2int%d", i);
2038 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2039 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2040 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2042 /* The addresses are OR together. */
2044 if (or_tmp_name != NULL_TREE)
2046 /* create: or_tmp = or_tmp | addr_tmp */
2047 sprintf (tmp_name, "orptrs%d", i);
2048 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2049 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2050 or_tmp_name, addr_tmp_name);
2051 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2052 or_tmp_name = new_or_tmp_name;
2054 else
2055 or_tmp_name = addr_tmp_name;
2057 } /* end for i */
2059 mask_cst = build_int_cst (int_ptrsize_type, mask);
2061 /* create: and_tmp = or_tmp & mask */
2062 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2064 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2065 or_tmp_name, mask_cst);
2066 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2068 /* Make and_tmp the left operand of the conditional test against zero.
2069 if and_tmp has a nonzero bit then some address is unaligned. */
2070 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2071 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2072 and_tmp_name, ptrsize_zero);
2073 chain_cond_expr (cond_expr, part_cond_expr);
2076 /* If LOOP_VINFO_CHECK_UNEQUAL_ADDRS contains <A1, B1>, ..., <An, Bn>,
2077 create a tree representation of: (&A1 != &B1) && ... && (&An != &Bn).
2078 Set *COND_EXPR to a tree that is true when both the original *COND_EXPR
2079 and this new condition are true. Treat a null *COND_EXPR as "true". */
2081 static void
2082 vect_create_cond_for_unequal_addrs (loop_vec_info loop_vinfo, tree *cond_expr)
2084 vec<vec_object_pair> pairs = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo);
2085 unsigned int i;
2086 vec_object_pair *pair;
2087 FOR_EACH_VEC_ELT (pairs, i, pair)
2089 tree addr1 = build_fold_addr_expr (pair->first);
2090 tree addr2 = build_fold_addr_expr (pair->second);
2091 tree part_cond_expr = fold_build2 (NE_EXPR, boolean_type_node,
2092 addr1, addr2);
2093 chain_cond_expr (cond_expr, part_cond_expr);
2097 /* Function vect_create_cond_for_alias_checks.
2099 Create a conditional expression that represents the run-time checks for
2100 overlapping of address ranges represented by a list of data references
2101 relations passed as input.
2103 Input:
2104 COND_EXPR - input conditional expression. New conditions will be chained
2105 with logical AND operation. If it is NULL, then the function
2106 is used to return the number of alias checks.
2107 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2108 to be checked.
2110 Output:
2111 COND_EXPR - conditional expression.
2113 The returned COND_EXPR is the conditional expression to be used in the if
2114 statement that controls which version of the loop gets executed at runtime.
2117 void
2118 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2120 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2121 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2123 if (comp_alias_ddrs.is_empty ())
2124 return;
2126 create_runtime_alias_checks (LOOP_VINFO_LOOP (loop_vinfo),
2127 &comp_alias_ddrs, cond_expr);
2128 if (dump_enabled_p ())
2129 dump_printf_loc (MSG_NOTE, vect_location,
2130 "created %u versioning for alias checks.\n",
2131 comp_alias_ddrs.length ());
2135 /* Function vect_loop_versioning.
2137 If the loop has data references that may or may not be aligned or/and
2138 has data reference relations whose independence was not proven then
2139 two versions of the loop need to be generated, one which is vectorized
2140 and one which isn't. A test is then generated to control which of the
2141 loops is executed. The test checks for the alignment of all of the
2142 data references that may or may not be aligned. An additional
2143 sequence of runtime tests is generated for each pairs of DDRs whose
2144 independence was not proven. The vectorized version of loop is
2145 executed only if both alias and alignment tests are passed.
2147 The test generated to check which version of loop is executed
2148 is modified to also check for profitability as indicated by the
2149 cost model threshold TH.
2151 The versioning precondition(s) are placed in *COND_EXPR and
2152 *COND_EXPR_STMT_LIST. */
2154 void
2155 vect_loop_versioning (loop_vec_info loop_vinfo,
2156 unsigned int th, bool check_profitability)
2158 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *nloop;
2159 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2160 basic_block condition_bb;
2161 gphi_iterator gsi;
2162 gimple_stmt_iterator cond_exp_gsi;
2163 basic_block merge_bb;
2164 basic_block new_exit_bb;
2165 edge new_exit_e, e;
2166 gphi *orig_phi, *new_phi;
2167 tree cond_expr = NULL_TREE;
2168 gimple_seq cond_expr_stmt_list = NULL;
2169 tree arg;
2170 profile_probability prob = profile_probability::likely ();
2171 gimple_seq gimplify_stmt_list = NULL;
2172 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2173 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2174 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2175 bool version_niter = LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo);
2177 if (check_profitability)
2178 cond_expr = fold_build2 (GE_EXPR, boolean_type_node, scalar_loop_iters,
2179 build_int_cst (TREE_TYPE (scalar_loop_iters),
2180 th - 1));
2182 if (version_niter)
2183 vect_create_cond_for_niters_checks (loop_vinfo, &cond_expr);
2185 if (cond_expr)
2186 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2187 is_gimple_condexpr, NULL_TREE);
2189 if (version_align)
2190 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2191 &cond_expr_stmt_list);
2193 if (version_alias)
2195 vect_create_cond_for_unequal_addrs (loop_vinfo, &cond_expr);
2196 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2199 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2200 is_gimple_condexpr, NULL_TREE);
2201 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2203 initialize_original_copy_tables ();
2204 if (scalar_loop)
2206 edge scalar_e;
2207 basic_block preheader, scalar_preheader;
2209 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2210 scale LOOP's frequencies instead. */
2211 nloop = loop_version (scalar_loop, cond_expr, &condition_bb,
2212 prob, prob.invert (), prob, prob.invert (), true);
2213 scale_loop_frequencies (loop, prob);
2214 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2215 while we need to move it above LOOP's preheader. */
2216 e = loop_preheader_edge (loop);
2217 scalar_e = loop_preheader_edge (scalar_loop);
2218 gcc_assert (empty_block_p (e->src)
2219 && single_pred_p (e->src));
2220 gcc_assert (empty_block_p (scalar_e->src)
2221 && single_pred_p (scalar_e->src));
2222 gcc_assert (single_pred_p (condition_bb));
2223 preheader = e->src;
2224 scalar_preheader = scalar_e->src;
2225 scalar_e = find_edge (condition_bb, scalar_preheader);
2226 e = single_pred_edge (preheader);
2227 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2228 scalar_preheader);
2229 redirect_edge_and_branch_force (scalar_e, preheader);
2230 redirect_edge_and_branch_force (e, condition_bb);
2231 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2232 single_pred (condition_bb));
2233 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2234 single_pred (scalar_preheader));
2235 set_immediate_dominator (CDI_DOMINATORS, preheader,
2236 condition_bb);
2238 else
2239 nloop = loop_version (loop, cond_expr, &condition_bb,
2240 prob, prob.invert (), prob, prob.invert (), true);
2242 if (version_niter)
2244 /* The versioned loop could be infinite, we need to clear existing
2245 niter information which is copied from the original loop. */
2246 gcc_assert (loop_constraint_set_p (loop, LOOP_C_FINITE));
2247 vect_free_loop_info_assumptions (nloop);
2248 /* And set constraint LOOP_C_INFINITE for niter analyzer. */
2249 loop_constraint_set (loop, LOOP_C_INFINITE);
2252 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2253 && dump_enabled_p ())
2255 if (version_alias)
2256 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2257 "loop versioned for vectorization because of "
2258 "possible aliasing\n");
2259 if (version_align)
2260 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2261 "loop versioned for vectorization to enhance "
2262 "alignment\n");
2265 free_original_copy_tables ();
2267 /* Loop versioning violates an assumption we try to maintain during
2268 vectorization - that the loop exit block has a single predecessor.
2269 After versioning, the exit block of both loop versions is the same
2270 basic block (i.e. it has two predecessors). Just in order to simplify
2271 following transformations in the vectorizer, we fix this situation
2272 here by adding a new (empty) block on the exit-edge of the loop,
2273 with the proper loop-exit phis to maintain loop-closed-form.
2274 If loop versioning wasn't done from loop, but scalar_loop instead,
2275 merge_bb will have already just a single successor. */
2277 merge_bb = single_exit (loop)->dest;
2278 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2280 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2281 new_exit_bb = split_edge (single_exit (loop));
2282 new_exit_e = single_exit (loop);
2283 e = EDGE_SUCC (new_exit_bb, 0);
2285 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2287 tree new_res;
2288 orig_phi = gsi.phi ();
2289 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2290 new_phi = create_phi_node (new_res, new_exit_bb);
2291 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2292 add_phi_arg (new_phi, arg, new_exit_e,
2293 gimple_phi_arg_location_from_edge (orig_phi, e));
2294 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2298 /* End loop-exit-fixes after versioning. */
2300 if (cond_expr_stmt_list)
2302 cond_exp_gsi = gsi_last_bb (condition_bb);
2303 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2304 GSI_SAME_STMT);
2306 update_ssa (TODO_update_ssa);